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Background and Purpose: The Italian National Center of Oncological Hadrontherapy
(CNAO) has applied dose constraints for carbon ion RT (CIRT) as defined by Japan’s
National Institute of Radiological Sciences (NIRS). However, these institutions use different
models to predict the relative biological effectiveness (RBE). CNAO applies the Local Effect
Model I (LEM I), which in most clinical situations predicts higher RBE than NIRS’s
Microdosimetric Kinetic Model (MKM). Equal constraints therefore become more
restrictive at CNAO. Tolerance doses for the brainstem have not been validated for
LEM I-weighted dose (DLEM I). However, brainstem constraints and a Normal Tissue
Complication Probability (NTCP) model were recently reported for MKM-weighted dose
(DMKM), showing that a constraint relaxation toDMKM|0.7 cm3 <30 Gy (RBE) andDMKM|0.1 cm3

<40 Gy (RBE) was feasible. The aim of this work was to evaluate the brainstem NTCP
associated with CNAO’s current clinical practice and to propose new brainstem
constraints for LEM I-optimized CIRT at CNAO.

Material and Methods: We reproduced the absorbed dose of 30 representative patient
treatment plans from CNAO. Subsequently, we calculated both DLEM I and DMKM, and the
relationship between DMKM and DLEM I for various brainstem dose metrics was analyzed.
Furthermore, the NTCP model developed for DMKM was applied to estimate the NTCPs of
the delivered plans.

Results: The translation of CNAO treatment plans to DMKM confirmed that the former
CNAO constraints were conservative compared with DMKM constraints. Estimated NTCPs
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were 0% for all but one case, in which the NTCP was 2%. The relationship DMKM/DLEM I

could be described by a quadratic regression model which revealed that the validated
DMKM constraints corresponded to DLEM I|0.7 cm3 <41 Gy (RBE) (95% CI, 38–44 Gy (RBE))
and DLEM I|0.1 cm3 <49 Gy (RBE) (95% CI, 46–52 Gy (RBE)).

Conclusion: Our study demonstrates that RBE-weighted dose translation is of crucial
importance in order to exchange experience and thus harmonize CIRT treatments
globally. To mitigate uncertainties involved, we propose to use the lower bound of the
95% CI of the translation estimates, i.e., DLEM I|0.7 cm3 <38 Gy (RBE) and DLEM I|0.1 cm3

<46 Gy (RBE) as brainstem dose constraints for 16 fraction CIRT treatments optimized
with LEM I.
Keywords: carbon ion radiotherapy, normal tissue complication probability, dose constraints, local effect model,
microdosimetric kinetic model, relative biological effectiveness (RBE), brainstem tolerance
INTRODUCTION

There is an increasing interest in using carbon ion radiotherapy
(CIRT) for the treatment of advanced, radioresistant tumors. The
physical properties of CIRT allow for delivering a high dose to
the tumor, while the finite distal depth dose and sharp lateral
penumbra can be utilized to spare nearby organs at risk (OARs)
from excessive dose. Furthermore, carbon ions exhibit high
linear energy transfer (LET) properties, which lead to more
efficient cell killing (higher relative biological effectiveness
(RBE)), compared with photon and proton RT. However, there
are substantial uncertainties regarding the clinical RBE of carbon
ions. Therefore, prescription doses, tolerance doses to OARs, and
normal tissue complication probability (NTCP) models based on
experience with photon or proton RT may not be applicable to
CIRT and should preferably be derived from CIRT data.

Two major approaches have been used for the clinical
implementation of CIRT. Spearheaded by the National Institute
of Radiological Sciences (NIRS), Chiba, Japan, the Japanese centers
are using hypofractionated treatment schedules (16 fractions of 3.6–
4.6 Gy (RBE)) in which prescription doses andOAR tolerance doses
initially were defined through carefully conducted dose-escalation
trials. Originally, the mixed beam model (1) was developed to
predict the RBE of the passively scattered carbon ion beams with
tumor response as the relevant endpoint. Later, with the
implementation of scanned beam delivery, the modified
microdosimetric kinetic model (MKM) (2–5) was introduced.
Since these two models have been validated for consistency, they
are hereby collectively abbreviated as MKM.

