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a b s t r a c t

The paper is concerned with guaranteed a posteriori error estimates for a class of
evolutionary problems related to poroelastic media governed by the quasi-static linear
Biot equations. The system is decoupled by employing the fixed-stress split scheme,
which leads to an iteratively solved semi-discrete system. The error bounds are derived
by combining a posteriori estimates for contractive mappings with functional type
error control for elliptic partial differential equations. The estimates are applicable
to any approximation in the admissible functional space and are independent of the
discretization method. They are fully computable, do not contain mesh-dependent
constants, and provide reliable global estimates of the error measured in the energy
norm. Moreover, they suggest efficient error indicators for the distribution of local errors
and can be used in adaptive procedures.
© 2020 TheAuthors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The problems defined in a poroelastic medium contribute to a wide range of application areas, including simulation
f oil reservoirs, prediction of environmental changes, soil subsidence and liquefaction in earthquake engineering, well
tability, sand production, waste deposition, hydraulic fracturing, CO2 sequestration, and understanding of the biological
tissues in biomechanics. In recent years, mathematical modeling of poroelastic problems has become a highly important
topic because it helps engineers to understand and predict complicated phenomena arising in such media. However,
numerical schemes designed for any of the existing models provide approximations that contain errors of different nature,
and these errors must be controlled. Therefore, a reliable quantitative analysis of poroelasticity problems requires efficient
and computable error estimates that can be applied for various approximations and computation methods.

Mathematical modeling of poroelasticity is usually based on the Biot model that consists of the quasi-static elasticity
problem coupled with an equation governing slow fluid motion. Computational errors in one part of the model may
seriously affect the accuracy of the other part. Therefore, getting reliable and efficient a posteriori error estimates is
generally much more complicated for coupled problems than for a single equation.

The Biot model is a system describing the flow and displacement in a porous medium by the momentum and mass
conservation equations. Initially, it was derived at a macroscopic scale (with inertia effects negligible) in the works by
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Terzaghi [1] and Biot [2]. Settlement of different types of soils was predicted in [1], which was later extended to the
generalized concept of consolidation [2,3]. A comprehensive discussion of the theory of poromechanics can be found in
[4]. Thus, to model the solid displacement u and the fluid pressure p, we consider the system that governs the coupling of
n elastic isotropic porous medium saturated with slightly compressible viscous single-phase fluid

−div
(
λ (divu) I+ 2µ ε(u) − α p I

)
= f in Q := Ω × (0, T ),

∂t
(
β p + αdivu

)
− divK∇p = g in Q ,

(1.1)

here Q denotes a space–time cylinder (with bounded domain Ω ⊂ Rd, d = {2, 3} having a Lipschitz continuous
boundary ∂Ω and a given time-interval (0, T ), 0 < T < +∞), f ∈ H1(0, T ; [L2(Ω)]d) and g ∈ L2(0, T ; L2(Ω)) are the
ody force and the volumetric fluid source, respectively.1 The first equation in (1.1) follows from the balance of linear
omentum for the total Cauchy stress tensor

σpor := σ(u) − α p I

hat accounts not only for u but also for the pressure p scaled by the dimensionless Biot–Willis coefficient α > 0. The
tress tensor for the material is governed by Hooke’s law

σ(u) := 2µ ε(u) + λ trε(u) I = 2µ ε(u) + λ (divu) I,

here ε(u) :=
1
2

(
∇ u + (∇ u)T

)
is the tensor of small strains. Here, λ, µ > 0 are the Lamé constants proportional to

Young’s modulus E and Poisson’s ratio ν via relations µ =
E

2 (1+ν) and λ =
E ν

(1+ν) (1−2ν) . The second equation is the fluid
ass conservation (continuity) equation in Q . Here, β stands for the storage coefficient and K is the permeability tensor
ssumed to be symmetric, uniformly bounded, anisotropic, heterogeneous in space, and constant in time, i.e.,

λK|τ|
2

≤ K(x)τ · τ ≤ µK|τ|
2, λK, µK > 0, for all τ ∈ R

d. (1.2)

Let Σ = ∂Ω × (0, T ) be a lateral surface of Q , whereas Σ0 := ∂Ω × {0} and ΣT := ∂Ω × {T } define the bottom and
the top parts of the mantel, such that ∂Q = Σ ∪ Σ0 ∪ ΣT . Initial conditions are assumed to be as follows:

p(x, 0) = p◦
∈ H1(Ω) and u(x, 0) = u◦

∈ [H1(Ω)]d on Σ0. (1.3)

We introduce the following partitions of the boundary: ∂Ω = Σ
p
D ∪Σ

p
N = Σu

D ∪Σu
N , where Σ

p
D and Σu

D must have positive
easures, i.e., |Σp

D|, |Σ
u
D | > 0, with the corresponding boundary conditions (BCs):

p = pD on Σ
p
D,

−K∇p · n = zN on Σ
p
N ,

u = uD on Σu
D,

σpor · n = tN on Σu
N .

(1.4)

or the fluid content β p + α divu, we prescribe the following initial condition

η(x, 0) := β p(x, 0) + α divu(x, 0) = β p◦
+ α divu◦,

here p◦ and u◦ are defined in (1.3). To simplify the exposition, we consider only homogeneous BCs, i.e., pD, zN = 0 and
D, tN = 0 for the time being, even though all results are valid for more general assumptions.
The work [5] provides the results on existence, uniqueness, and regularity theory for (1.1)–(1.4) in the Hilbert space

etting, whereas [6] extends the recent results to a wider class of diffusion problems in poroelastic media with more
eneral material deformation models. Corresponding a priori error estimates can be found in [7]. The considered system
an be regarded as the singular limit of the fully dynamic Biot–Allard problem (see the details in [8]), where the
cceleration of solid in the mechanics part of (1.1) is neglected.
Since the Biot model is a coupled system of partial differential equations (PDEs), both iterative and monolithic

pproaches can be used to solve the problem (see, e.g., [9]). For the first approach, the problem can be reformulated with
contractive operator, which naturally yields iterative methods for its solution (see [8]). At each step in time, the flow
roblem is considered first. Next, we solve the mechanics using the pressure from the first step. The procedure is repeated
ntil the desired convergence is reached. Different alteration of iterative cycles in flow and mechanics, i.e., single- [10] and
ulti-rate schemes [11,12], can be considered. The second approach is fully coupled and considers the system (1.1)–(1.4)
ith two unknowns simultaneously.
The iterative coupling offers several advantages over the monolithic method in code design, in particular, in terms

f availability of highly developed discretization methods (primal [13–15], mixed [7,16,17], Galerkin least-squares [18],
inite volume (FV) [19], discontinuous Galerkin (dG) methods [20], Hybrid High-Order methods [21] isogeometric
nalysis [22], as well as combinations of above-mentioned ones) and algebraic solvers (e.g., general Schur complement
ased preconditioners [23–30] and the recently developed robust ones with respect to (w.r.t.) the model parameters

1 For convenience of the reader, we collected the definitions related to the functional spaces in the Appendix.
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31–35]). In the fully-coupled methods, constructing efficient preconditioning techniques for the arising algebraic systems
emains a matter of active ongoing scientific research (see, e.g., [30,36–39]).

The a posteriori error control for poroelastic models has been already addressed using different techniques. Application
f residual-based error estimates to coupled elliptic–parabolic problems can be traced back to works [40,41]. Recently,
imilar error indicators were used in [42–46] for immiscible incompressible two- or multi-phase flows in porous media to
ddress the questions of adaptive stopping criteria and mesh refinement. In [47], authors suggested an a posteriori error
stimator based on a corresponding dual problem in space–time for a coupled consolidation problem that involves large
eformations. In [48–51], adaptive space–time algorithms relying on the equilibrated fluxes technique were applied to
he Biot’s consolidation model (formulated as a system with four unknowns). In this work, however, we turn to the
unctional error estimates (majorants) that are fully computable and provide guaranteed bounds of errors arising in
umerical approximations. The derivation of such estimates is based on functional arguments and variational formulation
f the problem in question. Therefore, the method does not use specific properties of approximations (e.g., Galerkin
rthogonality) and special properties of the exact solution (e.g., high regularity). The estimates do not contain mesh-
ependent constants and are valid for any approximation in the natural energy class. Moreover, the majorants also yield
n efficient error indicator that can be used to drive mesh adaptation. Since a concise mesh adaptation algorithm is still
he matter of ongoing research, we postpone including a specific example with adaptivity discussions until the next paper
n this matter.
Our main goal is to deduce efficient a posteriori error estimates for the approximation of the system (1.1) and

emonstrate their suitability through the application to numerical problems. In [52], a posteriori error estimates of the
unctional type were derived for the stationary Barenblatt–Biot model of porous media. This paper deals with a more
omplicated Biot problem presented by an elliptic–parabolic system of partial differential equations. Our approach is based
n the contraction property of the iterative method [53], which is rather general and not restricted only to the fixed-stress
cheme, and functional type estimates of each equation in the Biot system (see, e.g., [54]). To the best knowledge of the
uthors, it is the first study targeting such a coupling between the elastic behavior of the medium and the fluid flow in
he context of functional error estimates. The main result is presented in Theorem 2. Moreover, these estimates serve not
nly as reliable estimates of the global error measured in the energy norm, but also as efficient indicators of the local error
istribution over the computational domain. The latter property makes functional majorants advantageous in automated
daptive mesh generation algorithms.
The paper has the following structure: Section 2 is dedicated to the generalized formulation of the Biot system and

ts semi-discrete counterpart derived after applying the explicit Euler scheme in time. In Section 3, we introduce an
ncremental approach, namely, the fixed-stress split scheme, for discretizing the considered coupled system. In particular,
t clarifies the arguments for choosing the optimal parameters in the iterative scheme and proves that it is a contraction
ith an explicitly computable convergence rate. For the reader’s convenience, Section 4 summarizes the main results of
he work and the concepts that were used for their derivation, as well as highlights the most important properties of the
rror estimates. Sections 5 and 6 are dedicated to the derivation of auxiliary lemmas used in the proof of Theorem 2 (or
heorem 3) with general estimates for the approximations generated by the fully decoupled iterative approach. Finally,
ection 7 contains a collection of examples that illustrate the application of derived error estimates to the Biot problem.

. Variational formulation and discretization

We study approximations of the system (1.1), where Ṽ ≡ H1(0, T ; [H1(Ω)]d) denotes the space for u (field of
isplacements) and W̃ ≡ H1(0, T ;H1(Ω)) is the space for the variable p (pressure). The generalized setting of (1.1) is

read as: find a pair (u, p) ∈ Ṽ 0 × W̃0 such that

2µ (ε(u), ε(v))Q + λ (divu, divv)Q + α (∇p, v)Q = (f , v)Q , ∀v ∈ Ṽ 0, (2.1)

(K∇p, ∇w)Q + (∂t (β p + α divu), w)Q = (g, w)Q , ∀ w ∈ W̃0, (2.2)

where

Ṽ 0 :=
{
v ∈ H1(0, T ; [H1(Ω)]d) | v(t)|Σu

D
= 0 a.e. t ∈ (0, T )

}
,

W̃0 :=
{
w ∈ H1(0, T ;H1(Ω)) | w(t)|Σp

D
= 0 a.e. t ∈ (0, T )

}
.

The Biot system of type (2.1)–(2.2) was analyzed by several authors to establish the existence, uniqueness, and regularity
of its solution. First theoretical results on the existence and uniqueness of a (weak) solution are presented in [55] for the
case of β = 0. Further work in this direction can be found in [5,56]. The well-posedness of the quasi-static Biot system
is ensured under the above-mentioned assumptions. In fact, [57,58] established contractive results in suitable norms for
the iterative coupling of (2.1)–(2.2). For an overview of the stability of existing iterative algorithms, we refer the reader
to [59,60].

The system (2.1)–(2.2) can be viewed as a two-field formulation of the poroelasticity problem. In numerical analysis,
there are alternative approaches that treat such a system as three- and four-field formulations. In the three-field model, an
additional variable is introduced to represent the flux in the flow equations, whereas the four-field approach considers
stress as yet another unknown. The three-field formulation is rather flexible since it allows different combinations of
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discretizations. The scientific community agrees that it provides more physical approximations of the unknowns than
the two-field case. Recently, the four-field formulation, where both equations were treated with mixed methods, drew
much attention from the research community. The advantages of the latter representation are local conservation of mass
and momentum balance and a more accurate representation of fluxes and stresses. The choice of the formulation (from
the above-mentioned list) is usually motivated by the considered application as well as the limits of the computational
resources. For instance, the mixed formulation of (2.2) not only provides the flux that satisfies the local mass conservation
property but also generates an effective approximation of this function, which is advantageous for the functional type error
control. It minimizes the majorant related to the pressure variable (see (5.2)). The same principle works for the stress field
reconstruction in mechanics part.

