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Abstract

The �rst part of this thesis is dedicated to the study of anyons and exchange symmetry.

We discuss the theory of identical particles and recap the standard algebraic frame-

work for describing the exchange statistics of anyons. The novel component consists of a

derivation of the fusion structure of anyons from exchange symmetry. In order to achieve

this, we construct a precise notion of exchange symmetry that is compatible with the

spatially localised nature of anyons. In particular, given a system of n quasiparticles,

we show that the action of a speci�c n-braid uniquely speci�es its superselection sectors.

This n-braid satis�es several internal symmetries corresponding to the decompositions

of the n-quasiparticle Hilbert space, and its spectrum is related to the topological spins

of the quasiparticles.

The second part of this thesis is primarily concerned with skein-theoretic aspects of

unitary (braided) fusion categories. Speci�cally, we consider a fusion rule of the form

q ⊗ q ∼= 1 ⊕⊕k
i=1 xi in a unitary fusion category C, and extract information using the

graphical calculus. For instance, we classify all associated skein relations when k = 1, 2

and C is ribbon. In particular, we also consider the instances where q is antisymmetrically

self-dual. Our main results follow from considering the action of a rotation operator on a

�canonical basis�. Assuming self-duality of the summands xi, some general observations

are made e.g. the real-symmetricity of the F -matrix F qqq
q . We then �nd explicit formulae

for F qqq
q when k = 2 and C is ribbon, and see that the spectrum of the rotation operator

distinguishes between the (framed) Kau�man and Dubrovnik link polynomials.
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Notation and Conventions

� In Part I. of this thesis, we follow the physics convention of denoting the `dual' of

an object q by q̄.

� In Part II. of this thesis, we follow the mathematics convention of denoting the

`dual' of an object q by q∗.

� For a complex number z ∈ C, its complex conjugate is written z∗.

� Our diagrams follow the pessimistic (i.e. top-to-bottom) convention.



Introduction

This thesis is divided into two parts:

I. Exchange Symmetry and Topological Quantum Systems

II. Ribbon Categories and Quantum Topology

Do the adjectives `quantum' and `topological' commute? `Topological quantum' describes

topics lying at the intersection between quantum physics and topology e.g. topological

phases of matter2 (TPMs), topological quantum �eld theories (TQFTs) and topological

quantum computation (TQC). On the other hand, quantum topology (and quantum al-

gebra)3 are typically regarded as disciplines within pure mathematics. However, this is

not to say that the two parts of this thesis are disconnected.

The origins of quantum algebra and quantum topology are deeply rooted in quantum

physics. Both �elds have grown to be vast, and their interconnectedness is both over-

whelming and captivating. The study of mathematical and physical structures pertaining

to topological quantum phenomena has fostered a close and productive relationship be-

tween communities of mathematicians and physicists. There is an active exchange of

ideas between these �elds, each propelling the advance of the other. For instance, the

classi�cation programme for TPMs has pro�ted considerably from techniques in category

theory, and the development of quantum algebraic structures has largely been inspired by

exotic symmetries arising from condensed matter systems. Another example is Atiyah's

axiomatisation of TQFTs [Atiyah88]. The list goes on.

The idea of a connection between topology and physics predates the contemporary

2The 2016 Nobel Prize in physics was awarded to Thouless, Haldane, and Kosterlitz for their work
on TPMs.

3The term quantum mathematics has also risen to popularity (as a blanket term for areas lying at
the interface between mathematics and quantum theory).
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notion: Lord Kelvin suggested that di�erent types of knots4 constitute the building

blocks of Nature. While this idea turned out to be incorrect, knots and physics were

reunited in a striking manner near the end of the 20th century, when Witten estab-

lished a connection between the Jones polynomial and Chern-Simons (2 + 1)-TQFTs

[Witten89:I]. The eponymous Jones polynomial had only been discovered shortly before

this [Jones85, Jones87]. The discoveries of Jones and Witten5 triggered an avalanche of

work on quantum invariants and TQFTs.

Anyons

Anyons are the primary objects of physical interest in this thesis. They are quasiparticles

arising in (2 + 1)-dimensional condensed matter systems, and can be sorted into two

classes:

(i) Abelian anyons i.e. quasiparticles that have fractional exchange statistics with other

quasiparticles.6

(ii) Nonabelian anyons i.e. quasiparticles that possibly have higher-dimensional ex-

change statistics with other quasiparticles.

The theoretical origins of anyons can be traced back to Leinaas and Myrheim [LM77].

The name `anyons' was subsequently popularised by Wilczek [Wilc82].

...and Where to Find Them

In 1982, the fractional quantum Hall e�ect (FQHE) was discovered by Störmer, Tsui

and Gossard [STG82].7 A FQHE system consists of a thin, cold gas of electrons con�ned

between two slabs of semiconductor subject to a strong magnetic �eld in the perpendic-

ular direction. Moore and Read subsequently argued that the FQHE should play host to

anyons [MR91]. Since then, it has been predicted that anyons should manifest in various

other (2 + 1)-dimensional condensed matter systems (e.g. topological superconductors).

4That is, knotted vortices in the `aether' (which was believed to exist at that time).
5Both Jones and Witten were awarded the Fields Medal in 1990 for this work.
6These can be compared to solitons (as characterised by Drazin and Johnson) [DJ89] : objects arising

in some medium that (1) are of permanent form, (2) are localised within a region, (3) can interact with
other solitons, and emerge from the collision unchanged except for a phase shift.

7Work for which Störmer and Tsui received the Nobel prize in physics in 1998.
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Two well-known classes of anyon theories are the Ising and Fibonacci theories. It is be-

lieved that Ising anyons should be realised in the ν = 5
2
�lling of the FQHE. It is also

thought that the low-energy excitations arising in the ν = 12
5
�lling should closely re-

semble Fibonacci anyons.

The experimental detection of anyons has proved to be a controversial point in the past,

and the existence of nonabelian anyons has yet to be experimentally veri�ed. On the

other hand, the existence of abelian anyons is now widely accepted by the physics com-

munity, with the strongest evidence yet found in [NLGM20].

Braiding and Fusion

Among the other major themes running through this thesis are those of braiding and

fusion. These are operations that can be performed on a system of anyons. The ap-

propriate algebraic framework for modelling such operations is a unitary braided fusion

category (UBFC). Anyons further possess a rotational degree of freedom, referred to as

twisting. In order for our algebraic framework to capture this `twisting' action, we have

to upgrade our UBFC to a unitary ribbon fusion cateogry (URFC). Algebraically, this

is not a big step up: in fact, the ribbon structure is `already there' (i.e. encoded in the

braiding and fusion operations) in some sense, since a UBFC admits a unique unitary

ribbon structure [ENO05, Gal14].