In contrast, CIRT at the Gesellschaft für Schwerionenforschung
(GSI), Darmstadt, Germany, was initiated with moderately
hypofractionated schedules (20–22 fractions of 3.0–3.5 Gy (RBE))
in which the Local Effect Model Version I (LEM I) (6, 7) was used to
predict the RBE of CIRT for late responding normal tissues (i.e.,
central nervous system tissue). Trusting the LEM I to be sufficiently
accurate, dose constraints derived from photon RT could be applied
for CIRT treatments. An additional assumption for this approach
was that the linear quadratic (LQ) formalism was applicable also
for CIRT.
2

When the National Center of Oncological Hadrontherapy
(CNAO, Italy) (8) started treating patients with LEM I-
optimized CIRT in 2012, the successful treatment approach
developed at NIRS was adopted. However, comparative studies
show that the LEM I predicts a 5–15% higher RBE in the spread
out Bragg peak (SOBP) of a carbon ion beam, relative to
the MKM (9, 10). In the entrance region, the RBE predicted by
LEM I can be 60% higher (11). Consequently, dependent on the
clinical indication, prescription doses at CNAO (reported in
LEM I-weighted dose, DLEM I) were increased 5–15% relative to
the prescription doses at NIRS (reported in MKM-weighted dose
(DMKM)) (9, 10). In contrast, dose constraints to OARs were not
adjusted. This was a cautious approach mitigating various
uncertainties related to the adaptation of NIRS prescription
doses (i.e., differences in RBE model, beam delivery method,
dose optimization process, etc.).

For the brainstem, the dose constraint at CNAOwas therefore
set to be <30 Gy (RBE) to no more than 1% of the organ’s volume
(DLEM I│1%), following the tradition of NIRS (12). Since this
constraint becomes more restrictive in LEM I-optimized CIRT,
CNAO has so far treated more than 1,000 patients with advanced
tumors in the head and neck region (for example, skull base,
nasopharynx, and sinonasal sites) without experiencing any
grade of radiation-induced brainstem injury. Thus, the
constraint needs to be updated to provide optimal treatments
in cases where the target volume is located close to the brainstem.
However, it is challenging to propose new and reasonable
constraints since no toxic events have been reported from any
institution applying LEM I-weighted doses for CIRT.

Recently, a dose-response analysis of brainstem toxicity
following DMKM-optimized CIRT at Gunma University Heavy
Ion Medical Center (GHMC) (13) was published by Shirai et al.
(14). None of the 85 patients included in this analysis
experienced symptomatic brainstem toxicity. However, four
cases of focal brainstem contrast enhancement were detected
on routine magnetic resonance imaging (MRI) during follow-up.
This was defined as central nervous system (CNS) necrosis grade
1 events according to the Common Terminology Criteria for
Adverse Events version 4.0 (CTCAE). Even these asymptomatic
November 2020 | Volume 10 | Article 531344
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events did not occur before the maximum dose (DMKM|max)
exceeded 48 Gy (RBE), showing that current constraint may be
conservative even when applied for DMKM. The brainstem
volume receiving more than 30 Gy (RBE) (V30 Gy (RBE)) and
40 Gy (RBE) (V40 Gy (RBE)) were independent risk factors for this
endpoint. Brainstem toxicity of any grade did not occur before
V30 Gy (RBE) exceeded 0.7 cm3 and V40 Gy (RBE) exceeded 0.1 cm3.
Since these values relate to radiologically detectable, but
asymptomatic alterations in the brainstem, they may serve as
constraints to avoid symptomatic injury. Shirai et al. also fitted
their data to the Lyman-Kutcher-Burman (LKB) NTCP model
(15–17), resulting in the following model parameters: volume-
effect parameter (n) = 0.08, biodiversity parameter (m) = 0.08,
and the equivalent uniform dose (EUD) corresponding to 50%
probability of toxicity (TD50) = 32.4 Gy (RBE).