The system (2.1)–(2.2) is considered in the time-interval [0, T ] divided by N sub-intervals, such that it forms the
corresponding set TN = ∪

N
n=1In, I

n
= (tn−1, tn). Let un(x) ∈ V 0 and pn(x) ∈ W0, where

V 0 :=
{
v ∈ V ≡ [H1(Ω)]d | v

⏐⏐
Σu

D
= 0

}
and W0 :=

{
w ∈ W ≡ H1(Ω) | w

⏐⏐
Σ

p
D

= 0
}
, (2.3)

respectively, are spatial parts of the solution at t = tn. Then, the semi-discrete approximation of (2.1)–(2.2) reads as

(2µ ε(un), ε(v))Ω + (λ divun, divv)Ω + α (∇pn, v)Ω = (f n, v)Ω , ∀ v ∈ V 0,

(K∇pn, ∇w)Ω +
1
τn (β(pn − pn−1)Ω + α div(un

− un−1), w)Ω = (gn, w)Ω , ∀ w ∈ W0,

where τ n
= tn − tn−1. This system generates the following problem to be solved on each step of the time-incremental

method: find the pair (u, p)n ∈ V 0 × W0

(2µ ε(un), ε(v))Ω + (λ divun, divv)Ω + α (∇pn, v)Ω = (f n, v)Ω , ∀ v ∈ V 0, (2.4)

(Kτn∇pn, ∇w)Ω + β (pn, w)Ω + α (div un, w)Ω = (̃gn, w)Ω , ∀ w0 ∈ W0, (2.5)

where Kτn := τ nK, the right-hand side of (2.5) is defined as

g̃n
= τ n gn

+ β pn−1
+ α divun−1, (2.6)

and the pair (u, p)n−1
∈ V 0 × W0 is given by the previous time step. The initial values are chosen as (u, p)0 = (p◦, u◦).

Since, from now on, we deal only with the semi-discrete counterpart of the Biot problem, we omit the subscript Ω in the
scalar product. Moreover, we always consider (2.4)–(2.5) on nth time step, which allows us to also neglect the superscript
n for the rest of the paper and consider the system

(2µ ε(u), ε(v)) + (λ divu, divv) + α (∇p, v) = (f , v), ∀ v ∈ V 0, (2.7)

(Kτ∇p, ∇w) + β (p, w) + α (div u, w) = (̃g, w), ∀ w ∈ W0. (2.8)

This work aims to derive a fully guaranteed a posteriori estimates of the error between the obtained approximations
(ũ, p̃) ∈ V 0h × W0h, where V 0h and W0h are discretization spaces of conforming approximations of functional spaces V 0
and W0, respectively, and the pair of the exact solutions (u, p) of the Biot system, which is accumulated from the errors
on all N time steps, i.e.,

eu := u − ũ and ep := p − p̃.

On each sub-interval, these errors are measured in terms of the combined norm⏐⏐[(eu, ep)]⏐⏐ := ||| eu |||
2
u+||| ep |||

2
p. (2.9)

In turn, each contribution is defined as follows:

||| eu |||
2
u := ∥ ε(eu) ∥2

2µ + ∥ div(eu) ∥2
λ and ||| ep |||

2
p:= ∥ ∇ep ∥

2
Kτ

+ ∥ ep ∥
2
β , (2.10)

where ∥ w ∥
2
λ :=

∫
Ω

λ w2 dx, ∥ ε(w) ∥2
2µ :=

∫
Ω
2µ ε(w) : ε(w) dx, and ∥ w ∥

2
Kτ

:=
∫

Ω
Kτ w · w dx are L2-norms respectively

weighted with 2µ, λ, and the tensor Kτ for any scalar- and vector-valued functions w and w. The global bound of the
errors eu and ep contains incremental contributions from each time-interval, i.e.,∑

n=1,...,N

⏐⏐[(e(n)u , e(n)p )
]⏐⏐ =:

⏐⏐[(eu, ep)]⏐⏐ ≤ M
(
ũ, p̃

)
:=

∑
n=1,...,N

M
(n)(

ũ, p̃
)
. (2.11)

For the iterative approach, on each time-step In, the Biot system is decoupled into two sub-problems, where one is
related to the linear elasticity, and the other — to the single-phase flow problem. Then, an iterative procedure is applied
to obtain the pair (ui, pi) = (u, p)i. Next, each equation is discretized and solved, such that, instead of (u, p)i, we use
he pair (u, p)ih, which contains the approximation error of the numerical method. In Section 5, we derive computable a
osteriori estimates for this pair of the approximate solution.
The functional M

(n)
is derived by combining the estimates obtained for the contractive mapping [53] and the a

osteriori error majorants for elliptic problems (initially introduced [61,62]). The validity of such estimates is based on the
ontraction property of a specifically constructed linear combination of displacement and pressure α

γ
divui

−
L
γ
pi, L, γ > 0,

(the so-called volumetric mean stress). The selection of parameters L and γ is justified and explained in Section 3.
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emark 1. For the alternative monolithic approach, one solves (2.7)–(2.8) for pressure and displacement simultaneously,
econstructing the pair of approximations (ũ, p̃) = (uh, ph) = (u, p)h. For this case, we can derive the corresponding
computable bound of the error between (ũ, p̃) and the exact solution. Such a functional error bound is a combination of
a posteriori error estimates for each of the unknowns in (2.7) and (2.8) (see, e.g., [54,63] and references therein).

Remark 2. We note that due to the Korn and Friedrichs inequalities, both ∥ eu ∥
2 and ||| eu |||

2
u are estimated by ∥ ε(eu) ∥2.

oreover, the physical bound on the Lamé parameters is given as d λ + 2µ > 0, in the most general case, allowing for
he first parameter λ to be slightly negative for so-called auxetic materials. In this case, we use the fact that

|||eu |||
2
u:= ∥ ε(eu) ∥2

2µ + ∥ div(eu) ∥2
λ

(7.5)
≤ (2µ + d λ) ∥ ε(eu) ∥2

olds, and work with the positively-weighted norm ∥ ε(eu) ∥2. However, as auxetic materials are rare, this paper will not
onsider such cases. Consequently, the proofs below are based on the non-negative Lamé parameters.

. The fixed-stress splitting scheme

The formal application of the iterative method to (2.7)–(2.8) yields the problem to be solved at the ith iteration step:

(Kτ∇pi, ∇w) + β (pi, w) + α (divui−1, w) = (̃g, w), ∀ w ∈ W0, (3.1)

(2µ ε(ui), ε(v)) + (λ divui, divv) + α (∇pi, v) = (f , v), ∀ v ∈ V 0, (3.2)

here the flow equation (3.1) is solved for pi, using ui−1, and the elasticity equation (3.2) is used to reconstruct ui using
i recovered on the previous step. To obtain the initial data for the iterative procedure, we first set the pressure equal to
he hydrostatic pressure and then obtain u0 solving (3.2). The iterative procedure proposed in (3.1)–(3.2) is known as the
ixed strain, and is only conditionally stable.

To stabilize the iterative scheme (3.1)–(3.2), we consider the ‘fixed-stress splitting approach’, whose properties were
nitially studied in [60] and [57]. This scheme operates with a special quantity: the volumetric mean total stress

ηi
=

α
γ
divui

−
L
γ
pi ∈ W , (3.3)

here γ and L are certain positive tuning parameters. These parameters are usually kept constant on each half-time
tep. The optimal choice of γ and L proves that this iterative scheme is a contraction in the L2-norm ∥δηi

∥
2, where

ηi
:= ηi

− ηi−1. Moreover, it reduces the number of iterations.
By adding L (pi − pi−1) to the right-hand side of (3.1), we rewrite the system (3.1)–(3.2) using the definition (3.3) as

(Kτ∇pi, ∇w) + (β + L)(pi, w) = (̃g − γ ηi−1, w), ∀ w ∈ W0, (3.4)(
2µ ε(ui), ε(v)

)
+ (λ divui, divv) = (f i − α∇pi, v), ∀ v ∈ V 0, (3.5)

ith complemented mixed BCs pi = 0 on Σ
p
D and Kτ∇pi · n = 0 on Σ

p
N as well as ui

= 0 on Σu
D and σ i

por · n = 0 on Σu
N .

Let

δ∇pi := ∇pi − ∇pi−1, ε(δui) := ε(ui) − ε(ui−1), δηi
:= ηi

− ηi−1. (3.6)

Theorem 1 establishes a contraction-type inequality for the norm ∥δηi
∥
2.

Theorem 1 ([57,58]). If γ =
α

√
λ
and L ≥

α2

2 λ
, then the scheme (3.4)–(3.5) is a contraction that satisfies the estimate

∥ε(δui)∥2
2µ + q ∥∇δpi∥2

Kτ
+ ∥δηi

∥
2

≤ q2∥δηi−1
∥
2, q =

L
β+L , (3.7)

where δ∇pi, ε(δui), δηi are defined in (3.6).

Remark 3. The estimates in Theorem 1, satisfying the contraction estimate (3.7), also hold for the Galerkin approximations
{δηh}

i
∈ Wh, where Wh is a discretization space of W . Moreover, in the Appendix, we show that a similar contraction

theorem holds for the sequence {δ(η − ηh)i} ∈ Wh, where ηi
∈ W is the generated by the fixed-stress split iterative

scheme defined in (3.4)–(3.5) and ηi
h ∈ Wh is discretization of the latter sequence. Generally, it is important to note that

all theorems and lemmas below are formulated for a pair (u, p)i ∈ V 0 × W0 that forms a contraction w.r.t. to (u, p)i−1
∈

V 0 × W0 and its discrete approximation (u, p)ih ∈ V 0h × W0h that forms a contraction relative to (u, p)i−1
h ∈ V 0h × W0h.

Remark 4. There exist alternative ways to choose the tuning parameter L. In particular, the physically motivated choice
Lcl =

α2

λ+2µ/d is considered in [60], whereas [58] suggests Lopt =
α2

2 (λ+2µ/d) . The recent study [64] suggests the numerical
vidence on the iteration counts w.r.t. the full range of the Lamé parameters for heterogeneous media. Numerical
nvestigation of the optimality of these parameters and their comparison with physically and mathematically motivated
alues from the literature was done in [65]. The authors demonstrated that their optimal value is dependent not only on
echanical material parameters but also on the boundary conditions and material parameters associated with the fluid

low problem.
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Remark 5. The inequality (3.7) shows that the sequence {δηi
}i∈N is generated by a contractive operator. Therefore, due to

he Banach theorem, it tends to a certain fixed point. Moreover, since all terms on the left-hand side of (3.7) are positive,
n practice, {δηi

}i∈N might converge with an even better contraction rate than q =
L

β+L .

Corollary 1. From Theorem 1, it follows that ∇δpi and ε(δui) in (3.6) are also converging sequences and satisfy

∥∇δpi∥2
Kτ

≤ q∥δηi−1
∥
2 and ∥ε(δui)∥2

2µ ≤ q2∥δηi−1
∥
2,

respectively.

We use Corollary 1 to derive the error estimate for the term ||| ep |||
2
p . In particular, it yields the following result based

on the estimates for the Banach contractive mappings (see [53,54]).

Lemma 1 (Estimates for Contractive Mapping). Let the assumptions of Theorem 1 hold. Then, we have the estimates

∥∇(p − pi)∥2
Kτ

≤
q

(1−q)2
∥δηi−1

∥
2, (3.8)

∥ε(u − ui)∥2µ ≤
q2

(1−q)2
∥δηi−1

∥
2. (3.9)

Proof. Consider

∥∇(pi+m
− pi)∥Kτ ≤ ∥∇(pi+m

− pi+m−1)∥Kτ + . . . + ∥∇(pi+1
− pi)∥Kτ

≤ q (∥ηi+m−1
− ηi+m−2

∥ + . . . + ∥ηi
− ηi−1

∥)

≤ q (qm + . . . + 1)∥ηi
− ηi−1

∥.

y taking the limit m → ∞ and noting that in this case (qm + qm−1
+ · · · + 1) →

1
1−q , we arrive at (3.8). The inequality

(3.9) is proved using similar arguments. □

If in Lemma 1 we consider the iterations i and i − m, i > m as two subsequent iterations, a more general version of
the estimates (3.8) and (3.9) can be formulated.

Lemma 2 (General Estimates for Contractive Mapping). Let the assumptions of Theorem 1 hold. Then, we have the estimates

∥∇(p − pi)∥2
Kτ

≤ min
1≤m≤i

{
qm

(1−qm)2
∥ηi

− ηi−m
∥
2
}
, (3.10)

∥ε(u − ui)∥2µ ≤ min
1≤m≤i

{
q2m

(1−qm)2
∥ηi

− ηi−m
∥
2
}
. (3.11)

Proof. Proof follows along the lines of the proof of Lemma 1 with m = 1, . . . , i. □

emark 6. The estimates in Lemma 2 improve the value of qm

(1−qm)2
and q2m

(1−qm)2
if q is close to 1. At the same time, it might

look counterintuitive, but the choice m = i is not always optimal. As the quotient with q decreases, the term ∥ηi
− η0

∥
2

rows. Therefore, we should choose m carefully. Computing the majorant on each step of our iterative algorithm might
e computationally expensive, therefore, in certain cases, m must be chosen a priori. Alternatively, with several extra
terations after reaching the desired convergence in p and u, both q′

(1−q′)2
with q′ = qm and ∥ηi

− ηi−m
∥
2 will decrease,

impacting total values of the majorant.

Remark 7. Theorem 1 also yields the so-called a priori contractive estimates, i.e.,

∥∇(p − pi)∥2
Kτ

≤
q2i−1

(1−q)2
∥η1

− η0
∥
2, (3.12)

∥ε(u − ui)∥2µ ≤
q2i

(1−q)2
∥η1

− η0
∥
2, (3.13)

which can be used as an alternative upper bound.

