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ABSTRACT
We prove unique continuation properties of solutions to a large class
of nonlinear, non-local dispersive equations. The goal is to show
that if u1, u2 are two suitable solutions of the equation defined in
R

n � ½0, T� such that for some non-empty open set X � R
n �

½0, T�, u1ðx, tÞ ¼ u2ðx, tÞ for ðx, tÞ 2 X, then u1ðx, tÞ ¼ u2ðx, tÞ for any
ðx, tÞ 2 R

n � ½0, T�: The proof is based on static arguments. More pre-
cisely, the main ingredient in the proofs will be the unique continu-
ation properties for fractional powers of the Laplacian established by
Ghosh, Salo and Ulhmann, and some extensions obtained here.
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1. Introduction

This work continues the study initiated in [1] concerning unique continuation proper-
ties of solutions to nonlinear non-local dispersive equations. Roughly, the aim is to
prove that if u1, u2 are two suitable solutions of a nonlinear dispersive model for
ðx, tÞ 2 R

n � ½0,T� such that for some open non-empty set X � R
n � ½0,T�

u1ðx, tÞ ¼ u2ðx, tÞ, ðx, tÞ 2 X, (1.1)

then u1ðx, tÞ ¼ u2ðx, tÞ for all ðx, tÞ 2 R
n � ½0,T�:

As in [1] the equations to be examined here have their dispersive relation described
by a non-local differential operator.
Our original motivation is to establish the desired result in real solutions for the so

called generalized dispersion Benjamin-Ono (BO) equation whose initial value problem
(IVP) can be written as

@tu� @xDa
xuþ u@xu ¼ 0, x, t 2 R, a 2 ð�1, 2Þ � f0, 1g,

uðx, 0Þ ¼ u0ðxÞ,

(
(1.2)

where in any dimension n the operator Da
x is defined for a 2 ð0, 2Þ as
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Da
xðxÞ ¼ ð�DÞa=2f ðxÞ ¼ ðð2pjnjÞa f̂ Þ�ðxÞ

¼ lim
�#0

1
cn, a

ð
jyj��

f ðx þ yÞ � f ðxÞ
jyjnþa dy,

(1.3)

and for a 2 ð�n, 0Þ as
Da

xðxÞ ¼ ð�DÞa=2f ðxÞ ¼ ðð2pjnjÞa f̂ Þ�ðxÞ

¼ 1
cn, a

ð
R

n

f ðxþ yÞ
jyjnþa dy,

(1.4)

with

cn, a ¼ pn=22�a Cð�a=2Þ=Cððnþ aÞ=2Þ,
see for example [2].
In (1.2) the limiting cases: a¼ 2 corresponds to the Korteweg-de Vries (KdV) equa-

tion [3], a¼ 1 corresponds to the BO equation [4, 5], a¼ 0, after a change of variable,
coincides with the inviscid Burgers’ equation which is hyperbolic, and a ¼ �1 is the so
called Hilbert-Burgers (HB) equation, see [6, 7].
The KdV equation and the BO equation arise both as mathematical models for the

unidirectional propagation of long waves and in inverse scattering theory. They are
completely integrable (see [8, 9]) the only ones in the family a 2 ½�1,1Þ: In particular,
their solutions satisfy infinitely many conservations laws.
The general case of the equation in (1.2) appears as a model for vorticity waves in

the coastal zone, see [10].
Formally, real valued solutions of (1.2) satisfy three conservation laws:

I1ðuÞ ¼
ð1
�1

uðx, tÞdx, I2ðuÞ ¼
ð1
�1

u2ðx, tÞdx,

I3ðuÞ ¼
ð1
�1

�
ðDa=2

x uÞ2 � 1
3
u3
�
ðx, tÞdx:

(1.5)

The well-posedness of the IVP (1.2) has been extensively considered. For the case a 2
ð1, 2Þ we refer to [11–18] and references therein, and for a 2 ð0, 1Þ we refer to [19, 20]
and references therein, (for the case a¼ 1 see the reference [1]).
In [15] it was shown that the IVP (1.2) with a 2 ð1, 2Þ is globally well-posed in

L2ðRÞ: In [20] it was established that the IVP (1.2) with a 2 ð0, 1Þ is locally well-posed
in HsðRÞ, s > 3=2� 5a=4, and globally well-posed in Ha=2ðRÞ if a > 6=7:
In the case a 2 ð�1, 0Þ the local well posedness in HsðRÞ with s > 3=2 follows by a

standard argument based on energy estimates.
Our first result is the following:

