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Abstract

History matching is a valuable process to obtain better models and a more reliable
forecast in oil reservoir applications. In such processes, one conditions the simulation
models on the observed data from the field. One can formulate history matching as
an inverse problem, where one has the final answer (i.e., the observed data from the
field) and wants to update the model parameters that lead to this answer. There are
different methods to perform this update, and among them, ensemble-based methods
are state-of-the-art.

Many different research fields use ensemble-based methods, such as oil reservoirs,
oceanography, and meteorology. They can represent the models’ uncertainties and solve
the history matching problem through an ensemble of models. Iterative ensemble-based
methods have been more commonly used in oil reservoir applications because of the
problem’s strong nonlinearity.

The development of new sensors and new technologies have enabled conditioning
models on distinct data types. Moreover, the increase in computational power has
allowed dealing with larger data sets. Nevertheless, the use of these vast data sets still
faces some problems. Depending on how one implements the ensemble methods, they
can generate enormous matrices that are impractical to handle and manipulate.

Furthermore, ensemble-based methods might underestimate the variability after his-
tory matching because of a limited ensemble size and simplifications in the measurement
errors. Therefore, one could use a localization technique to compensate for this prob-
lem. However, depending on the type of data used to condition the models, localization
can be challenging.

One common data set that has gained much importance lately is the 4D seismic. On
the one hand, such a data set brings information about pressure and saturation changes
throughout the reservoir. On the other hand, 4D data sets can be immense and incur
additional issues to the history-matching process. This thesis focuses on conditioning
oil-reservoir models on such vast data sets.

Firstly, we investigate a Dictionary Learning method, the K-SVD, to represent the
4D seismic data set sparsely. In this part, we focus on reducing the data-set size without
losing its main information. Besides, we also investigate a way of optimizing the
computational cost of the data reduction algorithm.

Secondly, we use the sparsely represented data in an ensemble-based history matching
process. In this work, we develop a new implementation of the Iterative Ensemble
Smoother Regularized Levenberg–Marquardt. We also compare two ways of dealing
with the vast size of the 4D seismic, one with the 4D seismic after applying the K-SVD
algorithm and one with the complete data set projected into the ensemble subspace.
Using Amplitude versus Angle as the seismic data and a benchmark case, the results
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show the importance and improvement obtained when using the sparse data.
Furthermore, we also investigate a correlation-based local analysis scheme which

allows us to introduce more information from the measurement into the model and
avoid variability underestimation. An advantage of local analysis is the ability to
partition the models and data sets and update the model using smaller parts, which
is suitable for large models and data sets. We also discuss local analysis in a 4D-
seismic history matching using a different ensemble method, the Subspace Ensemble
Randomized Maximum Likelihood.

Finally, Dictionary Learning’s use to sparsely represent a vast data set, and the
correlation-based local analysis scheme helps to deal with the big size of the observed
data and generate a good representation of the reservoir.



Outline

This thesis consists of two parts. Part I introduces the scientific background, followed
by the scientific results presented in Part II.

Part I consists of six chapters. Chapter 1 introduces history matching and its chal-
lenges regarding the use of vast data sets and provides the motivation and the main
contribution of this thesis. Chapter 2 gives an overview of the history matching process
in the oil industry and details two iterative ensemble smoother methods, the Iterative
Ensemble Smoother Regularized Levenberg–Marquardt (IES-RLM) and the Subspace
Ensemble Randomized Maximum Likelihood (SEnRML), with a focus on how to han-
dle vast data sets. In Chapter 3, we describe different localization methods used in
history matching. Chapter 4 provides the background theory on sparse representation
methods and Dictionary Learning. Chapter 5 gives a brief description of 4D seismic
data and how to use it in history matching. Finally, Chapter 6 summarizes the scientific
results in Part II and presents an outlook for future research.

Part II presents the scientific results through a collection of four papers:

A Soares, R.V., Luo, X., Evensen, G., Sparse Representation of 4D Seismic Signal
Bassed on Dictionary Learning, in SPE Norway One Day Seminar, 2019. SPE-
495599-MS.

B Soares, R.V., Luo, X., Evensen, G., Bhakta, T., 4D Seismic History Matching:
Assessing the use of a Dictionary Learning Based Sparse Representation Method,
Journal of Petroleum Science and Engineering. 195 (2020).

C Soares, R.V., Luo, X., Evensen, G., Bhakta, T., Handling Big Models and Big
Data Sets in History Matching Through Local Analysis, SPE Journal (2020). SPE-
204221-PA.

D Neto, G.M.S., Soares, R.V., Evensen, G., Davolio, A., Schiozer, D.J., Subspace
Ensemble Randomized Maximum Likelihood with Local Analysis for Time-Lapse-
Seismic-Data Assimilation, SPE Journal (2021). SPE-205029-PA.
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Scientific background





Chapter 1

Introduction

Oil reservoir production forecasts play a vital role in the oil and gas industry. With the
correct production forecast, companies can have a better knowledge of how much the
reservoir will produce and the company’s future economy. Consequently, they can be
better prepared for future challenges.

The production forecasts are usually based on simulation models that can provide
oil, gas, and water production. Nevertheless, there are many uncertainties and sim-
plifications involved in the reservoir models and their simulations, which generates an
uncertain forecast. These uncertainties can have a big impact on how one would develop
and manage the reservoir. Therefore, there has been a lot of effort from the industry
and academia to handle them. In this chapter, we first start with state of the art in reser-
voir development and management, followed by the motivation and this work’s main
contribution.

1.1 State of the art in reservoir development and management

Oil reservoir simulation models are used to predict oil, gas and water production from a
field. However, the process of constructing the models and run the simulations involves
a large amount of uncertainties. Among them, it is possible to point out porosity
and permeability values throughout the reservoir, faults location and transmissibility,
relative permeability curves, to name a few. Besides, the phenomena that occurs in the
reservoir and the reservoir characteristics are complex. Consequently, there are some
simplifications to make the process more feasible. For instance, we can highlight the
use of coarse models, fluid characterization considering only one component (black-oil
simulators), and not considering more complex phenomena such as hysteresis.

A common practice within the industry to develop and manage an oil field is to apply
the closed-loop workflow [54] as shown in Fig. 1.1 and use system models to simulate
the response of a field. System models are also referred to simulation models that are
constructed using different types of data, such as geology, seismic, and well logs and
tests. Note that system models include reservoir models and other parts of the system,
such as production facilities and wells. However, in this work, we focus only on the
reservoir simulation models as a part of the system.

In the scheme presented by Fig. 1.1, one can get the observed data (measured output)
from the field (system), including well production rates and pressure and seismic,
through sensors. Then, one should use them together with history-matching algorithms
to condition the system models on those data [78, 1, 3, 19, 30]. The main goal of
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Figure 1.1: Closed-Loop Reservoir Development and Management [54].

history matching is to update the models so that the simulated output can be as close as
possible to the measured (observed) output. Hence, one can use the information in the
observed data to reduce the system models’ uncertainties and obtain a better forecast
and representation of the system.

Afterward, one can use these better models to optimize field development and man-
agement. The optimization can be based on several different functions, such as oil
production or net present value, and there are many variables that one can control to
obtain an optimized solution, such as drilling schedule, well position, and injection rate
[112, 12, 46]. For the optimization process, it is crucial to have a good representation
of the reservoir characteristics and behavior since one might need to define where to
place a well and how to control it to avoid early water breakthroughs. Thus, one should
also take into consideration the geological features of the reservoir.

Over time, the reservoir continues to produce, and more data become available. As
a result, one can perform history matching again to generate better models and a better
optimization strategy. As the name suggests, this process is a closed-loop where one
will continuously update the reservoir models and the selected strategy [101, 13, 54].

This work focus on history matching, which can be formulated as an inverse problem
where one approximately knows the answer (well rates, for instance) and wants to find
the parameters’ values that lead to this answer. In other words, one wants to obtain
uncertain parameter values (porosity maps, fault transmissibility) that lead to simulated
results as close as possible to the observed data from the field.

Once the reservoir starts to produce, usually simulated data obtained from the reser-
voir simulation do not follow the observed data, such as oil rates from the producing
wells. Therefore, one performs history matching to condition the models on the ob-
served data. Nevertheless, it is not only the match between simulated and observed data
one should be interested in. One should also search for reservoir models that are ge-
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ologically consistent to obtain the reservoir’s best possible representation. Achieving
both a match between simulated and observed data and consistent reservoir geology is
a challenging task but essential for a good field development [85, 100, 11].

Ensemble methods have become a robust and powerful tool to solve history matching
problems, mainly because of their ability to characterize and represent the uncertainties
and also their relatively easiness to be implemented [37, 2]. Through a prior ensemble
of models, ensemble methods allows us to consider different realizations with distinct
values of permeability and porosity, for instance. Consequently, one will not have only
one model representing the reservoir behavior; one will have an ensemble of models
and the uncertainty quantification. Among the existing algorithms, iterative ensemble-
based methods can be considered state of the art, and they have been extensively used
within academia and industry [33, 18, 75, 42].

In this work, the focus is on ensemble methods to perform history matching and
obtain more reliable reservoir models to be used for optimization. Note that different
challenges may arise when using this type of algorithms. Among them, the type and
size of the observed data used to condition the models are evident nowadays.

1.2 Motivation

Traditionally, most works about history matching have used well production rates and
pressure as observed data [104, 30, 93, 103]. Production well data are relatively easy
to gather and they are more frequent in time and less frequent in space, i.e., well data
are from one fixed point, and one can get them at different time instances (daily or
monthly). More recently, the development of modern sensors allowed us to monitor
reservoirs through different and more complex types of field data. One example of
such data is the subsurface information derived from seismic surveys. Seismic data are
acquired through acoustic waves generated in the surface that travels into the subsurface.
At each interface, part of this wave reflects, and it is recorded at the surface. Hence, 3D
Seismic (3DS) can help to find the most likely locations of the reservoirs and their main
structures (faults and cap rocks), and it has been extensively used for the constructions
of reservoir simulation models [27, 50, 45]

Furthermore, seismic data are also capable of distinguishing media filled with dif-
ferent types of fluids and under distinct pressure conditions. Therefore, if one takes two
seismic surveys of the reservoir at two consecutive times, one might be able to iden-
tify saturation and pressure changes in the reservoir due to production of oil and gas
and injection of water and gas. The inclusion of the time-lapse effect in seismic is also
known as 4D seismic (4DS) [55, 67]. Permanent-reservoir-monitoring (PRM) is one
example of such sensor systems that have gained attention [105]. They are installed on
the seabed (in an offshore case), and through frequent acquisitions of seismic signals,
they can capture dynamic information about the reservoir that occurs with the produc-
tion from the wells. Besides, PRM generates vast data sets due to several acquisitions
along the time.

Different from well data, seismic data are not frequent in time, but they are much
denser in space [55]. Therefore, the combination of these two types of data can assist
the history-matching process to obtain more reliable models. Nevertheless, the use of
4DS in history matching brings additional issues. Firstly, seismic data sets are much
bigger compared to well rates. As a result, ensemble-based methods might face some



6 Introduction

challenges because, to directly use such methods, one needs to compute matrices that
depend on the sizes of the seismic data sets. Thus, their manipulation and storage
might either be impractical, or take a long time. Secondly, one can use different types
of seismic data, such as Acoustic Impedance (AI) [64, 31] or Amplitude versus Angle
(AVA) [70]. In the case of AVA, for instance, some parts of the data sets correspond
to non-reservoir sections (under- and overburden), and they would not be useful for the
history-matching process.

To deal with these characteristics, sparse data representation methods used for
dimensionality-reduction problems have gained much attraction recently [73, 63]. Many
research areas are developing effective methods to reduce the dimension of big data sets
while still preserving the main information of the data. Among these methods, one can
highlight those from the machine learning community, such as clustering [10] and deep
learning [63], and also dictionary learning [4].

Dictionary learning methods use linear combinations of pre-selected basis functions
to provide a compact representation of the original data set [76]. Besides, one can learn
a better dictionary from the data to further reduce the sparsely represented data as well
as retaining more information about the data. The K-SVD [4] is one of the dictionary
learning algorithms that have been used for many different applications, including image
denoising [29], face recognition [114], and parameterization of reservoir facies [62].

Nevertheless, the use of a sparsely represented data brings another challenge. Most of
the successful applications of ensemble-based methods reported the use of a localization
technique to circumvent the problem of underestimation of the variability and spurious
correlation due to the limited size of the ensemble [19, 30, 69, 104, 2]. The most
common method of localization is distance-dependent, in which one needs to select a
region around each observed data that should be influenced by the model parameters.
On the one hand, this process works fine with well data, as they are in the same physical
domain as the simulation model. On the other hand, for sparsely represented data, the
distance-dependent approach based on physical distance cannot be applied because the
measured data are in a different domain now. Hence, an alternative for distance-based
localization, such as a correlation-based approach [69, 37], should be used.

Therefore, this thesis aims to develop a methodology capable of dealing with these
issues arising in big data history matching problems. In other words, this work’s
objective is to reduce the observed data’s size to help manipulate and store the matrices
formed during history matching while keeping the main information about the signal.
It is worth mentioning that the focus of this work is on developing a generic workflow
to handle vast data sets in the history-matching process, while the main application of
the developed workflow herein is to 4D seismic history matching problems.

In Chapters 2 and 3, we address history matching, ensemble methods and localization.
Besides, we show how vast data sets can impact the computation of such methods and
some alternatives to deal with it. In Chapter 4 we introduce another alternative to deal
with the large size of the observed data sets through sparse representation methods.
Chapter 5 presents one example of vast data sets in history matching processes, 4D
seismic, and how one can use it. Finally, we present an overview and an introduction to
the Scientific results in the second part of this work in Chapter 6.
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1.3 Main contributions

The main contributions of the thesis are:

Developing an optimal approach for sparse representation of seismic data
using dictionary learning. Paper A presents detailed information about the K-
SVD algorithm. In this work, we evaluated the best way to apply the algorithm to a
seismic data set with three main objectives: reduction of the data size; preserving
the main characteristics of the signal; and reducing the computational time to apply
the algorithm. By evaluating how the main parameters of the K-SVD algorithm
affect the data set compression, the quality of the retained information, and the
computational time spent, we developed an optimal application of the dictionary
learning method for seismic data sets.

Development of computationally efficient ensemble methods for conditioning
on vast data sets. In Paper B, we reformulated the Iterative Ensemble Smoother
Regularized Levenberg-Marquardt (IES-RML) [75] method to avoid forming and
inverting big matrices. Moreover, we compared two approaches for history match-
ing, one using the sparsely represented data obtained in Paper A as the measured
data and one with the full data set projected onto the ensemble subspace. We also
developed and compared an approach where we denoised the original seismic data
by using the same K-SVD algorithm from Paper A. However, as for this case the
objective is denoising and not reducing the data set size, the way we applied it was
not the same.

Developing localization approaches in ensemble-based methods to deal with
both big data sets and big models. In Paper C and D, we developed a new local
analysis scheme, a type of localization technique, that deals with big models and
big data sets much more efficiently by reducing the sizes of the matrices during
the history matching. We used two different ensemble-based methods (IES-RML
[75] and the Subspace Ensemble Randomized Maximum Likelihood - SEnRML
[92, 42]) that required different methodologies for the application of the local
analysis. Paper C presents the case for the IES-RML, and Paper D shows the case
for the SEnRML.
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Chapter 2

History matching and ensemble methods

Numerical reservoir simulation is a fundamental topic for the reservoir community.
Most oil companies use simulations to predict the reservoir behavior and production
rates, which are inputs to decision-making processes concerning the management and
development of petroleum fields.

To perform reservoir model simulations, one needs to know some reservoir charac-
teristics to construct the models and simulate them. The process of building the models
is better known in the literature as reservoir characterization. Nevertheless, reservoir
models contain many associated uncertainties and, consequently, the predictions from
these models are also uncertain.

As a reservoir starts to produce, one can use dynamic data from it, such as produc-
tion rates and 4D seismic data, to update the model parameters and their uncertainties,
such that one can have a more realistic representation of the reservoir and a better pro-
duction forecast for the field. This process is better known as history matching in the
literature. Oliver and Chen [86] presented a review on history matching, and they
pointed out different algorithms to solve this problem, such as evolutionary algorithms,
neighborhood-based approaches, and adjoint-/gradient-based methods. The focus here
is on the ensemble-based methods, which can be considered as certain approximate
gradient-based methods. They have gained much attention from researchers and practi-
tioners in the oil industry, especially with the recent developments of iterative versions
of the ensemble methods [33, 17, 18, 75].

This chapter starts from introducing basic concepts about reservoir characterization
and history matching, followed by the introduction of ensemble-based methods and
their iterative forms. Afterwards, we present the two different ensemble-based methods
used in this work, focusing on how vast data sets can impact the computation of the
methods.

2.1 An overview of reservoir characterization and history matching

The reservoir characterization process starts with the construction of geological models,
which has a detailed description of the reservoir geology. It is necessary to acquire data
that contain information about the reservoir characteristics to build the models. These
data can include well logging, depositional models, outcrops, cores, 3D seismic, among
others. They have a crucial role in the characterization since it is possible to infer
the most important reservoir parameters from them, such as reservoir structure, rock
type, porosity, permeability, and fluid type. Some of these data, such as cores and well
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logging, come from specific wells that are apart from each other. Hence, one also uses
geostatistical methods and well testing to infer the characteristics of the reservoir in the
regions that one does not have direct information.

Geological models are usually very refined and big models that capture the critical
features of the reservoir. However, it is unfeasible to simulate these models to predict
oil production because it would take significant computational time. Hence, a common
practice is to upscale the geological model into a coarser model to run the simulations.
From this point, the models are referred to as simulation models instead of geological
models.

Commonly, simulation models do not follow the dynamic behavior of the reservoir
due to the uncertainties and simplifications. Thus, one should condition the simulation
models on the observed data from the field. This model conditioning process is also
known as history matching, and it allows the update of the reservoir simulation models
according to the observed data.

History matching is an inverse problem where one has the final answer and wishes to
find the parameters that lead to this answer. In reservoir applications, the final answer is
usually represented by production and injected rates from the wells and seismic, while
the parameters are porosity and permeability maps, relative permeability curves, fault
multipliers, among others. Note that the simulation models have many parameters, but
one should update only those that are uncertain and have a significant impact on the
simulation response.

If one considers d as a vector containing the observed data from the field and g as
the function representing the forward reservoir simulation, the history-matching goal is
to find the uncertain model parameters x that lead to dsim, as in

dsim = g(x), (2.1)

as close as possible to d.
The most common type of data used as observed data is the production rates from the

wells [104, 30, 93, 103]. On the one hand, these data are frequent in time. On the other
hand, they are not dense in space. Another type of data that is becoming more and more
popular within history-matching problems is the seismic data [31, 64, 23]. Through
seismic acquisitions at different times, one can observe the effect of reservoir pressure
and saturation changes. Different from well data, seismic data are not frequent in time,
but they are dense in space. Hence, production and seismic data can complement each
other in history-matching processes.

Nevertheless, there are some challenges when one uses seismic data, such as data
set size, processing, and interpretability. We provide more information about seismic
in Chapter 5. For now, it suffices to say that seismic data sets are much bigger than
well production data sets. In [73], the authors conducted a history matching experiment
using both well and seismic data in the Brugge benchmark case [91]. In their study, the
production data included 1 400 data points, while the seismic contained more than 7
million data points. Thus, this could bring computational issues regarding both storage
and CPU time.

One important aspect of history-matching problems is its ill-poseness, i.e., the num-
ber of independent observed data is much smaller than the number of model uncertain
parameters. Therefore, there are infinite combinations of the parameters that can gen-
erate the same final answer. By inserting a regularization term in the cost function
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through prior information from the reservoir, it is possible to restrict the space in which
one is looking for the solution. Besides, the introduction of prior information about the
reservoir can assist in generating models more geologically consistent.

Traditionally, manual history matching approaches were used to update the parame-
ters in the reservoir models [3, 113]. However, manual history matching requires much
experience from those who perform it. Also, it can destroy the models’ geological
consistency, and it is not easy to match all of the production data.

In addition, history matching problems have many solutions, and one will never
know which one is the true one. Hence, it is desirable to consider several models
to represent the reservoir by using a probabilistic approach where it is possible to
quantify the uncertainties. As mentioned previously, there are different methods to
solve history matching problems, and, in this work, the focus is on the ensemble-
based methods. Such methods are popular because of their ability to quantify the
uncertainties, easiness of implementation and its interesting results reported by several
works [79, 19, 42, 30, 66, 102].

2.2 Ensemble-based methods

The development of ensemble-based methods started with Evensen [35] when he pro-
posed the Ensemble Kalman Filter (EnKF), which was first used in petroleum applica-
tions in [79]. EnKF considers an ensemble of realizations to describe the uncertainties
in the model and updates these uncertainties sequentially in time as new observations
become available. However, there is a need to restart the simulations at each update step,
and this can increase the computational time significantly. Alternatively, van Leeuwen
and Evensen [111] proposed a variation of the EnKF that uses all data simultaneously,
also known as the Ensemble Smoother (ES). Skjervheim et al. [103] used ES in a
reservoir application for the first time.

Before introducing the formulations of the ES, we first present some basic concepts.
As mentioned in Eq. (2.1), the simulated data can be obtained through the simulator
and input model variables. Nevertheless, there are some errors related to the data and
also to the forward simulator. Hence, one can define the observed data d as

d = gtrue(xtrue) + X. (2.2)

Here, X is measurement error where X ∼ N(0,Cd), Cd is the measurement-error
covariance matrix, and the superscript true indicates a perfect forward simulator and the
true value for the uncertainties in xtrue. After performing simulations of the ensemble,
one would achieve the simulated data as in Eq. (2.1). Note that now g may be an imperfect
forward simulator, such that one needs to consider model errors in the formulation.
However, we will first focus on the case where one has a perfect forward simulator, and
we will provide more discussions on model errors later in this chapter.

