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Abstract

Consistency and coverage are two core parameters of model fit used by
configurational comparative methods (CCMs) of causal inference. Among
causal models that perform equally well in other respects (e.g., robustness or
compliance with background theories), those with higher consistency and
coverage are typically considered preferable. Finding the optimally obtainable
consistency and coverage scores for data d, so far, is a matter of repeatedly
applying CCMs to d while varying threshold settings. This article introduces a
procedure called ConCovOpt that calculates, prior to actual CCM analyses,
the consistency and coverage scores that can optimally be obtained by
models inferred from d. Moreover, we show how models reaching optimal
scores can be methodically built in case of crisp-set and multi-value data.
ConCovOpt is a tool, not for blindly maximizing model fit, but for rendering
transparent the space of viable models at optimal fit scores in order to
facilitate informed model selection—which, as we demonstrate by various
data examples, may have substantive modeling implications.
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Introduction

Over the past three decades, different variants of configurational com-

parative methods (CCMs) have gradually been added to the tool kit for

causal data analysis in many disciplines, ranging from social and political

science to business administration, evaluation science, and on to public

health and psychology. CCMs are designed to investigate causal struc-

tures featuring conjunctural causation and equifinality, which tend to

prevent pairwise (linear) dependencies among analyzed variables and,

hence, induce problems for many standard methodological frameworks.

While other methods search for causal relations as characterized by counter-

factual or probabilistic theories of causation (e.g., Lewis 1973; Suppes 1970),

CCMs trace causation as defined in the tradition of Mackie’s (1974) INUS

theory.1 CCMs do not quantify effect sizes but place a Boolean ordering on sets

of causes by grouping their elements conjunctively, disjunctively, and sequen-

tially. And unlike the models produced by many other methods, CCM models do

not relate variables to one another but concrete values of variables (cf. Thiem

et al. 2016).

The most well-known CCM is Qualitative Comparative Analysis (QCA;

Cronqvist and Berg-Schlosser 2009; Ragin 1987, 2008). Coincidence Anal-

ysis (CNA) is a more recent addition to the family of CCMs (Baumgartner

2009; Baumgartner and Ambühl 2020). There are various differences

between QCA and CNA—in the underlying methodological principles, in

the implemented algorithms, or in the search targets—but also important

commonalities. Both methods process configurational data featuring crisp-

set, fuzzy-set, or multi-value variables (Thiem 2014), which are called fac-

tors in CCM jargon. They both exploit relations of sufficiency and necessity

for causal inference and output models accounting for the values taken by

endogenous factors in terms of redundancy-free Boolean functions of exo-

genous factor values. And they share two of their core parameters of model

fit, which constitute the topic of this article: consistency and coverage (Ragin

2006). Informally, consistency reflects the degree to which the behavior of an

outcome obeys a corresponding sufficiency or necessity relationship or a

whole model, whereas coverage reflects the degree to which a sufficiency

or necessity relationship or a whole model accounts for the behavior of the
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corresponding outcome. What counts as acceptable scores on these para-

meters is defined in threshold settings determined by the analyst prior to the

application of QCA or CNA.

Among causal models that perform equally well with respect to other

criteria, for example, robustness and compliance with case knowledge or

background theories, the ones with the higher aggregate of consistency

and coverage are considered preferable. This raises the question of how

to systematically find the models with optimal consistency and coverage.

Currently, neither the procedural protocols of QCA nor of CNA have

answers to that question on offer. Rather, optimizing consistency and

coverage is a matter of repeatedly running QCA and CNA on the data

while varying relevant thresholds and comparing the fit scores of result-

ing models. Such a trial-and-error approach is neither guaranteed to

recover all consistency and coverage optima, of which there may be

many, nor is it efficient, as it may require a multitude of data re-analyses.

Variations in the thresholds may induce substantive changes in the issued

models as well as in their fit scores. These changes may not be propor-

tional to the threshold variations. That is, higher thresholds are not guar-

anteed to produce models with higher aggregates of consistency and

coverage. In consequence, a wide range of threshold settings may have

to be searched in fine-grained steps.

This article shows that it is possible to identify optimal consistency

and coverage scores of CCM models inferable from data d independently

of actually applying CCMs to d. We introduce an explicit procedure,

called ConCovOpt, that calculates all consistency and coverage optima

for d, within certain computational limitations, prior to CCM analyses.

ConCovOpt is complemented by a second procedure, called DNFbuild,

that purposefully builds models reaching optimal scores for crisp-set and

multi-value data. For these data types, models are hence guaranteed to

exist at the consistency and coverage optima. ConCovOpt can also be

applied to fuzzy-set data, in which case optimas amount to upper bounds

that cannot possibly be outperformed by actual models, but there is no

guarantee that models de facto exist at those bounds. The upper bounds,

thus, constrain the interval of threshold settings within which optimal

actual models must be searched.

ConCovOpt is a tool, not for blindly maximizing model fit, but for sys-

tematically exploring the space of viable models with optimal fit. Some-

times, optimally fitting models will turn out to be the best models overall,

while sometimes optimizing consistency and coverage is only possible at the

price of overfitting or of compromising on robustness or compliance with
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background theories or case knowledge. Choosing the best model(s) among

all viable models, which may be numerous (Baumgartner and Thiem 2017),

is a delicate task that requires balancing various criteria. Consistency and

coverage are only two of those criteria. But, independently of whether the

analyst wants to anchor that choice in the data only or additionally draw on

external sources of information, making an informed choice presupposes that

the whole model space is brought to the analyst’s attention. The purpose of

ConCovOpt is to contribute to that objective.

This article is organized as follows. The second section reviews some

conceptual preliminaries. In the third section, ConCovOpt is presented using

a simple crisp-set data example. The fourth section applies it to large-N data.

DNFbuild is introduced in the fifth section on the basis of multi-value data;

and a fuzzy-set application is discussed in the sixth section. Finally, the

seventh section puts ConCovOpt into proper methodological perspective.

We implemented ConCovOpt and DNFbuild in an R package called cnaOpt

(Ambühl and Baumgartner 2020b), which is an add-on to the cna package

(Ambühl and Baumgartner 2020a) and is extensively used in the replication

script available in the Online Supplementary Material (which can be found at

http://smr.sagepub.com/supplemental/).

Conceptual Preliminaries

We begin by introducing some conceptual and notational preliminaries of

our ensuing discussion. As indicated above, CCMs study Boolean depen-

dence relations between factors taking on specific values. Factors represent

categorical properties that partition sets of units of observation (cases)

either into two sets, in case of binary properties, or into more than two (but

finitely many) sets, in case of multi-value properties. Factors representing

binary properties can be crisp-set (cs) or fuzzy-set (fs); the former typically

take on 0 and 1 as possible values, whereas the latter can take on any

(continuous) values from the unit interval. Factors representing multi-value

properties are called multi-value (mv) factors; they can take on any of an

open (but finite) number of non-negative integers as possible values. Val-

ues of a cs or fs factor X are often interpreted as membership scores in the

set of cases exhibiting the property represented by X, while the values of an

mv factor Y designate the particular way in which the property represented

by Y is exemplified.

As the explicit “Factor ¼ value” notation yields convoluted syntactic

expressions with increasing model complexity, we subsequently use—when-

ever possible—a shorthand notation that is conventional in Boolean algebra
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and CCM modeling: Membership in a set is expressed by italicized upper

case and non-membership by lower case Roman letters. Hence, in case of cs

and fs factors, we normally write “X” for X¼1 and “x” for X¼0. In case of mv

factors and within explicit definitions, value assignments are always written

out, using the “Factor ¼ value” notation; that is, we write “Y¼n” for factor Y

taking the value n.

CCM models may feature all the standard Boolean operations: negation

lX (“not X”), conjunction X�Y (“X and Y”), disjunction X þ Y (“X or Y”),

implication X ! Y (“If X, then Y”), and equivalence X $ Y (“X if, and only

if, Y”). In case of cs and mv factors, these operations are given a rendering in

classical logic (see, e.g., Lemmon 1965, for a canonical introduction). In case

of fs factors, Boolean operations are rendered in fuzzy logic: negation lX

amounts to 1� X , conjunction X�Y to minðX ; Y Þ, disjunction X þ Y to

maxðX ; Y Þ, an implication X ! Y is taken to express that the membership

score in X is smaller or equal to Y (i.e. X � Y ), and an equivalence X $ Y that

the membership scores in X and Y are equal (i.e. X ¼ Y ).

