Association of Fatal Myocardial Infarction with Past Level of Physical Activity

A pooled analysis of cohort studies

Supplementary Material

Table of contents

Appendix Tables 3
Appendix Table 1: Study characteristics of the 10 participating European cohorts 3
Appendix Table 2: Pooled baseline characteristics for patients with MI, by level of PA 4
Appendix Table 3: Pooled ORs, 95\% Cls, and I^{2} statistics for fixed- and random-effects multivariate models .. 5 5
Appendix Table 4: Pooled ORs, 95\% Cis, and I^{2} statistics for fixed- and random-effects network meta-analysis6
Appendix Table 5: Assessment of PA, by individual cohort 7
Appendix Table 6: No. of outcomes, by individual cohort and level of physical activity 8
Appendix Table 7: Post-hoc analysis of pooled ORs, 95% Cls, and I^{2} statistics, by selected cohort characteristics 9
Appendix Figures 10
Appendix Figure 1: Comparison-adjusted funnel plots 10
Appendix Figure 2: Flow diagram summarizing the derivation of the study population 11
Appendix Text 12
Standardisation of physical activity level 12

Appendix Tables

Appendix Table 1: Study characteristics of the 10 participating European cohorts

Appendix Table 1 Study characteristics of the 10 participating European cohorts						
Cohort	Country	Brief description	Recruitment period	Followup, years	Total number of participants	Total number of MI during follow-up (fatal outcome at 28 days)
ATTICA	Greece	Participants >18 years and residing in the Attica region within the greater Athens area.	2001-02	10	3042	177 (69)
BELSTRESS	Belgium	Participants aged 35-59 years, who were workers from 25 companies in Belgium.	1994-98	1	13897	39 (17)
CCHS	Denmark	A random draw from the Danish Civil Registration System of participants aged 20-93 years and residing in \emptyset sterbro.	1976-78	34	14223	1664 (647)
CGPS	Denmark	A random draw from the Danish Civil Registration System of participants aged 20-93 years and residing in Herlev and \emptyset sterbro.	2003-14	1-11	104801	1401 (161)
CONOR	Norway	Consisting of 10 population surveys of adults: Troms \varnothing IV, HUNT II, HUSK, Oslo II, HUBRO, OPPHED, Troms \varnothing V, I-HUBRO, TROFINN, MoRo II.	1994-2003	Ongoing	173236	9120 (1917)
CRPH	Denmark	Consisting of 5 combined cohorts: MONICA I, II and III, Inter99, and Health 2006. Random samples of the general population in up to 11 municipalities in the greater Copenhagen area.	1982-2008	Ongoing	17571	778 (95)
MORGENproject	The Netherlan ds	A random sample of participants aged 20-65 years in three towns in the Netherlands (Amsterdam, Doetinchem, Maastricht).	1993-97	13-17	17888	337 (53)
Million Women Study	United Kingdom	Recruitment of one in every four UK women born in 1935-50 at 66 NHS breast screening centres.	1996-2001	Ongoing	632177	10451 (1509)
Rotterdam study	The Netherlan ds	Participants aged ≥ 40 years residing in the Ommord district of Rotterdam.	1990-	Ongoing	14926	384 (87)
UK Biobank	United Kingdom	Participants 40-69 years of age from the general population.	2006-10	Ongoing	502536	3789 (421)
BELSTRESS, Belgian Job Stress Study. CCHS, Copenhagen City Heart Study. CGPS, Copenhagen General Population Study. CONOR, Cohort of Norway. CRPH, Cohort of the Research for Prevention and Health. MORGEN-project, Monitoring Risicofactoren en Gezondheid in Nederland. UK Biobank, United Kingdom Biobank.						