In order to derive the ES formulation, one should consider Bayes’ formulation

?(x|d) ∝ ?(x)?(d|x), (2.3)

where ?(x|d) is the posterior distribution of x given d, ?(x) is the prior distribution
of the uncertain model parameters, and ?(d|x) is the likelihood of d given x. If one
considers a Gaussian distribution of both prior and likelihood, one can approximately
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sample ?(x|d) by defining the following cost function

argmin{x 9 }

{ (
g(x 9 ) − d 9

) TC−1
d

(
g(x 9 ) − d 9

)
+

(
x 9 − x0

9

) TC−1
x

(
x 9 − x0

9

) }
. (2.4)

Here 9 is the index of ensemble member, x0 is the prior distribution of the uncertain
model parameters, and Cx is the error covariance matrix of x. Note that x0

9
is sampled

from N(x0,Cx) and d 9 from N(d,Cd).
Evensen [42, 40] showed a detailed derivation of the ES formulation, and we follow

a similar procedure in this work. Firstly, one should compute the gradient of the cost
function to minimize it,

m� (x 9 )
mx 9

= GT
9 C−1

d
(
g(x 9 ) − d 9

)
+ C−1

x
(
x 9 − x0

9

)
, (2.5)

where � is the cost function and G 9 ∈ R#d×#x is the Jacobian matrix. Here #x and
#d represent the number of uncertain model parameters and observed data. G 9 can be
defined as

G 9 =
(
∇xg(x) |x=x 9

) T (2.6)
If one equals Eq. (2.5) to zero, one obtains

GT
9 C−1

d
(
g(x 9 ) − d 9

)
+ C−1

x
(
x 9 − x0

9

)
= 0. (2.7)

Eq. (2.7) does not have an explicit solution. One alternative is to linearize g(· )
around x0

g(x 9 ) ≈ g(x0
9 ) + G0

9 (x 9 − x0
9 ), (2.8)

G 9 ≈ G0
9 + H0

9 (x 9 − x0
9 ). (2.9)

G0
9
is the Jacobian evaluated at x0

9
and H0

9
is the Hessian matrix. A common procedure

is to disregard the Hessian. Following, if one substitutes Eq. (2.8) and (2.9) in Eq. (2.7),
one will get

(G0
9 )TC−1

d

(
g(x0

9 ) + G0
9 (x 9 − x0

9 ) − d 9
)
+ C−1

x
(
x 9 − x0

9

)
= 0. (2.10)

Also, one can rewrite Eq. (2.10) as(
C−1

x + (G0
9 )TC−1

d G0
9

) (
x 9 − x0

9

)
= (G0

9 )TC−1
d

(
d 9 − g(x0

9 )
)
. (2.11)

Finally, one can use the following identity matrix [40](
C−1 + GTD−1G

)
GTD−1 = CGT (

GCGT + D
) −1
, (2.12)

and update the uncertain model parameter for the realization 9 as in

x 9 = x0
9 + Cx(G0

9 )T
(
G0
9Cx(G0

9 )T + Cd
) −1 (

d 9 − g(x0
9 )
)
. (2.13)

Eq. (2.13) is the analytical solution of ES [111]. If g is linear, the equation samples the
correct posterior distribution. For a nonlinear case, this solution is an approximation
that would be valid only for small updates.
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In addition, depending on the format of g, the computation of the gradient might not
be straightforward, especially in cases of a very non-linear function such as a reservoir
simulator. Therefore, Evensen [35, 39, 40] considered an ensemble of realizations to
compute the gradient by determining the covariances AST and SST

AST = Cx(G0
9 )T, (2.14)

SST = G0
9Cx(G0

9 )) , (2.15)

. To compute S and A, one should use the following equations

S =
1

√
#e − 1

(
g
(
x0

1
)
− g

(
x0) , ..., g (

x0
#e

)
− g

(
x0) ) , (2.16)

and
A =

1
√
#e − 1

(
x0

1 − x0, ..., x0
#e

− x0
)
, (2.17)

where #e is the total number of realizations in the ensemble and the overbar represents
the mean value regarding the ensemble. Evensen [40] pointed out that these equations
are valid for most of the history matching applications, where the rank of A is #e − 1
(i.e., #x > #e − 1).

Finally, one can write the formula to update the uncertain parameters in the ES as

x 9 = x0
9 + AST

(
SST + Cd

) −1 (
d 9 − g(x0

9 )
)
. (2.18)

Note that in Eq. (2.13), one computes the model sensitivity Cx
(
G0
9

) T for each
model, and in Eq. (2.18), one computes the average model sensitivity AST related to
the ensemble instead.

If g is linear and #e tends to infinity, Eq. (2.18) will sample the correct posterior
distribution. However, if these conditions are not satisfied, as in reservoir applications,
one will have an approximate solution. Such approximations are due to the linearization
in Eqs. (2.8) and (2.9), the introduction of the ensemble gradient, and the limit size
of the ensemble. For weakly nonlinear problems, the linearization is the most severe
approximation. However, one alternative to deal with it is to use iterative forms of the
ensemble smoother [39].

2.3 Iterative ensemble smoothers

Iterative ensemble smoothers (IES) have became very popular in the reservoir commu-
nity. Among the different methods, it is possible to point out the Ensemble Randomized
Maximum Likelihood (EnRML) [17, 18], the Ensemble Smoother with Multiple Data
Assimilation (ESMDA) [33], the Subspace EnRML (SEnRML) [92, 42], and the Itera-
tive Ensemble Smoother Regularized Levenberg–Marquardt (IES-RLM) [75].

All the different methods solve slightly different problems, but the main idea behind
them is to perform small updates at each iteration instead of performing a big update at
one time as in the ES. In the following, we discuss the IES-RLM and the SEnRML.
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2.3.1 IES-RLM
The cost function used in the IES-RLM [75] is a minimum-average-cost function, and
it can be defined as

argmin{
x8+1
9

} 1
#e

#e∑
9=1

{(
d 9 − g

(
x8+1
9

) ) T
C−1

d

(
d 9 − g

(
x8+1
9

) )
+

U8
(
x8+1
9 − x89

) T
C−1

x

(
x8+1
9 − x89

) }
,

(2.19)

where 8 is the current iteration number and #8 is the maximum number of iterations. The
cost function here follows the same idea as the one presented in Eq. (2.4), in which the
first term calculates the difference between the observed and simulated data, and now
the second term corresponds to the difference between the uncertain model parameters
at two consecutive iterations. Besides, the authors also added the coefficient U, which
assigns a weight to the second term of the equation.

It is important to mention that, different from the other IESs, this formulation does not
sample the posterior distribution from Bayes’ theorem. This approach is an optimization
problem with a regularization term, and one solves this cost-function several times until
a stopping criterion is reached.

To solve this problem, Luo et al. [75] used a similar approach as in the development
of the ES. But instead of linearizing g(· ) around the initial ensemble, they did it around
the mean x8 as in

g
(
x8+1
9

)
≈ g

(
x8

)
+ G 9

(
x8+1
9 − x8

)
. (2.20)

Note that now, G 9 is the jacobian of g at x8.
After applying a similar algebraic procedure as in the previous section, the authors

achieved the following update formula for the uncertain model parameters

x8+1
9 = x89 + A8

(
Ŝ8

) T
(
Ŝ8

(
Ŝ8

) T + U8Cd
) −1 (

d 9 − g
(
x89

) )
, (2.21)

where A8 is calculated as in Eq. (2.17) at each iteration 8 and Ŝ8 is calculated as

Ŝ8 = 1
√
#e − 1

(
g
(
x81

)
− g

(
x8

)
, ..., g

(
x8#e

)
− g

(
x8

) )
. (2.22)

U is the step length of each iteration, and it can be calculated as follows

U8 = V8 × trace
(
Ŝ8

(
Ŝ8

)T)
/trace (Cd) . (2.23)

Here V is a term that should decrease if the data mismatch reduces with the iterations
or increase otherwise. Luo et al. [75] suggested to start with V0 = 1 and multiply by
0.9 (if the mismatch decreases) or 2 (if the mismatch increases).

If one considers X as a matrix containing all realizations (1,...,#e), and D as the
difference between the observed and simulated data for all realizations, Eq. (2.21)
becomes

X8+1 = X8 + A8
(
Ŝ8

) T
(
Ŝ8

(
Ŝ8

) T + U8Cd
) −1

D8, (2.24)
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Table 2.1: Matrices dimension IES-RLM.

Matrix Size
X #x × #e
A #x × #e
S̃ #d × #e
D̃ #d × #e
Cd #d × #d

In addition, considering that
S̃8 = C−1/2

d Ŝ8 (2.25)

and
D̃8 = C−1/2

d D8, (2.26)

one can obtain
X8+1 = X8 + A8

(
S̃8

) T
(
S̃8

(
S̃8

) T + U8I
) −1

D̃8, (2.27)

The computation of Eq. (2.27) can be challenging because of the size that the matrices
can have. Table 2.1 shows the size of each matrix one deals with during the application
of the IES-RLM.

As mentioned before, simulation models are getting bigger and more observed data
are becoming available. In such cases #x and #d are much larger than #e. For instance,
in ensemble-based history matching, the number of realizations is around 100, and #x
and #d can reach thousand or even million. Before computing Eq. (2.27), one needs
to compute Eqs. (2.25) and (2.26). The cost of computing the product between Cd and
S and D is about #2

d#e, which are quadratic in the number of measurement. Hence,
it can cause a big issue in the case of a large observed data set. Nevertheless, one can
neglect the correlation between the measurement, and use a diagonal Cd to avoid this
problem [104, 70, 65]. In addition, the inversion of the matrix in Eq. (2.27) can be a
challenge since the matrix product S̃8

(
S̃8

) T has dimension of #d × #d. One alternative
is to compute the singular value decomposition of S̃8 and truncate it, so one can use only
the leading singular values. Evensen [38] suggested to keep between 90% and 99.9%
of the leading coefficients.

Considering the truncated singular value decomposition (TSVD) of S̃8 as

S̃8 ≈ Û8�̂8 (V̂8)T, (2.28)

it is possible to rewrite Eq. (2.27) as

X8+1 = X8 + A8V̂8 (�̂8)T
(
�̂
8 (�̂8)T + U8I

) −1
(Û8)TD̃8 . (2.29)

There are different ways of computing Eq. (2.29), and they can have distinct impacts
concerning computational costs. In one approach, one can define the Kalman gain
matrix K8 and write Eq. (2.29) as

X8+1 = X8 + K8D̃8 (2.30)

However, one drawback of this computation is the fact that K has a dimension of
#x × #d. Thus, if one is dealing with big models and big data sets, it might be
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Table 2.2: Matrices dimension.

Matrix Computational cost Brugge example
Keff  + #sv#e (#d + #x) 9.1 ∗ 103#d + 1.6 ∗ 109 +  
K  + #d#x (#sv + #e) 3.4 ∗ 107#d +  

impractical to handle and manipulate this matrix. For instance, Luo et al. [73] used
the Brugge benchmark, and they considered 178 200 uncertain model parameters and
about 7 million observed data. Therefore, K would be very big, and one would need
about 9 TB to store it.

One alternative is to compute the effective Kalman Gain [36, 65, 69, 20] by reordering
the sequence of the matrix products. Thus, one can transform Eq. (2.29) in

X8+1 = X8 + K8
eff

(
(Û8)TD̃8

)
. (2.31)

In such cases, by first computing the product between the last two matrices, one would
achieve a matrix with dimension #sv ×#e, where #sv is the number of retained singular
values. Note that this product is a projection of D (also known as the observation
innovations) into the space spanned by U, and it is a lower-dimensional representation
of the observation innovations, which can help to deal with the problem of the vast data
sets as in the case of seismic data. In this case, Keff would have the size of #x × #sv,
and since #sv � #d, the effective Kalman Gain is easier to store and manipulate.

It is worth mentioning that one does not need to explicitly compute K or Keff. Instead,
one can compute each row of these matrices separately [31], and consequently, avoid
the big dimension of the Kalman gain matrix.

Another fundamental aspect concerning how to compute the analysis equation is
about computational costs. Table 2.2 shows the cost for both types of computation (K
and Keff). Supposing that the cost for computing Keff is  . The cost for computing
(Û8)TD̃8 is approximately #sv#d#e, and the cost of multiplying Keff by (Û8)TD̃8 is
#x#sv#e. By summing these terms up, one can achieve the final expression in the
middle column in Table 2.2. On the other hand, to compute K, one needs to first
multiply Keff by (Û8)T, which would give #x#sv#d. Subsequently, it is necessary to
multiply this term by D̃8, resulting in #x#d#e. Summing up these parts with  during
the calculation of Keff, one would achieve what is shown in the table above. Note that
we are not considering previous computations such as in the Eqs. (2.25) and (2.26).

To illustrate this, we will consider the Brugge benchmark case used in [73], where
#x = 178 200, #e = 103, and #sv = 88, which corresponds to a 90% of the energy
retained. The third column of Table 2.2 shows computational cost for this example.
The computational cost for calculating K is larger than calculating Keff when #d is
approximately larger than 47. The left plot in Fig. 2.1 illustrates the behavior of the
computational cost for different numbers of observed data, and as one can notice, the
case for Keff almost does not change compared to K, while the case for K increases the
computational cost substantially with the increase in #d.

In addition to the computational cost, the right plot in Fig. 2.1 shows that the memory
requirement for K increases linearly and it can reach almost 150GB for 100 000 data
points, while for Keff, the requirement remains low and almost constant (0.13 GB)
within the considered interval. Note that K does not need to be fully computed, one
can compute each row of it separately. However, one would need to do it several times,
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Figure 2.1: Computational cost (left) and memory requirement (right) for the Brugge benchmark case.

which can increase the computational time.
Therefore, if one is facing a history-matching problem, the approach using Keff seems

to be more effective in handling large data sets. An alternative is to reduce #d through
sparse representation or machine learning methods.

2.3.2 SEnRML
Differently from [75], Chen and Oliver [17, 18] minimize the same cost function of the
ES method (Eq. (2.4)). The difference is that instead of solving through a linearization
of g, one now uses Gauss-Newton iterations.

In [42, 92], the authors developed a new approach for the EnRML, the Subspace
EnRML (SEnRML), in which they simplified the algorithm computationally. To do
this, they considered that the solution to the problem is confined in the subspace
spanned by the initial ensemble. Hence, they wrote the solution as

X = X0 + AW. (2.32)

In the SEnRML, the authors solved the following minimization problem

argmin{w 9 }

{
1
2wT

9 w 9 +
1
2

(
g(x0

9 + Aw 9 ) − d 9
) T

C−1
d

(
g(x0

9 + Aw 9 ) − d 9
) }
, (2.33)

where the first part concerns the update of the model parameters and the second to
the data mismatch. The minimization of Eq. (2.33) provides the exactly same solution
as Eq. (2.4). The difference is that with the incorporation of Eq. (2.32) into the cost
function, the solution is contained in the space spanned by the initial ensemble, and one
does not need to introduce the linearization approximation.

The first and second derivative of the cost function � shown in Eq. (2.33) are

m� (w 9 )
mw 9

= w 9 +
(
G 9A

) TC−1
d (g(x0

9 + Aw 9 ) − d 9 ), (2.34)

and
m2� (x 9 )
mw2

9

= I + (G 9A)TC−1
d (G 9A), (2.35)
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respectively, where in Eq. (2.35) the term containing the second order derivatives is not
considered, and G 9 is now

G 9 =
(
∇xg(x) |x=x0

9
+Aw 9

) T (2.36)

Then, if one uses the Gauss-Newton scheme as in

w8+1
9 = w8

9 − W
m� (w 9 )
mw 9

m2� (x 9 )
mx2

9

, (2.37)

substitutes Eq. (2.34) and (2.35) into Eq. (2.37), includes the ensemble sensitivity matrix
to replace the gradient G 9 , and apply some algebra, one can reach the following analysis
equation to update the uncertain model parameters

W8+1 = W8 − W
(
W8 − (P8)T (

(P8) (P8)T + Cd
) −1H8

)
. (2.38)

W is the step length and P8 is defined as

P8 = S8 (I + Ŵ8)−1, (2.39)

Ŵ8 as
Ŵ8 =

1
√
#e − 1

(
w8

1 − w8, ...,w8
#e

− w8

)
, (2.40)

and H8

H8 = P8W8 + D8, (2.41)
The readers are referred to [42, 92] for more information on the derivation.
Nevertheless, the matrix to be inverted has a dimension of #d × #d, which can be

impractical. One approach to deal with this is to use the Woodbury corollary [42, 92]

(I + BTR−1B)−1BTR−1 = BT(BBT + R)−1. (2.42)

Hence, Eq. (2.38) can be rewritten as

W8+1 = W8 − W
(
W8 −

(
I + (P8)TC−1

d (P8)
) −1(P8)TC−1

d H8
)
. (2.43)

Note that now the matrix to be inverted has dimension of #e × #e, which is easier than
in the previous formulation.

Another alternative proposed in [37] is to use Eq. (2.38) together with the subspace
algorithm. In this formulation, one needs to project the measurement error matrix onto
the subspace defined by P as in(

PPT + Cd
)
≈ PPT +

(
PP+)Cd

(
PP+) T

. (2.44)

Note that we dropped the superscript 8 for simplification. By computing the singular
value decomposition (SVD) of P,

P = U�VT (2.45)

and substituting in Eq. (2.44), one achieves

PPT + (PP+)Cd(PP+)T = U�
(
I + �+UTCdU(Σ+)T)

�TUT, (2.46)
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where P+ = V�+UT [37]. Additionally, if one considers the following eigenvalue
decomposition

�+UTCdU(Σ+)T = Z�ZT, (2.47)

it is possible to perform the inversion as in(
PPT + Cd

) −1 ≈
(
U(�+)TZ

) (
I + �

) −1 (U(�+)TZ
) T (2.48)

Another important point mentioned in [37] is the need to manipulate and store Cd,
which can be very big depending on the application. Therefore, it is proposed to use a
low-rank version of Cd as in

Cd ≈ ��T, (2.49)

where � is a matrix in the dimension of #d × # that contains the measurement pertur-
bations and # is a value defined by the user. Note that it is possible to increase # to a
number even higher than the number of realizations per ensemble to reduce sampling
errors [41].

By using this representation, Eq. (2.46) and (2.47) becomes

PPT + (PP+)Cd(PP+)T = U�
(
I + �+UT��TU(�+)T)

�TUT, (2.50)

and
�+UT��TU(�+)T = Z�ZT. (2.51)

Considering that U and Cd have the dimension of #d×#e and #d×#d, respectively,
the multiplication UTCd in Eq. (2.46) would require about #2

d#e operations. One the
other hand, assuming that # and #e have the same order of magnitude, the multiplication
UT� in Eq. (2.50) would require about #2

e#d operations. Therefore, since #e is usually
much smaller than #d, the application of the ensemble subspace inversion is more
suitable for vast data sets.

2.3.3 Model errors and Correlated measurement errors
In most of the ensemble history matching applications, the measurement errors are
considered uncorrelated, i.e., the matrix Cd is diagonal [104, 73]. On the one hand,
the use of a diagonal Cd becomes important when one is using Eq. (2.30), (2.31), and
(2.43), because the matrix inversion is much simpler. On the other hand, the correlated
errors’ negligence can underestimate the ensemble variance [41]. Therefore, the low-
rank version of Cd as in Eq. (2.49) avoids the construction of the measurement error
matrix and can better represent the statistics of it. Additionally, augmenting � with new
realizations helps to reduce the sampling errors. For instance, Evensen [41] used # as
10 times #e. He also provided a consistent formulation of history matching problems
taking into account a proper error statistics of the measurement error.

The impact of model errors is another relevant point related to history matching.
It is known that the forward models are not perfect, and they contain a series of
simplifications and approximations. Alfonzo and Oliver [5] mentioned that ignoring
model errors can result in the underestimation of the ensemble variability and biased
production forecast. There are different methodologies in the reservoir community to
tackle this problem [40, 5, 68]. For instance, Evensen [40] incorporated model errors
as an uncertain parameter and estimated them during the application of the ensemble
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methods. He also forced the model simulations with the uncertain well rate data to
account for these errors. Alfonzo and Oliver [5] updated the matrix � at each iteration
and developed a method to calculate the mismatch taking into consideration a non-
diagonal Cd. By doing that, the authors could evaluate if the models achieved the
desired mismatch level and, consequently, check if model parameters should be further
updated. More differently, Luo [68] used a machine learning procedure to deal with
model errors. The readers are referred to as the mentioned works for more information
about each method.



Chapter 3

Localization

The finite ensemble size used in ensemble methods makes the history-matching prob-
lems feasible to compute. On the other hand, a limited ensemble size constrains the
degrees of freedom of the problem to search for the best solution contained in the space
spanned by the prior ensemble. Also, using a limited ensemble size results in sampling
errors that reveal themselves through spurious correlations. A spurious correlation
means that two uncorrelated variables would correlate when we use a finite ensemble to
compute the correlation. Such spurious correlations might lead to unphysical updates
of the model’s uncertain parameters and contribute to underestimating the ensemble
variance [37].

In practical applications of reservoir history matching, the number of realizations
in the ensemble #e is usually around 100 [19, 70, 32] and can get to 500 in some
applications [104]. Thus, spurious correlations do appear. To illustrate this point, let us
suppose one has a reservoir field with a sealing fault in the middle. Due to the limited
size of the ensemble, one might find a correlation between porosity from one side of the
fault and the produced oil rate from a well on the other side of the fault. There should
be no correlation across the fault, but in this case, the spurious correlations can cause
the oil rate measurement from this well to update the porosity on the other side of the
fault. Consequently, this spurious update leads to an unphysical estimate.

To deal with these problems, one can increase the ensemble size or apply a local-
ization technique [51, 88, 9]. To avoid spurious correlations and underestimates of the
variability, the number of realizations in the ensemble would need to be very large, mak-
ing the history-matching impractical. Therefore, localization is preferred as it extends
the solution space and reduces the impact of spurious correlation.

The main idea behind localization is to select only a subset of the observed data with
a type of relationship with the uncertain parameters to update them. There are different
ways to implement it, such as the Kalman Gain localization [104, 31, 74], the covariance
localization [30, 16], and local analysis [9, 88, 20, 99]. Moreover, there are different
approaches on how to define the localization values, such as the distance-dependent
approach [104, 30, 99] or the correlation-based method [64, 74].

This chapter presents the three most popular localization methods, i.e., Kalman
gain localization, covariance localization, and local analysis. After that, we discuss
the distance-based and correlation-based tapering approaches for determining which
measurements influence which localized update variables.
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3.1 Kalman-Gain localization

The Kalman-gain matrix K (Eq.( 2.30)) has a dimension of #x × #d, and each column
represents a scaled covariance function of an observation. Furthermore, in ensemble
methods, K is of low-rank and contains much redundant information, especially in the
case with a vast observed data set [2]. Hence, the Kalman-Gain localization reduces
the measurement’s impact when updating uncertain model parameters with a strong
relationship with the observation. It is worth mentioning that it is only possible to use
the Kalman-Gain localization in approaches in which the Kalman-Gain matrix appears.
Therefore, it is not possible to use it with the SEnRML.

If one considers Eq. (2.30), one can insert the Kalman-Gain localization matrix C
through an element-wise multiplication (Schur product) as in

X8+1 = X8 + C ◦ K8D̃8 . (3.1)

C has the same dimension as K, i.e., #x ×#d, and it represents the relation between the
model uncertain parameters and the observed data. Its values vary between zero and
one. Here, zero means that there is no relationship between the uncertain parameter
and the measured data. By assigning values between zero and one, one gives different
weights to this relationship.

The localization matrix C is also known as the tapering matrix. Besides eliminating
spurious correlation, its use increases the degrees of freedom available to history match
the observed data [30], and one computes each parameter’s update in a much larger
space than the ensemble space spanned by the prior realizations [2].

There are different ways to calculate the values in the localization matrix C. See the
presentation of the distance-dependent [51] and the correlation-based [70] methods at
the end of this chapter.