Theorem 1.1. Let a 2 ð�1, 2Þ � f0, 1g. Let u1, u2 be two real solutions of the IVP (1.2)
such that

u1, u2 2 Cð 0,T½ � : HsðRÞÞ \ C1ð 0,T½ � : Hs0 ðRÞÞ, (1.6)

with s > maxfaþ 1; 3=2g and s0 ¼ minfs� ðaþ 1Þ; s� 1g. Moreover, if a 2 ð�1, �1=2�
assume that

x@xu1, x@xu2 2 L1ð 0,T½ � : L2ðRÞÞ: (1.7)
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If there exists a non-empty open set X � R� ½0,T� such that

u1ðx, tÞ ¼ u2ðx, tÞ, ðx, tÞ 2 X, (1.8)

then u1ðx, tÞ ¼ u2ðx, tÞ for all ðx, tÞ 2 R� ½0,T�
Remark 1.2. (i) For the value a ¼ 2, i.e. the KdV equation, the result in Theorem 1.1
was proved by Saut-Scheurer in [21]. In this case, the operator modeling the dispersion
relation is local, and the proof is based on appropriate Carleman estimates.
In the cases a ¼ 61, i.e. for the BO and HB equations resp., the result in

Theorem 1.1 was recently obtained in [1].
In the case a¼ 0 the result fails.
(ii) The hypothesis in (1.6) guarantees that @xujð�, tÞ, j ¼ 1, 2, t 2 ½0,T� is a continu-

ous function and that @tuð�, tÞ 2 L2ðRÞ, j ¼ 1, 2 for any t 2 ½0,T�: This is satisfied if
u1ðx, 0Þ, u2ðx, 0Þ 2 HsðRÞ, i.e. the solution flow preserves (locally in time) the class
HsðRÞ with s > maxfaþ 1; 3=2g:
The hypothesis (1.7) implies that for any t 2 ½0,T� one has that @xu1ðtÞ, @xu2ðtÞ 2

L1ðRÞ which is essential in the proof of Theorem 1.1 for the case a 2 ð�1, � 1=2�:
Property (1.7) is ensured if one assumes that

x@xu1ðx, 0Þ, x@xu2ðx, 0Þ 2 L2ðRÞ:
This will be proved in the Appendix A.
(iii) It will be clear from our proof below that the result in Theorem 1.1 extends to

the equation in (1.2) with a more general non-linearity. In fact, Theorem 1.1 applies to
any pair of appropriate solutions u1, u2 of the IVP associated to the equation

@tu� @xD
a
xuþ Fðu, :::, @j

xuÞ ¼ 0, x, t 2 R, (1.9)

with a 2 ½�1,1Þ� 2Z, j 2 N and Fð�Þinline a regular enough function representing the
non-linearity.
(iv) For some non-local models, our version of unique continuation is too strong,

and it is only realized by assuming that u2 � 0: This is the case of the IVP associated to
the Camassa-Holm equation [22]

@tuþ u@xuþ @xð1� @2
xÞ�1 u2 þ 1

2
ð@xuÞ2

� �
¼ 0, t, x 2 R, (1.10)

see [23]. This will also occur in part (ii) of Theorems 1.8 and 1.9 below for the
Equation (1.20) when a Hartree term is present.

An argument similar to that used in the proof of Theorem 1.1 will also yield the
following result:

Corollary 1.3. Let a 2 ð�1, 2Þ � f0g. Let u be a real solution of the IVP (1.2) in the
class defined in (1.6). Moreover, if a 2 ð�1, � 1=2� assume that

x@xu 2 L1ð 0,T½ � : L2ðRÞÞ: (1.11)

If there exist a constant c0 2 R and a non-empty open set X � R� ½0,T� such that

uðx, tÞ ¼ c0, ðx, tÞ 2 X, (1.12)

then c0 ¼ 0 and uðx, tÞ ¼ 0 for all ðx, tÞ 2 R� ½0,T�:
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Remark 1.4. (i) By working with @xu instead of u the result in Corollary 1.3 extends to
the end-point cases a ¼ 2 (KdV) and a ¼ �1 (HB), for appropriate solutions, using the
arguments in [21] and [1], respectively.
(ii) In the case a ¼ 2 (KdV) under more restricted hypothesis stronger results are

known. More precisely, in [24] it was shown that the solution of the IVP for the KdV
equation corresponding to data u0 2 L2ðRÞ with the additional decay assumptionð1

�1
ð1þ jxjÞju0ðxÞjdxþ

ð1
0
edjxj

1=2 ju0ðxÞjdx < 1 for some d > 0,

becomes analytic with respect to the variable x for all t> 0. This result is based on the
inverse scattering method and it is unknown for other nonlinearities.

