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Abstract: For the critical generalized KdV equation d;u + 0, (agu +u’) =0onR, we
construct a full family of flattening solitary wave solutions. Let Q be the unique even
positive solution of Q” + Q> = Q. For any v € (0, %), there exist global (for r > 0)
solutions of the equation with the asymptotic behavior

u(t,x) =1720 (17" (x — x(1))) + w(t, x)
where, for some ¢ > 0,

1-2v

x(t) ~ ct and ||w(t)||H1(x>%x(t)) — 0 ast — +oo.

Moreover, the initial data for such solutions can be taken arbitrarily close to a solitary
wave in the energy space. The long-time flattening of the solitary wave is forced by
a slowly decaying tail in the initial data. This result and its proof are inspired and
complement recent blow-up results for the critical generalized KdV equation. This article
is also motivated by previous constructions of exotic behaviors close to solitons for other
nonlinear dispersive equations such as the energy-critical wave equation.

1. Introduction

1.1. Motivation and main result. We consider the L>-critical generalized Korteweg—de
Vries equation (gKdV)

du+d(u+u’) =0, (1,x) e RxR, (1.1)
where u (¢, x) is a real-valued function.
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The mass M (u) and the energy E (1) are (formally) conserved by the flow of (1.1)
where

1 1
M) = / u*dx and E@u) = - f (0cu)? dx — -/ u®dx. (1.2)
R 2 Jr 6 Jr
We recall the scaling invariance: if u is a solution to (1.1), then for any A > 0

u(t,x) = )éu()ﬁt, Ax)

is also a solution to (1.1).

Recall that the Cauchy problem for (1.1) is locally well-posed in the energy space
H'(R) by the work of Kenig, Ponce and Vega [11,12]: for any ug € H'(R), there exists
a unique (in a certain sense) maximal solution of (1.1) in C([0, T*) : H'(R)) satisfying
u(0, -) = ug. Moreover, we have the blow-up alternative:

if T* <400, then 1%1;1 10 u(®)|| ;2 = +00.
l *

For such H! solutions, the quantities M (u)(t) and E(u)(t) are conserved on [0, T*).

We recall the family of solitary wave solutions of (1.1). Let Q(x) = (3 sech?(2x)) 4
be the unique (up to translation) positive solution of the equation

—0"+0-0°=0 onR. (1.3)

Then, the function

_1
u(t,x) =1y > O(ry"' (x — 2g%t — x0)), for any (ho, x0) € (0, +00) x R,

is a solution of (1.1). It is well-known that E(Q) = 0 and that Q is related to the
following sharp Gagliardo—Nirenberg inequality (see [34])

2
1 6 fR¢2 / 2 1
- Oy , Vv H (R). 1.4
3/R¢ S(fRQ2> | @9 Yo H'®) (1.4)

It follows from (1.4) and the conservation of the mass and the energy that any initial data
up € H'(R) satisfying |lug|l;2 < ||Q]l; 2 generates a global in time solution of (1.1)
that is also bounded in H!(R).

Now, we summarize available results on blow-up solutions for (1.1) in the case of
initial data with mass equal or slightly above the threshold mass, i.e. satisfying

1912 < lluollz2 = (1+80)[I Q2 where 0 <dp < 1.

e Atthe threshold mass ||ugl|;2 = || Q|| 12, there exists a unique (up to the invariances
of the equation) blow-up solution S(¢) of the equation, which blows up in finite time
(denoted by T > 0) with the rate ||S(t)|| g1 ~ C(T — N~ Vast — T.See[2,24].

e For mass slightly above the threshold, there exists a large set (including negative
and zero energy solutions, and open in some topology) of blow-up solutions, with the
blow-up rate |[u(t)|| g1 ~ C(T — 1)~Vast — T. See [23,28] and other references
therein.
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e In the neighborhood of the soliton for the same topology (H ! solutions with suitable
decay on the right), there exists a C! co-dimension one threshold manifold which
separates the above stable blow-up behavior from solutions that eventually exit the
soliton neighborhood by vanishing. Solutions on the manifold are global and locally
converge to the ground state Q up to the invariances of the equation. In this class
of initial data, one thus obtains the following trichotomy: stable finite time blowup,
soliton behavior or exit. See [22-24].

e There also exists a large class of exotic finite time blow-up solutions, close to the
family of solitons, enjoying blow-up rates of the form ||u(t)||z1 ~ C(T — 1)~

for any v > % Note that the exponent % does not seem sharp and it is an open

question to determine the lowest finite time blow-up exponent for H' initial data.
Global solutions blowing up in infinite time with ||u ()| 1 ~ Ct" as t — 0o, were
also constructed for any positive power v > 0. See [25].

Such exotic behaviors are generated by the interaction of the soliton with explicit
slowly decaying tails added to the initial data. Because of the tail, these H' solutions
do not belong to the class where the trichotomy (blowup, soliton, exit) occurs.

We refer to the above mentioned articles and to the references therein for detailed results
and previous references on the subject.

Recall that for the L>-critical nonlinear Schrodinger equation (NLS), there exists a
large class (stable in H') of blow-up solutions enjoying the so-called log log blow-up
rate (see [29] and references therein), whereas (unstable) blow-up solutions with the
conformal blow-up rate ||u(t)|| g1 ~ C(T — 1)~ were also constructed by perturbation
of the explicit minimal mass blow-up solution [1,13,30]. Moreover, in the vicinity of
the soliton, it is proved in [32] that solutions cannot have a blow-up rate strictly between
the loglog rate and the conformal rate. It is an open question to build solutions with
a blow-up rate higher than the conformal one (see however [26] in the case of several
solitons). The only available results concerning flattening solitons are deduced from the
pseudo-conformal transformation applied to the solutions discussed above. For the mass
critical (NLS), the question of the existence of exotic behaviors is thus widely open.

The systematic study of non-ODE and exotic blow-up behaviors was initiated by the
articles [15, 16] for energy critical dispersive models, followed by Donninger and Krieger
[5], Hillairet and Raphaél [8], Jendrej [9], and Krieger and Schlag [14]. (We also refer
to [7] for the construction of exotic solutions in other contexts.) The article [5], where
a class of flattening bubbles is constructed for the energy critical wave equation on R3,
is particularly related to our work. More precisely, W being the unique radial positive
solution of AW + W> = 0 on R3, it is proved in [5] that for any |v| < 1, there exist
global (for positive time) solutions of 8,2u = Au+|u|*u such that u(z, x) ~ t"/2W (t"x)
as t — +oo; the case 0 < v <« 1 corresponds to blow-up in infinite time, while
0 < —v < 1 corresponds to flattening solitons.

Such constructions are especially motivated by the soliton resolution conjecture,
which states that any global solution should decompose for large time into a certain
number of decoupled solitons plus a dispersive part. We refer to [6] and references therein
for the proof of the soliton resolution conjecture for the 3D critical wave equation in the
radial case. It follows from the above exotic constructions that some flexibility on the
geometric parameters is necessary in the statement of the conjecture.

The above mentioned works are a strong motivation for investigating exotic behaviors
related to flattening solitons in the context of mass critical dispersive models. Our main
result is the existence of such solutions for the critical generalized KdV equation.
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Theorem 1.1. Let any B € (%, 1). For any § > 0, there exist Ty > 0 and ugp € H'(R)
with |lug — Q| g1 < 8 such that the solution u of (1.1) with initial data u is global for
t > 0 and decomposes for all t > 0 as

x —x(t)

1
u(t,x) = e%(;) (0] ( 0 ) +w(t, x)

where the functions £(t), x(t) and w(t, x) satisfy

-8B
1) <t>2 (t) T‘S(I>ﬁ f— + (1.5)
~ = , o x(t)~— | = ast — +00o, .
Ts B \Ts
and
sup [t <8, B 10O e 41 = (1.6)

Theorem 1.1 states the existence of solutions arbitrarily close to the soliton Q which
eventually defocus in large time with scaling £(f) ~ t~" where v = (1 — B)/2 is
any value in (0, %), The values of the exponents and multiplicative constants in (1.5)
are consistent with the formal equation x’(¢) = E‘z(t) relating the two geometrical
parameters x (f) and £(¢).

Note that the constant Ts defined in Theorem 1.1 satisfies 75 — oo as § — 0, see
Remark 5.1. The estimates in (1.5) make sense only for ¢ >> T5 when the flattening
regime appears. Of course, one can use the scaling invariance of the equation to generate
solutions with different multiplicative constants in (1.5). In the statement of Theorem 1.1,
the scaling is adjusted so that one can compare the initial data with the soliton Q. We
refer to Remark 5.1 for details.

We also notice that w(¢) does not converge to 0 in H L(R) as  — +o0; otherwise, it
would hold E (u(¢)) = 0 and f u?(r) = f 0% and by variational arguments, u(t) would
be exactly a soliton. However, the residue w is arbitrarily small in H' and converges
strongly to 0 as ¢+ — oo in the space—time region x > %x(z) > £(t) which largely
includes the soliton.

To complement Theorem 1.1, we prove in Sect. 5.6 that the solutions do not behave as
solutions of the linear Airy equation ;v + Bgv = 0ast — oo (non-scattering solutions).

We claim that the restriction € (%, 1) in Theorem 1.1 corresponds to the full range
of relevant exponents. Indeed, the exponent 8 = % is related to self-similarity, and in
the region x < t13 the question of existence or non-existence of coherent nonlinear
structures is of different nature. See [31] for several results in this direction.

As mentioned above, infinite time blow-up solutions with any positive power rate
were constructed in [25]. Thus Theorem 1.1 essentially settles the question of all possible
single soliton behaviors as t — +00. It also sheds some light on the classification of all
possible behaviors in H', while the results in [22—24] hold in a stronger topology.

Remark 1.1. We note from the proof that all initial data in Theorem 1.1 have a tail on

the right of the soliton of the form cox =Y for co>0and b = % € (%, 1). Observe

that for such value of 6, this tail does not belong to L'(R).

Recall from [25] that6 € (1, %] corresponds to blowup ininfinite time and 6 € (%, %)
to exotic blowup in finite time (for negative values of the multiplicative constant c).
This means that, except the remaining question of the largest value of 6 leading to exotic
blowup, the influence of such tails on the soliton is now well-understood.
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Remark 1.2. The more general statement Theorem 5.2 given in Sect. 5.2 provides a large
set of initial data, related to a one-parameter condition to control the scaling instability
direction (in particular responsible for blowup in finite time). As in the classification
given by Martel et al. [23], a strong topology related to L? weighted norm is necessary
to avoid destroying the tail leading to the soliton flattening. Therefore, though the phe-
nomenon of flattening solitons may seem exotic, it is rather robust by perturbation in
weighted norms, its only instability in such spaces being related to the scaling direction.
Moreover, it follows from formal arguments that any small perturbation in that direc-
tion should lead to blowup with the blow-up rate C(T — 1)~! or to exit of the soliton
neighborhood. This is analogous to the situation described by the construction of the C!
threshold manifold in [22]. Here, because of weaker decay estimates on the residue, we
do not address the question of the regularity of this set.

Remark 1.3. Flattening solitary waves were constructed in Theorem 1.5 of [17] for the
following double power (gKdV) equations with saturated nonlinearities

du+ 0, (02u+u’ —ylul?'u)y =0 whereqg >5and0 < y < 1.

The blow-down rate and the position of the soliton are fixed

w

2 q=3

L(t) ~citatl, x(t) ~ cpt9tl ast — +0Q.

Observe that g > 5 corresponds to q% € (0, %), i.e. the same range of decay rates as in

Theorem 1.1 for Eq. (1.1).
Analogous results (construction of minimal mass solutions with exotic blow-up rates)
were also established for a double power nonlinear Schrédinger equation in [18].

Notation. For x € R, we denote x; = max(0, x).
For a given small positive constant 0 < o* < 1, §(«*) will denote a small constant
with

§(@*) - 0 as o — 0.

We will denote by c a positive constant that may change from line to line. The notation
a < b (respectively, a 2 b) means that a < cb (respectively, a > cb) for some positive
constant c.

For 1 < p < +o00, LP(R) denote the classical Lebesgue spaces. We define the

weighted spaces L?ol = LY(R; e’%dy) and L%(R) = LY(R; e%dy), for B > 100 to
be fixed later in the proof, through the norms

1

i1, = ([ Forefiar) a1 = ([ Poeda)’ an
50 R R

It is clear from the definition that || f| ;2 1 < ||f||L%.

For f, g € LZ(R) two real-valued functions, we denote the scalar product

(fs g)=/Rf(x)g(x)dx.
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We introduce the generator of the scaling symmetry

1
Af =5 f+yf (1.8)
We also define the linearized operator £ around the ground state by

Lf=—f"+f-50"F (1.9)

From now on, for simplicity of notation, we write | instead of [ and omit dx in
integrals.

1.2. Strategy of the proof. The overall strategy of the proof, based on the construction of
a suitable ansatz and energy estimates, follows the one developed in [19,23-25,27,33] in
similar contexts. The originality of the present work lies mainly in the prior preparation
of suitable tails and the rigorous justification of all relevant flattening regimes.

(i) Definition of the slowly decaying tail. Given ¢y > 0, xo > 1 and % <0 <1, we
introduce a smooth function fj corresponding to a slowly decaying tail on the right:

folx) = coxfe for x > %0, fo(x) =0, forx < 2—0.

In the present case, a special care has to be taken in the preparatory step of understanding
the evolution of such slowly decaying tails under the (gKdV) flow. Not only the decay
rate is slower than the one in [25] but also the control of the solution is needed close
to the larger space—time region x > t# for f > % Note that the proof uses the mass
criticality of the exponent (it extends to super-critical exponents). See Sect. 2.

(i1) Emergence of the flattening regime. Let to >> 1 related to the above constant xg > 1
(see statement of Proposition 2.1). For simplicity of notation, we work with a renormal-
ized version of the solution u(¢), where the scaling and translation parameters of the
soliton, respectively denoted by A(¢) and o (¢) are related to the parameters £(¢) and x (¢)
of Theorem 1.1 by formula (5.31). We consider the rescaled time variable

t

ds 1

5 — S(t)=s0+/

T
— = — 1.10
dt A-3 i) )"3(1—) ( )

In the variable s, the equations governing the parameters (1, o) € (0, +00) x R? write

A d (b 4 ;
Bib=0, o,=1 —(Z+-—"cor 30" =0, (1.11)
A ds \ \? fQ

3 . . - .
where the term co ™26 ¢ comes from the tail and b is an auxiliary variable. See com-

putations in Lemmas 3.4-3.7.
We integrate these equations following the formal argument in [25]. First, we observe
integrating the last equation in (1.11) that

b 4 _3 —0
+ ——cor" 2077 =, (1.12)

PR
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where [y is a constant. As in [25], we focus on the regime /[y = 0, which corresponds
formally to avoid the instability by scaling. By combining (1.12) with the first two
equations in (1.11), this leads to

which yields after integration

2
PSS
le—G
Since we expect A(s) — +00 as s — +00, we can neglect the constant /1, which leads
us to

—0+1 — l

1.

2
L A o |
f 01—-96
This imposes the conditions § < 1 and ¢p > 0. Now, we use the second equation
in (1.11) to obtain (using the condition % < 6 which also ensures that the tail belongs
to the space L?)

. —A_<i <o )262—20 s oMl = (20— 1) (i o >2S
T \Jor-0 - To1-6) "

Bl—

A

after integrating over [sq, s] and choosing o2 1(s9) = (20 — 1)(fiQ 1‘%)2s0. Hence,

2(1-6) 2 ¢ b 2(1-6)
A(s) = (20 — 1) 201 § 20-T |

fo1-6
By using the first equation (1.11), we also compute
2(1-0) _,;
b(s) = ———+
W=7
To simplify constants, we choose
cwz%gu—mge—n4F“>Q (1.13)
so that
2(1-6) 1 2(1 - 9) —1
AMs)=s2-T, o(s) =20 —1)s?-T and b(s) = —— s (1.14)

20 — 1

To come back to the original time variable, we first need to solve (1.10). We set
1 1 5 —1
= el=,1) < 6= .
p 5—46 (3 ) 48

3p-1

201 540 2\ T
fo = 5o’ " and ¢ = ,
549 36— 1

Then, by choosing
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we obtain
. 29—1% . 36—1 _2 361
“5- T T3 :

Last, we deduce from (1.14) that

M) =t and o () = cgt, (1.15)

for some positive constants c; and ¢, (see (5.13)).

(iii) Energy estimates. In order to construct an exact solution of (1.1) satisfying the formal
regime (1.15), we use a variant of the mixed energy-virial functional first introduced for
(gKdV) in [23] (the introduction of the virial argument in the neighborhood of the
soliton for critical (gKdV) goes back to [20]). Considering a defocusing regime induces
a simplification (see also the energy estimates in [2]) that allows us to treat the whole
range B € (%, 1) in spite of a basic ansatz and relatively large error terms. See Sect. 4.