3.2 Covariance localization

Another alternative is to localize the covariance matrices as in [16, 30, 99]. If one takes
the IES-RML (Eq. (2.27)) as an example, the covariance localization can be computed
from

X8+1 = X8 + Cas ◦
(
A8

(
S̃8

) T
) (

Css ◦
(
S̃8

(
S̃8

) T
)
+ U8I

) −1
D̃8 . (3.2)

Cas can be calculated as mentioned previously, i.e., by the distance-dependent or the
correlation-based approach, and Css can be defined as in [16]

Css = CT
asCas. (3.3)

The difference between the Kalman gain and covariance localization is the compu-
tation of Css, which is only performed in the latter case. It is worth mentioning that
Css has a dimension of #d × #d, which can be very big; consequently, its computa-
tion and storage might be prohibitive. Moreover, it is not possible to use the effective
Kalman Gain (Eq. (2.31)) with the covariance localization case [20]. Finally, Chen
and Oliver [16] mentioned that the Kalman gain localization could generate an increase
in the ensemble variability after the assimilation process compared to the covariance
localization.
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3.3 Local Analysis

Another localization method is the local analysis, firstly introduced by Brusdal et al.
[9]. This method is more frequently used in atmosphere or ocean data-assimilation
problems [99, 88, 84, 81], but less exploited in history-matching problems [20, 43]. In
the local analysis, one selects smaller local groups of uncertain model parameters and
updates each group by conditioning on a subset of the observations. Since the IES-RML
and SEnRML differ from each other, the way of applying local analysis is different.
Firstly, we will show how to perform local analysis using the IES-RML followed by the
SEnRML case.

It is possible to rewrite Eq. (2.30) considering the local groups ;

X8+1
; = X8

; + K8
;D̃8

;
, (3.4)

where X; consists of some rows of X, representing the local group. Chen and Oliver
[20], for instance, selected individual columns of the 3D reservoir simulation model as
groups. D̃8

;
consists of the rows of D̃8 that corresponds to the subset of the observed

data related to the local group. K; follows the same logic, and to compute it, one should
use a subset of the ensemble anomalies A; (rows of A that corresponds to the local
groups), the predicted anomalies S̃; (rows of S̃ that corresponds to the data related to
the local group), and the measurement error-covariance Cd; (rows and columns of Cd
that corresponds to the data related to the local group).

If one deals with observed data with a physical location associated with the reservoir
simulation models, such as well rates, the data selection is more straight-forward. One
can use the same idea as in the distance-dependent approach and assign a radius or
region where the data will be used to update the uncertain model parameter [20, 43, 99].
Then, one can select the rows in S̃, D̃, and Cd using the approach from Sec. 3.4.
However, if the observed data does not have such characteristics, one should use the
correlation-based approach discussed in Sec. 3.5 to select the data.

It is worth mentioning that one can also taper the local Kalman gain as in

X8+1
; = X8

; + C; ◦ K8
;D̃8

;
. (3.5)

Here C; is part of the localization matrix C considering only the uncertain local model
parameters (rows) and the selected observed data (columns). Note that one can apply
the tapering or not, but its application might bring some benefits as we mention in
Sec. 3.5

One advantage of local analysis is the smaller number of uncertain model parameters
and observed data, making the manipulation and storage of the matrix C and K much
easier. Consequently, local analysis is recommended for applications with big models
and big data sets. Besides, it allows one to use a different linear combination of
realizations for each uncertain model parameter. On the other hand, one must perform
several local updates, i.e., one time for each local group, increasing the computational
time. However, since the updates are independent, one can parallelize the process [37].

To illustrate this point, if one considers one column of a simulation model from the
Brugge benchmark as the local group (9 gridblocks) and four uncertainties (the porosity
value and permeability in the G, H, and I directions), one would have the number of
uncertain model parameters #x = 36. Fig. 3.1 compares the memory consumption of K
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Figure 3.1: Memory requirement for the Brugge benchmark case for global (K) and local (K;) analysis (log scale).

and K; as a function of #d for the Brugge case. As expected, the memory consumption
of K is much higher than its local version. For instance, for 100 000 data points, the
global Kalman gain requires about 133 GB, while the local one requires only 0.03 GB.
However, one would need to perform the update 4 950 times (once for each local group).
If one considers larger local groups, the memory requirement will increase while the
number of updates decreases.

As mentioned previously, Emerick [31] proposed to compute each row of the Kalman
Gain at a time. Note that he used all of the measurements, while in local analysis, one
should select only the data related to the local group instead.

It is also possible to apply local analysis with SEnRML. By considering a local
group, one should compute the local transition matrix W; as in

W8+1
; = W8

; − W
(
W8

; − (P8;)
T (

(P8;) (P
8
;)

T + Cd;
) −1H8

;

)
, (3.6)

where in P; and H; , one selects only the rows of P and H corresponding to the data
related to the local group. Hence,

X8+1
; = X8

; + A8
;W

8
; (3.7)

Nevertheless, it is not possible to taper the Kalman gain as in the IES-RML. One
alternative is to taper the ensemble prediction anomalies [20]. If one considers c; as the
tapering vector for one local group, it is possible to conduct localization as in

P̂8
;
=

(
c1/2
;

1T
#e

)
◦ P8; , (3.8)

and
Ĥ8
;
= P̂8

;
W8

; +
(
c1/2
;

1T
#e

)
◦ D8

; , (3.9)
Note that there are some differences regarding the tapering in these two methods.

In IES-RML, the Kalman Gain has a dimension of #x × #d and shows a relationship
between each model uncertain parameter and observed data explicitly. Therefore, one
can calculate the tapering coefficient related to each observed data and each uncertain
model parameter. However, in SEnRML, since one tapers the predicted ensemble
anomalies, the tapering coefficient is related to each observed data and the local group
as a whole. Hence, the vector c; should contain the relationship between the whole
group and each observed data.
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Chen and Oliver [20] and Fahimuddin et al. [43] used local analysis in reservoir
history matching, and both works reported exciting results. Chen and Oliver [20], for
instance, pointed out that because of a lower loss of information during the truncation
of the singular value decomposition, the local analysis achieved a faster convergence
than the case that considered all uncertain model parameters and observed data (global
analysis). Moreover, Sakov and Bertino [99] pointed out that the choice of using
local analysis or global analysis should be based on computational efficiency. Thus,
for applications with big models and vast data sets, local analysis schemes might be
preferable.

There is also a possibility to apply tapering through the measurement-error covariance
matrix Cd [99]. In such an approach, one should increase the error to reduce the effect
of measurements that should not be used. If Cd is diagonal, this approach should be
equivalent to tapering the anomalies [99]. However, for the case of a non-diagonal Cd,
the problem gets more complicated.

The following two sections present two of the most popular methods to compute the
localization tapering matrix C: the distance- and correlation-based tapering.

3.4 Distance-based tapering

The distance-based tapering approach appears to be the most popular one. Several
works have applied it [30, 104, 19, 93]. In this approach, one should take the location of
a measured data point and select a range in which this data should influence. Thus, this
specific data point will influence all the uncertain model parameters within this range.

One can also use the function proposed by Gaspari and Cohn [47] to calculate the
values in C and obtain a smooth update
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(3.10)
where ! is the length scale defined by the user, ℎ is the distance between the observed
data and the uncertain model parameter, and 2 is the entry value of C.

There are different ways to select !. If one uses well data, one could evaluate the
drainage area of each well through streamlines [30, 24, 104] and then define ! based on
the wells’ region of influence. Fig. 3.2 shows an example of the distance-based tapering.
In this case, Soares et al. [104] defined the drainage area through streamlines to define
the critical length ! and to compute the tapering values according to the Eq. (3.10).
Note that the area in red is very close to the well; hence, the data will have a strong
impact on the update of the uncertain model parameters (porosity, permeability) in this
area. As one moves away from the well, this value decreases until it reaches zero (dark
blue region), meaning that the data from this well will not influence the update of the
parameters in this area. In the end, one can avoid spurious correlation, especially the
long-distance spurious correlation [2], where one observed data shows a correlation
with an uncertain model parameter far from it.

In the case of local analysis, one would select only the data with values of 2 larger
than zero.
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Figure 3.2: Example of distance-based tapering [104].

3.5 Adaptive correlation-based tapering

Luo and Bhakta [70] highlighted some drawbacks of using the distance-based tapering:

• Difficulty to select ! for each data;

• Difficulty to incorporate time-lapse effect;

• Difficulty to handle non-local observations;

• The observed data needs to have an associated physical location;

• Often case-dependent implementation.

To tackle these issues, Evensen [37] proposed an adaptive localization tapering by
using a correlation function. Later on, Luo and Bhakta [70] proposed a new method
based on the same concept.

The main idea behind the adaptive correlation-based localization is to compute the
correlation (d) between the uncertain model parameters and the simulated data by
considering the ensemble (#e realizations). Based on the correlation values, one selects
which data should be used to update each uncertain model parameter. Fig. 3.3 shows
a flowchart with the necessary steps to perform the adaptive correlation-based tapering
[70]. The method can be divided into two parts. Firstly, in steps 1 and 2 in Fig. 3.3, one
selects the data with a strong relationship with the uncertain model parameters based
on a threshold. In this part, the authors proposed to compute the sampling error of the
correlation between the simulated data and the uncertain model parameters and calculate
the threshold based on that. In the second part (step 3 in Fig. 3.3), one computes the
tapering matrix C. However, instead of computing it based on the physical distance,
as in Eq (3.10), the authors proposed a pseudo-distance taking into consideration the
correlation values.

To select which data should be used to update each uncertain model parameter, Luo
and Bhakta [70] proposed an automatic procedure to calculate a threshold \ that works
as a cut-off in a role similar to ! in the distance-based approach. In the first step shown in
Fig. 3.3, the authors proposed two different ways to compute the sampling error n of the
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Figure 3.3: Flowchart of the adaptive correlation-based tapering [70].
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correlation between the simulated data and the uncertain model parameters. The authors
proposed to compute the correlation between the ensemble of the uncertain model
parameters and a random ensemble of the simulated data. Theoretically speaking, the
sample correlations between the model uncertain parameters of one ensemble member
and another different ensemble member’s simulated data would be zero, given an infinite
ensemble size. However, due to the limited ensemble size, this correlation would not
be zero. Therefore, the authors proposed to obtain the sampling errors (n) through
this sample correlation. Subsequently, Luo and Bhakta [70] calculated the standard
deviation of n according to the median absolute deviation estimator [26]

f =
median(abs(Y))

0.6745 . (3.11)

Donoho and Johnstone [26] mentioned that using the median to estimate the noise’s
standard deviation is a robust choice as it would not be influenced by a strong signal in
case it is present. Note that by dividing the median by 0.6745, they considered a normal
distribution of n that covers 50% of the distribution, i.e., from the percentile 1/4 to the
percentile 3/4 [96].

In this approach, one needs to compute the sample correlations between the ensemble
of uncertain model parameters and the corresponding ensemble of simulated data.
One also has to calculate the sample correlations between the ensemble of uncertain
model parameters and a random ensemble of simulated data. To perform this latter
computation, Luo and Bhakta [70] proposed to use a randomly shuffled ensemble
of the uncertain model parameters and simulated data. Note that for that case, the
ensemble members must be independent and identically distributed. Nevertheless, both
computations can consume a lot of computer memory, especially for vast data sets.

Alternatively, one can consider that the sample correlations tend to follow a Gaus-
sian distribution N

(
d, (1 − d2)2/#e

)
asymptotically as #e → ∞ [70, 6]. Thus, for

correlations d equal to 0 (sampling errors), the standard deviation would be

f =
1

√
#e
. (3.12)

By using Eq. (3.12) instead of Eq. (3.11), one can avoid the computation of the
correlation between the ensemble of the uncertain model parameters and the random
ensemble of simulated data and then reduce the memory consumption.

Finally, f can be used to determine the threshold \ (step 2 in Fig. 3.3) using the
universal threshold approach [25] as in

\ = f
√

2ln(#d), (3.13)

where #d is the number of model parameters used to calculate d, i.e., the size of the
reservoir model. Note that for a larger model, one obtains a larger value of the threshold
\ because of the higher probability to have larger deviations from the expected mean
value. Also, multiplying f by

√
2ln(#d), makes one obtains a threshold larger than the

standard deviation of the sampling error n . Hence, with Eq. (3.13) one selects only the
data that has a strong relationship with the model parameters. This approach is much
used in wavelet denoising methods [52].

With the definition of the threshold \, one can say that if a correlation between
one simulated data and model uncertain parameter is larger than \, this observed data



3.5 Adaptive correlation-based tapering 29

should influence the update of this specific model uncertain parameter. By comparing
the distance-based to the adaptive correlation-based tapering, it is possible to say that
\ works as !. One can imagine that, for d values larger than the threshold, the value is
within the localization region, as shown in Fig. 3.2.

Additionally, the authors proposed two different ways to compute the entry values 2
of the localization matrix C (step 3 in Fig. 3.3). First, if the correlation d between each
uncertain model parameter and observed data is higher than \, 2 related to them will
have a value of 1, and 0 otherwise. This procedure is known as hard threshold and can
be described as in

2 =

{
1, if |d | ≥ \
0, if |d | < \,

(3.14)

The other procedure, known as the soft threshold, uses the Gaspari and Cohn function
(Eq. 3.10), but instead of using ℎ

!
as the input, Luo and Bhakta [70] proposed a new

variable I that works as a pseudo-distance

I =
1 − abs(d)

1 − \ . (3.15)

It is essential to mention that one needs to compute this procedure for each uncertain
group. For instance, one will have to perform the computations highlighted in Fig. 3.3
for porosity, permeability in G-, H-, and I-direction separately. Note, however, that if
one uses Eq. (3.12) instead of Eq. (3.11), the threshold \ for each group will have the
exact same value.

The hard threshold approach might lead to strong updates in specific regions [70],
and it might generate models with abrupt changes in the porosity or permeability, for
instance. Moreover, in both cases (soft and hard threshold), the correlation matrix
calculation can require a large amount of memory in cases with big models and data
sets, which might be a limitation for the method.

In local analysis, one should use either the distance- or correlation-based approach to
select the data composing the subset during the update for each local group. Considering
the IES-RML algorithm, Fig. 3.4 illustrates a simple example, where one has six
uncertain model parameters (represented by the rows in C in the first plot) and 12
observed data (represented by the columns in C in the first plot). The frame with a
solid line represents the matrix, and each small square with the dashed-line represents
one element of the matrix. The small squares painted in blue show that the element is
not zero and those in white indicate a zero value. If one divides the uncertain model
parameters into a local groups considering the first three rows, one would first achieve
a local tapering matrix considering all the measurements, as shown in the middle plot
in Fig. 3.4. Subsequently, one would select only the measurements that influence the
model parameters of that specific local group, i.e., one should select only the columns
with values different from zero (right plot in Fig. 3.4). Therefore, the final Cl matrix
would use only the columns number 1, 2, 4, 6, 8, 10, and 12. Finally, one would also
need to select the rows in the matrices S̃ and D̃ that are related to the measurements one
selected based on C. Hence, one needs to chose the rows number 1, 2, 4, 6, 8, 10 and
12 of S̃ and D̃ to form S̃l and D̃l. Besides, one would also need to select the same rows
and columns of Cd and the rows in A related to the local model uncertain parameters
to form Cd; and A; .
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Figure 3.4: Localization matrix C and Cl.

The main point of using the distance- or correlation-based approach in local analysis
is to select the observed data that one will use to update each local group. The tapering
function, i.e., the computation of the values in Cl is not necessarily mandatory. If one
does not use the tapering function, one will achieve the same configuration as the hard
threshold presented in [70]. However, if one uses the tapering function, one would get
Cl between 0 and 1 as the soft threshold approach.



Chapter 4

Sparse Representation

Many research fields use sparse representation methods, including signal and image
processing, and many different application areas, such as oil and gas and health in-
dustries. The objectives within these fields and applications can vary, such as image
denoising [4, 116], data compression [62], image restoration [77, 94], and classification
of images and signals [114, 15]. In petroleum applications, sparse representation can be
a valuable tool for dealing with vast and noisy data sets. As mentioned previously, the
observed data sets’ size has been increasing with the development of new sensors and
technologies. The inclusion of 4D seismic data set, for instance, increased the number
of observed data points from 1 400 to about 7 million in [73]. If one considers a Perma-
nent Reservoir Monitoring, this number can increase even further. Besides, regardless
of the type of the observed data, they usually contain redundant information. Hence,
sparse representation methods can help to select only the important and non-redundant
information. Note that one can also reduce the size of the uncertain model parameters
by using sparse representation methods.

In this chapter, we first present the general sparse representation problem, in which
one uses an over-complete dictionary to represent the original signal. Subsequently,
we introduce the Orthogonal Matching Pursuit (OMP) algorithm to solve this problem,
and present the process of learning the dictionary from the original signal by using the
K-SVD method. In addition, we highlight different applications that used the K-SVD
method. Note that the symbols and variables in this chapter have a different notation.

4.1 The sparse representation problem

Sparsity means that some of the values in a vector or matrix are equal to zero. One
way of achieving sparsity regarding a signal or image is defining basis functions and
exploring linear combinations of them to form the original signal or image. Suppose
that x ∈ R=2×1 is a vector containing the original signal and D ∈ R=2×: is a set of
pre-defined basis functions, also called the dictionary. Each column of the dictionary
is also known as an atom, and D is an over-complete matrix, i.e., : > =2. Therefore, if
one writes

x = DW, (4.1)

it is possible to represent the original signal x by a sparse vector W ∈ R:×1. In other
words, the signal x is represented by a linear combination of the atoms (or columns) in
D. The solution of the Eq. (4.1) can be complicated as it is an under-determined linear
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Figure 4.1: ℓ?-norm interpretation - 1D.

system for W with the number of variables in W larger than the number of equations.
Hence, it follows a similar logic as the history-matching problems, i.e., it is an ill-posed
problem that does not have a single and unique solution [115].

A common practice to solve this equation is to apply a regularization criterion that
can narrow the solution’s space [28] as stated in the following problem

argmin{x}� (x) subject to x = DW, (4.2)

where � (· ) is a cost function. A reasonable choice for � that is the ℓ2-norm. Since
the ℓ2-norm is a strictly convex and differentiable function, this type of function is
attractive for the problems in Eq. (4.2) [28]. However, one may also consider more
general functions such as ℓ?-norms, in which ? > 0. One can define ℓ?-norm as

‖x‖? =
( =2∑
8=1

|x8 |?
) 1/?

. (4.3)

One can also define the pseudo-ℓ0-norm as

‖x‖0 = lim
?→0

( =2∑
8=1

|x8 |?
) 1/?

. (4.4)

One can interpret the pseudo-ℓ0-norm as the number of non-zero coefficients of x. Note
that the pseudo-ℓ0-norm does not fulfill all the requirements of a norm [28]. However,
it is common to refer to it as the ℓ0-norm, and we will use this notation from this point
on.

Fig. 4.1 illustrates the 1D interpretation of the ℓ0-, ℓ1-, and ℓ2-norms. Note that
ℓ0- and ℓ1-norms are not locally differentiable at 0. Consequently, minimizing the
ℓ0- and ℓ1-norms can be an issue in the sparse representation problem. Nevertheless,
these norms can promote a sparsity solution that can be interesting and useful for some
problems.
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Figure 4.2: Geometric interpretation of the problem in Eq. (4.2): ℓ0-norm (upper left); ℓ1-norm (upper right); and ℓ2-norm
(lower left).

To have a better understanding of the property of promoting sparsity, Fig. 4.2 shows
a 2D geometrical interpretation of the problem stated by Eq. (4.2) when � assumes
the form of ℓ0-, ℓ1-, and ℓ2-norms. All the solutions must intersect the line x = DW
(red-dashed line). Hence, the problem’s solution is represented by the intersection of
the norms (blue-solid lines) and the red-dashed line. One can see that for the ℓ0- and
ℓ1-norms, the solution is sparse as one gets a zero value. Elad [28] highlighted that
is not very common to reach non-sparse solutions for the ℓ1-norm case. However, the
solution is not sparse for the ℓ2-norm [28, 115].

The concept of the ℓ0-norm is very convenient for the sparse representation problems.
Hence, it is the preferable choice for � in most applications. Nevertheless, it is a
challenge to exactly represent the initial signal x with few non-zero coefficients in real
applications of image and signal processing [109]. Therefore, a common practice is to
add an error n that can be tolerated, and one can write Eq. (4.2) as

argmin{x} ‖x‖0 subject to ‖x − DW‖2
2 ≤ n, (4.5)

or
argmin{x} ‖x − DW‖2

2 subject to ‖x‖0 ≤ B, (4.6)

where B is the maximum sparsity level desired. In the next section, we provide more
information about the algorithms used to solve such problems. Note that one can also
use the ℓ1-norm, which is also known as the Lasso problem [106], but the focus in the
thesis is on the ℓ0-norm problem.
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4.1.1 Sparse representation algorithms
There are two approaches to solve the problem in Eq. (4.5) and (4.6) [28, 115]. One
can either try to relax ‖x‖0 or one can keep the ℓ0-norm and focus on finding a solution
that focus on the term ‖x − DW‖2

2.
The first type of solution is also known as Convex Relaxation Techniques, where one

replaces ‖x‖0 by a smooth or continuous function. Among these methods, it is possible
to point out the FOCal Undetermined System Solver (FOCUSS) [48], in which the
authors proposed to substitute the ℓ0-norm by the ℓ?-norm (where ? ∈ (0, 1]). Another
method is to substitute the ℓ0-norm by the ℓ1-norm. This method is known as Basis
Pursuit (BP) [14]. However, in this work, we focus on the second solution where one
deals with the term ‖x − DW‖2

2 instead since it tends to be faster [28].
In the second type, one can solve the problem by performing a combinatorial search

[28]. Supposing the sparsest solution W has #nz non-zero coefficients, one would need
to check all possible combinations of #nz columns in D, in which x = D�W� . In this
case, � represents the columns’ indices in the dictionary and the rows in the sparse
vector. If one assumes that the dictionary has 750 columns and the sparsest solution
has ten non-zero coefficients, one would need to search within 1.46� + 22 possible
combinations, which is impractical.

Many works in the literature used greedy algorithms to tackle this issue, achieving a
good approximate solution [108, 107, 80]. One of the most common greedy algorithms
used in sparse representation problems is the Orthogonal Matching Pursuit (OMP) [89].

Orthogonal Matching Pursuit (OMP)

Several works used the OMP to sparsely represent data [4, 98, 7, 62]. The basic idea
behind the OMP algorithm is to add one non-zero coefficient to the sparse vector at a
time until the stopping criterion is reached.

The first step of the calculation of the sparse vector is to define an initial dictionary.
Rubinstein et al. [97] pointed out that there are two different sources of dictionaries: a
mathematical model or a set of realizations of the original data. Among the mathematical
models, it is possible to highlight the Discrete Cosine Transform (DCT), Curvelets,
Contourlets, and Discrete Wavelet Transforms (DWT). One advantage of such functions
is their easy implementation. However, using realizations of the data is more flexible.

