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Surface activation with oxygen plasma promotes osteogenesis
with enhanced extracellular matrix formation in three-
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Shuntaro Yamada1 | Mohammed A. Yassin1 | Tobias Weigel2,3 |

Tobias Schmitz2 | Jan Hansmann2,3,4 | Kamal Mustafa1

1Department of Clinical Dentistry, Faculty of

Medicine, University of Bergen, Bergen,

Norway

2Chair of Tissue Engineering and Regenerative

Medicine (TERM), University Hospital

Würzburg, Würzburg, Germany

3Translational Center Regenerative Therapies,

Fraunhofer Institute for Silicate Research (ISC),

Würzburg, Germany

4Department Electrical Engineering, University

for Applied Sciences Würzburg/Schweinfurt,

Schweinfurt, Germany

Correspondence

Kamal Mustafa, Department of Clinical

Dentistry, Faculty of Medicine, University of

Bergen, Bergen, Norway.

Email: kamal.mustafa@uib.no

Funding information

Trond Mohn Foundation, Grant/Award

Number: BFS2018TMT10

Abstract

Various types of synthetic polyesters have been developed as biomaterials for tissue

engineering. These materials commonly possess biodegradability, biocompatibility,

and formability, which are preferable properties for bone regeneration. The major

challenge of using synthetic polyesters is the result of low cell affinity due to their

hydrophobic nature, which hinders efficient cell seeding and active cell dynamics. To

improve wettability, plasma treatment is widely used in industry. Here, we performed

surface activation with oxygen plasma to hydrophobic copolymers, poly(L-lactide-co-

trimethylene carbonate), which were shaped in 2D films and 3D microporous scaf-

folds, and then we evaluated the resulting surface properties and the cellular

responses of rat bone marrow stem cells (rBMSC) to the material. Using scanning

electron microscopy and Fourier-transform infrared spectroscopy, we demonstrated

that short-term plasma treatment increased nanotopographical surface roughness

and wettability with minimal change in surface chemistry. On treated surfaces, initial

cell adhesion and elongation were significantly promoted, and seeding efficiency was

improved. In an osteoinductive environment, rBMSC on plasma-treated scaffolds

exhibited accelerated osteogenic differentiation with osteogenic markers including

RUNX2, osterix, bone sialoprotein, and osteocalcin upregulated, and a greater

amount of collagen matrix and mineral deposition were found. This study shows the

utility of plasma surface activation for polymeric scaffolds in bone tissue engineering.
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1 | INTRODUCTION

Calcified bone is a highly committed tissue where spontaneous

healing and regeneration are severely limited after damage. This is a

major challenge for modern medicine because complications related

to bone are frequent as results of trauma, infection, and carcinoma.

Current therapeutic approaches to patients with critical-sized bony

defects include autologous, allogeneic and xenogeneic bone trans-

plantation, the implantation of bioinert materials (e.g., titanium

implants) and the use of synthetic biomaterial as bone substitutes, but
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none of the treatments can achieve complete bone regeneration and

functional recovery.1,2 Meanwhile, a tissue engineering approach has

been shown to be an alternative and promising means, which aims to

regenerate functional tissues in combination with biomaterials, pro-

genitor cells, and soluble factors.3 This allows reducing therapeutic

invasion to the patients, and it is theoretically applicable to defects in

any size and shape. Biodegradable aliphatic polyesters have

been developed as scaffolding materials in bone tissue engineering.

Poly(L-lactide-co-trimethylene carbonate) (lactide-TMC) has been

shown to be biocompatible to a greater or lesser degree depending on

composition, allowing cellular events on the surface.4-7

For bone regeneration, biomaterials are preferably manufactured

three-dimensionally with high porosity and interconnectivity to replicate

bony structures in vivo.8 However, the use of aliphatic polymers as three-

dimensional (3D) microporous scaffolds is problematic because of their

hydrophobic nature. Lactide-TMC, which is known to be more hydrophilic

than first generation polyester biopolymers such as polylactic acid (PLA)