2. Persistence Properties of Slowly Decaying Tails on the Right

In this section, we present a general result concerning the persistence of a class of slowly
decaying tails for the critical gKdV equation in a suitable space-time region.
Let6 € (%, 1] and define

_ 1 1 _5,3—1 _1—,3 l
ﬂ_5_4ge<§,l], 0= T V= 5 6[0,3>. (2.1)

For c¢g > 0 and xp > 1, we consider f any smooth nonnegative function such that

—0 f X0
fory = 0¥ oY =9 ‘fo(k)(x)‘ < colx| %, Yk €N, Vx €R.
0 for x < IO
(2.2)
Note that
1
_ 2 —-6-1H _
I foll 2 ~ <o (/ x dx) ~eoxy T =80 ). (2.3)
x>x0/4
Now, for #y > 1 to be fixed, let f be a solution of the IVP
df+dc(d2f+ ) =0, 24
f (o, x) = fo(x).

The main result of this section states that the special asymptotic behavior of fy(x)
on the right persists for f(z, x) in regions of the form x > 7.

Proposition 2.1. Ler 6 € (% 1], B = ﬁ and co > 0. For xy > 0 large enough, for

any ko > 0, setting ty := (xo//co)l/ﬁ, the solution f of (2.4) is global, smooth and
bounded in HY. Moreover, it holds for allt > to and x > Kkot” > xo,

VkeN, [0, x) — fP0)] < 1m0, (2.5)
|9, £, )| S x|~ (2.6)
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The rest of this section is devoted to the proof of Proposition 2.1, which requires
preparatory monotonicity lemmas based on variants of the so-called Kato identity (see
[10,20,21]). This result is a substantial generalization of Lemma 2.3 in [25], where
only the case # = 1 is treated. Our proof allows regions x > t# for any f > %
Complementary results are obtained in [31], where large regions close to x = 0 are
investigated by similar functionals.

Remark 2.1. Without loss of generality and for simplicity of notation, we reduce our-
selves to prove estimates (2.5) and (2.6) for the special value ko = 2. Indeed, consider

the function 7 (s, y) = A2 (335, Ay). Then [ is a solution to (2.4) where fo = £(0)
satisfies (2.2) with ¢y = A%_G ¢ instead of ¢g. Moreover, the condition x > 2¢# rewrites
1
y > 22387158 = kosP by choosing A = (2kg) 3T (recall that f > %).
First, note that if x( is chosen large enough, it follows directly from the Cauchy theory

developed in [11] (see Corollary 2.9) and (2.3) that f € C(R : H*(R)) for all s > 0
and

sup If Ol S8 h. 2.7)
te

Moreover, by using the sharp Gagliardo—Nirenberg inequality (1.4) and the conservations
of the mass and the energy (1.2), we deduce, for xq large enough, that

sup 13, £ (1) l12 S 1EC)| S g . 2.8)
teR
Define ¢ (¢, x) := f(t,x) — fo(x). Then, it follows from (2.4) that
{ dg +0: (979 + (¢ + fo)’ = §) = Fo. 09)
q(to) =0,
where
Fo := =3 fo — 0x (fg)-
For any 7 > 0, we define a smooth function w7 such that
wi(x) = x" for x > 2, wi(x) = e¥ for x <0, w;— > O0onRR. (2.10)
Observe that
lw?| + |@}'| < Cwson R, (2.11)

for some constant C = C(w;) > 0.

Lemma 2.2. Let0 < r <260 +4, 7 #5and 0 < € < L1\ — 5|. Define

x—1P
tv+6

M, (1) ::/q2(t,x)wr(i)dx where x =
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Then, for xo > 1 large enough, and any t > ty = (%)ﬂ,

t
M, (1) +/ /[s_3”_€q2+s_]i+q2+s_”_e(8xq)2] w,(X)dxds
0]

Sﬁl

r==reifr>5

< 38-1
S -8 5en- .
% AT )

2.12)

Proof. To prove (2.12), we differentiate M, with respect to time, use (2.9) and integrate
by parts in the x variable to obtain

Mj = -3 / (92q) ) (B) +1777 / g o] (%) — p1=" / ¢’ o, ()
6 6
— (w+en! f ¢ Fwl(¥) — 207V E / (@ —(q+f0)’q — %) Wl (%)

-2 / (@+f0° =5fda = 1§ ) foor B +2 / qFoor (3)
=M+ My+ M3+ My+ Ms+ Mg+ M.

By using (2.11), for #y large enough, we have

/ 2 ///(x)

My +My+Ms < —3t7"¢ / (0:9) ) () — ’; e / 4’ @) ().

|M2| — t73\)73€

1
<ecty f3“*€/q2w;(2) - M5 @13)

and so

Next, we estimate M; for j = 4, ..., 7 separately. For future use, observe that by
Sﬁ 1 3—1
=

the assumption 0 < € < |r — 5| andO <r <6,wealsohave 0 < € <

We denote

M; = +/ +/ = M; + M)+ M;. (2.14)
Fa—tldv-2e Jop-dv2e5o0 S50 !

Estimate for My. It is clear that Mj{(t) < 0. Next, for 7y large enough,

1
M) < (v+eyr33 /q%);@) <@ +e)to—fz—3“—€/q2w;(;) < — M.

Then, it follows from the definition of w, in (2.10) and (2.7) that, for ¢y large enough,

_ _ _, X _ 1 1-3v-2¢ _
My St 1/ PlRle’ < rle ! /qzét 0,
T<—tl1-3v-2¢

since 0 < € < #.

Estimate for Ms. Using

6 6
<q+6fo> o g T

<+,
6qfq
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it holds
|Ms| < ct™¢ / @ flol (%) +ct7"7€ / ¢%wl(X) =: Ms 1 + Ms ;.
We observe that, for ¢y large enough,

1
—plTv2e — v oy = P o — Etﬂ <x. (215

Thus, we deduce from (2.2), and then 408 > 28 > 2v (since 6 > % and 8 > % > V),
that, for #( large enough,

0 + —v—e¢
Ms+Ms, <ct /

x>5th

q2x749(l); (i) S Ct*(l)+49/3+€) / qu;()E)
_ 1
< Cto (v+49ﬁ)+3vt—3v—6/q2w;()z) < _§M3 (216)

As before for M, , we have for ¢y large enough,
Mg, S0 (2.17)

To deal with M5 >, we follow an argument in Lemma 6 of [28]. We have by using the
fundamental theorem of calculus

+00
1
—q¢*(x, )0l (X) =2 q0,q /0l (X) + Et—”—f
X

and so, by Cauchy Schwarz inequality and then (2.11),

+00 2 a);/()f)

a To

2 1=\ 2
|2 ovel®| < ik / (02020, (B) + 1722 g 12, / RICAC) s

oy ()
S llgllss [ / (0:q) L (X) + 17272 / qzw;(i)} . (218)
Therefore, using also (2.7), for xo large enough,
.

1 1
< 6(x0_1) [t“’_e /(8xq)2a);(i) N / qza);()f)i| < —le — RM3'

(2.19)

—v— 2
Msz <17 Cllq]1%

Estimate for Mg. By using interpolation, (2.2) and then the inequality |x|™?¢° <

X _40q2 + q6, we observe that

175 (@ + f0° = 5180 = 13)| S 1BIAPT +171lal < el fifa® + 1xI'g".
It follows that

|M6|s/ qua‘x*lwr(m/ xqw, (%) =t Mg + Mg .
x> 1xo

XZ=7X0
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By (2.10) and (2.15), and choosing € > Osuchthat0 <e < 8 —v = 3/37—1,

wl (X)xx~ ! <1Vl (X)) for X > 2,

Ox !l < 2.20
Or@OXT SN By () S 10wl (8) for — -2 < g <o (220
Thus, for 7y and x( large enough,
MO,+ MO,+ < 0,+ 0,+ —1 1 1 1
61 t Mgy <c(Msy +Mgy) <c(8(xy ) +8(ty )M+ M3) < _ZMI — 3—2M3.

Last, Mg |+ Mg, S =10 is proved as for M, .

Estimate for M7. We get from the Cauchy—Schwarz inequality that

1 1
2\ L i (%)) 2 1
|M7| <2 (/q a);(x)> F a)Z()E) < —aM3 +cMg  where

2 -
ws(x)
My = / o a)7 (x)
r

First, we see from (2.2) that for x > A—Itxo, |Fol < lx|793 6 > %), and for x < %xo,
Fo=0.
- . WP (%) 1=t — () (1) | 7]
For x > 2, it holds oo =T X" <t |x|"*. Hence,

2 -

w-(x _ _

t3v+e/ R g _) < r(v+e)/ |20+ [+
i>2  wp(X) i>2

5 t2v—r(v+e) / |x|—29+r—5
x>th
38-1

5 t2v—r(v+e)t—ﬂ(20—r+4) — l_1+ 5 (r—S)—re’

since 20 — r +4 > 0 by assumption, and

1+20—r(v+e) —BRO—r+4) =r(B—v)+1+2v — 280 —4B —re
_3p—1
2

(r—5) —re. (2.21)

-
For —~173v=2¢ < & <2, itholds 22 < 1 and x > 1¢# (from (2.15)) so that

w;.(X)

2 -
w, () _
t3v+e/ F()2 }/’ - §l3v+6/ x 2(6+3)
——1=3v-2e .5 <2 w;.(X) x>11h

S t3v+et—ﬁ(29+5) — t_9ﬂ+2+6.

W} (%)

(@)

2 -
w(x) _
t3”+€/ Foz—r(_ <110,
Fe—t—1-dv-2e  w).(X)

Last, for ¥ < —t~173V=2¢ then — 8e¥ so that as for M,
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Gathering all those estimates, we obtain in conclusion that, for some ¢ > 0,

X - 3p—1
M; + C/ |:t—3v—€q2 + t—1x+q2 +1V€ (3xq)2] a);(x) dx < (1 r=5)—re

Observe that by the assumption 0 < € < 3ﬂ 1 |r —5],

31
2

3
re < 6e < E(3/3—1)|r—5| < |r —5|. (2.22)

Thus, integrating this estimate on [#g, ¢], we obtain (2.12). O

We prove a similar estimate for a quantity related to the energy.

Lemma23. LetO <r <20+4,r #5and0 < € < 3’3 1|r—5| Define

1
E (1) = 1?2 / [(axq)2 - 3(@+ )8 — f8 - 6qf05)} (t, X)wr42(%) dx

where x = t”+€ Then, for xo > 1 large enough, and any t > ty = (7")3

t
E () + / / [s—““(axq)z+s2“+2€—1;z+(axq)2+s“+€(a§q)2] oy (F) dxds
1o

3B8—1
(=S re e s

S 315 e
o 2 0T e <s,

(2.23)

Proof. We differentiate E, with respect to time and integrate by parts to obtain
’ Pal 2 5 5 2 / b
E = [a g+ @G+ fo) fo] 1 (%)
v+ef(82q) Wy (X) +1777 6/(3x61)2 42 (%)
—pre / (Bx)* 01 (¥) — (v + )22 / (3xq)* %0y (%)
# L [+ i = 18 = 6055 | oo
1 - -
. §<v r 2 [[[igs 0 = 1§ - 6af3 ] 70l a9
v2 [ [tg+ 07 = 5] @arolo®
#2005 [ @0 o - 202 [ [+ 07 = ] Foora(@)

+2(v +e)2vrrel /(axq)zwr+2(i)

2
~sorar 2 [qr i - 1§ - 6as8 | orad)

= E1+Ey+E3s+Es+Es+Eg+E7+Eg+E9g+E 0+ E11+ Eqa.
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First, observe that £y < 0, E; < 0 and E4 < 0. As in the proof of (2.13), we have for
to large, |E3| < —%E4.

Next, we use the same notation as in (2.14) for E;, j = 5,...,10. We observe
that Egr < 0. Moreover, as for the estimate of My in the proof of (2.12), it holds

EQ+E5 < —1E4+Ct710,

Estimate for Eg. First, we note
|Eg| < cf"“/qu(;‘w;ﬂ(@ +cf“+ffq6w;+2(2) =: E¢1 + Eg..

We estimate Eg | < 710 and

+ —V+e€
Eg St [ .
x>
5 t*3Uf€/ q2x749+2w}/’(i) 5 t73117(4072)ﬂ7€ / q2a);()—c)
x>t
—

moreover, since for X < 0, ], (X) = w;.(¥), we deduce from (2.15) that

q2)€74€a);+2()€) g t*l)+€/ q2x749(1 +)E2)a);()z)

x>0

Egy 17" / A P / ¢ o, (B) S 17V f ¢’wy (3),
X>jl

since € < % Arguing as for M5 > in the proof of (2.2),
—v+e 4 N - —3v—e¢ 4 2(0):‘/+2()E))2
Eoa S alls [0 o)+ lal}s [ 252
wr+2(x)

and thus, as before, for x( large,
1 —3v—e 2 7=
Eep < _ZE4+t ‘ q°w,(X).
Estimate for E7. We estimate E; < +~10 and
7l <o / v @+ 400100 170 (Es + Eso).
—t VT <X <

Now, we estimate

E;’ < t—l+2v+25/

G fx] o (X) + 17 1H2VH2e / q°%w) (%) =t EJ | + E3,.
x>0 x>0

As before, we have

+ —1+2v+2¢
E7, St /

x>0

q2x—492w;+2()z) g t—1+2\)+2€/ q2x—49(1 +i2))fa);()f)
x>0

gr”/ qzx*49+2x+w;(2)gflfq%‘c+w;()z).
x>tP
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Last, by arguing similarly as in (2.19),

4>V orn(x H
L®(x>0)

/ 2

— 142042 4 2 - —2v-2 2 (@)
St et 6”anz / (axQ) wr2(X) +1 Y e/ q —ree
x>0 x>0 Wr42

5 t_l+2l)+2€8(xa]) </ (axq)Z(l +)E)CL);.+2()E) +t—2v—2€/
x>0 X

142042
Ef, St g7,

0q2<1 +i>w;<x>>
S0 N(Esa+ED+17'805 ) (/ Oqzw;<f>+f Oquw;oz)).
Estimate for Eg. We compute
By =100 (@4 o0 @070l + 1007 [ [0+ 1r* = £5] @) fiof o)
< t”“/fo (9xq) w2+2(2)+t”+€/q4(8xq)2w§+z(i)

+t”+f/|q||axq||fo|3|f(;|w;+2(2)+r”*€/|q|4|axq||fa|w;+2<£>

=: Eg1+Eg2+ Eg3+ Eg 4.

First, we have as before E;, < t!0. Now, arguing as for M5 1, we get for 1y large
8,1 ~ guing , g g
enough that

Eg,l +E§,l = the/ (8)(‘])2 40 ;+2(x)
x>1tP

1
< e (VB0 f (300 (D) =~ Es.

To handle Eg >, we use a similar argument as in (2.19). Observe from the fundamental
theorem of calculus that

lg0eq1Cx, 1)/l () = f 402 Jw (D) + / (0xq)? o,y ()

+_t—v—5/ qaxq r+2(x)
X

2 Ny

Thus, by the Cauchy—Schwarz inequality,

1
”qaxq,/w;+2()E> < llgllz2 ( / (a$q>2w;+2<f>)2+ / (3:q) @) ()
LOO
+17 gl 2 / (3:9)* L())
r+2(x)
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To deal with the second term on the right-hand side of the above inequality, we integrate
by parts to get

/(8)661)2\/‘0;4.2()2) = —/613361\/&);”()?) - /qaxq Z(X)
vV r+2(x

Using again the Cauchy—Schwarz inequality and then (2.11) and using (2.7), we deduce

/ = —2v— r (x)
N ||4||iZ/(3§‘1)2wr+z(x)+t ? 2éllqlliz/(axq)z#())
* L)

< llglls [ / (05q)7 @)y (%) +172" 7% / (axq)zw;ﬂ()z)} _
(2.24)

2

anxq\/wiﬂ(i)
L

Therefore, for x( large enough, we obtain

qaxq\/ w;+2(i)
LOC

<8 |1 [ / (329)’w, n(F) +17"7¢ / <axq)2w;+2(2)}
1 1

2
2
Egp St"*Nqllps
L

Next we deal with Eg 3. Itis clear that Eg; S < t~10, Moreover, since )., (X) ~ w;.(X)
for X < 2, we deduce from (2.15) and the Cauchy—Schwarz inequality that

3 -
Ve |g118xq 11 f5' 1| folewr 4 (%)
e K e )

< 1g118xq x|~ ] (%)
x>1

2

S t—ﬁ(49+1)+€/q2w;(i) +t21}—,3(49+1)+€ /‘(8xq)2a);+2(i)

1
3v— N
< ct __E’
c /qw(x) 324

for 7o large enough, since B(46 + 1) — 3v = %(3/3 — 1) > 0. Finally, we use that

Wl (X) = (r +2)xx 7% when ¥ > 2. Thus, we get by using again the Cauchy—
Schwarz inequality that

— _ _r=1 _r+l
r/ 2|q||3xq||fo3||f6|w£+2(x)5/ x| 7% |q1X 7 |3xqlx 2
X> X

>th

< fV—ApI—e /qzw;(f) +lv_4ﬂ0+€/(aXQ)2w;+2(i)

et f %W, () —

by taking fy large enough, since 486 — 2v =23 — 1).
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Finally we estimate Eg 4. First, we have from Young’s inequality
Esq St f " (0:9) 0] (X) +1"* f 4" (f3)*w)p(%) = Es2 + Es 5.