The goal of this work is therefore to:

1. evaluate the brainstem NTCP associated with CNAOs
current clinical practice by applying the NTCP model
published by Shirai et al.

2. convert the DMKM validated constraints into DLEM I,
providing guidance for the proposal of new dose
constraints to be used at CNAO and other centers applying
LEM I.
Frontiers in Oncology | www.frontiersin.org 3
MATERIAL AND METHODS

Treatment Plan Selection and CIRT
at CNAO
The dose distributions of 30 CIRT treatments with target
volumes close to the brainstem were included in this study.
Details on disease site, histology, and prescription dose are
presented in Table 1. The treatments were given at CNAO in
the period 2013–2014 as part of prospective protocols (CNAO
S9/2012/C, CNAO S12/2012/C, and CNAO S15/2012/C)
approved by the Regional Ethics Committee. Signed consent
was required for participation. The plans were optimized for a
prescribed DLEM I of 68.8–76.8 Gy (RBE) in 16 fractions (4
fractions/week) using the syngo® RT Planning (Siemens
Healthcare, Erlangen, Germany) treatment planning system
(TPS). Dose constraint for the brainstem was DLEM I│1%

≤30 Gy (RBE). Additionally, a constraint of DLEM I│1% ≤35 Gy
(RBE) was applied to a 3-mm planning OAR volume (PRV) for
plan optimization purposes.

In general, the strategy to obtain a robust treatment plan is
similar at CNAO and GHMC: Multiple beam angles (3 to 4),
dominantly originating from the horizontally fixed beam line, are
achieved by couch rotation and/or by multiple immobilization
positions where the patient’s head is positioned either straight or
TABLE 1 | Disease and treatment characteristics.

Case nr. Histology Site Total DLEM I (Gy (RBE)) Fraction DLEM I (Gy (RBE))

1 Chordoma Skull base 70.4 4.4
2 Mesenchymal tumor Frontal sinus 76.8 4.8
3 Chordoma Skull base 70.4 4.4
4 Chordoma Skull base 70.4 4.4
5 MPNST Clivus 76.8 4.8
6 Chordoma Skull base 70.4 4.4
7 ACC Meckel’s cave 68.8 4.3
8 Chondrosarcoma Nasal cavity 70.4 4.4
9 Chordoma Clivus 70.4 4.4
10 Chordoma Clivus 70.4 4.4
11 Chordoma Clivus 70.4 4.4
12 ACC Maxillary sinus 68.8 4.3
13 Chordoma Clivus 70.4 4.4
14 Chordoma Clivus 70.4 4.4
15 Chondrosarcoma Clivus 70.4 4.4
16 Chordoma Skull base 70.4 4.4
17 ACC Maxillary sinus 68.8 4.3
18 ACC Nasopharynx 68,8 4,3
19 Chordoma Clivus 70.4 4.4
20 Chondrosarcoma Skull base 70.4 4.4
21 Cordoma Clivus 70.4 4.4
22 ACC Maxillary sinus 68.8 4.3
23 ACC Skull base 68.8 4.3
24 Chordoma Clivus 70.4 4.4
25 Pleomorphic sarcoma Clivus 76.8 4.8
26 ACC Paranasal sinuses 68.8 4.3
27 Chordoma Clivus 70.4 4.4
28 Acinar cell carcinoma Ethmoid/nasal cavity 68.8 4.3
29 ACC Maxillary sinus 68.8 4.3
30 Chordoma Clivus 70.4 4.4
November 2020 |
MPNST, Malignant peripheral nerve sheath tumor; ACC, Adenoid cystic carcinoma.
Volume 10 | Article 531344

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dale et al. Brainstem dose constraints for CIRT
rotated. Due to particle range uncertainty, beam angles are
chosen so that most of the dose to the brainstem originates
from the beam’s sharp lateral penumbra, rather than the distal
dose fall-off. Beams traversing through the brainstem are
never used.