Algorithm 1 shows all the necessary steps in the OMP to perform the sparse repre-
sentation. It starts with the definition of which atom (column) in the dictionary D has
a strong relationship with the signal x. To do so, one computes the inner product be-
tween each atom d 9 and the residual r and selects the one with the largest value (line
5). Note that for the first iteration the residual is equal to the signal x. Subsequently,
one should add the index related to this atom ( 9) into the variable � (line 6), so one can
project the signal x onto the space spanned by the � atoms in D (line 7), where (D�)+
represents the pseudo-inverse of D� . Finally, one calculates the residual r (line 8) and
repeats the process until the stopping criterion (error or sparsity level) is reached. It is
worth mentioning that one fills the sparse vector with one non-zero coefficient at a time.

On the other hand, Aharon et al. [4] highlighted that this algorithm might not work
well if one faces a big original signal x. Therefore, they proposed to divide x into
smaller patches. For instance, if one has a 2D initial signal, one should extract smaller
regular patches (with size =×=) and transform them into column vectors to compute the
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Algorithm 1: OMP
1 Input: signal x, Dictionary D, error n or sparsity level B
2 Output: sparse vector W
3 Initialization: r := x, W := 0, � := ()
4 while stopping criterion not met do
5 9̂ := argmax{ 9 } |rTd 9 |
6 � := (�, 9̂)
7 W� := (D� )+x
8 r := x − D�W�

9 end

sparse representation of each patch separately. These patches need to cover the whole
initial signal, and they can overlap with each other. The following equation considers
the original signal as a collection of patches

X = [x1, x2, . . . , x#ts], (4.7)

where #ts is the total number of patches (or the size of the training data set). Conse-
quently, it is possible to rewrite Eq. (4.1) as

X = D�. (4.8)

Here, � is the sparse matrix composed of the sparse vectors W

� = [W1, W2, . . . , W#ts] . (4.9)

To calculate �, one needs to compute the OMP algorithm #ts times, i.e., one time for
each patch.

Rubinstein et al. [98] and Davis et al. [22] proposed a more efficient formula-
tion of the OMP algorithm, in which it is possible to reduce the computational cost.
Consequently, it is more suitable for problems involving vast data sets (see Algorithm
2).

The main idea of the new formulation is to replace the computation of the residual
r with DTr. Thus, if one considers U = DTr, U0 = DTx, the sparse vector W� = D+

�
x,

and G = DTD, it is possible to write U as in

U = DTr
= DT(x − D�W�)
= DT(x − D� (D�)+x)
= U0 − G� (D�)+x
= U0 − G� (DT

� D�)−1DT
� x

= U0 − G� (G�,�)−1U0
� .

(4.10)

Note that G� = DTD� and G�,� = DT
�

D� .
Therefore, one can run the OMP algorithm without explicitly computing the residual

r. On the other hand, if one uses the problem stated in Eq. (4.5), one needs the residual
to verify the stopping criterion. To overcome this issue, Rubinstein et al. [98] proposed
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the following

‖r<‖2
2 = (r<)Tr<

= (x − DW<)T(x − DW<)
= xTx − 2xTDW< + (W<)TGW<

= xTx − 2(r< + DW<)TDW< + (W<)TGW<

= xTx − 2(W<)TGW< + (W<)TGW<

= ‖x‖2
2 − (W<)TGW<,

(4.11)

where < is the iteration number within the calculation of one sparse vector and the
signal approximation is orthogonal to the residual such that

(r<)TDW< = 0. (4.12)

Besides, it is possible to write the square of the ℓ2-norm of the original signal vector
‖x‖2

2 as

‖x‖2
2 = (r<−1 + DW<−1)T(r<−1 + DW<−1)
=

r<−12
2 + 2(r<−1)TDW<−1 + (W<−1)TDTDW<−1.

(4.13)

Finally, if one substitutes Eq. (4.13) in Eq. (4.11), one can achieve the following
formulation for the residual

‖r<‖2
2 =

r<−12
2 + (W<−1)TGW<−1 − (W<)TGW<

= n<−1 + X<−1 − X<,
(4.14)

where n< can be defined as the computed error at the iteration < and X as a weighted
norm.

Algorithm 2 shows all the steps proposed by [98]. Firstly, one needs to define U0,
the initial computed error n0, G, and the specified error n (line 1). Then, one needs to
determine the atom in the dictionary D that has the largest inner product with the residual
r and append it to � (lines 5 and 6). In line 7, one must calculate the sparse vector W� ,
and one can use the Cholesky decomposition to invert the matrix G�,� . Subsequently,
to calculate U (Eq. (4.10)), one should follow the lines 8 and 9. Finally, lines 10 and 11
are responsible for calculating the residual (‖r<‖2

2 or n<) (Eq. (4.14)) in order to check
if the stopping criterion is satisfied.

The definition of the specified error n can be complex, but the signal may be con-
taminated by noise in some applications. As a result, one can define this noise and its
standard deviation f to determine the error. To avoid overfitting, Elad and Aharon [29]
proposed the following formula to set the error

n =
(
�f

√
=2) 2

. (4.15)

Here� is a constant that was empirically defined in [29] as 1.15. Note that this algorithm
is only valid for the problem in Eq. (4.5). For the problem in Eq (4.6), one does not
need to compute the residual, and the algorithm is more straightforward.
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Algorithm 2: OMP [98]
1 Input: U0 = DTx, n0 = xTx, G = DTD, specified error n
2 Output: sparse vector W
3 Initialization: < := 1, X0 := 0, � := (), U := U0

4 while n<−1 > n do
5 9̂ := argmax{ 9 }{|U 9 |}
6 � := (�, 9̂)
7 W� := (G� ,� )−1U0

�

8 V := G�W�
9 U := U0 − V

10 X< := (W� )TV�
11 n< := n<−1 − X< + X<−1

12 < := < + 1
13 end

4.2 Learning the Dictionary

The idea to adapt the initial dictionary according to the signal that is being sparsely
represented has gained much attention as one can achieve a better representation of the
signals with fewer coefficients [58, 4, 87, 61, 109].

Among the algorithms used for this task, it is possible to point out the maximum
likelihood methods [87], the method of optimal directions (MOD) [34], the maximum
a posteriori probability method [58], the Union of orthonormal bases [60], and the
K-SVD [4].

Firstly, we will give a brief introduction to each of these methods. Then, we will
provide more information about the K-SVD (which is used in this work).

The maximum likelihood method uses the following likelihood ?(X|D) and tries to
find the dictionary D that maximizes it [87]. The maximum a posteriori method also
uses the concept of likelihood, but it also considers the initial distribution of D by using
Bayes’ theorem. Hence, Kreutz-Delgado et al. [58] proposed to solve the following
problem ?(D|X) ∝ ?(X|D)?(D).

In the MOD algorithm, Engan et al. [34] minimizes the residual E

‖E‖2
� = ‖X − D�‖2

� , (4.16)

where the subscript � denotes the Frobenius norm, while keeping the original signal X
fixed. Note that one can define the Frobenius norm as

‖E‖2
� =

√
trace(ETE). (4.17)

Lesage et al. [60] proposed to use a union of orthonormal bases to compose the
Dictionary. By doing that, the sparse representation problem gets simpler as one can
define the sparse vector W as

W = DTx. (4.18)
Nevertheless, the restriction imposed by the orthonormality of the dictionary may have
downgraded the process, and the results showed an inferior performance [4].

Aharon et al. [4] mentioned that all these algorithms tend to be slow, and the
dictionary’s update does not take into account the coefficients defined in the sparse
representation. Therefore, they proposed a new method, named K-SVD, which updates
the dictionary and the nonzero coefficients of the sparse matrix at the same time.
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4.2.1 K-SVD
The main contribution of the K-SVD method is to optimize the dictionary D together
with only the nonzero coefficients of the sparse matrix � while keeping all zero values
constant. To tackle this problem, the authors optimized each atom of the dictionary at
a time. The first step is to define the residual E 9 , where one should not consider the
contribution of the 9-th atom that is being updated, as in

E 9 = X� 9 −
∑
0≠ 9

d0�0,� 9 . (4.19)

Here � 9 represents the column indices in X and � that uses the atom 9 .
Another way of understanding the sparse matrix � is to consider it as a collection

of row vectors gT. Thus, gT
9 ,� 9

is the 9-th row of � over the columns defined in � 9 .
For instance, if gT

9
= (0, W 9 ,2, 0, . . . , 0, W 9 ,10, 0, . . . , 0, W 9 ,22, 0, . . . , 0). Then, gT

9 ,� 9
=

(W 9 ,2, W 9 ,10, W 9 ,22). Finally, one can write the optimization problem as

(d 9 , gT
9 ,� 9

) = argmind 9 ,gT
9 ,� 9

E 9 − d 9gT
9 ,� 9

2

�
subject to

d 92 = 1. (4.20)

To solve this problem, one can compute the Singular Value Decomposition (SVD) of
the residual E 9 as in

E 9 = U�VT, (4.21)

and assign the atom d 9 to the first column of U and gT
9 ,� 9

to the first column of V times
the first singular value �(1, 1) [115].

Algorithm 3 describes the K-SVD method, an iterative algorithm, where one alter-
nates between calculating the sparse representation matrix and the dictionary update.
As such, one needs to define the total number of iterations #it beforehand.

The first step is defining the initial dictionary D, the specified error n or the sparsity
level B, and calculating the sparse representation matrix (line 4). Note that one should
compute the Algorithm 1 and or 2 #ts times to form the sparse matrix �. Subsequently,
one should update each column of the dictionary and the nonzero coefficients of each
row of the sparse matrix � at a time. We first select the indices in the original signal X
that uses the atom 9 (line 6), followed by the residual calculation without considering
the 9 atom E 9 (line 7). The next step (line 8) calculates the SVD of the residual E 9 .
Then, the updated atom takes the first column of U, and the nonzero values of the 9-th
row of � are equal to the largest singular value times the first column of V (lines 9 and
10, respectively).

Nevertheless, Rubinstein et al. [98] mentioned that if one faces a large initial signal
X, the algorithm can be time-consuming, mainly because of the explicit computation
of the residual E 9 . Moreover, they claimed that the goal of the K-SVD is to improve
the dictionary to achieve better sparse representation. Therefore, the updated dictionary
does not have to be optimal. Hence, they developed an approximate method faster than
the original formulation that provides close results to its full computation.

To solve the problem stated in Eq. (4.20), one can think about making the two parts
of the subtraction equal, as in

E 9 = d 9gT
9 ,� 9
. (4.22)
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Algorithm 3: K-SVD [4]
1 Input: signal X, initial Dictionary D, number of iterations #it, specified error n or sparsity level B
2 Output: sparse matrix � and updated dictionary D
3 for 8 = 1 to #it do
4 Sparse representation calculation (Algorithm 1 or 2) for each patch to form �
5 for 9 = 1 to #: do
6 � 9 := indices of the columns in X that uses d 9

7 E 9 := X� 9 −
∑

0≠ 9 d0�0,� 9

8 E 9 := U�VT

9 d 9 := U1
10 gT

9 ,� 9
:= Σ(1, 1) ∗ V1

11 end
12 end

By right multiplying this equation by g 9 ,� 9 and dividing by gT
9 ,� 9

g 9 ,� 9 , one can achieve

d 9 =
E 9g 9 ,� 9

gT
9 ,� 9

g 9 ,� 9
. (4.23)

Considering that one can normalize the atom d 9 afterwards, it is possible to disregard
the denominator. Besides, substituting Eq. (4.19) into Eq. (4.23), one has

d 9 = X� 9g 9 ,� 9 −
( ∑
0≠ 9

d0�0,� 9
)
g 9 ,� 9 . (4.24)

Finally, one should normalize the atom d 9 as in

d 9 =
d 9d 92

. (4.25)

The next step is to update the nonzero coefficients gT
9 ,� 9

. Thus, if one multiplies from
the left by dT

9
both sides of Eq. (4.22), one obtains

gT
9 ,� 9

= dT
9 E 9 , (4.26)

and by substituting E 9 (Eq. (4.19)), it is possible to get

gT
9 ,� 9

= dT
9 X� 9 − dT

9

( ∑
0≠ 9

d0�0,� 9
)
. (4.27)

The step-by-step implementation of the new development in [98] is shown in Algo-
rithm 4. Note that to learn the dictionary, the number of patches (or the training dataset
size) has to be larger than the number of atoms in the dictionary (# ). Besides, Aharon
et al. [4] mentioned that if an atom in the dictionary is not used during the sparse rep-
resentation, i.e., if gT

9 ,� 9
is empty, one can replace the atom by calculating the residual

R8 = X − D� at a specific iteration, and choosing the column in R8 with the largest
column sum. By doing that, one can avoid overfitting and local minima.

As mentioned previously, it is not easy to exactly represent the signal X with a sparse
representation. Therefore, one can reconstruct the original signal with the dictionary D
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Algorithm 4: K-SVD - New formulation [98]
1 Input: signal X, initial Dictionary D, number of iterations #it, specified error n or sparsity level B
2 Output: sparse matrix � and updated dictionary D
3 for 8 = 1 to #it do
4 Sparse representation calculation (Algorithm 1 or 2) for each patch to form �
5 for 9 = 1 to #: do
6 � 9 := indices of the columns in X that uses d 9

7 d 9 := X� 9g 9 ,� 9 −
( ∑

0≠ 9 d0�0,� 9

)
g 9 ,� 9

8 d 9 := d 9/
d 9


2

9 gT
9 ,� 9

:= dT
9
X� 9 − dT

9

( ∑
0≠ 9 d0�0,� 9

)
10 end
11 end

and the sparse matrix �, but it will not be the same as the original one. For that reason,
we will call the reconstructed image as Xrec instead where

Xrec = D�. (4.28)

It is worth mentioning that if the patches overlap, one should calculate the average
between them after computing Xrec.

4.3 Applications

Aharon et al. [4] used K-SVD in two different applications. Firstly, the authors
used face images to train a dictionary. Afterward, they selected one face and deleted
some pixels in the image to restore it by filling in the missing pixels by using the
dictionary. They compared how the K-SVD performed compared to an over-complete
DCT and wavelet dictionary. In addition, they also compared a compressing application
using the same methodology. In both applications, the authors showed the K-SVD
algorithm outperformed the other methods for a better-reconstructed image with the
learned dictionary.

In a different work, Elad and Aharon [29] used the K-SVD method as a denoising
tool and showed that it is possible to achieve better results by training the dictionary with
the proposed algorithm. Other works in the literature also used the K-SVD algorithm
to denoise images. For instance, different authors attenuated noise in seismic data
sets [110, 117]. Each of these works proposed minor alterations in the original K-SVD
algorithm to tackle the denoising problem. Turquais et al. [110] developed an automatic
way to calculate the noise n in the signal X. Zu et al. [117] considered a patch selection
procedure to learn the dictionary, and they pointed out that using the most complex
patches can generate a better reconstruction of the original signal.

Also, Ravishankar and Bresler [94] and Chen et al. [21] restored magnetic resonance
images. Liu and Jafarpour [62] and Khaninezhad et al. [56] parameterized oil reser-
voir subsurface characteristics (facies, channels, and permeability) through the K-SVD
algorithm.

Other more distinct applications of the K-SVD involve face recognition problems
[114, 15]. The authors included a discriminative characteristic to the dictionary and
added a classification performance into the process.
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In summary, the K-SVD algorithm has a broad range of applications, and one can
use it in different research areas. However, in this work, the focus is on the algorithm’s
compression and denoising properties applied to a seismic data set.
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Chapter 5

The use of seismic data in reservoir models

Seismic data is a valuable source of information to construct and update reservoir mod-
els. 3D Seismic can help identify faults, barriers, reservoir structure and is essential
when evaluating a prospect or building a reservoir model. 4D seismic refers to the
difference between two seismic surveys conducted at different times and can bring addi-
tional information about the reservoir dynamics through production-induced saturation
and pressure changes. Besides, 4D seismic is an example of vasts data sets used in his-
tory matching. Hence, this chapter shows a specific type of vast data set with valuable
usage in history-matching processes.

This chapter introduces 3D seismic data for use in reservoir models and discusses
seismic data sets’ main characteristics. Then, we explain how one can use 4D seismic
data in a history-matching algorithm to update the reservoir models. The main objective
is to give a general overview of the practical use of 4D seismic in reservoir management.

5.1 3D Seismic

3D seismic (3DS) is a valuable tool for oil and gas reservoirs as it provides information
about the subsurface structure. Artificially elastic waves generated on the surface travels
into the subsurface, and at each interface between two different media, part of the waves
reflect. Then, one can measure the intensity of the reflected wave on the surface and
the travel time. The upper plot in Fig. 5.1 illustrates the 3D seismic data. Here (1)
represents the source of the waves, and (2), (3), and (4) are the receivers that capture
the reflected waves. Note that the different media can be two distinct lithologies (shale
and sandstone, for instance) or the same type of rock but filled with contrasting fluids
(e.g., the contact surface between oil and water in sandstone).

As such, 3D seismic helps to determine faults and reservoir boundaries. Furthermore,
it is possible to estimate wave velocities and acoustic impedances (subsurface density
× wave velocity). These parameters are also known as the rock elastic properties. One
can also determine pore volume, lithology, and the fluid present in the reservoir based
on 3DS. As a result, many studies used 3DS to construct geologic models for reservoirs
[27, 50, 45].

It is essential to highlight the several challenging steps from the seismic-data acquisi-
tion to their interpretation, known as seismic processing. Despite being very important
for the use of 3DS, seismic data processing is outside the thesis’s scope.
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Figure 5.1: 3D Seismic scheme (adapted from [55]): First survey (upper plot); Second survey (lower plot).

5.2 4D Seismic history matching

As the reservoir starts to produce, its equilibrium and dynamics change. For instance,
pressure drops or increases, gas comes out of the solution, and water floods parts of
the reservoir. Consequently, if one acquires another seismic survey, the result should
be different since the reflected waves’ amplitude and the travel time change. The lower
plot in Fig. 5.1 illustrates a situation where the injected water swept the reservoir. As
a result, there is a difference in the seismic amplitude and travel time shown in the
receivers (2), (3), and (4). The process of repeatedly taking seismic surveys in time is
also known as time-lapse seismic or 4D Seismic (4DS).

The scheme shown in Fig. 5.1 is a simple example that illustrates the potential of using
4DS to understand the reservoir better. Nevertheless, in more complex applications,
one must consider some features before using 4DS. Johnston [55] and Lumley and
Behrens [67] pointed out three fundamental factors for a successful application of 4DS:
repeatability, detectability, and interpretability.

Repeatability means that a seismic survey should be able to be reproduced later in a
very similar condition. In other words, two or more surveys at different times should
be as similar as possible, so one can verify only the change of the specific parameters
that are related to the reservoir production, such as amplitude and travel time. Johnston
[55] stated that signal-to-noise ratio, processing similarity, and acquisition geometry
are among the factors that can affect repeatability.

The pressure and saturation changes in the reservoir need to reach a certain level
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Figure 5.2: Different 4DS domains (based on [49])

to be detected by the time-lapse seismic, referred to as detectability. Therefore, if a
reservoir has a high detectability and repeatability, there is a good chance of success in
using 4DS.

Finally, interpretability is a consequence of repeatability and detectability, and it is
essential for a good interpretation of the 4DS.

There is a need to link 4DS with the oil reservoir simulator for using time-lapse
seismic in history matching. This link is challenging as they provide answers in
different domains. Usually, commercial reservoir simulators provide simulated pressure
and saturation maps of the reservoir, while the observed seismic data is recorded as
wave amplitude and travel time. Therefore, one needs to transform these two types of
data (simulated and observed) to have a common comparison point.

Fig. 5.2 illustrates the different domains of reservoir simulation models and the
observed seismic. The green dashed frame represents the forward simulation of seismic,
where one transforms the reservoir simulation response (pressure and saturation maps)
into a domain that can be compared with the observed seismic. The blue dashed frame
represents the transformation of the acquired seismic data into a domain comparable
with the forward simulation. The yellow boxes represent the observed and simulated
data, while the blue, green, and orange boxes are the necessary processing steps. We
provide more information about each box later in this chapter.

The main point of Fig. 5.2 is to show that one can perform 4DS data assimilation using
AVA [72, 73, 69], velocities and density (acoustic impedance) [31, 64, 5, 63, 49, 82],
and pressure and saturation or even fluid fronts [57, 59].

However, these transformations can be very challenging. Hence, the first applications
of 4DS data assimilation were performed qualitatively. Johnston Johnston [55] high-
lighted that one could use qualitative 4DS history matching to identify sealing faults,
bypassed oil, and baffles. Helgerud et al. [53] applied 4DS history matching to a real
field case. They identified a flow baffle in the reservoir through the 4DS and updated the
reservoir simulation models’ transmissibilities to match this scenario. Other qualitative
applications of 4DS include [83, 8].
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In addition to the challenge of bringing seismic and simulated data into the same
domain, the observed seismic used in history matching usually consists of big data sets.
Hence, the computational resources needed to deal with these data sets are high.

The continuous increase in computational power has been fundamental for applying
the 4D seismic history matching quantitatively. Besides, the development of methods
capable of compressing the 4D seismic signal without losing valuable information about
the data also helped increase the use of quantitative 4DS in history matching reservoir
models [63, 65, 73].

To better understand the steps to carry out a quantitatively 4DS history matching, the
following section contains information about the green boxes, which are necessary to
transform simulation model response into simulated seismic data.

5.2.1 Reservoir simulator
One uses several types of information (seismic data, well logging, and cores) to build the
simulation models. Additionally, when using ensemble history-matching methods, one
needs to define the uncertain parameters to form the initial ensemble of many different
model realizations. It is, therefore, necessary to run the reservoir simulator to obtain
the simulated pressure and saturation maps and production rates for each realization in
the ensemble.

There are many parameters involved in a reservoir simulator, such as the type of
simulator (black-oil, compositional), the solution technique (IMPES or Implicit), dif-
ferent grid systems (block-centered point, Voronoi), and many others. As this is not
the scope of this work, we refer the readers to the book from Peacemean [90] for more
information.

5.2.2 Petro Elastic Models (PEMs)
Petro Elastic Models (PEM), sometimes also referred to as rock physics models, are
responsible for transforming pressure and saturation into the rock’s elastic properties,
such as wave velocity and density.

The wave that penetrates the subsurface has two components: the compressional
(P-wave) and the shear (S-wave). Johnston [55] highlighted that P-wave is dependent
on the system’s resistance to compression and deformation, and density. P-wave is very
sensitive to the reservoir rock matrix’s compressibility and the fluids in the reservoir.
The S-wave depends on the system’s resistance to deformation, and it is more sensitive
to the density. Additionally, a change in pressure and stress might also alter the porosity
or the strength of the grain contacts. Thus, PEMs model complex phenomena, and many
factors, including lithology, porosity, pore shape, clay content, fluid type, saturation,
pressure, and rock cementation, influence their behaviors. As such, they are sources of
errors [31]. Note, however, that these errors can be incorporated as model errors in the
history-matching processes [68].