In Chapter 2, we detail the (skeletal) structure of URFCs. We do so mostly by using the

same language employed by physicists, but provide some category-theoretic remarks and

context along the way. Ultimately, the language is of no consequence, since the mathe-

matical content in which we are interested is the same. In Section 2 of Chapter 4 (i.e.

Paper II), URFCs are reintroduced8 (this time, using some of the same language that is

employed by mathematicians). Nonetheless, the equivalence of both presentations will

be apparent (especially since we work in the skeleton9 of the categories in both parts of

this thesis). A glossary translating between some of the physical and mathematical jar-

gon is provided in Table 5.1.

One of the primary goals of Part I. is to understand why URFCs provide the correct

algebraic framework for understanding the exchange statistics of anyons. The possibility

of fractional statistics in two spatial dimensions is often sketched as follows:

8Some familiarity with the language of tensor categories is assumed.
9A de�nition of the `skeleton' of a category is given in Section 2 of Chapter 4. `Skeletal data' is

de�ned in both Chapters 2 and Chapter 4.
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Figure 1: (i) The process of winding one particle around another can be deformed to
doing nothing at all in 3 or more spatial dimensions. (ii) If we restrict the number of
spatial dimensions to 2, the deformation is no longer possible.

Let P̂ be some 1-dimensional unitary operator describing the evolution induced by the

anticlockwise exchange of two identical particles. The exchange process corresponding to

P̂ 2 is illustrated on the left-hand side of Figure 1(i)-(ii). In case (i), we have P̂ 2 = 1, and

so the only possibilities are that P̂ = +1 and P̂ = −1 (which respectively correspond to

bosonic and fermionic exchange statistics). In case (ii), there is no such restriction on

P̂ 2, and so in principle, we could have P̂ = eiθ for arbitrary statistical angle θ.

There is clearly a vast gulf between the above, and the baroque framework of a URFC.

In Chapter 1, the exchange statistics of identical particles is explored in further detail,

and the above sketch is re�ned. However, this does not get us much closer to the URFC

setting. That the worldlines of particles in two spatial dimensions are given by braids

is clear, but where does fusion come from? In many expositions, fusion is often moti-

vated using the �ux-charge composite toy models. Fusion is also readily apparent in 2D

spin-lattice models such as the toric code. Neither approach is su�cient for explaining

the presence of fusion structure in a general, Hamiltonian-free setting.

How were URFCs originally found to provide the correct framework? Chern-Simons

TQFTs describe the behaviour of low-energy excitations arising in certain condensed

matter systems con�ned to two spatial dimensions (e.g. fractional quantum Hall sys-

tems). These excitations are anyons. A Chern-Simons theory realises a representation

of a 'quantum group' at a root of unity, which carries all the structure of a ribbon fusion

category. Ribbon categories of this kind are called "quantum group categories".

In Paper I (Chapter 3), we derive fusion structure in a completely di�erent way. The

main objective is to derive fusion structure in a general setting (and to further make

contact with the URFC framework), by starting from exchange symmetry and using a

minimal prescription of extra assumptions. We will see that it is the localised nature of

quasiparticles (combined with exchange symmetry) that plays a crucial role in the emer-

gence of fusion structure from exchange symmetry in (2 + 1)-dimensions.
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Skein Theory

Another overarching theme of this thesis is the utility of the graphical calculus. In

Chapter 4, we exploit this calculus and use a rotation operator to study the properties of

certain F -symbols in unitary fusion categories, as well as the skein relations associated

to certain fusion rules in URFCs.

Summary of Content

Chapters with an asterisk indicate that the content is the original work of the author.

Chapters marked with a † indicate that the content is an embedded single-author paper.

Chapters marked with a †† indicate that the content is an embedded paper with a coauthor.

Chapters with no marking indicate that the content is chie�y expository.

� Chapter 1. We discuss the exchange statistics of identical particles in some detail.

� Chapter 2. We give a fairly detailed summary of the algebraic theory of anyons.

� Chapter 3.† This is Paper I [Val21] of the thesis, "Fusion Structure from Exchange

Symmetry in (2+1)-Dimensions".

� Chapter 4.†† This is Paper II [PV20] of the thesis, "Skein-Theoretic Methods for

Unitary Fusion Categories".

� Chapter 5.∗ In Section 5.1, we will use the graphical calculus to look at some

examples of entangling operators. In Section 5.2, we provide some explicit examples

of calculations for the evaluation of link diagrams in End(1): this can be seen as

supplementary to the narrative of Chapter 4.
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Part I.

Exchange Symmetry and Topological

Quantum Systems





1. Identical Particles

In the following, Section 1.1 is based on the exposition in [Simon], Section 1.2 appears

in [Val21] and Section 1.4 follows [Pachos].

1.1 Exchange Trajectories and Path Integrals

In classical mechanics, `particles' are always distinguishable: given n particles, each of

which has con�guration manifold M, they can be distinguished by their trajectories

{γi : I ⊆ R → T ∗M}ni=1. That is, we can track their positions and momenta over time

and distinguish between them accordingly. When we consider the dynamics of particles

in quantum systems, this classical book-keeping scheme is rendered useless.

The state space of an n-particle (quantum) system is given by H =
⊗n

i=1Hi where Hi

is the Hilbert space of states associated to the ith particle. Let |ψ〉 ∈ H be the state

of the system at some �xed time, and suppose the particles lie in Rd (d ≥ 2). Let ∆

denote the subset of points in
(
Rd
)n

where two or more of the xi coincide. Spatially, the

con�guration space of the n particles is
(
Rd
)n −∆. In the position basis,

|ψ〉 =

∫

(Rd)
n−∆

dx1 · · · dxn ψ(x1, . . . ,xn) |x1, . . . ,xn〉 , xi ∈ Rd (1.1.1)

Furthermore, if the particles are identical, we may identify the states {|xs(1), . . . ,xs(n)〉}s∈Sn
(where Sn denotes the permutation group) since they are physically indistinguishable.

Levying this equivalence relation on the points in
(
Rd
)n−∆, we obtain the con�guration

space1 M of the n identical particles. Let us consider the (nonrelativistic) propagator

from point a to b inM: using the path integral formalism,

〈b| Û(tf , ti) |a〉 = N

∫ (b,tf )

(a,ti)

D [γ(t)] e
i
~S[γ(t)] (1.1.2)

1M is also known as the nth unordered con�guration space of Rd.
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where Û(tf , ti) is the time-evolution operator, S[γ(t)] is the classical action of the map

γ(t) : [ti, tf ] → M, and N is a normalisation constant. The propagator allows us to

determine the wavefunction (in the position basis) at time T :

|ψ(T )〉 =

∫∫

M
da db 〈b| Û(T, ti) |a〉 〈a|ψ(ti)〉 |b〉 (1.1.3)

Let Π(a, b) := {γ(t) : [ti, tf ]→M | γ(ti) = a, γ(tf ) = b}. Equation (1.1.2) is a sum over

all paths in Π(a, b). Note that Π(a, a) is the space of all loops in M with basepoint a

(i.e. paths permuting the positions of the n identical particles). The homotopy classes of

the loops are given by the elements of the fudamental group π1(M) of the con�guration

space: these encode the topological features of the exchange trajectories.