Recalculation of RBE-Weighted Dose
Distributions
The patients’ computed tomography (CT) image files, structure
set files, dose files, and plan files were exported from the syngo®

TPS and imported to the matRad open source multimodality
radiation TPS (https://e0404.github.io/matRad/) (18) in which
the absorbed dose (DAbs) and DLEM I were reproduced. The input
parameters used clinically for LEM I were applied, i.e.,
ag = 0.1 Gy−1, bg = 0.05 Gy−2, Dt = 30 Gy, smax = 3.1 Gy−1,
Rn = 5 mm (7). The DVHs of targets and OARs were compared
with the corresponding DVHs of the dose distribution from the
syngo® TPS to ensure correct reproduction of both DAbs and
DLEM I (results not reported). Secondly, MKM was implemented
in the matRad TPS code using the input parameters used
clinically (Rd = 0.32 µm, Rn = 3.9 µm, a0 = 0.172 Gy−1,
b = 0.0615 Gy−2, ar = 0.764 Gy−1, FClin = 2.39) (2, 11) and
DMKM was derived from the exact same absorbed dose and
LET spectra. This enabled a direct comparison of each patient’s
DLEM I and DMKM based exclusively on the differences in the
RBE modeling.

Estimation of Brainstem NTCP
Using the DMKM distributions, the brainstem NTCP for each
treatment plan was calculated by the LKB method, using the
model parameters suggested by Shirai et al. (14): n = 0.08,
m = 0.08, and TD50 = 32.4 Gy (RBE).

RBE-Weighted Dose Translation
For each brainstem, the DMKM|0.7 cm3 and DMKM|0.1 cm3 were
plotted as a function of DLEM I|0.7 cm3 and DLEM I|0.1 cm3,
respectively. A curve fitting procedure was performed with the
software IBM SPSS Statistics for Windows, version 24.0 (IBM
Corp., Armonk, NY, U.S.A.) in order to produce a dose
translation model.

Verification of Dose Translation Model
As a last step, we wanted to verify that the dose translation model
correctly predicted the DLEM I/DMKM relationship also for higher
brainstem doses than our original data. Therefore, five treatment
plans, in which the original DLEM I constraint caused suboptimal
dose coverage to the clinical target volume (CTV D95% <95% of
prescription dose), were reoptimized applying a new set of DLEM I

constraints as proposed by this work (see “RESULTS”).
Subsequently, these new plans were recalculated to DMKM. These
procedures, which were conducted exclusively to confirm the
relationship of the RBE models, were performed with the
RayStation® 6.99 TPS (RaySearch Laboratories AB, Stockholm,
Sweden), where both the LEM I and MKM were implemented
with the respective model input parameters as mentioned earlier.
Frontiers in Oncology | www.frontiersin.org 4
RESULTS

Brainstem DVHs in relative and absolute volumes are presented
in both DLEM I and DMKM in Figure 1, showing the substantial
decrease in RBE-weighted doses when the MKM is applied as
RBE model.

The median brainstem DLEM I|1% was 23.7 Gy (range, 11.2–31.3
(RBE)), which corresponded to only 12.4 Gy (range, 5.5–21.8
(RBE)) in DMKM, highlighting the restraining effect of the original
CNAO constraint in achieving optimal CIRT treatments.

Only four of the brainstems received DMKM >30 Gy (RBE),
each of them to a volume smaller than 0.05 cm3. As seen in
Figures 1B, D, the highest DLEM I to the brainstem volumes 0.7
and 0.1 cm3 were 29 Gy (RBE) and 35 Gy (RBE), respectively,
corresponding to 17 Gy (RBE) and 25 Gy (RBE) in DMKM. These
modest doses resulted in a very low probability of asymptomatic
(grade 1) brainstem injury according to the NTCP model
published by Shirai et al. (14): One patient had an NTCP of
2%, while the NTCPs of the remaining 29 patients were close to
0%, see Figure 2.

