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Some notes on nonlinear cointegration: A partial review
with some novel perspectives

Dag Tjøstheim

Department of Mathematics, University of Bergen, Bergen, Norway

ABSTRACT
Some recent work on the analysis of nonlinear and nonstationary time ser-
ies models is reviewed. A couple of novel results are obtained in extending
nonlinear cointegrating regression models to a time series situation. All
through the paper focus is on aspects that could lead to a more well-
defined concept of nonlinear cointegration.

1. Introduction

Linear cointegration is now a well-established theory and a much-used technique in econometrics.
The theory is founded by Clive Granger, see Granger (1983), for which he got the Nobel prize in
economics. A basic paper is Engle and Granger (1987). Later developments are heavily influenced
by Peter Phillips and by Søren Johansen; see e.g. Phillips (1991), Phillips and Solo (1992) and
Johansen (1991).

Nonlinear cointegration is much less developed. It is not even entirely clear how it should be
best defined. It is complicated because it involves nonlinearity as well as nonstationary. Further,
it is multivariate and should retain an econometric interpretation analogous to linear cointegra-
tion. Peter Phillips and collaborators, in particular Park and Wang, have been main contributors
to this subject using statistically advanced concepts like local time and nonlinear transformations
of Brownian motion-like processes; see e.g. Park and Phillips (1999, 2001), Wang and Phillips
(2009a,b), and Shi and Phillips (2012). A somewhat different approach using Markov theory of
nonstationary processes has been advocated by Karlsen et al. (2007).

In the present paper I have roughly three objectives. First, I will try to sum up some recent
developments, and try to explain why difficulties can and are encountered in extending linear
concepts to nonlinear cointegration. In fact, in much of recent literature one has had to settle for
a subclass of models, namely the so-called nonlinear cointegrating regression models. This field
has been nicely surveyed in the book by Wang (2015). I will briefly review some current work
here. My second objective is to extend a few results in Gao et al. (2015) and Li et al. (2016) from
nonlinear cointegrating regression to the time series case, but I add that this may still not be suf-
ficient to obtain a general nonlinear cointegration concept. A different and perhaps more satisfac-
tory approach to this problem is taken in the special case of threshold cointegration, where I will
briefly review work done by Cai et al. (2017). Third, I end up on a somewhat speculative note
suggesting a novel local perspective in the nonlinear case. The details and indeed some main fea-
tures remain to be worked out.
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It should perhaps be stressed again at this point that the present paper is mainly a review
paper. But the review is attempted made in such a way that it could possibly open up for a new
and more appropriate notion of nonlinear cointegration. Throughout it is kept at a simple tech-
nical level with emphasis on ideas. However, it does contain a couple of new results, the technical
details of which have been placed in an Appendix.

Here is a summary of the paper. Section 2 contains a very brief review of linear cointegration,
stated with a view to extending this to the nonlinear case. Nonlinear error correction models and
nonlinear cointegrating regression models, including functional-coefficient cointegration, are
treated in Section 3. The nonstationary Markov chain approach is outlined in Section 4. Both the
nonparametric and the parametric case are treated. In particular, in Section 4.2 results are
extended from the parametric nonlinear cointegrating regression case to the time series situation.
In Section 5 recent attempts by Cai et al. (2017) to define a threshold cointegration process, dif-
ferent from earlier approaches to do this, are looked at. In the last section a general concept of
local nonlinear cointegration is sought introduced and compared to other local concepts such as
local stationarity and local Gaussianity.

2. Vector autoregressive processes and linear cointegration

A collection of interdependent time series is often modeled by a vector AR (VAR) process

xt ¼
Xp
i¼1

Aixt�i þ et (1)

where xt is m-dimensional and the matrices Ai are m�m. The vector time series fxtg is station-

ary if the roots of the characteristic polynomial jAðzÞj ¼ jIm �
Xp
i¼1

Aizij are outside the unit circle,

that is, if jAðzÞj 6¼ 0 for jzj � 1: Here Im is the m-dimensional identity matrix, and j � j is the
determinant. If there are k unit roots, say, and m� k roots outside the unit circle, fxtg is nonsta-
tionary. In the trivial and completely uninteresting case of independence between the component
processes there are exactly k linear unit root I(1) processes and m – k stationary I(0) processes.
In the case of dependence between the component processes the k unit roots correspond to k
common stochastic trends, and the m – k roots outside the unit circle lead to the existence of m
– k linear combinations (eigenvectors corresponding to these roots) of the components which are
stationary I(0) even though the component processes are nonstationary I(1). This property is
called cointegration. The processes making up each of the m – k linear combinations move
together in the long run. The cointegration concept was introduced in Granger (1983) and fur-
ther developed in Engle and Granger (1987) and has spawned numerous papers.

There is a representation of a cointegrated system, the error correction representation, which
has served as a basis for nonlinear extensions. The error correction representation is obtained by
subtracting xt�1 from both sides of (1) and rearranging this equation as

Dxt ¼ Cxt�1 þ
Xp�1

i¼1

BiDxt�i þ et , (2)

where D is the difference operator, where C ¼ �Im þ
Xp
i¼1

Ai ¼ �Að1Þ and Bi ¼ �Pp
j¼iþ1 Aj, i ¼

1, :::, p� 1: When there are k unit roots of the characteristic polynomial, the matrix C ¼ �Að1Þ
has rank n ¼ m� k: The row space of C is then spanned by a basis of n linearly independent vec-
tors, and we denote by b the m� n matrix whose columns form such a basis. Every row of C can
now be written as a linear combination of the rows of b0, the transpose of b. Thus, we can write
C ¼ ab0, where a is an m� n matrix with full column rank, and Eq. (2) can then be written
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Dxt ¼ azt�1 þ
Xp�1

i¼1

BiDxt�i þ et (3)

where zt�1 ¼ b0xt�1: One can solve for zt�1 obtaining

zt�1 ¼ ða0aÞ�1a0 Dxt �
Xp�1

i¼1

BiDxt�i � et

" #
(4)

so that zt is I(0). Thus, the linear combinations zt ¼ b0xt of nonstationary components are sta-
tionary, and the rows of b0 are the cointegrating vectors. The term ‘error correction’ first
appeared in Phillips (1957) and another pioneer was Sargan (1964). For an economic interpret-
ation of the error correction representation, see Hamilton (1994, p. 581).

The error correction representation has been further developed in several papers; see e.g.
Johansen (1988, 1991, 1995). The basis of these developments in the statistical literature is
reduced rank regression.

The estimation and testing theory of linear cointegrating systems is now well developed. It
makes systematic use of functional limit results and expansions in terms of the multidimensional
Wiener process. Empirical aspects of linear cointegration are covered in Juselius (2006).

3. Attempts of a nonlinear generalization

3.1. Nonlinear error correction models

The error correction model is perhaps the one that has most often been used as a starting point
for nonlinear extensions, usually with the nonlinear operation implemented only for the station-
ary process zt in (3). We shall look at the nonlinear error correction model in this sub-section. In
the next sub-section, we look at the more general problem of establishing nonlinear relationships
directly on I(1) type variables.