The implication operator is used to define the notions of sufficiency and

necessity, which are the two dependence relations exploited by CCMs: X is

sufficient for Y if, and only if (iff), X ! Y (“if X is given, then Y is given”),

and X is necessary for Y iff Y ! X (“if Y is given, then X is given”). CCM

models have the form F$ Y , where Y is an endogenous factor value and F
stands for an expression X1� . . . �Xi þ . . . þ Xm� . . . �Xn in disjunctive

normal form (DNF), such that all factors in that DNF are different (and

logically, conceptually, and metaphysically independent) from one another

and from Y. All in all, thus, CCM models explain Y in terms of a necessary

disjunction of sufficient conditions of Y.

Sufficiency and necessity relations amount to mere association patterns. As

such, they carry no causal connotations whatsoever, and, hence, most of these

relations do not reflect causation. Still, some of them do. Regularity theories of

causation (Baumgartner and Falk 2019; Graßhoff and May 2001; Mackie 1974)

are designed to filter out those sufficiency and necessity relations that do track

causation. According to regularity theories, an expression of the form F$ Y

tracks causation only if F is redundancy-free, meaning that no conjuncts or

disjuncts can be removed from F without violating the truth of F$ Y . QCA

and CNA differ in regard to how rigorouslyF needs to be freed of redundancies

before it is amenable to a causal interpretation. In QCA, complete redundancy

elimination as implemented in the so-called parsimonious models is not man-

datory—partial redundancy elimination as in intermediate or conservative mod-

els may suffice as well. By contrast, CNA automatically eliminates all

redundancies. These differences are bracketed in the following.
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Since CCM-processed data d tend to feature various deficiencies (e.g.,

fragmentation, noise, etc.), expressions of type F$ Y that adhere to the

strict standards of the equivalence operation (“$”) often cannot be inferred

from d. To relax these standards, that is, to approximate strict sufficiency and

necessity relations, Ragin (2006) introduced the consistency and coverage

measures into the QCA protocol, which have subsequently also been

imported into CNA (Baumgartner and Ambühl 2020). As the implication

operator is defined differently in classical and in fuzzy logic, the two mea-

sures are defined differently for crisp-set and multi-value data, which both

have a classical footing, and for fuzzy-set data. Cs-consistency (concs) and

cs-coverage (covcs) of X ! Y are defined as follows, where “j . . . jd” rep-

resents the cardinality of the set of cases instantiating the enclosed expression

in the data d:

concsðX ! Y Þ ¼ jX�Y jdjX jd
covcsðX ! Y Þ ¼ jX�Y jdjY jd

: ð1Þ

Fs-consistency (confs) and fs-coverage (covfs) of X ! Y are defined as fol-

lows, where n is the number of cases in d:

confsðX ! Y Þ ¼

Xn

i¼1
minðXi; YiÞXn

i¼1
Xi

covfsðX ! Y Þ ¼

Xn

i¼1
minðXi; YiÞXn

i¼1
Yi

: ð2Þ

Whenever the values of X and Y are restricted to 1 and 0 in the crisp-set

measures, concs and covcs coincide with confs and covfs, but for binary factors

with values other than 1 and 0 and for multi-value factors that does not hold.

Nonetheless, we will not explicitly distinguish between the cs and fs mea-

sures in the following because our discussion will make it sufficiently clear

which of them is at issue.

What counts as acceptable scores on these measures is defined in

threshold settings chosen by the analyst prior to the application of QCA

or CNA. While QCA only accepts a consistency threshold, CNA requires

both a consistency and a coverage threshold. Moreover, the implemen-

tation of these thresholds differs in important ways in the two methods.

In QCA, a consistency threshold is imposed only on conjunctions of all

exogenous factors (the so-called minterms) in the course of the genera-

tion of truth tables, which are intermediate calculative devices for QCA.

The final models issued may or may not meet the chosen threshold. In

CNA, thresholds for both consistency and coverage are used as author-

itative model building constraints. The thresholds define what counts as
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sufficient and necessary conditions, to the effect that models not meeting

them cannot be built.

Despite these differences, in both QCA and CNA, models with higher

consistency and coverage are preferred over models with lower scores on

these measures, provided they fare equally well in other respects (e.g.,

robustness). The following section introduces our procedure, ConCovOpt,

calculating consistency and coverage optima.

The Optimization Procedure

The goal of ConCovOpt is to identify both optimal and maximal consis-

tency and coverage scores—con-cov optima and con-cov maxima, for

short—the distinction being that an optimum optimizes at least one of

consistency and coverage, whereas a maximum optimizes their aggregate.

The procedure is given configurational data d and a set of outcomes O in d
as an input. By suitably synthesizing d for the modeling of every Y 2 O,

ConCovOpt first identifies output values for Boolean functions, so-called

rep-assignments, which reproduce the behavior of Y as closely as possible,

and, by calculating consistency and coverage scores for these rep-

assignments, it then infers all con-cov optima and maxima that CCM mod-

els of Y can possibly reach.

We introduce the procedure using the very simple cs data example in

Table 1A drawn from Giugni and Yamasaki (2009:476), who investigate

the policy impact of different social movements between 1975 and 1995.

The exogenous factors are high protest activity (P), public opinion favor-

able to the movement (O), and powerful institutional allies (A), with

values 0 and 1 representing “no” and “yes” for all factors. The endogen-

ous factor C takes the value 1 whenever a movement manages to signif-

icantly change a country’s policy and 0 otherwise. The authors analyze

the data for various western countries separately; Table 1A features the

data for the United States.

We begin by searching for con-cov optima for outcome C (i.e., C¼1) in

Table 1A. The notion of a con-cov optimum shall be defined as follows:

Con-Cov Optimum. An ordered pair hcon; covi of consistency and coverage

scores is a con-cov optimum for outcome Y¼n in data d iff, prior to applying

a CCM, it can be excluded that a model of Y¼n inferred from d scores better

on one element of the pair and at least as well on the other, whereas it cannot

be excluded that a model of Y¼n reaches hcon; covi.
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If models of Y (i.e., Y¼1) inferred from data d can be modeled with perfect

consistency and coverage, h1; 1i is the only con-cov optimum for Y in d.

Outcome C in Table 1A, however, does not have a con-cov optimum of

h1; 1i. The reason is that the cases P87, P92, and N80 feature the same

configuration of the exogenous factors—the configuration p�o�a—while

C is given in P87 and P92 and c is given in N80. The configurations

p�o�a�C and p�o�a�c constitute imperfect configurations, or what we

will call an imperfect pair.2

Imperfect Pair. An imperfect pair for Y¼n in data d is a pair of config-

urations fsi;sjg in d, such that Y¼n is instantiated in one element of the

pair and Y 6¼v in the other, while all other factors in d take constant

values in both si and sj.

In cs (and mv) data d, there is a tight logical connection between imperfect

pairs for an outcome Y and h1; 1i being the con-cov optimum for Y in d: Y

has a con-cov optimum of h1; 1i in d iff there does not exist an imperfect pair

for Y in d. The reason is that a model with perfect consistency and coverage

expresses Y as a strict Boolean function of the other factors in d, and such a

function issues exactly one output for every input. If there does not exist an

imperfect pair for Y, every input (i.e., every configuration of factors other

Table 1. A Small-N Crisp-Set Example.

A) P O A C

E75 1 0 1 0

E87 1 1 0 1
B)

P81 1 0 0 0 Conf. P O A C n Exo-Groups ϕðC¼1Þ j1 j2

P90 1 0 0 0 s1 1 0 1 0 1 fs1g 0 0 0

N77 1 1 1 0 s2 1 1 0 1 1 fs2g 1 1 1

E80 0 1 0 0 s3 1 0 0 0 2 fs3g 0 0 0

E92 0 1 0 0 s4 1 1 1 0 1 fs4g 0 0 0

P75 0 0 1 1 s5 0 1 0 0 2 fs5g 0 0 0

P87 0 0 0 1 s6 0 0 1 1 1 fs6g 1 1 1

P92 0 0 0 1 s7 0 0 0 1 2
fs7,s8g 0,1 0 1N80 0 0 0 0 s8 0 0 0 0 1

Note: Subtable A) Is the data matrix for the United States from Giugni and Yamasaki (2009:476)
with outcome C. Subtable B) is a configuration table with labels in column “conf.,” case frequen-
cies in “n,” imperfect pairs with gray shading, as well as added exo-groups, rep-list ϕðC¼1Þ, and
rep-assignments j1 and j2.
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than Y) can be straightforwardly mapped either onto Y or onto y. But if there

exists an imperfect pair, there exists an input to which no determinate output

can be assigned, meaning Y cannot be expressed as a strict Boolean function

of the other factors in d. On average, the more imperfect pairs Y has in d, the

lower the con-cov optima for Y in d.3

The existence of imperfect pairs indicates that there are varying causes of

Y in the uncontrolled causal background. The variation of Y in an imperfect

pair must have some cause or other but that cause cannot be among the other

factors in d because they are constant in the pair. Since varying latent causes

are a source of confounding, it is standardly recommended to try to resolve

imperfect pairs prior to a CCM analysis; and there are various approaches on

offer for how to do this (e.g., Rihoux and De Meur 2009). Of course, as

suppressing the variation of latent causes, especially in observational studies,

is very difficult, these approaches may be incapable of improving the data

quality. For the purposes of this article, we will hence assume that the quality

of all our example data has been improved as far as possible, meaning that the

remaining imperfect pairs cannot be resolved.