In the case of a ¼ 61, i.e. for BO and HB equations, respectively, the proof of
Theorem 1.1 in [1] is based on the identities

ð�@2
xÞ1=2 ¼ Dx ¼ @xH and @xD

�1
x ¼ H,

where H is the Hilbert transform

Hf ðxÞ ¼ 1
p

p:v:
1
x
	 f

� �
ðxÞ ¼ ð�i sgnðnÞf̂ ðnÞÞ�ðxÞ,

and the following well-known unique continuation principle for the Hilbert transform:

Lemma A. Let f 2 L2ðRÞ be a real valued function. If there exists an open (non-empty)
interval I � R such that

f ðxÞ ¼ Hf ðxÞ ¼ 0, for a:e: x 2 I,

then f(x) ¼ 0 for any x 2 R:

A key argument in the proof of Theorem 1.1 will be following unique continuation
result regarding the fractional powers of the Laplacian in R

n established by Ghosh-Salo-
Uhlmann in [25]:

Theorem B ([25]). Let a 2 ð0, 2Þ and f 2 HsðRnÞ for some s 2 R. If there exists a non-
empty open set H � R

n such that

ð�DÞa=2f ðxÞ ¼ f ðxÞ ¼ 0, in D0ðHÞ, (1.13)

then f � 0 in HsðRnÞ:

Remark 1.5. It is clear that the statement of Theorem B extends to a 2 ð0,1Þ� 2Z,
and by “duality” to a 2 ð�n=2,1Þ � 2Z, (see the argument at the end of the proof of
Theorem 1.6 in Section 2).
Moreover, if f 2 L1ðRnÞ \ L2ðRnÞ, then it also holds for a 2 ð�n, � n=2�, see [26]

for less restrictive regularity assumptions.

Unique continuation for the fractional Laplacian has been studied in other works, see
[26–31] and references therein.
To illustrate the argument to prove Theorem B and its extensions it is convenient to

examine the case a¼ 1 and n � 1 (when n¼ 1 the result follows by Lemma A) assum-
ing that f 2 H1=2ðRnÞ: By inspecting the elliptic extension problem
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ðDx þ @2
y ÞUðx, yÞ ¼ 0, ðx, yÞ 2 R

n � ð0,1Þ,
Uðx, 0Þ ¼ f ðxÞ,

(
(1.14)

one has that

ð�DxÞ1=2f ðxÞ ¼ � @yUðx, 0Þ: (1.15)

Then, from the hypothesis (1.13) using the reflexion principle for harmonic functions

one has that U(x, y) has a harmonic extension eUðx, yÞ defined in the open set R
n �

ð�1, 0Þ [H� f0g [ R
n � ð0,1Þ: From the equation, the identity (1.15) and the

hypothesis (1.13) it follows that eUðx, yÞ has zero of infinite order at any point of H�
f0g: Hence, since eU is real analytic, it follows that eUðx, yÞ � 0 and consequently f(x) ¼
0 for x 2 R

n, which proves Theorem B for a¼ 1 under the assumption f 2 H1=2ðRnÞ:
In the general case a 2 ð0, 2Þ the proof of Theorem B, with f 2 HaðRnÞ follows by

combining the ideas of Cafarelli-Silvestre in [32], with a unique continuation principle
obtained in [30], see also [27, 31], and some regularity results found in [32], see [25].
Further, we notice that the argument given above to prove Theorem B in the particu-

lar case a ¼ 1=2 still applies if one considers ð1� DÞ1=2 instead of ð�DÞ1=2: More pre-
cisely, one regards the elliptic problem

ðDx � 1þ @2
y ÞUðx, yÞ ¼ 0, ðx, yÞ 2 R

n � ð0,1Þ,
Uðx, 0Þ ¼ f ðxÞ,

(
(1.16)

to get that

ð1� DxÞ1=2f ðxÞ ¼ � @yUðx, 0Þ: (1.17)

Assuming that f 2 H1=2ðRnÞ and ð1� DxÞ1=2f ðxÞ ¼ f ðxÞ ¼ 0 for x 2 H open (non-
empty) sub-set of Rn the above approach yields the desired result f ðxÞ ¼ 0 for any x 2 R

n:

For the general case, we shall prove the following related version of Theorem B:

Theorem 1.6. Let a 2 ð0, 2Þ and f 2 HsðRnÞ for some s 2 R. If there exists a non-empty
open set H � R

n such that

ð1� DÞa=2f ðxÞ ¼ f ðxÞ ¼ 0, in D0ðHÞ, (1.18)

then f � 0 in HsðRnÞ:

Remark 1.7. (i) Related unique continuation principles in the context of Theorem 1.6
have been studied in previous works, see [28] and references therein.
(ii) The range of a in Theorem 1.6 can be extended to R� 2Z: In fact, Theorem 1.6

can be re-stated in the following general form: let a1, a2 2 R with a1 � a2 62 2Z and
f 2 HsðRnÞ for some s 2 R: If there exists a non-empty open set H � R

n such that

ð1� DÞaj=2f ðxÞ ¼ 0, in D0ðHÞ for j ¼ 1, 2, (1.19)

then f � 0 in HsðRnÞ:
(iii) Our proof of Theorem 1.6 starts by using the abstract approach in [33] to formu-

late a general setting and then uses some ideas which reduce the proof of this theorem
to that of Theorem B in a higher dimension. This argument is quite natural and enables

876 C. E. KENIG ET AL.



us to consider the extension of this problem to fractional powers of elliptic operators
with variable coefficients in R

n and S
n as well as in manifold. This will be addressed in

a forthcoming work.

Theorem B and Theorem 1.6 allow us to extend the unique continuation result in
Theorem 1.1 to a large class of non-linear non-local higher dimensional dispersive mod-
els. More precisely, we consider the general fractional Schr€odinger equation

i@tuþ ðLmÞa=2uþ Vuþ W 	 FðjujÞð Þuþ Pðu, �uÞ ¼ 0, (1.20)

where ðx, tÞ 2 R
n � R,Lm ¼ ð�Dþm2Þ,m � 0, with a 2 R� 2Z if m> 0 and a 2

ð�n,1Þ� Z if m¼ 0, V ¼ Vðx, tÞ is the potential energy, W ¼ WðjxjÞ defines the
Hartree integrand and Pðz,�zÞ is a polynomial or a regular enough function
with Pð0, 0Þ ¼ 0:
The model in (1.20) arises in several different physical contexts, for example:


 when m¼ 0, W ¼ P ¼ 0, it was used in [34] to describe particles in a class of Levi
stochastic processes,


 when m> 0, W ¼ P ¼ 0, it was derived as a generalized semi-relativistic
(Schr€odinger) equation, see [35] and references therein,


 when m¼ 0, a¼ 1, V ¼ W ¼ 0, and Pðu, �uÞ ¼ 6jujau, a > 0, it is known as the
half-wave equation, see [36, 37] and reference therein,


 when m¼ 0, V ¼ W ¼ 0, and

Pðz,�zÞ ¼ c0jzj2z þ c1z
3 þ c3z�z

2 þ c3�z
3, c0 2 R, c1, c2, c3 2 C,

it appears in [38] on the study of the long-time behavior of solutions to the water waves
equations in R

2, where ð�@2
xÞ1=2 models the dispersion relation of the linearized gravity

water waves equations for one-dimensional interfaces,


 when m¼ 1, V ¼ P ¼ 0, FðjzjÞ ¼ jzj2 the model arises in gravitational collapse, see
[39, 40] and references therein.

The well-posedness of the IVP (1.20) has been considered in several publications, see
for example, [35, 41–44] and references therein.
Thus, we have the following results concerning unique continuation properties of solu-

tions to the IVP associated to the Equation (1.20). First, we shall consider the case m> 0:

Theorem 1.8. (i) Let a 2 ð�2, 2Þ � f0g and m > 0. Let u1, u2 be two solutions of the
IVP associated to the equation (1.20) with W � 0 such that

u1, u2 2 Cð 0,T½ � : HsðRnÞÞ \ C1ð 0,T½ � : Hs�aðRnÞÞ, (1.21)

with s > maxfa; n=2g: If there exists a non-empty open set X � R
n � ½0,T� such that

u1ðx, tÞ ¼ u2ðx, tÞ, ðx, tÞ 2 X, (1.22)

then u1ðx, tÞ ¼ u2ðx, tÞ for all ðx, tÞ 2 R
n � ½0,T�:

(ii) For the general form of the Equation (1.20) the result in (i) still holds if one
assumes that u2ðx, tÞ ¼ 0 for ðx, tÞ 2 R

n � ½0,T�:
Next, we consider the case m¼ 0:
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Theorem 1.9. (i) Let a 2 ð0, 2Þ and m ¼ 0. Let u1, u2 be two solutions of the IVP
associated to the Equation (1.20) with W � 0 such that

u1, u2 2 Cð 0,T½ � : HsðRnÞÞ \ C1ð 0,T½ � : Hs�aðRnÞÞ, (1.23)

with s > maxfa; n=2g. If there exists a non-empty open set X � R
n � ½0,T� such that

u1ðx, tÞ ¼ u2ðx, tÞ, ðx, tÞ 2 X, (1.24)

then u1ðx, tÞ ¼ u2ðx, tÞ for all ðx, tÞ 2 R
n � ½0,T�:

(ii) For the general form of the Equation (1.20) the result in (i) still holds if one
assumes that u2ðx, tÞ ¼ 0 for ðx, tÞ 2 R

n � ½0,T�:

Remark 1.10. (i) In Theorems 1.8 and 1.9 we are assuming the existence of solutions of
the IVP (1.20) in the class described in (1.21) and (1.23). This depends on the dimen-
sion n, on the values of m � 0 and a 2 ð0, 2Þ, on the regularity and decay properties of
V and W, and on the structure of the terms Fð�Þ and Pð�, �Þ: In particular, the hypoth-
esis s > n=2 guarantees that HsðRnÞ is an algebra respect to the usual product of func-
tions so the polynomial Pðu, �uÞ belongs to L2ðRnÞ at each t 2 ½0,T�
(ii) The results in Theorem 1.9 (m¼ 0) extend to the case a 2 ð�n=2, 0Þ � Z by

assuming (instead of (1.23)) that

u1, u2 2 Cð 0,T½ � : HðRnÞÞ \ C1ð 0,T½ � : LpðRnÞÞ,
with s > n=2 and 1=p ¼ 1=2þ a=2:
(iii) As was mentioned before, in part (ii) of Theorems 1.8 and 1.9 we achieve a weaker

version of the desired unique continuation result. Roughly speaking, in the general case one
works with the equation solved by wðx, tÞ ¼ ðu1 � u2Þðx, tÞ: However, when the non-local
Hartree term in (1.20) is present, the equation for w(x, t) does not satisfy the necessary
property enjoyed by a solution v of (1.20), that is, for any X � R

n � ½0,T�Þ open set

if vðx, tÞ ¼ 0, ðx, tÞ 2 X, then ðLmÞa=2vðx, tÞ ¼ 0, ðx, tÞ 2 X:

(iv) The comments in Remark 1.2 part (iii) concerning more general nonlinearities in
(1.20) also apply to Theorems 1.8 and 1.9.

Next, we consider the extension of Corollary 1.3 to solutions of the IVP associated to
the equation in (1.20).

Corollary 1.11. Let a 2 ð�2, 2Þ � f0g if m> 0 and a 2 ð0, 2Þ � f0g if m¼ 0. Let u be
a solution of the IVP associated to the Equation (1.20) with V � W � 0 such that

u 2 Cð 0,T½ � : HsðRnÞÞ \ C1ð 0,T½ � : Hs�aðRnÞÞ: (1.25)

If there exist a constant c0 2 R and a non-empty open set X � R� ½0,T� such that

uðx, tÞ ¼ c0, ðx, tÞ 2 X, (1.26)

then c0 ¼ 0 and u1ðx, tÞ ¼ 0 for all ðx, tÞ 2 R� ½0,T�:
Remark 1.12. The observations in Remark 1.10 (ii) also hold for Corollary 1.11 in the
case m¼ 0.

Next, we shall give an application of Theorem B to a non-local non-dispersive model.
We consider the 2D quasi-geostrophic (QG) equation
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@thþ u � rh ¼ 0, ðx, tÞ 2 R
2 � R, (1.27)

and

u ¼ ðu1, u2Þ ¼ r?ð�DÞ�1=2h ¼ ð�@y, @xÞð�DÞ�1=2h, (1.28)

where h denotes a scalar (potential temperature) convected by the velocity field u.
The QG was derived in [45] as a model for atmospheric turbulence. Its relation with

the Euler system for incompressible (homogeneous) flow

@tvþ v � rv ¼ rp, k ¼ 1, ::, n, n ¼ 2, 3,

r � v ¼ 0,

(
where v ¼ ðv1, ::, vnÞ is the velocity and p denotes the pressure, and its vorticity x ¼
r� v formulation in 3D

@txþ v � rx ¼ ðDvÞx, (1.29)

has been extensively studied, see [46, 47] and references therein. Notice that by differen-
tiating the equation in (1.27) one gets

@tðr?hÞ þ u � rðr?hÞ ¼ ðDuÞðr?hÞ, (1.30)

which resembles to the equation in (1.29).
We also observe that in the 2D case of the Euler system the vorticity x is a scalar

function satisfying the equation

@txþ v � rx ¼ 0, (1.31)

which resembles that in (1.27). In both dimensions 2 and 3 the Biot-Savart law

v ¼ r� ð�DÞ�1x, (1.32)

allows to recover the velocity v in terms of the vorticity x.
The following theorem presents a difference between the behavior of the solutions of

the QG equation and those for the vorticity system in 2 and 3 dimensions.