As before, itis clear that Eq s < ¢~10. By interpolation, we have ¢*| £ |* < ¢° fof |x| 72+
¢%|x|72. Moreover, we get arguing as in (2.20) that a);+2(i)x_2 < t‘z”_ka}’ (x) for

X > —t173v=2¢_ Hence, we deduce using the estimates for M5 1 M5 | and M5 5 that

EQs+Efs SMY +ME +Msy St7707¢ / G o (X)+17"7¢ /(axq)zw;(x).

Estimate for E9. We have

D=

|E9i = 22+ (/(8XQ)20);+2()E)) ' /(Fo)zm =< 217 Es+ CE9

r+2( )

where Eg = povie f(F )Zw”'z(x) From (2.2), it follows that for x > 4x0, |Fyl <

|—0—4

|x and for x < ZXO’ Fy=0.

2 -
For x > 2, it holds Z?*—Zg; < |53 < HO0+3) | x7+3 Hence,
r+2

2 -

W, 7 (X) _ _

t5v+3e/ (F6)2 :‘+2 _ 5f2v r(v+e)/ |x| 2(0+4)|x|r+3
x>2 wr+2(x) x>2

2v—r(v+e —20+r—5
ST / x|
x>th

< P2v=r(v+e) (—BQO—r+4) _ t—1+35;'(r—5)—re

since 260 — r +4 > 0 by assumption, and using (2.21).

aus
For —~1=3v=2¢ _ & <2 it holds Z?*Zg; < land x > 11 (from (2.15)) so that
r+2

t5v+3e-/ (F )Zwr+2(x) < t5v+3€/ L2044
132 59 wl (%)~ x>1f

< SV —BQONT) _ —12p43re

Last, as before,

50+3¢ 2 “’r+2 (x ) —10
t (F)? 22 <4710,
Y<—t 1-3v—2¢

r+2( )

Estimate for E19. We have

|E1o] S t2+% / g1 fof | Folwpsa (%) + 12742 f 1| Folwrsa (%) =: E10.1 + E10.2.

First,

2 —_

3y _ ;4o (X)

Eion <17 E/qzw;(x)+t7”+5€/f08F02 re20)
w0, (D)
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Then,

w X
t7l)+5€/ f8 2 r+2( ) 5 t7V+5€/ x—109—6|f|r+5
x>2 x>2

w;.(X)
t2v—rv—r5 / x—100+r—1
x>th

t2v—r(u+e)—ﬂ(100—r)

A

t

IZANRZAN

20—r(vte) —B2O—r+4) _ f”Sﬁz_] (r—5)—re
for 0 < € small enough since 0 > %

V45 / 1SR Zwr+2(x) < Tr—B100+5)45¢
t—1=3v=2¢ .y 2 w( ) N

and

t7v+56/ féstsz(x) <10
Te—t—1-3v-2¢ ). (X)

Now, we deal with E1g 2. On the one hand, we estimate as before £ 1_0’2 < +~10. On
the other hand, we deduce by using (2.15) and (2.20) that

0 51 1—(6+2
Ejp2+Efps S ’Hef o lalTlxl O o (%)
X> x5t

2
2

a*\ ol o (¥) / g1 1x| =@+,
Lo© x>%t/3

Thus, it follows arguing as in (2.19) that for 7o large enough,

< t+v+e

1

Efo+ Efpn S17°° U - 2(9“)} lg113» U (0:4)* @)1 (%)
x>t

2
2
+t—2v—26/q2 (0], (X))
r+2(x)
S tv—(9+%)/3+6 I:/(axq)2w;+2(i) +t_2u_2€/q2w;(i)i|
1
< —FE4+I*3”*€/q2w;(i),

since (0 +3)p = 42 — 1 > 20 =1 — g, thanks to (2.1).

Estimate for Eyy. As before, E || < +~10 Moreover, observe from (2.10), that

w2 (¥) = 250 ,(F)  for X > 2, s
wr2(X) S a);+2(£) for — ¢l—3v—2e .
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Then, it follows that for £y large enough,

_36-1
E) +Efy <cty 2 e /(axq)za);ﬁ(i)
2 —1+2v+26/ 2o 1 =
+ V+eé)t a Xw, (X
r+2( ) £>2( xq) X0, (%)
1 2
——E4— ——E%,
ST T e
sincel—3v=#and0<e < #.

Estimate for E1y. On the one hand, it holds E|, < =19, On the other, we observe
arguing as for E7 and using (2.25) that

0 —
|ED |+ Ef| S 17(Eo1 + Eo2) + E7 | + E7 5,

so that those terms are estimated similarly.
Gathering all those estimates, we obtain in conclusion, for some ¢ > 0,

E +c f [r—”é(axq)z+t2”+2€—1x+(axq)2+t”+f(a§q)2] W), (¥) dx

~

- - 3p=1
< / I:t—Sv—qu+t—1x+q2+t—v—e(8xq)2] w;(x) dx+t_l+ 5 (r—S)—re.

Therefore, we conclude the proof of (2.23) by using (2.12), integrating the previous
estimate over [fg, t] and using (2.22). O

Proof of Proposition 2.1 in the case k = 0 First, we look for an estimate on f (axq)2wr+2
from the energy estimate. Arguing as in (2.16), (2.17) and (2.19), we get that

Ve / @ fwrn(®) < / o, @) +1710
and
12V / ¢wra (@) gl / (0xq)*0r2(®) + llq 135 f 7w (%).

Thus, it follows that for x¢ large enough
E, (1) = 124 / (0:9) w2 (%) — c1**%¢ / (4° + 4> 3 ors2(®)

1
> f (0:0)wr2(E) — My (1) — et 0.

Hence, we deduce by using (2.12) and (2.23) that, for 0 < r < 20 +4,

12+ / (0:9) > wr42(%)

t
+f / I:S—V+E(axq)2 +52(U+€)—li+(8xq)2 +sv+€(8§q)2i| (1);_'_2()?)
to

=S ifp o s

< 3p-1
S ¥ (5-r—se .
ty ° Omn=e p r<5.

(2.26)
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Now, we give the proof of estimate (2.5) in the case k = 0. By the fundamental
theorem of calculus and the properties of w, it holds, for any x,

+00

tv+€q2(t, x)a)r+1 (x) 5 tv+e/

X

+00 5

11102 q|@r41 (%) + / g ol (%)
X

< 2% / (9:q) > wr42(X) + / g o, ().

Hence, we obtain from estimates (2.12) and (2.26) that

3p-1 .
(T2 r=d)-re ifr >5

_ 3815,y
o 2 0T ey <.

1902 (t, X)wpa1 (X) < (2.27)

For x > 2¢t#, we have that x > 7" > 2, fort > to large enough. Then, we deduce
from the properties of w;, estimate (2.27) and the identity (2.21) that

r+l

_ 4B
x—1 < 2BV —p@I—r+ )~ (e (2.28)

tl)+€

q*(t, x)

and thus, for such 7 > #o and x > 28, we have

G2t x) < x~ D 2-B—pQO-r+d).

Taking r close enough to 26 + 4 so that 2 — § — B(260 — r +4) > 0, we conclude the
proof of (2.5) in the case k = 0 and k¢ = 2 (see Remark 2.1) using P <x. o

Proof of Proposition 2.1 in the case k > 1 We will prove estimate (2.5) in the case where
k > 1 by an induction on k.

Definition 2.4. Let / € N,0 < r <20 +4,r #5and 0 < € < 2£51|r — 5. We say
that the induction hypothesis H; holds true if

36-1
(r—5)—re :
12 ifr >5
2 (v+e) /(8)1651)2wr+21(32) dx <1 3. (S—r)—re (2.29)
= .
Iy ifr <5.

First, it is clear arguing as in (2.27) that if H; and H;_; hold true for some / € N,
[ > 1, then

38—1
(r—5)—re :
_ t2 ifr >5
1A= (G N2 (1 Y1 () < LB 5y e (2.30)
Rl .
1 if r <5.

Notice in particular that (2.30) would imply (2.5) in the case k = [ — 1 arguing as in
(2.28).

Thus, it suffices to prove that (2.29) hold for any / € N to conclude the proof of
Proposition 2.1. Observe from (2.12) and (2.23) that H( and H hold true.

Assume that (2.29) holds true for/ = 0, 1, ...,k — 1. The next lemma will prove
that (2.29) is true for [ = k, which will conclude the proof of Proposition 2.1. O
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Lemma2.5.Letk € Nk =20 <r <20+4,r #5and 0 < € < £:1r — 5],
Assume moreover that (2.29) holds true forl =0, 1, ...,k — 1. Define

x—1P
tl)+€

Fri(t) := 12k0%9 / %1, x)wr 01 (X) dx, where % =

1
Then, for xo > 1 large enough, and any t > to = (’%)f’

t
Fo(r) +/ /I:S(Zk—l)(u+e)—ZV(a)Ich)2+s(2k—1)(v+e)(a)lcc+1q)2] ) (%) dxds
0]

3-1 .
tTz r=d)-re ifr>5

< 3p—1
S -8 5en- .
fy ° G=r-re if r<3.

Proof. We differentiate Fj , with respect to time and integrate by parts to obtain

Fr/’k — _3t(2k—1)(v+6) \/(8)/((+1q)2w;+2k()2) +t(2k—3)(l)+€) f(ai{q)2w;/42k()z)
_ ﬂt(Zk—l)(\)+€)—2l) [(aﬁq)zw;_'—z]((i) _ (V + E)t2k(\)+€)—l /(3§Q)22w;+2k(5)
#2400 [38 (g + 0% = 75) (08 orsae(®) + 17070 0k g)a 0 ()
k - _ _
+ 20207 / (O5q) Fo a2k (B) + 2k (v + €K+ / (359)*wr42k (%)
= F1+F+ F3+ F4+ F5 + Fg + F7.
First observe that F; < 0 and F3 < 0. Moreover, arguing as in the proof of (2.13), we

have that, for ¢y large enough, | F3| < —%Fg.
Next, we use the same notation as in (2.14) for F;, j =4, ..., 6. We have F4+ <0.

Moreover, as for the estimate of My in the proof of (2.12), it holds F, f +F, <— }—t 3+
Cct=19,

Estimate for Fs. We will only explain how to estimate the terms

Pt =207 [ 8" (0 o) + 170 @a)0] 05
and

Fsp =209 / O (O Do) + 17 (0hg)0] ()

since the other ones are estimated interpolating between these estimates.
We deal first with Fs ;. We deduce from the Cauchy—Schwarz and Young inequalities
that

1 1 2 w2, (X 1 1 ~
|F5 1| < ——F—-F; + kD (+e) Bk(qS) L(_) = ——F —-F3+ F5 .
) 8 * @) o (X) 2 8 '
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We observe by using the Leibniz rule, the Cauchy—Schwarz inequality and the properties
of w in (2.10) that

Fs1

N

5
ki
E kit 2k5+1)(v+e)/H(aqu)2wr+2kl+m+2k5+l

ky+-tks=k j=1
ky<-<ks

=: Z Fsa(ki, ... ks).

Ky 4tk =k
ky=-<ks

V\qhen ks = k, we have ky = --- = kg = 0. It follows then applying (2.27) with
r = 2 that

~ 4
F51(0,0,0,0.k) = | (**9g%,

Loot(Zk—3)(v+e)f(aicq)zw;+2k(£) < S(t(;l)F3.

When ks < k — 1, we consider two different cases. Firstif k = 2, then ks = k4 = 1
and k1 = kp = k3 = 0, we deduce from (2.27) with r = 1 and then (2.26) that

~ 3
F5.100,0,0,1.1) = [1*9g%n | loqli (ﬂ(“*) / (axq)zwr+z(m>
R T

< 3-1
AVER T R S P
ty ° B3¢ iy < 5.

In the case where k5 < k — 1 and k > 3, observe that k4 < k — 2. By using the
induction hypothesis (2.29) for I = 0,1, ...,k — 1, we deduce that (2.30) hold for
l=1,...,k— 1. Thus, it follows that

1?5,1(k1, ko, k3, kg, ks)

4
. k) _ -
< l—[ Ht(2k’+1)(v+€)(3xjq)zwzkj+§ - I:t(2k5 3)(v+e) /(8§5q)2wr+2k5(x)i|
j=1 :
(I Sre gy s s
S —3B (5 —5e

fy ifr <5.

Now we deal with F5>. By using the Leibniz rule and integration by parts, we
decompose

k—1
k _ _
Fspi=2Y) <l>r2"<“+f> / oy () @) O P (B) — 120+
=0
/ 0, (S (%) wrani ()
k—1 X
+t(2k—1)(u+€)/f04(8)/§q)2w;+2k(i)+22 (l)t(zk—l)(l)+€)
=0

/ DD (F(3 )]y ()

=:Fsp1+Fs522+F533+F524.
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First, it is clear that |F5*2 |+ Fs, o+ Fs. 503t F5 2.4 <t —10 Next, we observe arguing
as in (2.20) that

0ok (®) x| TEDT U0 1), for & > -1
2.31)

Hence, it follows from (2.2), (2.15), 6 > % and the Cauchy—Schwarz inequality that

0 +
Fsy 1+ Fsy,

T
L

<) b / x|~ D18l g 1185 g |y akai—1 (%)
x>1¢8

1 1
2
5 ( 21(V+€) /(axq) - )) (t(zk—Z)(v+e) /(8§k+1) )2 /+2k( ))

I=

< ——F1 + Zﬂ““*@ / (@,q) 0421 ().

»N
»—aO

Now, observe from (2.2), (2.15) and (2.20) that, for ¢y large enough,

0 + 0 + Qk—1)(v+e) 40 ok 2o
FSpo+ Fsoo+Fsys+ 535t / O ) @ ()
X>§t

1

since 408 = 58 — 1 =4 — 10v > 2v, thanks to (2.1).
Finally, by using an estimate similar to (2.31),

0 +
Fsyr4+Fsy,

T
L

k+l—1 —40
< 37 kD) f 1 1oL g 118 g1 s ()
x>%tﬂ

1 1
LS
l

1 _
S - > =5 +Zt2]<v+€) f(a @) w42 (%).

=0

~

»
»—aO

Estimate for Fg. From the Cauchy—Schwarz inequality,

1
v+e : w§+ ()E) j
|Fo| < 072k )([(3 9)? r+2k(x)) (/ (Fék))zﬁ)

2 -
< —i()F3 +Ct2k(v+€)+3v+€/(Fék))zwfﬂk()f).
2 @y 44 (%)

First, from (2.2), for x > ;llxo, Fék)| < x|~ O++3) (g > %), and for x < A—I‘xo, Fy=0.
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(r + 2)—1|x|r+2k+1 g t_(v+6)(r+2k+1)|x|r+2k+1. Hence,

For x > 2, it holds M
r+2k(x)

by using (2.21),
*) 2wr+2k( x) < - r(v+e)f | 2+3) | a2k

2k(v+€)+3v+e
r [ #)
x>2 r+2k (x) "~ x>2
20+r—5

x>tP
< 20T (v4e)  —BQO—r+4) _ —1+281 (r=5)-re

since 20 — r +4 > 0 by assumption.
@D < | and x > L# (from (2.15)) so that

For —r—173v=2¢ — ¥ < 2, it holds 5 S
r+2k

(2k(v+e)+3v+e / k) 2wr+2k(x) <4 2k (v+e)+3v+e / §—26+k+3)
0
—t—1=3v-2e 32 r+2k(x) x>31B
< 2k(v+e)+3u+et—ﬂ(20+2k+5)

< XD _9B2+(2k+1)e

~

9 ® _ g% <o that as for My,

¢ 1-3v—2¢ , then &
)+2k

Last, for x <

w
2 r+2k( X) <t 10

2k(v+€)+3v+e (k)
t o)
F<—t—1-3v-2¢ r+2k(x)

Estimate for F;. As before, F, < +~ 10 Moreover, observe from (2.10), that

for x > 2,

X / =
732% Cr a2k (%)
for —173v=2¢ ¥ < 2.