A first step towards determining con-cov optima for an outcome Y is to

identify imperfect pairs for Y in d. To do this in a methodical manner, we re-

organize the data such that the instantiated configurations are rendered more

transparent by synthesizing all cases in d instantiating the same configuration

in a single row of what we call a configuration table. A configuration table

CT of data d merges multiple rows of d in which all factors have identical

values into one row, such that each row of CT corresponds to one determinate

configuration of the factors in d.4 The configurations in CT are labeled and

the number of cases instantiating each configuration is stored in a frequency

column. The first three (line-separated) columns of Table 1B amount to a

configuration table of the data in Table 1A.

A configuration table then allows for splitting the configurations into

groups in which all factors other than a scrutinized outcome Y, that is, all

factors exogenous with respect to Y, take constant values. We shall speak of

exo-groups, for short.

Exo-Group. An exo-group of an outcome Y¼n in a configuration table CT is

a group of configurations in CT with constant values in all factors in CT other

than Y.

The imperfect pairs for Y (i.e., Y¼1) in data d can then be directly read

off the list of Y’s exo-groups: Exo-groups with more than one element

such that Y is instantiated in one element and not instantiated in another

Baumgartner and Ambühl 9



element correspond to imperfect pairs. To illustrate with our example, the

exo-groups of C are listed in the fourth (line-separated) column of

Table 1B. While s1 is the only configuration in Table 1B featuring

P�o�A, meaning that fs1g is a singleton exo-group of C, there are two

configurations featuring p�o�a, namely, s7 and s8, which constitute an

exo-group with two elements fs7;s8g. As C is instantiated in one ele-

ment of that group and c in the other, fs7;s8g amounts to an imperfect

pair for C; and as C has no other exo-groups with more than one element,

it is C’s only imperfect pair.

In order for a CCM model, which, to recall, has the form F$ Y , to

have highest possible consistency and coverage, its redundancy-free

DNF F must reproduce the instantiation behavior of the outcome Y

as closely as possible. The notion of reproducing the behavior of an

outcome as closely as possible will be of crucial importance for Con-

CovOpt. It must be understood somewhat differently for cs and mv

data, on the one hand, and fs data, on the other. In case of cs and

mv data, we say that F reproduces the behavior of an outcome as

closely as possible iff F returns the value 1 for every exo-group in

which the outcome is constantly instantiated, 0 for every exo-group in

which it is constantly non-instantiated, and either 0 or 1 for every exo-

group with a varying instantiation of the outcome. Applied to our

example, this means that a F—whichever concrete DNF this may

be—reproduces the behavior of C as closely as possible iff F returns

1 for exo-groups fs2g and fs6g; 0 for fs1g, fs3g, fs4g, and fs5g; and

either 0 or 1 for fs7;s8g. Taken together, these value assignments

yield what we will call the rep-list (reproduction list) ϕðC¼1Þ for

outcome C in Table 1B.

Rep-List. A rep-list ϕðY¼νÞ for an outcome Y¼n assigns all the values

reproducing the behavior of Y¼n as closely as possible to every exo-group

of Y¼n.

Moreover, to an assignment that returns a value from a rep-list for every

exo-group, we will refer as a rep-assignment (reproduction assignment).

Rep-Assignment. A rep-assignment j for an outcome Y¼n assigns

exactly one value from a rep-list ϕðY= νÞ to every exo-group of Y¼n.

Whatever concrete factor values CCMs may ultimately incorporate in

DNFs accounting for outcome Y, it is clear—prior to applications of

CCMs—that a DNF not returning a rep-assignment does not reach a con-
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cov optimum for Y. At the same time, as will be shown in the next section,

some rep-assignments yield non-optimal consistency or coverage scores.

That is, returning a rep-assignment for Y is necessary but not sufficient for

a DNF to reach a con-cov optimum for Y. In order to identify those rep-

assignments that actually yield con-cov optima, all possible rep-assignments

must be built from ϕðY = νÞ and the consistency and coverage scores they

induce tested for optimality.

The number of rep-assignments that can be built from a rep-list ϕðY = νÞ is
equal to the number of combinatorially possible value distributions drawn

from ϕðY = νÞ, that is, to
Yn

i¼1
jϕðY = νÞij, where n is the number of exo-groups

and jϕðY= νÞij the cardinality of the set of possible values assigned to exo-

group i. In our example, the complete set of rep-assignments is easily built, as

there is only one exo-group with more than one value in the rep-list ϕðC=1Þ.
Hence, outcome C has a total of two rep-assignments, j1 and j2, which are

featured in the last two columns of Table 1B. j1 and j2 coincide except for

the fact that they contain the values 0 and 1, respectively, for exo-group

fs7;s8g. j1 induces perfect consistency but does not cover the instance

of C in s7, whereas j2 covers the instance of C in s7 but violates perfect

consistency in s8.

It only remains to be determined which of all rep-assignments actually

reach con-cov optima. To this end, consistency and coverage scores are

calculated for all rep-assignments. In case of cs and mv data, this can be

done by plugging the values of a rep-assignment ji and the corresponding

instantiation behavior of outcome Y¼n into the definitions concs and covcs

in expression (1). In our example, this means that columns “j1” and “j2” of

Table 1B yield the X-values of concs and covcs, column “C” the Y-values,

and column “n” the case frequencies. We get the following consistency and

coverage scores:

j1 : con ¼ 1; cov ¼ 0:5; ð3Þ
j2 : con ¼ 0:8; cov ¼ 1: ð4Þ

Due to the imperfect pair in exo-group fs7;s8g, it is impossible, in princi-

ple, for a CCM model of C inferred from the data in Table 1A to score better on

consistency and coverage. j1 outperforms j2 in consistency and j2 outper-

forms j1 in coverage. As neither of the two scores better than the other on one

measure and at least as well on the other, they are both con-cov optima. j1

optimizes consistency, andj2 optimizes coverage. At the same time,j2 clearly

outperforms j1 in the aggregate of consistency and coverage, which we take to
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be the product of consistency and coverage (i.e., the con-cov product). That is,

j2 has the better overall model fit; it reaches a con-cov maximum:

Con-Cov Maximum. An ordered pair hcon; covi of consistency and coverage

scores is a con-cov maximum for outcome Y¼n in data d iff hcon; covi is a con-

cov optimum for Y¼n in d with the highest aggregate, that is, product, of con-

sistency and coverage.

Of course, the product of consistency and coverage is only one option

among many to aggregate consistency and coverage. Assessing the over-

all model fit based on the con-cov product amounts to giving equal

weights to consistency and coverage, which, while standard in CNA,

may not be endorsed by all QCA methodologists (who tend to have a

preference for consistency). We do not want to take a stance on that issue

here but, instead, invite a reader who wants to assess the overall model

fit by giving unequal weights to consistency and coverage to view the

simple con-cov product in the above definition as a placeholder for any

preferred function aggregating consistency and coverage. That is, a con-

cov maximum might alternatively be defined as a con-cov optimum with

maximal score on con0:75 � cov0:25, or on ð0:25 � conÞ þ ð0:75 � covÞ, or on

minðcon; covÞ, and so on.5 While all of these alternative definitions

identify j2 as con-cov maximum for outcome C, they may select differ-

ent con-cov maxima in other examples. Still, to avoid unnecessary com-

plications, we shall subsequently only work with the con-cov product as

our aggregation function of choice.

In sum, without having applied CCMs to Guigni and Yamasaki’s

(2009) data, we have identified optimal and maximal consistency and

coverage scores for them. Before we search for actual CCM models for

our example, let us assemble the different procedural steps. To this

end, one generalization is still needed. For simplicity, all data analyzed

in this article comprise a single outcome only, but, of course, config-

urational data may feature multiple outcomes. If that is the case, exo-

groups, rep-lists, and rep-assignments must be formed and consistency

and coverage scores calculated for each outcome separately. For gen-

erality, we thus let the input of ConCovOpt be data d along with a set

of outcomes O in d. If no prior knowledge is available as to which

values of which factors in d are possible outcomes, ConCovOpt can

simply be run by setting O equal to all values of all factors in d.