and poly(ε-caprolactones) (PCL), is still not the exception.6,9,10 Starting

with cell seeding on the scaffolds, hydrophobicity hampers the infiltration

of cell suspension into the micropores, which results in low seeding effi-

ciency and inhomogeneous cell distribution.11 This also causes the alter-

ation of the “cell niche”, leading to changes in paracrine signaling

distance, cell-to-cell interaction and competitive nutrient supply.12-16

Since the initial inhomogeneity persists, it may also mask or exaggerate

cellular reactions to the environment. Therefore, various methods have

been suggested as a means of surface modification such as chemical coat-

ing, alkaline hydrolysis, and plasma activation.17

Plasma activation is a surface modification procedure, which is

widely used to hydrophilize material surfaces industrially. The effect is

known to be attributed to the composition of polar functional groups

(i.e., OH, COOH, NH2, SO2) on the materials and modification of

nanotopography by etching and sputtering.18 In regenerative medicine of

bone tissue including orthoperiodic surgery and dentistry, the technique

has been applied to promote faster healing and improve osteointegration

of implanted devices, that is, titanium implant.19 Recently, the application

field has widened to the field of tissue engineering, and plasma activation

of biodegradable aliphatic polyesters in combination with cells has

become a focus of research. The effects of plasma activation using sev-

eral different plasma sources (i.e., oxygen, nitrogen, argon, carbon dioxide,

ammonia, and air plasma) has been tested using different cell types

including vascular smooth muscle cells, umbilical endothelial cells, mam-

mary epithelial cells, retinal pigment epithelial cells, keratinocytes, cho-

ndrocytes, osteoblasts, and fibroblast.17,18 Based on these findings, it was

recognized that appropriate plasma activation of polymeric scaffolds

enhanced cellular adhesion by promoting the elongation of cell tentacles

and proliferation although cells might behave differently depending on

the type of cells and materials.18,20 Osteoblastic cells, MC3T3-E1,

responded to the plasma treated surface by upregulating their mRNA

expression of alkaline phosphatase, osterix, runt-related transcription fac-

tor 2 (RUNX2), and osteocalcin.21 This promotion of osteogenic property

is suggested as a consequence of increased protein absorption on

plasma-treated surfaces.22 For multipotent cells, however, the effects of

surface modification should not be restricted to proliferation and

adhesion because physical surface properties are the key determinants of

cell fate.15,23 Indeed, several studies have suggested the change in nan-

otopography/hydrophilicity of the surfaces is responded by the alterna-

tion of multiple signaling pathways which are known to regulate cell fate.

This includes αvβ1 integrin signaling pathway,24,25 Rho/Rock signaling

pathway,26 AP-1 signaling pathway23 and canonical and non-canonical

Wnt signaling pathways.27,28 To date, comprehensive responses of

multipotent cells on plasma-activated aliphatic polymers have not been

well elucidated.

Thus, our aim was first to improve seeding efficiency by modify-

ing the surface properties of 3D lactide-TMC scaffolds with oxygen

plasma, and then, to explore the behaviors of rat bone marrow-

derived stem cells (rBMSC) towards osteogenic differentiation. Here,

we demonstrate that surface activation with oxygen plasma of two-

dimensional (2D) films and 3D microporous scaffolds increased wetta-

bility mainly by roughening the surfaces nanoscopically. This conse-

quently led to a notable improvement of seeding efficiency and

allowed rBMSC to attach, elongate, and establish cell-to-cell interac-

tion from an early phase of their growth. We further showed that it

accelerated proliferative activity, extracellular matrix formation, and

mineralization, with upregulation of lineage-specific markers for oste-

ogenic differentiation. This study comprehensively evaluated adhe-

sion, proliferation, and osteogenic differentiation of rBMSC in 3D

microporous scaffolds treated with oxygen plasma for bone tissue

engineering.

2 | MATERIALS AND METHODS

2.1 | Materials

The medical grade synthetic biomaterial lactide-TMC was purchased

(RESOMER® LT706 S, Evonik) and used as a scaffold material as fol-

lows for this study.

2.2 | Methods

2.2.1 | Fabrication of 2D flat films and 3D
microporous scaffolds of lactide-TMC

For 2D flat film preparation, lactide-TMC polymer was dissolved in

chloroform and poured into glass petri dishes. After chloroform was

completely evaporated, 10 mm diameter samples were punched out.

For 3D microporous scaffold preparation, samples were prepared by a

salt leaching technique.29 Lactide-TMC polymer was dissolved in chlo-

roform and then mixed with sodium chloride particles with a size

range of 90–600 μm. After the complete evaporation of chloroform,

scaffolds were prepared with a 10 mm diameter and 1.2 mm thick-

ness. Subsequently, the scaffolds were thoroughly washed with dis-

tilled water to remove sodium chloride. Macro- and microstructures

of the scaffolds and their topographical properties were evaluated by

microCT (μCT) (see Figure A1 and Table 1, respectively).
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2.2.2 | Oxygen plasma activation and pre-
treatment before cell seeding

The 2D flat films and 3D scaffolds were treated in a plasma chamber

(Pico Plasma System, Diener electronics, Ebhausen, Germany) with

oxygen plasma for 1, 3, or 5 min respectively, using a 100 kHz genera-

tor operated at a plasma process power of 350 W and pure oxygen

gas (0.3 mbar, 12 sccm O2).

For cell culture experiments, the treated-samples were placed in

wells of low-adherent 48-well plates (10861–560; VWR International)

and washed in 70% ethanol followed by through wash in PBS in ster-

ile environment. The samples were then sterilized by ultraviolet

(UV) radiation for 2 hr. The samples were then washed with PBS twice

and pre-incubated in minimum of essential medium (αMEM) overnight

before seeding.

2.2.3 | Fourier transform infrared spectroscopy
(ATR-FTIR)

The ATR-FTIR spectra were recorded using an FT-IR-4100 instrument

(Jasco, Gross-Umstadt, Germany). Each sample was measured by

128 scans and a resolution of 0.5 cm–1 in the range between 500 and

4000 cm−1.

2.2.4 | Scanning electron microscopy

The samples were analyzed by scanning electron microscopy

(SEM) using a high-resolution SEM (Zeiss CB 340, Oberkochen,

Germany). Before SEM analysis, the samples were coated with a

2 nm coating of platinum in a sputter coater (EM ACE600, Leica,

Vienna, Austria).

2.2.5 | Contact angle measurement and 3D
hydrophilic assessment

Surface wettability of the 2D flat films was determined with a contact

angle measuring device (OCA 15EC, Dataphysics, Filderstadt,

Germany) using 3 μl of ultrapure water dripped onto the surface.

The experiment was performed on three different samples for each

condition (0, 1, 3, 5 min of plasma treatment). In order to evaluate the

treatment's stability over time, the measurements were repeated on

fresh samples 2 weeks after the plasma process.

For wettability evaluation of the 3D microporous scaffolds, the

measurement took place 2 weeks after the plasma activation. 50 μl

αMEM was dropped on each scaffold. Photographic images were cap-

tured after 60 s.