We shall only consider the case of a bivariate process fxtg ¼ fðx1t , x2tÞ0g in ð2Þ: If fx1tg and
fx2tg are both I(1), then they are linearly cointegrated if there is a constant vector b such that
zt ¼ b0xt is I(0). It is generally true that if fztg is stationary, then fgðztÞg is also stationary,
assuming the mean and variance exist. A bivariate nonlinear error correction (NLEC) model
extending (3) takes the form

Dxt ¼ agðzt�1Þ þ
Xp�1

i¼1

BiDxt�i þ et

where a ¼ ða1, a2Þ0 is a two-dimensional vector and g is a function such that gð0Þ ¼ 0 and EgðztÞ
exists. The function g can be estimated nonparametrically or by assuming a particular parametric
form. Escribano (1986, 2004) used a cubic function of zt in a UK money demand equation and
achieved a parsimonious model.

An appealing form of NLEC models uses threshold error corrections. This device was origin-
ally introduced by Blake and Fomby (1997). The threshold error correction model has been fur-
ther developed by several authors. Martens et al. (1998) treated the vector threshold error
correction model TVEC, and Hansen and Seo (2002) provided a testing theory for the case where
the cointegrating vector is estimated, and they treat a general multivariate case. More general
switching mechanisms than the threshold one have been treated in Bec and Rahbek (2004).
Saikkonen (2005) derived stability results for the general NLEC. Some additional references are
Kapetanios et al. (2006), Kristensen and Rahbek (2010), Magri and Medeiros (2014), Seo (2011),
Sj€olander et al. (2017) and Wang et al. (2016a).
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3.2. Parametric nonlinear regression with a nonstationary regressor (“nonlinear
cointegrating regression”)

It turns out to be considerably more tricky to obtain a general nonlinear cointegration relation-
ship based on the basic formula (1). The starting point would then be given by a relationship of
form

xt ¼ gðxt�1, hÞ þ ut (5)

where g is a known vector function, and h is an unknown parameter vector and ut is stationary.
Let the series fxtg be two-dimensional. Then this bivariate time series model is more difficult to
treat in the nonstationary case than a regression relationship where fx1t , x2tg is replaced by in
general a nonstationary pair fyt , xtg and

yt ¼ gðxt , hÞ þ ut (6)

where the scalar function g is known, h is an unknown parameter vector and ut is stationary. Of
course (6) is of great general interest in time series regression analysis devoid of any cointegration
interpretation.

For a stationary regressor xt, the pair (xt, yt) in (6) can be analyzed using fairly standard meth-
ods. This is not the case in the nonstationary situation. The basic theory in that case was derived
in two early much cited papers by Park and Phillips (1999, 2001). I give a short summary of their
results in this section, because they are basic in this area, allows for introducing the concept of
local time, and because they are possible to generalize.

Park and Phillips (1999, 2001) consider the rather general regression model (6), in which futg
is a martingale increment process and fxtg an integrated process such that Dxt ¼ vt: Here fvtg
could be a moving average process or more generally a process such that

vTðrÞ ¼ 1ffiffiffiffi
T

p
XrT½ �

s¼1

vs (7)

converges to a Wiener process wr. Here, ½rT� is the integer part of rT. Moreover, it is assumed
that

ðuTðrÞ, vTðrÞÞ!d ðw1r,w2rÞ (8)

where fðw1r ,w2rÞ0g is a vector Wiener process, and

uTðrÞ ¼ 1ffiffiffiffi
T

p
XrT½ �

s¼1

us:

It should be noted that this set-up with fxtg being an I(1) type process excludes the possibility of
analyzing the model

xt ¼ gðxt�1, hÞ þ ut (9)

because the class of I(1) processes is not invariant under a general nonlinear transformation g.
Then, since fxtg enters on both sides of the equality (9), it cannot in general be of I(1) type. This
obstacle is a quite serious inconvenience in a cointegration set-up of the type we are striving for
in the present paper. It will be taken up again in the next section using an alternative Markov
process construction.
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We will consider a least-squares estimator ĥT of h in (6); that is, ĥT is taken to minimize

QTðhÞ ¼
XT
t¼1

fyt � gðxt , hÞg2 (10)

Let _QT ¼ @QT=@h and €QT ¼ @QT=@h@h
0: The asymptotic analysis of ĥT takes as its starting point

the Taylor expansion

_QTðĥTÞ ¼ _QTðh0Þ þ €QTðhTÞðĥT � h0Þ
where h0 is the true value of h, and hT is an intermediate value determined by the mean value

theorem. Using a scaling factor �T and the fact that _QðĥTÞ ¼ 0, this implies

�TðĥT � h0Þ ¼ ��1
T

€QTðh0Þ��1
T

� ��1
�T _QTðh0Þ þ opð1Þ:

It is seen that this leads to the evaluation of sums of type
P

t h1ðxt , h0Þ and
P

t h2ðxt , ut , h0Þ for
some functions h1 and h2 depending on the function g and its derivative. The evaluation of such
sums is a crucial part of the analysis, and many of its aspects are covered in Park and Phillips
(1999). In general, they show (Park and Phillips 1999) that for so-called regular functions (includ-
ing continuous and piecewise continuous functions)

1
T

X
t

h
xtffiffiffiffi
T

p
� �

!d
ð1
0
hðw2rÞdr:

Park and Phillips (1999, 2001) consider altogether four classes of functions:

1. Integrable functions with the property that
Ð1
�1 hðxÞdx exists and is finite, so that hðxÞ ! 0

at a fast enough rate as x ! 61:
2. Asymptotic homogeneous functions, having the property

hðkxÞ ¼ kðkÞHðxÞ þ Rðx, kÞ (11)

where H(x) is a homogeneous function so that HðkxÞ ¼ kðkÞHðxÞ for some kðkÞ,Rðx, kÞ is
dominated by H(x) when jxj gets large.

3. Asymptotic exponential functions, where h grows to infinity with the speed of an exponen-
tial function.

4. Super exponential functions, where h grows to infinity faster than the simple exponential.

These classes of functions lead to rather different types of behavior for
P

t hðxtÞ, and unlike the
linear and homogeneous case, integrals of functions of a Wiener process do not suffice. One
needs to introduce the concept of local time of the Wiener process,

Lðt, sÞ ¼ lim
e!0

1
2e

ðt
0

Iðjwr � sj < eÞdr

where I is the indicator function. It may be noted that L(t, s) is a random process in both t and
s. It essentially measures the time that wr spends close to s in the time interval ½0, t�: It can be
introduced in a much more general setting than the Wiener process. It can be made meaningful
both for Markov processes and semi-martingales. Much of its importance stems from the so-
called occupation time formula. It states that if h is locally integrable, thenðt

0

hðwrÞdr ¼
ð1

�1
hðsÞLðt, sÞds: (12)

which again is valid in a much more general setting, see for instance Revuz and Yor (1994).
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It is interesting to note that the move from the analysis of stationary series to unit root proc-
esses required the introduction of mathematical techniques based on the Wiener process. Now
moving further to the analysis of nonlinear transformations of unit root processes involves fur-
ther new mathematics, involving local time.