ConCovOpt is presented in Procedure 1.
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Let us now apply CCMs to our example data in order to find actual models

returning j1 and j2. At a consistency threshold anywhere between 1 and

0:67, QCA produces the following parsimonious (QCA-PS) and conservative

models (QCA-CS),6 the latter of which is also the model published by Giugni

and Yamasaki (2009:479):

QCA-PS : p�Aþ P�O�a$ C con ¼ 1; cov ¼ 0:5; ð5Þ
QCA-CS : p�o�Aþ P�O�a$ C con ¼ 1; cov ¼ 0:5: ð6Þ

In both equations (5) and (6), not only the solution consistency but also

the consistencies of all sufficient conditions (i.e., disjuncts) are 1. Our

previous calculations attest that the QCA models reach a con-cov opti-

mum, as they return rep-assignment j1. At the same time, we now see

that equations (5) and (6) do not reach a con-cov maximum. Rep-

assignment j2 shows that it is possible to significantly improve on the

overall model fit. But at a conventional consistency threshold of 0.75,

standard QCA does not find a better scoring model—for two main rea-

sons. On the one hand, QCA builds models from the top down by first

searching for complete minterms satisfying a chosen consistency thresh-

old and then eliminating redundancies. The minterm p�o�a of the exo-

group fs7;s8g, however, only reaches a consistency of 0:667 and is

therefore not further considered by QCA (in QCA jargon: it is coded

“0”)—despite the fact that, as we shall see below, a proper part of that

Procedure 1: (ConCovOpt) Consistency and Coverage Optimization

Input: configurational data d with a set of outcomes O in d.
Output: All con-cov optima and maxima for all outcomes in O.

(1) Aggregate d in a configuration table CT.

(2) For every outcome Y¼n in O, split the configurations in CT into exo-groups of
Y¼n.

(3) Build the rep-list ϕðY = νÞ.
(4) Build all rep-assignments j1 to jm from ϕðY = νÞ.
(5) Calculate the consistency and coverage scores of j1 to jm.

(6) Eliminate all rep-assignments with scores that do not reach a con-cov
optimum.

) The scores of the remaining rep-assignments correspond to all con-cov
optima for Y¼n in d, the optima with highest aggregate are the con-cov
maxima.
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minterm indeed scores 0:75 on consistency. On the other hand, standard

QCA does not accept a coverage threshold and, hence, cannot be “asked”

to build models with specific target scores on coverage.

CNA, by contrast, accepts separate thresholds for consistency of suffi-

cient conditions and of whole models as well as for coverage of whole

models. It can thus be “asked” to build models at any target scores. More-

over, it builds models from the bottom up by first testing single factor

values for compliance with chosen thresholds and by then gradually adding

further factor values until threshold compliance is established.7 Dusa

(2018) has recently presented a promising new algorithm for QCA called

CCubes that also builds models from the bottom up and accepts the same

types of thresholds as CNA.8 At a threshold setting of h1; 0:5i, CNA and

CCubes return the same model as QCA-PS, but at h0:75; 1i, they find the

following model realizing j2:

CNA=CCubes : p�oþ P�O�a$ C con ¼ 0:8; cov ¼ 1: ð7Þ

This is not the place to select among the different model candidates

we have now recovered for Guigni and Yamasaki’s (2009) data, nor to

substantively interpret them. What matters for our purposes is that computing

con-cov optima and maxima by means of ConCovOpt prior to actually con-

ducting CCM analyses has (at least) three important payoffs. First, it allows

us to determine how close actually obtained models come to optimal and

maximal fit. Second, it renders transparent whether the obtained models

exhaust the space of con-cov optima or whether further models should be

searched at different thresholds. Third, without having to try out a whole

range of threshold settings, CCMs can be run by directly constraining them

towards optimal thresholds.

Large-N Crisp-set Data

The data in Table 1A are very simple and, although the resulting optimal

models differ significantly in overall fit, they have a considerable overlap in

causal ascriptions, thus inducing only marginally different causal conclu-

sions. To show that optimizing consistency and coverage can also make a

substantive difference in causal conclusions, we now turn to a more intricate,

large-N data example. Britt et al. (2000) investigate the determinants leading

to the parental decision to terminate a pregnancy after a prenatal diagnosis of

trisomy 21. Four exogenous factors are examined: existing children (C; 0 :¼
“none,” 1 :¼ “1 or more”), maternal age in years (M; 0 :¼ “37 and under,”

1 :¼ “38 and above”), prior voluntary abortions (A; 0 :¼ “none,” 1 :¼ “1 or
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more”), and gestational age in weeks (G; 0 :¼ “16 and under,” 1 :¼ “17 and

over”). The endogenous factor is termination (T; 0 :¼ “continue,” 1 :¼
“terminate”). The cases are 142 pregnant women receiving a trisomy 21

diagnosis at Wayne State University Clinic from September 1989 through

October 1998. The complete data can be consulted in our replication script,

and the configuration table resulting from that data is given in Table 2.

As is frequently the case in large-N data, there are numerous imperfect

pairs, highlighted with gray shading. Instead of first calculating con-cov

optima and maxima and only afterwards looking at concrete models, we

proceed in reverse order for this example. We begin by presenting the model

offered by Britt et al. (2000:412). They choose a consistency threshold of

0:875. At this threshold, QCA builds two models (only the second of which is

mentioned by the authors):9

Table 2. A Large-N Crisp-Set Example.

Conf. C M A G T n Exo-Groups ϕðT¼1Þ jpub jmax

s1 1 1 0 0 1 27 fs1,s2g 0, 1 1 1s2 1 1 0 0 0 1
s3 1 1 1 0 1 7 fs3,s4g 0, 1 1 1s4 1 1 1 0 0 1
s5 1 0 0 0 1 11 fs5g 1 1 1
s6 1 0 1 1 1 9 fs6g 1 1 1
s7 0 0 1 0 1 1 fs7g 1 1 1
s8 1 1 1 1 1 3 fs8,s9g 0, 1 0 1s9 1 1 1 1 0 1
s10 0 1 0 1 1 1 fs10g 1 1 1
s11 0 0 0 1 1 8 fs11g 1 1 1
s12 1 0 0 1 1 19 fs12,s13g 0, 1 0 1s13 1 0 0 1 0 6
s14 1 0 1 0 1 7 fs14g 1 1 1
s15 1 1 0 1 1 11 fs15,s16g 0, 1 0 1s16 1 1 0 1 0 3
s17 0 0 0 0 1 4 fs17,s18g 0, 1 0 1s18 0 0 0 0 0 2
s19 0 1 1 1 1 1 fs19g 1 1 1
s20 0 1 1 0 1 1 fs20,s21g 0, 1 0 1s21 0 1 1 0 0 1
s22 0 0 1 1 1 6 fs22g 1 1 1
s23 0 1 0 0 1 11 fs23g 1 1 1

Note: Configuration table for the data in Britt et al. (2000:412) with (highlighted) imperfect pairs,
exo-groups, rep-list ϕðT¼1Þ, and the rep-assignments jpub and jmax.
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QCA : c�G þ C�g þ m�Aþ c�M �a$ T con ¼ 0:98; cov ¼ 0:70; ð8Þ
c�G þ C�g þ m�AþM �a�g $ T con ¼ 0:98; cov ¼ 0:70: ð9Þ

A handful of QCA re-runs with only slightly varied consistency thresh-

olds show that the results are highly volatile, yielding many different mod-

els with different overall fit. Identifying a con-cov maximum for these data

calls for a systematic approach. We thus apply ConCovOpt with

O ¼ fT¼1g. The result of step (1) is the configuration table in Table 2.

Step (2) yields nine singleton exo-groups entailing determinate values for

the rep-list in step (3). In all seven non-singleton exo-groups, the outcome T

varies, meaning that DNFs reproducing the behavior of T as closely as

possible can return either 0 or 1 for those groups. In total, the resulting

rep-list ϕðT¼1Þ induces 27 ¼ 128 rep-assignments in step (4). In step (5),

consistency and coverage scores are calculated for all of them and those

with non-optimal scores eliminated in step (6). Sixteen con-cov optima

remain. They are plotted in Figure 1A.