2.2.6 | Cell culture and seeding

The study was approved by the Norwegian Animal Research Author-

ity and performed according to the European Convention for the Pro-

tection of Vertebrates used for Scientific Purposes (local approval

number 20146866). Bone marrow stem cells were isolated from

the femurs of Lewis rats (rBMSC) as previously described30 and

maintained in αMEM supplemented with 10% fetal bovine serum

(FBS) and 1% penicillin–streptomycin at 37�C in 5% CO2 humidified

atmosphere. Cells from passage 3–4 were used for the study. When

the cells reached approximately 80% confluence, the cells were

trypsinized, and 10,000 and 100,000 cells were seeded on the lactide-

TMC films and the microporous scaffolds in the 48 well plates, respec-

tively. After seeding, the well plates were stirred at 800 rpm for 30 s

to homogenize cell distribution. Flat films were collected 24 hr after

seeding. For the evaluation of osteogenesis of rBMSC, the 3D micro-

porous scaffolds that were treated with oxygen plasma for 3 min

were transferred into osteoinductive medium, αMEM supplemented

with 200 nM dexamethasone, 10 mM glycerophosphate and 0.05 mM

ascorbic acid on the following day (day 0) and evaluated on days 1, 3,

7, 14, and 21. The experimental timeline is shown in Figure A2.

2.2.7 | Evaluation of seeding efficiency and
viability

3D microporous scaffolds were used for the evaluation of seeding

efficiency. Three hours after seeding, non-adherent cells and cells

attached on wells, not scaffolds, were collected and stained with 0.4%

Trypan blue solution (T10282; Invitrogen). The number of cells and

viability was counted using a Countess Automated Cell Counter

(A27977; Invitrogen). Seeding efficiency was calculated as follows:

Seeding efficiency %ð Þ=1−Cells left in awell +Non adherent cells
Cells seededona scaffold

2.2.8 | Immunofluorescence and image analyses

2D film samples and 3D microporous scaffolds for immunofluores-

cence were collected 3, 6, and 24 hr after seeding and day 3, 7,

14, and 21, respectively. Samples for F-actin, RUNX2, and PCNA

staining were fixed in 4% paraformaldehyde for 15 min at room

TABLE 1 The morphological characteristics of 3D microporous
scaffolds used in the study

Average (n = 5) SD

Weight (g) 0.012 0.0016

Thickness (mm) 1.22 0.084

Volume (mm3) 95.82 6.57

Density (kg/m3) 129.60 9.81

Porosity (%) 91.71 3.44

Open pores (%) 91.71 3.44

Close pores (%) 0.00031 0.00048
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temperature, and samples for Col1 and β-Actin staining were fixed in

cold methanol for 10 min. For PCNA staining only, antigen retrieval

was performed with 10 mM sodium citrate (pH 6) at 95�C for 20 min.

The samples were then permeabilized in 0.1% Triton X-100 in PBS

(PBST) for 10 min three times and blocked with 10% goat serum in

PBST for 1 hr at room temperature followed by incubation with pri-

mary antibodies at 4�C overnight. Primary antibodies used were as

follows: anti-collagen I antibody (1:1000, ab90395; Abcam, UK), anti-

Runx2 antibody (1:250, ab23981; Abcam, UK), anti-β-Actin antibody

(1:100, PA1-183; Thermo Fisher Scientific), anti-PCNA antibody

(1:200, sc-56; Santa Cruz). After washes in PBS 6 times (10 min each),

the samples were incubated for 1 hr at room temperature with

species-specific secondary antibodies conjugated to AlexaFluor

488/568/635 (1:250, A11008/A11011/A31575; Life Technology).

Nuclei and F-actin (for RUNX2 staining only) were counterstained

with 40 ,6-diamidino-2-phenylindole (DAPI; 1:5000, 62,247; Thermo

Fisher Scientific) and Alexa Fluor 488 Phalloidin (1:500, A12379;

Invitrogen), respectively. Specimens were washed six times (10 min

each) with PBST and mounted on confocal dishes in PBS. Stack

images with a z-step size of 0.8 μm were acquired by a confocal

microscope (TCS SP8; Leica, Germany) with a water immersion 25×

objective. Images were obtained by the same acquisition setting, and

each channel was separately obtained by a sequential scan function

to perform quantitative analyses. Images were processed in Fiji/

ImageJ for quantification.31

2.2.9 | Double-strand DNA quantification

Samples were collected on days 1, 3, 7, 14, and 21 and immersed in

PBST following a wash with PBS. Freezing–thawing cycle at −80�C

was repeated twice to collect cytolysate from the samples. Double

strand DNA (dsDNA) was quantified by using Quant-iT™ PicoGreen™

dsDNA Assay Kit (P7589; Invitrogen) according to the manufactures

protocol. Fluorescence intensity was measured with an excitation

wavelength of 480 nm and emission wavelength of 520 nm using Var-

ioskan™ LUX multimode microplate reader (VLBL00D0; Thermo

Fisher Scientific, Finland).

2.2.10 | Total RNA extraction and reverse
transcription polymerase chain reaction

Samples for RT-qPCR were collected on days 3, 7, 14, and 21. RNA

extraction was performed using a Maxwell® 16 Cell LEV Total RNA

Purification Kit (AS1280; Promega) in accordance with protocol pro-

vided by the supplier. Reverse transcription was then performed with

the High Capacity cDNA Reverse Transcription Kit (4,368,814;

Applied Biosystems). RT-qPCR was performed on StepOne™ Real-

Time PCR System with T TaqMan™ Gene Expression Assay

(4,453,320, Applied Biosystems). Primers used are given in Table 2.