π1(M) ∼=




Sn , d ≥ 3

Bn , d = 2
(1.1.4)

where the n-strand braid group is de�ned as

Bn =

〈
σ1, . . . , σn−1

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi , |i− j| ≥ 2

〉
(1.1.5)

and the symmetric group of degree n as

Sn =

〈
s1, . . . , sn−1

s2
i = e

sisi+1si = si+1sisi+1

sisj = sjsi , |i− j| ≥ 2

〉
(1.1.6)

where we use e to denote the identity element of a group.

Figure 1.1: Braids are composed from top-to-bottom, and braid words are read from
right-to-left. The crossing between strands i and i+1 in the braid diagrams corresponding
to σi and σ

−1
i are respectively said to be positive (+1) and negative (−1).
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Figure 1.2: Exchange trajectories in Rd for (a) zero exchanges (left) and two clockwise
exchanges (right), (b) single exchanges. Homotopies `'' lift the paths through the extra
spatial dimension(s) when d ≥ 3.

Remark 1.1. When d = 2, the possible exchange trajectories (as worldlines in R2+1 up

to homotopy) of n identical particles are given by n-braids. This is intuitive. When d ≥ 3,

Figure 1.2 illustrates the equivalence of two successive exchanges of a pair of adjacent

particles to zero exchanges, and equivalently the insensitivity of a particle exchange

to orientation. This corresponds to the epimorphism η : Bn → Sn (whose kernel is

the normal subgroup PBn of n-strand pure braids2). By Alexander's theorem3, this is

equivalent to the fact that there are no nontrivial links in more than 3 spatial dimensions.

There is a bijection between the homotopy classes of paths in Π(a, a) and Π(a, b). The

homotopy classes of paths between any two points inM corresponds to the fundamental

groupoid of the con�guration space: write Π(a, a) = {[g]}g∈π1(M) for any a ∈ M. Then

we write Π(a, b) = {[g](a,b)}g∈π1(M) where [g′](d,b) ◦ [g](a,c) = [g′g](a,b) when c = d (else the

composition is unde�ned). Consider the following ansatz for the propagator:

〈b| Û(tf , ti) |a〉 = N
∑

g∈π1(M)

χ(g)
∑

γ∈[g](a,b)

e
i
~S[γ] (1.1.7)

where χ : π1(M)→ U(1) is a linear representation. To check whether (1.1.7) is permis-

sible, we need to see if it is consistent under composition. Indeed, for ti < tm < tf ,

〈b| Û(tf , ti) |a〉 =

∫

M
dq 〈b| Û(tf , tm) |q〉 〈q| Û(tm, ti) |a〉

∝
∫

M
dq

∑

g2∈π1(M)

χ(g2)
∑

γ2∈[g2](q,b)

e
i
~S[γ2]

∑

g1∈π1(M)

χ(g1)
∑

γ1∈[g1](a,q)

e
i
~S[γ1]

which yields (1.1.7). When d ≥ 3, there are only two permissible representations

χ± : Sn → U(1)

si 7→ ±1
(1.1.8)

2Pure braids are those whose endpoints have the same order as their starting points.
3Any link may be obtained by closing some braid (James W. Alexander II).
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whence the propagator corresponding to χ± is given (up to normalisation) by

∑

γ∈Πeven

e
i
~S[γ] ±

∑

γ∈Πodd

e
i
~S[γ] (1.1.9)

where Πeven and Πodd are the subsets of paths in Π(a, b) respectively realising an even

and odd number of exchanges. Fundamental particles may thus be partitioned into two

classes: bosons and fermions. If two identical bosons are exchanged, the wavefunction is

scaled by +1; if two identical fermions are exchanged, it is scaled by −1. When d = 2,

χ : Bn → U(1)

σi 7→ eiα
(1.1.10)

whence the propagator is given (up to normalisation) by

∑

w∈Z
eiwα

∑

γ∈Πw

e
i
~S[γ] (1.1.11)

where Πw is the subset of paths (n-braids) in Π(a, b) with writhe4 w.

Remark 1.2. We have been considering how the wavefunction of a system of identical

particles evolves under exchanges. The acquired phase5 is called the statistical phase.

We have seen that the exchange evolution depends on the topology of the exchange

trajectories: in particular, (1.1.7) shows that there can be a relative phase between

evolutions along trajectories in distinct homotopy classes, where an evolution along the

trivial class (i.e. no exchanges) is taken to induce a trivial statistical phase. When d ≥ 3,

exchange statistics are either bosonic or fermionic (since the braid group representation

must factor through the symmetric group). When d = 2 we saw that fractional statistics

may be possible: `particles' in two-dimensional systems are thus called anyons [Wilc82].

Further suppose that there is some K-fold degeneracy in the state of the system i.e.

|p〉 =
K∑

j=1

aj |p; j〉 , p ∈M (1.1.12)

where {|p; j〉}j is an orthonormal basis. By exchange symmetry, this degeneracy must

be associated to a global degree of freedom of all n particles. The propagator becomes

〈b; j′| Û(tf , ti) |a; j〉 = N
∑

g∈π1(M)

〈j′| ρ(g) |j〉
∑

γ∈[g](a,b)

e
i
~S[γ] (1.1.13)

4We take the writhe of a braid to be the sum of the signs of its crossings.
5The statistical phase is solely dependent on particle exchanges: the total acquired phase will depend

on more than just this (e.g. the dynamical phase).
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where ρ : π1(M)→ U(K) is a linear representation. For ti < tm < tf , (1.1.13) is

∑

i

∫

M
dq 〈b; j′| Û(tf , tm) |q; i〉 〈q; i| Û(tm, ti) |a; j〉

∝
∑

i

∫

M
dq

∑

g2∈π1(M)

〈j′| ρ(g2) |i〉
∑

γ2∈[g2](q,b)

e
i
~S[γ2]

∑

g1∈π1(M)

〈i| ρ(g1) |j〉
∑

γ1∈[g1](a,q)

e
i
~S[γ1]

∝
∫

M
dq

∑

g1,g2∈π1(M)

〈j′| ρ(g2g1) |j〉
∑

γ2∈[g2](q,b)

∑

γ1∈[g1](a,q)

e
i
~S[γ1+γ2]

whence (1.1.13) is consistent under composition. Thus, the evolution of the system along

a trajectory in homotopy class [g](a,b) ∈ Π(a, b) is given by ρ(g).

Remark 1.3.

(i) When there is no degeneracy present (K = 1), the exchange statistics are called

abelian. When there is degeneracy (K > 1), the statistics are called nonabelian.

