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Abstract
Purpose Predictive biomarkers are needed to aid the individualization of radiotherapy (RT) in breast cancer. Cancer-associ-
ated fibroblasts have been implicated in tumor radioresistance and can be identified by platelet-derived growth factor receptor-
beta (PDGFRb). This study aims to analyze how PDGFRb expression affects RT benefit in a large randomized RT trial.
Methods PDGFRb was assessed by immunohistochemistry on tissue microarrays from 989 tumors of the SweBCG91RT 
trial, which enrolled lymph node-negative, stage I/IIA breast cancer patients randomized to RT after breast-conserving sur-
gery. Outcomes were analyzed at 10 years for ipsilateral breast tumor recurrence (IBTR) and any recurrence and 15 years 
for breast cancer specific death (BCSD).
Results PDGFRb expression correlated with estrogen receptor negativity and younger age. An increased risk for any recur-
rence was noted in univariable analysis for the medium (HR 1.58, CI 95% 1.11–2.23, p = 0.011) or PDGFRb high group 
(1.49, 1.06–2.10, p = 0.021) compared to the low group. No differences in IBTR or BCSD risk were detected. RT benefit 
regarding IBTR risk was significant in the PDGFRb low (0.29, 0.12–0.67, p = 0.004) and medium (0.31, 0.16–0.59, p < 0.001) 
groups but not the PDGFRb high group (0.64, 0.36–1.11, p = 0.110) in multivariable analysis. Likewise, risk reduction for 
any recurrence was less pronounced in the PDGFRb high group. No significant interaction between RT and PDGFRb-score 
could be detected.
Conclusion A higher PDGFRb-score conferred an increased risk of any recurrence, which partly can be explained by its 
association with estrogen receptor negativity and young age. Reduced RT benefit was noted among patients with high PDG-
FRb, however without significant interaction.
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Introduction

Radiotherapy (RT) in combination with breast conserving 
surgery (BCS) is currently the preferred treatment over mas-
tectomy for patients with early stage breast cancer. Never-
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recurrences during the first decade after surgery [1, 2]. Clas-
sic histopathological variables are unable to identify patients 
with different proportional benefits from adjuvant RT [2]. 
An increasing focus is being put on the microenvironment 
as a modulator of the benefit from adjuvant RT. Recently, a 
high number of tumor-infiltrating lymphocytes was shown 
to independently reduce the recurrence risk of early stage 
breast cancer patients within a randomized RT trial. Conse-
quently, patients with low levels of tumor-infiltrating lym-
phocytes may represent a subgroup with an increased RT 
benefit [3]. Preclinical studies have indicated that stroma 
cells can modulate radiosensitivity of tumor cells [4–7], but 
non-leukocytic stroma cells have not yet been explored as 
potential predictive markers for benefit of RT in invasive 
breast cancer.

Platelet-derived growth factor receptor beta (PDGFRb) is 
a key regulator of fibroblasts, pericytes and smooth muscle 
cells (reviewed in [8–10]). The role of stromal PDGFRb 
expression in progression and treatment response of invasive 
breast cancer is still not fully understood. A high expression 
of PDGFRb in the tumor stroma has been associated with 
unfavorable clinicopathological variables and shorter recur-
rence free and breast cancer specific survival, univariably, in 
a population-based cohort [11] although there are also stud-
ies which have failed to confirm the prognostic effect [12]. 
However, the application of a gene expression signature 
reflecting PDGFRb-activation stably indicated prognostic 
relevance of a high signature score for shorter recurrence 
free survival and/or breast cancer specific survival in four 
independent patient cohorts [13].

Stromal PDGFRb expression could also be treatment 
predictive. Higher expression of PDGFRb has been associ-
ated with a significantly decreased benefit from tamoxifen 
in ER-positive invasive breast cancer [14]. The mechanistic 
relationship has not yet been elucidated.