Park and Phillips (1999) prove under some regularity conditions that if h is integrable and xt
is an integrated process such that Dxt ¼ vt with fvtg as in (7), then

1ffiffiffiffi
T

p
XT
t¼1

hðxtÞ!d
ð1

�1
hðsÞds

0
B@

1
CALð1, 0Þ (13)

as T ! 1:

This result means that
P

t hðxtÞ spreads out at a rate of (is balanced by a scaling factor)
ffiffiffiffi
T

p
:

Moreover, the integrability of h implies that h tends to zero far out, and that asymptotically only
observations at zero are exploited in the accompanying Wiener process as indicated by the local
time variable L(1, 0). On the other hand, the Wiener process spend most of its time outside the
finite domain leading to a slow convergence rate. The behavior is very different in the homoge-
neous case. Indeed, again under some regularity conditions, if h is asymptotically homogeneous
satisfying the decomposition (11), then

1

Tk
ffiffiffiffi
T

p� �XT
t¼1

hðxtÞ!d
ð1
0
HðwrÞdr ¼

ð1
�1

HðsÞLð1, sÞds (14)

as T ! 1: The last equality follows from the occupation time formula (12).
For an integrable gðx, hÞ with a scalar parameter h in (6), results such as in (13), under regu-

larity conditions stated in Park and Phillips (2001), lead to the following central limit theorem

for ĥT minimizing (10):

T1=4ðĥT � h0Þ!d ðLð1, 0Þ
ð1
1

_gðs, h0Þ2dsÞ�1=2w1

where _g ¼ @g=@h, and where w1, the Wiener process at time 1, is a standard normal random
variable. The convergence rate is seen to be slower than the standard parametric convergence rate
T�1=2 of the stationary case. It comes from the scaling factor of T1=2 in (13) and from a corre-
sponding scaling factor T1=4 for sums of type

P
hðxtÞut , with ut defined in (6), for an integrable

function h.
The analogous result for a homogeneous type gðx, hÞ with a vector parameter h in (6) is given

by (under a number of regularity conditions)

ffiffiffiffi
T

p
_kð

ffiffiffiffi
T

p
Þ0ðĥT � h0Þ!d ð

ð1
0

_Hðw2r , h0Þ _Hðw2r , h0Þ0drÞ�1
ð1
0

_Hðw2r, h0Þdw1r: (15)

Here H is the homogeneous part of gðx, hÞ defined analogously to (11), _H ¼ @H=@h, k is the

asymptotic order of gðx, hÞ as in (11) (it may depend on h) and _k is defined as the corresponding

asymptotic order of _gðx, hÞ, so that _gðkx, hÞ ¼ _kðkÞ _Hðx, hÞ asymptotically as x gets large. Finally,
ðw1r,w2rÞ is the pair of Wiener processes appearing in (8). In the scalar linear case gðx, hÞ ¼
hx, _gðx, hÞ ¼ x, such that kðkÞ ¼ _kðkÞ ¼ k: This gives

ffiffiffiffi
T

p
_k

ffiffiffiffi
T

p� �
¼ ffiffiffiffi

T
p ffiffiffiffi

T
p ¼ T leading to the

well-known unit root convergence rate of T�1, faster than the standard stationary rate. It is also
easy to check that the formula in (15) reduces to the standard formula in the linear case. There
have been a number of follow-up papers, see e.g. Wang and Phillips (2009a), Wang and Phillips
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(2009b), Wang and Chan (2014), Wang and Wang (2013). Many of these developments are sur-
veyed in the recent book by Wang (2015).

But there are still several challenging problems here. As already mentioned, even though the
regression relationship (6) is sometimes called a nonlinear cointegrating relationship, it does not
really have the same symmetry in y and x as in the linear cointegrating case. For that purpose,
transformations of both yt and xt have been examined. Granger and Hallman (1991) considered
this problem. A more recent contribution is Goldstein and Stigum (2011) considering joint trans-
formations of (yt, xt). Extending the analysis beyond the bivariate case presents another difficulty.

Saikkonen and Choi (2004) and Choi and Saikkonen (2004) consider estimation and testing of the
model (6), where g is a smooth transition function. They apply another type of asymptotics, so-called
triangular array asymptotics (cf. Andrews and McDermott 1995). In this kind of asymptotics, the
actual sample size is fixed at T0, say, and the model is embedded in a sequence of models depending
on a sample size T which tends to infinity. The embedding is obtained by replacing the I(1) regressor

xt in (6)) by ðT0=TÞ1=2xt: This change leads to a central limit theorem for the least squares estimate ĥ
with rate T�1=2 under some regularity conditions including a three times differentiability condition
on the function g in (6). It is seen that the triangular array asymptotics is rather different from that
used in Park and Phillips (1999, 2001). Inspecting the proofs it does not appear straightforward to
extend them to a time series model such as (5). In Saikkonen and Choi (2004), there are both simula-
tion experiments and applications to real data. The method appears to work well and may well
deserve to be more widely investigated and applied than is the case presently.

3.3. Functional-coefficient regression

Functional-coefficient models have been used extensively in stationary time series analysis and
regression; see e.g. Chen and Tsay (1993). Cai et al. (2009) and Xiao (2009) have extended this
kind of modeling to the cointegrating regression framework and demonstrated how this can be
used to introduce a cointegrating vector. Basically, their models take the form

yt ¼ bðztÞ0xt þ ut

where fytg is an observed scalar time series, fxtg is a vector time series of observed covariates.
Here, in general fxtg is a nonstationary I(1) series, although Cai et al. (2009) also treats the case
where fxtg is stationary. The process fztg is observed and can be stationary or nonstationary. It
can be thought of as a covariate describing market and macroeconomics conditions, say. In both
Cai et al. (2009) and Xiao (2009) zt is taken to be a scalar. Finally, b is a smoothly varying vector
function of z. In the special case that bðztÞ ¼ b, the model reduces to a linear cointegration
model with b playing the role of a cointegrating vector. The function bð�Þ is estimated nonpara-
metrically by kernel estimation or by local polynomial estimation. The asymptotic theory of this
estimate is derived under various sets of precisely stated regularity conditions in both Cai et al.
(2009) and Xiao (2009). A mixed normal is involved in the asymptotic distribution, but the con-
vergence rate is highly dependent on the assumptions made. Under the assumption of a station-

ary fztg and fxtg the convergence rate is the traditional nonparametric rate of ðThÞ�1=2 where h
is the bandwidth used in the nonparametric estimation of b: On the other hand if fztg is I(1)
and fxtg stationary, Cai et al. (2009), not surprisingly, obtains the slower rate of T�1=4h�1=2: See
also a similar situation in Section 4.1. Xiao (2009) considers the case where fztg is stationary and
fxtg is I(1). The nonstationarity means that there is a more efficient spread of values of fxtg,
and the result is super convergence of rate T�1h�1=2:

The approach to defining and treating a cointegrating vector is somewhat different for the two
publications. Cai et al. (2009) states that if fytg is I(0), and that part of fxtg is I(1), then bðztÞ is
thought of as a varying coefficient cointegrating vector, whereas Xiao (2009) takes bðztÞ as
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cointegrating vector if yt � bðztÞ0xt ¼ ut is stationary. Letting the cointegrating vector b be a
function of zt means that it is stochastically time varying. It may be argued, as in the introduction
of Xiao (2009), that this may represent a more realistic approach to cointegration in modeling
say asset prices and market fundamentals empirically. Another empirical example, where the
functional-coefficient cointegration vector seems preferable, is highlighted in Wang et al. (2016b)
dealing with quantity theory and inflation.