In 4DS history matching, one is more interested in the difference between the two
surveys. Therefore, it depends on the reservoir depletion mechanisms and how produc-
tion is carried out. Johnston [55] provided a summary of what happens to the wave
velocities and density depending on each situation, as Table 5.1 shows.

However, the interpretation is not straightforward because the effects can compete
with each other. For instance, a gas saturation increase leads to a decrease in the P-wave
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Table 5.1: Summary of 4D Seismic changes.

P-wave velocity S-wave velocity Density
Waterflooding increase constant increase
Gas replacing water/oil decrease constant decrease
Pressure depletion/Compaction increase increase -
Pressure increase decrease decrease -

Figure 5.3: Difference between two times: Pressure (top left); Water saturation (top right); P-wave velocity (middle left);
S-wave velocity (middle right); Density (lower left); Acoustic Impedance (lower right).

velocity, but this situation might be linked to a pressure depletion, which would increase
the velocity. Usually, the saturation effects dominate the changes.

Fig. 5.3 illustrates how the wave velocities and density change with reservoir pro-
duction. This example is from the Brugge benchmark [73] case in which there is a
difference of 2 999 days between the two seismic surveys. The plots show the second
layer of the reservoir. As the top-left plot shows, one can see that the pressure de-
creased in the whole reservoir. Besides, the water saturation increased in some parts
of the model, specifically where the injector wells are located (top-right plot). Thus, P-
and S-wave velocity increased, as the middle-left and middle-right plots show. For the
density map (lower-left plot), the value increased where the water was injected. How-
ever, as the oil density decreased around the producer wells because of the pressure
depletion, the density also decreased in this region. Note, that this decrease was very
small.

A more common variable is the acoustic impedance (density times P- or S-wave ve-
locity). The bottom-right plot in Fig. 5.3 shows the difference between the two times in
acoustic impedance using the P-wave velocity. The acoustic impedance value increased
in the whole reservoir because of the pressure depletion and waterflooding. The differ-
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ence at the model’s border was small, while the difference was more considerable close
to injector wells, where the water saturation increased. It is worth mentioning that the
acoustic impedance data usually has the same dimension as the reservoir model. How-
ever, one can also combine information from different layers to reduce the size of the
data set.

5.2.3 AVA

The waves emitted by the source reflect at each interface, and this reflection is a function
of the acoustic impedance of the two media, as Fig. 5.1 shows. Also, they can reach
the interfaces at different angles, depending on the position of the source. The higher
the angle, the longer is the time required for the wave to travel. However, there is also
a difference in the magnitude. Hence, one can use this property to obtain additional
information from the reservoir.

The different angles used in the AVA data sets are usually divided into far, mid, and
near. There is no specific definition of how to classify different angles [73]. Generally,
angles until 15◦ can be considered as near and angles larger than 20◦ as far, but it
varies from work to work. Traces from near angles are usually more sensitive to P-wave
velocities, while traces from far angles are more sensitive to S-wave velocities [71].
Consequently, near angles are more suitable to identify saturation changes, while far
angles are more related to pressure changes.

The interpretation of AVA data sets is not straightforward as it is case-dependent.
Therefore, to interpret AVA data sets, it is common to perform a sensitivity analysis
to check the AVA values’ differences for different scenarios. A critical characteristic
of the AVA data set is that it is recorded in the time-domain and comprises under-
and overburden parts of the reservoir. Consequently, its size is much bigger than the
acoustic impedance, and some parts of the data contain information that is not useful
for the history matching process (under- and overburden parts). If one takes Fig. 5.4 as
an example [73] , one will use the whole cube as the measured data. Nevertheless, only
the region with stronger signals is related to the reservoir.

Moreover, Luo et al. [73] stated that one does not need to perform the seismic
data inversion to generate acoustic impedance when using AVA. Hence, one can avoid
introducing additional errors into the workflow, as this inversion process involves un-
certainties.

The use of sparse representation methods can help 4D seismic history matching if
one uses AVA data set as measured data because they can help reduce the number of
data points. These methods can also assist in selecting only the information contents
related to the reservoir while discarding those related to under- and overburdens.

Concerning the type of localization method used, either distance-dependent or
correlation-based localization can be adopted if one uses acoustic impedance and does
not perform any sparse representation method. On the other hand, if one uses AVA or
a sparse representation method, it is only possible to use correlation-based localization
since the observed data and the uncertain model parameters are in a different domain
and scale.
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Figure 5.4: 3D AVA data (observed data): far trace in the base survey (day 1). The color bar in the right indicates the values
of AVA data points.

5.3 4D Seismic history matching applications and practical issues

Emerick [31] performed a 4D seismic history matching using real data from an offshore
field in Brazil. He used the Ensemble Smoother with Multiple Data Assimilation
(ESMDA) to history match acoustic impedance and highlighted some issues regarding
the 4D seismic. Firstly, he said that the definition of the critical length (!) when using the
distance-dependent localization is difficult, and he used a length of 1 000 meters for all
data points to simplify the application. Secondly, Emerick [31] had three different time
surveys. He used the first survey separately, and the differences between the second and
the first surveys and the differences between the third and the second surveys. He stated
that when the base survey was assimilated, the porosity field had a more substantial
update. In contrast, when he assimilated the differences, the permeability field had a
stronger update instead. He justified that because porosity is one of the inputs of the
PEMs, consequently, the base survey affected more porosity updates. Furthermore,
since the differences consider changes in the impedance and, consequently, saturation
and pressure changes, this assimilation affected the permeability maps more. In the end,
the author concluded that the inclusion of seismic data in the history-matching process
improved data match but underestimated the variability.

Luo et al. [73] performed a 4DS history matching using AVA as the observed data.
They determined the noise involved in the seismic data set through wavelet coefficients.
Note that the noise definition is essential for ensemble-based methods, as it is used in
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the matrix Cd. In this application, the noise was uncorrelated (white noise), but it is
also possible to use wavelet coefficients to determine correlated errors (colored noise)
as in [64]. Moreover, both authors also used wavelet coefficients to select only the
leading coefficients to reduce the seismic data set size. Luo et al. [73] history matched
both well production and seismic data in a benchmark case, and they achieved a final
ensemble closer to the true solution. Nevertheless, they did not use any localization
scheme, and they reported a very strong variability underestimation.

Later, Luo and Bhakta [69] used the same application as before. By introducing
the correlation-based Kalman gain localization, they fixed the excessive variability
reduction without impairing the final ensemble representation.

Leeuwenburgh and Arts [59] used waterfronts detected from 4D seismic data to
condition the reservoir models. The authors reduced the number of observed data and
achieved a good match regarding the fluid fronts.

Liu and Grana [63] were also concerned with the size of the seismic data set. Hence,
they proposed a deep learning method to reduce the seismic data set size. The authors
reduced the original data set to about 0.20% of its original size using a deep convolutional
autoencoder. Nevertheless, the computational time concerning deep learning is usually
very high. For more applications of 4D seismic history matching, the readers are
referred to [5, 1, 44, 57, 95].



Chapter 6

Summary and Outlook

In the previous chapters, we introduced history-matching problems and how one can
deal with vast data sets in such problems. In Chapter 2, we discussed ensemble-based
history matching processes and the main challenges that arise when one faces vast
data sets. Chapter 3 presented localization methods, which alleviates the problem of
spurious correlation and underestimating the ensemble variance when using ensemble
methods. We also showed one localization method, known as local analysis, which is
suitable for dealing with big models and data sets. In Chapter 4, we introduced sparse
representation methods with a focus on Dictionary Learning and K-SVD as a method
to reduce the size of the data set one is dealing with. Finally, we finished with the
description of the 4D seismic history matching problem, which represents a valuable
application for the oil and gas reservoir community, and it consists of problems with
vast data sets.

The concepts and ideas introduced before are relevant to the methodology we de-
veloped in this work. The main objective of our methodology is to perform history
matching considering vast data sets efficiently. The next part of this work consists of
four papers that present our methodology and main results. In Paper A, we developed
a K-SVD application to compress a 4D seismic data set size. In Paper B, we used the
K-SVD application developed in Paper A together with a new formulation of the Iter-
ative Ensemble Smoother Regularized Levenberg–Marquardt in a 4D seismic history
matching framework. To improve the methodology, we develop a novel local analysis
scheme in Paper C that better handles the observed data set’s big size. Finally, in Paper
D, we also applied local analysis in a 4D seismic history matching problem, but now
we use the Subspace Ensemble Randomized Maximum Likelihood. In the following,
we present more information about the four articles.

6.1 Summary of the papers

Paper A

Title: Sparse Representation of 4D Seismic Signal based on Dictionary
Learning

Authors: Ricardo V. Soares, Xiaodong Luo, Geir Evensen
Conference: SPE Norway One Day Seminar
DOI: 10.2118/195599-MS
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In the first paper, we used the Dictionary Learning Method through the K-SVD al-
gorithm to sparsely represent a synthetic seismic data set. The paper’s main objective
is to compress the original data set as much as possible without losing the seismic sig-
nal’s main information. Moreover, we were also concerned about the computational
time spent during the application of the algorithm. First, we evaluated the impact of
the two original approaches proposed by Elad and Aharon [4] to solve the problem:
error-constrained and sparsity-constrained. Subsequently, we analyzed how each pa-
rameter involved in the algorithm affects the data set reduction, retained information,
and computational time. These parameters include dictionary size, patch size, train-
ing data set size, and the number of iterations. The study case used in this work was a
benchmark named Brugge [91, 73]. We started the study using a 2D version of the Am-
plitude versus Angle (AVA) seismic, and then we expanded to the 3D and 4D data sets.
Most of the applications of dictionary learning methods are related to image restoration
and denoising. Therefore, Paper A’s main contribution is the application of K-SVD in
a dimensionality-reduction problem using a seismic data set.

Paper B

Title: 4D Seismic History Matching: Assessing the use of a Dictionary Learning
Based Sparse Representation Method

Authors: Ricardo V. Soares, Xiaodong Luo, Geir Evensen, Tuhin Bhakta
Journal: Journal of Petroleum Science and Engineering
DOI: 10.1016/j.petrol.2020.107763

In Paper B, we developed a new version of the IES-RML [75], in which the matrix
to be inverted is smaller, and one does not need to apply the truncated singular value
decomposition. To deal with the big size of the AVA seismic data set, we compared
three different approaches. In the first one, we applied K-SVD once to sparsely represent
the observed seismic data (named SSD), focusing on compressing the data set without
losing the original signal’s main characteristics. In the second approach (named DSSD),
we used the K-SVD twice, one to denoise the original signal without concerning data
compression and the other to reduce the data set’s size. However, both approaches
incurred an increase in computational time. Hence, in our last approach, we projected
the observed data into a smaller subspace spanned by the ensemble to deal with the
big size of it (named PSD). As a result, the measured data set had the same size as the
ensemble, and there was no additional computational time added to the assimilation
process.

Results showed that we achieved a weaker update of the reservoir uncertain pa-
rameters because we consider the complete seismic data set in PSD (including the
non-reservoir parts). SSD and DSSD, on the other hand, showed stronger updates,
which generated better final reservoir models. The denoising process in DSSD helped
achieve a better representation of the original seismic signal, generating better final
reservoir models. Nevertheless, the difference between SSD and DSSD was small.
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The reduction achieved with K-SVD was significant for the SSD case, where we used
only 0.27% of the original coefficients in the AVA data set. For the DSSD case, this
number was about 0.55%. Note that even though there was a significant compression,
the absolute number can still be large. For the Brugge benchmark case, the DSSD case
used 38 876 coefficients, which can be challenging to handle.

Paper C

Title: Handling Big Models and Big Data Sets in History Matching Problems
Through an Adaptive Local Analysis Scheme

Authors: Ricardo V. Soares, Xiaodong Luo, Geir Evensen, Tuhin Bhakta
Journal: SPE Journal
DOI: 10.2118/204221-PA

In Paper B, we reduced the original seismic data set through K-SVD to either 0.27%
or 0.55% of the original size. Nevertheless, if one also considers the number of uncertain
model parameters, one would need to store and manipulate a Kalman gain matrix in a
high dimension. Thus, in this third paper, we developed a local analysis scheme that
deals with spurious correlation, underestimation of the ensemble variability, and the big
sizes of both the measurement data and the uncertain model parameters.

Previous works about local analysis used the distance-dependent approach to select
which data points were used to update each local group. Nevertheless, because we
have sparsely represented data, we could not use this approach. We developed a new
correlation-based procedure to select the data used to update each local group. In this
novel method, we proposed a different tapering function based on the Gaspari and Cohn
equation [47].

As in Paper B, we used the IES-RML method, the Brugge benchmark case, and
AVA seismic data as the observed measurement. We performed local analysis with the
correlation-based approach using both hard and soft threshold. We also analyzed how
local groups with different sizes affect the history-matching process. Local analysis
assisted in better management of the storage and memory consumption due to the big
matrix sizes. Besides, with the new method developed, we achieved faster convergence
and a final ensemble closer to the reference (true) case.

Paper D

Title: Subspace Ensemble Randomized Maximum Likelihood with Local Anal-
ysis for Time-Lapse-Seismic-Data Assimilation

Authors: Gilson M.S. Neto, Ricardo V. Soares, Geir Evensen, Alessandra Davolio,
Denis J. Schiozer

Journal: SPE Journal
DOI: 10.2118/205029-PA

In the Subspace Ensemble Randomized Maximum Likelihood (SEnRML) formula-
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tion [42], one does not compute the Kalman Gain. Consequently, the local analysis
scheme is not the same as in IES-RML. In this paper, we applied local analysis us-
ing SEnRML, and because we used acoustic impedance as our seismic data set, we
compared the distance-dependent and the correlation-based approach. Differently from
the previous paper and its original formulation [69], the correlation-based approach
developed in this work does not depend on the number of realizations in the ensem-
ble. Moreover, to reduce the seismic data set’s size, we projected it into the ensemble
subspace. Because we used acoustic impedance as observed data, the whole data set
concerns reservoir parts. Thus, we did not observe a significant loss of information
during the projection.

Results showed that the proposed scheme presented comparable results with other
methods better known in the literature, such as the Ensemble Smoother with Multiple
Data Assimilation (ESMDA) [33] with Kalman gain localization. However, SEnRML
dealt better with big data set as the memory requirement and CPU time scales linearly
with the observed data’s size.

6.2 Outlook

We developed different methodologies to deal with big data sets in history matching
in this work, focusing on using 4D seismic data as the observed data. The study cases
in this work were synthetic cases that mimic the characteristics and behavior of real
reservoirs. Even though the cases are complex, they do not share all the complexity of an
actual reservoir application. These complexities may include even larger data sets and
models, other types of model parameter uncertainties (water relative permeability, well
index), and incorporation of production well data. Therefore, applying the proposed
methodologies to more complicated problems can bring additional challenges to the
history matching process, and it can be the focus of future research activities.

When applying the time-lapse seismic in history matching, we have not evaluated
how to use this data better to achieve the best reservoir characterization. In papers B
and C, we applied near and far traces of the AVA data sets in three time surveys, while in
paper D, we used the difference between the acoustic impedance from two different time
surveys. Since we were concerned about using vast data sets in history matching, we
did not focus on this matter. However, it can have an impact on the updated simulation
models.

Finally, in papers C and D, we developed a local analysis scheme with a correlation-
based approach for two different ensemble methods. The developed methods in both
works were specific for each tested case. Thus, it would be beneficial to extend them to
a more general case in a future work.
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Abstract

It is possible to improve oil-reservoir simulation models by conditioning them on 4D
seismic data. Computational issues may arise related to both storage and CPU time due
to the size of the 4D seismic dataset. An approach to reducing the computational re-
quirements is to use a sparse representation method, e.g., Dictionary Learning, to select
only the main features of the 4D seismic data. However, the introduction of a sparse
representation method incurs an additional computational cost. Alternatively, if one
uses ensemble-based methods, it is possible to reduce storage and CPU time by project-
ing the full seismic dataset on a smaller subspace. This paper evaluates the potential
of sparsely representing the seismic data. We compare two experiments, one where we
condition on the full dataset projected on a smaller subspace, and one where we use
Dictionary Learning to represent the data sparsely. We use Dictionary Learning both
on the complete 4D seismic dataset and also on a denoised version of the data. We per-
form the data assimilation in a slightly different formulation of the Iterative Ensemble
Smoother Regularized Levenburg-Marquardt together with correlation-based adaptive
localization. We apply these methods to the Brugge benchmark case. Experiment re-
sults show that sparse representation methods lead to a final ensemble that is closer to
the reference solution, and denoising the seismic data before applying the sparse repre-
sentation allows us to capture the 4D effect better. Thus, using a sparse representation
method in 4D-seismic history matching leads to improved results compared to what we
obtain when conditioning the models on the projected 4D seismic dataset.

Keywords: Ensemble data assimilation; Iterative ensemble smoother; 4D Seismic
history matching; Big data assimilation; Dictionary learning

Introduction

Data assimilation, also known as history matching in reservoir engineering, denotes the
process of conditioning reservoir models on dynamical observations from a reservoir,
e.g., well rates and 4D seismic data, to update uncertain reservoir model parameters,
e.g., porosity and permeability. Historically, most of the data assimilation processes
have been mainly using production data from the wells because of its availability and
easiness of gather. There is a vast list in the literature that successfully performed history
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Figure 1: Flowchart of the use of 4D seismic data in history matching. The area within the green dashed rectangle represents
the forward simulation of seismic data, while the area within the blue dashed rectangle represents the observed data from the
field. The yellow boxes represent data, and the blue, green, and red boxes represent the required processing steps.

matching in various benchmark and real field cases. See, e.g., [19, 57, 12, 31, 52, 67],
for some history-matching experiments.

Even though it might be possible to achieve a good representation of the reservoir
using only well data, the inclusion of different data, such as seismic, can help to
understand the flow dynamics in the oil reservoir better. Johnston [38] mentioned
several important points for practical applications of 4D seismic, including rock physics
models, seismic processing, data integration among others. Also, the author pointed
out that seismic data are much denser in space than in time. Therefore, 4D seismic
data will complement the information we have from rate data in the history-matching
process. Several authors have proved the benefits of using 4D seismic data in history
matching, both in benchmark and real cases [20, 61, 28, 56, 41, 36, 4].

There are several challenges when considering 4D seismic data in data assimilation.
As commercial simulators usually provide only well rate and pressure and saturation
maps, one needs to bring simulator response and seismic into the same domain. In other
words, one has to transform acquired seismic data into pressure and saturation maps or
bring them into another domain, such as acoustic impedance or amplitude-versus-angle
(AVA). Besides, seismic data comprise huge datasets and, therefore, issues regarding
computational storage and CPU time may arise. To deal with the big-data issue, authors
such as Luo et al. [48], Liu and Grana [43] and Soares et al. [66] suggested different
methodologies to represent the seismic data sparsely.

Fig. 1 depicts a flowchart concerning the use of 4D seismic data in history matching
[49], where the authors consider AVA as the seismic data. The area covered by the green
dashed border lines (referred to as the green part hereafter) represents the simulated data
(forward simulation of seismic), while the area enclosed by the blue dashed border lines
(named blue part hereafter) represents the observed data from the field. The yellow
boxes represent data, and the blue, green, and red boxes represent the necessary steps
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to deal with this kind of data.
The green part describes the forward seismic simulation workflow that generates

simulated seismic attributes (AVA in this case) from an ensemble of reservoir models.
The boxes in the blue part convert seismic from raw waveforms to AVA data. This
conversion procedure involves seismic processing, which is outside the scope of the
current work. Thus, we assume that the observed AVA attributes in the blue part are
readily available. Note that one can also assimilate other types of seismic attributes,
such as Acoustic Impedance (AI) following a similar workflow [28, 61, 3], or other
parameters that can be inferred from seismic, such as fluid fronts [41, 39].

As mentioned previously, the 4D seismic dataset is very big. Therefore, the flowchart
considers a method capable of sparsely representing the seismic signal while retaining
the main characteristics of the data. For this purpose, Luo et al. [49] and Lorentzen
et al. [45] used the Discrete Wavelet Transform (DWT) to represent the 4D seismic
dataset sparsely. Through DWT, they separated the data into low and high-frequency
sub-bands. Then, they estimated the noise of the wavelet coefficients and applied a
threshold value to retain only the leading wavelet coefficients. Although they reduced
the number of retained coefficients substantially, it was necessary to define an empirical
parameter to achieve a trade-off between the number of coefficients and the retained
characteristics, which we will illustrate below (cf. Fig. 10).

Liu and Grana [43] proposed to learn a sparse representation of 4D seismic data
through a deep convolutional autoencoder. The authors performed experiments in
a 2D and 3D model and concluded that the method improved the data-assimilation
performance. Nevertheless, one might need a more powerful tool, such as GPU, to
obtain the results in a reasonable computational time. For the 3D model, for instance,
they reduced the original dataset to 0.20% of its original size, and it took about 30
minutes to train the model with dimension 64 × 64 × 64 in two different time surveys.
Besides, Canchumuni et al. [9] reported that an extension of the deep learning method
from 2D to 3D case studies might incur substantially more computational costs.

Soares et al. [66] investigated the use of a Dictionary Learning (DL) method for
sparse representation of seismic data in a 3D case study with dimension 139× 48× 176.
The method retained the main characteristics of the 4D seismic by using a set of non-
zero coefficients whose number was only about 0.25% of the original data size, and the
related computational time was about 6.7 seconds.

The end products of the sparse representation procedure (applied to observed seismic
data) will be the obtained non-zero coefficients. These non-zero coefficients will then
be taken as the observations in 4D seismic history matching problems, as indicated in
the blue part of Fig. 1. By doing so, a practical benefit is that the effective data size can
be substantially smaller than the size of the original 4D seismic dataset, which will then
help to mitigate the issues of computational memory and time during history matching.

Iterative ensemble-based methods are among state of the art for history matching,
as they are relatively easy to implement, and have the capacity of dealing with large
scale problems [23]. In ensemble-based methods, one can choose to project big 4D
seismic data onto a subspace which is related to the ensemble of reservoir models,
and whose dimension is no more than the ensemble size. These projected data then
serve as the effective observations [45, 50, 13]. This approach is an alternative way to
handle the issue of big data in history matching problems, yet without using any sparse
representation method.
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Therefore, there are two possible ways to deal with the big data issue: through sparse
representations methods and through the projection of the observed data into a subspace
related to the ensemble models. Note that in both approaches, one faces information
loss in the dataset. However, the use of a sparse data representation introduces addi-
tional computational time. Hence, compared to the projection-based approach, is it
still beneficial to use a sparse representation method for data-size reduction? To an-
swer this question, we will examine the data assimilation performance in two sets of
experiments: one employing the projection-based approach and the other adopting a
Dictionary Learning based sparse presentation method. Furthermore, we also investi-
gate an alternative way to apply the Dictionary Learning based sparse representation
to obtain further improved assimilation performance. To perform history matching,
we modify the Iterative Ensemble Smoother Regularized Levenburg-Marquadrdt (IES-
RML) developed by Luo et al. [51] in a way that there is no need to perform the
truncated singular value decomposition during data assimilation.