The amplification was performed as follow: initial denaturation at

95�C for 20 s, followed by 40 cycles of 95�C for 1 s and 60�C for

20 s. Each sample was assessed in triplicate. Specificity of the reaction

was assessed by amplification curve, and the relative expression

of the genes was calculated using the 2-ΔΔCT method following to

normalization to a housekeeping gene GAPDH.32

2.2.11 | Alkaline phosphatase activity assay

Samples were collected on days 1, 3, 7, 14, and 21. Cytolysate

was collected by freezing–thawing cycle at −80�C, equal volume of

P-nitrophenyl phosphate (pNPP, 20–106; Sigma-Aldrich, Germany)

was added in each sample. Absorbance was measured at 405 nm

using a Varioskan™ LUX multimode microplate reader (VLBL00D0;

Thermo Fisher Scientific, Finland).

2.2.12 | Alizarin red S staining and quantification

Samples taken on days 1, 3, 7, 14, and 21 were fixed in 4% PFA for

40 min and washed three times with Milli-Q® water. The samples

were then incubated with 0.1% Alizarin Red S for 20 min followed by

thorough wash with Milli-Q® water. For quantification, the dye was

extracted with 100 mM cetylpyridium chloride overnight. Absorbance of

the extract was measured at 540 nm using a Varioskan™ LUX multimode

microplate reader (VLBL00D0; Thermo Fisher Scientific, Finland).

2.2.13 | Statistics

All statistical analyses were conducted with SPSS 24.0 (IBM). For the

comparison of 1, 3, and 5 min-treated groups to the control, one-way

ANOVA followed by Dunnett post hoc test was performed. Pairwise

comparison was performed by Student's t test. For RT-qPCR, logarith-

mic value of 2-ΔΔCT was calculated to normalize to the endogenous

TABLE 2 Primers used for RT-qPCR gene expression analysis

Gene Symbol Cat. No.

Glyceraldehyde-

3-phosphate

dehydrogenase

GAPDH Rn01749022_g1

Runt-related transcription

factor 2

RUNX2 Rn01512298_m1

Collagen, type I, alpha 1 Col1A1 Rn01463848_m1

Alkaline phosphatase ALP Rn01516028_m1

Bone sialoprotein BSP Rn00561414_m1

Sp7 transcription factor Sp7 (Osterix) Rn01761789_m1

Bone gamma-

carboxyglutamate protein

Bglap

(Osteocalcin:

OCN)

Rn00566386_g1

Thy-1 Thy1 (CD90) Rn00562048_m1

Ecto-50-nucleotidase Nt5e (CD73) Rn00665212_m1

CD44 CD44 Rn00681157_m1
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control and evaluated by Student's t test. p < .05 was considered

statistically significant.

3 | RESULTS

3.1 | Plasma activation with oxygen plasma
hydrophilized lactide-TMC by roughening the surfaces
nanotopographically with a slight increase in an
alcohol group

Lactide-TMC films were plasma-treated for 1, 3, and 5 min, and the

contact angle was significantly reduced by approximately 20–25� in

all groups (p < .001). The effect was maintained for at least 2 weeks

except for one treated for 1 min in which the recurrence was

observed (p = .006) (Figure 1(a,b)). SEM revealed that the surfaces

were spotted in plasma-treated groups, and the level of nano-

roughness was correlated with the dosage of oxygen plasma (Figure 1

(c)). Surface chemistry was evaluated by ATR-FTIR spectra, showing

that there was a minimum change in chemical composition before and

after the treatment. Characteristic peaks were observed at 2999,

1741, 1183–1032, and 791 cm−1, which are assigned to C H,

C O, C O, and C H, respectively. These peaks were almost

identical among the groups except for the 5 min-treated samples in

which the intensity of C O decreased (Figure 1(d,e)). In the range

between 3500 and 3100 cm−1, which is assigned to O H group, the

absorbance slightly increased in the plasma-treated groups in a dose-

dependent manner (Figure 1(f)).

3.2 | Plasma-treated surfaces promote initial
adhesion, elongation, and proliferation of rBMSC

To access the initial cellular adhesion, elongation and proliferation,

rBMSC were seeded on flat films treated with oxygen plasma. After

3–6 hr of seeding, cells attached on plasma-treated films exhibited

F IGURE 1 Surface characterization before and after plasma activation with oxygen of 2D films of lactide-TMC. (a,b) Water contact angle
measurement before, immediately after and 2 weeks after plasma activation for 1, 3, and 5 min. Values are presented as mean ± SD. *p < .05,
**p < .01, ***p < .001. (c) Scanning electron microscopy images of plasma-treated 2D films. Scale bar: white = 10 μm, yellow = 1 μm. (d) Offset
ATR-FTIR spectrum of plasma-treated films. (e) Super-positioned ATR-FTIR spectrum between 1250 and 1000 cm−1 indicating an ether group
( C O) and (f) 3500 and 3100 cm−1 indicating an alcohol group ( O H)
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more extended morphology than on the control despite the heteroge-

neous cell population causing large variation in the morphological

quantification. Notably, active cellular proliferation and elongation

were clearly observed on plasma-treated films at 6 hr, which resulted

in the formation of complex cell-to-cell interaction. This also led to

the stagnation or reduction in cell size in the 3 and 5 min-treated

groups at 24 hr because of high cell density. On the other hand, cells

on the control surface were less elongated, remaining isolated over

the time (Figure 2(a,b)). There was a tendency for an increase in

F-actin intensity in longer plasma-treated groups, indicating enhanced

actin polymerization on the plasma-treated surfaces (p = .026

between the control and the 5 min-treated group) (Figure 2(c)).