, -
@y 12k *x)

wr42k (X) =
w2k (X) S

Then, it follows that for ¢ large enough
3l
T / (359)*@).2 ()

(U +€)t—l+2v+25/ (3§q)2)?w;+2()f)
x>2

1 2% .

sincel—3v=#and0<e < #.
Therefore, we complete the proof of Lemma 2.5 combining all those estimates with
Lk—=1. 0O

the induction hypothesis (2.29) for/ = 0, 1
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3. Decomposition Around the Soliton

3.1. Linearized operator. Here, we recall some properties of the linearized operator £
around the soliton Q defined in (1.9). We first introduce the function space Y:

y::{d)ecw(m :R) :¥eN, 3Ck, 1> 0s.t. [p P (1)) sck(1+|y|)'ke"y‘,VyeR}-

Lemma 3.1 (Properties of the linearized operator L). The self-adjoint operator L
H%[R) € L%(R) — L%*(R) defined in (1.9) satisfies the following properties.

(i) Spectrum of L: the operator L has only one negative eigenvalue —8 associated to
the eigenfunction Q3; ker L = {a Q' : a € R}; and 0,55 (L) = [1, +00).
(ii) Scaling: LAQ = —2Q and (Q, AQ) = 0, where A is defined in (1.8).
(iii) Coercivity of L: for all ¢ € H' (R),

($.0°)=($.0)=0 = (Lo.0) = 19l

Moreover, there exists vo > 0 such that, forall f € H l(R),

1
(L.9) 2wl — - (6.0 +©@.yAQ + (9. A0P).  B.D)

v

(iv) Invertibility: there exists a unique R € ), even, such that

LR =50% moreover (Q,R) = —3/ 0. (3.2)

(v) Invertibility (bis): there exists a unique function P € C*°(R) N L*(R) such that
P e Y and

(LP) = AQ, lim P(y):l/Q, lim P(y) = 0.
y—>—00 2 y—>+00

Moreover,

| 2
(P, 0) = 1¢ (/ Q) >0, (P,0)=0. (3.3)

Proof. The properties (i), (ii) and (iii) are standard and we refer to Lemma 2.1 of [23]
and the references therein for their proof. Property (iv) is proved in Lemma 2.1 in [25],
while property (v) is proved in Proposition 2.2 in [23]. O

3.2. Refined profile. We follow [23] to define the one parameter family of approximate
self similar profiles : b — Qp, |b| < 1 which will provide the leading order deformation
of the ground state profile O = Qp—¢ in our construction.

More precisely, we need to localize P on the left hand side. Let x € C*°(R) be such
that

0<x=<1l 0=(x")<x onR, xo =0 and x_, ., =1 34
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Definition 3.2. Let y = %. The localized profile Q) is defined by

Qp(y) = Q(y) +bPy(y), (3.5)

where

Pp(y) = xo(»P(y) and xp(y) = x(|b]"y). (3.6)
The properties of Oy are stated in the next lemma.

Lemma 3.3 (Approximate self-similar profiles Qp, [23]). There exists b* > 0 such that
for |b| < b*, the following properties hold.

(i) Estimate of Qp: forall y € R,

0] £ e+ b1 (120 (b1 ) +e 2 )
hi

_ _
0P| < e P s ble™ + b1y _y(b17y), Yk=1. (37

(ii) Equation of Qj: the error term

)
—W, = (0] — Qp+ Q) +bAQy — ZbZ%
satisfies, forall y € R,
_yl
W] S 1B 12y (b17 ) + 67 (72 + 1aop(b1 ) : (38)
(WP )| S b1 E L (b y) + bR, Vo= 1 (3.9)
Moreover,
|(Wp. 0)| S b7 Yhp e, (3.10)
and (recalling the definition of L% in (1.7)),
e’ W,z S 6% VEk=o0. (3.11)

Note that the implicit constant in (3.11) depends on the constant B > 100.
(iii) Projection of W}, in the direction Q:

(W5, Q)] < 16 (3.12)

(iv) Mass and energy properties of Q-

‘f 0 - (/ Q2+2b/PQ)‘ < b (3.13)

‘E(Q;,)+bfPQ‘ < b (3.14)
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Proof. The proof of Lemma 3.3 can be found in [23]. Actually, the properties (i), (ii)
and (iv) are proved in Lemma 2.4 of [23]. The estimate (3.10) follow directly from (3.8)
and (3.9). Now, we explain how to prove (3.11) in the case k = 0. It follows from (1.7),
(3.8) and the fact that B > 100 that

—bI 3 . i 0 , i
P +b2</eb’z) +b2(/ eB) < B,
? —2lp|~7 —20b|~¥

for |b| small enough. The proof of (3.11) in the case k > 1 follows in a similar way by
using (3.9) instead of (3.8).

Note that we have added the term —2b2% to the definition of W}, compared to
the definition in [23] in order to get a better estimate for the projection of W, on Q.
The property (iii) follows from the computation in the first formula of page 80 in [23]
together with (3.3). O

Remark 3.1. For future reference, we also observe that

00
= xoP +y1bl”yx' (b y) = Py +yyx, P. (3.15)

3.3. Definition of the approximate solution. Let any % < 0 < 1. Following (1.13), set

_ . \—(1-0)
o 2(1 0)(20 — 1) 0 > 0. (3.16)
For such ¢y, for x¢ large enough and for
to = (2x0)'/7, (3.17)

(our intention is to use Proposition 2.1 with the value «g = %), we consider f(, x) the
solution of (2.4). Let v and U be related by

v(t,x)=U(t,x) — f(t,x).
Note that U is solution of (1.1) if and only if v satisfies
Jv+0(d2v+@w+ ) — ) =0.

We renormalize the flow using C! functions A() and o (¢), defining V, Fy and F as
follows

x —o(t)
A(D)

fox) = AT Fo (t.y). f(t.x) =A"I(O)F (t.y).

We introduce the rescaled time variable

vt x) = 22OV, y), vy =

)

L odr 201 5% 38—1 2
1) =so+ ith 19 = 20T = L 3.18
$() = 5o /t()k3(t) W0 =509 2 %0 (3-.18)

Note that from (3.17) relating 7o and xo, so can be taken arbitrarily large provided xg is
large.
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From now, any time-dependent function can be seen as a functionoft € Zors € J,
where 7 is an interval of the form [sg, s*] and J = s(Z). In view of the resolution of the
ODE system in (1.14), we will work under the following assumptions on the parameters
(A, 0,b):

2(1-6)

2(1-0
‘)L(s) — 5 20T e

< § 20-T

3

‘a(s) _ 6 - 1)sﬁ‘ < 57T, (3.19)

‘b(s) " Ms—l
20 — 1

< s_l_p'

= ’

where p is a positive number satisfying

1 1-06
O<p<mni—, —+¢. (3.20)
12 320 — 1)

We set
O
A

Note that U is solution of (1.1) if and only if £(V) = 0. We look for an approximate
solution W of the form

A
E(WV) = Vs + 0,0V = V4 (V+F)’ = F%) = AV = (= -1)a,v. G2y

W(s, y) = Qbs)(y) +r(s)R(y),
where b(s) is a C! function to be determined and where we set
r(s) = F(s,0) = 22 (s) f (s, o (s)).

We also define (see Lemma 3.6)

A o
= (giﬁ) and M = <3[§> (3.22)

First, we gather some useful estimates for r and F.

Lemma 3.4. Under the assumptions (3.19) and for s large enough, it holds

‘r — co)»%ofe‘ < Ao~ (9-2) < s 0r < s7h (3.23)
1o 1As Os - —3, —4 - -1, =2
rg — CQA2O —— —0— )| S|mlsT+s, |rs| SmlsT +s577, (3.24)
2 A o
bl bl
sup {e—%|F(s,y)\} <57, sup {e—%}aVF(s,y)\} <572, (3.25)
yeR yeR :
IF |l zoo(ym—21pr) S 575 18y Fllzoo(y=—2pppry S 572, (3.26)
3yl
sup [e=F[r(s) = FGs. )|} 5572 (3.27)
yeR

and

<573, (3.28)

‘(ay(sg“(r — F)), Q) — cof (f Q> Ag0-1
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Proof. Estimate (3.23) follows from (2.5) and then (3.19).
Next, we compute r:

1A 1 1
ry = 571’ +A2050y f(s,0) +A20, f(s,0).
Note that by (3.23) and then (3.19)
1 Ag 1 A A R
- g o <23 < mls 3 4574
2 A 2 AZ A

By (2.5) for k = 1, we have |3y f (s, o) + cofo 07! < o7 and so

A%asayf(s, o)+ 009)\%(:?0_9_1)

< A2oylo ™ < (il + DAZe 0 < (i + 1)s ™
Last, from (2.6) and ds = A~3dt, we have

A28, f(s,0) = A28, f(s,0)| S Ao P73 <574
We deduce the proof of (3.24) gathering the above estimates.

We recall that F (s, y) = A2 (s) £ (5. A(s) y+0 (s)) and 8, F (s, y) = A2 (5)dy (5. A(s)
y+o (s)). Thus, splitting the integration domain into the two cases A(s)y > —%a(s) —
AS)y+o(s) > %O’(S) and A(s)y < —‘—I‘O'(S) —> y < —cs, and then using (2.2), (2.5)
(with kg = %), we deduce that, for s large enough,

_n 1 _ _g6)
e 10 |F(S, y)‘ S A(s)? (e 0| f (s, ')||L00(x>%g(x)) +e WO f(s, )||L°°)

SA) (o)™ +e),

and respectively,
bl 3 bl _ g6
e 10 fayF(S, )’)’ S A(s)? <€ 10 ”ayf(ss ')||L°O(_x>%o‘(s)) +e 40 ”ayf(S, )||L°°>

SO (o0 v e ),

which, together with (3.19), concludes the proof of (3.25). Note that in the case where
y > —=2|b|77, we get from (3.19) and the choice y < 1 that A(s)y + o (s) > 4a(s) SO
that (3.26) follows from (2.2) and (2.5).

From the definition of F and r, we have

r(s) — F(s,y) = F(s,0) = F(s, y) = )»%(S)(f(s o () = f(s,A(5)y +a(s)).

Thus it follows applymg the mean value theorem, splitting into the two cases A(s)y >
——a(s) and A(s)y < ——o(s) as above, and then using (2.2) and (2.5) that, for s large
enough

3yl

T r(s) = F(s.y)|
_ bl 3 _ bl _ o
< e 2 |ylas)? (e R L ACHD ] PRSTNE PR XA VA CE -)I|L°°>

Iyl 3
< ef%k(s)% (cr(s)7971 +e7“> ,
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which implies (3.27) by using (3.19).
Finally, by using the identities

(ay(5Q4(r—F)),Q) —5/Q4Q/(r—F)=—/Q53yF(s, D)
- —,\%(s)/ 050, (5.3 - +0)
and [ Q3 = [ O, we deduce arguing as in (3.27) that

’(8y(5Q4(r ~ 1)), Q) — o (/ Q) e

<ad / Q> (| fohy +0) = fo(@)| +| fo(hy +0) = 3y f (s, y +0)])

< 23 (0(5)_9_2 + e_cs>

which, together with (3.19), concludes the proof of (3.28). O
In the next lemma, we derive an estimate for the mass and the energy of W + F.

Lemma 3.5 (Mass and energy of W + F). Under the assumptions (3.19), it holds for s
large enough

‘/(W+ F)> — <[ 0? +2b/ PO+ %r/ Q)’ <5m@ 45 @070 (309
nd

2 b 4C() _3 )
AM"EW+F)+c —2+—A 2o
A fQ

a

<22 x, Y (3.30)

~

2
where c| = % (fo).
Proof. Observe by using the decomposition in (3.5) that

/(W+F)2=fQ§+2r/QbR+r2/R2+2fQ,,F+2rfRF+/FZ.

From the definition of F, the L2 conservation for (2.4) and estimate (2.3), we have

[F2 =/f2 =/f02 < coxg P, (3.31)

Moreover, we get from (3.26) that

’/ PyF 5/ |F(y)|+/ |F(y)le i <57,
—=2|b|Y <y<0 y>0

Hence, it follows from (3.5) and (3.27) that

2[QbF=2r/Q+2/Q(F—r)+2b/PbF=2/Qr+o(s72+y),
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which together with (3.2), (3.13), (3.19) and (3.23) imply (3.29).
Now, we compute the energy of W:

E(W +F) =E(Qb)+E(F)+/Q’bay(rR+F)+r/R’ayF+%rZ/(R’)z
—/Qg(rmF)— é/ ((Qb+rR+F)6— Q2—F6—6Q,5,(rR+F)).

Moreover, it follows from the definition of F', the conservation of the energy for (2.4)
and (2.3) that

E(F) = ¥E(f) = ¥E(fo) ~ ¥x5 @

Thus, we deduce then from the definition of Qp in (3.5), (3.19), (3.23), (3.25), (3.26),
(3.27) and then (3.14), (3.3), (1.3) and (3.2) that

EW +F) = E(Qp) — /(Q” + OO R+ F)+0 (72422, ")

(o) retereni )

This last estimate combined with (3.23) implies (3.30). O
We compute £(W) in the next lemma.

Lemma 3.6. Under the assumptions (3.19), it holds

- As -
EW)=—m -MQO+R, ’71=<a§ +li) M:(é\>, (3.32)
V y
where, for s large enough,
(R, ¢)| < lmls™ +1bs| +572, Ve, (3.33)
RNz +1,R 3 S ils™" + 1bs| +572, (3.34)

where the norm L% is defined in (1.7) , and

4 3 A R

’(R 0) —ci [b +2b% — fch o~ <2 . +9%>]‘ < jmls +573, (3.35)
. 2

with ¢ = 11—6(fQ) )

Proof. We compute £(W) from the definition of W:

00 As oy
EW) = by=EL + 1R = “2AW — <x 1)ayW

+(Q)— 05+ 0)) +r(R" = R +3,((Qp + 7R+ F)’ = 0} — F).
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Using the definition of Q, and Wy, the definitions of m and M and the equation of R,
we rewrite the previous identity as follows

—m - MQ bm - MPb—rm MR+(b +2b2)& +rsR+brAR — Wy

EW) =
+3y((Qp+rR+F)° — Q) — F° = 5rQ*(R + 1))
= —m-MQ +R, (3.36)

where
R=TRi+dRa+R3— ¥y,
Ri = ryR +brAR + 59, [Q;‘(rR +F)— QR+ r)] ,
Ro=(Qp+rR+F)° — Q) — F° = 50,(rR + F),

and

(bS+2b2) Qb — b -MPy —ri-MR.

Estimates for R1. First we deduce from Lemma 3.4 that

(R @)+ IRull +18yRillz S lils™ +572 Ve (337

Now, we estimate (R, Q). First, by (3.24) and (R, Q) = —% f 0,

R 3 / ot 1 Ag GGS
(rs ’Q)+ZCO< Q) o <2k ;)
Second, (br AR, Q) = —br(R,AQ) =: 1
Third, we write
5 (ay [Qi(rR +F)— 0*(rR+ r)] , Q)
=-5(0*F -1, 0) ~5(0} - eHrR+F). Q)
-5 (Q4(F -, Q’) —20rb (Q3P(R +1), Q’) — 206 (Q3P(F ), Q’)
~5 ((Q}‘, — 0*—4bQ’P)rR+F), Q/>

= Ih+1hL+13+114.

.3 _
Smls™ +s

Moreover, by using the identity (2.52) in [25]
—(R,AQ) —20 (Q3(R +1)P, Q/> -

we get that I + I I = 0. To deal with 11}, we deduce from (3.28), |oy — A| < A|m| and

(3.19) that
1 61
‘111+c09 <f Q)kZU Oy

< |mls™2 +573.
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Next, it is clear from (3.19) and (3.27) that |13 < s7.
Finally we also claim that |I I4| < 573, Indeed, a direct computation gives
I =—5 ((4Q3bP(X;, — 1)+ 6Q%* P2 +40b° P} + b P})(rR + F), Q/)

which implies the claim by using the definition of y; in (3.6), (3.19), (3.23) and (3.25).
Therefore, we deduce gathering those estimates that

‘(Rl, )+ (/ Q) A2g0 (55 +eﬁ>‘ <imlsres73 (3.38)
4 2 A o
Estimates for d,’R,. We claim that
|(3R2. ¢)] + [8yRa 2 + |07 Ra] 12 S 572 Vo eV, |(0,R2. Q) $57°.

(3.39)

We first develop Rj:

Ry =10Q°( R+ F)> +10(Q; — O)(rR + F)* + 10Q7(rR + F)?
+50,(rR+ F)*+ (rR+ F)° — F°.

We deduce easily that |(8y7€2, q§)| + || 0y R2 “L§ + || 8y2722 ||L% < 572, V¢ € ), arguing

as in the proof of Lemma 3.4.
Now, we prove the second estimate in (3.39). On the one hand, we get easily from
the definition of Qj in (3.5), (3.23) and (3.25) that

|(8yR2, Q) +10(Q*(rR+ F)?, 0| < s7°.
On the other hand, we see by integration by parts that
10(Q°(rR + F)?, Q) = —=5r*(Q*(R + 1)3,R)
—5r(Q* (F —r)3yR) — 5r(Q* Rd,F) — 5(Q*, Fd,F).