4. Main results

Theorem 2 presents the main result of this work, that is an upper bound of the error
⏐⏐[(eu, ep)]⏐⏐ (cf. (2.11)).

Theorem 2 (On Functional Error Estimates). For any pih ∈ W0 and ui
h ∈ V 0, we have the estimates∑ ⏐⏐[(e(n)u , e(n)p )

]⏐⏐ =:
⏐⏐[ep, eu]⏐⏐ ≤ M :=

∑
M

(n)
p + M

(n)
u ,
n=1,...,N n=1,...,N
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here M
(n)
p and M

(n)
u correspond to the error introduced by approximation schemes in each variable p and u, respectively, and

measured by the norms ||| e(n)u |||
2
u and ||| e(n)p |||

2
p . Omitting the suffix (n) for readability and generality, we can formulate both

unctionals as

Mp := 2
(
M

h
p(p

i
h, z

i
h) + min

{
M

i
p,M

i,m
p ,M

:i
p

})
,

Mu := 2
(
M

h
u
(
(u, p)ih, (τ, z)ih

)
+ min

{
M

i
u,M

i,m
u ,M

:i
u

})
,

where M
h
p, M

i
p, M

i,m
p , and M

:i
p are defined in Lemmas 3, 6, Corollary 4, and Lemma 7, respectively, as well as M

h
u, M

i
u, M

i,m
u and

M
:i

u are presented by Lemmas 5, 8, Corollary 5, and Lemma 9, respectively.

The functionals M
h
p and M

h
u are defined in Section 5 by means of functional arguments. They provide the upper

ounds of errors introduced in (3.4)–(3.5) for the ith iteration, when the system is solved numerically. To be precise,
hese error functionals provide a bound between the exact solution (u, p)i = (ui, pi) of (3.4)–(3.5) and its approximation
(u, p)ih = (ui

h, p
i
h). M

h
p and M

h
u are reliable and dependent only on explicitly computable constants, approximations, and

uxiliary functions.
Estimates M

i
p, M

i,m
p , and M

:i
p, as well as M

h
u, M

i
u, and M

:i
u are derived in Section 6 by means of the contraction mappings

stimates [53]. Bounds M
i
p and M

i
u follow naturally from Lemma 1, whereas M

i,m
p and M

i,m
u are derived from a more general

emma 2. Derivation of the functionals M
:i

u and M
:i

u is based on yet another basic property of the contractive operators
3.12)–(3.13) that is highlighted in Remark 7.

Generally, Theorem 2 provides a mathematical tool for reliable error control of approximate solutions of the Biot
roblem in the poroelastic medium. The functional M provides a guaranteed bound of the error in these approximations,
hich is confirmed by numerical examples in Section 7. The set of computational tests is designed to provide an overview
f several important properties of functional error estimates, as well as confirm the universality w.r.t. some of the
arameters coming either from the mathematical model (e.g., permeability, Lame coefficients, etc.) or dictated by the
terative scheme (tuning parameters of the fixed-stress split method).

. Estimates of errors generated by discretization

Before deriving the estimates of approximation errors that appear in the contractive iterative scheme, we need to
tudy the discretization errors encompassed in (3.4)–(3.5) for the ith iteration. Henceforth, the pair (u, p)i = (ui, pi)
is considered as the exact solution of (3.4)–(3.5), whereas (u, p)ih = (ui

h, p
i
h) denotes its approximation computed by a

certain discretization method. We aim to derive computable and reliable estimates of the error measured in the terms
|||eip|||

2
p and |||eiu|||

2
u.

Majorant of the error in the pressure term. For the first equation (3.4), Lemma 3 presents a computable upper bound
of the difference

eip := pi − pih

between the exact solution pi ∈ W0 and its approximation pih ∈ W0, measured in terms of the energy norm ||| eip |||
2
p .

Lemma 3. For any pih ∈ W0, any auxiliary vector-valued function

z ih ∈ HΣ
p
N
(Ω, div) :=

{
z ih ∈ [L(Ω)]d | divz ih ∈ L2(Ω), z ih · n ∈ L2(Σp

N )
}
, (5.1)

nd any parameter ζ ≥ 0, we have the following estimate

∥ ∇eip ∥
2
Kτ

+ ∥ eip∥
2
β =: ||| eip |||

2
p≤ M

h
p(p

i
h, z

i
h; ζ ),

where

M
h
p(p

i
h, z

i
h; ζ ) := (1 + ζ ) ∥rd(pih, z

i
h)∥

2
K

−1
τ

+ (1 +
1
ζ
) Cp

Ω

(
∥req(pih, z

i
h)∥

2
Ω + M

h
q((u, p)1h) + ∥z ih · n∥

2
Σ

p
N

)
. (5.2)

Here,

rd(pih, z
i
h) := z ih −Kτ∇pih, req(pih, z

i
h) := g̃ − γ ηi−1

h − (β + L) pih + divz ih,

here g̃ is defined in (2.6), and

M
h
q :=

(
Cq

(α

γ
M

h, 1/2

p,L2 +
L
γ

M
h, 1/2

u,div

)
+ (Cq + 1) ∥ η0

− η0
h ∥

)2

, Cq :=

i−1∑
qk + 1,
k=1
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where M
h
p,L2 (p

1
h, z

1
h) and M

h
u,div((u, p)1h, τ

1
h, z

1
h), defined in Corollaries 2 and 3, are dependent on the explicitly given η0. The

constant

(Cp
Ω )2 :=

1
(β+L)

(
1 +

(
C tr

Σ
p
N

)2) (5.3)

s defined via the constant in the trace-type inequality

∥ w ∥Σ
p
N

≤ C tr
Σ

p
N

∥ w ∥Ω , ∀w ∈ W0, (5.4)

nd the positive parameters of the Biot model, β and L.

roof. The majorant Mp(pih, z
i
h; ζ ) follows from [66, Section 2] and [54, Section 4.2–4.3], i.e., we consider (3.4) with a

bilinear form (Kτ∇pih, ∇w) + (β + L)(pih, w) subtracted from its left- and right-hand sides

(Kτ∇eip, ∇w) + (β + L) (eip, w) = (̃g − γ ηi−1
− (β + L) pih, w) − (Kτ∇pih, ∇w).

Next, we set w = eip and introduce an auxiliary function z ih ∈ HΣ
p
N
(Ω, div) (cf. (5.1)) satisfying the identity (divz ih, w)Ω +

(z ih, ∇w)Ω = (z ih · n, w)Σp
N
, such that

∥∇eip∥
2
Kτ

+ ∥eip∥
2
β+L = (z ih −Kτ∇pih, ∇eip) + (̃g − γ ηi−1

− (β + L) pih + divz ih, e
i
p) − (z ih · n, eip)Σp

N

= (rd(pih, z
i
h), ∇eip) + (̃req(pih, z

i
h), e

i
p) − (z ih · n, eip)Σp

N
, (5.5)

here r̃eq(pih, z
i
h) := g̃ − γ ηi−1

− (β + L) pih + divz ih. Using the Hölder and Young inequalities, we can estimate the first
erm on the right-hand side of (5.5) as

(rd(pih, z
i
h), ∇eip) ≤

1
2 (1 + ζ ) ∥rd(pih, z

i
h)∥

2
K

−1
τ

+
1

2(1+ζ ) ∥∇eip∥
2
Kτ

. (5.6)

The second term on the right-hand side of (5.5) is bounded analogously, i.e.,

(̃req(pih, z
i
h), e

i
p) − (z ih · n, eip)Σp

N
≤

1
2 (1 +

1
ζ
) (Cp

Ω )2(∥̃req(pih, z
i
h)∥

2
+ ∥z ih · n∥

2
Σ

p
N
) +

1
2

ζ

1+ζ
∥eip∥

2
β+L, (5.7)

here Cp
Ω (cf. (5.3)) is a constant in the inequality

∥w∥
2
+ ∥w∥

2
Σ

p
N

≤ (Cp
Ω )2 ∥w∥

2
β+L, ∀w ∈ W0,

defined in (5.4). By summing up the results of (5.6) and (5.7), we obtain

∥∇eip∥
2
Kτ

+ ∥eip∥
2
β ≤ ∥∇eip∥

2
Kτ

+ ∥eip∥
2
β+L

≤ (1 + ζ ) ∥rd(pih, z
i
h)∥

2
K

−1
τ

+ (1 +
1
ζ
) (Cp

Ω )2(∥̃req(pih, z
i
h)∥

2
+ ∥z ih · n∥

2
Σ

p
N
). (5.8)

t this point, the term ∥̃req(pih, z
i
h)∥

2 is not fully computable in the usual sense of functional majorants since it is defined
sing ηi−1. However, it can be estimated by

∥̃req(pih, z
i
h)∥

2
≤ ∥̃g − γ ηi−1

− (β + L) pih + divz ih∥
2

≤ 2∥̃g − γ ηi−1
h − (β + L) pih + divz ih∥

2
+ 2γ 2

∥ηi−1
− ηi−1

h ∥
2

≤ 2∥req(pih, z
i
h)∥

2
+ 2γ 2

∥ηi−1
− ηi−1

h ∥
2. (5.9)

onsider the norm ∥ηi−1
− ηi−1

h ∥ (without the squares) and apply an approach similar to the one that was used to prove
emma 1

∥ηi
− ηi

h∥ ≤

i−1∑
k=1

∥ δηk
− δηk

h ∥ + ∥ η0
− η0

h ∥
Theorem 4

≤ (qi−1
+ . . . + 1) ∥ δη1

− δη1
h ∥ + ∥ η0

− η0
h ∥

≤

( i−1∑
k=1

qk + 1
)

∥ δη1
− δη1

h ∥ + ∥ η0
− η0

h ∥

≤

( i−1∑
k=1

qk + 1
) (

∥ η1
− η1

h ∥ + ∥ η0
− η0

h ∥
)
+ ∥ η0

− η0
h ∥

≤ C ∥ η1
− η1

∥ + (C + 1) ∥ η0
− η0

∥.
q h q h
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L

ere, ∥ η0
− η0

h ∥ is a computable term, whereas ∥η1
− η1

h∥
2 is controlled by a combination of majorants M

h
p,L2 (p

1
h, z

1
h) and

M
h
u,div((u, p)1h, τ

1
h, z

1
h) defined in Corollaries 2 and 3 and containing the computable quantity η0

:=
α
γ
divu0

−
L
γ
p0., i.e.,

∥η1
− η1

h∥ ≤
α

γ
∥ div(u1

− u1
h) ∥ +

L
γ

∥ p1 − p1h ∥ ≤
α

γ

(
M

h
p,L2 (p

1
h, z

1
h; ζ )

)1/2
+

L
γ

(
M

h
u,div((u, p)1h, τ

1
h, z

1
h)
)1/2

. (5.10)

This yields that

∥ηi
− ηi

h∥
2

≤ M
h
q :=

(
Cq

(α

γ
M

h, 1/2

p,L2 +
L
γ

M
h, 1/2

u,div

)
+ (Cq + 1) ∥ η0

− η0
h ∥

)2

(5.11)

The combination of (5.9) and (5.11) yields

∥∇eip∥
2
Kτ

+ ∥eip∥
2
β ≤ (1 + ζ ) ∥rd(pih, z

i
h)∥

2
K

−1
τ

+ (1 +
1
ζ
) (Cp

Ω )2(2∥req(pih, z
i
h)∥

2
+ M

h
q((u, p)1h) + ∥z ih · n∥

2
Σ

p
N
). □

Remark 8. Numerical reconstruction of the majorant involves several steps. They are determined by the accuracy
requirements imposed on the upper bound of the error. To generate guaranteed bounds with the realistic efficiency index
Ieff(Mp) :=

Mp

||| pi−pih |||
2
p
, we can reconstruct z ih from ∇pih (where pih is approximated by the chosen discretization method

ecovering the exact solution of (3.4)). However, to obtain the sharpest estimate, the functional Mp must be optimized
.r.t. z ih and ζ iteratively. This generates an auxiliary variational problem w.r.t. the vector-valued function z ih.
Alternatively, one can consider a mixed formulation of (3.4) and reconstruct the pair (pih, z

i
h) using one of the well-

eveloped mixed methods [67,68], simultaneously. Then both variables required for the reconstruction of Mp are directly
omputable, and no additional post-processing (computational overhead) is required.