For each patient, the brainstem dose metrics DLEM I|0.7 cm3 and
DLEM I|0.1 cm3 were plotted against the corresponding dose metric in
DMKM (Figure 3). With the assumption that the intercept should be
at origin (DLEM = 0 Gy (RBE) whenDMKM = 0 Gy (RBE)), we found
that the quadratic regression model

DMKM = (b1� DLEM I) + (b2� ½DLEM I �2)
adequately fit both sets of data (coefficients of determination,

R2 ≥ 0.918). Extrapolation of the models to the relevant dose levels
revealed that a DMKM|0.7 cm3 of 30 Gy (RBE) and a DMKM|0.1 cm3

of 40 Gy (RBE) translates into a DLEM I|0.7 cm3 of 41 Gy (RBE)
(95% CI, 38–44 Gy (RBE)) and a DLEM I|0.1 cm3 of 49 Gy (RBE)
(95% CI, 46–52 Gy (RBE)), respectively.

Subsequently, we reoptimized five of the treatment plans in
which the old brainstem constraint (DLEM I|1% <30 Gy (RBE))
caused suboptimal CTV dose coverage. For the reoptimization, new
brainstem constraints within the lower half of the 95% CI of the
dose translation estimates were applied, i.e., DLEM I|0.7 cm3 <38–
41 Gy (RBE) and DLEM I| cm3 <46–49 Gy (RBE). The relationship of
DLEM I to DMKM for the dose metrics D0.7 cm3 and D0.1 cm3 from the
reoptimized plans are plotted as open circles in the scatterplots of
Figure 3. As can be seen, the values of these data pairs agree with the
prediction of the dose translation model. To demonstrate the
potential clinical impact of relaxing the constraints, a comparison
of the original and reoptimized plans, displayed in both DLEM I and
DMKM, is presented in Figure 4. For this patient, the proportion of
the CTV receiving >95% of the prescription dose increased from 74
to 95%.
DISCUSSION

For the implementation of CIRT at CNAO, the goal has been to
replicate the successful results achieved at Japanese CIRT
centers, by translating NIRS prescription doses into
November 2020 | Volume 10 | Article 531344
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equiefficient doses within the LEM I dose prescription system (9,
10). However, initially the OAR dose constraints were not
adjusted correspondingly. This study clearly shows that the
original brainstem dose constraint applied at CNAO is too
conservative compared with the clinical practice in Japanese
centers. In a recent publication on skull base chordomas treated
at CNAO, Iannalfi et al. found that 92% of the local recurrences
Frontiers in Oncology | www.frontiersin.org 5
were attributable to suboptimal target dose in regions close to the
brainstem or optic pathways (19). The estimated 5-year local
control (LC) rate was 71%. This is inferior to the results reported
by Japanese centers, where 5-year LC rates within the range 76–
92% have been reported (20, 21).

Consequently, updated constraints for LEM I-optimized CIRT
are urgently needed. In our opinion, due to the lack of publications
FIGURE 2 | Brainstem NTCP for the 30 patients treated at CNAO as function of EUDMKM according to the NTCP model published by Shirai et al. (14).
A B

DC

FIGURE 1 | Brainstem DVHs in relative (A, C) and absolute volume (≤2 cm3) (B, D) of 30 patients treated at CNAO, presented in DLEM I (A, B) and DMKM (C, D).
Crosses represent the former CNAO and NIRS dose constraint of D1% ≤30 Gy (RBE). Triangles represent the new DMKM constraints V40 Gy (RBE) <0.1 cm3 and
V30 Gy (RBE) <0.7 cm3 as defined by Shirai et al. (14). Squares in (B) represent the possible new DLEM I constraints (error bars, 95% CI) resulting from the dose
translation model presented in this work, see Figure 3.
November 2020 | Volume 10 | Article 531344
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addressing brainstem NTCP for LEM I-optimized CIRT, this aim
was only achievable by making use of DMKM-validated dose
constraints. Relating the CNAO DVHs to the new DMKM