In the following, we start by explaining each component of the flowchart shown in
Fig. 1. We divide this part into three sections. First, we explain the individual steps in
the forward seismic simulation workflow. Then, we discuss the history matching part,
where we focus on ensemble-based methods and we provide more details regarding the
need of sparse representation methods. Afterwards, we introduce one of the Dictionary
Learning methods, called the K-SVD algorithm, which is responsible for sparsely
representing the data. Subsequently, we provide information about the case study (the
Brugge benchmark case), methodology, and application. Finally, we show and discuss
the results and draw conclusions.

As the different sections present unrelated topics, we prefer to keep the traditional
notation for each topic and we introduce a list of symbols and variables at the beginning
of each section.

Forward Simulation of 4D Seismic Data

Nomenclature
` Shear modulus
a Poisson’s ratio
q Porosity
d Density
�? Average number of contacts per sphere
 Bulk modulus
= Degree of root
% Pressure
( Saturation
+ Wave velocity
Subcripts
2 critical
3 rock grain porosity values lower than q2
eff effective
5 saturation effect on the presence of oil and water
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HM Hertz-Mindlin model - dry rock at critical porosity
< mineral
> oil
% Compressional wave
B rock grain
( Shear wave
sat saturation effect
F water

In this section, we provide information about the green boxes in Fig. 1, except the
Sparse Representation, which will be given in the section "Observed Data - Sparse
Representation: Dictionary Learning Through the K-SVD Algorithm".

Once one generates the initial ensemble containing the uncertain model variables,
such as porosity, permeability, and fault multipliers, the next step is to run the simulation
models to obtain simulated pressure and saturation profiles, which are among the
important quantities to calculate the simulated seismic data.
Petro-elastic model (PEM)

Petro-elastic models convert pressure and saturation data into elastic attributes, such
as acoustic impedance (or equivalently, wave velocities and densities), for seismic
interpretation or inversion. PEM is dependent on the type of reservoir formation and
fluids.

One of the most commonly used PEMs is the soft-sand model [53], in which the first
step is to calculate the dry bulk modulus ( HM) and the shear modulus (`HM) through
the Hertz-Mindlin model [54] as in

 HM =
=

√
�2
? (1 − q2)2`2

B

18c2(1 − aB)2 %eff, (1)

and

`HM =
5 − 4aB

5(2 − aB)
=

√
3�2

? (1 − q2)2`2
B

2c2(1 − aB)2 %eff. (2)

In Eqs. (1) and (2), = is the degree of root, �? is the average number of contacts per
sphere, q2 is the critical porosity, `B is the grain shear modulus, aB is the Poisson’s
ratio, and %eff is the effective stress, i.e., the lithostatic pressure minus pore pressure.
In this work, = is set to 3, �? is set to 9 and q2 to 36% (the maximum porosity value).
Physically, one can interpret  HM and `HM as the dry rock resistance to normal and
shear stress, respectively. In addition, one can calculate Poisson’s ratio as in

aB =
3 B − `B
6 B − `B

. (3)

 B and `B are bulk modulus and the shear modulus of the rock grain, respectively.
The modified Lower Hashin-Shtrikman (MLHS) [35, 53] calculates the effective dry

bulk modulus ( 3) and the effective shear modulus (`3) for porosity values (q) lower
than q2



99

 3 =

( q

q2

 HM + 4
3`HM

+
1−q
q2

 B + 4
3`HM

) −1

− 4
3`HM, (4)

and

`3 =

( q

q2

`HM + `HM
6 /

+
1−q
q2

`B + `HM
6 /

) −1

− `HM
6 /, (5)

with

/ =
9 HM + 8`HM
 HM + 2`HM

. (6)

The next step is known as the Gassmann model [30], which generates the saturated
bulk modulus and shear modulus ( B0C and `B0C , respectively) by including the saturation
effect (Eqs. (7) and (8)).

 B0C =  3 +

(
1 −  3

 B

) 2

q

 5
+ 1−q

 B
−  3

 2
B

, (7)

`B0C = `3 , (8)
and  5 takes into consideration the presence of both water and oil

 5 =

(
(F

 F
+ (>

 >

) −1

. (9)

Here  > and  F are the bulk modulus of the oil and water, respectively, while (> and
(F are the oil and water saturation. Subsequently, one calculates the saturated density
(dB0C), P-wave and S-wave velocities (+% and +(), as in Mavko et al. [53]

dB0C = (1 − q)d< + q(FdF + q(>d>, (10)

+? =

√
 B0C + 4

3`B0C

dB0C
, (11)

and
+B =

√
`B0C

dB0C
, (12)

where d<, d>, dF and, dB0C are mineral density, oil density, water density, and saturated
rock density, respectively. Note that one can obtain wave impedance by multiplying
dB0C by +? or +B.
AVA equation

To calculate the AVA, one first needs to define the reflection coefficients at each
interface between two adjacent layers by using the Zoeppritz equation [5]. Then, one
should compute the travel time using+? and the thickness of the gridblocks. Finally, the
AVA data can be obtained by convolving the reflectivity series with a Ricker wavelet.
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Here, a Ricker wavelet of 45 Hz is considered. Note that different incident angles can
be considered while generating the AVA data. The readers are referred to Luo et al.
[48] for more information about how to generate the AVA data.

In seismic history-matching problems, acoustic impedance can also be adopted, see,
for example, Lorentzen et al. [45], Emerick [20], and Gosselin et al. [32]. However,
AVA has the advantage of avoiding the inclusion of biases or errors during the seismic
inversion process [49] and AVA can help to identify different situations in the reservoir.

History matching: Ensemble-based Methods

Nomenclature
U Regularization/Weight term
V Scalar parameter responsible to in-

crease/decrease U
% Measurement error
Y Noise in the correlation calculated in the

localization
d Correlation between the model variables

in the ensemble and the simulated data
f Standard deviation
� Singular values matrix
�̂ Truncated singular values matrix
\ Threshold value in the automatic and

adaptive correlation-based localization
Z Average data mismatch
A Ensemble anomalies
2 Entry of the localization matrix
C Localization matrix
Cd Measurement error covariance matrix
Cx Uncertain model parameter error covari-

ance matrix
d Observed data
dsim Simulated data
D Ensemble matrix of observation residual
D̃ Rotated D
g Reservoir simulator
K Kalman gain
#d Total number of observed data
#e Total number of realizations in the en-

semble
#i Total number of iterations
#sv Total number of retained singular values
#x Total number of uncertain variables
?(· ) Prior distribution
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?(· |· ) Likelihood or posterior probability den-
sity function given a parameter

S Simulated data anomalies
S̃ Rotated S
U Left singular vectors matrix
Û Truncated left singular vectors matrix
V Right singular vectors matrix
V̂ Truncated right singular vectors matrix
x Uncertain model parameter
X Ensemble matrix of uncertain model vari-

ables
I Dummy variable defined in the

correlation-based adaptive localiza-
tion

Subscripts
2 Common point
eff Effective
9 Realization index
Superscripts
0 Prior
8 Iteration index
true True
T Transpose

We will now introduce the ensemble method used for conditioning the model on the
observations (red box in Fig. 1). Model conditioning or history matching is an essential
component in the development and management of petroleum reservoirs. By using the
information about the dynamical properties of the reservoir contained in observed data,
such as well rates (oil, water, and gas) and seismic, one can constrain reservoir models
and update the uncertain model parameters, such as permeability and porosity fields.
The Ensemble Kalman Filter (EnKF) by Evensen [22], initially developed for sequential
data assimilation, provides an efficient means for model conditioning. Nævdal et al. [55]
introduced the EnKF for use in the petroleum industry, and since then, ensemble-based
methods have attracted a lot of attention within the industry. Notably, the introduction
of the Ensemble Smoother [69] (which is an EnKF that uses all data simultaneously to
update all parameters in one step) for petroleum applications by Skjervheim et al. [65]
triggered further development of effective iterative forms of the Ensemble Smoother.
History-matching problem

To formulate the history-matching problem, we denote the uncertain model param-
eters as x, the (potentially imperfect) forward operator which transforms the model
variables into the simulated data dsim as g, such that

dsim = g(x). (13)

Besides, we have one set of observed data d, which are generated through the following
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observation system
d = gtrue(xtrue) + %. (14)

Here, xtrue stands for the ground-truth model, and % represents measurement errors that
are normally distributed random errors with zero mean and variance represented by the
measurement error-covariance matrix Cd, e.g., % ∼ N(0,Cd). The true (but unknown)
forward simulator gtrue may be different from the actual forward operator g in use, hence
model errors can arise. In this work, however, we do not consider model errors as in
Luo and Bhakta [47], Chen and Oliver [13], and Emerick [20], for instance. More
information on how to deal with model errors can be found in Evensen [26] and Luo
[46].

Since x is uncertain, history matching is an inverse problem where one solves for a x
that results in a model prediction g(x) that is close to the observed data d. Furthermore,
the number of parameters is normally much larger than the independent degrees of
freedom in the observations. In this case, estimating model variables x based on the
observations d and the forward simulator g defines a high-dimensional and under-
determined inverse problem.

Through Bayes’ theorem, it is possible to define the posterior probability density
function of x given the observed data

?(x|d) ∝ ?(d|x)?(x), (15)

where ?(x) is the prior distribution of the model parameters and ?(d|x) is the like-
lihood. By assuming that both the prior and likelihood are Gaussian distributed and
considering an ensemble of multiple realizations [23], it is possible to sample the poste-
rior distribution ?(x|d) by the minimization of an ensemble of cost functions associated
for each realization 9

argmin{x 9 }

{ (
g(x 9 ) − d 9

) TC−1
d

(
g(x 9 ) − d 9

)
+

(
x 9 − x0

9

) TC−1
x

(
x 9 − x0

9

) }
, (16)

Here, x0 is the prior estimate of the model parameters and Cx is the error covariance
matrix of the uncertain model parameters (or the prior covariance matrix for the model
parameters). Note that one needs to sample a prior ensemble of models x0

9
from

N(x0,Cx) and an ensemble of measurements d 9 from N(d,Cd).
For the case where g is linear, the minimization of the Eq. (16) will sample the

correct posterior distribution for an infinite ensemble size, #e, [23]. However, if g is
non-linear, as in the case of reservoir applications, the minimization of the Eq. (16) is
an approximation.

By minimizing Eq. (16), one can obtain the following formula to update the uncertain
model variables

x 9 = x0
9 + AST

(
SST + Cd

) −1 (
d 9 − g

(
x0
9

) )
, (17)

where

A =
1

√
#e − 1

(
x0

1 − x0
2 , ..., x0

#e
− x0

2

)
; x0

2 =
1
#e

#e∑
9=1

x0
9 , (18)

S =
1

√
#e − 1

(
g
(
x0

1
)
− d̄, ..., g

(
x0
#e

)
− d̄

)
; d̄ =

1
#e

#e∑
9=1

g
(
x0
9

)
, (19)
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and #e is the total number of realizations in the ensemble. Note that Cx = A(A)T.
Eq. (17) is known as the analysis equation for the Ensemble Smoother [69]. For more
information about the minimization process and ensemble-based methods in general,
the readers are referred to Evensen [23] and Aanonsen et al. [1].

To reduce the impact of the approximation, one can use iterative forms of the ensemble
smoother as they generate better approximate solutions than the non-iterative form
[25]. Among recent iterative ensemble-smoothers, the most popular are the EnRML
method by Chen and Oliver [10, 11] and the Ensemble Smoother with Multiple Data
Assimilation (ESMDA) by Emerick and Reynolds [21]. A recent reformulation of the
EnRML by Evensen et al. [27] and Raanes et al. [59] is a more effiecient alternative
than the original EnRML method. In this work, we employ the Iterative Ensemble
Smoother Regularized Levenburg-Marquardt (IES-RML) by Luo et al. [51]. Even
though the different iterative smoothers are similar to each other, they solve slightly
different problems, and it is difficult to choose the best one since the results may be case
dependent [25]. In the next section, we provide more information about the IES-RLM,
which we use in this work.
IES-RLM

Luo et al. [51] were more interested in the average change in data mismatch between
iterations. Hence, they proposed the following sequence of minimization problems for
each realization

argmin{
x8+1
9

} 1
#e

#e∑
9=1

{(
d 9 − g

(
x8+1
9

) ) T
C−1

d

(
d 9 − g

(
x8+1
9

) )
+

U8
(
x8+1
9 − x89

) T
C−1

x

(
x8+1
9 − x89

) }
,

(20)

where 8 is the iteration number (8 = 0, 1, ..., #i). The first term accounts for the
difference between the simulated and observed data as in Eq. (16), while the second
term penalizes the update increments in each iteration regarding the prior ensemble. In
this formulation, U8 is a positive scalar responsible for assigning a weight to the second
term.

The minimization of the Eq. (20) gives us the following formula to update the
uncertain model variables for the IES-RML method

x8+1
9 = x89 + A8

(
S8

) T
(
S8

(
S8

) T + U8Cd
) −1 (

d 9 − g
(
x89

) )
. (21)

Here, A8 is similar as in Eq. (18), with the exception that now one calculates them at
each iteration, U8 is the regularization coefficient which changes over the iteration steps,
to be explained later, and S8 is defined as

S8 = 1
√
#e − 1

(
g
(
x81

)
− g

(
x82

)
, ..., g

(
x8#e

)
− g

(
x82

) )
. (22)

In this algorithm, one needs to choose certain stopping criteria for the number of
iterations. According to Luo et al. [51], such criteria should be based on the following:

1. If the data mismatch becomes smaller than the number of observed data points
(#d) times a factor (1 in this study).
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2. A maximum number of iterations (20 in this study).

3. The relative change between data mismatch in two consecutive iterations is small
(less than 0.01% in this study).

The average data mismatch used in criterion 1 and 3 is defined as

Z =
1
#e

#e∑
9=1

(
d 9 − g

(
x 9

) )T
C−1

d

(
d 9 − g

(
x 9

) )
. (23)

We now define the ensemble matrix

X8 =
(
x81, x

8
2, . . . , x

8
#e

)
, (24)

and additionally one can define the ensemble matrix of observation residuals as the
observed data minus the simulated data as in

D8 =

(
d1 − g

(
x81

)
, . . . , d#e − g

(
x8#e

) )
. (25)

Besides, assuming that we have access to a symmetric square root C
1
2
d of Cd such that

Cd = C
1
2
d
(
C

1
2
d
)T, and considering the following rotated operators

S̃8 = C−1
2

d S8, (26)

D̃8 = C−1
2

d D8, (27)

one can write the analysis equation as

X8+1 = X8 + A8
(
S̃8

) T
(
S̃8

(
S̃8

)T + U8I
) −1

D̃8, (28)

Note that in many practical cases, Cd is assumed to be diagonal (uncorrelated measure-
ment errors). Hence, Eq. (27) and (26) can be viewed as a re-scaling.

Nevertheless, the matrix product to be inverted,
(
S̃8

(
S̃8

)T)
, has dimension #d × #d,

which can be very big (especially when using 4D seismic data). Therefore, a common
procedure in the literature to obtain a more numerically stable algorithm is to apply
the Truncated Singular Value Decomposition (TSVD) to the matrix S̃8. In this regard,
Evensen [23] suggested to keep the leading singular values that add up to between 90%
and 99.9% of the total sum of squared singular values. Suppose that, through the TSVD,
one obtains

S̃8 ≈ Û8�̂
8 (V̂8)T, (29)

where the matrices with respect to singular vectors or values, Û8, �̂8, and (V̂8)) , have
the dimensions of #d × #sv, #sv × #sv, and #sv × #e, respectively. #sv is the number
of kept leading singular values.

Inserting Eq. (29) into Eq. (28) and applying some algebra, one has

X8+1 = X8 + A8V̂8 (�̂8)T
(
�̂
8 (�̂8)T + U8I

) −1
(Û8)TD̃8 . (30)
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Several authors, such as Luo et al. [51], Luo and Bhakta [47], Lorentzen et al. [45] and
Chen and Oliver [13], used this formulation. Nevertheless, if we consider the Woodbury
identity (see, e.g., [27])

BT(BBT + R)−1 = (I + BTR−1B)−1BTR−1, (31)

it is possible to rearrange Eq. (28) into the following form

X8+1 = X8 + A8
( (

S̃8
)TS̃8 + U8I

) −1 (
S̃8

) TD̃8 . (32)

The nice property of the Eq. (32) is that the inversion is of a matrix of dimension the
ensemble size #e × #e rather than the measurement dimension (#d × #d) in Eq. (28).
Therefore, one can avoid the application of the TSVD.

The final matrix product in Eq. (32)
( (

S̃8
) TD̃8

)
is effectively a projection of the ob-

servation residuals onto the ensemble space spanned by S̃8. Thus, by solving the update
equation with Eq. (32), one can only exploit information from the measurements that
can be represented by the ensemble. In addition, the matrix multiplication

( (
S̃8

) TD̃8
)

helps to handle the big data assimilation problem, as it produces a lower-dimensional
representation of the observation residuals.

Given Eq. (32), the regularization parameter U8 is determined following the rule
below [51, 50]

U8 = V8 × trace
( (

S̃8
)TS̃8

)
/#e, (33)

where V8 is a scalar that should decrease by a certain rate if the average data mismatch is
reduced while increasing by a certain rate instead if the average data mismatch increases,
and trace is an operator that calculates the trace of a matrix. Note that depending on
the formulation, the calculation of U8 will change, as it depends on the matrix that is
being summed

( (
S̃8

)TS̃8
)
, in this case.

Nevertheless, the limited number of realizations in the ensemble and a possible big
dataset in the observed data can make the problem over-determined, which would cause
a strong reduction of the ensemble variability. An approach much used to deal with this
issue is the application of a localization technique.
Localization

The traditional view is that localization is required to mitigate the effect of spurious
correlation from remote observations, which leads to variance reduction in the ensemble
[1, 19, 13, 63, 16, 47, 67]. Localization is described by the matrix C, which represents
the relationship between each observed data and the uncertain model variables. Hence,
one can use the localization matrix C to specify which data should be used to update
which set of uncertain parameters.

To conduct localization, it is better to rearrange Eq. (32) as in

X8+1 = X8 + K8D̃8, (34)

where we have introduced the so-called Kalman gain matrix K8 ∈ <#x×#d that can take
different forms using either one of the Eqs. (28) or (32), e.g.,

K8 = A8
( (

S̃8
)TS̃8 + U8I

) −1 (
S̃8

) T
. (35)
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Computationally, it is better not to compute the Kalman gain matrix, since it has a big
dimension #x × #d. However, for using localization based on tapering of the Kalman
gain, the Kalman gain matrix needs to be computed.

Localization is implemented as a tapering of the values contained in the Kalman
Gain matrix. For instance, one can define a tapering function that equals one at the
measurement location and zero far from the measurement location where there should be
no significant impact of the measurement. A common way of implementing localization
is to compute the update from the following equation

X8+1 = X8 + C ◦ K8D̃8 . (36)

Here the Schur or Hademard product C ◦ K8 defines an element-wise multiplication
and results in a new matrix of the same dimension as the original Kalman Gain matrix
K8 ∈ <#x×#d . Therefore, it is possible to use different linear combinations to update
the uncertain model variables [13].

One alternative to deal with the big dimension of the Kalman gain is to use Eq. (36)
and sparsely represent the observed data, so it is possible to achieve a much lower
number of observed data (#d) and, then, one can deal with the Kalman gain matrix.

Another alternative is to define the effective Kalman gain matrix (K8
eff) [45, 47, 13].

For that purpose, if one considers Eq. (32) and compute the exact Singular Value
Decomposition of S̃8 as in

S̃8 = U8�8 (V8)T, (37)

one will obtain the following equation

X8+1 = X8 + A8V8
(
(�8)T�8 + U8I

) −1
(�8)T(U8)TD̃8 . (38)

Therefore, one can define K8
eff as

K8
eff = A8V8

(
(�8)T� + U8I

) −1
(39)

and apply localization

X8+1 = X8 + C8
eff ◦ K8

eff (U
8�8)TD̃8, (40)

where Ceff has dimension of #x × #e (same as the Keff). The advantage of using this
formulation is that by first multiplying the last three matrices

(
(U8�8)TD̃8

)
, the effective

Kalman gain matrix
(
K8

eff

)
will have dimension of #x ×#e, which is numerically more

efficient to store and manipulate as #e � #d. Furthermore, as mentioned previously,
this multiplication can be viewed as a projection of the observation residuals into a
smaller subspace. However, there is some information loss, as we will show later (cf.
Fig. 9).

There are different ways of computing C. One of the most common approaches
appears to be distance-dependent localization [33, 20, 63], in which all data points and
model variables are assumed to be associated with certain physical locations. Besides,
one needs to define a critical length to specify the regions in which each data should
influence the model variables.
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Nevertheless, Luo and Bhakta [47] pointed out that the definition of the critical length
might be difficult and case-dependent. Moreover, some types of observations used in
data assimilation, like seismic data represented in a different transform domain, may not
have any associated physical locations, in contrast to the more conventional production
data from wells. To overcome these (and a few other) noticed issues, Luo and Bhakta
[47] proposed an automatic and adaptive correlation-based localization scheme.
Automatic and adaptive correlation-based localization

Luo and Bhakta [47] calculated the correlation (d) between uncertain model vari-
ables in the initial ensemble (X0) and the initial simulated data

(
g(X0)

)
. Then, they

defined threshold values to determine which observed data should be used to update
which uncertain model variables. Since in practical implementations of ensemble-based
methods, the ensemble size is limited (usually around 100), the estimated correlation
from a limited sample between two uncorrelated variables might be different from zero.
Therefore, the main idea in Luo and Bhakta [47] is to obtain the spurious correlations
(or noise) of these uncorrelated data, and use them to calculate the threshold values
which are needed for the computation of C.

To estimate the noise level, one can calculate the correlation fields between an
ensemble of reservoir models (independent and identically distributed) and an ensemble
of simulated data that are produced independently of the previous ensemble. Due to the
independence between them, one can take the resulting correlation fields as the desired
noise fields Y, which can be approximated by some Gaussian distributions with zero
mean and unknown standard deviations denoted by f hereafter. To calculate f, Luo
and Bhakta [47] proposed to use the median absolute deviation estimator [17], as in

f =
median(abs(Y))

0.6745 . (41)

After that, one can compute the threshold (\) by

\ = f
√

2ln(#d) , (42)

where #d is the number of elements in d.
Note that one should perform this procedure for each group type of uncertain vari-

ables. In other words, one must calculate the noise, standard deviation, and threshold
for each group, such as porosity, horizontal permeability, and vertical permeability, for
instance.