Observe from the definition of R in (3.2) that SQ*(R + 1) = —8y2R + R, so that the
first term on the right-hand side of the above identity cancels out by symmetry. Hence,
it follows from (3.23), (3.25) and (3.27) that

[(Q TR+ F)?, Q)| S,
which yields the second estimate in (3.39).

Estimates for R3. First, we deduce from (3.15) and (3.19) that

|bs + 2b7|

0
(%Jb)‘ <y + 267 S byl 452 VeV,

|bs + 2b7| <H% dy (@)
b

ab
Arguing similarly, we get from (3.6), (3.19) and (3.23) that

) < |bs +2b%| < |bs| + 572

2 2
LB LB

‘b(ﬁ~I\7IPb,¢)‘+‘r(ﬁ1-l\7[R,¢)‘ <s7lm| Vo e,
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and

|b|H’71'3§MPbHLZ+|r|H171~8§1\7IR <sUml, k=o,1.
B

Ly
It follows combining those estimates that
(R3.9) + [ Rsll 2 + 19y Rall 2, < 57 il +Ibs| +572, Vo ey.  (3.40)

By using the identity (3.15), we get that

a
(%, Q) —(Q.PY+ (s — DP. Q) +y (yPxi. Q).

Thus, it follows from the definition of x, in (3.6), the properties of Q, (3.3) and (3.19),
we deduce that

Op 1 2
(bs+2b2>( Q) . (/ Q) (by +2b%)| S e

Therefore, we conclude the proof of (3.33) gathering (3.10), (3.37), (3.39) and (3.40),
the proof of (3.34) gathering (3.11), (3.37), (3.39) and (3.40), and the proof of (3.35)
gathering (3.12), (3.19), (3.38), (3.39), (3.40) and (3.41). O

s?
7. (3.41)

We define
b(s) 4 —9 1 2¢o o0+
(s) = + ——coA~ 2(s)o (s) and h(s)—M(s) (5).
WERe T To1-¢
(3.42)
Lemma 3.7. It holds
1328, = (R Q)] S Iinls ™" +57% (3.43)
1
‘k‘éhﬁiﬂg < Il (3.44)

Proof. First, observe by a direct computation that

2 2 4co 3 A oy
Mgy =bsg +2b° —2 +b)b— —A 0 +60—).
)» fo 20 o

Thus, estimate (3.43) follows from (3.19), (3.32), and (3.35).
Another direct computation yields

1 1 1 A 2¢o o5\ .1 _
A 2hy+-22g=—(b+=2 +—(1——>A2 9.
sty 8 2( A) ?
Hence, we deduce from (3.19) and (3.32) that
1 -
‘)"_éhs + Ekzg' Slml(1+s7h,

which implies (3.44) by choosing s large enough. O
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3.4. Modulation and parameter estimates. Let U be a solution of (1.1) defined on a
time interval Z C [tp, +00) and set

v(t,x) =U(,x) — f(t, x), (3.45)

where f is defined in Sect. 3.3. We assume that there exists (Az(7), o:(¢)) € (0, +00)?2
and z € C(Z : L*(R)) such that

-1 x —ox(t) 1
v(t,x) =4 P (O(Q+rR+2)(t.y). y= RO re(t) = A (1) f (¢, 0(103.46)
with
lz®llz2 +As(W)o  (0) + 07 (1) < o, (3.47)

for all € 7 and where o* is small positive universal constant. For future use, remark
that (3.47) implies (using % <6 <1

3

1
)\,j A % 3_p—1 )\,7 A % 1_p 1
i :<_ﬁ) o2 <@ and _’;:(—j> S COLRNCET)
o O3 Oy oy

We collect in the next lemma the standard preliminary estimates on this decomposition
related to the choice of suitable orthogonality conditions for the remainder term.

Lemma 3.8. Assume (3.46)—(3.47) for a* > 0 small enough. Then, there exist unique
continuous functions (A, o, b) : T — (0, 00) X R2? such that

ROV MOy +0(1)) = Qoiy (1) +r(ORG) +£(t,y) = Wt y) +£(t.y),  (3.49)

% — 1] +1b()] + W Szl (3.50)
and where ¢ satisfies, for all t € T,

(e(1), AQ) = (1), YAQ) = (e(1), Q) =0, (3.51)

ez S 1@z . le®lze S IOl (3.52)

Proof. First, the decomposition is performed for fixed # € Z. Let us define the map
©: (b6, b,vp) € (0,+00) x B x L? 1> (¢, yAQ), (£, AQ), (¢, Q) € R,

where
v 1

B0 =85 0) =301 (105 +8) = 050

1 L
— R0 () f (1, 04(t) + s (1)G) R().

Let v; = Q +rzR and 6y := (1,0, 0, vs). We see that &g, = 0, so that ®(6p) = 0.
Moreover, it follows from explicit computations that

axé% =AQ+ rﬁyR/,

3
3&5% =0+ rtR/ — )»ﬁz dy f(t,01)R,

355% = —P.
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In particular, by parity properties, the identity (Q', yAQ) = %(Q, AQ)+(yQ',AQ) =
IAQI3,, and then (from (2.5) and (3.48))

3 3 1
3 3 _—6-1 3 2 _—6 * 3
Mo f(t ol SA 2o T S @) Il Sadost < @),
we obtain

®
—(0o)

Ak, &, b)

(AQ,yAQ) (Q’,yAQ3+r;(R’,yAQ) —(P,yAQ)
= IIAQIIiz+rn(yR’»AQ) (Q’,AQ)—/\ufaxf(t,dt)(R,AQ) —(P,AQ)
(AQ, Q) +r:(yR', Q) (0, 0) — kfaxf(t, o)(R, Q) —(P,0)

0 [AQI}, ~(P.yAQ) ]
= (12, 07 —(P.AQ) |+0(@?).
0 0 —lolz,

Thus, the Jacobian satisfies for «* small enough

00 1 1 1
det [ ——— (o) ) = — A0 2 40 (@2 —AQ* 0.
e (8():’6717)(0)) 180111017 +0 (@)?) > ZlIAQlf: el >

Therefore, possibly taking a smaller constant «* > 0, it follows from the implicit
function theorem that for any vi = Q +r3 R +z where z satisfies ||z|| ;> < o™, there exist

unique (X, o, l;) = ()V», g, l;)(vl) such that @(i, 5. b, v1) = 0, where X is close to 1 and
o, b are small. Moreover, the map v; +— (A, &, b)(vy) is continuous.
Now, for a function v satisfying (3.46), we consider

1
vit, y) = A (O, )y +0:(D) = Q) +rs(OR(Y) +2(t, ¥),

and we define

A = s (OE1(1), o) = A5 W1 (D) +0:(t),  b(t) = b(v1(1)),
e(t,y) = S(X(ul(m,ém(t))ﬁ(vl(z)),vl(t)) ).

In particular, ¢ satisfies the orthogonality conditions (3.51) and it holds

WO, A0y + (1) = Qo () + A2 (1) £t 0 ()R +£(t, y),

which is the desired decomposition for v.
Now, we prove (3.50) and (3.52). We omit mentioning the time dependency for
simplicity. Note from the above, the identity

s(v) = A2 QGy +6) — 0;(»)

+ i%,\f [f(on)R(iy +6)— f(os +kn6)R(y)] +i2z(hy +6).
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We will project this identity on the three orthogonality directions yAQ, AQ and Q of
¢. First, by direct computations, it holds

(200 +5) = 0,970 =5 (IAQIZ, + 0L~ 11 +15D).
(G200 +6) — 0, AQ) = (. — DIAQIZ, + 0% — 112 +15 ),

v

. .. . . b .
G200 -45)— 0, 0) = Ok — 1P+ 151, (P, Q) = TeIQIL +0G™).

Second, by the triangle inequality and (2.5) and (3.48),

S ?»2 | f(o9) — f (o3

eIl [RA+6) -

<A lor 05|+ 2 jo " (|x—1|+|5|)g(a*)z<|k_1|+|5.|).

Therefore, the projections yield the following estimates
v . . w1y .
A= 14161 S Nzl 2, + 1B+ @ (1 = 11+151).
v 1L/ v
BIS N2l 2, + @? (1A= 11+151).

Combining these estimates, for «* small enough, we obtain (3.50). Then, (3.52) follows
using the above estimates and (3.6) back into (3.53) (note in particular that from (3.6)

5/4 5/4
and y = 3. 1Bl 1B Szl S lels). o
Remark 3.2. The C! regularity of r — (A(?), o (¢), b(t)) and the equation
dye = By [—a§e+s - ((W+ Fie)l—(W+ F)S)] — E(W) +7 - Me — bAs,
(3.54)

(where we have used the notation in (3.21) and (3.22)) follow from classical arguments
and computations. We refer for example to the proof of Lemma 2.7. in [3].

Next, we derive some estimates for & in H! related to the conservation of mass and
energy.

Lemma 3.9 (Mass and energy estimates for €). Under the bootstrap assumptions (3.19),

it holds
lel2, < ‘/ vz - /

A2 010yel2, S IE o) +1g(s)| + A2 72 + 272 / 0e? +x, %V (3.56)

;e (3.55)

and

for s large enough, where g is defined in Lemma 3.7.
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Proof. By using the conservation of the L? norm for U, we obtain that

/U&:/Uzz||W+F+s||iz:/(W+F)2+2/(W+F)s+/52

We observe by using the third orthogonality condition in (3.51) and then the Cauchy—
Schwarz inequality, (3.31) and (3.19) that
+2|b| ‘fP;,s +2‘/F6‘

‘2/(W+F)8 /Re

1
< E/82+(9(s*2+y)+(9(x0‘(2"‘”),

< 2r|

which combined with (3.29) implies (3.55).
We turn to the proof of (3.56). By using the conservation of the energy and the scaling
properties, we get that

A\EWUo) = MEWU) =EW +F +¢)
=E(W+F)+/8 (W + F)dye + = /(a £)?
— é/((W+F+s)6— (W + F)%).
Thus, it follows by using the identity [(—Q” — Q%)e = [ Qe = 0 that
AE(ug) = E(W + F) +b/ayp,,ays +r / dyRdye — /(32F +F)e+ - /(a £)?

— é/((W+F+e)6 — (W +F)° —60% — 6F%).

We get from the Cauchy—Schwarz inequality, (3.19) and (3.23) that

|b] Vaypbaye fayRays

Now, we deal with the term [ (8‘2, F + F3)e. We get from the Cauchy—Schwarz inequality
and (2.8) that ’

'/ O Fe| = ‘/ayFaye

Similarly, we get from Holder’s inequality, the Gagliardo—Niremberg inequality (1.4)
and then (3.52) and (2.8) that

'/ Fe| < f86+/F6 < ||s||iz||aye||22

La, el +ca?xy P, (3.57)

+r|

< i/(aye)z +0O(s72).

1 26+1
< glayela +clldy Flig, < o 2D,

2
||8 8||Lz +cAx

+HIF 3200y Fll7. < T
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Moreover, from interpolation, the Gagliardo—Nirenberg inequality (1.4) and (3.19),
(3.23), (3.25), it holds

V((W+F+e)6—(W+F)6—6Q58—6F55)
< V((W+F)5—6Q5—6F5)e +/(W+F)482+/86

gr%fQ282+fF452+||e||‘£2/(ays)2

arguing as in (3.57), we estimate the term | F 42 as follows

1 _
‘/F452 < /86+/F6 < —l8yell?, +crlxy 0.

- 32
We conclude the proof of (3.56) by combining those estimates with (3.30) and
(3.52). O

Next, the equation of the parameters A, o and b are deduced from modulation esti-
mates.

Lemma 3.10. (Modulation estimates) Under the bootstrap assumptions (3.19), it holds

il < llell2 +572% (3.58)
bl S llelz +s77%, (3.59)
A21gsl S 570+ 57 ellz, + el (3.60)

for s large enough, where the Lf,o[-norm is defined in (1.7).

Proof. First, we differentiate the first orthogonality condition in (3.51) with respect to
s, use the Eq. (3.54), follow the computations in the proof of Lemma 2.7 in [23] and use
the estimate (3.33) to get that

g e, LIAQ)
(—A + b) + —( ( g) )
2 IAQI2,
Now, we differentiate the second orthogonality condition in (3.51) with respect to s. By

combining similar estimates with the identity (Q’, yAQ) = |[AQ ”%42’ we also get that

o ) 2
Siml(s™ + llell 2 ) + |bs] +s + el - (3.61)
sol sol

(2 3 1) . (e, E(yAZQ))
A IAQII7,

Next, we differentiate the third orthogonality condition in (3.51) with respect to s. It
follows that

0 = (3¢, Q)
= (8,£6. 0) = (0, (W + F+&)° = (W+ F) = 50%), 0) = (W), 0)

e(5e0) (e 0+ (T -1) (0.0) - (12, 0)

] —1 -2 2
Sl (s + lell ) + Ibsl + 57+ el . (3.62)
S S0
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We observe the cancellations (dyLe, Q) = —(g, £(Q')) = 0and (Ag, Q) = — (¢, AQ)
= 0. We also get by using (3.19), (3.23) and (3.25) that for s large enough

(0 (W4 F 42y = W+ 1) = 50%). 0)| S5 el z, +lel, .

Moreover, we have from (3.32) that

)\'Y N
(EW), Q) = — (7‘ +b> (AQ, Q) — ((’7 - 1) (3,0. Q) + (R, Q).

Hence, it follows from the cancellations (AQ, Q) = (3,0, Q) = 0 and the estimate
(3.35) that

-1
oo ) )

We deduce combining those estimates and using (3.19) the following rough estimate on
|bs |

<mls™ 57

2

< =2 (=1 -1
bl S 577 +liil(s ™!+ llell 2 )+ lell 2, + el

which combined with (3.61) and (3.62) yields (3.58) and (3.59) by taking s large enough.
Finally, by combining the previous estimates with (3.43), we deduce that

3 2

2 < |7 -1 — -1
W15l S Il + lellz,) 457457 el + el

which conclude the proof of (3.60) by taking s large enough thanks to (3.58). 0O

3.5. Bootstrap estimates. Let y € C* be a nondecreasing function such that

e¥ fory < —1,
vy = 1
1 fory>——.

2
For B > 100 large to be chosen later, we define
y bl
V) =¥ (%) and gp() =eb.

Note that, directly from the definitions of ¢ and ¢, we have, for all y € R and

VW +VIEOD) S e, IyI*E() S Bles(y),

V) + BAYE 0]+ B2leE ()] < ¢, (3.63)

9B + VB +95(Ne"F + Y (e B + [y < Bep(),
and Le® < yp(y) < 3e¥, forall y <0,

Let0 < p <« 1 and B > 100 to be chosen later. In addition of (3.19), we will work
under the following bootstrap assumptions.

1
Ng(e) = ( / e%pp + / (aye)2w3>2 <|s|73 (3.64)
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In particular, from the definition of the L?Ol-norms in (1.7) and B > 100, it holds

lellzz, + I3yell 2, SN(e) and llel}, < B / &) (3.65)

For future reference, we state here some consequences of the bootstrap assumptions.

Lemma 3.11. Under the bootstrap assumptions (3.19) and (3.64), it holds

R A o 5
i = |5 4]+ |2 =1 S lellz, +572 S 57 (3.66)
)\. )\. sol
bs] S llellyo +57% S s7% (3.67)
9
Plgl Ss7 457 el 2, +llell72 S s75 (3.68)
_1 1., _s
A 2h5+§)»g <s7a. (3.69)

Proof. Estimates (3.66)—(3.69) follow from (3.19), (3.44), (3.58), (3.59), (3.60) and
(3.64). O

4. Energy Estimates

‘We work with the notation introduced in Sect. 3. In particular, we assume that ¢ satisfies

(3.49)—(3.54) and that (A, o, b, €) satisfy (3.19) and (3.64) on J = [s0, s*] for some

s* > s0.

We define the mixed energy-virial functional
2 2 1 6 6 5

F= | | @ye)2yp+e20p — g((W+F+s) — W+ F)S —6(W+F) 8)1//3 .
4.1)

Set

2020 — 1)
K= ——

so that A% ~ s*. (4.2)
1—6

Proposition 4.1. There exist * > 0, wo > 0 and By > 100 such that, for all B > By
and for all sg large enough (possibly depending on B), the following hold on [sq, s*].

(1) Time derivative of the energy functional.
AT, + MO/ [(ays)z + 82] o Ssh 4.3)

(2) Coercivity of F.

Np(e)? < F+s7100, (4.4)
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Proof. Let

Gp(e) = —dy(Vpdye) +epp — ¥p ((W +F+e) — (W+ F)S) .

4.5)
We compute using (3.54),

_ As As
A "()\".’F)S = 2/ (sx — 71\8) Gpg(e) + = <2/ AeGp(g) +K]:>
—2/(W+F)S [(W+F+8)5—(W+F)5—5(W+F)48]1p3

_ 2f y [—a§e+e — ((W+ Fae)l—(W+ F)S)] Gple)

o As
_2/5(W)Gg(e)+(7—1)/aysc;g(e;)+T (2/AeGB(s)+Kf)

—2/(W+F)S [(W+F+8)5—(W+F)5—5(W+F)48]1p3
= f1+f2+f3 +f4+f5.