The majorant in Lemma 3 yields an estimate of the eip measured in terms of L2-norm.

orollary 2. For any pih ∈ W0, any auxiliary functions and parameters defined in Lemma 3, the estimate

∥eip∥
2

≤ M
h
p,L2 (p

i
h, z

i
h; ζ ) :=

(
τ λK

(
CF

Σ
p
D

)−2
+ β

)−1
M

h
p(p

i
h, z

i
h; ζ ) (5.12)

olds, where M
h
p(p

i
h, z

i
h; ζ ) is defined in (5.2), CF

Σ
p
D
is a constant in the Friedrichs inequality (cf. (7.2)), and λK is the minimum

igenvalue of the permeability tensor (cf. (1.2)).

roof. By means of the Friedrichs inequality and (1.2), we obtain

|||eip|||
2
p≥ τ λK

(
CF

Σ
p
D

)−2
∥eip∥

2
+ ∥eip∥

2
β ≥

(
τ λK

(
CF

Σ
p
D

)−2
+ β

)
∥ eip ∥

2. (5.13)

y combining (5.13) and (5.2), we arrive at (5.12). □

ajorant of the error in the displacement term. The current section considers estimates for the error

eiu := ui
− ui

h (5.14)

etween the exact solution ui
∈ V 0 and its respective approximation ui

h ∈ V 0, measured in terms of the energy norm
|| · |||

2
u (cf. (2.10)). Since pih is, in fact, used instead of pi, the original problem (3.5) is replaced by

2µ
(
ε(ũi), ε(v)

)
+ λ(divũi

, divv) = (f i − α∇pih, v), ∀ v ∈ V 0, (5.15)

ith a perturbed right-hand side. Therefore, ui
h is an approximation of ũi instead of ui. In other words, eiu is composed

f the error arising due to the original problem is replaced by (5.15), i.e., ui
− ũi, and the error ũi

− ui
h arising because

5.15) is solved approximately. By means of the triangle inequality, eiu can be estimated by the above-described errors as
ollows:

∥ ε(eiu) ∥
2
2µ + ∥ div(eiu) ∥

2
λ =: |||eiu|||

2
u≤ 2 ||| ui

− ũi
|||
2
u+2 ||| ũi

− ui
h |||

2
u. (5.16)

ere, ||| ũi
− ui

h |||
2
u can be estimated by a functional majorant for a class of elasticity problems (see Lemma 4), whereas

|| ui
− ũi

|||
2
u is controlled by the bound following from the difference of model problems (3.5) and (5.15) (see Lemma 5).

emma 4. For any ui
h ∈ V 0 approximating ũi in (5.15), any auxiliary tensor-valued function

τ i
∈ [T (Ω)]d×d

:=

{
τ i

∈ [L2(Ω)]d×d
⏐⏐ Divτ i

∈ [L2(Ω)]d, τ i
· n ∈ L2(Σu)

}
,
h Div h h h N
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and any parameter ξ ≥ 0, we have the estimate

∥ε(ũi
− ui

h)∥
2
2µ + ∥div(ũi

− ui
h)∥

2
λ =: |||ũi

− ui
h|||

2
u≤ Mũ((u, p)ih, τ

i
h)

:= (1 + ξ )
∫

Ω

rd(pih, τ
i
h)dx + (1 +

1
ξ
) Cu

Ω

(
∥req(pih, τ

i
h)∥

2
Ω + ∥τ i

h · n∥
2
Σu

N

)
,

(5.17)

here
req(pih, τ

i
h) := f i − α∇pih + Divτ i

h,

rd,µ,λ(ui
h, τ

i
h) := 2µ |ε(ui

h)|
2
+ λ |divui

h|
2
+

1
2µ (|τ i

h|
2
−

λ
3λ+2µ |divτ i

h|
2
) − 2 ε(ui

h) : τ i,
(5.18)

, α, µ, λ are the characteristics of the Biot model, and

Cu
Ω := CK (1 + C tr

Σu
N

)
(5.19)

s defined through the constants C tr
Σu

N
and CK in the trace-type and the Korn first inequalities

∥ w ∥Σu
N

≤ C tr
Σu

N
∥w∥[H1(Ω)]d and ∥w∥[H1(Ω)]d ≤ CK

∥ε(w)∥[L2(Ω)]d×d ∀w ∈ V 0, (5.20)

respectively.

Proof. To simplify the exposition, let us assume the following representation of the elasticity tensor

L ε(u) := 2µ ε(u) + λ div(u). (5.21)

Then, the derivation of an a posteriori error estimate for the problem(
L ε(ũi), ε(v)

)
= (f i − α∇pih, v), ∀ v ∈ V 0, (5.22)

follows the lines presented in [54, Section 5.2]. In particular, considering an approximation ui
h ∈ V 0, we subtract the

ilinear form
(
Lε(ui

h), ε(v)
)
from the left- and right-hand sides of (5.22) and set v = ũi

− ui
h to obtain(

L ε(ũi
− ui

h), ε(ũ
i
− ui

h)
)

= (f i − α∇pih, v) −
(
L ε(u), ε(ũi

− ui
h)
)
. (5.23)

ext, we set v = ũi
− ui

h and add the divergence of the tensor-valued function τ i
h ∈ [TDiv(Ω)]d×d, i.e.,

(Divτ i
h, v) + (τ i

h, ε(v)) = (τ i
h · n, v)Σu

N
, ∀v ∈ V 0, (5.24)

nto the left- and right-hand sides of (5.23), which results in the identity(
L ε(ũi

− ui
h), ε(ũ

i
− ui

h)
)

=
(
rd,L(ui

h, τ
i
h), ε(ũ

i
− ui

h)
)
+ (req(pih, τ

i
h), ũ

i
− ui

h) − (τ i
h · n, ũi

− ui
h)Σu

N
, (5.25)

where

rd,L(ui
h, τ

i
h) := τ i

h − L ε(ui
h)

and req(pih, τ
i
h) is defined (5.18). By means of the Hölder and Young inequalities, the first term on the right-hand side of

(5.23) can be estimated as(
rd,L(ui

h, τ
i
h), ε(ũ

i
− ui

h)
)

≤ ∥rd,L(ui
h, τ

i
h)∥L−1∥ε(ũi

− ui
h)∥L ≤

α1
2 ∥rd(ui

h, τ
i
h)∥

2
L−1 +

1
2α1

∥ε(ũi
− ui

h)∥
2
L

The second and third terms are combined and estimated as follows

(req(pih, τ
i
h), ũ

i
− ui

h) − (τ i
h · n, ũi

− ui
h)Σu

N
≤

α2
2 (Cu

Ω )2 (∥req(pih, τ
i
h)∥

2
+ ∥τ i

h · n∥
2
Σu

N
) +

1
2α2

∥ε(ũi
− ui

h)∥
2
L

here Cu
Ω (cf. (5.19)) is a constant in

∥ũi
− ui

h∥
2
+ ∥ũi

− ui
h∥

2
Σu

N
≤ (Cu

Ω )2∥ε(ũi
− ui

h)∥
2
L

defined through the constants CK and C tr
Σu

N
in the Korn and trace inequalities defined in (7.4) and (7.3), respectively. By

choosing parameters α1 = (ξ + 1), α2 = (1 +
1
ξ
), where ξ > 0, we arrive at

∥ε(ũi
− ui

h)∥L ≤ (1 + ξ ) ∥rd,L(ui
h, τ

i
h)∥

2
L−1 + (1 +

1
ξ
) (Cu

Ω )2
(
∥req(pih, τ

i
h)∥

2
+ ∥τ i

h · n∥
2
Σu

N

)
. (5.26)

Consider now (5.21) and the tensor L−1τ i
h representation through the Lame parameters, i.e.,

L
−1τ i

h :=
1
2µ

(
τ i
h −

λ
3λ+2µdivτ

i
hI
)
.

hen, the first term on the right-hand side of (5.26) can be rewritten as

L
−1rd,L(ui

h, τ
i
h) : rd,L(ui

h, τ
i
h) =

(
L

−1τ i
h − ε(ui

h)
)

:
(
τ i
h − Lε(ui

h)
)

i 2 i 2 1 i 2 λ i 2 i i

= 2µ |ε(uh)| + λ |divuh| + 2µ (|τh| − 3λ+2µ |divτh| ) − 2 ε(uh) : τ =: rd,µ,λ. (5.27)
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aking the latter into account, we arrive at an alternative estimate

∥ε(ũi
− ui

h)∥
2
2µ + ∥div(ũi

− ui
h)∥

2
λ

≤ (1 + ξ )
∫

Ω

rd,µ,λ(ui
h, τ

i
h)dx + (1 +

1
ξ
) (Cu

Ω )2
(
∥req(pih, τ

i
h)∥

2
+ ∥τ i

h · n∥
2
Σu

N

)
, (5.28)

where rd,µ,λ(ui
h, τ

i
h) in defined in (5.27) and τ i

h is an auxiliary stress approximating function reconstructed with respect
to ui

h. □

Remark 9. We note the choice of an auxiliary tensor-function providing the optimal values of the error estimate is
τ⋆
h := Lε(ũi) := 2µε(ũi)+λdiv(ũi)I. In this case, we can show that the equilibration residual req(pih, τ

i
h) vanishes, and the

dual one provides the exact representation of the error.

Lemma 5 proceeds with the estimation of eiu (cf. (5.14)), accounting for the error that arises if (3.5) is replaced by
(5.15).

Lemma 5. For any pih ∈ W0, any ui
h ∈ V 0 approximating ũi in (5.15), and any z ih ∈ HΣ

p
N
(Ω, div) and τ i

h ∈ [TDiv(Ω)]d×d, the
estimate

||| eiu |||
2
u≤ M

h
u((u, p)ih, (τ, z)ih) :=

2 λ η2 α2

2χ λ−1 M
h
p,L2 (p

i
h, z

i
h) + 2Mũ((u, p)ih, τ

i
h) (5.29)

olds, where ζ ≥ 0 and χ ∈ [
1
2 λ

, +∞). Here, Mp,L2 and Mũ are defined in (5.12) and (5.17), respectively, and α and λ are
he characteristics of the Biot model.

roof. As noted in (5.16), the error is two-folded and composed from ∥ ui
− ũi

∥
2
u and ∥ ũi

−ui
h ∥

2
u, where the second term

s controlled by (5.17) in Lemma 4. The estimate of the first term is derived by considering the difference of (3.5) and
5.15), i.e.,

2µ (ε(ui
− ũi), ε(v)) + λ(div(ui

− ũi), divv) = −α(pi − pih, divv).

y choosing v = ui
− ũi, we obtain the identity

∥ε(ui
− ũi)∥2

2µ + ∥ div(ui
− ũi) ∥2

λ = −α(pi − pih, div(u
i
− ũi)).

he latter can be estimated from above by the Cauchy inequality, which yields

∥ε(eiu)∥
2
2µ + ∥ div(eiu) ∥

2
λ ≤ α∥eip∥∥div(e

i
u)∥.

y using the Young inequality with χ ≥
1
2λ , we arrive at

∥ε(ui
− ũi)∥2

2µ + (λ −
1
2χ

) ∥ div(ui
− ũi) ∥2

≤
χ

2 α2
∥pi − pih∥

2. (5.30)

According to Corollary 2, the linear combination in (5.30) can be estimated as

∥ε(ui
− ũi)∥2

2µ + (λ −
1
2χ

) ∥ div(ui
− ũi) ∥2

≤
χ α2

2 Mp,L2 (p
i
h).

By using

∥ε(ui
− ũi)∥2

2µ + ∥ div(ui
− ũi) ∥2

λ ≤
2χ λ

2χ λ−1

(
∥ε(ui

− ũi)∥2
2µ + (λ −

1
2χ

) ∥ div(ui
− ũi) ∥2

)
,

e obtain

|||ui
− ũi

|||
2
u≤

λ χ2 α2

2χ λ−1 Mp,L2 (p
i
h). (5.31)

Combining (5.17) and (5.31), we arrive at

∥ ε(eiu) ∥
2
2µ + ∥ div(eiu) ∥

2
λ ≤

2 λ χ2 α2

2χ λ−1 Mp,L2 (p
i
h) + 2Mũ(ui

h, p
i
h). □ (5.32)

In addition to (5.17), we can obtain the estimate for the error measured in terms of ∥div · ∥
2-norm.

orollary 3. For any pih ∈ W0, any ui
h ∈ V 0 approximating ũi in (5.15), as well as any parameters and functions defined in

emma 5, we have

∥ div(eiu) ∥
2

≤ M
h
u,div((u, p)ih, τ

i
h, z

i
h) :=

1
(2µ d+λ)

(
2 λ η2 α2

2 η λ−1 Mp,L2 (p
i
h, z

i
h) + Mũ((u, p)ih, τ

i
h)
)
, (5.33)

where Mp(pih, z
i
h) and Mũ((u, p)ih, τ

i
h) are defined in (5.12) and (5.17) for any z ih ∈ HΣ

p
N
(Ω, div) and τ i

h ∈ [TDiv(Ω)]d×d,
respectively, and µ is a characteristic of the Biot model.
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Proof. By using the inequality (7.5) and substituting it in (5.17), we arrive at

(2µ d + λ)∥ div(eiu) ∥
2

≤ Mu,div(pih, z
i
h; ζ ) =

2 λ η2 α2

2 η λ−1 Mp,L2 (p
i
h) + 2Mũ((u, p)ih, τ

i
h). □

6. Estimates of the errors generated by the iterative method

Next, we consider the guaranteed bounds of errors arising in the process of contractive iterations (3.4)–(3.5) applied
to the system (2.7)–(2.8).

Error estimates for the pressure term. First, we confirm the following result for the error in the flow equation, which
can be done in two different ways. For Lemma 6, we consider the functions pih, p

i−1
h ∈ W0 as approximations of two

consequent pressures associated with the iterations i and i − 1, whereas ui
h, u

i−1
h ∈ V 0 are the approximations of ũi and

ũi−1
∈ V 0 in (5.15), respectively. From now on, when we refer to both dual variables z ih and τ i

h corresponding to the ith
iteration step, we refer to them as a pair (τ, z)ih.