In light of these results, we can now say that the published model (9),

which scores h0:98; 0:70i, indeed reaches a con-cov optimum (j3; & in

Figure 1). However, with its con-cov product of 0:69, it is quite far away

from a con-cov maximum. The con-cov products of all 16 optima are plotted

in Figure 1B. The con-cov maximum for outcome T is j16 h0:89; 1i (~). For

transparency, we add the rep-assignment jpub (i.e., j3) realized by the pub-

lished model and the assignment jmax (i.e., j16) yielding the con-cov max-

imum to Table 2.

1

2
345

678
91011

12
13141516

0.4

0.6

0.8

1.0

0.85 0.90 0.95 1.00
consistency

co
ve

ra
ge

(A)

1

2
3 4 5

6 7 8
9 10 11

12 13 14 15 16

0.4

0.6

0.8

1.0

4 8 12 16
con-cov optimum

co
n-

co
v

pr
od

uc
t

(B)

Figure 1. Plot A shows the 16 con-cov optima for outcome T in the data of Britt et al.
(2000) and Plot B shows the con-cov products of each optimum. ~ is the con-cov
maximum and & is the published model.
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The value distribution of jmax is striking: It assigns 1 to every exo-group,

resulting in a (vacuous) tautology. In other words, a best fitting model for the

data of Britt et al. (2000) entails that pregnancy is terminated in case of a

trisomy 21 diagnosis whatever the values of the exogenous factors, that is,

independently of the pregnant woman’s existing children, prior abortions,

age, and gestational age. To render this more concrete, let us now search for

actual models at h0:89; 1i. While standard QCA algorithms do not find a

model reaching the con-cov maximum, CNA and CCubes have no problem

finding such a model. At a threshold setting of h0:89; 1i, the following

tautologous model is returned:10

CNA=CCubes : M þ m$ T con ¼ 0:89; cov ¼ 1: ð10Þ

Of course, any other tautologous model, as C þ c$ T or Aþ a$ T ,

reaches the same fit scores, but equation (10) is the only model such that the

two disjuncts M and m individually reach the consistency threshold of 0:89 as

well—which is why it is the only model issued by CNA and CCubes. The

overall fit of equation (10) is good by all CCM standards, and equation (10)

also meets the consistency threshold used by Britt et al. (2000). It is the best

fitting model for their data, and, for principled reasons, its fit scores cannot

be outperformed. But of course, it is not a causally interpretable model.

Causes are difference makers of their effects, yet a tautology does not make

a difference to anything.

This finding casts doubts on all causal conclusions Britt et al. (2000) have

drawn from their data; 127 of all 141 women receiving a trisomy 21 diagnosis

in their sample choose to terminate, making termination the canonical response

to the diagnosis. No non-tautologous function of the exogenous factors can

account for the outcome better than the tautologous model that entails termi-

nation no matter what. The data contain too little variation on the outcome T to

conclude anything about its causes; in particular, there is no evidence that T is

caused by any of the factors C, M, A, or G. A causal interpretation of the

published model (9) is unwarranted by the data. This shows that a systematic

search for con-cov maxima (prior to a CCM analysis) may have implications

that go way beyond minor model adjustments or improvements. The optimiza-

tion of consistency and coverage scores rendered possible by ConCovOpt may

thoroughly change the conclusions drawn from a study.

Multi-value Data

ConCovOpt is straightforwardly applicable to multi-value data. Although the

factors in mv data can take more than two values, models for an mv outcome
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Y¼n have the same logical form as cs models: They account for Y¼n in terms

of redundancy-free DNFs, which, irrespective of whether they feature cs or

mv factors, are true or false, that is, only return 1 or 0. Hence, for an optimal mv

DNF to reproduce the instantiation behavior of an outcome Y¼n as closely as

possible, the exact same conditions must be satisfied as in the cs case. It

follows that rep-lists and rep-assignments can be built and evaluated for con-

sistency and coverage in exactly the same way for mv data as for cs data.

To illustrate, we apply ConCovOpt to the mv data of Verweij and Gerrits

(2015), who investigate the impact of different management strategies in

response to unplanned events occurring during the implementation of a

large infrastructure project in Maastricht. Their data comprise 18

unplanned events (between 2009 and 2011) measuring the following exo-

genous factors: nature of the event (E; 0 :¼ “physical/remote,” 1 :¼ “social/

project/public”), nature of the management response (M; 0 :¼ “internal,”

1 :¼ “external”), and nature of the interaction between public and private

managers (I; 0 :¼ “autonomous public,” 1 :¼ “autonomous private,” 2 :¼
“cooperation”). The endogenous factor is the satisfactoriness of the man-

agement response (S). To emphasize the data’s mv nature, we replace the

original values of S (i.e., 0 and 1) by two (arbitrarily chosen) different ones;

that is, we will say that S takes the value 3 if satisfactoriness is high and the

value 2 if it is not high.

The input to ConCovOpt, hence, is Verweij and Gerrits’s complete data

with O ¼ fS¼3g (see the replication script). In step (1), ConCovOpt

synthesizes that data in the configuration table contained in Table 3. As

there is only one outcome, step (2) forms one set of exo-groups, which are

listed in column 4. There are two non-singleton exo-groups, fs3, s4g and

fs7, s8g, each inducing two possible values in the rep-list in step (3). Step

(4) generates 22 ¼ 4 rep-assignments j1 to j4. For transparency, we list

them all in Table 3. In step (5), the value distributions of j1 to j4 and the

instantiation behavior of outcome S¼3 are plugged into concs and covcs.

Step (6) checks the consistency and coverage scores for optimality, which

check is positive for all scores. Overall, ConCovOpt identifies the follow-

ing four con-cov optima for outcome S¼3, the last of which, j4, is a con-

cov maximum:

j1 : con ¼ 1; cov ¼ 0:44; ð11Þ
j2 : con ¼ 0:86; cov ¼ 0:67; ð12Þ
j3 : con ¼ 0:78; cov ¼ 0:78; ð13Þ
j4 : con ¼ 0:75; cov ¼ 1: ð14Þ
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Verweij and Gerrits (2015:21) present a conservative solution, equa-

tion (15), that scores h1; 0:44i and, hence, realizes the optimum j1.

Independently of where in the interval ½1; 0:67� the consistency threshold

is placed, QCA finds two parsimonious solutions, equations (16) and

(17), which likewise realize j1.

QCA-CS : M¼0�I¼0þ E¼0�M¼0�I¼2þ E¼1�M¼1�I¼1$ S¼3; ð15Þ
QCA-PS : M¼0�I¼0þ E¼0�I¼2þM¼1�I¼1$ S¼3; ð16Þ

M¼0�I¼0þM¼0�I¼2þM¼1�I¼1$ S¼3: ð17Þ

That is, in the range of conventional threshold settings, QCA only finds

models realizing one of the four con-cov optima. Instead of now applying

CNA and CCubes, we next introduce a procedure for building CCM models

realizing any con-cov optimum for cs and mv data.

A con-cov optimum is realized by a DNF that outputs either 1 or 0 for

every exo-group. Any two DNFs that return the same output for all exo-

groups have the same consistency and coverage. For convenience, let us call

the set of exo-groups to which a rep-assignment ji assigns the value 1 the

positive group of ji. One particularly interesting DNF returning ji then is

what we label ji’s canonical DNF—in reference to canonical normal forms

of logical expressions (Lemmon 1965:198).

Canonical DNF. The canonical DNF returning a rep-assignment ji for

outcome Y¼n is the disjunction of the configurations of all factors exogenous

to Y in ji’s positive group.

Table 3. A Multi-Value Example.

Conf. E M I S n Exo-Groups ϕðS¼3Þ j1 j2 j3 j4

s1 0 0 2 3 1 fs1g 1 1 1 1 1
s2 1 0 1 2 2 fs2g 0 0 0 0 0
s3 1 1 0 2 2 fs3,s4g 0, 1 0 0 1 1s4 1 1 0 3 3

s5 1 0 0 3 1 fs5g 1 1 1 1 1
s6 1 1 1 3 1 fs6g 1 1 1 1 1
s7 1 1 2 2 1 fs7,s8g 0, 1 0 1 0 1s8 1 1 2 3 2

s9 0 0 1 2 4 fs9g 0 0 0 0 0
s10 0 0 0 3 1 fs10g 1 1 1 1 1

Note: Configuration table for the data in Verweij and Gerrits (2015), with re-coded factor S, exo-
groups, rep-list, and all resulting rep-assignments.
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Just as any logical expression is guaranteed to have a unique canonical

normal form, so is every rep-assignment guaranteed to have exactly one

canonical DNF, which moreover is easily built. For example, disjunctively

concatenating the configurations of factors E, M, and I in j4’s positive group

in Table 3 yields the canonical DNF returning j4; it is a DNF that scores

h0:75; 1i in accounting for S¼3:

E¼0�M¼0�I¼2þ E¼1�M¼1�I¼0þ E¼1�M¼0�I¼0 þ
E¼1�M¼1�I¼1þ E¼1�M¼1�I¼2þ E¼0�M¼0�I¼0:

ð18Þ

In the same way, the canonical DNFs of the other con-cov optima for out-

come S¼3 can be construed. For example, as the exo-group fs7;s8g is not in

j3’s positive group, removing the configuration of the exogenous factors in

fs7;s8g, namely, E¼1�M¼1�I¼2, from equation (18) is all it takes to build

the canonical DNF returning j3.