3.3 | Improvement of hydrophilicity and seeding
efficiency on 3D LTMC scaffolds

3D microporous scaffolds were treated with oxygen plasma for 1, 3,

and 5 min to improve surface hydrophilicity without altering macro/

micro-structure of the scaffolds. After the drop of αMEM, the medium

almost immediately soaked into the scaffolds treated for more than

3 min while the droplet maintained an elliptical shape on the control

and 1 min-treated scaffolds (Figure 3(a)). As with the 2D films, the sur-

faces were roughened with the texture of nanoscopic spots by oxygen

plasma, which was limited superficially in submicron scale (Figure 3

(b)). Consistent with wettability, cell seeding efficiency was

significantly improved in the groups treated for 3 and 5 min compared

to the control (p = .027 and .016, respectively) (Figure 3(c)). It is note-

worthy that, due to the low absorbency, medium was distributed

unevenly within the control scaffolds. However, prolonged plasma

treatment negatively correlated with cell viability for the cells that

remained on the wells, particularly in the 5 min-treated group

(p = .006) (Figure 3(d)).

3.4 | Increase in cellular proliferation on plasma-
treated scaffolds

rBMSC were seeded on control and plasma-treated scaffolds for

3 min, and cellular proliferation was evaluated on days 1, 3, 7, 14,

and 21 after seeding. The quantification of dsDNA shows statistical

significance between the control and plasma-treated scaffolds on

day 1 (p = .049) and day 3 (p = .007), and proliferative activity

reached the highest level in both groups around day 7. Subse-

quently, suppression of proliferation was observed in both groups.

While the control group showed a gradual decrease by day 21, pro-

liferative activity of cells on the plasma-treated scaffolds had

already nadired on day 14 (p = .0014) (Figure 4(a)). To assess cell

cycle status, samples were stained with anti-PCNA antibody. After

seeding, the majority of cells in both groups expressed PCNA, indi-

cating the cells were proliferative. Cells highly expressing PCNA

(PCNAHigh+ cells) accounted for the majority of cells by day 7, but

F IGURE 2 Initial cell adhesion, elongation, and proliferation on the plasma-treated 2D films. (a) Confocal images of bone marrow stem cells
stained for F-actin and nuclei after 3, 6, and 24 hr of cell seeding on plasma-treated films. Arrows indicate cells undergoing cell divisions. (b) the
image quantification of cell size and (c) F-actin fluorescence intensity measured at 24 hr of seeding. Values are presented as mean ± SD. Scale
bar = 100 μm. *p < .05, **p < .01
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PCNA expression was downregulated afterwards, and cells weakly

expressing PCNA (PCNAlow+ cells) became the majority on day14

and 21 (Figure 4(b)). Quantification shows that approximately 70%

of the cells expressed PCNA by day14 in both groups, slightly

higher in the plasma-treated group, after which proliferation was

significantly down regulated (Figure 4(c)).

3.5 | Promotion of osteogenic differentiation on
plasma-treated scaffolds

To evaluate osteogenic differentiation, mRNA expression of osteo-

genic markers, RUNX2, Col1A1, bone sialoprotein (BSP), osterix, ALP,

and OCN was measured (Figure 5(a)). A key transcription factor and

early osteogenic marker, RUNX2, remained upregulated by day 14 in

both groups. The cells on plasma-treated scaffolds showed significant

upregulation of RUNX2 on day 7 (p = .015) compared with rBMSC on

control scaffolds. The peak was observed on day 14 in the control

group while the RUNX2 level was stable from day 14 to day 21 in the

plasma-treated group. The expression of an early osteogenic marker,

Col1A1, was significantly upregulated as early as day 3 in the plasma-

treated group (p = .042), which was the highest throughout the exper-

imental period. The peak of ColA1 expression in the control group

was observed on day 7 (p = .0044). Another osteogenic marker, ALP,

displayed continuous upregulation over time in both groups. How-

ever, regarding the comparison between groups, the regulatory pat-

tern was time-dependant and did not show a clear pattern. The

expression of osterix, an osteogenic marker related to the maturation

process of pre-osteoblasts, increased continuously over time in both

groups. Notably, the plasma-treated group consistently showed higher

expression compared with the control (day 7 p = .006, day 21

p = .008). Similarly, BSP was significantly upregulated on day 3 and

day 21 in the plasma-treated group (day 3 p = .00089, day 21

p = .028).33 A late osteogenic marker, OCN, clearly indicated that the

F IGURE 3 Characterization of surface topography and measurement of seeding efficiency with 3D microporous lactide-TMC scaffolds after
plasma activation with oxygen plasma. (a) Photographical images of medium droplets on microporous scaffolds treated with oxygen plasma for
1, 3, and 5 min. The images were taken at 60 s of a drop of 50 μl α-MEM. (b) Scanning electron microscopy images of plasma-treated 3D
microporous scaffolds. The magnified parts were marked with white boxes. Scale bar: white = 100 μm, yellow = 1 μm. (c) Seeding efficiency with
the representative appearance of the scaffolds in wells and (d) cell viability measured after 1 hr of seeding. Values are presented as mean ± SD.
*p < .05, **p < .01
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expression was enhanced in the late stage, particularly in the plasma-

treated group, and a significant difference between the groups was

observed on day 14 (p = .047) and day 21 (p = .020). To evaluate the

general property as MSC, putative markers for rat MSC, CD44, CD73,

and CD90, were measured.34 These were expressed consistently with

a small fluctuation throughout the experimental period, following a

comparable tendency in both groups (Figure 5(b)).