(ii) When d ≥ 3, the statistical evolutions given by higher-dimensional representations

of the symmetric group are referred to as parastatistics : this notion appears to

be in con�ict with the classi�cation6 of all fundamental particles as either bosons

or fermions. Taking into consideration some additional constraints7, it has been

shown that this classi�cation holds [DHR71, DHR74, Müg07]. See also [BHS15].

Indeed, all experimental evidence is in accord with this positon.

1.2 Superselection Sectors

Consider a system with Hilbert space H. A superselection rule (SSR) is given by a

normal operator Ĵ : H → H where

[Ô, Ĵ ] = 0 (1.2.1)

for all observables Ô of the system. Let H′ and H′′ be any two distinct eigenspaces of Ĵ

(with corresponding eigenvalues z′, z′′ ∈ C\{0}). For any |ψ′〉 ∈ H′ and |ψ′′〉 ∈ H′′,

z′ 〈ψ′′| Ô |ψ′〉 = 〈ψ′′| ÔĴ |ψ′〉 (1.2.1)
= 〈ψ′′| ĴÔ |ψ′〉 = z′′ 〈ψ′′| Ô |ψ′〉

6Some sources treat this statistical property of identical particles as an axiom of quantum mechanics
(known as the symmetrisation postulate).

7Namely pair creation and annihilation, and locality.
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for any observable Ô on H. Since z′ and z′′ are distinct, we see that

〈ψ′′| Ô |ψ′〉 = 0 (1.2.2)

The eigenspaces of Ĵ are called superselection sectors. The de�ning feature of SSRs is

that they preclude the observation of relative phases between states from distinct super-

selection sectors: let |ψ〉 = α |ψ′〉 + β |ψ′′〉 and |ψ
θ
〉 = α |ψ′〉+ eiθβ |ψ′′〉 be normalised

states. Then

〈Ô〉ψ = 〈Ô〉ψ
θ

= tr(Ôρ̂) (1.2.3)

where ρ̂ = |α|2 |ψ′〉 〈ψ′| + |β|2 |ψ′′〉 〈ψ′′| (i.e. if superpositions ψ
θ
were to exist, we would

be incapable of physically distinguishing them from a statistical mixture).

Examples of SSRs include spin, electric charge and mass8. The spin SSR concerns

the superposition of integer and half-integer spins: by the spin-statistics theorem

(Theorem 1.4), this is equivalent to the boson-fermion SSR (see Section 1.3).9 For our

purposes, it will be useful to think of the intrinsic properties of a particle as correspond-

ing to quantum numbers with an associated SSR. Two particles are identical if all of

their intrinsic properties match exactly (e.g. all electrons are identical).

1.3 Bosons and Fermions

A permutation of n identical particles is indistinguishable from the original con�guration.

Following Section 1.1, we may concisely express exchange symmetry by

[Ô, ρ(g)] = 0 (1.3.1)

for all observables Ô on the n-particle Hilbert space H, and for all g ∈ π1(M) where

ρ : π1(M)→ U(H) is a unitary linear representation as in (1.1.13). Clearly, if

[Ô, ρ(gi)] = 0 (1.3.2)

for all generators gi of π1(M), then (1.3.1) follows. Recall that for n particles in Rd

where d ≥ 3, we have π1(M) ∼= Sn. The eigenvalues of ρ(si) lie in a nonempty subset of

{±1}. We respectively denote the corresponding eigenspaces10 by H±i . Since each such

8Bargmann's mass SSR arises through demanding the Galilean covariance of the Schrödinger equa-
tion: this only pertains to nonrelativistic systems, since Galilean symmetry is superseded by Poincaré
symmetry in special relativity.

9These two equivalent SSRs are sometimes referred to as the univalence SSR.
10Suppose ρ(si) only has one eigenvalue e.g. +1: then we take H−i to be 0-dimensional.
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eigenspace de�nes a superselection sector and the n particles are identical (and are thus

either all bosons or all fermions), ρ must be such that H±i = H±j for all i, j. We thus

have H = H+ ⊕H− (the subscripts are dropped). This is the boson-fermion SSR.

Theorem 1.4 (Spin-Statistics Theorem).11

Particles obeying Bose-Einstein statistics (i.e. bosons) have integer spin, and particles

obeying Fermi-Dirac statistics (i.e. fermions) have half-integer spin.

Principle 1.5 (Pauli Exclusion Principle). 12

No two identical fermions may simultaneously occupy the same quantum state.

Let H(1) denote some 1-particle state space. For a system of n such identical particles,

the state space is generically given by H(n) :=
⊗n

k=1H(1). The Fock space is the space

of all bosonic and fermionic states for an arbitrary number of particles (constructed

from H(1)). Indeed, there is a lot of redundancy in
⊕∞

n=0H(n) since this space contains

states which are neither symmetric nor antisymmetric under exchanges (and thus do not

describe a system of identical particles). The Fock space is written as

H± = H(0) ⊕H(1) ⊕H(2)
± ⊕H(3)

± ⊕ . . . (1.3.3)

where H(n)
+ and H(n)

− respectively denote the space of bosonic and fermionic n-particle

states for n ≥ 2. Let H(1) := spanC{|ϕi〉}i. The vacuum is given by H(0) = spanC{|φ〉}
where |φ〉 is the state with 0 particles in state |ϕi〉 for all i. Note that e.g. |ϕ1, ϕ1〉 ∈ H(2)

+

whereas 2-particle state |ϕ1, ϕ2〉 6∈ H(2)
± is clearly distinguishable under exchanges. Spaces

H(n)
+ and H(n)

− are respectively the symmetric and antisymmetric parts of H(n). That is,

H(n)
+ =

{∑

s∈Sn
|s(ψ)〉 : |ψ〉 ∈ H(n)

}
, H(n)

− =

{∑

s∈Sn
sgn(s) · |s(ψ)〉 : |ψ〉 ∈ H(n)

}
(1.3.4)

where sgn(s) is the sign of the permutation s (which acts linearly) and where for any

basis ket |ϕ〉 = |ϕi1 , . . . , ϕin〉 we have |s(ϕ)〉 = |ϕis(1) , . . . , ϕis(n)〉. In H(n)
− , there clearly

cannot be more than one particle occupying any given |ϕi〉 (consistent with Principle 1.5).