constraints defined by Shirai et al. (Figure 1D) suggests that
doses to the brainstem volumes 0.7 and 0.1 cm3 potentially could
be increased by 13 Gy (RBE) and 15 Gy (RBE) in DMKM,
respectively, compared with the former practice at CNAO.
According to our dose constraint translation, the corresponding
increase in DLEM I would be approximately 12 Gy (RBE) (95% CI,
9–15 Gy (RBE)) and 14 Gy (RBE) (95% CI, 11–17 Gy (RBE)). This
Frontiers in Oncology | www.frontiersin.org 6
unveils an opportunity for improved target dose coverage, and thus
improved treatment outcome, as demonstrated in Figure 4.

Recently, the European Particle Therapy Network (EPTN)
released a consensus paper for dose constraints to various OARs
(22), suggesting a general constraint of D0.03 cm3 ≤54 Gy (RBE) to
the brainstem, with an option to allow for D0.03 cm3 ≤60 Gy (RBE)
to the brainstem surface. Both constraints were expressed in
equivalent dose in 2 Gy fractions (EQD2), with an assumed a/b
ratio of 2 Gy. These guidelines are based on photon and proton
RT toxicity data and are not necessarily applicable for CIRT due
A

B

FIGURE 3 | Black squares represent the relationship of DLEM I to DMKM for the dose metrics D0.7 cm3 (A) and D0.1 cm3 (B) for each individual brainstem. The solid line
represents the quadratic function providing the best fit to the data points (black squares), assuming that the intercept should be in the origin. The dashed lines
represent the 95% CI. The open circles represent the data collected from the reoptimized plans; these data points were not used for the curve fitting procedure.
November 2020 | Volume 10 | Article 531344
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to the larger uncertainties involved in the prediction of the RBE.
However, similar constraints are used for CIRT at the Heidelberg
Ion Beam Therapy Center (HIT) in Germany (23), building on
previous clinical experience of the GSI. Various publications
from this institution explicitly report an absence of brainstem
toxicity (24, 25). Consequently, these constraints are considered
safe for CIRT under HIT’s current treatment paradigm, which
consists of 20–22 fractions of 3.0–3.5 Gy (RBE) and 5–7 fractions
per week. Although HIT also applies LEM I, these constraints
may not be safely transferred to the 16 fraction/4 fractions per
week treatment schedule of CNAO, as EQD2 conversion may
not be sufficiently precise when fraction doses increase, due to
uncertainties in the prediction of RBE.

That being said, it is interesting to observe that our translated
constraints, when converted into EQD2, relate closely to the
EQD2 constraints used in clinical practice at HIT (23), see
Figure 5.

In 2010, as part of the Quantitative Analysis of Normal Tissue
Effects in the Clinic (QUANTEC) effort, brainstem constraints
Frontiers in Oncology | www.frontiersin.org 7
and tolerance doses following photon and proton RT were
summarized in Figure 1 in the organ-specific paper by Mayo
et al. (26). Making use of the LQ model, tolerance doses from
either normofractionated treatments or single fractionation
stereotactic treatments were extrapolated to provide an
approximation for the tolerance dose for hypofractionated
treatments. The figure is reused in Figure 6 of this paper, in
which the DLEM I|0.1 cm3 constraint we derived from this work has
been superimposed as a red circle. Clearly, our constraint
complies with the projections of the LQ model, supporting the
capacity of the LEM I to predict the RBE of CIRT for this
endpoint with sufficient accuracy.