Thus, findings from these studies underline the impor-
tance of a study design that can discriminate prognostic and 
treatment related effects. Furthermore, these observations 
also point towards the complex interplay between PDGFRb 
as a potential marker of distinct stroma cell populations 
and at the same time as an active signaling receptor driving 
tumor progression.

Preclinical models of different solid tumor types have 
suggested potential mechanisms of how PDGF-activated 
stroma cells can modulate treatment effects and prognosis 
(reviewed in [9]). These mechanisms range from modulation 
of interstitial fluid pressure impairing drug uptake [15–17] 
to induction of a basal like tumor cell and promotion of 
dissemination through paracrine signaling [18–20]. With 
regards to RT, experimental models have provided evidence 
for general radioprotective effects of fibroblasts on cancer 
cells [21–23], but a role of PDGF signaling in these models 
has not yet been demonstrated.

As the current literature is conflicting regarding the func-
tion of stromal PDGFRb on prognosis as well as treatment 
response in invasive breast cancer, the purpose of the present 
study was to analyze the prognostic and predictive impact 
of stromal PDGFRb on ipsilateral breast tumor recurrence 
(IBTR), any recurrence and breast cancer specific death 
(BCSD) in a large and clinically well-annotated randomized 
RT trial of early stage breast cancer patients.

Materials and methods

Patient cohort

The retrospective analysis included patients from the SweB-
CG91RT trial who have been described elsewhere [24, 
25] (Table 1). In short, 1178 lymph node negative (N0) 
patients with stage I or IIA breast cancer were randomly 
assigned to BCS with or without whole breast RT between 
the years 1991 and 1997 and followed for a median time of 
15.2 years (Fig. 1). Tumor blocks from the initial surgery 
were retrieved, and tumors were classified according to the 
St Gallen International Breast Cancer Conference Expert 
Panel 2013 using immunohistochemical panels.

ER and HER2 evaluation has been described previously 
[25]. In brief, the cutoff used to consider a tumor ER positive 
was 1%, for PgR the cutoff was ≥ 20% to distinguish luminal 
A-like from luminal B-like tumors. Triple negative tumors 
were defined as negative for ER, PgR and HER2. HER2 was 
considered positive if 3+ on immunohistochemistry level or 
amplified on silver in situ hybridization [25]. Patients were 
well balanced regarding clinicopathological baseline charac-
teristics across the treatment arms as shown previously [24].

Immunohistochemistry (IHC)

The Ventana Benchmark Discovery autostainer system 
(NexES V10.6) was used for immunohistochemical stain-
ing of PDGFRb on 4 μm freshly cut sections from formalin-
fixed paraffin embedded tissue microarray (TMA) blocks. 
The protocol included extended antigen retrieval with pH10 
Tris buffer (Sigma-Aldrich and Merck Kgaa, Darmstadt, 
Germany) and incubation for 1 h at 37 °C with the primary 
antibody (rabbit monoclonal anti-PDGFRb antibody, clone 
28E1, #3169 Cell Signaling, Danvers MA, US) diluted at 
1:100 dilution in Discovery Antibody Diluent (Ventana, 
Tuscon, Arizona, US). Chromogenic detection was per-
formed using the Discovery OmniMap anti-rabbit HRP 
(RUO) kit (Ventana) with secondary antibody incubation for 
32 min at room temperature. Hematoxylin II was applied for 
10 min and subsequent bluing for 6 min (Ventana) in order 
to obtain counterstaining. Antibody-based cross detection of 
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the structurally related PDGFRa was excluded as described 
previously [26].