Of course, as canonical DNFs comprise all configurations of all exogenous

factors in an optimum’s positive group, they tend not to be redundancy-free, and

consequently, not to be causally interpretable. For instance, if we remove E¼0

from the first and the last disjuncts in equation (18), we are still left with a DNF

with the same output for all exo-groups in Table 3, that is, a DNF returning j4.

The same holds if we continue to eliminate E¼1 from all disjuncts. By contrast, if

I¼2 is eliminated from the first disjunct of equation (18), we are left with a DNF

that scores h0:56; 1i in accounting for S¼3 and, thus, no longer returns j4. The

reason is that a DNF featuring E¼0�M¼0 as a separate disjunct (instead of

E¼0�M¼0�I¼2) outputs 1 for exo-group fs9g, whereas j4 assigns 0 to that

group. In sum, while some factor values can be removed from equation (18) such

that the remaining DNF still returnsj4, others are indispensable for returningj4.

These considerations suggest that equation (18) can be turned into a

redundancy-free DNF returning j4 by systematically removing factor values and

checking whether the remainder still outputs the same as equation (18) for all exo-

groups. All factor values for which this check is positive are redundant; all factor

values for which the check is negative are indispensable (non-redundant). If all

redundancies are removed fromequation (18), we are left with this redundancy-free

DNF: I¼2þ I¼0þM¼1. Accounting for S¼3 on its basis yields the following

model, which reaches the con-cov maximum for Verweij and Gerrits’s data:

I¼2þ I¼0þM¼1$ S¼3 con ¼ 0:75; cov ¼ 1: ð19Þ

Model (19) has a peculiarity. Although the model as a whole reaches a

consistency of 0:75, two of its component disjuncts do not. M¼1 and I¼0 are

sufficient for S¼3 with consistencies of 0:67 and 0:71 only. It follows that in
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order to find model (19) with CNA and CCubes, the consistency threshold

must be lowered to 0:66. Whether models some of whose components only

reach a consistency of 0:67 should be considered acceptable is a question that

requires further discussion, which, however, goes beyond the purposes of this

article. If model (19) is considered unacceptable, our previous analysis has

shown that there are other con-cov optima on offer for Verweij and Gerrits’s

data that score better than the published model. For example, by system-

atically eliminating redundancies from the canonical DNF returning j2, we

find the redundancy-free DNF in equation (20), all of whose disjuncts have

consistencies of 0:75 or higher, such that model (20) is returned by both CNA

and CCubes at that consistency threshold:

I¼2þM¼0�I¼0þM¼1�I¼1$ S¼3 con ¼ 0:86; cov ¼ 0:67: ð20Þ

Model (20) comes close to the two parsimonious QCA solutions (16)

and (17). The only difference is that I¼2 is conjunctively combined with

E¼0 in solution (16) and with M¼0 in solution (17), creating a model

ambiguity, whereas I¼2 is a stand-alone disjunct in model (20), which is

non-ambiguous. Hence, replacing QCA’s parsimonious solutions by

redundancy-free DNFs returning j2 or j4—systematically built via their

canonical DNFs—not only increases the con-cov product from 0:44 to

0:58 and 0:75, respectively, but also resolves a model ambiguity—two

clear advantages of models (20) and (19) over models (16) and (17).11

We end this section by assembling the steps building DNFs return-

ing rep-assignments in procedural form, which we label DNFbuild, for

short:

Procedure 2: (DNFbuild) Build Redundancy-Free DNFs Returning
Rep-Assignments

Input: cs or mv configuration table CT and rep-assignment ji for outcome Y¼n in CT
Output: redundancy-free DNF(s) returning ji

(1) Build the canonical DNFcano returning ji by disjunctively concatenating the
configurations of the factors exogenous to Y¼n in ji’s positive group.

(2) Eliminate all factor values from DNFcano for which it holds that the result of the
elimination, namely, DNFelim, still returns ji (i.e., produces the same output as
DNFcano for all exo-groups in CT).

) If no further factor values can be eliminated from DNFelim, it is a redundancy-
free DNF returning ji.
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In case of cs and mv configuration tables, all ji’s have a canonical

DNF, which is efficiently built by step (1) of DNFbuild. Step (2), by

contrast, involves some intricacies. The reason is that different orders in

which factor values are eliminated from DNFcano may result in different

redundancy-free DNFs. Generating all of these DNFs can be done more

or less efficiently, but the running time of all algorithms that solve this

problem grows exponentially with the number of factors and the number

of values these factors can take. The cnaOpt package, which we use in

the replication script, provides an algorithm called ereduce to generate all

redundancy-free forms of DNFcano.12 In the end, what matters for our

current purposes is not the concrete implementation of step (2) but the

fact that DNFbuild is guaranteed to find a redundancy-free DNF Frf of

every con-cov optimum hh; ki. The equivalence Frf $ Y¼n then

amounts to a CCM model accounting for Y¼n with consistency h and

coverage k. That is, in case of cs and mv data, there exists a CCM model

for every con-cov optimum.

Fuzzy-set Data

This section, first, applies ConCovOpt to fs data and, second, shows that

there is no guarantee that actual CCM models exist for every con-cov

optimum in fs data and that calculating con-cov optima for fs data is

more computationally demanding than for cs and mv data. As background

for this discussion, we choose the study by Basurto (2013) who analyzes

the autonomy among local institutions for biodiversity conservation in

Costa Rica. The study aims to identify causes of, on the one hand, the

emergence of autonomy between 1986 and 1998 and, on the other, the

endurance of that autonomy between 1998 and 2006. Basurto investigates

three groups of potentially causally relevant factors: local, national, and

international ones. In what follows, we focus on the local influence

factors of high local communal involvement through direct employment

(E), high local direct spending (S), and co-management with local or

regional stakeholders (C), and we concentrate on the outcome of endur-

ance of high local autonomy (A), with 0 representing “no” and 1 “yes”

for all factors (Basurto 2013:577). The data cover 16 Costa Rican bio-

diversity conservation programs; the factors are calibrated on a member-

ship scale with increments of 0.2.

As input to ConCovOpt we, thus, use Basurto’s data (see the replication

script) with O ¼ fA¼1g. In step (1), ConCovOpt builds the configuration

table in Table 4. In this example, each case corresponds to exactly one
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configuration—which is not uncommon for fs data. Since there, again, is only

one outcome in O, step (2) then builds one set of exo-groups, which are listed

in column 4 of Table 4.

The main peculiarity of fs data is that configurations and outcomes are

not merely instantiated or not instantiated in each case but instantiated

with different set membership scores (i.e. to different degrees) in many

different cases. One consequence is that there are often not only imper-

fect pairs but imperfect n-tuples, where n is the number of different

membership scores an outcome has in an exo-group. An example is

exo-group fs2;s3;s4g in Table 4. Since A has three different membership

scores in that group, namely, A¼0:4, A¼1:0, and A¼0:6, it corresponds to

an imperfect triple. That the other three non-singleton exo-groups in Table 4

have only two elements is mere happenstance; fs exo-groups can have as

many members as there are values the outcome can take. Still, just as CCM

models for other data types, models for fs data have highest consistency and

coverage if they reproduce the behavior of the outcome as closely as pos-

sible. That is, a DNF F of an fs model F$ Y scores the higher on con-

sistency and coverage, the closer the value of F comes to the value of Y for

every exo-group.

Table 4. A Fuzzy-Set Example.