Appendix Table 2: Pooled baseline characteristics for patients with MI, by level of PA

Appendix Table 2 Pooled baseline characteristics for patients with myocardial infarction, by level of physical activity				
	Level of physical activity			
	Sedentary	Low	Moderate	High
No. Patients	5504	5654	5628	11354
Demographics:				
Age, years	69.1 (11.6)	68.4 (10.5)	67.7 (10.1)	68.9 (7.5)
Males, \%	59.3	59.4	54.0	22.0
Risk factors:				
Diabetes mellitus, \%	27.6	18.2	13.6	8.5
Arterial hypertension, \%	57.7	51.0	47.2	39.2
Family history of CVD, \%	50.2	49.1	48.9	51.3
Active smoking, \%	43.0	41.7	39.8	48.5
Biometrics:				
Body-mass index [kg/m²]	27.6 (4.5)	26.9 (4.1)	26.9 (4.2)	26.7 (4.5)
Total cholesterol [mmol/L]	6.4 (1.3)	6.4 (1.3)	6.2 (1.1)	6.0 (1.2)
Systolic blood pressure [mmHg]	147.3 (22.7)	145.8 (21.2)	144.9 (20.6)	145.4 (19.6)
Diastolic blood pressure [mmHg]	83.8 (12.3)	84.6 (12.0)	84.1 (11.5)	83.6 (10.8)
Time from baseline to MI:				
>5 years, \%	67.7	68.6	68.8	70.8
CVD, Cardiovascular disease. Numbers are mean (standard deviation) unless otherwise is specified. Each characteristic was weighted by [cohort sample size/total sample size].				

Appendix Table 3: Pooled ORs, 95% CIs, and I^{2} statistics for fixed- and random-effects multivariate models

Appendix Table 3 Pooled odds ratios, 95\% confidence intervals, and $\mathrm{I}^{\mathbf{2}}$ statistics for fixed- and random-effects multivariate models											
			Level of physical activity								
			Fixed-effects models				Random-effects models				
	Number of cohorts	Number of patients (events)	Sedentary	Low	Moderate	High	Sedentary	Low	Moderate	High	$\begin{aligned} & I^{2}, \\ & \% \end{aligned}$
Instant fatal MI											
Unadjusted	10	28140 (3101)	1	$\begin{aligned} & 0.86 \\ & (0.76-0.97) \end{aligned}$	$\begin{aligned} & 0.72 \\ & (0.63-0.81) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (0.55-0.72) \end{aligned}$	1	$\begin{aligned} & 0.83 \\ & (0.70-0.98) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (0.58-0.82) \end{aligned}$	$\begin{aligned} & 0.61 \\ & (0.51-0.73) \end{aligned}$	18.3
Adjustment											
Age and sex	9	27798 (3055)	1	$\begin{aligned} & 0.82 \\ & (0.73-0.93) \end{aligned}$	$\begin{aligned} & 0.73 \\ & (0.64-0.82) \end{aligned}$	$\begin{aligned} & 0.62 \\ & (0.53-0.71) \end{aligned}$	1	$\begin{aligned} & 0.74 \\ & (0.59-0.93) \end{aligned}$	$\begin{aligned} & 0.65 \\ & (0.52-0.82) \end{aligned}$	$\begin{aligned} & 0.56 \\ & (0.44-0.70) \end{aligned}$	44.5
Age, sex, and CVD risk factors	6	26602 (2990)	1	$\begin{aligned} & 0.85 \\ & (0.75-0.97) \end{aligned}$	$\begin{aligned} & 0.76 \\ & (0.66-0.87) \end{aligned}$	$\begin{aligned} & 0.65 \\ & (0.54-0.79) \end{aligned}$	1	$\begin{aligned} & 0.76 \\ & (0.59-0.97) \end{aligned}$	$\begin{aligned} & 0.67 \\ & (0.52-0.86) \end{aligned}$	$\begin{aligned} & 0.58 \\ & (0.44-0.77) \end{aligned}$	49.0
Age, sex, CVD risk factors, alcohol consumption, smoking, and socioeconomic status	6	26602 (2990)	1	$\begin{aligned} & 0.90 \\ & (0.78-1.03) \end{aligned}$	$\begin{aligned} & 0.77 \\ & (0.66-0.90) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (0.50-0.80) \end{aligned}$	1	$\begin{aligned} & 0.79 \\ & (0.60-1.04) \end{aligned}$	$\begin{aligned} & 0.67 \\ & (0.51-0.89) \end{aligned}$	$\begin{aligned} & 0.55 \\ & (0.40-0.76) \end{aligned}$	47.3
28-day fatal MI											
Unadjusted	7	24618 (1868)	1	$\begin{aligned} & 0.82 \\ & (0.72-0.94) \end{aligned}$	$\begin{aligned} & 0.61 \\ & (0.53-0.71) \end{aligned}$	$\begin{aligned} & 0.66 \\ & (0.56-0.78) \end{aligned}$	1	$\begin{aligned} & 0.86 \\ & (0.71-1.03) \end{aligned}$	$\begin{aligned} & 0.64 \\ & (0.52-0.77) \end{aligned}$	$\begin{aligned} & 0.67 \\ & (0.55-0.83) \end{aligned}$	24.9
Adjustment											
Age and sex	6	24256 (1808)	1	$\begin{aligned} & 0.78 \\ & (0.68-0.90) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (0.54-0.73) \end{aligned}$	$\begin{aligned} & 0.66 \\ & (0.56-0.79) \end{aligned}$	1	$\begin{aligned} & 0.78 \\ & (0.68-0.90) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (0.54-0.73) \end{aligned}$	$\begin{aligned} & 0.66 \\ & (0.56-0.79) \end{aligned}$	<0.1
Age, sex, and CVD risk factors	6	24256 (1808)	1	$\begin{aligned} & 0.78 \\ & (0.67-0.90) \end{aligned}$	$\begin{aligned} & 0.64 \\ & (0.54-0.75) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (0.56-0.84) \end{aligned}$	1	$\begin{aligned} & 0.78 \\ & (0.67-0.90) \end{aligned}$	$\begin{aligned} & 0.64 \\ & (0.54-0.75) \end{aligned}$	$\begin{aligned} & 0.69 \\ & (0.56-0.84) \end{aligned}$	<0.1
Age, sex, CVD risk factors, alcohol consumption, smoking, and socioeconomic status	4	19736 (1334)	1	$\begin{aligned} & 0.85 \\ & (0.71-1.03) \end{aligned}$	$\begin{aligned} & 0.64 \\ & (0.51-0.80) \end{aligned}$	$\begin{aligned} & 0.72 \\ & (0.51-1.00) \end{aligned}$	1	$\begin{aligned} & 0.85 \\ & (0.71-1.03) \end{aligned}$	$\begin{aligned} & 0.64 \\ & (0.51-0.80) \end{aligned}$	$\begin{aligned} & 0.72 \\ & (0.51-1.00) \end{aligned}$	<0.1