For a system of n identical bosons or fermions, there is typically no subspace describing

11Later, we see an analogous connection for anyons (2.3.4).
12This follows from |ψ〉 |ψ〉 = − |ψ〉 |ψ〉 i.e. there is 0 probability of two identical fermions occupying

the same state. There is no such restriction for bosons, hence the existence of Bose-Einstein condensates.
The Pauli exclusion principle has many important consequences. For instance, it predicts quantum
degeneracy pressure (which plays a role in gravitational collapse), ferromagnetism and the the formation
of elements beyond hydrogen.
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a subsystem of k < n particles.13 This is implicit in the structure of the Fock space14

e.g. H(2)
+ 6⊂ H(3)

+ . Given H(1) = spanC{|0〉 , |1〉}, states such as 1√
2
(|01〉 − |10〉) ∈ H(2)

− do

not describe a physical entanglement since the subsystem for an individual particle is

physically inaccessible [Zan02]. Nonetheless, there exist circumstances under which some

notion of distinguishability amongst n identical bosons or fermions may be recovered: for

instance, when their wavefunctions have (approximately) disjoint compact support. This

can happen if the particles are far apart, or separated by su�ciently strong potentials.15

1.4 Anyons

As is communicated by the omnipresence of bosons and fermions (amongst other things),

our cosmos appears to exist in at least three spatial dimensions. This means that anyons

cannot be fundamental particles.

(Q) How can we implement a two-dimensional quantum system?

Consider a particle moving in a potential of the form

V (r) = Vxy(x, y) + Vz(z) (1.4.1)

where r = (x, y, z) ∈ R3. It is easily seen (Appendix A) that the ansatz (1.4.2) solves

the Schrödinger equation subject to potential (1.4.1).

ψ(r) = ψxy(x, y)ψz(z) (1.4.2)

Consider a many-particle system with each constituent subject to the above potential.

Though the particles lie in spatial dimension greater than two, their joint wavefunction

has planar dynamics entirely decoupled from the z-direction. Anyons may emerge as

spatially localised properties of this two-dimensional wavefunction, and since they arise

from the same wavefunction, they are correlated. Moreover, anyons are not particles in

the usual sense, but are emergent phenomena of the wavefunction that can be treated

as such. For this reason, they are referred to as quasiparticles.16. These quasiparticles

have no internal degrees of freedom, and may thus be considered identical.

13This is in contrast to anyonic systems which have a well-de�ned description of state spaces for
particle subsystems (since anyons are spatially localised).

14As a consequence of the mass SSR, observe that the sectors of the Fock space correspond to a SSR
for the particle number operator in the nonrelativistic limit.

15E.g. the toric code is built from a system of localised spins that fall into the latter category.
16By abuse of terminology, we also refer to anyons as particles (for the sake of brevity).



1.4 Anyons 15

Figure 1.3: (a) Particles of microsystem have planar dynamics described by a two-
dimensional wavefunction. (b) Anyons identi�ed as localised excitations. (c) Ignore
microsystem and treat quasiparticles as elementary particles in two-dimensional space.

Since the wavefunction is the medium in which these quasiparticles emerge (we will

always assume the system to be in the ground state), their stability relies on having

a large energy gap separating the wavefunction from the excited states: such a gap

can be achieved by a strongly con�ning potential.17 These ideas translate practically.

For instance, quantum Hall systems (a prime candidate for the manufacture of anyons)

consist of a thin, cold gas of electrons con�ned between two slabs of semiconductor

subject to a strong magnetic �eld in the perpendicular direction.

17By �strongly con�ning�, we mean a potential whose value is negligible along a small interval of
some axis compared to its value outside of it. To illustrate this point more concretely, we can crudely
approximate such a potential by an in�nite well with potential vanishing in the region [0, L]. The

eigenenergies of a particle of mass m in the well are given by En = n2π2~2

2mL2 for n ≥ 1. The greater the
con�nement, the closer L is to zero, and the larger the energy gap between E1 and E2.
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2. The Algebraic Theory of Anyons

In this chapter, we summarise the standard algebraic framework for modelling theories

of anyons. The details that we provide here are not exhaustive (for instance, we do not

discuss chiral central charge), but encompass most of the salient points. Parts of our ex-

position are based on [Bonderson, Kitaev06, Preskill, Simon, Wang].

We begin by describing the fusion rules (and associated properties) of anyons. While the

motivation for conditions (F1)-(F5) may appear unclear, we remind the reader that this

is one of the objectives of Chapter 3. Beyond fusion, their are two other key operations

that a theory of anyons should describe:

(i) Braiding. We wish to understand the exchange statistics of anyons.

(ii) Twisting. Anyons possess a spin degree of freedom. Our algebraic model must

therefore be able to describe 2π self-rotations of anyons.

Braiding and twisting will correspond to unitary operators acting on the state space of

the anyonic system. In order to obtain a concrete description of these operators, we must

work to �nd a state vector description of anyonic systems: we will see that there is some

inherent freedom in such a description. Furthermore, when we consider systems of more

than two anyons, �xing a basis on the state space will naturally lead us to an operator

description of associativity. In our pursuit of this framework, we will make substantial

use of a graphical calculus, and we will see that the resulting algebraic description of

anyons encodes a wealth of information.
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2.1 Fusion

2.1.1 Fusion Rules

The basic input data for a theory of anyons is given by

(i) A �nite set of labels L = {qi}ni=0

(ii) A set of �nite nonnegative integers {Nab
c }a,b,c∈L called fusion coe�cients

Together, these encode the fusion rules of a theory. For instance, the fusion rule for

labels a and b is written

a× b =
∑

c∈L
Nab
c c (2.1.1)

The labels index the possible superselection sectors within a given theory, and the fusion

rules describe the possible ways in which two such sectors can be merged. The cardi-

nality of L is called the rank of the theory. Labels are also referred to as (topological)

charges and should be thought of as the di�erent 'types' of anyons that may be realised

within the theory.1 From this perspective, the fusion of two anyons should be thought

of as bringing them su�ciently close together so that they may be treated as a localised

object whose aggregate charge and exchange statistics may be considered.2 Then `addi-

tion' on the right-hand side of (2.1.1) should be considered as concatenating all possible

fusion outcomes for a and b. In particular, Nab
c = k > 1 means that a and b may be

fused to c in k physically distinguishable ways.

The fusion rules for a theory of anyons must satisfy (F1)-(F5).

(F1) Existence of identity: Any given theory comes equipped with the trivial label 1

(typically indexed by 0 in L)3 which generically represents the vacuum. We have

1× a = a× 1 = a (2.1.2)

for any a ∈ L. In terms of the fusion coe�cients,

N0a
b = Na0

b = δab (2.1.3)

1We will use the terms label, charge and anyon interchangeably.
2For a familiar analogy, recall that an even number of fermions will collectively behave as a boson.
30 and 1 will be used interchangeably.
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(F2) Existence of fusion channel: Any pair of anyons may be fused i.e. for any a, b ∈ L

∑

c

Nab
c ≥ 1 (2.1.4)

(F3) Existence of unique dual: For any a ∈ L there exists unique ā ∈ L such that

a× ā = ā× a = 1 + . . . (2.1.5)

In terms of the fusion coe�cients,

Nab
0 = N ba

0 = δbā (2.1.6)

The label ā is called the dual (or conjugate) charge of a and is considered to be the

`antiparticle' (or `anti-anyon') of a (since the pair may annihilate to the vacuum).