It is natural to test for stability of the cointegrating vector; i.e., test H0: bðzÞ ¼ b against H1:
varying coefficient b: Moreover, one can test, irrespective of whether bðzÞ is constant or not, for
cointegration; i.e., to test whether H0: ut ¼ yt � bðztÞ0xt is stationary against the alternative H1: yt
and xt are not cointegrated such that yt � bðztÞ0xt is I(1). Both tests are of importance in practice,
and both tests are treated in Xiao (2009).

4. Markov modeling: an alternative approach

The Markov approach to modeling of nonstationary time series and regression models was pre-
sented in Karlsen and Tjøstheim (2001) and Karlsen et al. (2007). Since then there have been a
number of follow-up papers. The approach has the advantage that both regression models analo-
gous to (6) and time series models similar to (5) can be treated. But there is a price to be paid
since the framework, at least at present, is more restrictive concerning the residual process ut in
(5), and essentially only nonlinear generalizations of I(1) type nonstationarity can be treated.

We start this section by discussing the nonlinear I(1) concept, then treat nonparametric estima-
tion in Section 4.1 and finally some recent contributions to parametric estimation in Section 4.2.

The approach taken in Karlsen and Tjøstheim (2001) is that a generalized I(1) class containing
both linear and nonlinear models is associated with the class of null recurrent Markov chains.
The starting point is the simple random walk xt ¼ xt�1 þ et , t � 1, where et � iidðl, r2Þ The two
basic properties that Karlsen and Tjøstheim try to extend to a larger class of nonlinear I(1) type
processes are (i) the persistence of the random walk (its nonstationarity); and (ii) the possibility
of establishing central limit results, but not necessarily with convergence to the Wiener process.

The random walk is a linear process and a Markov chain. The Markov chain property also
holds for the nonlinear generalization

xt ¼ gðxt�1Þ þ et t � 1 (16)

and such a process can be both stationary and nonstationary. If gðxÞj j � cjxj for some c< 1 when
jxj is large enough, then (Meyn and Tweedie 2009) there exists an initial distribution for x0, so
that fxtg becomes stationary if started with this distribution. On the other hand, if g is such that
fxtg is explosive, e.g. gðxÞ ¼ x2, then fxtg is a transient Markov chain and g cannot be estimated,
at least not nonparametrically. A crucial property for fxtg to have for it being possible to estimate
g nonparametrically is that it should be recurrent. This means that if xs ¼ x for a certain time
point s, then the Markov chain fxtg is guaranteed to be in an arbitrary small neighborhood
around x with probability one at a future time point; the process recurs or regenerates. We refer
to Karlsen and Tjøstheim (2001) for more precise statements.

Under relatively weak regularity conditions, Karlsen and Tjøstheim derive a central limit the-

orem for sums of the type
PT

s¼1 hðxsÞ properly scaled, where h is a function satisfying some
moment conditions. The key to this derivation is to use the recurrence property of the Markov
chain to decompose the above sum asXT

s¼1

hðxsÞ ¼
Xs1
s¼1

hðxsÞ þ
Xs2

s¼s1þ1

hðxsÞ þ :::þ
XT

s¼snþ1

hðxsÞ (17)

corresponding to the recurrence times s1, s2, :::, sn � T; i.e., the time points of the regenerations
of the chain. Clearly, n ¼ nðTÞ ! 1 as T ! 1, but at a slower rate in the nonstationary case.
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Due to the Markov property, the components
Psiþ1

s¼siþ1 hðxsÞ, i ¼ 1, :::, n are independent and iden-
tically distributed, and this can be used to prove a central limit result under the additional
assumption that the distribution of the recurrence time intervals Si ¼ si � si�1 should not have a
too heavy tail. More specifically, PrfSi > sg is essentially of the order s�b, 0 < b < 1, so that
ESki < 1 for k < b: This property is named b-null recurrence in Karlsen and Tjøstheim (2001).
The random walk corresponds to b ¼ 1=2, as was established by Kallianpur and Robbins (1954).

The class of recurrent Markov chains is subdivided into positive and null recurrent chains,
depending on whether the expected recurrence time ESi is finite or not. The positive recurrent
case has ESi < 1 ðb ¼ 1 in the above) and corresponds to stationarity, whereas the null recur-
rent case can be associated with a nonlinear extension of I(1). A unit root AR(p) process can be
cast as a p-dimensional Markov chain, and in Myklebust et al. (2012) it is shown that it is b-null
recurrent with b ¼ 1=2 under weak assumptions. This paper also contains a characterization of
vector autoregressive time series as to when they are b-null recurrent, recurrent but not b-null
recurrent, and transient. But the null recurrent class is not restricted to linear processes, and it
has the useful invariance property that if fxtg is null recurrent (b-null recurrent) then the trans-
formed process fhðxtÞg is null recurrent (b-null recurrent) for an arbitrary one-to-one transform-
ation h. As mentioned, such an invariance property does not hold for the “ordinary” I(1) class
of processes.

4.1. Nonparametric estimation in a nonlinear cointegration type framework

Karlsen et al. (2007, 2010) consider nonparametric estimation in a nonlinear nonstationary envir-
onment which in some respects is wider than that of Park and Phillips (1999, 2001) but in other
respects more narrow. The class of models is defined by

yt ¼ gðxtÞ þ ut (18)

where xt is nonstationary and b-null recurrent as defined earlier in this section, ut is a stationary
infinite-order moving average process or a Markov chain. In contrast to the set-up in Section 3.2
one can now allow yt ¼ xtþ1, in which case fxtg is a Markov chain when futg is iid. Karlsen and
Tjøstheim (2001) in fact discuss estimation in this case. In the following we phrase our discussion
in terms of the model (18) because of its closeness to nonlinear cointegrating regression models
just discussed. The function g is unknown and the task is to estimate it nonparametrically. Except
for trivial choices of g (e.g., g ¼ constant), the process fytg will be nonstationary, but it will not
be b-null recurrent, as it is not even a Markov chain. The analysis in Karlsen et al. (2007) is car-
ried out in two cases: the case in which fxtg and futg are independent, and the one in which
dependence is allowed between them. At its present state the dependence modeling also requires
a boundedness condition for futg:

The function g(x) in (18) is estimated nonparametrically using the Nadaraya-Watson estimator

ĝðxÞ ¼
XT
t¼1

ytKhðxt � xÞ=
XT
t¼1

Khðxt � xÞ (19)

where KhðuÞ ¼ h�1Kðh�1uÞ is the kernel with bandwidth h. Karlsen et al. (2007) prove that	
h
XT
t¼1

Khðxt � xÞ

1=2	

ĝðxÞ � gðxÞ � bias term



!d Nð0, r2

ð
K2ðsÞdsÞ (20)

as T ! 1: Here, r2 ¼ varðutÞ: The bias term tends to zero as T ! 1, and it is explicitly given
in Karlsen et al. (2007). The convergence of ĝðxÞ to g(x) is slower than in the stationary case.
This is easy to explain since the null recurrence of fxtg means that it takes more time for the
process to return to a neighborhood of the point x, and it is the points in the neighborhood of x
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which are used in the nonparametric estimation. Roughly speaking, the sample size is in effect
reduced from T to Tb with b ¼ 1=2 if fxtg is a random walk. Then the rate of convergence for
ĝðxÞ equals T�1=4h�1=2: For a fixed h this is seen to be the same rate as the parametric estimation

rate of ĥ with an integrable function gðx, hÞ in (6). The kernel function K plays the role of the
integrable function in the nonparametric case. It should also be noted that in Karlsen et al.
(2007) the so-called Mittag-Leffler process is the analogy of the local time process Lðt, 0Þ: Wang
and Phillips (2009a) and Wang and Phillips (2009b) use the local time as an alternative to obtain
an asymptotic theory of the nonparametric estimates treated in Karlsen et al. (2007), but again
this approach does not allow yt to be replaced by xtþ1 in (18). Finally, it should be noted that in
contrast to the majority of limit theorems in that paper the limit in (20) is Gaussian. This is due
to the stochastic scaling used.

A theory for specification testing is established in Gao et al. (2009a) for the time series regres-
sion case and in Gao et al. (2009b) for the time series autoregressive case. In the time series
regression case a more general model and weakened assumptions are considered in Wang and
Phillips (2012) using local time arguments.

4.2. Markov techniques in the parametric case

This sub-section is based on recent work by Li et al. (2016). It is of interest to extend the
Markov framework of the nonparametric case to the parametric case. There are several reasons
for that: (a) the parametric case has a much faster convergence rate and this should be exploited
if one thinks that a parametric model will give a suitable approximation to the nonlinear struc-
ture, (b) it is of interest to compare the results that can be obtained in the parametric case using
Markov arguments with corresponding results by Park and Phillips (1999, 2001) and others using
their approach, (c) the Markov approach has a better chance of being extendable from the regres-
sion to the time series case, and I will in fact indicate how this can be done in the present paper.
This last item is of some importance because it can be used as a starting point to a more
“genuine” definition of nonlinear cointegration in the multivariate time series case.

I start by discussing the regression model and then go on to the time series model. A funda-
mental obstacle in trying to extend the Markov technique of Karlsen and Tjøstheim (2001) to the
parametric case is their moment boundedness assumption A0. This condition means that the two
first moments of a typical term

Psiþ1
s¼siþ1 hðxsÞ in (17) have to be bounded. For a parametric

regression model this would be satisfied if the function g in yt ¼ gðxt , hÞ is bounded as a function
of x, but this is not even fulfilled in the most trivial of cases, say, the linear model yt ¼ axt þ et ,
where xt is a simple random walk process. In the nonparametric approach of Section 4.1 this
problem is not appearing since then the nonparametric estimate of g is given by (19) and the
introduction of the kernel function K secures the needed boundedness of moments in the
Markov decomposition (17).

In Li et al. (2016) this problem is solved by truncation, i.e. with a T-dependent threshold func-
tion MT such that MT tends to infinity with T. The model considered in that paper is

yt ¼ gðxt , hÞ þ rðxt , cÞet
where heterogeneity is allowed. The main proof is carried out for the case of fetg being iid, but it
is extended under certain conditions to the case where fetg is a linear process. The truncation is
achieved through using a loss function

QT, gðhÞ ¼
XT
t¼1

ðyt � gðxt , hÞÞ21ðjxt � MTÞ (21)
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and

QT, gðcÞ ¼
XT
t¼1

log�e2t � logr2ðxt , cÞ
� �2

1ðjxtj � MTÞ

where �et are estimated residuals. The rate of MT has in general a quite complicated form, but for
a b-null recurrent Markov chain it can be taken as MT ¼ M0T1�bLsðTÞ with the same notation as
in Section 4.1 and where Lsð�Þ is a slowly varying function. As expected from Section 3.2, we get
separate convergence rates for the integrable and the nonintegrable case. In the integrable case

(no truncation needed) under some regularity conditions, the solution ĥT which minimizes the

nontruncated loss function QT, gðhÞ over the parameter space H is consistent, i.e., ĥT � h0 ¼
oPð1Þ, and has an asymptotically normal distribution of formffiffiffiffiffiffiffiffiffiffi

nðTÞ
p

ðĥT � h0Þ !d Nð0,r2€L�1ðh0ÞÞ,
where r2 ¼ varðetÞ and €Lðh0Þ ¼

Ð
_gðx, h0Þ _gTðx, h0ÞpsðdxÞ with ps being the invariant measure of

the null recurrent process fxtg, and n(T) is the number of regenerations in the interval ½0,T�:
Similarly, in the homogeneous case under another set of regularity conditions to be found in Li
et al. (2016), we have consistency and

n1=2ðTÞJ1=2g ðT, h0Þð�hT � h0Þ !d Nð0, r2IdÞ
where �hT is the minimizer of (21), where Jg is a relatively complicated scaling factor, defined in
Li et al. (2016), so that we get super convergence with the same rates as in the parametric case
discussed in Section 3.2 when b ¼ 1=2: Moreover, Id is the d-dimensional identity matrix, d being
the dimension of h: Corresponding results for the estimation of c in the heterogeneous case are
given in the paper. Park and Phillips (1999, 2001) also treat the case where fðut , vtÞg in (6) and
(8) are linear processes instead of Markov. In Li et al. (2016) it is shown how the just discussed
results can in fact be generalized to cover the case where xt is given by xt ¼ xt�1 þ ut , ut ¼P1

j¼0 /jet�j, with fetg being iid and f/jg satisfies some summability conditions and with / ¼P1
j¼1 /j 6¼ 0: Then fxtg is not Markov, but the Markov framework can nevertheless be used via

the process x	t ¼ /
Pt

s¼1 es:
In Li et al. (2016) it is claimed that the framework can be used to extend the results to the

time series case xt ¼ gðxt�1, hÞ þ et: I now endeavor to show this result. Actually, I also show as a
by-product that the uniform consistency result for nonparametric regression estimation of Gao
et al. (2015) can be extended to the time series case.