Estimate of f1. We claim, by choosing o* small enough, B large enough and then s large
enough (possibly depending on B), that

fi +2p0 / ppe? s (4.6)
where ¢ is a small positive constant which will be fixed below.
To prove (4.6), we compute following Step 3 of Proposition 3.1 in [23],

== [ [305@3e2 + Gap + v — 00,07 + (0 — 0)e?]
= 5/ (W + Fae)® = W+ )0 = 6W + F+ )% (0 — wp)

+ 2/ [(W +F+e) — (W+F)S —5(W+ F)4£] 8y(W + F) (5 — o)
+ 10/ Vdye [ay(W +F) ((W FF+e)t — (W F)4) +(W+F+ s)4aye]

_ < >
=1 +1],

- / A [((—aﬁs ve— (W+F+e) =W+ 1?)5))2 ~ (03 +e)2}

B
5 -

where ™~ correspond respectively to integration on the three regions y < —7 and
B
y>—-4
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Estimate of f°. In the region y < —g, we use the properties (3.63) and take B large

enough to deduce

1
2 N\2 2 2
f1< F3-/y< ’23 w%(aye) 2/ . (p%((aye) +¢é )

y<—7%

/ 4 4\ 2 6 / 3.2 5
§/y<_g<p3((w + FHe? +e )+B/ B(pB|8y(W+F)\<|W+F| le| +|£|)

y<—7%

+/ ; 1/[};|3y8|[lBy(W+F)|<|W+F|3|8|+64>+|3y8| <|W+F|4+e4)]
y<—7%

+/ RZ (—2(—a§e+e)+(W+F+s)5 - (W+F)5) ((W+F+s)5 - (W+F)5)
y<—7%
=: f1<,1 + ff2 +f1<’3 +ff4.

Observe from (3.7) and (3.23) that
/ Wi < (s_4 + e‘g)/ ppel.
y<—3% y<—

To deal with f F*¢2, recall from the definition of F that F(s, y) = A2 () f (s, A(s)y +
o (s)). By splitting the integration domain into the two cases A(s)y > —%a(s) —

As)y+o(s) > %a(s) and A(s)y < —AI—ta(s) (from (3.19)) and using (2.2), (2.5) and
(3.19) we get that,

/ . Q| Flie? <57/ / , ohe? + B A(s)Ze B / &2 4.7)
y<—72 y<—z%

and

/ @l FI/e? gs—zf/ ¢3382+B—1x(s)¥e—%3/82, 4.8)
y<—% v<—%
forall j e N, j>1.

To control, the purely nonlinear term in f; ;, we recall the following version of the
Sobolev embedding (see Lemma 6 of [28] and also (2.18)):

2 ? 2 2 2(‘1’%)2
e\ ¢p S llellzz / , (@) ¢£g+/ LE T
L*(y<—4%) ye=1 <=3 %8

EICON (82 + (ayg)z) .

y<—75

Thus, it follows that

/ 0pe® < |&%\/o),
y<-—

Note also for future reference that the same proof yields

/%86 < |e*\/ej

2
</ 82> SEICOY A (82 + (ayg)z) .
y<—

L®(y<-4)

(S~

2

2

< / 82> < 8(a) / oy (2 + @y0)?). (4.9)
LOO
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Hence, we deduce gathering those estimates and choosing s and B large enough and o*

small enough that
1
5 <es™ %4 §/ , ©p (82 + (8),8)2) .
y<—%
Observe from Young’s inequality that

s [ o (WerP o) s [ g
}<—7 y<—

B
2

so that it follows arguing as for f*; that, for s and B large enough and «* small enough,

1
o <es %4 % f . ©p (82 + (8},8)2) .
y<—7%

By using again Young’s inequality, we have

iy 5/ " <|W+F| +13y(W + F))| )(52+(aye)2)+/ Ve
}<—7

y<—%
4 2
+/ ., Ve (dye)”.
y<—7%

The first two terms on the right-hand side of the above inequality are estimated as before.
For the third one, we deduce arguing as in (2.24) that

2
£dye /Uy (/ 82>
Lo(y<—%)

Soe [y (@) + 0e?).

y<—%

>

/ Ypet(@,6)? <
y<

2

Thus it follows by taking s and B large enough and o* small enough that

~ 1 1
oy <es %4 5/ @l (dye)* + / Yy (32e)?.
2 y<—EB 2 y<—8 )

2 2

Finally, we get from Young’s inequality and (3.63) that

1 1
£ < 7] L Vpe+ 8/ WB(828)2+cf ¢B|W+F|882+c/ L Ve’
y<—7 -7 y<-%

y<—%

Since ¥, ~ (¢3)? in the region y < —%, we have

4
/ ., pipe!? < 82,/<pj3 (/ 82> < S(a*)/ i @ (82 + (8y8)2) .
y<-7 Lo(y<=%) y<=7

Hence, we deduce that

1
£, <es™1004 —
14 =
26 )8

2

1
@l (3ye)* + — / Y (95e)°.
4 )8

2
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Therefore, we conclude gathering all those estimates that

1
f +/ Yp(35e)” + — f o ((@ye)? +e?) <5710 (4.10)
y<—3% 4Jy<-%

Estimate of . In the region y > —g, one has ¢gp(y) = e® and ¥p(y) = 1. Thus,

=L 3(8y6)2 + (1 — L)52 e
1 B y>7g Yy B2

1

- [(W+F+8)6—(W+F)6—6(W+F+a)55]e%f
3B y>—2

>-]

—2/ (W + Fte)® = W+ F)S = 5OW + F)'e] a,(W + F)ed — 1)
y>—5

2

1 y
- _E/ ] [3(ayg)2 +e2 —50%%+ 20yQ/Q3a2] e® +Ryir(e),  (4.11)
>=7

y
where
Rvir = Rvir,1 + Rvir,2 + Rvir,3 + Rvir,4 + Rvir,5
and
R ! f 2%
Vir,] = T3 Ees ]
B3 y=—8
o 6 6 5 427 2.
Ryvir2 = 3B . (W+F +¢) W+ F) 6(W+F+¢e)e+150%¢"|eB;
y>—7

Rvirs = —2/ . [(W +F+e)5 — (W+F)> —5(W+F)* — 10(W + F)%Z]
y>—%

Xy (W + F)(e® — 1);

Rues=-20 [ [0+ rro,wer) - 020l - e

y>=7
Rvies = —20/ Q0 (e —1-2) e
- B

To handle the first term on the right-hand side of (4.11), we rely on the following co-
ercivity property of the virial quadratic form (under the orthogonality conditions (3.51))
proved in Lemma 3.5 in [2] and which is a variant of Lemma 3.4 in [23] based on
Proposition 4 in [20].

Lemma 4.2 (Localized virial estimate). There exist By > 100 and w1 > 0 such that for
all B > By,

/ . [3(3),8)2 +62 = 50%2 420y Q’Q352]
y>=7

.1 ,
> m/ . [(ays)2+52]e§ - E/gze—%. (4.12)
y>=7
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Now, we turn our attention to Ryir. We begin by explaining how to control ‘RVir,l |
and ]Rw, 5 | We rely on the calculus inequality

2
A
—|Z|2 eB.

y y‘
B—1—=—|< 4.13

It follows that

=]

1
B |Rvir1| + B |Rvirs| S E/ e’e
y>=

(S~

Hence, |RVir, 1 | and |RVir, 5} will be controlled by using the contribution coming from
the first term on the right-hand side of (4.12) and by taking B large enough.
To estimate Ryir, 2, we write

(W+F+8)°— (W+F)®—6(W+F+¢)e+150%?
- [(W+ F+8)° — (W+F)° —6(W+F)5 — 15(W + F)482]
—6[(W+F+s)5 —(W+F) —5(W+F)48]e— 15 [(W+F)4 _ Q4]82
so that
‘[(WJr F+6)0 — (W+F)° —6(W+ F+8)58] + 15Q482‘
SIW+FPlel +1el°+ W+ F — Q|(W| +|F|+ Q).

Hence, we get

N e— |

Y Y
1+ F3) e2eB +||e|* e’
(i Ity

-7

[N~

+/ (10, = QI+ IPRI+1FD (1+|FF) e,
y>==7

On the one hand, observe from the Sobolev embedding and the bootstrap assumption
(3.64) that

_3
el gyng) S Na(e) S IsI73. (4.14)

On the other hand, recall that F (s, y) = k% (s) f(s,A(s)y+0o(s)). Fors > 2B, we have
A(S)y +o(s) > %o(s) in the region y > —g. Hence, it follows from (2.2), (2.5) and
(3.19) that

1F ooy ) S 57" and 10, Fll oy 5y S 577 (4.15)

Thus, we deduce by using (3.5), (3.6), (3.23), (4.14) and (4.15) and by taking |s| large
enough that
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To deal with Rv;; 3, we observe
‘[(W"' F+6) —(W+F) —=5(W+F)*e — 10(W +F)382] dy(W + F)(e® — 1)
S (1W+ FPlel +1eF) (19, W1+ 19, Fl) e,
so that

[Rvieal S lellmyegy [, (1417R) (110,F1) e
y>=7

3 2 %
elngy [, (410

Hence, we deduce from (4.14) and (4.15) by taking |s| large enough (possibly depending
on B) that

8 B

B |RVir,3| < ﬂ/ el
y>—3%
To deal with Ry 4, we write
(W + F)3,(W+ F) — 00 = ((W +F) = Q3) dy(W + F) + 0%,(W — Q + F),
so that

((W + F)39,(W + F) —

S (Qp — QI+ IFI+1rIIR)) (IW] + |F|+ Q)* (13, W] + |3, F|)
+ 0% (18y(Qp — Q) + [F|R'| +13,F]) .

Thus, we deduce by using (3.5), (3.6), (3.23) and (4.15) and by taking |s| large enough
(depending possibly on B) that

B[R 2e7,
| V1r4|_ 24 />1298€

Then, we deduce gathering all those estimates that

y 1 )
7 adl eFe? < —/8 67%. (4.16)
2B J, B?

The proof of (4.6) follows by combining (4.10), (4.16) and choosing
o = 272 min{1, uu1}.

Estimate of f;. We claim that

6] < 7/(;73 (52 +(dy8) )+cB2 -, (4.17)

By using the decomposition in (3.36), we have

£, =2/(n2.1\71Q)GB(s) —2/73(;3(8) = fp 1 +f2s.
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We first deal with f, 1. By using the definition of G (¢) in (4.5) and integration by
parts, we compute

/AQGB(E) :/TﬂBﬁ(AQ)s—/¢33y(AQ)8+/(<PB —Yp)AQe
—/AQWB [(W+F+e)5 —(W+F) —5(W+F)4s]

. S/AQwB [(W+ Fy* — Q4]e
and (also using £(9,Q) = 0)

/%QGM@

=—fwgaigwf«og—z/fB)aer—S/awaB [<W+F>4— Q4]s
—/aygwg (W + Fae)® = W+ F)S =50+ Fyle].

We estimate each of these terms separately. By using the identity LA Q = —20Q, the
second and third orthogonality identities in (3.51), the localisation properties of ¥z, ¥/
and ¢p, (4.13) and the decay properties of Q and A Q, it follows that

f@ﬁBﬁ(AQ)(? =2 ‘f(WB —DQes

‘ [ vnizoe|+| [ wpoao

‘/@B—x/m)AQs =2V(¢B—w3—%)AQ8

_In 1 bl s 1

5/ e2|e|+—/ ez|e|s<e4+—)
_B B2 B
y<—3 y>=3

_ bl _B
5/ e"2lel Sem* el
_ B sol
y<

_ _B
+ 5[ e T lel Se el ;
_B sol
y<—3

and

Iyl Iyl B 1
S / e 7 lel+ f e 7ol 5 (e—4 + —) el 2 ;
~ 2 ~ 2 L=
y<—8 B y>—8 B
where in the last line, we have also used the orthogonality condition (from (3.51))

/yaer?:/(AQ—%Q)e:o.

Moreover, it follows from (3.5), (3.6), (3.23) and (3.25) that

[ vnanois mon|ov+ £t~ o' e

3yl
S [ W r— o (WP Q%) el 57 Iel g,
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To deal with the nonlinear term, we recall the Sobolev bound

&>V alie < ( / 82) / VB (67 +(3,6)") S 8(a)NB(e)”. (4.18)
Hence, we deduce from (3.23), (3.25), (3.63) and (3.64) that
/de (IAQ| +13,01) ‘(W+ F+e) —(W+F) —5W+F)*
/1//36 34 (1w + FPe® +1ef)
< B/(p};g +||52\/¢7||§x/e—%s| 53/¢;382+s‘%||slngm-

Therefore, we deduce combining those estimates with (3.65) and (3.66), and choosing
s and B > 100 large enough that

f2.1] = fwg (82 - (Bye)z) +es™4, (4.19)

Now, we turn to f; . We compute from the definition of G (¢) in (4.5)

f2,2:2/¢Bayna},e+2/¢BRs—2/¢BR[(W+F+8)5—(W+F)5].

By the Cauchy—Schwarz inequality and the properties of p and ¥p in (3.63), it holds

1
’/(pBRa < </ ple” 3982) (/ e§R2> < ‘;f e¢ly + BRI}
1 1
2 2 2\’ ¥ 2\’
v, Rye| < ( | vie 7 (0ye) e (9,R)

<55 /(a}s) +c32||ay7z||

To treat the nonlinear term, we observe that

‘/wBR[(W+F+s)5—(W+F)5]

S [waRi (Wit 17) o1+ [ gaiRi

On the one hand, we deduce from (4.15), and then (3.63) and (4.7) that

1 1

, 2 , 2
[oniri (w15 e = ([ wgebasiern,_gpe) ([ =)
Ko
< B0 /g ol +ch||R||i%

On the other hand, (3.63), the Sobolev bound (4.18), and then (3.64), (4.9) yield

1 1
y 2 , 2
[vueiet < |l ([ heris) (f i)
<571 (/ e + ch||’R||iz> .
B

)
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Then, we deduce combining those estimates with (3.34), (3.65), (3.66) and (3.67)
that

2] < % f 20 +cBAs ™. (4.20)
Finally, we conclude the proof of (4.17) gathering (4.19) and (4.20).

Estimate of f3. We claim that

i3] < %/wg <82+ (ayg)2) +es™100, 421)

From the definition of G g(¢) in (4.5), we have

fy = (% _ 1) / dye [—ay(ngay@ +ope — Vg ((W +F 46— (W+ F)5)]
= f3,1 +f3’2 +f3’3.

By using the identities

/ dye dy(Ypdye) = % / Y (dye)? and f dyeppe = —% / phe?,
we deduce from (3.66) and (3.63) that

|f3.1] +|f32] £ 53 /(p}; (82 + (8y8)2) .
To deal with f3 3, we compute
/ dyevp ((W +F+e) —(W+ F)S)
_ _éflpg ((W+F+s)6 . (W+F)6—6(W+F)5£>
— f Ygdy (W + F) ((W tF4e) — (W+F)S —5W+ F)4e) ,
so that it follows from (3.66), (3.63), and then (4.7), (4.8), (4.9), (4.15), that
30| < Bs™3 f ol [(|W + F 410, (W + F)|4) &2+ 36]
< Bs1 /(pi; ((8y5)2 +£2) +57100,

Therefore, we deduce the proof of (4.21) gathering those estimates and taking s large
enough (possibly depending on B).

Estimate of f4. We claim that

fy < % o (82 + (8),8)2) +es 100, (4.22)
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Recall from the definition of F in (4.1) that
A
f=25 / Ag [—ay(wgays) +ope — Vg ((W +F+e)S —(W+ F)5)]
A 1
+KTS/ [wB(aya)z +gpe’ = SV ((W+F+s)6 — (W+F)® — 6(W+F)55)} .
We compute integrating by parts (see also page 97 in [23])
1
/(AS)By(¢33y8) = —/WB(ayt?)2 + E/ylﬁ};(ayé‘)z;
__1 )2,
(Ae)epp = 5 | Y¥BE
/(Ae)wg ((W +F+e)’ — (W+ F)5>
1
=< /(MB — yYj) ((W +F+e) —(W+F)°—6(W+ F)%)
5 5 4
—/1//BA(W+F) ((W+F+g) —(W+F)’ —5W+F) a).

Hence, we deduce gathering those identities that

As 2 / 2 2 12
fq = N <(2+K)/1/IB(8y€) —/J’WB(ayS) "‘K/QDE"’3 _/y‘p38>

- %%/ ((k+2)5 — yi/}) ((W FF+)0 — (W+F)S —6(W + F)Se)

hs 5 5 4
+2x YBAW + F) (W +F +¢)° —(W+F)°> —5(W + F)*e
=: f4,1 +f4’2 +f4’3.