(F4) Associativity: For any a, b, c ∈ L we have

(a× b)× c = a× (b× c) (2.1.7)

In terms of the fusion coe�cients, for each d ∈ L we have

∑

e

Nab
e N

ec
d =

∑

f

Naf
d N bc

f (2.1.8)

Associativity tells us that the possible total fusion outcomes do not depend on the

order in which pairs of anyons are fused.

(F5) Commutativity: For any a, b ∈ L we have

a× b = b× a (2.1.9)

In terms of the fusion coe�cients,

Nab
c = N ba

c (2.1.10)

Commutativity tells us that permuting the order of anyons does not a�ect the

possible total fusion outcomes.

De�nition 2.1. The charge conjugation matrix C for a theory of anyons is a symmetric

binary matrix whose entries are given by [C]ab = δbā for a, b ∈ L.

Terminology 2.2.
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(i) A theory of anyons for which Nab
c ∈ {0, 1} for all a, b, c ∈ L is called multiplicity-

free.

(ii) A label a is called self-dual (or self-conjugate) if ā = a. A theory for which C = I

is called self-dual.

Remark 2.3. Although any theory of anyons has an associated set of fusion rules, the

converse is generally not true. In the case that a set of fusion rules does give rise to a

consistent theory of anyons, there is typically more than one such associated theory.

2.1.2 Fusion Spaces

The Hilbert space V ab associated to a pair of anyons a and b can be decomposed into its

constituent superselection sectors as

V ab =
⊕

c

V ab
c , dim(V ab

c ) = Nab
c (2.1.11)

Its constituent states are called fusion states and the spaces are referred to as fusion

spaces. Given any fusion space V ab
c , we will �x an orthonormal basis {|ab→ c;µ〉}µ of

fusion states.

Figure 2.1: The state |ab→ c;µ〉 is diagrammatically represented by a trivalent vertex.

Remark 2.4. (Orientation of edges). We adopt the pessimistic convention for our

diagrams. Speci�cally, any given edge will be accompanied by a label (unless it is obvious

what the label should be) and should be interpreted as running from top-to-bottom (i.e.

the time axis runs downwards). When a label is self-dual, the orientation does not

matter. In some instances, we may opt to append arrows to our edges for clarity.

The dual space of a fusion space V ab
c is written V c

ab and may be interpreted as a `splitting

space'. Diagrammatically, the splitting state 〈ab→ c;µ| is given by inverting the trivalent
vertex for the fusion state |ab→ c;µ〉.

(2.1.12)
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Fusion coe�cients may thus equivalently be thought of `splitting coe�cients'. Given an

orthonormal basis, we can use the graphical calculus to express the inner product and

completeness relation on V ab :

(2.1.13)

Remark 2.5. (Normalisation and gauge freedom).

(i) We will assume that our trivalent vertices implicitly carry a normalisation. Nor-

malisation of trivalent vertices in diagrams is not implicit after Section 2.1.8 unless

stated otherwise.

(ii) Observe that there is a U(n) freedom associated to �xing an orthonormal basis on

V ab
c (where n = Nab

c ). This gives rise to some redundancy in our description. This

is further discussed in Section 2.4.

Figure 2.2: The trivial label will be denoted by either a dashed line or nothing. Diagrams
for the pair-creation and annihilation of a and ā are shown above.

Terminology 2.6. Fusion spaces of the form V ab
c or V c

ab are called triangular spaces.

2.1.3 Fusing Multiple Charges

Consider a collection q1, q2, . . . , qn of charges. By (F4), we know that the possible total

fusion outcomes are independent of the order in which the charges are fused. The fusion

space of this system may thus be written

V q1q2···qn =
⊕

Q

V q1q2···qn
Q (2.1.14)

where Q indexes the possible total fusion outcomes. This space can be understood in

terms of the triangular spaces that we have already encountered. In order to do so, we
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must choose the order in which the charges are fused: this can be seen as �xing a full

rooted binary tree with n leaves.

Figure 2.3: The fusion trees in (i)-(iv) respectively depict the ways in which 1, 2, 3 and
4 particles can be fused. For 5 particles there are 14 trees and for 6 there are 42.

Remark 2.7. The number of fusion trees for n particles is given by the (n−1)th Catalan

number4 Cn−1 where Cn = 1
n+1

(
2n

n

)
. For a derivation, see Appendix B. One might

further wonder how many fusion trees there are for other (cellulated) surfaces: we found

an answer to this question for the annulus. The number of fusion trees for k particles on

the annulus is given by NCk, where

NCk = 3k−2 +
k−4∑

l=0

3l
2(k − l − 3)

(k − l − 1)(k − l)

(
2(k − l − 2)

k − l − 2

)
, k ≥ 4 (2.1.15)

and NC1 = NC2 = 1, NC3 = 3. We call NCk the kth necklace Catalan number. Sur-

prisingly, this was a previously unarchived sequence (which now has an OEIS entry)

[A291292].

For instance, consider the fusion space V abc. The two trees in Figure 2.3(iii) respectively

specify decompositions

V abc ∼=
⊕

q,e

V ab
e ⊗ V ec

q , V abc ∼=
⊕

q,f

V af
q ⊗ V bc

f (2.1.16)

For the fusion space V abcd e.g. the 1st, 3rd and 4th trees in Figure 2.3(iv) respectively

specify decompositions

V abcd ∼=
⊕

q,e

V abc
e ⊗ V ed

q
∼=
⊕

q,e,f

V ab
e ⊗ V ec

f ⊗ V fd
q (2.1.17a)

V abcd ∼=
⊕

q,f

V abf
q ⊗ V cd

f
∼=
⊕

q,e,f

V ab
e ⊗ V ef

q ⊗ V cd
f (2.1.17b)

V abcd ∼=
⊕

q,f

V af
q ⊗ V bcd

f
∼=
⊕

q,e,f

V af
q ⊗ V bc

e ⊗ V ed
f (2.1.17c)

4The Catalan numbers are ubiquitous. This is concretely re�ected by the fact that they are "probably
the longest entry in the OEIS" [A000108].
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In the diagrammatic formalism the orthonormal basis for e.g the �rst decomposition of

V abc in (2.1.16) is given by

(2.1.18)

where µ runs over indices 1 to Nab
e and ν runs over indices 1 to N ec

q . Fusion diagrams

for di�erent decompositions and more charges are drawn analogously.

Terminology 2.8.

(i) Fusion states describing the fusion of a collection of charges in a speci�ed order

with all fusion outcomes and trivalent vertices assigned a de�nite label (e.g. as in

(2.1.18)) are sometimes referred to as fusion channels.