Marker evaluation

The stained slides were scanned for evaluation (PathXL, Bel-
fast, Northern Ireland). Scoring of stromal PDGFRb stain-
ing was performed blinded by two independent raters (CS 
and RJE) for average intensity following a four-grade scale 
(0/negative; 1/low; 2/moderate; 3/high) and positive stroma 
fraction as well as overall stroma abundance following a 
five-grade scale (0/0%; 1/1–10%; 2/11–50%; 3/51–75%; 
4/76–100%) (Fig.  2). Furthermore, the overall stroma 
fraction was rated on a five-grade scale (0/0%; 1/1–10%; 
2/11–50%; 3/51–75%; 4/76–100%). Tissue evaluation was 
guided by a breast pathologist (LAA). TMAs included two 

cores of 1.0 mm diameter per patient. The degree of scoring 
consistency between raters was evaluated using unweighted 
Cohen’s kappa (κ) correlation [27]. Rare cases for which 
the scores of the raters differed by more than two grades 
were reevaluated to exclude technical errors. The evalua-
tions of both raters were averaged, and the product between 
PDGFRb staining intensity and positive stroma fraction was 
calculated. For the final analysis data was split in tertiles, 
as predefined, and referred to as PDGFRb low (n = 305), 
medium (n = 313) or high (n = 371) score group.

Statistics

Time to IBTR as first event within 10 years was used as 
primary endpoint. Secondary endpoints were time to any 
breast cancer recurrence within 10 years (IBTR, regional 
recurrence or distant recurrence) and time to breast cancer 
specific death (BCSD) within 15 years. Regional recurrence, 
distant recurrence and death were considered competing 
risks for IBTR.

Known clinical variables were tested first in univariable 
and then, if significant, in multivariable analysis including 
age group, histological grade, subtype and RT treatment. 
Subtype was kept in multivariable analysis, despite not being 
significant in univariable analysis, because of the biologic 
relevance. Hazard ratios (HRs) were calculated with cause-
specific Cox proportional hazards regression to reflect the 
biologic effect of RT in the presence of competing risks. 

Table 1  Distribution of clinicopathological variables in the SweB-
CG91RT cohort depending on PDGFRb score

*Chi-square test or Fisher’s exact test

Variables PDGFRb-
low

PDGFRb-
medium

PDGFRb-
high

p value*

Age (years)
 ≤ 55 82 (26.9%) 117 (37.4%) 175 (47.2%)
 55 223 (73.1%) 196 (62.6%) 196 (52.8%) < 0.001

Tumor size (mm)
 ≤ 10 94 (35.3%) 63 (24.7%) 83 (25.8%)
 11–15 105 (39.5%) 105 (41.2%) 146 (45.3%)
 16–20 42 (15.8%) 62 (24.3%) 58 (18%)
 > 20 25 (9.4%) 25 (9.8%) 35 (10.9%) 0.037

Histological grade
 I 48 (16.5%) 42 (14%) 56 (15.7%)
 II 182 (62.5%) 189 (62.8%) 197 (55.3%)
 III 61 (21%) 70 (23.3%) 103 (28.9%) 0.13

Subtype
 Luminal A 192 (66.4%) 178 (58.6%) 180 (50.1%)
 Luminal B 67 (23.2%) 81 (26.6%) 110 (30.6%)
 HER2+ 14 (4.8%) 20 (6.6%) 30 (8.4%)
 Triple nega-

tive
16 (5.5%) 25 (8.2%) 39 (10.9%) 0.004

ER status
 Negative 46 (15.1%) 54 (17.3%) 81 (21.8%)
 Positive 259 (84.9%) 259 (82.7%) 290 (78.2%) 0.066

Endocrine therapy
 No 279 (91.5%) 294 (93.9%) 345 (93%)
 Yes 26 (8.5%) 19 (6.1%) 26 (7%) 0.49

Chemotherapy
 No 304 (99.7%) 307 (98.1%) 360 (97%)
 Yes 1 (0.3%) 6 (1.9%) 11 (3%) 0.024

RT treatment
 No 159 (52.1%) 158 (50.5%) 194 (52.3%)
 Yes 146 (47.9%) 155 (49.5%) 177 (47.7%) 0.88

Patients included in the SweBCG91RT study (n= 1178) 

TMA blocks retrieved (n= 1004) 

Treated with breast-conserving 
surgery and included 

in multivariable analysis 
(n= 491) 