We will control each of these terms separately. Observe that %‘ > ( since we are in a

defocusing regime (see (3.19) and (3.66)). Thus

A
= (—f Y (dye)? —/ ysojgaz) <0.
A y>0 y>0

Moreover, we get by using (3.19), (3.66) and (3.63)
As / 2o =t [ 2
- ly¥pldye)” S5 ¢p(9ye)
A y<0

and, by using Holder and Young inequalities,
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On the other hand the terms (2 +«) f Vg (Byes)2 and « f (p382 are positive as well as

their product with 4 5. However, we can estimate them as above. It follows from (3.19)
and (3.66) that

- (/ 1/f3(3y8)2+/<p382> 53—13/% ((8y8)2+82).

Now, we deal with the nonlinear terms. By using (3.19), (3.66) and (3.63), and then
4.7), (4.9), (4.15), we get that

|fa2] < Bs™! /(p;g (|W+F|482+86> < Bs_lfcpjg ((3y8)2+82> +5100,

By definition A(W + F) = %(W + F) +ydy(W + F). Moreover, we use that, for k =0
orl,

‘8",(W+ F)’ ‘(W+F+s)5 — W+ F)—5(W+ F)45’
‘8"(W+ F)) (|W+ FPe +85>
< (‘8’;(W+ F)) W+ FPP + ‘3§(W+ F)r) 62 4 6O,
Thus, we deduce from (3.19), (3.66) and (3.63), and then (4.7), (4.8), (4.9), (4.15), that

[ Bs—‘/ [(|W+F| +13,(W + F)| )a +86]

< Bs~! / @y ((Bys)2 + 82) +57100,
Therefore, we conclude the proof of (4.22) gathering these estimates.

Estimate of fs. We claim that
651 =< 55 /ng (e +(0ye) )+cs*‘°°. (4.23)
We decompose, from the definition of fs,

f5=—2b5/ aaQ” [(W+F+5)5—(W+F)5—5(W+F)4 ]w

—Z/Fs [(W+F+s)5 —(W+F) —5(W+F)4£] .
=: 151 + 15,

and estimate these two terms separately.
To deal with f5 1, we use that

10p

= [(W+F+s)5—(W+F)5—5(W+F)4 ]

900p
~ | ab

910p
ab

(|W+F|382+|8|5> <|W| +F* +

) &2 + .
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Moreover, we observe by using (3.15) and (3.63) that

4

3
Oy vp(») < BYop(y) < B2ph(y).

W()’)

Then, it follows from (3.67), (4.7), (4.9) and (4.15) that
If5.1| < B5s—2/¢; (1 W+ |F|4) &2+ Bs_2/¢§986 < Bs2 / 0 (82 + (aye)z) .

To handle f5 5, we first observe, arguing as above,

f5.2] 5B/wgum(|W|3+|F|3+|FS|3)ez+f<p;gsé.

The second term on the right-hand side of the above inequality will be dealt by using

(4.9) and taking o* small enough. Recalling that F (s, y) = k% ) f(s,A(8)y +0(s)),
we compute

| As Oy 3
Fy(s,y) = ET“JC(S,)»(S)Y"'U(S)) + |:Ty+ 71| A2y f(s, A(s)y

+0(5)) + A2 fi(s, A(s)y + 0 (5)).

Now, we argue as in the proof of (4.7) and split the integration domain into the two
regions A(s)y > —10(s) <= A(s)y +0(s) > 30(s) and A(s)y < —5o(s) (from
(3.19)). Thus, we deduce from (2.2), (2.5), (2.6), (3.19) and (3.66) that

- 1<) _
|fs 2| < cB?s™2 / 29 + > A (82 + (8y5)2> +es100,

Therefore, we conclude the proof of (4.22) gathering those estimates and taking s
large enough (possibly depending on B).

Finally, we conclude the proof of (4.3) gathering (4.6), (4.17), (4.21), (4.22) and
(4.23).

Now, we turn to the proof of (4.4). We decompose F as follows:

F = / [(aye)zwg + 6205 — 5Q452¢3]
1
-3 / [(W +F+e)° — W+ F)°—6(W+F)s— 15Q452] Vg
= F1+F.
To bound by below Fi, we rely on the coercivity of the linearized energy (3.1) with
the choice of the orthogonality conditions (3.51) and standard localisation arguments.

Proceeding for instance as in the Appendix A of [21] or as in the proof of Lemma 3.5.
in [2], we deduce that there exists vy > O such that, for B large enough,

Fi > Do Np(e)>.
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To estimate F>, we compute
(W+F+6)°—(W+F)°—6(W+F) s —150%?
= [(W +F+6)° — (W+ F)S —6(W + F)Se — 15(W + F)482]
—15 [(W + ) — Q4] £2,
so that

Bl S [ [(1W = QF4IF) 4 Qe web 4 W F = QUWI+IFI+0)e?].

We will control each term on the right-hand side separately. First observe from (3.5) and
(3.23) and arguing as for (4.7) (but without the restriction y < —g) that

\/\WB (lW _ Q|4+ |F|4) 82 5 S_4NB(8)2+S_100
and
/¢B|W+F — QIUW[+|F|+ 0)e* < s 'Wp(e)? +571%0,

Moreover, we deduce from (4.18) that
[ vngdier < ||, ( / Q3I8I> < 8@IN5 ()’
and
f e N ( / 82) < 8(@Np(e)

Therefore, we conclude the proof of (4.4) gathering those estimates. O

5. Construction of Flattening Solitons

5.1. End of the construction in rescaled variables. In this subsection, we still work with
the notation introduced in Sects. 3 and 4. We prove that for well adjusted initial data, the
decomposition of the solution introduced in (3.49) and the bootstrap estimates (3.19) and
(3.64) hold true in the whole time interval [sg, +00) for so large enough (equivalently,
xo large enough). The result is summarized in the next proposition.

Proposition 5.1. For sog > 0 large enough, let oo and ,g be such that

2(1-0)
20—1
A0 — g

2(1-6) 1
20=1 —2P 9-1 2P

1
<5 and |og — (20 — l)soz"’1 <5, (5.1

where p satisfies (3.20). Let eg € H L(R) be such that

lleoll + / ede® <5510 and (g0, AQ) = (g0, YAQ) = (50, Q) = 0. (5.2)
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Then there exists by € R satisfying

(5.3)

2(1 -6 _1_ 201 —6 o
boeD0:=[_¥1_ 1-3p 2 )71+ 13p:|

2010 ~ T o T
such that the solution of (1.1) evolving from

X —og

Up(x) == Aq ? (Qbo +Ag f(s0,00)R + 60) ( ) + f (s0, x)

has a decomposition (A(s), o(s),b(s), s(s)) as in Lemma 3.8 satisfying the bootstrap
conditions (3.19), (3.64) and

Ih(s)] < s7122, (5.4)
lg(s)| < s~ T, (5.5)
on [sg, +00), where h and g are defined in Lemma 3.7.

Proof. We argue by contradiction and assume that for all by satisfying (5.3),
§* = s*(bo) := sup {s > 50 : (3.19), (3.64), (5.4), (5.5) hold [so, s]} < +00.

We will first show that we can strictly improve (3.19), (3.64) and (5.4) on [so, s*], and
then find a contradiction for (5.5) by using a topological argument (see similar argument
in [4]).

Closing (3.64). We deduce integrating (4.3) on [sg, s] with s < s* and using (4.2), (4.4)
and (5.2) that

N )

(S

Np()2(s) S Fs)+571% <573 4 (R F(s0) —s0) s <

Bl—=

if sg is chosen large enough, which strictly improves (3.64).

Closing (3.19). First, by using (3.42), and then (3.19) and (5.4), we see that

A(s) — 2« 2cng(s)
To1-90

S (M@ +e6) )

2(1—-60
< T2, (5.6)

Thus, we deduce from (3.19) and (3.66) that

2
o3(s) — (fiQICT“Q) o2 (5)

o 2(1-6)
L 1‘ + 22 (s)|h(s)| < s BT 20,

S )

since 2p < 3, which yields, by using (3.19),

201 2 e\’
(a )s(s)_(29_1)<f_Ql—9)

20-6) _ _
< g2 (g)s 2T 2P <s72.(5.)

~
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Observe from the definition of ¢q in (3.16) that

2w \ 261
20 — 1 =(20 -1 .
( )<fQ1—> e

This implies integrating (5.7) over [sg, s], for s < s*, and using the condition on oy in
(5.1) that

20—1
O R e E e [ I I T
(26 — 1)s 7T

Hence, we deduce by applying the mean value theorem to the function r(7) = rﬁ
that

o(s)

7 < ST (58)
20 — 1)s 7T

1] <5 = ‘o(s)—(ze—l)srl—l

which, for sq large enough, strictly improves the estimate for o in (3.19).
Next, we get inserting (5.8) in (5.6) that

A(s 200-1) 21—
% 1| <57 — ‘)»(s)—s 2T | < 5 P20 (5.9)
§ 201

for all s € [sg, s*], which, for sy large enough, strictly improves the estimate for X in
(3.19).
Finally, we deduce from (5.5), (5.8) and (5.9) that

20— 1 ‘
—sb(s) +1
2(1-6)

201 5. | B6) 20 =0 —1,-2)

T 21-0) A2(s) 260 —1
S22 (s)s (|g(s>|+ }%A ()0 (s >—L_? T 2(s>)5s‘2f’.

Thus,
’b(s) + —2(1 — 9)s71 <17
20 — 1

for all s € [sg, s*], which, for s¢ large enough, strictly improves the estimate for b in
(3.19).

Closing (5.4). By using (3.69) and (5.5), we get for any s € [sq, s*],
s ()] < A3 ()|g(s)] + A2 (s)s™F < s~ T30, (5.10)

for 59 large enough, since 3p < %. Moreover, observe by the definition of ¢q in (3.16),
the definition of % in (3.42) and the choice of op and Aq in (5.1) that k(sg) = 0. Hence,
it follows integrating (5.10) over [sg, s*] and using the condition 3p < % that

1-6
h(s)| S s2-17F,
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for all s € [sg, s*], which, for s large enough, strictly improves the estimate for 4 in
(5.4).

Contradiction through a topological argument. To simplify the notation, for any bg
satisfying (5.3), we introduce

g% )s  el=L 1L G

20 —-0) _
l’l“bOED()'—)/LO:/,L(bo) = <b0+—s l) 1+3p

Then, by using the definition of ¢y in (3.16), the definition of g in (3.42) and the choice
of Ag and oy in (5.1), we compute

3-29 3-20 3-20
32 3 32 3, 3 3,
20—1 20—1 20—1
8(s0) = Hos € |:—s0 S ,

We have assumed that for all by € Dy, s* = s*(bg) < +00. Since we have strictly
improved (3.19), (3.64) and (5.4), then (5.5) must be saturated in s*, which means that

3-20
g(sM] = (s) 77
Define the function

3

3-20
®:po € [—1, 11 g(s™) () 7177 e (=1, 1),

where s* = s*(bg) and by is given by the correspondence (5.11). Since (5.5) is saturated
in s*, it is clear that for g = —1, respectively o = 1, then s* = sg and ®(—1) = —1,
respectively ®(1) = 1. Now, we will prove that ® is a continuous function, which will
lead to a contradiction and conclude the proof of Proposition 5.1.

We set

G(s) = (g(s)s%Hp)z.

It is clear that G(s*) = 1. Moreover we claim the following transversality property for
G:lets) € [so, s*] such that G(s;) = 1; then there exists ¢y > such that

Gy(s1) = co(s)7 L. (5.12)

Indeed, we compute

Gs(s) =2 (ie__? + 3,0) G(s)s~ '+ 2g(S)gs(s)s2(%+3’°),

which 1yields (5.12) by choosing sg large enough and using (3.68) and G(s1) = 1, since

Finally, it remains to show that : po +— s* is continuous, which will then imply
easily that @ is continuous. Assume first that o € (—1, 1), so that s* > sp, and let
0 < € < s* — so. Then, the transversality condition (5.12) and a continuity argument
imply that there exists § > 0 such that for ¢ small enough’

G(s*+e€)>1+8 and G(s) <1—26, foralls € [sg, s* —€].

1 Observe by continuity that the decomposition (3.49) holds on some time interval after s* so that g is still
well defined on [s*, s* + &g], for &g > 0 small enough.
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Now, by continuity of the flow associated to (1.1), there exists n > 0 such that for
all fip € (—1,1) such that |ug — fto] < n, the corresponding function G satisfies
|G(s) — G(s)| < &/2 on [sg, s* + €]. Then, denoting §* = s*(fip), we deduce that

~ )
G(s)<1—5, Vs € [sg, 8" —€] = §* >s" —¢;

~ 1)
G(s* +¢€) > 1+§ = F<s*+e.

This proves the continuity of the map g — s* at any pg € (—1, 1). In the case where
o = —1or g = 1, then s* = 5o, G(so) = 1 and G;(s9) > 0 (from (5.12)). Then, we
conclude by using a similar argument that : po +— s* is also continuous at ug = —1
and ug = 1.

This concludes the proof of Proposition 5.1. O

5.2. Main result. We are now in a position to state the main result of this paper, in its
full generality. Let 8 € (%, 1) and define the constants

317 1 (3g—1\""
cA=< > ) ,cgzﬁ( 5 ) . (5.13)

Theorem 5.2. There exists p1 > 0 such that for any xqo large enough, the following

1
holds. Let ty = (2x0) ? and let og and Lo be such that

1-8
2
A0 — Coly

B_
ftoz( P and ‘Uo—cgt(’)3

’ < t(/)3(1*,01).

Let g9 € H'(R) be such that
P 2 »o_ =¥lop
lleolls +/eoem <t » and (g0, AQ) = (g0, yYAQ) = (g9, Q) = 0.

-1@p-1
Then there exists by = bo( o, 00, £0) with |bo| < 1, 20A-1) such that the solution U (t)

of (1.1) corresponding to the following initial data at t = ty

X — 00

1 1
Uy, x) = - <Qh0 +A,3f(t0, oo0)R +80) <
Ao

forallt > ty decomposes as

) + f (o, x),

1 x—o(t)
U(t,x) = A(t,x)+n(t,x), A, x)=——0 ’ (5.14)
A2(1) A(2)
where the functions A(t), o (t) and n(t) satisfy
Mty —ert 2| S, |0 (1) — cotP| S PO-PD,

1+8

_l(3ﬂ_1) _
IOl Sto 277 Mol Sty *
_lig_
10O 202 1y + 18O 202 10y S 17370, (5.15)

To prove Theorem 5.2 from Proposition 5.1, it is sufficient to return to the original
variables (¢, x) (see Sect. 5.3) and to prove the additional estimate (5.15) which improves
the region where the residue 1 converges strongly to O (see Sect. 5.4).
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5.3. Returning to original variables. In the context of Proposition 5.1 and Theorem 5.2,
we prove in this subsection the following set of estimates:

18
2

A 1 -
M B

A 2

Oy 1

A A3

<=5 (5.16)

~

<t a-m,

‘)\. — )t

lo — cotP| S PU=PD, <=5 (5.17)

and

1 1 1 1 1 1 1 1
1220 ATyl e S 2P0 A0 AT a2 S IAB ATl ST OPTD,

(5.18)
_1 _ _
Il 2moy S 298700 N0enll2eney S 72 (5.19)
1 1+
—30G8-1) S
iz Sty oo lomlie Sty * (5.20)

where p1 is a small positive number.
Proof of (5.16)—(5.20) First, we relate ¢ and s from (3.18). We claim that for any ¢ > #y,
s = 80,

‘ 20 — 1 5-46
t — —

S0 8o\ s5_a
s < 1—(—) §TP (5.21)
549

N

Indeed, from (3.19) and dt = A3(s)ds, one has (p is defined in (3.20))
N K s ~
=1 :/ A (s)ds 2/ (S/)%ds/—c/ (S/)%_pds/
S ) 50

50
20 — 1 5-40 546 5-40 540 _
> s — 5" ) —c| s — 57! ap

5—46
and thus using (3.18),

t—zg_ls% >—c(1—s—0)s%_p.
5—46 - s

This proves the lower bound in (5.21). The corresponding upper bound is proved simi-
larly. Note that
5-40 _
20-1  38—1 t_3/32—1s3/32_1‘§(1_<3_0)29_1 p>53ﬂQ_1—P.
s

= so that
5—46 2

Observing that

2(1-6)

540\ 5
Cp = s
(29-1)

it follows from (3.19) and (5.21) that

2(1-6) 2(1-6)
‘A(r) — et 5 | S5 (I=p1)
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holds with 0 < p; := %p < %. Moreover, we check that (3.19) and (3.66) imply

M) 200-0)1 - t—(1+2§1_13)01),
A(D) 5—460 1|~

Using B = 5=45 49, one finds (5.16).
Observing that

0)

o = (5 —40)57 (20 — 1) 57 |

it follows from (3.19) and (5.21) that

1 1
)a(t) —cot5w | S5 men,

Moreover, by (3.19) and (3.66), it holds

o 1 1 <o_s B 1)‘ < HEE

P

Thus, (5.17) holds recalling that 8 = m
Last, we control . Note that from (3.45) and (3.49)

K20t Ay +0) = F(t, y) +b() Pyy (y) +r(DR(y) + (1, y).
Thus, the following estimates hold
Inl2 SNFOI 2 + 16O Pyl 2 + Ir @1+ el 2,
1xn @2 S 1 fO N2 +2710) [lb(t)|||3> Pyyllp2 +Ir(@®] + ||3;8(t)||L2],
AT ||A10(t)77(t)||L2 N ||Q“’F(t)||L2 + |b(1‘)|||Q“’ Pyiyllip2 +1rO1+1Q 108(l)||L2,
AT IIAW(f)axn(t)lle <o [IIQWByF(I)IILz + Ib(t)lllQmabe(z)lle

Hr (O] +10100,6 0] 2]

From (2.3), (2.8) and xo = (2tp)?,

—3ee-n o
sup [ (2 = 1foll 2 < ,

L 26+1) _IB-1
sup [|dx f (Dl 2 S xp ° Sty Co
teR

From (3.25) and (5.22),
OB F@I2 ST 1000 F@)l S @,
From (3.6), (3.19) and (5.22), it holds

1Bt Pyl 2 < 16(1)|F < 17 16GA—D),
1 1 _3p-1
1By ooyl 2 + BN QT Pyl 2 + @1 QT8 Py [l 2 < 16| < 1T
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From (3.23) and (5.22), it holds |r ()] < t~23#=. Last, from (3.64),
1)z + QT dye(r) 2 < 153D,
This implies the first two estimates in (5.18). For the last estimate in (5.18), we use
IR AT )30 < AT ATO ]| 212208, [AT ] 2
S IAB ATy 2 (A AT nll2 + 1358, [AT 1] 2)
S 1B A gl (1IR3 ATl + 27 A0 ATo) ) S 1726P7D,

Similarly, (5.19) follows from (3.26), the properties of P, and (3.64).