Finally, to generate a smooth tapering function, Luo and Bhakta [47] defined a
dummy variable

I =
1 − abs(d)

1 − \ , (43)

where d is the sample correlation between a model variable and a data point, and \ is
the corresponding threshold value obtained from Eq. (42). The variable I is then used
in the Gaspari and Cohn formula [29]

2(I) =


−1

4 I
5 + 1

2 I
3 + 5

8 I
3 − 5

3 I
2 + 1, if 0 ≤ I ≤ 1

− 1
12 I

5 − 1
2 I

4 + 5
8 I

3 + 5
3 I

2 − 5I + 4 − 2
3 I

−1, if 1 < I ≤ 2
0, if I > 2.

(44)

Here, 2 are the entry values of the localization matrix C.
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Note that if one uses Eq. (36), one should calculate the correlation between the
initial uncertain model variables (X0) and the simulated data

(
g(X0)

)
. However if one

uses Eq. (40), the correlation should be computed between the inital uncertain model
variables and the projected data

(
(U8�8)T (

g(X0)
) )

. For that reason, it is necessary to
compute C8

eff at each iteration, according to (U8�8)T.
It is important to highlight that when we use Eq. (36) and the sparsely observed data,

we might still achieve a large #d and, consequently, K8 might still be difficult to store
and manipulate. Hence, one can compute each row or group of rows separately, or apply
local analysis to deal better with the size of K8 [63, 13, 27, 8]. Nevertheless, we do not
conduct local analysis in this work, but we will consider it in the future.

Observed Data - Sparse Representation: Dictionary Learning Through
the K-SVD Algorithm

Nomenclature
ΔG Step size in the G-direction
ΔH Step size in the H-direction
� Column vector of the Sparse matrix -

sparse vector
� Sparse matrix
n Error tolerance
_ Penalty for image reconstruction
f Noise standard deviation
2 Inner product coefficient between the

atoms of the Dictionary and the residual
� Constant in the calculation of the error

tolerance
d Atom in the dictionary
D Dictionary
E Residual matrix
g Row vector of the Sparse matrix
l Data
! Information loss
max Maximum value
= Patch size
#it Total number of iterations
#k Total number of atoms in the Dictionary
#nz Total number of nonzero coefficients
#ts Total number of patches (training dataset

size)
r Residual vector
x Patches in the original seismic dataset
X Seismic dataset
Subscripts
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� Frobenius
8 Patch index
� Indexes of the locations of nonzero coef-

ficients in gT

9 Dictionary index
� Collection of indexes of the atoms in the

dictionaries used to calculate the sparse
vector

Superscripts
+ Pseudo-inverse
< Iteration index for the sparse vector cal-

culation
rec Reconstructed
true True
T Transpose

As mentioned in the previous section, one alternative to deal with the big data from 4D
seismic in history matching is through the application of sparse representation methods.
Therefore, this part focuses on the Dictionary Learning method through the K-SVD
algorithm [2], which is responsible for sparsely represent the 4D seismic data to be used
in history matching.

In the sparse representation problem, let us denote by X a matrix that is derived from
the original seismic dataset (more information on how to form X is given in the next
paragraphs). Besides, we assume that we have an initial guess of a matrix D (called
dictionary) whose columns are filled with a set of predefined redundant basis elements
(called atoms), and a separate matrix � associated with D. Hence, our purpose here is
to approximate X as

X ≈ D�. (45)

Given the dictionary D, the matrix X is (approximately) represented by the non-zero
elements of the matrix �. Therefore, if � is a sparse matrix, then one can achieve the
purpose of sparse representation.

For numerical efficiency in handling big datasets, Aharon et al. [2] suggested that
a big dataset be first divided into a number of (possibly overlapping) subsets (called
patches), so one can form X. Note that in general, each patch can be a multidimensional
(e.g., 2D or 3D) array extracted from the original seismic data (represented by the yellow
box named "Observed data" on the right-hand side of Fig. 1). Here, we first consider
2D arrays each with dimension = × = where = denotes the patch size. We then reshape
these 2D arrays into column vectors x8 ∈ R=

2 for 8 = 1, 2, · · · , #ts, such that

X = [x1, x2, . . . , x#ts] ∈ R=
2×#ts , (46)

where #ts is the number of patches (also called the training dataset size).
Accordingly, let D ∈ R=2×#k , where #k denotes the number of atoms (columns) in

the dictionary (called dictionary size), then one has the associated matrix � defined as

� = [W1, W2, . . . , W#ts] ∈ R#k×#ts , (47)
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Figure 2: Dictionary Learning scheme.

where W8 (8 = 1, 2, · · · , #ts) are columns vectors that contain the representation coeffi-
cients associated with individual atoms. In other words, each x8 are approximated by a
linear combination of the atoms in D, in terms of

x8 ≈ DW8 . (48)

In the current work, we adopt the K-SVD algorithm [2] to tackle the sparse rep-
resentation problem. Aharon et al. [2] originally proposed K-SVD as a Dictionary
Learning method for image denoising. Later on, this algorithm has also been applied to
different areas, for instance, face recognition problems [71], magnetic resonance image
reconstruction [60], and representation of geological facies in oil reservoirs [42].

K-SVD is an iterative algorithm and can be divided into two main parts: (1) calcula-
tion of the sparse representation matrix; and (2) dictionary update. As such, one needs
to pre-choose a dictionary to initialize the algorithm. Elad and Aharon [18] and Soares
et al. [66] used a Discrete Cosine Transform (DCT) function as the initial dictionary
and reported it as a good choice. Note that the initial dictionary can also be in other
forms, such as wavelet or curvelet basis functions, or some random parts of the original
image. Through the learning process, the dictionary will be updated to better adapt to
each specific problem on hand, and consequently, to achieve a better representation with
fewer non-zero coefficients [68]. Fig. 2 depicts the scheme for the Dictionary Learning
method, and as an iterative method, one should define the total number of iterations #it.
Calculation of the sparse representation matrix

After the initial dictionary is chosen, one can move to calculate the sparse matrix
�. As suggested by Aharon et al. [2], it is necessary to divide the original dataset
into smaller patches and transform them into column vectors (x1, x2, . . . , x#ts). Subse-
quently, one can calculate the sparse vector for each patch (W1, W2, . . . , W#ts).

One way of solving the sparse representation problem is to add an error constraint
[62] as in

W8 = ArgminW8 ‖W8‖0 subject to ‖x8 − DW8‖2
2 ≤ n . (49)

Here n specifies the error tolerance, and is calculated as

n =

(
�f

√
=2

) 2
, (50)

where � is a constant determined as 1.15 by Elad and Aharon[18], and f is the noise
standard deviation, which needs to be defined beforehand.

The approach proposed by Elad and Aharon [18] is to use the Orthogonal Matching
Pursuit (OMP) to iteratively fill the sparse vector W8 with one non-zero coefficient each
time, until the constraint (‖x8 − DW8‖2

2 ≤ n) is satisfied.
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In the OMP algorithm, the first step is to calculate the inner product coefficient
between the columns (or atoms) d 9 ( 9 = 1, 2, · · · , #k) of the dictionary D and the
residual r<

8
(8 = 1, 2, · · · , #ts)

2<8 = (r<8 )Td 9 , (51)

where < is the iteration index for the sparse vector calculation, and the residual r<
8

is
defined as

r<8 = x8 − DW<8 . (52)

Note that for the first iteration W0
8
= 0, then r<

8
= x8.

Next, one selects the atom with the highest inner product coefficient with r<
8

and
stores its index in �. In other words, one selects the atom with the largest correlation
with the residual. Finally, it is necessary to orthogonalize the original data (x8) in the
space spanned by the atoms in � (denote by D�), in terms of

W<8 = (D�)+x8 = (DT
� D�)−1DT

� x8 . (53)

One should do these steps multiple times until reaching the stopping criterion. It is
important to highlight that at every iteration step (<), one adds one index to � and one
non-zero coefficient to W8, and these iterations are related only to the calculation of the
sparse matrix.
Dictionary update

After calculating the sparse matrix �, one needs to update the dictionary D. In this
regard, Elad and Aharon [18] proposed to do the update column by column. Hence,
one should only consider the signals in X that uses the atom being updated. In addition,
Elad and Aharon [18] also proposed to update only the non-zero coefficients in �.

If one thinks of � as a matrix composed of the row vectors g)
9

and considers updating
the 9-th atom d 9 of the Dictionary D, one can calculate the residual

E 9 = X� 9 −
∑
0≠ 9

d0g)0,� 9 , (54)

when the d 9 atom is excluded for sparse representation. The list � 9 indexes the locations
of non-zero coefficients in g)

9
. For instance, if

g)9 = (0, W 9 ,2, 0, . . . , 0, W 9 ,10, 0, . . . , 0, W 9 ,22, 0, . . . , 0),

then g)
9,� 9

= (W 9 ,2, W 9 ,10, W 9 ,22). Therefore, one can expect that

E 9 = X� 9 −
∑
0≠ 9

d0g)0,� 9 ≈ d 9g)9,� 9 . (55)

Consequently, one can update d 9 and g)
9,� 9

by solving the following minimization prob-
lem

Armind 9 ,g)9,� 9

E 9 − d 9g)9,� 9
2

�
subject to

d 92 = 1 , (56)

where ‖· ‖� denotes the Frobenius norm.
This problem can be solved by Singular Value Decomposition (SVD) or by an

approximate solution proposed by Rubinstein et al. [62], where they accelerate the
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optimization process by seeking a sub-optimal solution instead through the following
equations

d 9 = X� 9g 9 ,� 9 −
( ∑
0≠ 9

d0g)0,� 9
)
g 9 ,� 9 . (57)

d 9 = d 9/‖d 9 ‖2 . (58)

gT
9 ,� 9

= dT
9 X� 9 − dT

9

( ∑
0≠ 9

d0g)0,� 9
)
. (59)

More information about the method can be found Rubinstein et al. [62] and Soares et
al. [66].

To check if the sparse representation matrix is able to capture the main characteristics
of the data, one can calculate the reconstructed dataset by

Xrec = D�, (60)

and compare if Xrec and X are similar. Luo et al. [49] used the following measure of
information loss (!)

! =
‖ltrue − lrec‖2

‖ltrue‖2
× 100, (61)

where ltrue is the quantity containing the true or reference data (after excluding noise, if
any) and lrec the quantity with respect to the reconstructed data.

If one uses the 4D AVA dataset in seismic history matching, most of the data may
just stem from 4D noise. Hence, the non-zero coefficients of the sparse matrix � may
be concentrated on some specific parts of the matrix. Consequently, the reconstructed
image may contain certain discontinuities. In order to reconstruct a smoother image,
instead of using Eq. (60), Elad and Aharon[18] proposed the following formula

Xrec = (_I)−1(_X + D�), (62)

which represents a weighted average between the reconstructed dataset (D�) and the
original one. In Eq. (62), _ is a penalty (or weight) parameter, which in this work is
chosen as

_ =
max(X)

10f , (63)

following the suggestion of Rubinstein et al. [62], where max is the maximum value of
a property.
Parameters in the K-SVD method

From the previous introduction, one can see that there are several parameters involved
in the K-SVD method, such as dictionary size (#k), training dataset size (#ts), patch
size (=), and number of iterations (#it). Depending on the objective and the dataset in
the case study, the optimal values of these parameters may differ.

Relevant to the current study, Soares et al. [66] evaluated how each of these param-
eters affects the number of non-zero coefficients retained in the sparse matrix (#nz) and
the quality of the reconstructed image using a 4D seismic dataset. According to the
authors, the most influential parameter on the number of non-zero coefficients is the
training dataset size. The lower #ts is, the smaller #nz becomes. Hence, to make #nz
as small as possible, it is better to collect patches in the dataset without any overlapping



113

Figure 3: Example of training dataset and image patches.

between them. If one uses a higher #ts, the quality of the reconstructed image tends to
be better. However, one will end up with a larger number of non-zero coefficients.

To demonstrate how to select the training dataset according to the patch size, Fig. 3
shows a case with regular patches in the size of 4 × 4 (denoted by 4 hereafter). In the
figure, the green color corresponds to the case in which one generates patches without
any overlapping in-between, and thus achieves the minimum training dataset size #ts.
In this case, the step size ΔG × ΔH, which is determined by the distances of a moving
patch that travels along horizontal (G) and vertical (H) directions, is equal to the patch
size (e.g., 4×4 in the current example). It is important to highlight that one should travel
along each axis at a time to be able to encompass the whole grid. Meanwhile, in the
same figure, we also use the red color to indicate the case with the maximum training
dataset size #ts, where the step size corresponds to 1 × 1 (denoted by 1 hereafter).
Note that for image reconstruction, one should average the values from the overlapped
patches.

Another important parameter is the dictionary size #k, i.e., the number of atoms in
the dictionary. Soares et al. [66] showed that the higher #k is, the smaller #nz one
can achieve. However, the maximum number of #k cannot be larger than the training
dataset size #ts.

In addition, there is a big trade-off concerning the number of iterations (#it), since
a larger #it can indeed reduce the number #nz of non-zero coefficients, but at the cost
of an increased computational time. Finally, as discussed in Aharon et al. [2], larger
image patches do not tend to work well with the K-SVD algorithm, and Soares et al.
[66] reported that lower values of = can help to achieve lower #nz.

The end products of the K-SVD algorithm are the values of the non-zero coefficients,
their locations in � and the learned dictionary D, which will be utilized in the subsequent
4D seismic history matching problem.
Sparse representation - Forward simulation

Sparse representation of the simulated data follows a similar procedure as that for
the observed data. After obtaining sparse representation for the observed data, one
should save the Dictionary D of the iteration #it − 1 and the location of the non-zero
coefficients in the final � 1. Hence, one can use the same procedure detailed in the
subsection "Sparse Matrix Definition" and select the coefficients in the simulated � at
the same position of the non-zero coefficients in the observed �. Note that even if there

1The reason for us to use the dictionary D at the iteration step #it − 1, instead of #it, is that in our code implementation, the sparse matrix
� at the final iteration step #it is obtained by solving the sparse representation problem Eq. (49), using D at the iteration step #8C − 1.
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Figure 4: Horizontal permeability (:G) from realization number 1.

Figure 5: Distribution of the wells. The grid indicates the initial oil saturation.

are other non-zero coefficients in the simulated �, they will not be considered.

Case study: Brugge Field

The case study used in this work is the Brugge benchmark [58], which consists of a
reservoir with four production zones, two high and two low permeable zones. The two
high permeable zones are in layers 1-2 and 6-8, with the averaged permeability values
being 810 mD and 1 105 mD, respectively. The two low permeable zones are in layers
3-5 and 9, with the averaged permeability values being 90 and 36 mD, respectively.
Fig. 4 shows the distributions of the permeability (along the G-direction) on each layer,
with respect to one of the reservoir models from the initial ensemble. In addition, this
benchmark is an isotropic case, i.e., the permeability in the H-direction is the same as
in the G-direction. Note that we did not show the initial porosity maps for succinctness.

The numerical reservoir model of the Brugge Field has 139 × 48 × 9 cells, summing
up to 60 048 gridblocks in total, among which 44 550 are active. The model contains 20
producer and 10 injector wells, with water being the only injected fluid. Fig. 5 shows the
distribution of the wells, where the injectors are located in the border and the producers
are more centralized. The benchmark case has 10 years of production data, and we use
a black oil simulator (ECLIPSE) for reservoir simulation.
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Table 1: Information summary about the Brugge benchmark case study.

Model dimension 139 × 48 × 9 (60 048 cells)
Active cells 44 550

Average gridblock size 93 m × 91 m × 5 m
Wells 20 producers and 10 injectors

Production data 10 years (3 647.5 days)
4D seismic data Near (10°) and far (20°) offsets amplitude-versus-angle (AVA) data

Seismic survey time Base (day 1), Monitor #1 (day 991), Monitor #2 (day 2 999)
Seismic dimension 7 045 632 coefficients (6 × 139 × 48 × 176)

Model variables Porosity + Permeability along the x-,y- and z-directions. Total number: 178 200

There are 104 different realizations of reservoir models provided in the benchmark
case. In this work, we randomly pick one of the models as the reference case to generate
the “observed” seismic data, and let the rest compose the initial ensemble of 103 models.
In each reservoir model from the initial ensemble, the uncertain parameters include the
porosity and permeability in the G-, H-, and I-directions.

The seismic attributes in our experiments are the amplitude-versus-angle (AVA) data
with two different offset angles, near (10◦) and far (20◦), from 3 different surveys: base
(day 1), monitor #1 (day 991), and monitor #2 (day 2 999) [49]. The AVA dataset is on
a seismic scale, so it has a different dimension compared to the reservoir model. In our
experiments, the dimension of the AVA dataset at each offset angle and at each survey
time is 139 × 48 × 176, summing up to a total of 1 174 272 data points. Therefore, the
total number of data points in our 4D seismic dataset is 7 045 632 (6 × 1 174 272).

To generate the AVA data, we require over- and under-burden layers and properties
in addition to the reservoir model. Furthermore, the seismic trace/signal is recorded
in some specific sampling rate in the time domain (I-axis in Fig. 6), which makes the
dimension of the seismic traces (in time-domain) larger. In this work, we consider the
whole cube of the AVA data as observed data (Fig. 6), however, most of the parts of
the cubes are coming from over-burden and under-burden areas (non-reservoir parts).
Therefore, the AVA dataset has a larger dimension if we compare it to the simulation
model. Note that in applications with acoustic impedance datasets, the data is upscaled
to the same dimension of the simulation model or even in a lower dimension, in which
one can use fewer seismic horizons that are correlated with more than one layer in the
simulation model, for instance.

Table 1 summarizes the main characteristics of the Brugge benchmark case, together
with some of the experimental settings in the current work.

Methodology and Application

In the current work, we directly use the seismic attributes at three surveys as the
observations in data assimilation. In principle, one may also try using the differences
between different surveys as the observations. This would help to reduce the data size
of 4D seismic, on the other hand, though, the signal-to-noise ratios in these difference
datasets may become much lower, as is observed in our experiments (cf. upper-left plot
in Fig. 22).

As indicated in Fig. 7, we divide our investigations into two main parts. In the
first part, we evaluate the necessity of using sparse representation in a 4D seismic data
assimilation problem by comparing the assimilation performance resulting from using



116 Paper B

Figure 6: 3D AVA data (observed data): far trace in the base survey (day 1). The color bar in the right indicates the values
of AVA data points.
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Figure 7: The two main parts in our investigations.

the Projected Seismic Dataset (PSD) and a Sparse Seismic Dataset (SSD) obtained
from using the K-SVD algorithm. While in the second one, we aim to improve the
data assimilation performance by using the K-SVD algorithm differently, where we first
use the K-SVD algorithm to suppress the noise in the 4D seismic dataset and then use
the same algorithm again for sparse data representation. For distinction, we call the
end product of this procedure (using K-SVD twice) Denoised Sparse Seismic Dataset
(DSSD).

For history matching, we use the IES-RML with the formulation shown by the
Eq. (32). Note that with this formulation, we do not need to compute the truncated
singular value decomposition, as most of the previous works did. In addition, we use
the aforementioned three stopping criteria, where the maximum number of iterations is
set to 20. Finally, we start with V0 = 1, with the reduction and increment factor being
0.9 and 2, respectively.

Through the experiments in the three cases (PSD, SSD, and DSSD), we first evaluate
if sparse representation can improve the performance of data assimilation at the expense
of increased computational time and information loss. Additionally, we also inspect if
denoising 4D seismic datasets before sparse representation can help to further improve
the performance of data assimilation.

In the following, we explain in more detail how we perform data assimilation with
respect to each approach (PSD, SSD, and DSSD).
Projected Seismic Dataset (PSD)

In this case, we use the full seismic dataset, i.e., the near and far offset of the three
surveys, and project them onto the subspace, in the form of

(
U8�8

) TD̃8, as Eq. (40)
suggests, for data-size reduction. In this way, we can use the whole dataset without
incurring any computer-memory-related issue in the course of updating uncertain pa-
rameters, since we need to store the Keff , which has a dimension of only #x × #e. Note
that in this case, we adopt the automatic and adaptive correlation-based scheme [47]
for localization, in which the tapering matrix is constructed based on the correlations
between model variables and projected data.

To estimate the measurement errors involved in data assimilation, we use the k-
means clustering method [66], in which the seismic data are grouped into 3 clusters,
one representing the noise and the other two containing positive and negative values that
are more likely to be informative signals than noise. We can then calculate the standard



118 Paper B

Table 2: K-SVD parameters in SSD.

Parameter Value
Patch size (=) 8

Step size 8
Iterations (#it) 20

Dictionary size (#k) 750
Dictionary type DCT

deviation of the noise cluster, and use it in Eq. (50) and to construct the observation
error covariance matrix (Cd) for data assimilation. Note that Obidegwu et al. [56] and
Davolio and Schiozer [15] also used k-means, but to cluster acoustic impedance data
in softening and hardening effects, and Coleou et al. [14] pointed out other works that
used k-means to cluster seismic waveforms for facies classification. Since the noise
added consists of white noise, we assume Cd to be diagonal, i.e., there is no correlation
between the observation error. However, if one faces colored noises, it is possible to use
the wavelet formulation to determine the noise as in Lorentzen et al. [44]. We chose
here to use k-means because of its simplicity and good results reported previously.

Therefore, by projecting the whole 4D seismic dataset onto a subspace, it is possible
to avoid the use of sparse representation while also achieving a significant data-size
reduction. Note that in this case, the whole 4D seismic data, including the noise itself
that does not contain information of the reservoir conditions, will be assimilated into
reservoir models. This may downgrade the assimilation performance, as will be shown
later.
Sparse Seismic Dataset (SSD)

To sparsely represent the 4D seismic dataset, we use the K-SVD method introduced
before to find a representation with as few coefficients as possible while preserving the
main characteristics of the data. In the experiments, we adapted the Matlab toolbox
developed by Rubinstein et al. [62] to use the K-SVD algorithm. The original toolbox
can be found at http://www.cs.technion.ac.il/ ronrubin/software.html. Based on the
analysis of Soares et al. [66], we select the parameters involved in the calculation of the
sparse matrix, as shown in Table 2. Note that the patch size and step size are equal in
all three dimensions, i.e., 8 × 8 × 8.

As we only use the non-zero coefficients during the data assimilation and, conse-
quently, compress the data, it is possible to handle the Kalman gain without projecting
them into the subspace of

(
U8�8

) T as in the previous approach. Therefore, we use the
formulation in Eq. (36) in this step.

For the calculation of the Cd, we use the same procedure as before. Note that this
is an approximation since we find the error in the original observed data and not in
the sparsely represented data. The readers are referred to Raanes et al. [59] for more
information about the error statistics and problems with correlated errors.
Denoised Sparse Seismic Dataset (DSSD)

Elad and Aharon [18] originally developed the K-SVD as a denoising tool. In line
with this initiative, we apply the K-SVD algorithm in two steps: the first one (denoising)
involves using the algorithm to achieve the best-reconstructed image without considering
the number of non-zero coefficients #nz retained. In the second step (compression),
we apply the algorithm one more time but now focus on getting the best-reconstructed
image with as few coefficients as possible. By suppressing noise in the original dataset,
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Table 3: K-SVD configuration in the DSSD case.