Immunofluorescence showed that RUNX was highly expressed

throughout the experiment in both groups (Figure 5(c)). The nuclear

accumulation of RUNX2 was found mainly on day 7 and day 14, and

the expression was diffused to cytoplasm on day 21. This indicates

that the early RUNX2 expression acted as a transcription factor for

osteogenic differentiation. Notably, the groups of cells with RUNX2

highly expressed in nuclei were focally found on day 7 only in the

plasma-treated group.

3.6 | Accelerated differentiation confirmed by the
increased level of collagen matrix formation

To evaluate the formation of extracellular matrix, samples were

stained with anti-collagen I antibody which specifically reacts with

non-denaturing 3D helical structure of native collagen type I (Col1).

Consistent with the early expression of osteogenic markers, collagen

formation was significantly accelerated on plasma-treated scaffolds

(Figure 6(a)). While the Col1 formation gradually increased over time

in the control group, the remarkable Col1 formation was observed as

early as 7 days post-osteoinduction in the plasma-treated group.

Quantification of surface coverage by Col1 shows that it reached

approximately 50% on day 7 in the plasma-treated group, which was

20% higher than the control (p = .037) (Figure 6(b)). On day 21, the

control group caught up to the plasma-treated group. Col1 intensity

was slightly higher in the plasma-treated group on day 7 and day

21, suggesting the formation of a dense Col1 layer, but it was not sta-

tistically significant (Figure 6(c)).

3.7 | Enhanced mineralization on plasma-treated
scaffolds

To assess mineralization as a consequence of osteogenic differentia-

tion, ALP activity and calcium deposition were evaluated. ALP activity

was continuously upregulated by day 14 in both groups (Figure 7(a)).

Although the upregulation of ALP activity in the plasma-treated group

was found on day 1 and day 3, the increase ratio over time was lower.

Alizarin red S quantification showed the promotion of mineralization

F IGURE 4 Proliferative activity and cell cycle of bone marrow stem cells on the 3D plasma-treated scaffolds for 3 min. (a) The quantification
of dsDNA of bone marrow stem cells on day 1, 3, 7, 14, and 21 after seeding. (b) Immunofluorescence images for PCNA on day 3, 7, 14, and 21
after seeding. Scale bar = 100 μm. (c) The image quantification of the ratio of PCNA positive cells. Values are presented as mean ± SD.
*p < .05, **p < .01
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in the plasma-treated group (Figure 7(b,c)). Interestingly, calcium

deposition in the control was not as homogeneous as their counter-

part on day 7, demonstrating the heterogeneity of cell distribution.

Quantification confirmed the greater production of calcium by cells

on plasma-treated scaffolds, particularly on day 3 (p = .031) and day 7

(p = .003) (Figure 7(d)).

F IGURE 5 Evaluation of osteogenic differentiation of bone marrow stem cells on the 3D plasma-treated scaffolds for 3 min. (a,b) mRNA
expression of osteogenic differentiation markers and a putative mesenchymal stem cell marker on day 3, 7, 14, and 21 after seeding on the 3D
plasma-treated scaffolds. Relative mRNA levels were normalized to GAPDH. Values are presented as mean ± 95% confidence interval. *p < .05,
**p < .01, ***p < .001 (c) immunofluorescence images for RUNX2. Scale bar = 100 μm

YAMADA ET AL. 9



F IGURE 6 Collagen type 1 formation by bone marrow stem cells on the 3D plasma-treated scaffolds for 3 min. (a) Immunofluorescence
images for collagen type 1 on day 3, 7, 14, and 21 after seeding. Scale bar = 100 μm. The quantifications of (b) surface coverage rate and
(c) fluorescence intensity of collagen type 1 on day 7 and day 21 after seeding. Values are presented as mean ± SD. *p < .05

F IGURE 7 Alkaline phosphatase (ALP) activity of bone marrow stem cells and mineralization on the 3D plasma-treated scaffolds for 3 min.
(a) ALP activity of bone marrow stem cells on the 3D plasma-treated scaffolds on day 1, 3, 7, 14, and 21 after seeding. (b) Macroscopic and
(c) microscopic images of the 3D plasma-treated scaffolds stained with Alizarin Red S. Scale bar = 100 μm (d) The quantification of Alizarin red S
staining. Values are presented as mean ± SEM. *p < .05, **p < .01
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4 | DISCUSSION