Appendix Table 4: Pooled ORs, 95\% Cis, and I ${ }^{2}$ statistics for fixed- and random-effects network meta-analysis

Appendix Table 4 Pooled odds ratios, 95\% confidence intervals, and I^{2} statistics for fixed-and random-effects network meta-analysis										
			Level of physical activity				Heterogeneity			
	Number of cohorts	Number of patients (events)	Sedentary	Low	Moderate	High	Q	d.f.	p-value	I^{2}, \%
Instant fatal MI										
FE model	10	28140 (3101)	1	$\begin{aligned} & 0.86 \\ & (0.76-0.97) \end{aligned}$	$\begin{aligned} & 0.72 \\ & (0.63-0.81) \end{aligned}$	$\begin{aligned} & 0.63 \\ & (0.55-0.72) \end{aligned}$	-	-	-	-
RE model	10	28140 (3101)	1	$\begin{aligned} & 0.84 \\ & (0.76-1.01) \end{aligned}$	$\begin{aligned} & 0.68 \\ & (0.56-0.83) \end{aligned}$	$\begin{aligned} & 0.59 \\ & (0.47-0.72) \end{aligned}$	32.6	26	0.17	20.2
28-day fatal MI										
FE model	7	24618 (1868)	1	$\begin{aligned} & 0.82 \\ & (0.72-0.94) \end{aligned}$	$\begin{aligned} & 0.61 \\ & (0.53-0.71) \end{aligned}$	$\begin{aligned} & 0.66 \\ & (0.56-0.78) \end{aligned}$	-	-	-	-
RE model	7	24618 (1868)	1	$\begin{aligned} & 0.84 \\ & (0.68-1.03) \end{aligned}$	$\begin{aligned} & 0.65 \\ & (0.53-0.81) \end{aligned}$	$\begin{aligned} & 0.65 \\ & (0.52-0.83) \end{aligned}$	25.1	18	0.12	28.2
FE, fixed-effects. RE, random-effects.										