The proof in the regression case in Li et al. (2016) uses the set-up of the nonparametric
Markov regression paper of Karlsen et al. (2007). In that paper independence is assumed between
the regressor process fxtg and the innovation process fetg: This clearly does not hold in the time
series case (5). On the other hand, in Karlsen and Tjøstheim (2001) that assumption is not used
(and of course cannot be used), but rather one uses that et is independent of fxs, s < tg:
Following the argument in Karlsen and Tjøstheim (2001), in order to develop an asymptotic the-
ory for the parameter estimation in the nonlinear autoregression (5), we need that the process
fxtg is (Harris) null recurrent, but not that the compound process fxt , etþ1g is also (Harris) null
recurrent. This is because we essentially have to consider sums of products like _gðxt , h0Þetþ1 ¼
_gðxt , h0Þðxtþ1 � gðxt , h0ÞÞ, which are of the general form in Karlsen and Tjøstheim (2001) and
can enter into a decomposition argument such as (17).

In extending the regression result in Li et al. (2016) to the time series case, in their assumption
3.1(ii) one has to replace the assumption that fxtg is independent of fetg by the assumption that
etþ1 is independent of fxs, s � tg, which in fact follows from the way the time series (5) is

ECONOMETRIC REVIEWS 665



generated. Let us call this modified assumption 3.1(ii)0, and the corresponding modified 3.1 by
3.10 in the following. No modifications of conditions 3.2 and 3.3 in Li et al. (2016) are needed.
Then analogs of Theorems 3.1 and 3.2 of Li et al. (2016) with the obvious change that yt is
replaced by xtþ1 can be stated. Since formally these are new results I write them out here:

Proposition 1 (The integrable case): Let Assumption 3.10 and 3.2 of Li et al. (2016) hold. Then

(a) The solution ĥT which minimizes the loss function

QT, gðhÞ ¼
XT
t¼1

ðxtþ1 � gðxt , hÞÞ2

over the parameter space H is consistent, i.e.,

ĥT � h ¼ oPð1Þ:

(b) The estimator ĥT has the asymptotically normal distribution,

ffiffiffiffiffiffiffiffiffiffi
nðTÞ

p
ðĥT � h0Þ !d Nð0, r2€L�1ðh0ÞÞ

where r2 ¼ varðetÞ
Proposition 2 (The asymptotically homogeneous case): Let fxtg be a null recurrent Markov
process such that Assumption 3.1(ii)0 and 3.3 of Li et al. (2016) hold. Then,

(a) The solution �hT which minimizes the loss function

QT, gðhÞ ¼
XT
i¼1

xtþ1 � gðxt , hÞ
� �2

Iðjxtj � MTÞ

over the parameter space H is consistent, i.e.,

�hT � h0 ¼ oPð1Þ:

(b) The estimator �hT has the asymptotically normal distribution

ffiffiffiffiffiffiffiffiffiffi
nðTÞ

p
J1=2g ðT, hÞð�hT � h0Þ !d Nð0, r2IdÞ

where Jg is defined in Li et al. (2016) and r2 ¼ varðetÞ:
The changes in the proofs relative to the proofs of Gao et al. (2015) and Li et al. (2016) are given
in the Appendix. Note that we have only carried through the reasoning in the Appendix in the
univariate fxtg-case and with fetg being iid. To discuss cointegration efficiently, similar analyses
would have to be carried out in the multivariate, or at least the bivariate case. I believe that this
is technically possible. But still one may possibly argue that this is only an exercise in asymptotic
analysis for a multivariate nonstationary time series. It is not clear how a cointegrating vector
and indeed cointegration should be introduced in this context. In an attempt to make headway
on this problem we simplify the model and look at threshold cointegration models.
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5. Threshold cointegration

A less ambitious goal is to restrict nonlinear cointegration to nonlinearity of threshold type. It is
straightforward at least formally, to generalize the linear system

xt ¼ Axt�1 þ et (22)

to

xt ¼ Axt�11ðxt�1 2 DÞ þ Bxt�11ðxt�1 2 DcÞ þ et (23)

where D is a subset of R2: Then linear cointegration concepts can be discussed separately for D
and Dc, and one can have stationary like behavior in one region and cointegration like behavior
in another, or even have different cointegration like behavior in each region. A major mathemat-
ical difficulty is that in general the fxtg process will be nonstationary, and at the same time xt is
the threshold variable determining the regions D and Dc. Earlier attempts have sought to avoid
this problem by introducing a more indirect stationary threshold variable as mentioned in
Section 3.1.

The above problem appears also in the univariate case if one tries to generalize the ordinary
unit root process to a threshold unit root process. We refer to Gao et al. (2013) for a discussion
and references.

Cai et al. (2017) start directly from the VAR representation (22) and then move to the thresh-
old VAR representation (23) and make a first attempt of establishing a theory for such models.
In doing so, they worked under some restrictions, many of which can probably be relaxed. First,
they only look at the bivariate first order case. Second, the region D is supposed to be compact.
In this region, quite general behavior of fxtg is permitted, that is, the matrix A in (23) can be
arbitrary, including cases generating stationary and explosive type behaviors. In the region Dc,
fxtg will be assumed to be a cointegrated process. Obviously, there are many generalizations in
choosing regions; that is, there could be more than two regions, and in particular there could be
more than one cointegrating region and with different cointegrating vectors.

Compared with the threshold error correction models in Section 3.1, the model given by (23)
is self-excited in the traditional way such that a lagged variable constitutes the threshold variable.

A crucial tool in the analysis of (23) is again the theory of null recurrent Markov processes as
developed in Karlsen and Tjøstheim (2001). The connection between linear VARs and null recur-
rent processes is pointed out in Myklebust et al. (2012). A first attempt to use this in a threshold
context is given in Gao et al. (2013) in the univariate case. In that article, it is shown that the
univariate threshold model considered there is b-null recurrent with b ¼ 1=2: That proof relies
on a result in Meyn and Tweedie (2009), Proposition 11.5.4) giving conditions for univariate
threshold processes to be recurrent. This result makes it possible to use the Markov splitting tech-
nique to obtain b-null recurrence. The proof in Meyn and Tweedie (2009) is based on a drift cri-
terion using a Liapunov test function. Cai et al. (2017) essentially use the same technique in their
proof of their main result, but a nontrivial change of test function is required. Once recurrence is
established for (23), b¼ 1/2-null recurrence can be proved using a straightforward adaptation of
the proof in Gao et al. (2013).

Under the assumption that B is a 2� 2 matrix with eigenvalues 1 and c with jcj < 1, A is any
2� 2 matrix, and some additional weak regularity conditions, the process fxtg defined by (23) is
a 1/2-null recurrent process.

Similar to L€utkepohl (2005), Cai et al. (2017) first discuss the asymptotics for the transformed
model obtained by diagonalizing the B matrix and then discuss the the asymptotics for the ori-
ginal model. This way of looking at the problem gives additional insight in the differences in con-
vergence speed.