Lemma 6. For pi, pi−1
∈ W0 approximating p ∈ W0 in (2.8), the estimate of the error incorporated in the pressure term at

the ith iteration step has the following form

||| p − pi |||2p ≤ M
i
p

(
(u, p)i−1

h , (τ, z)i−1
h , (u, p)ih, (τ, z)ih

)
:=

3 q
1−q2

( (
CF
Σ
p
D

)2
β

λK τ
+ 1

) (
∥ηi

h − ηi−1
h ∥

2

+
λ
2

(
M

h
u,div((u, p)ih, (τ, z)ih) + M

h
u,div((u, p)i−1

h , (τ, z)i−1
h )

)
+

L
4

(
M

h
p,L2 (p

i
h, z

i
h) + M

h
p,L2 (p

i−1
h , z i−1)

) )
,

(6.1)

where M
h
u,div and M

h
p,L2 are defined in Corollaries 2 and 3 with τ i

h ∈ [TDiv(Ω)]d×d and z ih ∈ HΣ
p
N
(Ω, div), respectively, q =

L
β+L ,

and

ηi
h =

α
γ
divui

h −
L
γ
pih, L ≥

α2

2 λ
, ∀pih ∈ W0, ui

h ∈ V 0.

Parameters α, β , λ, µf , CF
Σ

p
D
, λK, and τ are the characteristics of the semi-discrete Biot model (3.2)–(3.1).

Proof. We begin by noting that for the error p − pi caused by the iterative scheme, we have the estimate

||| p − pi |||2p= ∥ p − pi ∥2
β + ∥ ∇(p − pi) ∥2

Kτ

(7.2)
≤

( (
CF
Σ
p
D

)2
β

λK τ
+ 1

)
∥ ∇(p − pi) ∥2

Kτ
. (6.2)

The estimate of ∥ ∇(p − pi) ∥2
Kτ

follows from (3.8). To proceed, we need to estimate the right-hand side of (3.8), namely
∥ηi

− ηi−1
∥
2. By adding and extracting the discretized approximations ηi−1

h and ηi
h, we obtain

∥ηi
− ηi−1

∥
2

≤ 3
(
∥ηi

h − ηi−1
h ∥

2
+ ∥ηi

− ηi
h∥

2
+ ∥ηi−1

− ηi−1
h ∥

2). (6.3)

Here, the first term ∥ηi
h − ηi−1

h ∥
2 is fully computable, and by means of the relation

ηi
=

1
γ
(α divui

− Lpi),

we obtain the estimate for the second and third terms:

∥ηi
− ηi

h∥
2

≤
1

2γ 2

(
α2

∥div(eiu)∥
2
+ L2∥eip∥

2) (5.12), (5.33)
≤

1
2γ 2

(
α2 M

h
u,div(p

i
h) + L2 M

h
p,L2 (p

i
h)
)
.

To simplify, we exclude the parameter γ by substituting γ 2
= 2 L:

∥ηi−1
− ηi−1

h ∥
2

≤
1
4 L

(
α2 M

h
u,div(p

i−1
h ) + L2 M

h
p,L2 (p

i−1
h )

)
. (6.4)

herefore, the estimate of ||| p − pi |||2p can be represented as follows

||| p − pi |||2p ≤ M
i
p :=

( (CF
Σ
p
D

)2
β

λK τ
+ 1

)
3 q

1−q2

{
∥ηi

h − ηi−1
h ∥

2

+
1
4 L

(
α2 (Mh

u,div(p
i
h) + M

h
u,div(p

i−1
h )

)
+ L2

(
M

h
p,L2 (p

i
h) + M

h
p,L2 (p

i−1
h )

))}
. (6.5)

Finally, by substituting λ =
α2

2 L in (6.5), we arrive at (6.1). □
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orollary 4. Let the conditions of Lemmas 2 and 6 hold. Then, for 1 ≤ m ≤ i, the estimate of the error incorporated in the
pressure term on the ith iteration step has an alternative form

||| p − pi |||2p ≤ M
i,m
p

(
(u, p)i−m

h , (τ, z)i−m
h , (u, p)ih, (τ, z)ih

)
:=

3 qm

1−q2m

( (
CF
Σ
p
D

)2
β

λK τ
+ 1

) (
∥ηi

h − ηi−m
h ∥

2

+
λ
2

(
M

h
u,div((u, p)ih, (τ, z)ih) + M

h
u,div((u, p)i−m

h , (τ, z)i−m
h )

)
+

L
4

(
M

h
p,L2 (p

i
h, z

i
h) + M

h
p,L2 (p

i−m
h , z i−m)

) )
.

(6.6)

Alternatively, the norm on the left-hand side of (6.3) can be estimated by the contractive estimate, which results in
an alternative error bound independent of functional majorants. This result is presented below.

Lemma 7. For any pi ∈ W0 approximating p ∈ W0 in (2.8), the estimate of the error incorporated in the pressure term at the
ith iteration step has the following form

||| p − pi |||2p ≤ M
: i

p

(
η1
h, η

0
h

)
:=

( (
CF
Σ
p
D

)2
β

λK τ
+ 1

)
3 q2i−1

1−q2(α2

γ 2M
h
p,L2 (p

1
h) +

L2

γ 2 M
h
u,div((u, p)1h) + ∥η0

− η0
h∥

2
+ ∥η1

h − η0
h∥

2
)
,

(6.7)

where

q =
L

β+L , ηi
h =

α
γ
divui

h −
L
γ
pih, L ≥

α2

2 λ
, ∀pih ∈ W0h, ui

h ∈ V 0h,

and M
h
u,div and M

h
p,L2 are defined in Corollaries 2 and 3. Parameters α, β , λ, µf , CF

Σ
p
D
, λK, and τ are the characteristics of the

emi-discrete Biot model (3.1)–(3.2).

roof. We use the inequality (6.2), to obtain

||| p − pi |||2p ≤

( (CF
Σ
p
D
)2 β

λK τ
+ 1

)
q

1−q2
∥ηi

− ηi−1
∥
2. (6.8)

However, in this proof, we use a priori estimates for the sequence {δηi
} to obtain

∥ηi
− ηi−1

∥
2

≤ q2(i−1)
∥η1

− η0
∥
2

≤ q2(i−1) (3∥η1
− η1

h∥
2
+ 3∥η0

− η0
∥
2
+ 3∥η1

h − η0
h∥

2), (6.9)

where all terms on the right-hand side except ∥η1
−η1

h∥
2 are computable. As in Lemma 3, ∥η1

−η1
h∥

2 is controlled by the
ombination of M

h
p,L2 (p

1
h, z

1
h; ζ ) and M

h
u,div((u, p)1h, τ

1
h, z

1
h), i.e.,

∥η1
− η1

h∥
2

≤
α2

γ 2 ∥ div(u1
− u1

h) ∥
2
+

L2

γ 2 ∥ p1 − p1h ∥
2

≤
α2

γ 2M
h
p,L2 (p

1
h, z

1
h; ζ ) +

L2

γ 2 M
h
u,div((u, p)1h, τ

1
h, z

1
h), (6.10)

where the right-hand side contains a computable η0
:=

α
γ
divu0

−
L
γ
p0. Combining (6.8), (6.9), and (6.10), we arrive at

||| p − pi |||2p≤
( (CF

Σ
p
D
)2 β

λK τ
+ 1

)
3 q2i−1

1−q2

(α2

γ 2M
h
p,L2 (p

1
h) +

L2

γ 2 M
h
u,div((u, p)1h) + ∥η0

− η0
h∥

2
+ ∥η1

h − η0
h∥

2
)
. □

Error estimates for the displacement term. To derive the upper bound for the error u − ui measured in terms of

||| u − ui
|||
2
u:= ∥ ε(u − ui) ∥2

2µ + ∥ div(u − ui) ∥2
λ, (6.11)

we draw on the idea similar to the one used to estimate the error in the pressure term.

Lemma 8. For any ui, ui−1
∈ V 0 approximating u ∈ V 0 in (2.7), the error in the displacement at the ith iteration step has

he following form

||| u − ui
|||
2
u ≤ M

i
u
(
(u, p)i−1

h , (τ, z)i−1
h , (u, p)ih, (τ, z)ih

)
:= (1 +

d λ
2µ )

3 q2

1−q2

(
∥ηi

h − ηi−1
h ∥

+
λ
2

(
M

h
u,div((u, p)ih, (τ, z)ih) + M

h
u,div((u, p)i−1

h , (τ, z)i−1
h )

)
+

L (Mh
2 (pi , z i ) + M

h
2 (pi−1, z i−1)

) )
,

(6.12)
4 p,L h h p,L h
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where M
h
u,div and M

h
p,L2 are defined in Corollaries 2 and 3 for z ih, z

i−1
h ∈ HΣ

p
N
(Ω, div) and τ i

h, τ
i−1
h ∈ [TDiv(Ω)]d×d, respectively,

=
L

β+L , and

ηi
h =

α
γ
divui

h −
L
γ
pih, L =

α2

2 λ
, ∀pih ∈ W0, ui

h ∈ V 0.

Parameters λ, µ, α are the characteristics of the Biot model.

Proof. We consider

||| u − ui
|||
2
u ≤

(
2µ + d λ

)
∥ ε(eu) ∥2, (6.13)

where the right-hand side is controlled by the contractive term ∥η − ηi
∥
2, which follows from (3.9). Therefore, we obtain

||| u − ui
|||
2
u ≤

2µ+d λ

2µ
q2

1−q2
∥ηi

− ηi−1
∥
2

≤
2µ+d λ

2µ
3 q2

1−q2
(
∥ηi

− ηi
h∥

2
+ ∥ηi−1

− ηi−1
h ∥

2
+ ∥ηi

h − ηi−1
h ∥

2). (6.14)

Similar to the proof of Lemma 6 (cf. (6.4)), the estimate for the second term in (6.14) results in

||| u − ui
|||
2
u ≤ M

i
u :=

(
1 +

d λ
2µ

) 3 q2

1−q2

(
∥ηi

h − ηi−1
h ∥

+
1
4 L

(
α2 (Mh

u,div(p
i
h, z

i
h) + M

h
u,div(p

i−1
h , z i−1)

)
+ L2

(
M

h
p,L2 (p

i
h, z

i
h) + M

h
p,L2 (p

i−1
h , z i−1)

)) )
. (6.15)

Again, by substituting λ =
α2

2 L in (6.15), we arrive at (6.12)). □

Corollary 5. Let the conditions of Lemmas 2 and 8 hold. Then, for 1 ≤ m ≤ i, the error in the displacement at the ith iteration
step has an alternative form

||| u − ui
|||
2
u ≤ M

i,m
u
(
(u, p)i−m

h , (τ, z)i−m
h , (u, p)ih, (τ, z)ih

)
:=
(
1 +

d λ
2µ

) 3 q2m

1−q2m

(
∥ηi

h − ηi−m
h ∥

+
λ
2

(
M

h
u,div((u, p)ih, (τ, z)ih) + M

h
u,div((u, p)i−m

h , (τ, z)i−m
h )

)
+

L
4

(
M

h
p,L2 (p

i
h, z

i
h) + M

h
p,L2 (p

i−m
h , z i−m)

) )
.

(6.16)

Analogously, we can use contraction properties to derive an alternative bound of the error u − ui.

emma 9. For any ui
∈ V 0 approximating u ∈ V 0 in (2.7), the error in the displacement at the ith iteration step has the

ollowing form

||| u − ui
|||
2
u ≤ M

:i
u
(
η1
h, η

0
h

)
:=

2µ+d λ

2µ
3 q2i

1−q2

(α2

γ 2M
h
p,L2 (p

1
h) +

L2

γ 2 M
h
u,div((u, p)1h) + ∥η0

− η0
h∥

2
+ ∥η1

h − η0
h∥

2
)
, (6.17)

where

q =
L

β+L , ηi
h =

α
γ
divui

h −
L
γ
pih, L =

α2

2 λ
, ∀pih ∈ W0, ui

h ∈ V 0,

and M
h
u,div and M

h
p,L2 are defined in Corollaries 2 and 3. Parameters λ, µ, α are the characteristics of the Biot model.

roof. The derivation consists of combining ||| u − ui
|||
2
u≤

2µ+d λ

2µ
q2

1−q2
∥ηi

− ηi−1
∥
2, (6.9), and (6.10). □

General estimate of the error in the iterative coupling scheme. To derive a reliable estimate of the error in the pressure
approximation reconstructed at the ith iteration, we combine two different approaches, i.e., estimates for contractive
mapping used for iterative methods and functional error estimates. Theorem 3 presents an upper bound of the error in
the pressure term, which combines the above-mentioned approaches.

Theorem 3. For any pih ∈ W0 and ui
h ∈ V 0 that form a contraction relative to pi−1

h ∈ W0 and ui−1
h ∈ V 0, we have the

estimates

||| ep |||
2
p ≤ Mp := 2

(
M

h
p(p

i
h, z

i
h) + min

{
M

i
p,M

i,m
p ,M

:i
p

})
,

||| eu |||
2
u ≤ Mu := 2

(
M

h
u
(
(u, p)ih, (τ, z)ih

)
+ min

{
M

i
u,M

i,m
u ,M

:i
u

})
.