Treated with breast-conserving 
surgery + radiotherapy and included 

in multivariable analysis 
(n= 457)

Histological
grade missing 

(n=41) 

Successfully stained 
and scored for PDGFRb (n= 989) 

Fig. 1  CONSORT flowchart. Patients from the Swedish Breast Can-
cer Group 91 Radiotherapy (SweBCG91RT) randomized radio-
therapy trial included in the present biomarker study. RT radio-
therapy, TMA tissue microarray, PDGFRb platelet derived growth 
factor receptor beta
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Correlation analysis between clinicopathologic parameters 
and stromal PDGFRb status was tested using Spearman’s 
Rank test.

Figures of cumulative incidence were created according 
to the method by Fine and Gray [28]. p values for the hazard 
ratio between compared groups were denoted  PCIF in the 
plots. p values < 0.05 were considered significant. STATA 
15.1 was used for analysis (StataCorp. 2017. Stata: Release 
15. Statistical Software. College Station, TX: StataCorp 
LLC).

The proportional hazards assumption was checked graph-
ically and tested with Schoenfeldt’s test. It was violated for 
RT, histological grade, subtype and RT: PDGFRb score and 
these values should thus be interpreted as the mean value 
over 10 years.

Results

Marker evaluation

Out of 1004 cases included in the TMA, 989 cases were 
successfully scored (Figs. 1, 2). Using Cohen’s kappa sta-
tistics, the inter-rater agreement was in the moderate range 
for scoring of the average staining intensity (κ = 0.59) and 
of the positive stroma fraction (κ = 0.45).

Correlation with clinicopathological patient 
characteristics

The distribution of clinicopathological variables can be seen 
in Table 1. A high PDGFRb score was associated with ER 
negativity (Spearman’s ρ = 0.098, p = 0.003), young age 

(ρ = 0.195, p < 0.001), subtype (ρ = 0.142, p < 0.001) and a 
lower overall stroma fraction (ρ = 0.064, p = 0.043) in Spear-
man’s Rank tests (Fig. 3).

Prognostic potential of stromal PDGFRb expression

No prognostic impact was observed for any of the PDG-
FRb score groups with regards to IBTR at 10 years after 
BCS (Fig.  4a, Table  2). For any recurrence, a signifi-
cantly increased risk was detected in univariable analysis 
for patients with a medium (HR 1.58, CI 95% 1.11–2.23, 
p = 0.011) or high PDGFRb score (HR 1.49, CI 95% 
1.06–2.10, p = 0.021) as compared to the PDGFRb low 
score group (Fig. 4b, Table 2). In a multivariable analysis 
including histological grade, age, RT and subtype, the sig-
nificance remained for the PDGFRb medium (HR 1.46, CI 
95% 1.01–2.11, p = 0.042) but not the PDGFRb high score 
group (HR 1.32, CI 95% 0.93–1.88, p = 0.125) (Table 2). 
PDGFRb score was not significantly associated with risk 
of BCSD within 15 years from diagnosis (Fig. 4c, Table 2). 

RT‑predictive potential of stromal PDGFRb 
expression

The benefit of RT regarding the risk of IBTR was significant 
in univariable as well as multivariable analysis including 
histological grade, age and subtype for the PDGFRb low 
[univariable: HR 0.25, CI 95% 0.11–0.56, p < 0.001; multi-
variable: 0.29 (0.12–0.67), p = 0.004] and medium [univari-
able: HR 0.25, CI 95% 0.13–0.48, p < 0.001; multivariable: 
0.31 (0.16–0.59), p < 0.001] score groups but not in the 
PDGFRb high [univariable: HR 0.61, CI 95% 0.35–1.05, 
p = 0.073; multivariable: 0.64 (0.36–1.11), p = 0.110] score 
group at 10 years after BCS (Fig. 5a, Table 3).