Parameter Denoising Compression
Patch size (=) 8 8

Dimension 2D 3D
Step size 1 8

Iterations (#it) 10 50
Dictionary size (#k) 256 750

Dictionary type data data

we expect to have seismic datasets with better quality, which in turn may help achieve
improved assimilation performance.

Due to the different objectives, the way we apply the K-SVD algorithm differs.
Table 3 summarizes the configurations of the K-SVD algorithm in these two steps.

For the purpose of denoising, we treat each set of seismic attributes as a collection
of 2D images and sequentially apply the K-SVD algorithm to denoise one 2D image
at each time. Since the patch dimension for a 2D image is smaller, we believe that
handling a 2D image each time helps to accelerate the process, as shown by Soares et
al. [66]. Furthermore, as in this step we are not concerned about the number of non-
zero coefficients, using a smaller patch size would not affect the efficiency of sparse
representation. On the other hand, for the purpose of compression, we directly apply
the K-SVD algorithm to 3D seismic datasets.

In the denoising step, we choose to use the maximum training dataset size #ts, as
this helps to generate better-reconstructed images. In contrast, in the compression step,
we use the minimum #ts instead to obtain fewer non-zero coefficients. For the same
reason, the number of iterations is higher in the compression step, as this also helps
to reduce the number of non-zero coefficients. In addition, we choose to increase the
dictionary size to obtain less #nz.

Instead of using DCT as the initial dictionary, we select random patches from the
training dataset to construct our initial dictionary. Note that DCT is a more general
approach, while the random patches is more specific for each case, which can help to
generate fewer non-zero coefficients in the sparse matrix, as we will show later.

We use the same formulation for the history matching as before, Eq. (36), and to
define the Cd, we use the denoised version of the observed data.

Results and Discussions

Results comparison between the PSD and SSD cases
The upper plot in Fig. 8 shows a sample inline seismic attribute, e.g, a vertical

cross-section in the H-I plane from the far offset 3D AVA data at the base survey (day
1) (Fig. 6) and with the index number of G being 80. The first step is to define the
noise in the seismic dataset and to estimate it, we use the k-means algorithm to cluster
the seismic data into three regions (noise, positive, and negative values), as the lower
plot in Fig. 8 illustrates. Then, we calculate the standard deviation (f) of Cluster 1,
which represents the noise. Table 4 shows the values of f for each seismic data and the
associated noise levels, which we calculate as in

Noise level =
noise variance

pure signal variance
× 100%. (64)
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Table 4: Seismic noise

Seismic data Calculated f True f Noise level (%)
Far trace - base 0.0077 0.0074 32.92

Near trace - base 0.0154 0.0146 33.25
Far trace - monitor 1 0.0076 0.0073 32.89

Near trace - monitor 1 0.0156 0.0149 33.14
Far trace - monitor 2 0.0076 0.0072 32.85

Near trace - monitor 2 0.0156 0.0148 33.08

Luo et al. [49] stated that the noise level in the reference case is 30%. Hence, we
observe that with k-means clustering, we achieved noise levels around 33%, which are
close to that in the reference case.

In the PSD case, we select the full seismic dataset and project it into the smaller sub-
space (U8�8

) T as mentioned previously. Therefore, if we consider a random observed
data (d 9 ) and project it onto

(
U0�0) T, we would achieve the following projected data

dproj
9

=
(
U0�0) Td 9 . (65)

Hence, it is possible to reconstruct the signal (drec
9

) and check how much information
we loose as in

drec
9 =

( (
U0�0) T

) +
dproj
9
. (66)

The upper plot in Fig. 9 depicts the reconstructed image after the projection and the
information loss ! is calculated through Eq. (61).

For the SSD approach, we use the characteristics described in Table 2 and calculate
the error (Eq. (50)) using f defined by the k-means. The lower plot in Fig. 9 shows the
reconstructed image after applying the K-SVD algorithm in the SSD approach, where
we calculate Xrec through Eq. (60). Note that we use Eq. (60) once we want to show
only the characteristics retained by the method.

If we compare the two plots in Fig. 9 with the original AVA dataset (Fig. 8), we
notice that they both preserved the structure of the signal. However, we achieve a
better-reconstructed image for the SSD case. The explanation for that lies in the fact
that the projection can be interpreted as a smooth function. It is possible to see this if
one looks at the region with values very close to zero in the original image (upper plot
in Fig. 8), and this region has values of zero in the reconstructed image (upper plot in
Fig. 9). Hence, this smooth property will also happen in the whole dataset, including
the part that we have values that are not too close to zero. In addition, the ensemble
may not be able to accommodate all the information contained in the observed data,
and the iterative learning process in the SSD helped to generate a better-reconstructed
image. Consequently, the projection downgraded the image reconstruction compared
to the SSD case.

After the application of the K-SVD algorithm for the entire dataset (far and near
offset traces at base, first monitor and second monitor), we achieved a total of 19 055
coefficients, which represents only 0.27% of the entire dataset.

Even though the scope of this work is not to compare different methodologies for
sparse representation, we show some differences between the wavelet-based sparse
representation [49] and the K-SVD based one. In the methodology developed by Luo
et al. [49], there is a need for defining a threshold value (C) that is used to select the
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Figure 8: Far trace AVA data - base survey: Noisy image (upper); Clustered image (lower). The horizontal axis represents
the y-dimension as in Fig. 6 and the vertical axis represents the z-dimension as in Fig. 6. The color bar in the right indicates
the AVA values.



122 Paper B

Figure 9: Reconstructed far trace AVA data - base survey: PSD (upper); SSD (lower). The horizontal axis represents the
y-dimension as in Fig. 6 and the vertical axis represents the z-dimension as in Fig. 6. The color bar in the right indicates the
AVA values.



123

non-zero coefficients for sparse representation. Fig. 10 depicts the case for C = 1 (upper
plot) and for C = 5 (lower plot). The focus here is on the trade-off between the value
of C and the quality of the reconstructed image. When C equals 5, the image does not
retain the main features of the original seismic data. However, the number of non-zero
coefficients retained was only 3 293 (0.047% of the original seismic dataset). For the
case where C is equal to 1, the final reconstructed image is very similar to the original
data, but the amount of non-zero coefficients is much larger, up to 178 332 (2.53% of
the original dataset).

Therefore, in this case, the K-SVD algorithm tends to generate better-reconstructed
images with fewer non-zero coefficients, while for the wavelet-based sparse represen-
tation it remains to be a challenge to find a suitable trade-off between the retained
characteristics in the reconstructed data and the number of non-zero coefficients.

The analysis of data assimilation performance starts with the calculation of the data
mismatch through Eq. (23) without the sum, i.e., we calculate the data mismatch for
each ensemble member and plot in a boxplot for every iteration as Fig. 11 depicts. We
observe that both approaches tend to reduce the mismatch between the simulated and
observed data. In the PSD case (Fig. 11 - upper plot), it is possible to see that the rate of
mismatch reduction tends to be slower than that in the SSD case (Fig. 11 - lower plot).
Nevertheless, it is difficult to directly compare the data mismatch from both cases as we
use different sets of observed data. Note that we could normalize the mismatch, but in
the PSD case, most of the observed data concerns the non-reservoir part. Hence, during
the forward simulation, we set these values to zero, and consequently, as the observed
data in these parts are also very close to zero, the normalized mismatch tends to be
much lower for the PSD case. Therefore, it is better to show how the estimated model
variables look like in the final ensemble.

We use the Root Mean Square Error (RMSE), as in Luo et al. [49], to measure the
distances between the estimated model variables and the reference (true) model.

Fig. 12 shows the RMSE of porosity values for PSD (upper) and SSD (lower). In
both cases, RMSE values tend to decrease as the iterations proceed. One can see that
using SSD leads to lower RMSE values at the end, i.e., models closer to the reference
one.

By inspecting the ensemble mean for the PSD and SSD cases (third and fourth plots
in Fig. 13, respectively), one can see that there is a stronger update of the porosity values
in the latter case. The ensemble mean obtained in the PSD case remains closer to the
mean of the initial ensemble (first plot in Fig. 13), while the one from the SSD case is
closer to the reference model (second plot in Fig. 13).

More insights can be gained by inspecting the tapering matrix produced by the
localization scheme. Note that the tapering matrix is in the same dimension as the
Kalman Gain matrix. Hence, in the PSD case, it is a matrix in the dimension of
#x × #e. In contrast, in the SSD case, it has the dimension of #x × #d, where #d is the
number of observations (in this case, the number of non-zero coefficients). Following
this perspective, each column of a tapering matrix indicates how an observation element
is correlated with the model variables. Since in our experimental settings, the PSD and
SSD cases have different amounts of observations, we check the mean of columns and
plot the tapering coefficient values 2(I) (Eq. (44)) onto the reservoir model gridblocks.

Fig. 14 shows the tapering coefficient values using correlations between porosity and
the selected observation element, distributed on the reservoir model gridblocks at Layer
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Figure 10: Reconstructed far trace AVA data - base survey - Wavelet based: C=1 (upper); C=5 (lower). The horizontal axis
represents the y-dimension as in Fig. 6 and the vertical axis represents the z-dimension as in Fig. 6. The color bar in the right
indicates the AVA values.
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Figure 11: Data mismatch: Projected Seismic Dataset - PSD (upper); and Sparse Seismic Dataset - SSD (lower).

2, in cases of PSD (upper) and SSD (lower). In the PSD case (Fig. 14 - upper), the
tapering coefficient values are relatively low. In contrast, in the SSD case (Fig. 14 -
lower), the tapering coefficient values tend to be higher. Therefore, the final ensemble
of the PSD case tends to remain closer to the initial one, while the one from the SSD
case experiences stronger updates and moves closer to the reference model.

We also examine RMSEs concerning the permeability. Fig. 15 shows that the RMSE
of permeability (along the G-direction) does not change as much as porosity since seismic
data tend to be less sensitive to permeability in this benchmark case [49]. Similar results
are observed for the estimated permeability values along the y- and z-directions. We do
not show the permeability maps for succinctness.

In conclusion, projecting observations onto an ensemble subspace and sparse data
representation (through K-SVD) may serve as two viable ways to handle big data
assimilation problems in practice. In this benchmark case study, it shows that sparse
data representation tends to result in better assimilation performance than the subspace-
projection based method.
Results comparison between the SSD and DSSD cases

The results from the SSD case are the same as in the preceding subsection. We
choose to show some of the results again here for comparison.

In the DSSD case, we first denoise the original dataset using the K-SVD algorithm,
whose configuration is indicated in the middle column of Table 3. We use the same
estimated noise standard deviations f as before and apply the K-SVD algorithm to 2D
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Figure 12: RMSE - Porosity: Projected Seismic Dataset - PSD (upper); and Sparse Seismic Dataset - SSD (lower).

images (slices in the G-direction) 139 times. The upper plot in Fig. 16 illustrates the
image obtained by applying the K-SVD algorithm for the purpose of denoising. One can
see that information loss (! = 13.61) is smaller than that in the SSD case (! = 36.04).
Note that we use Eq. (62) to promote continuity in the reconstructed image.

Denoising of seismic data is a very important topic within the geoscience community.
Consequently, there are many works focused on this particular matter. For instance,
Baddari et al. [6] developed a non-linear diffusion filter capable of reducing random
and Gaussian noise, Xiong et al. [70] proposed a random noise attenuation in the time-
frequency domain, and Hennenfent and Herrmann [37] presented the non-uniformly
sampled curvelets to denoised seismic images. There’s a vast list in the literature
with different methodologies, and since it is not the scope of this work to compare
different denoising methods, we can refer the readers more works about this topic
[40, 64, 34, 7, 72].

Subsequently, we use the k-means clustering method one more time to obtain new
values of estimated noise standard deviations f, which are reported in Table 5. Com-
paring the results there with those in Table 4, one can see that the new f values are
lower, indicating the impact from the preceding denoising procedure.

Note that we do not use DCT as the initial dictionary in the DSSD case. This is
because during the second step (compression), we achieve a relatively large number of
non-zero coefficients by using DCT (due to the lower error). However, when we use
random patches from our original dataset to construct the initial dictionary (called data
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Figure 13: Porosity maps at Layer 2 of the reservoir. From top to bottom: initial ensemble mean; reference map; final
ensemble mean from the PSD case; final ensemble mean from the SSD case.

Table 5: Seismic noise after denoising

Seismic data Calculated f
Far trace - base 0.0034

Near trace - base 0.0070
Far trace - monitor 1 0.0033

Near trace - monitor 1 0.0071
Far trace - monitor 2 0.0033

Near trace - monitor 2 0.0070
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Figure 14: Tapering coefficient values (for porosity) distributed at Layer 2 of the reservoir model gridblocks: Projected
Seismic Dataset - PSD (upper); and Sparse Seismic Dataset - SSD (lower).

dictionary hereafter), we can reduce the number of non-zero coefficients. Therefore, to
maintain the consistency between the denoising and compression procedures, we prefer
to use the data dictionary in both steps. The information loss (!) of the reconstructed
image from a sparse representation of the denoised data is slightly higher than that of
the denoised data itself (cf. lower plot in Fig. 16). In this sense, we achieve minimal
information loss within our experiment settings in the DSSD case.

After the denoising and compression procedures, we obtain a total amount of 38 876
non-zero coefficients, which represents 0.55% of the original dataset. Note that here
we end up with about twice the number of non-zero coefficients in the SSD case.
However, in terms of information loss, we obtain better-reconstructed images from
sparse representations of the original dataset in the DSSD case (cf. the lower plot in
Fig. 16).

The upper and lower plots of Fig. 17 illustrate the box plots of data mismatch at
different iterations steps in the SSD and DSSD cases, respectively. Since both cases
now have observed data concerning only the reservoir part, it is possible to normalize
the mismatch and directly compare them. As one can notice, SSD presented lower
values for the mismatch. However, the difference between the two cases is not very big.
Furthermore, even though the uncertainty in the mismatch is lower in the SSD, this does
not reflect in the uncertain model variables (porosity and permeabilities) as the spread
(standard deviation) of the final ensemble is very similar for both cases. To complement
the analysis, we also compare the estimated reservoir models with the reference one.

Fig. 18 shows the boxplots of RMSE (for porosity) at different iterations steps in
the SSD (upper) and DSSD (lower) cases. As one can see, the final RMSE values
tend to be close in both cases, with those from the DSSD case tending to be lower. In
addition, one can observe that in the SSD case, the RMSE values seem to enter a plateau
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Figure 15: RMSE - Permeability x: Projected Seismic Dataset - PSD (upper); and Sparse Seismic Dataset - SSD (lower).

from the 10th iteration step on, while (although not verified) those in the DSSD case
appear to have room for further reduction, following the exhibited trend therein. For
RMSEs with respect to the permeabilities, we obtain similar results to those in the SSD
case, possibly due to the weak correlations between seismic data and permeabilities, as
mentioned before (Fig. 19).

The third and fourth panels of Fig. 20 show the mean porosity maps (of the final
ensembles) at Layer 2 of the reservoir in the SSD and DSSD cases, respectively. One
can see that both porosity maps capture some of the prominent geological structures
in the reference one (second panel of the same figure). Visually, these two estimated
porosity maps are similar, although the RMSE metric (cf. Fig. 18) indicates that the one
from the DSSD case tends to be better. Similar results are also found in the permeability
(along the G-direction) maps, as demonstrated in Fig. 21.

After showing the relative superiority (in terms of RMSE) in using DSSD, we also
consider some of the differences between the SSD and DSSD cases from the perspective
of computational resources. In the Brugge benchmark case, from the model side, one
reservoir model contains 44 550 active gridblocks, and each gridblock has 4 uncertain
model variables (porosity and permeabilities along three directions) to estimate. Hence,
we have a total of 178 200 uncertain model variables (#x) in data assimilation. In
addition, from the observation side, we have 38 876 data points (#d) in the DSSD case,
resulting in a Kalman gain matrix (K) in the dimension of 178 200×38 876. In contrast,
in the SSD case, the Kalman gain matrix (K) is in the dimension of 178 200 × 19 055
instead, which is somewhat easier to handle in terms of computational time and memory.
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Figure 16: Far trace AVA data - base survey: Denoised data (upper); and Reconstructed data from a sparse representation
of the denoised data (lower). The horizontal axis represents the y-dimension as in Fig. 6 and the vertical axis represents the
z-dimension as in Fig. 6. The color bar in the right indicates the AVA values.

Regarding the computational time dedicated to sparse data representation, in the
DSSD case, it takes about 40 minutes to go through both procedures of denoising and
sparse representation. On the other hand, it takes only around 50 seconds in the SSD
case. This substantial gap between the computational time is largely due to the time-
consuming denoising procedure adopted in the DSSD case, where a minimum step size
(1×1) is adopted so that it creates a much larger number of overlapping patches to achieve
high-quality denoised images. Furthermore, one would need a relatively large RAM
memory to handle all the matrices during history matching. For instance, to calculate
the Kalman gain K for the SSD and DSSD cases, one would need about 25 and 50 GB,
respectively. This number seems to be very big, but it can be avoided by computing the
Kalman gain several times considering different lines of the matrix at each time [20],
and one can also use local analysis to avoid these big matrices [8, 24, 13, 63].

Finally, to demonstrate the benefits of using DSSD in the Brugge benchmark, we
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Figure 17: Normalized data mismatch: Sparse Seismic Dataset - SSD (upper); and Denoised Sparse Seismic Dataset - DSSD
(lower).

examine the 4D changes of seismic data reconstructed from the original dataset and
their sparse representations. Fig. 22 shows the differences between a slice of far offset
trace at the monitor survey #1 and the same slice of trace data at the base survey. In
other words, we subtract Xrec at monitor #1 from Xrec at the base survey in the SSD and
DSSD cases. One can see that in the upper-left panel, the difference between the two
surveys in the original dataset is very noisy and very different from the reference case
(lower-right panel). In the SSD case (upper-right panel), the difference is still big from
the reference case, while the differences in the DSSD case (lower-left panel) appear to
be more similar.

When we inspect the 4D differences in the SSD case (upper-right panel of Fig. 22)
without the denoising procedure, the noise kept in the reconstructed data may sum
up and downgrade the quality of the 4D seismic data. In turn, this may deteriorate
the performance of data assimilation, if one wishes to use the 4D differences as the
observations 2.

In contrast, in the DSSD case (lower-left panel of Fig. 22), by denoising the original
seismic data first, we obtain reconstructed images with improved qualities (cf. Fig. 16).
Consequently, the difference between the survey is more physically consistent, as we
can see the 4D effect better, and the resulting 4D differences may resemble the reference
case (lower-right panel) better, which is also reflected by the lower RMSE values.

2We note that an alternative way is to first calculate the 4D differences, apply the K-SVD algorithm, and then reconstruct the 4D differences
from their sparse representations. However, as aforementioned, in this case, the signal-to-noise ratios in 4D difference data become very low
such that it becomes very difficult to extract true seismic signals from the noisy data (upper-left plot in Fig. 22).
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Figure 18: RMSE - Porosity: Sparse Seismic Dataset - SSD (upper); and Denoised Sparse Seismic Dataset - DSSD (lower).

Therefore, despite higher computational time and memory required, adopting DSSD
tends to capture the 4D effect better in the Brugge benchmark, resulting in a final
ensemble closer to the reference case than using SSD. It is important to mention that
for the Brugge benchmark, the original AVA data has a relatively low signal-to-noise
ratio. Hence, the denoising process helped to achieve better-reconstructed images and
better preservation of the 4D effect. However, some other cases may present a higher
signal-to-noise ratio and a good visualization of the 4D effect without denoising the
signal. In such cases, since the SSD case is faster, we suggest using SSD instead of
DSSD. In other words, one can use different criteria to decide which case to use, one
can either have a larger "weight" on the computational resources or on a better final
model.

Besides, if we compare the results of the SSD and DSSD cases with that from the pre-
vious work [49, 47], in which the authors used the wavelet-based sparse representation,
the cases presented here tend to be more convenient in achieving a suitable trade-off
between sparse data representation and preservation of data information.

Conclusions

We present a 4D seismic data assimilation framework in which a dictionary learning
algorithm (K-SVD) is adopted for sparse data representation, instead of using a wavelet-
based sparse representation procedure or deep learning as in previous works. Through



133

Figure 19: RMSE - Permeability X: Sparse Seismic Dataset - SSD (upper); and Denoised Sparse Seismic Dataset - DSSD
(lower).

numerical experiments in the Brugge benchmark case, we show that dictionary-learning
based sparse representation can serve as an efficient way to handle big data assimilation
problems.

We also consider an alternative way to handle big seismic data by projecting them
onto an ensemble subspace. In the investigated benchmark case, it turns out that the
projected data tend to exhibit relatively weak correlations with the model variables
under estimation. As a result, within our experimental settings, the resulting final
ensemble of updated reservoir models remains close to the initial ensemble and thus
leads to relatively inferior assimilation performance. In contrast, through dictionary-
learning based sparse representation, the corresponding representation coefficients tend
to have stronger correlations with the model variables under estimation. This makes it
possible for the updated reservoir models to experience more substantial changes and
move closer to the reference model.

In an additional investigation, we introduce a denoising procedure before applying
dictionary-learning based sparse representation to the 4D seismic. Although incur-
ring higher computational time and memory, our experiments in the Brugge benchmark
indicate that this additional procedure helps to improve the performance of data assimi-
lation in terms of the RMSE metric, in cases where the original seismic signal is noisy.
However, if the original signal has a high signal-to-noise ratio (low noise), the denois-
ing process might be less useful, since it incurs a higher computational time. Hence,
in cases where the original signal is not very noisy and the computational resources are
limited, the SSD case may be preferred.
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Figure 20: Porosity maps at Layer 2 of the reservoir. From top to bottom: initial ensemble mean; reference map; final
ensemble mean from the SSD case ; final ensemble mean from the DSSD case.
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Figure 21: Log of permeability x maps at Layer 2 of the reservoir. From top to bottom: initial ensemble mean; reference map;
final ensemble mean from the SSD case ; final ensemble mean from the DSSD case.
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Figure 22: Differences of a slice of far AVA trace data between monitor #1 and base surveys: original dataset (upper left);
SSD (upper right); DSSD (lower left); reference case (lower right). The horizontal axis represents the y-dimension as in Fig. 6
and the vertical axis represents the z-dimension as in Fig. 6. The color bar in the right indicates the AVA values.
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Finally, even though we reduced the AVA dataset to only 0.55% of the original dataset
in the DSSD case, this number still appears too big. Therefore, as our future work, we
will consider applying local analysis [23, 63, 13] to handle big datasets more efficiently.
In addition, we also plan to test the approaches developed here in a different dataset for
further performance validation.
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