Theorem 1.13. Let h be a solution of the IVP associated to the Equation (1.27) such that

h 2 Cð 0,T½ � : HsðR2ÞÞ \ C1ð 0,T½ � : Hs�1ðR2ÞÞ, (1.33)

with s> 1. If there exist t0 2 ½0,T�, c0 2 R and a non-empty open set H � R
2 such that

hð�, t0ÞjH ¼ c0 and uð�, t0ÞjH ¼ ð0, 0Þ, (1.34)

then c0 ¼ 0, hðx, tÞ ¼ 0 and uðx, tÞ ¼ ð0, 0Þ for all ðx, tÞ 2 R
2 � ½0,T�:

Remark 1.14. (i) We observe that Theorem 1.13 fails for the Euler system in 2 and 3
dimensions by just picking up a data vð~x, 0Þ ¼~c0 for ~x 2 H, (since xð~x, 0Þ ¼
r� vð~x, 0Þ), and using that the equations are time reversible. As it was shown above in
the case n¼ 3 one can think of r?h as the vorticity and in the case n¼ 2 one sees h as
the vorticity itself.
(ii) The proof of the existence of solution (in fact, the local well-posedness in ¼

HsðRnÞ, with s > n=2þ 1) to the IVP associated to the Equation (1.27) in the class
(1.33) follows a classical argument.
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(iii) Theorem 1.13 applies to the generalized form of the QG equation considered in [47]

@thþ u � rh ¼ 0, u ¼ ðu1, u2Þ ¼ r?ð�DÞ�1þa=2h, (1.35)

with a 2 ð0, 2Þ, where a¼ 1 corresponds to the QG equation and a¼ 0 to the vorticity
equation in 2D (1.31).

The rest of this paper is organized as follows: Section 2 contains the proof of
Theorem 1.6. The proof of Theorem 1.1, Corollary 1.3, Theorems 1.8 and 1.9, Corollary
1.11 and Theorem 1.13 will be in Section 3. Appendix A contains the proof of the last
statement in Remark 1.2 part (ii) concerning condition (1.7).

2. Preliminary estimates

Proof of Theorem 1.6. First note that, without loss of generality, we can assume that f 2
H1ðRnÞ, by convolving with a compactly supported approximate identity.
Let a 2 ð0, 2Þ and H be a non-empty open sub-set of R

n: Let L be a non-negative
second order elliptic operator with a dense domain dom(L) in L2ðRnÞ: Following [33]
for f 2 domðLÞ we define for y 2 ½0,1Þ

Vðx, yÞ ¼ 1
Cða=2Þ

ð1
0
e�tL ðLa=2f ÞðxÞ e�y2=4t dt

t1�a=2

¼ ya

2aCða=2Þ
ð1
0
e�tLf ðxÞ e�y2=4t dt

t1þa=2
:

(2.1)

Thus, by Theorem 1.1 in [33] one has

V 2 C1ðð0,1Þ : domðLÞÞ \ C1ð 0,1Þ : L2ðRnÞÞ,
�

(2.2)

with

�LxV þ 1� a
y

@yV þ @2
yV ¼ 0, ðx, yÞ 2 R

n � ð0,1Þ,
Vðx, 0Þ ¼ f ðxÞ:

8><>: (2.3)

and

La=2f ðxÞ ¼ �c	a lim
y#0

y1�a @yVðx, yÞ, (2.4)

where c	a ¼ 2aCða=2Þ=aCð�a=2Þ:
As it was remarked in [33] the identities above should be understood in L2ðRnÞ:

Moreover, V(x, y) solves the singular boundary value problem (2.3) and the first equal-
ity in (2.1) involves the heat semi-group e�tL acting on La=2f and the second does not
involve fractional powers of L. Thus, (2.4) describes the fractional powers of L in terms
of the solution of the boundary value (2.3) which is the original idea in [32].
Notice that in the case L ¼ �Dx the equation in (2.3) can be written in the diver-

gence form

divx, yðy1�arx, yVÞ ¼ 0: (2.5)

and that when a¼ 1 (2.3) and (2.4) agree with (1.14) and (1.15), respectively.