Fig. 2  IHC staining and scoring of PDGFRb. Example pictures of 
PDGFRb expression detected by immunohistochemistry (IHC). 
Staining of PDGFRb was performed on tissue microarrays and evalu-

ated by two independent raters for average intensity (0/negative; 1/
low; 2/moderate; 3/high) and positive stroma fraction (0/0%; 1/1–
10%; 2/11–50%; 3/51–75%; 4/76–100%). Scale bar represents 200 μm
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Likewise, the RT benefit regarding the risk for any recur-
rence was less pronounced in the PDGFRb high score group 
[univariable: HR 0.70, CI 95% 0.46–1.06, p = 0.089; mul-
tivariable: 0.75 (0.49–1.15), p = 0.192] as compared to the 
PDGFRb low [univariable: HR 0.50, CI 95% 0.28–0.89, 
p = 0.018; multivariable: 0.57 (0.32–1.04), p = 0.067] 
and medium [univariable: HR 0.37, CI 95% 0.23–0.60, 
p < 0.001; multivariable: 0.46 (0.28–0.75), p = 0.002] score 
groups.

No significant interaction between RT and PDGFRb 
score could however be detected for IBTR (p = 0.153) or 
any recurrence (p = 0.320) (Fig. 5b, Table 3). No benefit 
from RT regarding BCSD was observed for any of the 
PDGFRb score groups at 15 years after breast conserving 
surgery and no significant interaction between PDGFRb 
score and RT was noted for BCSD (p = 0.636) (Fig. 5c, 
Table 3).

Fig. 3  Correlation between 
PDGFRb and clinicopathologic 
parameters. Spearman’s Rank 
test-based correlation analysis 
between clinicopathologic 
parameters and stromal PDG-
FRb status in patients of the 
SweBCG91RT trial. PDGFRb 
score, age, tumor size and over-
all stroma fraction are included 
as continuous variables. Histo-
logical grade comprises grade 
I, II and III. Estrogen receptor 
(ER) status is classified as yes 
or no. Subtype refers to sub-
types Luminal A-like, Luminal 
B-like, HER2 positive or triple 
negative. Numbers indicate 
Spearman’s rho (ρ); *p < 0.05; 
**p < 0.01; ***p < 0.001; 
****p < 0.0001
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Fig. 4  Prognostic impact of PDGFRb. Univariable analysis of cumu-
lative incidence of ipsilateral breast tumor recurrence (IBTR, a), any 
recurrence (allrec, b) and breast cancer specific death (BCSD, c) in 
patients of different PDGFRb score groups. Red lines represent the 

PDGFRb low, blue the medium and orange the high score group. 
Tables indicate numbers of patients at risk. p values are based on the 
cumulative incidence function (CIF) numbers over ten years since 
breast conserving surgery
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Discussion

Our study suggests that patients with higher expression of 
PDGFRb might have an increased risk of any breast cancer 
recurrence, but due to correlation with younger age and ER 
negativity, a function of PDGFRb as independent prognostic 
marker could not be demonstrated. Furthermore, our analy-
ses demonstrated, both univariably as well as multivariably, 
that patients of the high PDGFRb score group derive less 
benefit from adjuvant RT in terms of IBTR as compared to 
the low and medium score groups. However, since the inter-
action test between PDGFRb and RT was not significant, 
our data does not confirm stromal PDGFRb expression as a 
predictive biomarker for RT benefit in early stage invasive 
breast cancer.

PDGFRb is a key regulator of fibroblasts and mural cells 
and has been previously suggested, both by functional and 
correlative studies, to play a role in the progression and 
treatment response of invasive breast cancer [8, 9, 11, 14, 
29]. However, published findings are partly conflicting most 
likely due to study designs not allowing a clear discrimina-
tion of prognostic and treatment related effects. In this study 
we analyzed the prognostic and predictive impact of stromal 
PDGFRb in the randomized SweBCG91RT trial.