Using the matrix Q�1 composed of the eigenvectors of B, one can transform the process fxtg
into fyt ¼ Qxtg with,
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yt ¼ A1yt�11ðyt�1 2 CÞ þ B1yt�11ðyt�1 2 CcÞ þ et (24)

where B1 ¼ QBQ�1 ¼ ð 1 0
0 c

Þ,A1 ¼ QAQ�1, et ¼ Qet , and C is the compact set obtained by

transforming D. The matrices A1 and B1 are estimated by ordinary least squares using observa-

tions in the respective regions C and Cc. As can be expected the convergence rate of Â1 is slow
and proportional to n�1=2ðTÞ, where, in turn, n(T) is proportional to the number of visits to the
compact set C. For the estimator of the B1 matrix, similar to linear cointegration theory, the first
column of the matrix estimator, corresponding to the unit root eigenvalue, converges with rate
T�1, whereas the second component corresponding to the eigenvalue c converges with rate
T�1=2: Transforming back to the A and B matrix, the estimate of the first one converges still with

the slow rate nðTÞ�1=2, whereas, due to the linear transformation from B1 to B, all of the ele-
ments of B̂ converges with rate T�1=2: Details are given in Cai et al. (2017).

As in the ordinary linear cointegration, one can express the cointegrating vector in terms of
the matrix Q ¼ ðqijÞ: The Q�1 matrix consists of the eigenvectors b1 and b2 of B such that Bb1 ¼
b1 and Bb2 ¼ cb2 and Q�1 ¼ ½b1b2�: Then QBQ�1 ¼ B1 ¼

�
1 0
0 c

�
: The first component of fytg

is a random walk in Cc, whereas the second component displays stationary behavior in Cc.
Hence, since yt ¼ Qxt, the cointegrating vector in this region is given by ½q21q22� such that
q21x1, t þ q22x2, t behaves as a stationary process in Cc.

I refer to Cai et al. (2017) for the asymptotic theory of estimates of A and B and for the estimate of
the cointegrating vector. The asymptotic distribution of the estimate of the cointegrating vector is
nonstandard and is given in Theorem 6 of Cai et al. (2017), and the convergence rate is T�1:

There are a number of extensions of the cointegration threshold model. For instance, in Cai
et al. (2017) the threshold has been taken to be known in the general theory although estimation
of the threshold is also considered in the unknown case and with good results. However, a good
asymptotic theory for the threshold analogous to that developed in Chan (1993) is lacking. There
is work in progress at this point.

6. Outlook

The threshold process is of course just a subclass of nonlinear time series. A natural question to
ask is whether the nonlinear threshold cointegration can be extended to a wider class of nonlinear
multivariate nonstationary processes. Is it possible to find a nonlinear extension where the cointe-
grating vector concept can still be made meaningful and perhaps be allowed to depend on a con-
tinuous index variable unlike the threshold case where there are a finite number of possible
cointegrating vectors? Indeed, most of the models treated earlier in this paper such as nonlinear
cointegrating regression processes and the time series version in (5) lack the concept of cointe-
grating vector.

The first problem, since we would like to keep the Markov chain framework, is to find a class of
multivariate nonlinear possibly nonstationary processes where its member processes are still null
recurrent or at least recurrent. An obvious smooth version of the threshold processes is the class of
so-called STAR models (Ter€asvirta et al. 2010, Chapter 3) which consists of smooth transition autor-
egressive models. These are Markov processes, but there is not a well-developed theory of recurrence
for such processes. Even in the univariate case, for the special case of an exponential AR process

xt ¼ ðaþ be�cx2t�1Þxt�1 þ et

with c > 0, to my knowledge, it is not known whether fxtg is null recurrent for a¼ 1. (The term

be�cx2 tends to zero as jxj ! 1, but the behavior of fxtg seems to depend on the sign of b). A
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somewhat crude approach to the problem is to assume that fxtg behaves as a random walk out-
side a fixed threshold; i.e. xt ¼ gðxt�1Þ þ et for jxt�1j < c, and xt ¼ xt�1 þ et for jxt�1j � c: Then
null recurrence for fxtg can be proved as in the threshold case. This can obviously be extended
to the multivariate case with xt ¼ Axt�1 þ et with the matrix A having one eigenvalue equal to 1
and the others less than one in absolute value, and where this representation is valid outside
some compact region for xt�1, and where the behavior of fxtg is more or less arbitrary inside
the compact set; e.g. xt ¼ gðxt�1Þ þ et for some function g. Again, null recurrence can be proved
as in Cai et al. (2017). A smooth transition model is obtained if gðxÞ approaches Ax in some
smooth fashion as x approaches the boundary of the compact set (but of course this is different
from the traditional STAR models which are typically tending to a linear model as x tends
to infinity.

The above at least demonstrates that it is possible to find continuous type models that fulfills
the null recurrence property. In the following we will just assume that we have a model xt ¼
gðxt�1Þ þ et which is recurrent, (null recurrent or positive recurrent). To handle the problem of
defining cointegration and a cointegrating vector it is convenient to write this in a functional-
coefficient form as in Chen and Tsay (1993), such that

xt ¼ Aðxt�1Þxt�1 þ et (25)

where Að�Þ is a possibly nonlinear matrix function, and where of course the VAR model is
obtained as a special case of Að�Þ being a constant. This is different from the models of Section
3.3 which are functional-coefficient models of cointegrating regression type. The next step con-
sists in a localizing this relationship. The relationship (25)) is replaced by a family of linear VAR
processes fxxt g indexed by the spatial coordinate x such that

xxt ¼ Axx
x
t�1 þ ext

where for each fixed x, Ax is an m-dimensional matrix, and fext g consists of iid variables. This
construction is similar to the local stationarity construction of Dahlhaus (1997, 2001), where a
locally stationary process can be thought of as being composed of a family of stationary processes,
and to the construction of a local Gaussian approximation, Tjøstheim and Hufthammer (2013),
Otneim and Tjøstheim (2017), where a multivariate density is thought of as being composed by a
family of multivariate Gaussian distributions. See also the forthcoming book Tjøstheim et al.
(2021) for further developments and references. The latter construction can be extended to VAR
processes as being composed of a family of multivariate Gaussian AR processes. The threshold
processes just treated can be considered as a special case of this where Ax is a piecewise step
function of x.