Biodegradable aliphatic polymers such as PLA, PCL, and lactide-TMC,

have been tested for various applications in biomedicine and shown

to possess decent properties for bone tissue engineering, that is, they

are biocompatible and biodegradable and have appropriate mechani-

cal strength as a graft material. They also have good moldability,

which allows one to form the materials in arbitrary shapes with high

porosity by freeze-drying, salt leaching, gas foaming and 3D printing

techniques.35 In this study, we have selected Lactide-TMC as a scaf-

fold material because Lactide-TMC has higher flexibility than conven-

tional aliphatic polymers such as PLA and PCL, which facilitates

handling, fabrication and shaping of the scaffolds.36 Further, the mate-

rial is known to possess a unique degradation property. During degra-

dation, the material produces less acidic by-products because of its

component, trimethylene carbonate, causing less local inflammation at

the implanted sites.37 However, the hydrophobicity of aliphatic poly-

mers including Lactide-TMC is a common obstacle regardless of the

type of applications, hindering efficient cell adhesion and growth, and

therefore, a surface modification is preferred.38

Plasma as an ionized gas was first described in 1927 by the Nobel

laureate Irving Langmuir. Since then, surface treatment by plasma acti-

vation has been extensively studied. The first application of plasma

for surface modification of biodegradable aliphatic polymers was in

1997, which applied vacuum oxygen and nitrogen plasma to PLA fab-

rics.39 Afterward, the treatment has been tested with a variety of cell

types, and high biocompatibility has been verified. It is currently

applied to biomaterials and biomedical devices approved for clinical

implantation.40 There are several advantages to surface activation of

biomaterials with oxygen plasma beyond biocompatibility. Typically,

surface oxidation for hydrophilization occurs only within a depth of

5–50 nm from the surface, indicating that plasma activation does not

alter the bulk properties of the materials.41,42 Therefore, the materials

can maintain their mechanical properties such as strength, flexibility,

formability, stability/degradability while the surfaces are modified to

be more bioactive.18 Further, the fact that oxygen gas is abundant

equates to high availability and low cost, which is critical for clinical

application.

Our structural and chemical characterization of plasma-treated

lactide-TMC is consistent with previous studies using other types of

biopolymers. Since wettability is closely influenced by surface chemis-

try and topography, we have performed SEM and ATR-FTIR together

with contact angle measurement. We showed that plasma activation

for as short as 1 min significantly increased surface roughness while

the addition of functional groups was limited, indicating that changes

in surface properties of lactide-TMC after short-term oxygen plasma

treatment was mainly due to a mechanical etching effect by bombard-

ment of oxygen molecules rather than chemical modification. We also

performed atomic force microscopy (AFM), but we could not obtain

reliable data because of extremely rough and inhomogeneous surfaces

after the treatment (data not shown). The induced hydrophilicity

lasted for at least 2 weeks, which would adapt readily to clinical

settings.

Optimal cell adhesion and elongation can only be achieved when

the surface wettability is appropriate, which may vary depending on

the type of cells as well as materials.43 Therefore, we first compared

cell kinetics on 1, 3, and 5 min-treated surfaces of lactide-TMC with

the control surface. On the plasma treated surfaces, initial cell adhe-

sion and elongation of rBMSC were greatly enhanced within 24 hr of

seeding in a dose-dependent manner. Moreover, we observed an

increase in F-actin intensity on plasma-treated surfaces. The density

of F-actin is known to be associated with the strength of cell adhesion

as well as the generation of physical forces to change cell morphology

and to migrate.44-46 Recent morphological analyses using adipose-

derived MSC revealed the detailed mechanism of accelerated initial

cell adhesion on plasma-treated polystyrene surfaces. The cells on

plasma-treated surfaces by ammonia, carbon dioxide, and acrylic acid

plasma exhibited more filopodia-like and lamellipodial-like protrusions

after only 1 hr of adhesion.20 A promising mechanism for enhancing

adhesion was suggested by Griffin et al. They functionalized

nanocomposite polymer, POSS-PCU, using different types of plasma

gas and showed an increase in total protein absorption to the surface

following incubation with serum. This included cell adhesion serum

proteins such as fibronectin and vitronectin, suggesting that the sur-

face was modified to be more bioactive.47 These results together con-

firm that hydrophilized polymeric surfaces by plasma activation

activates cell kinetics.

Further evaluation was conducted with 3D microporous scaffolds

as it is crucial to evaluate cell fate in a 3D environment similar to that

in vivo. As wettability increased, the seeding efficiency was improved.

This was attributed to the high infiltration of cells. The efficiency of

cell seeding is a key factor for clinical application because it is directly

linked to time and cost of treatment.48 However, we also showed that

the group treated for 5 min had significantly decreased cellular viabil-

ity, implying that prolonged treatment may affect cell health. Similar

findings were reported previously, showing that excessive plasma

treatment led to low viability of osteoblast precursors and significantly

disrupted cell adhesion.27 One possible reason could be due to reac-

tive oxygen species (ROS) that are bound to the surface, causing cell

senescence and apoptosis,49-53 and/or simply wettability inappropri-

ate for osteoprogenitors.54 Therefore, we used 3 min-treated samples

for further studies because this increased seeding efficiency equiva-

lent to that seen after 5 min treatment without the risk of compromis-

ing cell viability.

Stem cell fate is firmly governed by surface physical properties

such as surface roughness, polarity and wettability, which together

control the gene expression of uncommitted cells.55,56 Therefore, we

evaluated osteogenesis in an osteoinductive environment. Firstly, the

proliferative activity of rBMSC was assessed as it reflects not only cell

growth but also osteogenic maturation. The quantification of dsDNA

indicates that rBMSC increased their proliferative activity before

reaching confluence. Then, the proliferation was suppressed because

of tight cell-to-cell contact, which is a prerequisite for osteogenic mat-

uration.48,57 This process was significantly accelerated in the plasma-

treated group. Immunofluorescence of PCNA further demonstrated

active cell cycle in both groups by day 7 but the expression gradually
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decreased afterwards. Although statistical analysis showed no signifi-

cance, the intensity as well as the ratio of PCNA+ cells in the plasma-

treated group were higher on day 1 and day 3 and lower on day 7 and

later. The magnitude of PCNA expression is related to the cell cycle.