PDGFRb has previously been shown to correlate with 
unfavorable clinicopathological variables such as ER 
negativity, younger age and higher histological grade [11, 
14]. These associations were confirmed in our study and 
could explain part of the prognostic effect of PDGFRb 
expression. However, the prognostic influence remained 
significant in multivariable analysis regarding any recur-
rence for the PDGFRb medium score group patients, 
which indicates that PDGFRb can provide independent 
prognostic information. In the present study, a tendency 
towards higher IBTR risk among patients with higher 

PDGFRb expression was also noted, although these results 
were not significant. These results are in line with previous 
reports describing a similar association between high stro-
mal PDGFRb expression and shorter time to recurrence 
in a population-based cohort including both patients with 
negative and positive nodal status as well as patients with 
and without adjuvant endocrine treatment, chemotherapy 
or the combination [11].

PDGFRb is mainly expressed on fibroblasts and vascular 
mural cells, and both stromal cell types are a key source 
of growth factors and cytokines [9, 10]. The secretome of 
cancer associated fibroblasts (CAFs) has been connected 
to therapy resistance in breast cancer [19, 30–33]. In addi-
tion, CAFs can affect other cells of the tumor microenviron-
ment such as immune cells and vascular cells and thereby 
indirectly influence tumor progression and therapy efficacy 
(reviewed in [34–36]). CAFs have been linked to immuno-
suppression, mainly by inhibiting T cell infiltration and acti-
vation [37–41], and tumor-infiltrating lymphocytes (TILs) 
were demonstrated to provide prognostic and treatment 
predictive information in breast cancer [3, 42, 43]. Poten-
tial prognostic and predictive effects of stromal PDGFRb 
expression in the primary tumor could be mediated by parac-
rine acting factors released by the microenvironment which 
act directly or indirectly on the tumor to promote progres-
sion and render tumor cells insensitive to RT.

Activation of PDGFRb, in particular on fibroblasts, has 
also been demonstrated to induce an upregulation of hepato-
cyte growth factor (HGF) and stanniocalcin-1 (STC1), with 
the latter having furthermore been linked to increased distant 
metastasis in several murine cancer models [18, 44–46]. In 
our study, the medium and high PDGFRb groups showed 
an increased propensity for any recurrence in univariable 
analysis, while no significant differences in rate of IBTR 
only were observed between the groups.

Table 2  Prognostic performance of PDGFRb score group in uni- and multivariable Cox regression analysis

p values are based on Wald test; p values < 0.05 in bold text
IBTR ipsilateral breast tumor recurrence, BCSD breast cancer specific death, RT radiotherapy, HR hazard ratio, CI confidence interval

Endpoint PDGFRb score group Univariable HR (95% CI); p value Multivariable incl. RT, grade, age 
group, subtype HR (95% CI); p 
value

IBTR, 10 years Low 1 1
Medium 1.51 (0.99–2.30); 0.057 1.44 (0.92–2.62); 0.111
High 1.33 (0.87–2.02); 0.187 1.20 (0.77–1.89); 0.423

Any recurrence, 10 years Low 1 1
Medium 1.58 (1.11–2.23); 0.011 1.46 (1.01–2.11); 0.042
High 1.49 (1.06–2.10); 0.021 1.32 (0.93–1.88); 0.125

BCSD, 15 years Low 1 1
Medium 1.37 (0.85–2.21); 0.191 1.24 (0.77–2.01); 0.381
High 1.52 (0.96–2.38); 0.075 1.26 (0.79–2.01); 0.333
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In invasive breast cancer, a comprehensive IHC analysis 
approach recently identified four functional different fibro-
blast subsets [38], of which one subset was high in fibro-
blast activation protein (FAP) and PDGFRb expression and 
functionally linked to immunosuppression and pro-invasive 
effects [37, 38]. Another subset, defined by CD29, alpha 
smooth muscle actin (ASMA) and also PDGFRb expres-
sion was assigned to pro-metastatic effects mostly through 
matrix remodeling [37]. A specific functional role of PDG-
FRb expression was however not identified within these 
studies and it is unclear if the prognostic or potentially pre-
dictive effects are mediated directly by PDGFRb expressing 
cells through downstream-signaling or indirectly through an 
effect on other cells of the tumor microenvironment, such 