(ii) Two adjacent particles are said to be in a direct fusion channel if they are fused

immediately. E.g. for the decomposition speci�ed in (2.1.18), a and b are in a

direct fusion channel whereas b and c are not.

Since we always have the freedom to insert the trivial charge anywhere, we must have

dim(V ab
c ) = dim(V a0b

c ) = dim(V 0ab
c ) = dim(V ab0

c ) (2.1.19)

Associativity and (2.1.19) tell us that Na0
a N

ab
c = Nab

c N
0b
b = Nab

c and so Na0
a = N b0

b = 1

for all a, b (which is consistent with (F1)). Following the presentation in [Kitaev06],

write V a0
a = spanC{|αa〉} and V 0b

b = spanC{|βb〉} where |αa〉 and |βb〉 are unit vectors.

The relation between the spaces in (2.1.19) is characterised by trivial isomorphisms

αq : C→ V q0
q

z 7→ z |αq〉
βq : C→ V 0q

q

z 7→ z |βq〉
(2.1.20)

e.g. V ab
c

αa∼−→ V a0
a ⊗ V ab

c and V ab
c

βb∼−→ V ab
c ⊗ V 0b

b .

Remark 2.9. (Localised superselection sectors and superpositions). Consider

a k-particle subsystem of n-particle system q1, q2, . . . , qn where n > 2 and 1 < k < n.

Suppose the possible total charges of the subsystem are given by L′ ⊆ L and that |L′| > 1.

While the elements of L′ correspond to superselection sectors locally (i.e. with respect

to the k-particle subsystem), they do not de�ne superselection sectors in the context of
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the larger system. E.g. take

V q1···qn ∼=
⊕

Q,X

V q1···qk
X ⊗ V Xqk+1···qn

Q (2.1.21)

where L′ consists of the labels X for which V
Xqk+1···qn
Q is nonzero. Indeed, the superse-

lection sectors {V q1···qk
X }X∈L′ of the subsystem are entangled with the rest of the system

in (2.1.21). Crucially, this means that when we consider fusion states associated to the

larger system, it is possible to observe linear superpositions over the superselection sec-

tors of the subsystem. Typically, interactions between the subsystem and the rest of

the system induce transitions between superselection sectors of the subsystem. On the

other hand, Q indexes the global superselection sectors in (2.1.21). We cannot observe

superpositions over the spaces {V q1···qn
Q }Q whence the total charge Q of the whole system

is �xed e.g. if q1, · · · , qn are initialised from the vacuum then the charge of the whole

system is trivial. This can be viewed as conservation of charge.

2.1.4 F-Matrices

For an n-particle fusion space V q1...qn let D1 and D2 be decompositions of this space

corresponding to distinct fusion trees. By associativity, we have an isomorphism

F : D1 → D2 (2.1.22)

By �xing a basis of fusion states on the constituent triangular spaces for D1 and D2

respectively, we can obtain a matrix representation of F . Note that this is simply a

change of basis matrix on V q1...qn . Further observe that F is given by any sequence of

so-called F-moves that transform between decompositions of the form

Such transformations are realised by the F-matrices of a theory. These are matrices F abc
d

which are automorphisms on V abc
d for any a, b, c, d ∈ L where

F abc
d :

⊕

e∈L
V ab
e ⊗ V ec

d
∼−→
⊕

f∈L
V af
d ⊗ V bc

f (2.1.23)

That is, F abc
d is a unitary matrix transforming between orthonormal bases

{
|ab→ e;µ1〉 |ec→ d;µ2〉

}
e,µ1,µ2

and {|af → d; ν2〉 |bc→ f ; ν1〉}f,ν1,ν2 (2.1.24)
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In the graphical calculus,

(2.1.25)

Terminology 2.10.

(i) The distinct fusion trees associated to a fusion space specify distinct bases on the

fusion space and are thus also referred to as fusion bases.

(ii) The entries of F -matrices are called F -symbols (or 6j-symbols).

2.1.5 Coherence I: Pentagon and Triangle Equations

Certain maps between fusion spaces must be `compatible' with one another. That is,

it is sometimes required that all distinct sequences of isomorphisms between two given

spaces should coincide: such compatibility requirements are called coherence conditions.

Recall the isomorphism F from (2.1.22). It may be possible that multiple distinct se-

quences of F -moves realise F . Having �xed a basis on the triangular spaces, the matrix

representation of F must be the same for all such sequences. Remarkably, this coher-

ence condition is ful�lled if all F -symbols satisfy the pentagon equation (2.1.29) below,

which may be written

∑

p,r

(F abr
e ⊗ idV cdr )(idV abp ⊗F pcd

e ) =
∑

q,s,t

(idV ase ⊗F bcd
s )(F atd

e ⊗ idV bct )(F abc
q ⊗ idV qde ) (2.1.26)

for all a, b, c, d, e ∈ L. Fixing the fusion states in the initial and terminal fusion basis, we

obtain an entry-wise form of (2.1.26) which is useful for direct calculations. Fix initial

state

|ab→ p;α〉 |pc→ q; β〉 |qd→ e;λ〉

and terminal state

|as→ e; ρ〉 |br → s; δ〉 |cd→ r; γ〉
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This gives us

∑

σ

[
F abr
e

]
(s,δ,ρ)(p,α,σ)

[
F pcd
e

]
(r,γ,σ)(q,β,λ)

=
∑

t,µ,ν,η

[
F bcd
s

]
(r,γ,δ)(t,µ,η)

[
F atd
e

]
(s,η,ρ)(q,ν,λ)

[
F abc
q

]
(t,µ,ν)(p,α,β)

(2.1.27)

In the multiplicity-free case, (2.1.27) is simply

[
F abr
e

]
sp

[
F pcd
e

]
rq

=
∑

t

[
F bcd
s

]
rt

[
F atd
e

]
sq

[
F abc
q

]
tp

(2.1.28)

The pentagon equation:

commutes for all a, b, c, d, e ∈ L.

(2.1.29)
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Figure 2.4: An illustration of the fusion trees in (2.1.29).

This pentagon equation has a nice interpretation in terms of associahedra (convex poly-

topes whose vertices and edges respectively correspond to distinct fusion bases and F -

moves between them); see [Kitaev06].

All isomorphisms α and β from (2.1.20) must be compatible with the associativity of

fusion (F-moves). This coherence condition is ful�lled if the triangle equations (2.1.30)

are satis�ed.

The triangle equations:

commute for all a, b, c ∈ L.

(2.1.30)

It can be shown that triangle equations (2.1.30) (ii)-(iii) follow as corollaries of the

"fundamental triangle equation" (i) and the pentagon equation [Kitaev06, Lemma E.2.].
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Figure 2.5: An illustration of the fusion trees in (2.1.30).