Appendix Table 5: Assessment of PA, by individual cohort

Appendix Table	Assessment of physical activity, by individual cohort						
			Assessment of physical activity				
Cohort	Country	Recruitment period	Method	No. of items	Time fra		
					1 week	4 weeks	1 year
ATTICA	Greece	2001-02	SRQ	7	x		
Belstress	Belgium	1994-98	SRQ	1	X		
CCHS	Denmark	1976-78	SRQ	1			x
CGPS	Denmark	2003-14	SRQ	1			x
CONOR	Norway	1994-2003	SRQ	2			x
CRPH	Denmark	1982-2008	SRQ	5	x		
MWS	United Kingdom	1996-2001	SRQ	2	x		
MORGEN-Project	The Netherlands	1993-97	SRQ	3			x
Rotterdam study	The Netherlands	1990-	SRQ	28	x		
UK Biobank	United Kingdom	2006-10	SRQ	11		x	
SRQ, self-reported questionnaire							

Appendix Table 6: No. of outcomes, by individual cohort and level of physical activity

Appendix Table 6 No. outcomes, by individual cohort and level of physical activity					
	Level of physical activity				
	Sedentary	Low	Moderate	High	Total
No. Patients	5504	5654	5628	11354	28140
Instant fatal MI					
ATTICA	47/109	9/21	4/16	9/31	69/177
BELSTRESS	4/11	10/19	3/9	0/0	17/39
CCHS	111/346	227/898	83/398	4/22	425/1664
CGPS	13/110	43/707	36/511	3/73	95/1401
CONOR	546/3896	299/2332	240/2129	75/763	1160/9120
CRPH	5/208	12/424	4/141	0/5	21/778
MWS	46/255	84/606	193/1585	897/8005	1220/10 451
MORGEN-Project	1/7	3/14	0/32	42/284	46/337
Rotterdam study	1/4	3/12	2/26	21/342	27/384
UK Biobank	3/558	11/621	1/781	6/1829	21/3789
Total	777/5504	701/5654	566/5628	1057/11 354	3101/28 140
28-day fatal MI					
ATTICA	NA	NA	NA	NA	NA
BELSTRESS	NA	NA	NA	NA	NA
CCHS	48/235	129/671	44/315	4/18	225/1239
CGPS	6/97	33/664	24/475	3/70	66/1306
CONOR	392/3350	200/2033	120/1889	46/688	758/7960
CRPH	25/203	32/412	17/137	0/5	74/757
MWS	9/209	25/522	36/1392	219/7108	289/9231
MORGEN-Project	0/6	0/11	1/32	6/242	7/291
Rotterdam study	2/3	3/9	5/24	50/321	60/357
UK Biobank	65/555	65/610	79/780	191/1823	400/3768
Total	547/4658	487/4932	326/5044	519/10 275	1879/24 909
Out-of-hospital deaths*					
ATTICA	NA	NA	NA	NA	NA
BELSTRESS	NA	NA	NA	NA	NA
CCHS	NA	NA	NA	NA	NA
CGPS	NA	NA	NA	NA	NA
CONOR	449/3896	237/2332	199/2129	58/763	943/9120
CRPH	14/208	27/424	11/141	0/5	52/778
MWS	55/255	106/606	242/1585	1159/8005	1562/10 451
MORGEN-Project	NA	NA	NA	NA	NA
Rotterdam study	0/4	8/12	11/26	112/342	131/384
UK Biobank	NA	NA	NA	NA	NA
Total	518/4363	378/3374	463/3881	1329/9115	2688/20 733
BELSTRESS, Belgian Job Stress Study. CCHS, Copenhagen City Heart Study. CGPS, Copenhagen General Population Study. CONOR, Cohort of Norway. CRPH, Cohort of the Research for Prevention and Health. MI, myocardial infarction. MORGEN-project, Monitoring Risicofactoren en Gezondheid in Nederland. UK Biobank, United Kingdom Biobank. * Included all out-of-hospital deaths in the study populations regardless of cause.					