Conf. E S C A n Exo-Groups ϕðA¼1Þ jmax j1

s1 1.0 1.0 1.0 1.0 1 fs2g 1.0 1.0 1.0
s2 1.0 0.6 1.0 0.4 1

fs2;s3;s4g 0.4,0.6,1.0 0.6 0.6s3 1.0 0.6 1.0 1.0 1
s4 1.0 0.6 1.0 0.6 1

s5 1.0 0.8 1.0 0.8 1 fs5g 0.8 0.8 0.8
s6 1.0 0.4 1.0 0.4 1 fs6g 0.4 0.4 0.4
s7 0.4 1.0 1.0 1.0 1 fs7g 1.0 1.0 1.0
s8 1.0 1.0 0.0 1.0 1 fs8g 1.0 1.0 1.0
s9 0.4 0.4 0.2 0.4 1 fs9;s10g 0.2, 0.4 0.4 0.4s10 0.4 0.4 0.2 0.2 1

s11 0.4 0.4 0.6 0.4 1 fs11g 0.4 0.4 0.4
s12 0.4 0.4 0.4 0.2 1 fs12;s13g 0.4, 0.6 0.6 0.4s13 0.4 0.4 0.4 0.6 1

s14 0.2 0.4 0.2 0.4 1 fs14g 0.4 0.4 0.4
s15 0.4 0.4 0.0 0.6 1 fs15;s16g 0.4, 0.6 0.6 0.4s16 0.4 0.4 0.0 0.4 1

Note: Configuration table for the data in Basurto (2013) with exo-groups, rep-list, and rep-
assignments jmax and j1.
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Due to the instantiation by degrees in fs data, however, the notion of

reproducing the behavior of an outcome as closely as possible cannot be

spelled out exactly as for cs and mv data. While a rep-assignment for the

latter data types must reproduce the behavior of the outcome by only assign-

ing one of two values, 0 or 1, a rep-assignment j for fs data may assign many

more values, namely, the minimum of the conjuncts’ scores in a conjunction

and the maximum of the disjuncts’ scores in a disjunction. The values j can

assign to a particular exo-group are constrained by the membership scores of

the exogenous factors in that group. More specifically, as j is the output of a

disjunction of conjunctions of factor values or their negations, it can only

assign the membership scores of the positive or of the negated factors in that

group, but no other values. To illustrate, take again the exo-group

fs2;s3;s4g, in which E¼1:0, S¼0:6, and C¼1:0. The conjunction E�S�C
issues 0.6 for that group, namely, minð1:0; 0:6; 1:0Þ; correspondingly, e�c
and E�C return 0.0 and 1.0, respectively, or s�C outputs 0.4. But any value

other than 0.0 (negation of E and C), 0.4 (negation of S), 1.0 (value of E and

C), or 0.6 (value of S) cannot be assigned to that exo-group by j, meaning

that those are j’s possible values for that group. Hence, a rep-assignment j
reproduces the behavior of an outcome as closely as possible if, and only if, it

holds for every exo-group x that j assigns one of its possible values to x that

comes as close as possible to the outcome’s membership scores in x. In the

case of exo-group fs2;s3;s4g that means that j reproduces the behavior of

A as closely as possible iff it assigns one of 0.4, 0.6, or 1.0 to that exo-group

(but not 0.0); or for exo-group fs12;s13g j must assign either 0.4, which is

equally close to A¼0:2 and A¼0:6 in that group, or 0.6, which is closest to

A¼0:6. Sometimes the closest possible value of j exactly matches an out-

come, sometimes it is far away from it. Sometimes only one of the possible

values is closest to the outcome, sometimes multiple values are closest.

Based on this notion of reproducing the behavior of an outcome, step (3)

builds the rep-list ϕðA¼1Þ in Table 4 for Basurto’s data. From this list, 24

rep-assignments for outcome A are built in step (4). Just as in cs and mv data,

the values of the rep-assignments and of the outcome are then plugged into

the definitions for consistency and coverage in step (5)—this time, of course,

using the fuzzy-set definitions confs and covfs in expression (2). After elim-

inating all rep-assignments inducing non-optimal scores, seven con-cov

optima remain, which are plotted in Figure 2A with their con-cov products

in Figure 2B.

Basurto (2013) chooses a consistency threshold of 0:79 and produces an

intermediate solution, equation (21), which coincides with QCA’s

24 Sociological Methods & Research XX(X)



conservative solution. At that consistency threshold, QCA issues the two

parsimonious solutions (22) and (23).

QCA-IS=CS : C þ E�S $ A con ¼ 0:79; cov ¼ 0:94; ð21Þ
QCA-PS : C þ E $ A con ¼ 0:79; cov ¼ 0:94; ð22Þ

C þ S $ A con ¼ 0:79; cov ¼ 0:96: ð23Þ

Contrary to our previous examples, these QCA models fall significantly short

of a con-cov optimum, let alone a con-cov maximum. Moreover, the models

are not robust under variations of the consistency threshold. But thanks to

ConCovOpt, we now have concrete threshold settings at which to search for

models with optimal fit. The con-cov maximum of h0:9; 0:957i (~ in Fig-

ure 2) is reached by the rep-assignment jmax in Table 4. It turns out, how-

ever, that neither QCA nor CNA nor CCubes find a model at the threshold

setting h0:9; 0:957i, not even—as is possible in CNA and CCubes—if the

consistency of individual disjuncts is allowed to fall short of 0.9. There

simply does not exist a CCM model for outcome A at the con-cov

maximum. This is not some idiosyncrasy of Basurto’s data. Con-cov

optima for fs data frequently do not have actual CCM models realizing

them.

In a cs and mv configuration table, the configuration Gi of exogenous

factors in an exo-group fsig of an outcome Y is guaranteed not to be instan-

tiated in any other exo-groups of Y. Hence, if Y is given in fsig, Gi—properly

freed of redundancies—can safely be included as a disjunct in a model of Y
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Figure 2. Plot A shows the seven con-cov optima for outcome A in the data of
Basurto (2013) and the con-cov score of the published model (&) and Plot B shows
the con-cov products of each optimum and of the published model. ~ is the con-cov
maximum and ♦ the best optimum realizable by a CCM model.
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without affecting the model’s consistency in any exo-groups other than fsig.
It is therefore possible to modularly build CCM models for every rep-

assignment ji along the lines of DNFbuild. The DNFbuild approach,

however, does not work for fs data, because if Y is an fs outcome, the

configuration Gi in exo-group fsig may be instantiated with some non-zero

membership in many other exo-groups. In consequence, including Gi as a

disjunct in a CCM model of Y is likely to affect the model’s consistency in

exo-groups other than fsig. It may hence happen that a DNF only returns an

optimal value for exo-group fsig provided it contains factor values that, at

the same time, return a non-optimal value for another exo-group fsjg, mean-

ing that no DNF returns optimal values for both fsig and fsjg.
To make this (abstract problem) concrete, compare the exo-groups

fs9;s10g and fs15;s16g in Table 4. The rep-assignment jmax assigns 0.4

to fs9;s10g and 0.6 to fs15;s16g. Given the membership scores E¼0:4,

S¼0:4, and C¼0:2 in fs9;s10g, a DNF only returns 0.4 for fs9;s10g if it

includes E or S or E�S as a disjunct. But E, S, and E�S also return 0.4 for

group fs15;s16g, while jmax assigns 0.6 to that group. Given the member-

ship scores E¼0:4, S¼0:4, and C¼0:0 in fs15;s16g, a DNF would have to

include e or s or e�s in order to return 0.6 for fs15;s16g. But if those factor

values are included, 0.6 is issued for fs9;s10g, which again is not the value

assigned by jmax. In sum, no DNF outputs 0.4 for fs9;s10g and 0.6 for

fs15;s16g, meaning that no actual CCM model will realize jmax.

This problem is avoided if we do not require 0.6 to be issued for

fs15;s16g but 0.4, which indeed happens to be assigned by another rep-

assignment, j1 (cf. Table 4), yielding the con-cov optimum h0:935; 0:915i.
Moreover, it turns out that there exists an actual DNF also reproducing all

other values of j1. At a threshold setting of h0:93; 0:91i, both CNA and

CCubes find the following model:13

CNA=CCubes : S $ A con ¼ 0:935; cov ¼ 0:915: ð24Þ

Apart from there being no guarantee that fs con-cov optima are realizable

by actual models, the fs case also differs from ConCovOpt analyses of cs

and mv data in its computational complexity. The most computationally

costly step of ConCovOpt is step (5), which calculates fit scores of rep-

assignments. The more rep-assignments are entailed by a configuration

table, the more time-consuming that calculation. In case of cs and mv data,

the amount of rep-assignments is only a function of the number of non-

singleton exo-groups, which, in turn, is a function of the number of imper-

fect pairs in the data.14 A cs or mv DNF optimally reproduces the behavior
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of an outcome Y¼n in every singleton exo-group by returning 1 if Y takes

the value n in that exo-group or 0 otherwise. In consequence, no rep-

assignment needs more than one value assignment to optimally capture the

outcome’s behavior in singleton exo-groups. By contrast, it might be that

multiple output values of an fs DNF reproduce the outcome’s value in a

singleton exo-group fsig equally optimally. This happens if the outcome’s

value is not itself among the possible values of the exogenous factors in

fsig and multiple of those possible values are equally close to the out-

come’s value. In that case, multiple rep-assignments result from the sin-

gleton exo-group fsig. It follows that the number of rep-assignments does

not only grow with the number of imperfect configurations but also with the

number of cases. This, in combination with the fact that rep-assignments

may assign more than two values to exo-groups, yields that exhaustively

searching for con-cov optima is much more computationally demanding for

fs data.