880 C. E. KENIG ET AL.



Next, we fix the operator L ¼ 1� Dx, assume without loss of generality that H ¼
B1ð0Þ ¼ fx 2 R

n : jxj < 1g and f 2 H1ðRnÞ with
f jB1ð0Þ ¼ ð1� DÞaf jB1ð0Þ � 0: (2.6)

In this case

DxV � V þ 1� a
y

@yV þ @2
yV ¼ 0, ðx, yÞ 2 R

n � ð0,1Þ,
Vðx, 0Þ ¼ f ðxÞ,

8<: (2.7)

with

ð1� DxÞa=2f ðxÞ ¼ �c	a lim
y#0

y1�a @yVðx, yÞ, x 2 R
n: (2.8)

We note that under our regularity assumptions and the hypothesis (2.6) the local
infinite order of vanishing argument in [30] (proof of Proposition 2.2) applies to the
equation (2.7). In particular, it tells us that the solution V(x, y) vanishes of infinite
order at ðx, yÞ 2 B1ð0Þ � f0g, i.e.

lim
y#0

Vðx, yÞ
yk

¼ 0, 8 x 2 B1ð0Þ, 8k 2 N: (2.9)

Now we define the function eV ðx, t, yÞ aseV ðx, t, yÞ ¼ cos ðtÞ Vðx, yÞ, ðx, t, yÞ 2 R
nþ1 � 0,1Þ:½ (2.10)

Therefore,

Dx, t, yeV þ 1� a
y

@yeV ¼ 0, ðx, t, yÞ 2 R
nþ1 � ð0,1Þ,eV ðx, t, 0Þ ¼ cos ðtÞ f ðxÞ,

8<: (2.11)

with

lim
y#0

eV ðx, t, yÞ
yk

¼ 0, 8 ðx, tÞ 2 B1ð0Þ � ð�1, 1Þ 8k 2 N: (2.12)

Thus, we are in the setting of the proof of Theorem B. Applying Proposition 2.2. in
[30] one gets thateV ðx, t, yÞ ¼ 0, for ðx, t, yÞ 2 fðx, t, yÞ : jxj2 þ t2 þ y2 < 1, y > 0g:
But eV is real analytic in R

nþ1 � ð�,1Þ for any � > 0: Therefore eV � 0 and so V � 0
and consequently f(x) ¼ 0 for any x 2 R:

This completes the proof for the case a 2 ð0, 2Þ:
Next, for a 2 ð0,1Þ� 2Z and f 2 HsðRnÞ, s 2 R, we first reduce it to the case f 2

H1ðRnÞ: Thus, applying the result for a 2 ð0, 2Þ toef ðxÞ ¼ ð1� DÞkf ðxÞ, with k 2 N and a 2 ð2k, 2ðkþ 1ÞÞ,
the desired result follows.
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Finally, if a 2 ð�1, 0Þ � 2Z we define

gðxÞ ¼ ð1� DÞa=2f ðxÞ:
Thus, from hypothesis (1.18) one has that

gðxÞ ¼ 0 and ð1� DÞ�a=2gðxÞ ¼ f ðxÞ ¼ 0, x 2 H,

with �a 2 ð0,1Þ � 2Z and g 2 H�aðRnÞ: Therefore, from the previous case one has
that g(x) ¼ 0 for x 2 R

n and consequently, f(x) ¼ 0 for x 2 R
n: w

3. Proof of Theorems 1.1, 1.8, 1.9, 1.13 and Corollaries 1.3, 1.11

Proof of Theorem 1.1. We define the function

wðx, tÞ ¼ ðu1 � u2Þðx, tÞ
which satisfies the equation

@tw� @xD
a
xwþ @xu1wþ u2@xw ¼ 0, x, t 2 R, a 2 ð�1, 2Þ � f0g: (3.1)

From the hypothesis (1.8) and the Equation (3.1) it follows that

wðx, tÞ ¼ Da
x@xwðx, tÞ ¼ 0, ðx, tÞ 2 X � R� 0,T½ �: (3.2)

Hence, there exist t0 2 ð0,TÞ and an open non-empty interval (a, b) such
that ða, bÞ � ft0g � X:
First, we observe by he Hardy-Littlewood-Sobolev inequality that if a 2 ð�1=2, 2Þ and

f ðxÞ ¼ @xwðx, t0Þ, then Da
xf is a well defined function in LpðRÞ with p¼ 2 if a 2 ½0, 2Þ

and with p such that 1=p ¼ 1=2þ a if a 2 ð�1=2, 0Þ:
Therefore, applying Theorem B and Remark 1.5 to the function @xwðx, t0Þ one

obtains that @xwðx, t0Þ ¼ 0 for any x 2 R and consequently wðx, t0Þ ¼ 0 for any x 2 R