as TILs. In addition, PDGFRb could simply be a marker for 
a functional fibroblast or vascular mural cell subset with 
distinct effects on tumor progression. However, PDGFRb 
did not correlate positively with the overall stroma frac-
tion. In our cohort, the overall stroma fraction was highest 
among Luminal A tumors and lowest among triple nega-
tive tumors. PDGFRb score showed the opposite distribu-
tion among subtypes and was instead correlated with unfa-
vorable clinicopathological variables. We believe this can 
explain why PDGFRb and overall stroma fraction did not 
correlate. Previous studies have shown that a higher stroma 
fraction is associated with an unfavorable prognosis, par-
ticularly in triple negative tumors [47]. However, among 
ER positive tumors a higher stroma content has also been 

Fig. 5  Radiotherapy response-
predictive potential of stromal 
PDGFRb expression. Uni-
variable analysis of cumulative 
incidence of ipsilateral breast 
tumor recurrence (IBTR, a), any 
recurrence (allrec, b) and breast 
cancer specific death (BCSD, 
c) with or without adjuvant 
radiotherapy (RT) in patients of 
different PDGFRb score groups. 
Red lines represent patients not 
receiving adjuvant RT treatment 
(no RT) and blue lines represent 
adjuvant RT treated patients. 
Tables indicate numbers of 
patients at risk. p values are 
based on the cumulative inci-
dence function (CIF) numbers 
over ten years since breast con-
serving surgery. Hazard ratios 
(HR) are provided for 5, 10 and 
15 year time points
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associated with favorable clinicopathological variables and 
with a better prognosis which conforms with our findings 
[48, 49]. PDGFRb could simply be a marker for a functional 
fibroblast or vascular mural cell subset with distinct effects 
on tumor progression, and our study suggests that it may 
not correlate strongly with overall stroma. Recent single-
cell sequencing data of stroma cells from a murine breast 
cancer model suggested the existence of specific vascular 
and matrix-remodeling CAF subsets [50]. It would therefore 
be of interest to further relate stromal PDGFRb-positivity 
to vessel density as well as abundance and composition of 
extracellular matrix. Additionally, studies applying multi-
plexed panels of markers for fibroblasts and pericytes as 
well as their activation status could provide a more specific 
definition of mesenchymal cell subsets as well as cell type 
stratification and thereby refine the findings of the presented 
study.

A strength of the presented study is the large patient num-
ber and the randomized design of the cohort allowing inves-
tigation of prognostic and predictive effects differentially. 
However, the study is to a certain extent limited through the 
utilization of a TMA format, which, although two cores per 
patient are included, may not sufficiently reflect heterog-
enous PDGFRb expression throughout the tumor tissue. Fur-
thermore, PDGFRb scoring was performed manually by two 
independent raters and despite a moderate interrater agree-
ment, unbiased digital approaches may be more sensitive. 
Initial digital approaches have been described [26, 51, 52] 
but are still under refinement given the fact that especially 
in early stage breast cancers, normal tissue regions very 
often are present and need to be excluded. Of note, in this 
retrospective study, the patients were categorized into PDG-
FRb score groups based on tertiles as a predefined cut-off. 

However, future studies using optimized cut-off strategies 
and independent validation cohorts would be highly war-
ranted to further study the potential RT-predictive nature of 
PDGFRb expression.

In summary, our study suggests that higher stromal PDG-
FRb expression is associated with an increased risk of any 
recurrence, which however can partly be explained by its 
association with estrogen receptor negativity and young age. 
Although a reduced RT benefit among patients with high 
PDGFRb was observed both in uni- as well as multivari-
able analysis, the interaction between PDGFRb and RT was 
not significant. Overall, the presented data motivates the 
experimental investigation of paracrine signaling initiated 
through stromal PDGFRb expression on tumor progression 
and resistance to RT.
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