The key idea is now to realize that for a fixed x, fxxt g is an ordinary VAR process, and linear
cointegration can be discussed and a cointegrating vector can be found by doing an eigen analysis
in the ordinary way. Of course, for some x-s, fxxt g may well be stationary. The original process
fxtg, in the special case that fext g does not depend on x, can be recovered as

xt ¼ Axt�1xt�1 þ et:

As for the locally stationary case and the local Gaussian case, to do statistical inference in such a
framework Ax cannot change too quickly, and one will have to introduce a kernel function and a
corresponding bandwidth that can be allowed to tend to zero as the number of observations tend
to infinity. Again the “effective” number of observations n(T) can be expected to play a decisive
role. Further, I believe that the approach of Johansen using the full information maximum likeli-
hood analysis of a cointegrated system as outlined for example in Chapter 20 of Hamilton (1994)
will be advantageous to use in an asymptotic inference of local estimates because that approach
treat all of the components of fxtg on the same basis, which would be important in a local ana-
lysis which is based on local correlation and not local regression. Finally, for a high dimensional

ECONOMETRIC REVIEWS 669



fxtg, the curse of dimensionality will be encountered in a local analysis. A possible way out
might be to use a simplification analog to the one used in Otneim and Tjøstheim (2017), by
requiring that in the matrix Ax the entry aijðxÞ is only allowed to depend on the pairs of coordi-
nates (xi, xj), so that aijðxÞ ¼ aijðxi, xjÞ:

Of course, the details of such an approach remain to be carried out, and they are not trivial,
but to my mind this would be a more genuine nonlinear cointegration methodology (as com-
pared for example to cointegrating regression). Further, it trivially reduces to the linear cointegra-
tion theory for the x-independent Ax, with the restriction, though, that only I(1) type of
nonstationarity is allowed due to the requirement of null recurrence in an asymptotic analysis.

Appendix

A.1. Proof of Propositions 1 and 2
Most of the steps in the proofs of Li et al. (2016) can be taken over directly and trivially. The derivation in that
paper also uses material from Gao et al. (2015). What is needed is to amend those proofs in those two papers that
use the independence of fxtg and fetg and replace those arguments with arguments that only use that etþ1 is inde-
pendent of fxs, s � tg:

Independence is explicitly used in the proof of Lemma B.3 of Gao et al. (2015), and in the (b)-part of Lemma
A.1 of Li et al. (2016). Moreover, the Bernstein inequality is used several times in Gao et al. (2015), and in the
Lemma A.2 in Li et al. (2016). In its traditional form the Bernstein inequality is stated for independent identically
distributed variables, but as will be seen below, there are versions of the Bernstein result that are valid for depend-
ent variables and that is within the dependence framework desired by us. Below it will be seen how these two
results can be changed so that the procedures of Gao et al. (2015) and Li et al. (2016) can be extended to fit into
the time series framework of the present paper.

A.2. Conditioning argument to avoid independence assumption of fxtg and fetg in Lemma
B.3 of Gao et al. (2015)

Following the notation of Lemma B.3 in Gao et al. (2015), with the adjustment for the time series case, we write:
zsk�1þs ¼ jLh, xðxsk�1þsÞesk�1þsþ1j for 1 � s � sk � sk�1: Note that in the time series case the processes fxtg and fetg
are not independent, but we have yt ¼ xtþ1 where etþ1 is independent of fxs, s � tg: We have to evaluate

E zl1sk�1þ1 � � � z
lsk�sk�1
sk

h i
:

For 1 � s � sk � sk�1, let F sk�1þs be the r algebra generated by fxsk�1þu, 1 � u � s; sk�1, skg: Note that F sk�1þu 

F sk�1þv for 1 � u < v � sk � sk�1: Then, by taking successive conditional expectation, and exploiting the product
structure,

E zl1sk�1þ1 � � � z
lsk�sk�1
sk

h i
¼

E E � � �E zl1sk�1þ1 � � � z
lsk�sk�1
sk jF sk�1þ1

h i
� � � jF sk

h ih i
:

Using the independence of fes, s > tg of xt, the inner conditional expectation is given by

E zl1sk�1þ1 � � � z
lsk�sk�1
sk jF sk�1þ1

h i
¼ Eje1jl1 jLh, xðxsk�1þ1ÞÞjl1 � E zl2sk�1þ2 � � � z

lsk�sk�1
sk jF sk�1þ1

h i
:

We next condition

Eje1jl1 jLh, xðzsk�1þ1Þjl1E zl2sk�1þ2 � � � z
lsk�sk�1
sk jF sk�1þ1

h i
on F sk�1þ2 and obtain

Eje1jl1Eje1jl2 jLh, xðxsk�1þ1ÞÞjl1 jLh, xðxsk�1þ2Þjl2 � E zl3sk�1þ3 � � � z
lsk�sk�1
sk jF sk�1þ2

h i
We continue in this fashion until at the end we obtain the analogous expression to that stated toward the end of
the proof of Lemma B.3.
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A.3. Avoidance of independence in the Bernstein inequality
For a nonlinear AR(p) type process, we generally get p-dependence for the variables zkðsÞ ¼

Psiþ1
siþ1 hðxsÞ entering

into the split chain decomposition analogs to (17), or see Karlsen and Tjøstheim (2001). To simplify assume that
we have an AR(1)type process; i.e., resulting in 1-dependence. The Bernstein inequality is used a couple of places
in Gao et al. (2015) in the traditional way of iid variables and in Lemma A.2 in Li et al. (2016). But this is not a
problem. Actually, the Bernstein inequality can be re-formulated by looking at its proof: Let z ¼ 1

n

Pn
i¼1 zi, where

the variables fzig have the same distribution, but are one-dependent. Then following the steps of the proof of the
Bernstein inequality, it is not difficult to show that

Pðjzj � �Þ � exp � �2

2varðzÞ 1þ �
varðzÞ

C
3

h i
8<
:

9=
;

where jzij � C: In our case, looking at the transition between line 2 and 3 in the proof of (B.44) in Gao et al.
(2015),

z ¼ 1
q

Xq
k¼1

ð�zkðsjÞ � E �zkðsjÞ
� �Þ¼: 1

q

Xq
k¼1

zk:

Because of 1-dependence and the Schwartz inequality,

varðzÞ ¼ 1
q2

ðq � varðzkÞ þ 2ðq� 1Þ � covðzk, zkþ1Þ � 3q� 2
q2

varðzkÞ � 3q� 2
q2

M1=h,

where M1 is a constant and h the bandwidth in the kernel function used in Gao et al. (2015). Inserting in the
above modified Bernstein inequality and in line 3 of (B.44) of Gao et al. (2015), line 4 of that inequality becomes

�
XQn

j¼1

XC2nbLsðnÞ

q¼C1nbLsðnÞ
2 exp � qð�gn=2Þ2h

2 3q�2
q M1 þ ð2=3Þhjn�gn

( )

from which the rest of the proof can be done as before.
These results were obtained by changing results from Gao et al. (2015). The relevant results of Li et al. (2016)

essentially rely on the original results of Gao et al. (2015). Referring to the amended results of Gao et al. (2015)
the results in Li et al. (2016) can be changed so that they cover the time series case, more explicitly, the proof of
the (b)-part of Lemma A1 of Li et al. (2016) can be changed using the conditioning argument just presented.
Similarly, in the proof of part (b) of Lemma A2, again the conditioning argument can be used, and the amended
Bernstein inequality can be used to handle the expression (D.4) in that proof.
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