Here, M
h
p, M

i
p, M

i,m
p , and M

:i
p are defined in Lemmas 3, 6, Corollary 4, and Lemma 7, whereas M

h
u, M

i
u, M

i,m
u , and M

:i
u are

presented by Lemmas 5, 8, Corollary 5, and Lemma 9, respectively, where pi−1
h ∈ W0, ui−1

h ∈ V 0, z ih, z
i−1

∈ HΣ
p
N
(Ω, div),

τ i , τ i−1
∈ [T (Ω)]d×d, and the parameter ζ ≥ 0.
h Div
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roof. To decompose the error ||| ep |||
2
p into two parts, we apply the triangle inequality

||| ep |||
2
p= ||| p − pih |||

2
p≤ 2

(
||| p − pi |||2p+||| pi − pih |||

2
p

)
. (6.18)

The first term on the right-hand side of (6.18) is bounded by (6.1) from Lemma 6, whereas the second term is controlled
by (5.2) from Lemma 3. Analogously, using the triangle rule, we obtain

||| eu |||
2
u= ||| u − ui

h |||
2
u≤ 2

(
||| u − ui

|||
2
u+||| ui

− ui
h |||

2
u
)
. (6.19)

The first term on the right-hand side of (6.19) is controlled by (6.12), (6.16), or (6.17), whereas the estimate of the
second term follows from (5.17). □

7. Numerical examples

Numerical properties of the estimates above are explained in the following series of examples. We consider three
tests with manufactured solutions for pressure and displacement. First two tests correspond to different values of the
contraction parameter q in the fixed-stress scheme and study the efficiency of error estimators. For both of them, we
consider the material properties (permeability, the Lame coefficients, etc.) that are more academic as well as more realistic.
The third test (with non-polynomial exact solutions) is considered in order to exclude the effect of the super-convergence
while testing the numerical scheme. We solve the Biot model at each moment in time, using the fixed-stress scheme
by choosing different mesh sizes and time steps. Moreover, we vary finite element pairs used for solving the variational
problem. All these alterations, including material properties, discretization parameters, and the finite element pairs, allow
us to study the performance of the estimators and show their robustness. Besides, the first and third examples include
the comparison of the CPU cost needed to solve (3.4)–(3.5) for pressure and displacement and of the time effort spend
on the reliable error control for each variable.

In each test below, we study the convergence of the numerical scheme applied to the solver (3.4)–(3.5) for chosen
discretization time step and spatial mesh size. The errors are computed by employing different norms, the total error
norm, including the pair of unknowns, as well as the individual ones in both L2 and the energy norms. We fix the
umber of fixed-stress iterations to study the convergence. The majorants M

h
p and M

h
u are either directly computed or

inimized w.r.t. to the auxiliary functions. To characterize the efficiency of all above-mentioned error estimators, we use
so-called efficiency index defined as Ieff := M/|||e|||2, where M is a chosen majorant and |||e|||2 is the error measured in

he corresponding norm. We study individual contributions of different terms to the majorants, namely of the dual term
nd the reliability/equilibration term. We demonstrate that the first one provides quantitatively efficient error indicators,
hereas the small contribution of the second one ensures the reliability of total error bounds. We also highlight the
ontributor of iterative majorants M

i
p and M

i,m
p into the total error bounds for various ranges of contraction parameter q.

In particular, the second example considers a set of parameters resulting in q close to 1 and highlights the quantitative
improvement of the total error bound when M

i,m
p is used instead of M

i
p.

For the readers’ convenience, the time steps below are stated in seconds [s], and the spatial discretization steps are
easured in meters [m]. We also assume that Ω := (0, 1)2 ∈ R2, T = 10 throughout all the examples.

Example 1. Verification of majorants’ properties on simple manufactured solution (w.r.t. two different sets of
parameters). First, we consider an example with polynomial manufactured solution, in which we clarify the process of
both discretization and iterative error estimates calculation as well as highlight the most important properties of the
introduced majorants. Therefore, we start with relatively simple material parameters that will be changed at the end of
the example to test more realistic scenarios.

Let the exact solution of (1.1) be defined as

u(x, y, t) := t x (1 − x) y (1 − y) [1, 1]T and p(x, y, t) := t x (1 − x) y (1 − y).

he Lame parameters are µ = λvol = 1, which leads to λplane =
2 λvol µ
λvol+2µ

=
2
3 . We set α = β = 1, CF =

1
√
2π

, and K [mD/cP]

is a unit tensor. From the parameters above, it follows that L =
α2

2 (λ+2µ/d) = 0.3 and q =
L

β+L =
3
13 ≈ 0.23077. Taking

into account that the error estimates depend on the term q2

(1−q2)
, which goes to infinity as q goes to 1, the efficiency of

he resulting Mu and Mp drastically depends on the value of q. In this particular example, the ratio q2

(1−q2)
= 0.05625 is

elatively small, which prevents M
i
u and M

i
p overestimating the errors.

We start with discretization by 10 time steps (where the total number of steps in time is denoted by N) with
corresponding size of the step τ = 1.0 and spatial mesh-size h =

1
64 using standard P1 (polynomial/Lagrangian first-order)

inite elements (see (7.7)). Let I denote the number of iterations to solve (3.4)–(3.5) on each time-step; we consider I = 5
or this discretization. Table 1 illustrates the convergence of the errors in u and p w.r.t. the iteration steps i = 1, . . . , I
for the time-interval [t9, t10] = [9.0, 10.0]. We note here, that the study of the dependence of the iteration number on
iscretization parameters is beyond the scope of this paper. Therefore, in all discussed numerical tests, I is constant.
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Table 1
Example 1 (Academic parameters). Errors and majorants at the time step [t9, t10], τ = 1.0, for h =

1
64 , and I = 5. The

values are measured w.r.t. the increment in ∥p∥2
p and ∥u∥

2
u .

i = 1, . . . , I ∥ep∥2 M
h
p ∥ep∥2

β
M

h
p,L2 ∥eu∥2 M

h
u ∥diveu∥2

λ M
h
u,div

2 1.87e−04 1.87e−04 4.77e−09 8.90e−06 1.86e−04 4.95e−04 4.45e−05 1.06e−04
4 1.87e−04 1.87e−04 2.04e−09 8.90e−06 1.86e−04 4.95e−04 4.45e−05 1.06e−04
5 1.87e−04 1.87e−04 2.04e−09 8.90e−06 1.86e−04 4.95e−04 4.45e−05 1.06e−04

Table 2
Example 1 (Academic parameters). Decrease of the values of ζ and M

h
p , as well as the terms m2

d and m2
eq that the majorant contains,

w.r.t. the number of optimization cycles.

The values of M
h
p and M

h
u are obtained by minimizing each functional w.r.t. to the auxiliary functions. For instance, the

functional estimate to control the error in the variable p

M
h
p(p

i
h, z

i
h; ζ ) := (1 + ζ ) ∥rd(pih, z

i
h)∥

2
K

−1
τ

+ (1 +
1
ζ
) Cp

Ω

(
2 ∥req(pih, z

i
h)∥

2
Ω + 2 γ 2 q2(i−1)

∥η0
− η0

h∥
2
+ ∥z ih · n∥

2
Σ

p
N

)
(7.1)

is minimized w.r.t. the function z ih and parameter ζ . The results of this optimization procedure are listed in Table 2.
We see that only two iterations are enough to achieve a good efficiency Ieff := M

h
p/|||ep|||

2
= 1.0023. Table 2 illustrates

the decrease of the dual term m2
d := ∥rd(pih, z

i
h)∥

2
K

−1
τ

= ∥z ih − Kτ∇pih∥
2
K

−1
τ

and the reliability/equilibration term of the

majorant m2
eq := ∥req(pih, z

i
h)∥

2
Ω = ∥̃g − γ ηi−1

h − (β + L) pih + divz ih∥
2
Ω . In order to achieve the desired efficiency of the

rror estimate, the reliability term must be several orders of magnitude smaller than the dual one, which holds in this
ase.
Instead of minimizing the functional M

h
u, we apply a post-processing of the function ūi

h := P(ui
h), and then substitute

t to approximate the auxiliary function τ i
h = L ε(ūi

h). This yields a sufficiently efficiency index in the range 2 − 6, while
aving computational effort otherwise associated with calculating the minimizer of M

h
u. In this example, we observe that

the terms m2
d,K and m2

d,λ,µ become rather close to the true errors |||ep|||2 and |||eu|||2, respectively, and can be used as error
ndicators for the local error distribution over the computational domain. To confirm that, Fig. 1 presents the distribution
f errors and indicators (generated by majorants) w.r.t. numbered finite element cells. On the right side of Fig. 1, we
epict |||ep|||2 and m2

d,K := ∥rd,K(pih, z
i
h)∥

2 and on the left side |||eu|||2 and the indicator m2
d,µ,λ := ∥rd,µ,λ(ui

h, τ
i
h)∥

2 w.r.t.
numbered finite element cells. Green marker depicts the error and red color represents the majorant values. We see that
the indicator produces a quantitatively efficient error. First, let us assume that the error bounds M

h
p and M

h
p,L2 , as well as

M
h
u and M

h
u,div are reconstructed only at the 4th and 5th steps to calculate M

i
u and M

i
p for i = 5 (using (6.1) and (6.12)).

Let |||e(n)p |||
2 and |||e(n)u |||

2, n = 1, . . . ,N correspond to the error increments at the nth time-step. The contribution of the
majorants for discretization errors and the iterative majorant at the Nth time step is of the same magnitude, i.e.,

M
h,(N)
p = 1.87e−04, M

i,(N)
p = 3.05e−04, M

h,(N)
u = 4.95e−04, M

i,(N)
u = 3.20e−05.

hen, the Nth increment of both total errors and the corresponding majorants for pressure and displacement, respectively,
s as follows:

|||e(N)
p |||

2
= 4.86e−05, M

(N)
p = 2.56e−04, Ieff(M

(N)
p ) = 2.29 and

|||e(N)
u |||

2
= 4.85e−05, M

(N)
u = 2.74e−04, Ieff(M

(N)
u ) = 2.38.

This makes the general error, majorant, and the corresponding efficiency index contributions to be the following

[(e(N)
u , e(N)

p )]2 = 4.85e−04, M
(N)

= 9.99e−05, Ieff(M
(N)

) = 2.36.

If instead of the 4th and 5th iterations we use 2nd and 5th ones to compute M
i,m,(N)
u and M

i,m,(N)
p (using m = 3 in

3.10) and (3.11)). Then contribution of iterative majorants is

M
i,m,(N)
p = 5.03e−06 and M

i,m,(N)
u = 2.81e−08,

nd the values of the relative errors and majorants accumulated over all time steps are

|||e |||
2

= 1.87e−04, |||e |||
2
= 1.86e−04, M = 3.84e−04, M = 9.91e−04,
p u p u
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Fig. 1. Example 1 (Academic parameters). (a), (c) Local distribution of the error |||ep|||2 in red and the error indicator m2
d,K generated by the majorant

M
h
p in green, and (b), (d) local distribution of the error |||eu|||2 in red and the error indicator m2

d,µ,λ generated by the majorant M
h
u in green. The

istributions are depicted w.r.t. numbered finite element cells of the uniform meshes with (a)–(b) h = 1/32 and (c)–(d) h = 1/64. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

respectively. The corresponding efficiency indices over the entire time interval are summarized in Table 3(a). The results
are presented w.r.t. meshes with two different mesh-sizes, h and τ . As the caption suggests, all these values are obtained
or auxiliary functions reconstructed by the following finite elements z ih ∈ RT1 and τ i

h ∈ [P2]
2×2, which is an order higher

han the usual choice of finite element approximation spaces for the fluxes and stresses in mixed formulations. To stress
he importance of this to obtain more accurate error bounds, Table 4 lists the results obtained for cases when different
inite element pairs for auxiliary functions are used, i.e., (a) z ih ∈ RT0 and τ i

h ∈ [P2]
2×2 or (b) z ih ∈ RT1 and τ i

h ∈ [P1]
2×2.

Table 5 illustrates the CPU time needed for various stages of the problem solution, i.e., first computation of both
ressure and displacement, as well as a posteriori error control for each of the unknowns. For each operation, we also
resent the time needed as percentage of the total time spent on each time step. First, we consider Table 5(a). As expected,
omputing p is a much cheaper problem to solve (75–85 s on average) in comparison with the computation of u (260–
70 s). Since a direct calculation of Mh

p does not involve the majorant minimization, the cost of error control for p is about
3–14 s. Reconstruction Mh

u is more time-consuming than the one for the pressure, i.e., average time is 100–120 s. If we
llow one iteration to minimize the majorant Mh

p, the cost for the error control of p increases (see Table 5(b)). The third
olumn of the table indicates that one such iteration costs additional 200 s, and the error control for p-variable accounts
or about 30%–35% of the total cost. Computational time for the case with two iterations minimizing Mh

p is illustrated in
Table 5(c). Here, additional 200 s are added to the third column, making it the most costly part of the entire time step.
Finally, if we allow one iteration of the Mh

u minimization, the cost of error control increases even more. Eventually, as we
improve the efficiency index of the error bounds, the computational costs to reconstruct functionals Mh

p and Mh
u dominates

over the time needed for the calculation of Mi and Mi , accounting for 95% of the total error control.
p u
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Table 3
Example 1 (Academic parameters). Convergence of errors and majorants w.r.t. the choice of spatial mesh sizes h and
time steps τ (measured relatively w.r.t. ∥p∥2

p and ∥u∥
2
u). For all cases, the auxiliary functions are reconstructed by the

following finite elements z ih ∈ RT1 and τ i
h ∈ [P2]

2×2 .