Appendix Table 7: Post-hoc analysis of pooled ORs, $95 \% \mathrm{Cls}$, and I^{2} statistics, by selected cohort characteristics

Appendix Figures

Appendix Figure 1: Comparison-adjusted funnel plots

Appendix Figure 1 Comparison-adjusted funnel plots displaying the natural logarithms of odds ratios against their SEs for (A) instant and (B) 28-day fatal MI, respectively.

Dots represent study-specific comparisons: black = low vs. sedentary ; red = moderate vs. sedentary ; blue = high vs. sedentary ; dark grey = moderate vs. low ; grey = high vs. low ; light grey = high vs. moderate.

Appendix Figure 2: Flow diagram summarizing the derivation of the study population Appendix Figure 2 Flow diagram summarizing the derivation of the study population.

Please note that a participant may meet more than one exclusion criteria.

Participants from all cohorts ($n=1495$ 254)

Excluded ($n=1467114$)
No myocardial infarction during follow-up ($\mathrm{n}=1437$ 172)
Myocardial infarction prior to baseline assessment ($\mathrm{n}=38715$)
Missing data on physical activity ($\mathrm{n}=165$ 904)
Missing data on survival ($\mathrm{n}=1105$)
Heart failure prior to baseline assessment ($\mathrm{n}=93246$)

Study population ($\mathrm{n}=28$ 140)

Appendix Text

Standardisation of physical activity level

Current guidelines recommend that healthy adults of all ages engage in at least 150 minutes of moderate intensity or 75 minutes a week of vigorous intensity PA or an equivalent combination thereof; for additional benefit these durations may be doubled (10). This confers with approximate minimum values of weekly net energy expenditure of 7.5 to 14.75 MET-hrs, or 15 to 29.5 MET-hrs, respectively.

Intensity of PA	IPAQ-based conversion rule
Walking (MET-min/week)	$3.3 \times$ minutes of walking x walking days
Moderate (MET-min/week)	$4.0 \times$ minutes of moderate intensity activity \times moderate intensity activity days
Vigorous (MET-min/week)	$8.0 \times$ minutes of vigorous intensity activity x vigorous intensity activity days
	(Walking MET-min/week + Moderate MET-min/week + Vigorous
Cumulative PA (MET-hrs per week)	MET-min/week) / 60 min/hrs
IPAQ, International Physical Activity Questionnaire. MET, metabolic equivalents. PA, physical activity	

Applying the above conversion algorithm to the categorization of leisure-time PA used in the Copenhagen City Heart Study $(21,23)$:

CCHS PA category	IPAQ-based calculation
Inactive or light physical activity <2 hours per week	(3.3×120 minutes $\times 1$ day) $/ 60 \mathrm{~min} / \mathrm{hrs} \approx$ 7 MET-hrs/week
Light physical activity 2-4 hours per week	($4.0 \times$ (120 to 240 minutes $\times 1$ day) / $60 \mathrm{~min} / \mathrm{hrs} \approx$ 7 to 16 MET-hrs/week
Light activity >4 hours per week or strenuous activity 2-4 hours per week	($4.0 \times$ (>240 minutes $\times 1$ day) / $60 \mathrm{~min} / \mathrm{hrs} \approx$ > 16 MET-hrs/week ($8.0 \times$ (120 to 240 minutes $\times 1$ day) $/ 60 \mathrm{~min} / \mathrm{hrs} \approx$ 16 to 32 MET-hrs/week
Strenuous activity >4 hours per week or hard training	($8.0 \times$ (>240 minutes $\times 1$ day) / $60 \mathrm{~min} / \mathrm{hrs} \approx$ > 32 MET-hrs/week
IPAQ, International Physical Activity Questionnaire. MET, metabolic equivalents. PA, physical activity	

These cut-off values are in excellent agreement with those stated in the 2016 European Guidelines of Cardiovascular Prevention in Clinical Practice (10) as shown above.