An advantage of our dose translation approach is that the
fractionation regimen at GHMC is similar to that of CNAO, and
therefore the uncertainty related to EQD2 conversion can be
avoided. Furthermore, both GHMC and CNAO have adopted the
traditions of NIRS, in regard to the choice of beam number, angles,
and strategies to achieve a robust treatment plan. Lastly,
both centers are restricted to the use of fixed beam lines,
FIGURE 4 | Transversal sections of DLEM I-optimized treatment plans applying brainstem (green contour) constraints of DLEM I|1% <30 Gy (RBE) in plan (A) or DLEM I|0.7 cm3

<38 Gy (RBE) and DLEM|0.1 cm3 <46 Gy (RBE) in plan B). The dose constraint levels are illustrated by dark blue, light blue, and light green isodose, respectively. Plans were
subsequently recalculated to DMKM (A′, B′). Red isodose in plan (A, B) represents 95% of the target dose (70.4 Gy (RBE) in DLEM I). Note the improved dose coverage to
the CTV (red contour) and to the part of the CTV in which the tumor recurred (yellow contour) in plan B compared with plan A. Dose to the brainstem remains compliant
with the constraints defined by Shirai et al. when evaluated in DMKM (B′).
November 2020 | Volume 10 | Article 531344
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whichinevitably restricts the freedom of beam angles and
consequently favors harmonization of the treatments at the two
centers additionally.

However, our method is affected by unavoidable uncertainties.
Firstly, transferring dose constraints from a center with passive
scattering beam delivery (PS) to a center with pencil beam scanning
(PBS) may be controversial. The beam delivery techniques will
inevitably cause differences in the radiation quality (mixture of
primary and secondary particles and their corresponding LET
values) of the beams, and the distribution and weighting of Bragg
peaks may be very dissimilar. However, two studies have confirmed
Frontiers in Oncology | www.frontiersin.org 8
that the biological effect of the carbon ion beams of NIRS, HIT, and
CNAO are identical (27, 28).

Secondly, the DAbs underlying the RBE-weighted dose is
calculated by different beam models at the two institutions. It
has been shown that theDAbs of a given RBE-weighted dose could
on average vary about 2.5% in the target region of head and neck
treatments, depending on the beammodel (9). Differences related
to beam modeling in the out-of-target areas have not been
investigated, but one would expect to find more profound
deviations in DAbs especially within the lateral penumbra dose
fall-off. This region is certainly sensitive to how the lateral spread
FIGURE 6 | Figure 1 from Mayo et al. (23) reprinted with permission, comparing selected data on brainstem tolerance and dose constraints from stereotactic RT or
normofractionated photon or proton RT, compared with the linear quadratic (LQ) model extrapolations. Data points are marked with the corresponding author and
dose parameter considered in parenthesis. The DLEM I|0.1 cm3 <46 Gy (RBE) constraint for a 16-fraction LEM I-optimized CIRT, estimated by dose translation of the
corresponding DMKM constraint is superimposed as a red circle on the original figure.
FIGURE 5 | Absolute volume DVH showing old CNAO DLEM I|1% <30 Gy (RBE) constraint (cross) and the translated Shirai constraints DLEM I|0.7 cm3 <41 Gy (RBE)
and DLEM I|0.1 cm3 <49 Gy (RBE) (squares, error bars = 95% CI), converted into EQD2 (assuming a/b ratio = 2 Gy) in comparison with the EQD2 constraints applied
at HIT as reported by Nikoghosyan et al. (21): DLEM I|1% <54 Gy (RBE) and DLEM I|max <60 Gy (RBE) (circles). As an approximation to the absolute volume relating to
the D1% constraints, the median brainstem volume in our data set (26 cm3) was used. The translated constraints are more closely related to the constraints used at
HIT than the old CNAO constraint.
November 2020 | Volume 10 | Article 531344

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Dale et al. Brainstem dose constraints for CIRT
of the beam is modeled. This is of importance, since the sharp
lateral penumbra of the carbon ion beam typically is utilized to
avoid high doses to the brainstem when it is located close to
the tumor.