which yields the desired result in the case a 2 ð�1=2, 2Þ:
Next, we consider the case a 2 ð�1, � 1=2�: By the assumptions (1.6) and (1.7) it fol-

lows that if f ðxÞ ¼ @xwðx, t0Þ, then f 2 L1ðRÞ \ L2ðRÞ: Thus, Da
xf 2 LqðRÞ for

any q 2 ð1=ð1þ aÞ, 2=ð1þ 2aÞÞ:
Hence, applying Theorem B and Remark 1.5 to the function @xwðx, t0Þ one gets

that wðx, t0Þ ¼ 0 for any x 2 R, which completes the proof. w

Proof of Corollary 1.3. By applying the argument in the proof of Theorem 1.1 to the
Equation (1.2) it follows that f ðxÞ ¼ @xuðx, t0Þ ¼ 0 for all x 2 R

n: Since @xuð�, t0Þ 2
H1ðRÞ one gets the desired result. w

The proofs of Theorems 1.8 and 1.9 part (i) are similar, so they will be omitted.

Proof of Theorem 1.8 (ii). In this case we work directly with the general form of the
equation in (1.20). By hypotheses u2 � 0 and from the Equation (1.20) it follows that in
X � R

n � ½0,T�
u1ðx, tÞ ¼ ðLmÞa=2u1ðx, tÞ

¼ ð�Dþm2Þa=2u1ðx, tÞ ¼ 0, ðx, tÞ 2 X:
(3.3)
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Thus, there exists t0 2 ð0,TÞ and an open (non-empty) set H � R
n such

that H� ft0g � X:
Hence, applying Theorem B if m¼ 0 and Theorem 1.6 if m> 0 to the function

u1ðx, t0Þ one obtains that u1ðx, t0Þ ¼ 0 for any x 2 R
n, which yields the desired

result. w

The proof of Theorem 1.9 (ii) is similar to those described above, so it will be omit-
ted. This is also the case of Corollary 1.11.

Proof of Theorem 1.13. By hypothesis for any ðx, yÞ 2 H

u1ðx, y, t0Þ ¼ �ð�DÞ�1=2@yhðx, y, t0Þ ¼ 0 and @yhðx, y, t0Þ ¼ 0:

Therefore, using the extension of Theorem B with a ¼ �1=2, see [26] and Remark 1.5,
one has that

@yhðx, y, t0Þ ¼ 0 ðx, yÞ 2 R
2:

Similarly, one gets that

@xhðx, y, t0Þ ¼ 0 ðx, yÞ 2 R
2:

Since h 2 HsðR2Þ, s > 2, it follows that

hðx, y, t0Þ ¼ 0 ðx, yÞ 2 R
2:

Finally, using (1.28) we complete the proof. w
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Appendix A

For a 2 ð�1, � 1=2� we shall prove that if

u 2 Cð 0,T½ � : HsðRÞÞ \ C1ð 0,T½ � : Hs�1ðRÞÞ with s > 3=2 (A.1)

is a strong solution of the IVP associated to the Equation (1.2) and x@xuðx, 0Þ 2 L2ðRÞ then
x@xu 2 L1ð 0,T½ � : L2ðRÞÞ: (A.2)
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First, we observe that if f 2 H1ðRÞ, then
x@xD

að@xf Þ ¼ �ð1þ aÞDað@xf Þ þ @xD
aðx@xf Þ: (A.3)

Therefore taking derivative of the Equation (1.2), multiplying the result by x2@xu and integra-
tion in the x-variable one gets

1
2
d
dt

ð
ðx@xuÞ2ðx, tÞdx

¼
ð
x@xD

a@xu x@xudx�
ð
x@xðu@xuÞx@xudx

¼ E1ðtÞ þ E2ðtÞ:

(A.4)

Integration by parts leads to the estimate

jE2ðtÞj � cjj@xuðtÞjj1
ð
ðx@xuÞ2ðx, tÞdx

þ cjjuðtÞjj1jj@xuðtÞjj2
ð
ðx@xuÞ2ðx, tÞdx

� �1=2

:

(A.5)

Thus, using (A.3) we write

E1ðtÞ ¼ �ð1þ aÞ
ð
Da@xu x@xudxþ

ð
@xD

aðx@xuÞ x@xudx: (A.6)

Since @xDa is skew-symmetric the last term in (A.6) vanishes. Hence,

jE1ðtÞj � cjj@xDauðtÞjj2
ð
ðx@xuÞ2ðx, tÞdx

� �1=2

: (A.7)

Finally, inserting (A.5) and (A.7) in (A.4) and using the hypothesis (A.1) one gets the desired
result (A.2).
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