Table 4
Example 1 (Academic parameters). Convergence of errors and majorants w.r.t. the choice of approximation spaces
for z ih and τ i

h (measured relatively w.r.t. ∥p∥2
p and ∥u∥

2
u). For all cases, simulation is performed for the discretization

with τ = 1.0.

Now, we consider N = 103 and h =
1
64 , in particular, the last time-step [t999, t1000] of a size τ = 0.01. After ten

terative steps (I = 10), the error bounds are

M
h,(N)
p = 6.66e−05, M

i,(N)
p = 3.04e−02, M

h,(N)
u = 4.90e−04, M

i,(N)
u = 3.15e−05.

We emphasize that contributions of majorant for discretization error and the iterative majorant for the pressure variable
substantially differ in magnitude. These are the results obtained considering two last subsequent iteration steps with
q = 0.2307 that correspond to 3 q

1−q2
((
CF

Σ
p
D

)2
β/(λK τ ) + 1

)
= 7.09. Such a difference in magnitudes of majorants for p

results in the efficiency index Ieff(M
(N)
p ) = 43.10. However, we can exploit the flexibility of Lemma 8 with M = 7 to obtain

a better contraction parameter q̃ := q7 = 3.48e−05, i.e.,

M
i,m,(N)
p = 1.41e−06 and M

i,m,(N)
u = 2.21e−13.

hese values improve the efficiency index of, for example, M
(N)
p by approximately 21.12 times, and yield

|||e(N)
p |||

2
= 9.83e−08, M

(N)
p = 4.07e−07, Ieff(M

(N)
p ) = 2.04 and

|||e(N)
u |||

2
= 5.59e−09, M

(N)
u = 2.93e−08, Ieff(M

(N)
u ) = 2.29.

The accumulated values over the whole time interval are as follows:

|||e |||
2

= 3.28e−05, M = 1.36e−04, and I (M ) = 2.04,
p p eff p
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able 5
xample 1 (Academic parameters). Comparison of the CPU time required to perform different stages of numerical calculations w.r.t. the selected
ime steps for the discretization parameters N = 10, τ = 1.0, h =

1
64 .

Table 6
Example 1 (Realistic parameters). Convergence of errors and majorants w.r.t. the choice of spatial mesh sizes
(measured relatively w.r.t. ∥pih∥

2
p and ∥ui

h∥
2
u) for N = 100 and τ = 0.1.

|||eu|||2 = 1.86e−06, Mu = 9.80e−06, and Ieff(Mu) = 2.29.

This yields the total values
⏐⏐[(eu, ep)]⏐⏐ = 2.40e−06 and M = 1.2029e−05 with the efficiency index Ieff = 2.24. The latter

values amount others are included in Table 3(c). We see that even with a decreasing τ , which scales the permeability
tensor K, the efficiency of total error estimates stays rather robust.

We note here that each increment of M
(N)
p and M

(N)
u can be computed using M

: i
p and M

: i
u, which does not require the

majorant of discretization errors M
h,(N)
p and M

h,(N)
u on iteration steps i−1 or i−m and, as a consequence, their minimization

w.r.t. the auxiliary functions z ih and τ i
h, respectively. Moreover, the values M

: i
p and M

: i
u are orders of magnitude smaller

than M
i,m,(N)
p and M

i,m,(N)
u , i.e., M

: i
p = 7.07e−10 and M

: i
u = 7.33e−13. Such values automatically minimize the contribution

f iterative estimates in both M
(N)
p and M

(N)
u , as well as further improve their efficiency.

Let us assume now more realistic parameters in the example above (similar to those taken from [64] and [58]). Let
the exact pressure be scaled as follows: p(x, y, t) = 108 x (1 − x) y (1 − y) t . The permeability tensor divided by the fluid
iscosity is taken as K = 100I [mD/cP], the fluid compressibility fixed to 4.7 · 10−7 [psi−1], and initial porosity φ0 is

assumed to be 0.2. The Biot and the bulk modulus are M = 1.65 · 1010 [Pa] and E = 0.59 · 109 [Pa], respectively.
That results in β =

1
M + cf φ0 = 9.40 · 10−8, which, in turn, yields a considerably small L =

α2

2 (λ+2µ/d) = 1.35 · 10−9.
uch a tuning parameter generates instantaneous convergence of an iterative scheme with the contractive parameter
=

L
β+L = 6.73 · 10−12. The resulting errors and corresponding estimates are summarized in Table 6 (for τ = 0.1 and

ifference between spatial mesh-sizes h). For such q, even one iteration is enough for convergence. However, one can
onsider two/five iterations to improve the sharpness of the majorant. The efficiency indices obtained here confirm the
uantitative properties of total majorants also for parameters close to those used in engineering applications.

xample 2. Dependence of the total error bound on the iterative majorants contributions (w.r.t. two different sets
f parameters). In the next example, we consider another polynomial exact solution. However, the first set of material



K. Kumar, S. Kyas, J.M. Nordbotten et al. / Computers and Mathematics with Applications 91 (2021) 122–149 141

c

t

t

a

f

1

Table 7
Example 2 (Academic parameters). Errors and majorants w.r.t. the iteration steps for N = 10, τ = 1.0, h =

1
64 , and I = 12 (both values are

measured relative to the increment in ∥p∥2
p and ∥u∥

2
u at the Nth time step).

Table 8
Example 2 (Academic parameters). Convergence of errors and majorants w.r.t. the choice of spatial mesh sizes and time steps
(measured relatively w.r.t. ∥pih∥

2
p , ∥ui

h∥
2
u , and [(eu, ep)]2).

parameters (which can be regarded as more academic ones) are chosen in such a way that parameter q takes a value close
1. Such a contraction can cause the deteriorated quality of iterative error estimates, which compromises the efficiency
index of total majorants. Following similar arguments made in Example 1, we highlight the improvement in the efficiency
index of total error bound M when the functional M

i,m
is used instead of M

i
. In particular, it is done for different time

steps and spatial mesh-sizes (see Table 7). Moreover, in the second part of this example, we choose more realistic material
parameters, in particular, anisotropic permeability tensor of relatively small magnitude, which might cause a quality
decrease in the discretization majorants (see, e.g., [69]). Having said that, the more realistic set of parameters often lead to
rather small contraction values, making iterative component of the error bounds rather neglectable. Regardless of chosen
parameters, we present the efficiency indices that confirm the robustness of total error bound.

Let the exact solution of (1.1) be defined as

u(x, y, t) :=

[
t (x2 + y2)
t (x + y)

]
and p(x, y, t) := t x (1 − x) y (1 − y).

We fix the Poisson ratio to be ν = 0.2 and Young modulus E = 0.594 [Pa], which yields the Lame parameters µ = 0.25
and λ = 0.12. We set α = 1 and β =

1
M + cf φ0 = 0.11, where M = 1.65 · 10−10 [Pa], Ku = K +

α2

c0
= 10.28,

f =
1
c0

λK
K+4/3µ
Ku+4/3µ = 0.58, CF =

1
√
2π

, and K = I [mD/cP], where I is a unit tensor. From the parameters above, it follows

hat L =
α2

2 (λ+2µ/d) = 1.34 and q =
L

β+L = 0.92. With such q, the ratio q2

(1−q)2
is 133.33, which might influence the

quantitative performance of the majorant.
We consider 10 time steps of the length τ = 1.0 and a spatial mesh-size h =

1
64 using standard P1 finite elements

(see (7.7)). The number of iterations to solve the problem on each time step is set to 12. For the time interval [t9, t10],
he convergence of errors in u and p is presented in Table 7. From one side, we can consider the iterations I and I − 1 as
subsequent ones with a contraction parameter q = 0.92. From the other side, by using Lemma 2 instead, let m = 6 so that
the 6th and 12th iterations are treated as two consecutive steps with q′

= q6 = 0.60. Then, the constants dependent on
the ratio q2

(1−q2)
= 2.30 attain more acceptable values. Table 8 illustrates the improved efficiency indices of error majorant

s the method explained-above is employed.
Local distribution of the error in p and u on each cell of the finite-element discretization is presented for mesh sizes

h = 1/4 and h = 1/8 in Fig. 2. One can see the resemblance in the local error distribution for p since the exact solutions
or both examples are the same. Local values of the error and indicator in u have a more uniform distribution.

Let us consider more realistic parameters similar to those chosen in [70]. Again, let the exact pressure be p(x, y, t) :=

08 x (1−x) y (1−y) t . Mechanical parameters such as the Biot and the bulk modulus are chosen as follows: M = 1.45 ·104
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Fig. 2. Example 2 (Academic parameters). Errors |||ep|||2 and |||eu|||2 (in red) and error indicators m2
d,K and m2

d,µ,λ (in green) generated by the majorants

M
h
p and M

h
u , respectively, distributions w.r.t. numbered finite element cells. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

[Pa] and E = 7 · 107 [Pa], respectively. The permeability tensor is K = diag{50, 200} · 10−10 [mD/cP], whereas the
luid viscosity is µf = 10−3. Thus, we obtain β ≈

1
M + cf φ0 = 6.89 · 10−5, which, in turn, yields a considerably small

L =
α2

2 (λ+2µ/d) = 1.14 · 10−8. Such a parameter generates contractive parameter q =
L

β+L = 1.66 · 10−4. The latter

means that the ratio q2

(1−q)2
is of order 10−8, which does not degenerate the efficiency of majorant. We summarize the

convergence results in Table 9. It again confirms that even in case of more realistic parameters common for engineering
applications, the value of estimates remains rather efficient.

Example 3. Verification of the majorants properties w.r.t. non-polynomial manufactured solutions. To make
sure that we exclude the super-convergence in testing the scheme presented above, we consider the non-polynomial
manufactured solution. The chosen p and u in (1.1) are

u(x, y, t) :=

[
x sinπx (1 − y) sinπy t

x (1 − x) y(1 − y)(sin t + 1)

]
and p(x, y, t) := sinπx sinπy (t2 + t + 1).

he Lame parameters are similar to those considered in Example 1, i.e., µ = λvol = 1, λplane =
2
3 . Besides, α = β = 1,

F =
1

√
2π

, and K = I [mD/cP]. The parameters above yield L = 0.3 and q =
3
13 .

Table 10 presents convergence results corresponding to meshes with different mesh-sizes h and time steps τ . The
umber of iterations is fixed to be I = 5 throughout all tests. Learning from the experience of first two examples, we
pply Lemma 2 with m = 3, which yields a smaller contractive parameter q̃ := q3 = 0.0123. The table is divided into
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Table 9
Example 2 (Realistic parameters). Convergence of errors and majorants w.r.t. the choice of spatial mesh sizes and
time steps (measured relatively w.r.t. ∥pih∥

2
p , ∥ui

h∥
2
u , and [(eu, ep)]2).

Table 10
Example 3. Convergence of errors and majorants w.r.t. the choice of spatial mesh sizes h and time steps τ (measured
relatively w.r.t. ∥p∥2

p , ∥u∥
2
u , and [(eu, ep)]2).

two parts: Table 10(a) presents the results obtained for the auxiliary functions z ih ∈ RT1 and τ i
h ∈ [P2]

2×2, whereas
able 10(b) uses the functions z ih ∈ RT0 and τ i

h ∈ [P2]
1×1. As expected, the efficiency indices in the first part of the table

re slightly better than in the second one, since the auxiliary functions that minimize the majorants of discretization
rrors are reconstructed more accurately.
Besides the robustness of error estimates w.r.t. different discretization parameters, we address the computational time

or various scenarios. We consider discretization time steps τ = 1 (see Table 11(a)) and τ = 0.1 (Table 11(b)). In the first
art of the table, corresponding to a smaller step, we first illustrate the CPU costs for a more computationally-heavy error
ontrol, where the auxiliary function z ih ∈ RT1 is used in 2 iteration steps of the majorant minimization. We see that
rror control for the variable p dominates in this case and takes almost half of the computational time of entire step.
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Table 11
Example 3. Comparison of the CPU time required to perform several stages of the numerical calculations w.r.t. the
selected time steps, h =

1
64 .

n computation of p, s (%) computation of u, s (%) error control for p, s (%) error control for u, s (%)

(a) N = 100

(a-1) 2 iterations for Mh
p minimization, z ih ∈ RT1

20 96.05 (8.46%) 305.87 (26.94%) 544.04 (47.91%) 189.56 (16.69%)
40 100.00 (8.38%) 305.29 (25.58%) 539.27 (45.18%) 249.01 (20.86%)
80 103.62 (8.60%) 308.15 (25.56%) 561.49 (46.58%) 232.13 (19.26%)

(a-2) 0 it. for Mh
p minimization, z ih ∈ RT0

20 35.58 (21.62%) 118.02 (71.69%) 2.50 (1.52%) 8.51 (5.17%)
40 37.70 (22.35%) 123.79 (73.38%) 2.10 (1.25%) 5.10 (3.02%)
80 31.03 (21.24%) 106.15 (72.66%) 2.51 (1.72%) 6.40 (4.38%)

(b) N = 10

(b-1) 2 iteration for Mh
p minimization, z ih ∈ RT1

2 29.96 (12.45%) 99.34 (41.27%) 44.11 (18.33%) 67.30 (27.96%)
4 35.43 (14.19%) 113.12 (45.31%) 44.51 (17.83%) 56.58 (22.66%)
8 48.91 (13.21%) 163.18 (44.09%) 59.82 (16.16%) 98.22 (26.54%)

(b-2) 0 iteration for Mh
p minimization, z ih ∈ RT0

2 43.41 (21.09%) 148.86 (72.30%) 2.92 (1.42%) 10.69 (5.20%)
4 36.39 (21.29%) 121.94 (71.35%) 2.36 (1.38%) 10.21 (5.98%)
8 40.92 (21.28%) 138.38 (71.96%) 2.65 (1.38%) 10.33 (5.37%)

After that, we illustrate the CPU costs for the function z ih ∈ RT0 without optimization procedure. Columns four and five
emphasize how inexpensive a posteriori error control can be when one only needs to calculate M

h
p and M

h
u.