Cells highly express PCNA during S/G2/M phases and weakly during

G1 phase, but cells which do not undergo cell cycle (i.e., G0 phase) do

not express PCNA.58,59 Therefore, our results suggest that the prolif-

erative activity of rBMSC in 3D plasma-treated scaffolds was initially

promoted as it was with 2D surfaces, and they commenced their mat-

uration process slightly earlier than the cells on the control surfaces.

RUNX2 is a key transcription factor that plays a major role in

driving osteogenic differentiation of precursor cells. In murine oste-

ogenic cells, an initial increase in RUNX2 expression is involved in

the induction of differentiation although continuous upregulation is

observed.60,61 We showed that RUNX2 expression was signifi-

cantly upregulated in mRNA and protein levels in the plasma-

treated group on day 7 compared with the control, and the mRNA

expression had plateaued by day 14 when the control group

showed the highest expression. This indicates that plasma-treated

scaffolds accelerated the induction of osteogenic differentiation.

Interestingly, despite high mRNA expression, RUNX2 protein accu-

mulated in nuclei was clearly observed only on day 7 and day

14, suggesting there is a discordance between transcription and

translation in murine RUNX2. Osterix is the other key osteogenic

transcription factor and the downstream target of RUNX2, which is

necessary to transform osteogenic precursors into mature osteo-

blasts.62 We showed that mRNA expression of osterix was continu-

ously upregulated over the period of differentiation, and that

expression was significantly higher in the plasma-treated group

throughout the experimental period. The maturation process was

confirmed by the expression of BSP and OCN as mature osteoblast

markers.33 Both expression levels were significantly upregulated on

day 21 in the plasma-treated group. These findings are consistent

with a previous report using an osteoblastic cell line on plasma-

treated chitosan scaffolds.43 However, we were unable to show a

clear separation of ALP expression and its activity pattern between

the groups. A possible mechanism of increased expression in the

late phase, based on previous findings, is that the release of plasma

membrane vesicles is a part of a controlled apoptosis process,

which is necessary for tissue-specific maturation.63-65 This was also

demonstrated with osteoblastic cells in which the release of ALP

from osteoblastic cells undergoing apoptosis was involved in

mineralisation.66 Additionally, ALP is involved in numerous biologi-

cal processes, and it is expressed in all of living cells.67 Collagen

type 1 is the main extracellular matrix in bone. RT-qPCR showed

that Col1A1a expression was significantly higher in the plasma-

treated group on day 3, but the trend was reversed on day 7. This

is supported by immunofluorescence showing that the formation of

collagen type 1 was established as early as on day 7 on the plasma-

treated scaffolds. Apart from the increase in collagen formation

activity of rBMSC, previous studies have found that wettability

itself alters the assembly pattern of collagen fibers, which further

activates cell-matrix interaction via integrinα1 and α2

heterodimers.68,69 This suggests not only that modified surface

properties enhance collagen formation by the cells but also that

collagen matrix formed on the treated surface further enhance cell

activity. Finally, the promotion of osteogenic differentiation was

confirmed by alizarin red S staining, showing more calcium deposi-

tion in the plasma-treated group, particularly on day 3 and day 7. It

is noteworthy that non-uniformity of staining was observed in the

control. This is probably ascribed to inhomogeneous cell seeding

because of hydrophobicity of the untreated material. Although it

appears the control group caught up with the plasma-treated group

on day 21 in terms of mineralization and collagen formation, this is

probably due to supersaturation of the formed substances. Thus,

the promotion of osteogenic differentiation may persist longer than

21 days.

In this study, we have chosen oxygen plasma mainly because of

high availability and cost-effectiveness. Additionally, it can also

hydroxylate and etch the polymer surfaces, which is ideal for the pur-

pose of hydrophilisation.48,70 However, different types of plasma

cause diverse surface chemistry and topography, leading to different

biological effects.71 It has been reported that plasma activation with

argon gas but not oxygen gas promoted chondrogenic and osteogenic

differentiation of rat adipose-derived stem cells.72 Hence, the ideal

plasma gas and dosage should be optimized for each cell type, species

and therapeutic target tissue.

5 | CONCLUSION

In this work, the surface of flat films and 3D microporous scaffolds

of the aliphatic polymer lactide-TMC was modified by oxygen

plasma for different treatment times (i.e., 1, 3, and 5 min). After

treatment, nanotopographical roughness of lactide-TMC signifi-

cantly increased, resulting in improved wettability. Importantly, the

effect persisted at least for 2 weeks after treatment, which may

potentially facilitate the translation of plasma-treated polymeric

scaffolds to the clinical setting. We found that initial cell adhesion

and elongation of rBMSC on plasma-treated surfaces were signifi-

cantly promoted compared to the control. Also, a higher seeding

efficiency was achieved when scaffolds were treated for more than

3 min. However, prolonged treatment was associated with lower

cell viability, and therefore, 3 min-treatment was considered optimal

for the evaluation of osteogenesis of rBMSC. We showed that cell

growth and osteogenic differentiation were significantly promoted

in the plasma-treated group, resulting in the promotion of extracel-

lular matrix formation and mineral deposition. Surface activation

with oxygen plasma is a promising strategy for bone tissue engi-

neering as it is an accessible technique that can modify surface

properties suitable for cell growth and osteogenic differentiation

without compromising the bulk properties.
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APPENDIX

F IGURE A1 Macro- and microscopic image of lactide-TMC
microporous scaffolds used in the study. Scale bar = 500 μm
(microscopic image)

F IGURE A2 Experimental flow and timeline
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