To conclude, these latter issues infer that the DMKM that we
reproduce in this work, based on the DAbs of CNAO DLEM I-
optimized treatment plans, are not an exact replica of GHMC
treatment plans. Nevertheless, our dose translation approach
definitely provides guidance as to how much the DLEM I

constraints at CNAO may be relaxed in order to match the
Japanese constraints. As a measure of caution, we propose the
lower bound of the 95% CI of the dose translation estimates, i.e.,
DLEM I|0.7 cm3 <38 Gy (RBE) and DLEM I|0.1 cm3 <46 Gy (RBE), as
possible brainstem constraints for LEM I-optimized CIRT in a 16-
fraction schedule. These proposed constraint values implyDLEM I/
DMKM conversion factors of 1.27 and 1.15 forDMKM fraction doses
of 1.88 Gy (RBE) and 2.5 Gy (RBE) respectively, which is quite
modest comparedwith the target dose conversion factors found by
Steinsträter et al. (29), where conversion factors for the respective
fraction doses were found to be >1.44 and >1.21.

Finally, as our conclusions rely on the results of Shirai et al.,
the limitations described in their study also apply to our work
(small number of events, single institution study, etc.). Another
essential assumption for the application of these constraints is
that asymptomatic MRI contrast enhancement does not
necessarily evolve into necrosis and therefore constraints that
safeguard against this event most certainly will prevent the more
meaningful clinical endpoint. Mere contrast enhancement is
regarded as evidence of increased permeability of the blood-
brain barrier (BBB), which results from radiation-induced
alterations in endothelial and glial cell function (30). However,
increased permeability does not necessarily lead to parenchymal
damage as demonstrated for the spinal cord in a rat model (31).
This phenomenon has also been documented for radiation-
induced injury of the brain following CIRT, and it is
hypothesized that since smaller volumes of CNS tissue is
irradiated by particle therapy in comparison with photon RT,
the probability of recovery will be higher (32). The observation
that the lesions reported by Shirai et al. were reversible or stable
in the absence of therapeutic intervention further supports the
argument that no real necrosis had occurred.

In this setting, applying the CTCAE term CNS necrosis grade
1 when only contrast enhancement is evident, as done by Shirai
et al., may be confusing and potentially discourage physicians
from referring patients to CIRT. However, the CTCAE lacks a
proper predefined term to discriminate increased permeability in
the BBB from a necrotic process. Moreover, neither the SOMA-
LENT scale (subterm MRI in the Analytic scale) (33) nor the
RTOG/EORTC Late Morbidity Scoring Schema (subterm Brain)
(34) exhibit sufficient granularity to encompass this distinction.
We therefore suggest to apply the CTCAE term Nervous system
disorders—Other, and specifying it as Brainstem reaction as an
analogy to the Temporal lobe reaction term coined by Gilman
et al. (35), in which contrast enhancement would be a grade 1
“reaction,” thus avoiding the use of the misleading and more
distressing term “necrosis.”
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CONCLUSIONS

Based on this work, these new constraints, DLEM I|0.7 cm3 <38 Gy
(RBE) and DLEM I|0.1 cm3 <46 Gy (RBE), have been implemented
in the prospective treatment protocols of CNAO since October
2018. They can serve as constraints also for other centers
applying LEM I within CIRT schedules of 16 fractions. Indeed,
these constraints have also been selected as the most optimal
constraints available and have therefore recently been
implemented in clinical practice at the MedAustron Ion
Therapy Center (Wiener-Neustadt, Austria) for 16 fractions of
CIRT treatment of skull base tumors optimized with LEM I.

This paper highlights a challenge that is unique for CIRT
compared with other external beam RT modalities: the
exchange of experience between Japanese and European CIRT
facilities is severely hampered by the use of disparate RBE
models. Fortunately, we anticipate that the recalculation of
treatment plans to the alternative RBE model will become
substantially less time consuming due to the introduction of
such functionality in commercial TPSs. We therefore hope to
see future CIRT publications reporting OAR toxicity, NTCP,
and related dose metrics in both DMKM and DLEM I, as our
group recently has done for the optic nerve (36). This would
accelerate the much needed validation of OAR constraints for
both RBE models.
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