. Conclusions and future work

We analyze semi-discrete approximations of the Biot poroelastic problem and deduce guaranteed and fully computable
ounds of corresponding errors. The derivation combines the estimates for contraction mappings and the functional
posteriori error majorants for elliptic problems. The obtained error bound is fully computable and independent

n the discretization techniques used for the variational formulation of the Biot problem as soon as the reproduced
pproximations belong to admissible functional spaces. Moreover, obtained error functional does not depend on any mesh
iscretization constants and only contains global Poincare-type constants characterizing considered geometry.
Numerical results presented above provided the evidence of the quantitative efficiency of the majorant when it comes

o the error indication. Generally, automation of the mesh adaptation procedure crucially depends on the quality of the
rror indicator used. It is a very important and complex topic that includes not only the question of how to reconstruct the
esh or which approximation space to use but also how to combine it with existing well-verified technologies (e.g., greedy
arking, hp-refinement, etc.). Thorough investigation of these questions in the context of the error estimates introduced

n this paper is an important task for future research.
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Appendix

Notation and definitions of spaces. We use the standard Lebesgue space of square-measurable functions L2(Ω) equipped
ith the norm ∥ v ∥Ω := ∥ v ∥L2(Ω) := (v, v)1/2Ω for all u, v ∈ L2(Ω). LetMd×d denote the space of real d-dimensional tensors.

The products of vector-valued v, w ∈ Rd and tensor-valued functions τ, σ ∈ Md×d are defined by the relations

(v, w)Ω :=

∫
Ω

v · wdx and (τ, σ)Ω :=

∫
Ω

τ : σdx,

where v · w := vi wi and τ : σ := τij σ ij, respectively. Next, A(x) ∈ Md×d, x ∈ Ω denotes a symmetric uniformly positive
defined matrix that satisfies 0 < λ ≤ λ(x) ≤ λ ≤ +∞, λ, λ ∈ R with uniformly bounded eigenvalues λ(x). Then, for the
product (u, v)A := (Au, v), we have

λ ∥v∥ ≤ ∥v∥A ≤ λ ∥v∥ and (u, v) ≤ ∥ · ∥A ∥ · ∥A−1 , ∀u, v ∈ [L2(Ω)]d.

We use the standard notation for the Sobolev space of vector-valued functions having square-summable derivatives

H1(Ω) :=
{
v ∈ L2(Ω) | ∇ v ∈ [L2(Ω)]d

}
,

equipped with the norm ∥ v ∥H1(Ω) :=
(
∥ v ∥

2
Ω + | v |

2
Ω

)1/2. Also, we use a semi-norm | v |Ω := | v |H1(Ω) := ∥ ∇ v ∥Ω , and
for the vector-valued functions with square-summable divergence introduce the Hilbert space

H(Ω, div) :=
{
v ∈ [L2(Ω)]d | divv ∈ L2(Ω)

}
,

endowed with the norm ∥ v ∥
2
H(Ω,div) := ∥ v ∥

2
[L2(Ω)]d

+ ∥ divv ∥
2
L2(Ω)

.
Let Σ be a part of the boundary such that measd−1Σ > 0 (in particular, it may coincide with ∂Ω). For the functions

in H1
0,Σ (Ω) :=

{
v ∈ H1(Ω) | v |Σ= 0

}
, the Friedrichs-type inequality reads:

∥v∥Ω ≤ CF
Γ |v|Ω , ∀v ∈ H1

0,Σ (Ω). (7.2)

The corresponding trace operator γ : H1(Ω) → H
1
2 (Ω) is bounded and satisfies the estimate

v|Σ := γ v, ∥ v ∥Σ ≤ C tr
ΣΩ ∥ v ∥H1(Ω), ∀v ∈ H1(Ω), (7.3)

where ∥ v ∥Σ is the norm of L2(Σ).
CK denotes the constant in the Korn inequality

∥w∥[H1(Ω)]d ≤ CK∥ε(w)∥[L2(Ω)]d×d , ∀w ∈ [H1(Ω)]d, (7.4)

Also, we use the inequality

∥ divw ∥ = ∥ tr ε(w) ∥ = ∥ I : ε(w) ∥ ≤
√
d ∥ ε(w) ∥, ∀w ∈ [H1(Ω)]d, (7.5)

here I ∈ Md×d is the unit tensor of Md×d, and ε(w) ∈ Md×d denotes the symmetric part of ∇w.
Next, let Q := Ω × (0, T ) denote a space–time cylinder (with given time-interval (0, T ), 0 < T < +∞), and let

Σ = ∂Ω × (0, T ) be a lateral surface of Q , whereas Σ0 := ∂Ω × {0} and ΣT := ∂Ω × {T } define the bottom and the top
art of the mantel (so that ∂Q = Σ ∪ Σ0 ∪ ΣT ). Consider functions defined in (0, T ) with values in a functional space X
cf. [71–73]). Let ∥ · ∥X denote the norm in X , then for r = 2, we define the Bochner space

L2(0, T ; X) :=

{
f measurable in [ 0, T ]

⏐⏐⏐ ∫ T

0
∥f (t)∥2

Xdt < ∞

}
,

and respective norm ∥f ∥L2(0,T ;X) :=

(∫ T
0 ∥f (t)∥2

Xdt
)1/2

. It is a Hilbert space if X is a Hilbert space. Throughout the paper,
we also use the spaces

H1(0, T ; X) :=
{
f ∈ L2(0, T ; X) | ∂t f ∈ L2(0, T ; X)

}
(7.6)

equipped with norm ∥u∥H1(0,T ;X) :=

(∫ T
0

(
∥∂t f (t)∥2

X + ∥f (t)∥2
X

)
dt
)1/2

.
We assume that Th is a regular mesh satisfying angle condition defined on Ω . Then, the corresponding discretization

paces with the Lagrangian finite elements of order 0 or 1 are defined as

P0 := {vh ∈ L2(Ω) | ∀T ∈ Th, vh|T∈ P0}, P1:= {vh ∈ H1(Ω) | ∀T ∈ Th, vh|T∈ P1}, (7.7)

where Pk denotes the space of polynomials of the order k ∈ N ∪ 0. The Raviart–Thomas elements of the lowest and first
order are denoted by

RT0 := {yh ∈ H(div, Ω) : ∀ T ∈ Th, yh|T= a + b x, a ∈ R
d, b ∈ R },

RT1 := {yh ∈ H(div, Ω) : ∀ T ∈ Th, yh(x)|T= q(x) + x r(x), q ∈ [P1]
d, r ∈ P1},

espectively. Finally, the table below presents notation used in the paper for the physical quantities (see Table A.12).
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Table A.12
Table of notation.
σpor poroelastic Cauchy stress (total stress) tensor
u displacement of the solid
p fluid pressure
σ linear elastic (effective) stress tensor
ε(u) strain tensor
λ, µ Lamé parameters
f volumetric body force
w Darcy velocity
µf fluid viscosity
K permeability tensor
g gravitation constant
ρf fluid phase density
α Biot–Willis coefficient
β =

1
M + cf ϕ0 storage coefficient

M Biot constant
cf fluid compressibility
ϕ0 initial porosity

Contraction theorem. An essential part of our analysis is based on the contraction theorem, which was proven in [57]
or the poroelastic problem in question. However, Lemma 3 uses the contraction of the sequence {δ(η − ηh)}i, ∀η ∈ Wh,
which is proven blow.

Theorem 4. With γ =
α

√
λ
and L =

α2

2 λ
, the sequence {δ(η − ηh)}i ∈ Wh, where ηi

∈ W is generated by the fixed-stress split
terative scheme defined in (3.4)–(3.5) and ηi

h ∈ Wh is discretization of the latter sequence, is a contraction given by

∥ε(δ(u − uh)i)∥2
2µ + q ∥∇δ(p − ph)i∥2

Kτ
+ ∥δ(η − ηh)i∥2

≤ q2∥δ(η − ηh)i−1
∥
2, q =

L
β+L . (7.8)

Proof. Consider the difference between (i − 1)th and ith iterations in (3.4) and (3.5). Assuming that δpi = pi − pi−1 and
δui

= ui
− ui−1, as well as particular chosen w = wh ∈ W0h ⊂ W0 and v = vh ∈ V 0h ⊂ V 0 with conforming Galerkin

discretization spaces W0h and V 0h of W0 and V 0, respectively. Thus, we obtain

(Kτ∇δpi, ∇wh) + (β + L)(δpi, wh) = (−γ δηi−1, wh), ∀ w ∈ W0h, (7.9)(
2µ ε(δui), ε(vh)

)
+ (λ divδui, divvh) = (−α∇δpi, vh), ∀ vh ∈ V 0h, (7.10)

For the Galerkin approximations (u, p)ih ∈ V 0h × W0h, the system above can be rewritten as

(Kτ∇δpih, ∇wh) + (β + L)(δpih, wh) = (−γ δηi−1
h , wh), ∀ wh ∈ W0h, (7.11)(

2µ ε(δui
h), ε(vh)

)
+ (λ divδui

h, divvh) = (−α∇δpih, vh), ∀ v ∈ V 0h. (7.12)

The difference of (7.9)–(7.10) and (7.11)–(7.12), substitution of wh = δ(p − ph)i in the flow part and vh = δ(u − uh)i in
the corresponding mechanics part yield

∥∇δ(p − ph)i∥2
Kτ

+ (β + L) ∥δ(p − ph)i∥2
= −γ (δ(η − ηh)i−1, δ(p − ph)i), ∀ wh ∈ W0h, (7.13)

∥ε(δ(u − uh)i)∥2
2µ + ∥divδ(u − uh)i∥2

λ = −α (δ(p − ph)i, divδ(u − uh)i), ∀ v ∈ V 0h. (7.14)

Application of the Young inequality in (7.13) provide the relation

(β + L) ∥δ(p − ph)i∥2
+ ∥∇δ(p − ph)i∥2

Kτ
≤

ϵ
2 ∥δ(p − ph)i∥2

+
γ 2

2ϵ ∥δ(η − ηh)i−1
∥
2, ϵ > 0. (7.15)

egrouping similar terms in (7.15) implies

(β + L −
ϵ
2 ) ∥δ(p − ph)i∥2

+ ∥∇δ(p − ph)i∥2
Kτ

≤
γ 2

2ϵ ∥δ(η − ηh)i−1
∥
2.

Substitution of the optimal ϵ = β + L, obtained from the minimization problem minε>0
(
2 ϵ (β + L −

ϵ
2 )
)−1, yields

(β + L) ∥δ(p − ph)i∥2
+ 2 ∥∇δ(p − ph)i∥2

Kτ
≤

γ 2

β+L ∥δ(η − ηh)i−1
∥
2. (7.16)

By summing (7.16), multiplied by free parameter c0 > 0, and (7.14), we arrive at the following inequality{
c0 (β + L) ∥δ(p − ph)i∥2

+ ∥divδ(u − uh)i∥2
λ − α (δ(p − ph)i, divδ(u − uh)i)

}
+ ∥ε(δ(u − uh)i)∥2

2µ + 2c0 ∥∇δ(p − ph)i∥2
Kτ

≤ c0
γ 2

β+L∥δ(η − ηh)i−1
∥
2. (7.17)
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Let us determine the values of parameters c0, γ , and L such that the terms on the left-hand side of (7.17) are positive and
ontraction in ∥δ(η − ηh)i−1

∥
2 is achieved. It follows from δ(η − ηh)i =

α
γ
divδ(u − uh)i − L

γ
δ(p − ph)i, that

∥δ(η − ηh)i∥2
=

α2

γ 2 ∥divδ(u − uh)i∥2
+

L2

γ 2 ∥δ(p − ph)i∥2
−

2α L
γ 2 (divδ(u − uh)i, δ(p − ph)i). (7.18)

omparing (7.18) and (7.17), we arrive at the following condition for the free parameters:⎧⎪⎪⎨⎪⎪⎩
α2

γ 2 ≤ λ,

L2

γ 2 ≤ c0 (β + L),
2α L
γ 2 = α,

which yields

⎧⎪⎪⎨⎪⎪⎩
L ≥

α2

2 λ
,

c0 ≥
L

2 (β+L) ,

γ 2
= 2L.

Then, the contraction rate q = c0
γ 2

β+L is monotone w.r.t. to L and attains its minimum at

L =
α2

2 λ
and c0 =

L
2 (β+L) .

By using the condition γ 2
= 2L, we obtain

∥ε(δ(u − uh)i)∥2
2µ + q ∥∇δ(p − ph)i∥2

Kτ
+ ∥δ(η − ηh)i∥2

≤ q2∥δ(η − ηh)i−1
∥
2 (7.19)

ith

q =
L

β+L and L =
α2

2 λ
. □
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