Our R implementation of ConCovOpt can calculate the fit scores of about

10 million rep-assignments in reasonable time. For cs and mv data that means

that ConCovOpt can process data of any sample size with up to 23 imperfect

pairs. In case of fs data, however, the computational limit tends to be reached

at intermediate-N sample sizes of 70–80 cases with 10–15 imperfect n-tuples

(see the replication script for a corresponding benchmark test). To calculate

con-cov optima also for large-N fs data, heuristics are called for. In our R

implementation, we use an approximation method that induces ConCovOpt

to calculate fit scores only for rep-assignments with values closest to the

outcome’s median. This is an efficient approach for finding many, but pos-

sibly not all, con-cov optima. Based on this approximation method, large-N

fs data of up to 2,000 cases become processable.

Overall, even though heuristics are needed to calculate con-cov optima for

large-N data and there may be no models realizing certain optima, processing

fs data by ConCovOpt prior to actual CCM analyses has a considerable

payoff. It identifies a set of consistency and coverage settings at which

concrete models can be searched in a goal-oriented manner. Without apply-

ing ConCovOpt to Basurto’s data, we would have been in the dark as to

where to search for optimal models and would have had to proceed in an

inefficient trial-and-error manner. With ConCovOpt, we straightforwardly

found model (24), which has significantly better fit than Basurto’s published

model (21). Moreover, that fit improvement substantively alters the causal

conclusions to be drawn from Basurto’s (2013) study. A causal interpretation

of equation (24) suggests that the endurance of autonomy only depends on
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local direct spending. Contrary to Basurto’s findings, there is no evidence in

his data that the other exogenous factors might be difference-makers of

autonomy endurance as well.

Discussion

We end this article by putting ConCovOpt into proper methodological per-

spective. Most importantly, ConCovOpt is not intended as a tool for a

“simple hunt for high values of consistency and coverage” (Schneider and

Wagemann 2012:148). As emphasized in the Introduction section, there are

other criteria of model selection. That is, high consistency and coverage are

one asset of a model among others, and models with higher consistency and

coverage should not be unequivocally preferred if they are outperformed by

rival models in other respects.

What is more, the problem of model overfitting is still underinvestigated

in configurational causal modeling, and there is ample evidence that CCMs

have a strong tendency to overfit if they are induced to do so by overly high

consistency and coverage thresholds (see, e.g., Arel-Bundock 2019; Brau-

moeller 2015). One (heuristic) indication that overfitting might be taking

place is that the complexity of resulting models increases disproportionally

to their increase in model fit. This phenomenon regularly occurs if CCMs are

“forced” to build models reaching con-cov maxima—an example is provided

in the replication script. What would hence be needed is a tool analogous to,

say, the Akaike Information Criterion in statistical modeling that strikes a

balance between model fit and simplicity. A general preference of models

reaching con-cov maxima is blind and hazardous.

Still, we have discussed various examples in this article for which Con-

CovOpt has helped to significantly increase the model fit without an increase

in model complexity, thus steering clear of overfitting dangers. Moreover,

systematically scanning the model space at optimal consistency and coverage

scores has led to the resolution of model ambiguities in case of Verweij and

Gerrits’s (2015) as well as Basurto’s (2013) data; and it has even called into

question the causal interpretability of a whole data set, namely, in case of the

study by Britt et al. (2000). All of this shows that rendering con-cov optima

and maxima transparent may importantly affect the causal conclusions drawn

from configurational data.

Hence, ConCovOpt is intended as a tool for systematically exploring the

space of CCM models at optimal consistency and coverage scores. In recent

years, the awareness in the CCM literature has grown that the space of viable

models for analyzed data may be larger than anticipated (cf., e.g., Baumgartner
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and Thiem 2017). When the data quality is very high, meaning when there are

no imperfect pairs (or n-tuples), uncovering the whole model space is a matter

of applying the relevant CCM once, at one determinate threshold setting. But

in the presence of imperfect pairs, multiple CCM-runs at various threshold

settings are needed. Slight changes in thresholds may greatly change the

models and there may be no systematicity in how threshold changes affect

model changes. ConCovOpt efficiently uncovers con-cov optima and maxima

prior to the application of CCMs. This information makes it possible to apply

CCMs by directly constraining them towards optimal thresholds, without hav-

ing to go through a whole array of threshold settings. Also, it can be deter-

mined how close actually obtained models come to con-cov optima and

whether the obtained models exhaust the space of con-cov optima or whether

further models should be searched at different settings.

All of this is of importance not only to analysts primarily interested in

data-driven causal inference but also to analysts (of which there are

many) viewing CCMs as tools for inferences primarily rooted in avail-

able case knowledge. When it comes to model selection, all types of

CCM analysts have to take model fit into account. Even the analyst who

wants to choose models based on case knowledge does not draw causal

inferences from case knowledge alone. Rather, she analyzes data by

means of a CCM in order to be presented with a set of models to choose

from. The ultimate purpose of ConCovOpt and DNFbuild is to contribute

to the completeness of that set.

In sum, models reaching con-cov optima will sometimes turn out to be the

best models overall, sometimes not, and sometimes they will be of metho-

dological interest even without being causally interpreted. But in one way or

another, transparency on the model space at consistency and coverage optima

is univocally valuable for configurational causal modeling.
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Notes

1. The acronym “INUS” stands for Insufficient but Non-redundant part of Unne-

cessary but Sufficient condition (cf. Mackie 1974, 62).

2. In the Qualitative Comparative Analysis (QCA) literature, such configurations

are often labeled contradictory (e.g., Rihoux and De Meur 2009:46-49). We find

this terminology misleading because a contradiction cannot possibly be realized.

But, as Table 1A vividly demonstrates, it is very well possible for p�o�a to be

realized in combination with both C and c.

3. Not only the amount of imperfect pairs affects the con-cov optima but also the

number of cases instantiating the elements of imperfect pairs.

4. Note that a configuration table is not a QCA truth table. A configuration table

merely synthesizes cases to configurations and shows the actual value distribu-

tion of the outcome, whereas a truth table replaces the outcome distribution by a

function column indicating for each configuration (minterm) whether it is suffi-

cient for the outcome according to a chosen consistency threshold. As ConCov-

Opt does not aim to optimize the fit scores relative to some chosen consistency

threshold but to find absolute con-cov optima, it has to operate on the actual

outcome distribution.

5. Accordingly, our R implementation of ConCovOpt in the Online Supplementary

Material (which can be found at http://smr.sagepub.com/supplemental/) is

accompanied by a function selectMax() that accepts any function aggregating

consistency and coverage as criterion to select con-cov maxima.

6. The relevant replication code is available as an R script in the Online Supple-

mentary Material (which can be found at http://smr.sagepub.com/supplemental/).

7. For more on the difference between a top-down and bottom-up search, see

Baumgartner and Ambühl (2020).

8. Dusa (2018) describes CCubes as a minimization algorithm that is optimized for

speed but produces the same models as traditional QCA algorithms (e.g., Quine-
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McCluskey optimization). In fact, however, CCubes accepts much more fine-

grained tuning parameters and its bottom-up approach may generate models that

differ from standard QCA models, as the examples in this article show. CCubes is

not equivalent to standard QCA algorithms.

9. The data analyzed by Britt et al. (2000) do not feature limited diversity, which is

why all QCA solution types coincide.

10. Unlike CCubes, Coincidence Analysis, in its default settings, only returns models

that can be given a causal interpretation. But it can be forced to output vacuous

models like equation (10) by setting the argument inus.only to FALSE.

11. At the same time, it is worth noting that equations (20) and (19) do not contradict

equations (16) and (17); rather, the former are mere submodels of the latter

(Baumgartner and Ambühl 2020).

12. In a nutshell, ereduce searches for minimal hitting sets in DNFcano that prevent

DNFcano from being false in the data from which it is inferred.

13. At a consistency threshold of 0.93, equation (24) is not found by standard QCA,

but if that threshold is lowered to 0.9, equation (24) is also returned by QCA.

14. The amount of rep-assignments is 2n, where n is the number of non-singleton

exo-groups.
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