Now, we estimate |||, 2 and |0y 2. For this, the local estimates (3.64) involved in
the bootstrap are not sufficient, and we have to use global mass and energy estimates from
Lemma 3.9. First, we compute [ u%. Using the computations of the proof of Lemma 3.9
and (3.29),

1 _3 o
/u%—/QZ =2bo/PQ+§r0/ 0 +0(leoll?2) +Osy ) + Oxg @71,

By the above estimates taken at t = 79 and |legl;2 < salo < t0_5(3’3_1) (see (5.2)) we

find
_1 _
fifolsis
—-138-1) .
Thus, by (3.55), we find, for all ¢ > 19, llell ;2 S ¢, and the above estimates
: —3GB-1
imply (7l 2 < 1y * :

Second, we compute E (u¢). Using the computations of the proof of Lemma 3.9 and
(3.30),

E(up) = OG.72(t0)lleoll%) + O (t0)sg %) + Olxg D) + O(1g (s0))).
—3(1+p)

Note that by (5.5) and (5.22), it holds |g(so)| < t . We deduce from (5.2) and

_1
the previous estimates that |E (ug)| < t, 2(1+ﬁ). Thus, by (3.56), we find, for all ¢ > £y,

11+8)

—las . . -
A Nayell 2 <t a ﬂ),and the above estimates imply [|0x7n|;2 < ¢, O
yellLz Sty ply L2 3l

5.4. Additional monotonicity argument. To complete the proof of Theorem 5.2, we
prove (5.15) by extending the local estimates (5.19) for 1 on the right of the soliton to
the larger region x > %a. Write the equation for 7 as follows

dn+ddn=—0, N1+ Ny (5.23)
where

Ni = (A+n)° — A,

Ao 1 -—0 o 1 1 -—0
w392 ) e (5)
Y A A A ) a2 A
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Fix ¢t > 1o and for any 7 € [tg, ], let

J(7) = / n*(t, X)&(t, x)dx,

ko= [ [(axnf 5 (e —at- 6A5n)} (v, )6 (x, 1)dx,

where £(7, x) = x (‘”*"(’) - 2) and y is defined in (3.4).

o(1)

Lemma 5.3. For to large enough and for all © € (1, t], it holds

dJ

Mg r2GBHD (5.24)
and

dK

@5 =368+, (5.25)

Proof. We begin with the proof of (5.24). Using (5.23), we observe after integration by
parts

I 2/(8m)n€+/n 0-&
T
3 / (@m0, + / 0.6 + / 7ol — 2 f (@ NDE +2 / Nang

Z:J1+]2+J3+J4+J5.

We compute

4 (Ax—o()
axé(f,X)—U(r)x< poras —2)20,

ey = [ (u_>
axs(r’”‘(a(r))" oo )

0:E(t,x) = _GI(T) <4x _G(f)> X <4x —o(t) _2> |

o(1) o (1) o(7)

Note that by (5.17),

3p+1

0<d&<t? and 103 <o ¥ <o (5.26)

Observe that J; < 0. Since o; > 0 (see (5.17)), x’ > 0onR and x'(x) = 0 forx < —2,
we also have d;:& < 0, so that J, < 0. Moreover, by using (5.20) and (5.26), we have
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that |J3| < t=26F+D_On the other hand, more integration by parts yield
s=2 [ (e = 4%) G )

—%f[(A+n)6—A6—6A5n] 8x5+2f((14+77)5 —A5> 1n9x§

- 2/ [(A +n)° — A — 5A4n] (0, A)&

/ <5A4n2 + ?A%3 + 15A2174 + 8An5 + §n6> 0 &
) / [(a+0)° — 4% = 54%] @, A%,
so that
il < /nﬁaxe+/n2A4axs+/n2|A|3|axA|+/|n|5|axA|.

For the first term on the right-hand side of the above estimate, we argue as in (2.18) to
deduce

2 2 2 2 2 2 (8)%5)2
|vaiE],. sk [@mioce v [ 22555
X

in the support of d,&. Thus, by using in this region

32 2 11\2

@8 0—3@ < o3, (5.27)

0§ X

we deduce from (5.20), (5.26) that

6 2\’ 2 3 [ 2 1 _ 3B+l
/77 3x$§</n) [/(&m) E+o ‘fﬂ}§—§J1+CT 7, (5.28)

by taking fy large enough. For the second term, using (5.18) and (5.26), we have
3p+1

1 1
/nzA“axs So A3, S <o

Next, using (5.18)

1 1 3p+1
/"Z'A'3|8xAI SA I ATy, ST,
an

3p+1

d
3 1 1 1 1
/|n|5|axA| SATIABAT | AB AT, ST LT

~

Gathering all these estimates, we obtain that

1 _3p+1
Jy < —5.11 +cTt 2.
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Last, we observe by (5.16)—(5.17) that |Na(z, x)| < 'A% A2 (z, x), and so
1 3B+

1 1 1 1
FARSE A / ATyl STTATIRI AT ST

Collecting these estimates and taking 7y large enough, we have proved (5.24).
Now, we turn to the proof of (5.25). We compute using (5.23) and integrating by
parts

dK 1
o= / [(axmz — 5 (et —at— 6A5n)} 43 +2/ 0Oz g
= 2/ [(cA+m? =A%) e (a+m) — 5A%.4n | ¢
=-2 / 020+ A+’ = 4] 0u —2 / (078 + f CRDRR
+2/8XN18xn8x$+2/8xN28xné —2/N2Nlé

- 2/ [(A )5 — A5 — 5A4n] 3, AL

«f [(am)z s (arn—at- 6A577>] X

= K1+Ky+ K3+ Ky+ Ks+ Kg+ K7+ Kg.

Observe, since d,& > 0, that K| < 0 and K> < 0. Moreover, it follows from (5.20) and
(5.26) that K3 < 773# Moreover, we compute

Ky =10 / (A +m)*(Bcn)?0:E + 10 / [(A +m)* — A4] Oy Ad ndyE
so that

Ki S f AN @xm)?0:8 + f 0 (0em)* B + / | 430, And,

= K41+ K42+ Ky3+Ksa.

& + / (0, A)* 0, &

By using (5.16), (5.17), (5.18) and (5.26), we deduce that

1 1
|Ksal So A2 am A0 |2, <710

s\~

Ka3l S o~ A3 AT AT )| 2 |A B AT, )| 2 S 7' 2

1. 1 1 1 1 _ 1B+l 1
|Ksal So™ A am A0 TalAD ATy, <772 ST

since 8 > % To handle the purely nonlinear term K4 7, we use, arguing as in (2.24), the
improved Sobolev estimate

2
aE| S ||n||’iz/<a2 )% $+|Inlle/(3xn)2 %)

no
| ¥
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in the support of d,&. Thus, using (5.27), we deduce from (5.20), (5.26) that

2
1
Kip S (/ 772> |:/(8fn)28x§ +o3 / 772} < _EKZ +er 3B,

by taking 7o large enough.

Observe from (5.16)—(5.17) that |3; N> (, x)| < t='A~% A2 (, x). Thus, it follows
using (5.16) and (5.18) that
# < 3ﬁ+]

~ 4

3 1 1
IKs| St A 2 |Am A0, )2 ST

since 8 < 1. To estimate K¢, we observe
Kol S [ A%liNal+ [ 10 INal = K1+ Ko

so that it follows from | Ny (z, x)| < r_l)»_%A%(r, x) and (5.16)—(5.18),

TR R 748 3
Kol ST7°A 2|amA 0ol St 4 St .

~

_1 L 5 L _ 14178 L
Kool ST A2 AD AT |3 |AD AT D2, S 7708 S

since 8 > % To control the contribution K7, we observe from (5.16)—(5.17)

A= ap (22 - Dt (22
T A A A

sothat |9;A(t, x)| <AT3A(T, x).

Thus,
I<l §A*3/A4n2+r3/|A||n|5 =: K71+ K72.

Hence, it follows from (5.16)—(5.18) that

+ _ 3B+l
Tﬁ< ﬂ

~ ’

K71l S 25w A2, S

218—1
|K72l S 473 II)»ZOAloaxnllLooII)»ZOAloaxnlle S LIRSS SN

since % < B < 1. Finally, we deal with Kg by writing
Ks < /(axn)zafé +cfA“n2 025 +cf n®10:E| =: Ks.1 + Ks2 + Ks.3.

Observe that K31 < 0, since 3:& < 0. Moreover, we have 0 < x (“)(t) < 1 on the

support of 9;&, so that [0:&(T, x)| < =1 (from (5.16)—(5.17)). Then, it follows from
(5.16), (5.18) that

K32 S Iy 2 ||A20A103 ,7” S

~
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To deal with the fully nonlinear term Ky 3, we get arguing as in (5.28) and using (5.16),
(5.20) and

2
(26)°
[0:&] ™

on the support of 3:& (0 < & := % < 1), that

2
e | N
Ks,ss(frf) [/(axn>2|afs|+r = Z/nz} < g Kuiter ¥,

for 7o large enough.
We complete the proof of (5.25) by combining all those estimates. O

Proof of (5.15) We define ¢ such that o(t) = %a(t). Note that ¢+ 2 ¢ from (5.17).

Next, we integrate (5.24) on [¢, t] and we also use x = 0 on (—o0, —2] and x = 1 on
[—1, +00). We obtain

Ot

2 =11 _()? 12
o X x(x—=2)+x <t7'o (5.29)
o X

—_ ; N

38-1
/ n (6, x)dx < J(t) < J@) +ct™ T < / n*(t, x)dx +1~
x>20 x>0 (1)

3-1 361
2 <t 72
~Y

’

where we used (5.19) in the last step. This implies the first estimate in (5.15). Arguing
similarly for K, we deduce that

1
//\:Z”g) [(3x77)2 — 3((A + ;7)6 — A% _ 6A577)](t,x)dx

_3p-1 _3p-1
<K@) <K@ +ct™ 7 St 7.

Moreover, we deduce by using the Sobolev embedding, (5.19) and (5.20) that

2
[ (@sme—aeoatn) < [atee (o) [ @
XZM XZ#

2
1
<= dem)? +ct~CAD
_2/x>a(t)(x77) c

=2

by choosing fy large enough. Therefore, we complete the proof of the second estimate
in (5.15) by combining the last two estimates. 0O

5.5. Proof of Theorem 1.1. The statement of Theorem 1.1 in the Introduction corre-
sponds to a simplification of Theorem 5.2 and to a further rescaling and translation to
consider initial data at t+ = 0 and close to the soliton Q.

Take xq, ty, Ao, 00, bo, Up and a solution U (¢) of (1.1) as in Theorem 5.2. Define the
following rescaled version of Uy

1 1 1
uo(x) = g Uo(hox +09) = Qp,(x) +A; f(t0, 00)R(x) + A f(t0, kox + 00)

and consider u(¢) the solution of (1.1) with initial data ©(0) = ug, so that

1
u(t, x) = A UJt + 10, hox + ).
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Let (see (3.18))

3 @1 3B-—-1
% =

To=10hg" =c; 5 %0. (5.30)

The decomposition (5.14) rewrites

utx) = — Q(x_x(t))+w(t X)
N 1703) ’

where

A3t + 1) © = o (A3t +19) — 0o

201) =
) o X o

1
w(t, x) = AZnO3t + 10, hox + ). (5.31)
First, as a consequence of (5.17), we have

(W3t +10)f —1f
A0

- ()L(3)t +19)PU=pD)

x(t)_co' ~ )\.()

Since
1

_ 1 3 @3- _

Cvtgkolzﬂ e 31g =77,

we obtain, for e = Bp; > 0,

x(t) — (L+1)ﬂ—1
B To

Similarly, by (5.16), we have

1-8 1-8 1-8
t 2 N 7 (=p1) o =By SEA-p1)
o) =\ = +1 St (1 §T0p13“ —+1
To To To

and so, possibly choosing a smaller € > 0,

t p el
< Ty (—+1> T, P+ To) " (5.32)

1-p
=

o) — (Tio + 1) < (+To) " (5.33)

This justifies (1.5) for Ts = Tp.
Moreover, it follows from (5.20) that
1

1
~16s-1
lwlizz S linligz St

H5 A

TO
S

Bl—

2
I1Bxwllz2 < Aolldxnll 2 < Aoty Ty *.
Therefore, for arbitrary small § > 0, it is enough to choose xg = x((8) large enough and

take Ts = Ty, so that in particular TE_I/ 2 <« 8, which implies the first estimate in (1.6).
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Finally, by the definition of w(t, x) and then (5.15), one has
1

36—
/ wz(t, xX)dx = / nz(kgt + 19, y)dy < ()»81 +1)" 2
xz%x(t)

y=4003r+0)
3p-1

t T
< T <— + 1)
T
and similarly,

/ (Byw)?(t, x)dx = 2} /
x23x(1) y= 30 (A Ji+o)

38-1 t
<MW +10)" 7 <A <F + 1)
0

(A3t + 1o, y)dy

2

These estimates complete the proof of (1.6).

Remark 5.1. 1t follows from Ts = Ty, the definition of Ty in (5.30), the definition #ty =

1
(2x0)# in Theorem 5.2 that Ts — oo as § — 0, since x9 — +00 as § — 0. Estimates
(5.32)—(5.33) for such 75 > 1 describe the behavior of the parameters both for large
times and for intermediate times.

5.6. Non-scattering solutions. We prove that the solution U constructed in Theorem 5.2
does not behave in L? as r — +0o0 like a solution of the linear Airy equation. For the
sake of contradiction, assume that there exists vg € L? such that defining v(z, x) the
solution of

oV + 331) =0, v(0) = v,
it holds

Jim U@ = v(0)ll2 =0. (5.34)

We perform a monotonicity argument on v, similar to the one in §5.4. Let r > 0. For
the same function £(z, x) = (A”C_—"(’) — 2), define

o(7)

L(t) = / v (1, x)E(t, x)dx.

Then it follows from simple computations and (5.26) that

dL
= —3/(8xv)28x§+/v28r§+/v283§ 51_3ﬂfv8.
T

Let fo > 0 be such that o (ty) = %a(t) and 7y 2 t. Integrating on [, 7], and using the
properties of x, we have

/ o VA 0)dx < L) < Litg) + e g / V2 (t, x)dx + 1P,
x>0

x>20(tg)
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Ast — 400, by (5.34) and then (5.19), (5.16), (5.17), it holds

/ V2 (10, x)dx 5/ UZ(to, x)dx + o(1) 5/ A%(19, x)dx + o(1)
x>20(ty) x>20(ty) x>20(ty)
3p-1
S / Q*(»)dy+o(1) S e 7 +o(1) = o(l).

-~ (i)

}Zl(to)
Thus,

lim v2(1, x)dx = 0,

t—+00 xzaét)

but this is contradictory with (5.34) since from (5.14) and (5.15)

lim U2(t,x)dx=/Q2.

t—+00 x> a;t)
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