Remark 2.11. The fundamental triangle equation reads

F a0b
c (|αa〉 |ψ〉) = |ψ〉 |βb〉 , |ψ〉 ∈ V ab

c (2.1.31)

Considering the matrix form of (2.1.31), |αa〉 and |βb〉 become identi�ed with 1C as per

(2.1.20). This means that F a0b
c must be the identity matrix. It follows that all F -matrices

of the form F a0b
c , F 0ab

c and F ab0
c correspond to the identity map on their respective spaces

(and are given by the identity matrix of rank Nab
c ), and that the triangle equations will

be trivially satis�ed.

2.1.6 Pivotal Identity and Frobenius-Schur Indicator

For a, b, c ∈ L we de�ne linear ("leg-bending") maps5 Kab
c and Labc ,

(2.1.32)

These are clearly invertible (whence Nab
c = N āc

b = N cb̄
a ). We have

(2.1.33)

5In [Bonderson, Kitaev06] and other sources, these maps are respectively written Aabc and Babc .
Unlike in [Bonderson], said maps are assumed to be diagonal in [Kitaev06]; here, it will su�ce to follow
the presentation from the latter.
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where the isomorphisms γ1 := Kbc̄
ā ◦
(
Lbc̄ā
)−1◦Kab

c and γ2 := Lc̄ab ◦(K c̄a
b )−1◦Labc correspond

to the CPT symmetry of a triangular space. In particular, in [Kitaev06, Theorem E.6.] it

is shown that the leg-bending maps are unitary, and that γ1, γ2 are unitary and coincide6.

Applying the map γ−1
2 ◦ γ1 to a trivalent vertex, we arrive at the pivotal identity shown

in Figure 2.6 below.

Figure 2.6: The "pivotal identity" tells us that we have equivalence under 2π-rotations
of trivalent vertices. The clockwise version of this can be seen by applying γ−1

1 ◦ γ2.

Let us consider the following process involving a creation and an annihilation:

(2.1.34)

Viewing the distortion of the worldline of a as an operator,

(2.1.35)

Noting that the domain is isomorphic to V a0
a
∼= C and the codomain is V aā

0 ⊗ V 0
āa
∼= C,

(2.1.36)

where ta ∈ C and (ii) is simply the adjoint of (i). The pivotal identity is useful for

proving some properties of ta. Firstly, note that applying the pivotal identity to a 'cap'

gives

(2.1.37)

6This is equivalent to the statement that a unitary fusion category admits a pivotal structure. It is
conjectured that every fusion category admits a pivotal structure [ENO05].
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which allows us to deduce the following identities.

(2.1.38)

Proposition 2.12. (i) |ta| = 1 , (ii) tā = t∗a

Proof. In the following, we will use the identities (2.1.38).

(i) Let t̃a := |ta|2. Then

The result follows (noting the loop is nonzero since it can be understood as the

squared norm of a nonzero vector in V a∗a
0 ).

(ii) Observe that

whence the result follows by (i).

The quantity ta is called the pivotal coe�cient of a. When a = ā, ta is the Frobenius-

Schur indicator and is written κa = ta. In particular, note that

κa = ±1 (2.1.39)

Remark 2.13.
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(i) It is straightforward to show that ta is gauge-invariant if and only if a = ā (and so

the Frobenius-Schur indicator κa is a �xed property of a self-dual anyon a.). When

a is non self-dual, it is typical to �x the gauge such that ta = 1. Working in the

appropriate gauge, we may thus always straighten distortions of the form (2.1.34)

in our calculus, unless a is self-dual with κa = −1.

(ii) By decorating `caps' and `cups' (i.e. creations and annihilations) with an extra

degree of freedom (of no physical signi�cance), it is possible to formulate a version

of the graphical calculus where distortions of the form (2.1.34) can always be

straightened. This scheme is described in [Kitaev06, Section E.2.2].

(iii) Pivotality is equivalent to the existence of of a root of unity ta for each a ∈ L

satisfying the identities in Proposition 2.12 and t−1
a t−1

b tc = [F abc̄
0 ]āc[F

bc̄a
0 ]āa[F

c̄ab
0 ]b̄b

[Wang].

Terminology 2.14. A theory of anyons is called unimodal if κa = 1 for each a ∈ L.

Conjecture 2.15. [Wang] For any self-dual q ∈ L such that Naā
q 6= 0 for some a ∈ L, it

holds that κq = 1 .7

2.1.7 Symmetries of Fusion Coe�cients

The symmetries of the fusion coe�cients for any given theory of anyons can be sum-

marised by the following three identities for all a, b, c ∈ L.

Nab
c = N ba

c (2.1.40a)

Nab
c = N bc̄

ā = N c̄a
b̄ (2.1.40b)

Nab
c = N b̄ā

c̄ (2.1.40c)

Note that (2.1.40a) is just (F5), and that (2.1.40c) corresponds to the isomorphism γ1

illustrated in (2.1.33). Identity (2.1.40b) can be seen as a simple consequence of (F3)

and (F4) i.e. from Nab
c̄ N

c̄c
0 = Naā

0 N bc
ā .

7This conjecture is actually believed to hold in the more general setting of pivotal fusion categories.
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2.1.8 Sphericality, Quantum Dimension and Normalisation

Any theory of anyons satis�es the spherical property. In the graphical calculus, this is

expressed as

(2.1.41)

for any q ∈ L and permissible diagram f . The spherical property can be attributed to

the `twisting' degree of freedom possessed by anyons.8

Thus far, we have assumed that our trivalent vertices carry an implicit normalisation.

Let us relax this assumption. Recall the (Hermitian) inner product from (2.1.13)(i).

Computing the squared norm of a cup in V q∗q
0 , we write

(2.1.42)

where dq ∈ R>0 is called the quantum dimension of q. As an immediate consequence of

sphericality, we have that

dq = dq̄ (2.1.43)

The total quantum dimension of a theory of anyons is de�ned as

D =
∑

q∈L

√
d2
q (2.1.44)

Remark 2.16. (Normalisation of trivalent vertices).

(i) Following (2.1.42), the normalisation factor for any cap or cup associated to q is

given by d
− 1

2
q . Similarly, trivalent vertices are assigned a consistent normalisation

factor; the convention for this normalisation is

(2.1.45)

8Mathematically, this view is justi�ed by observing that a ribbon fusion category is precisely a
spherical braided fusion category. Furthermore, a unitary braided fusion category admits a unique
unitary ribbon structure [ENO05, Gal14].
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Further details on this choice of normalisation can be found in Appendix B of

Chapter 4.

(ii) Unless stated otherwise, we shall henceforth assume that all trivalent vertices (in-

cluding caps and cups) appearing in our graphical calculus are unnormalised. For

instance, we now have that

(2.1.46)

It is easy to check that the F -symbols (2.1.25) are una�ected by our normalisation.

(iii) It is important to note that the annihilation and creation events in distortions of

the form (2.1.34) are not regarded as trivalent vertices ; as a consequence of the

pivotal identity, (2.1.34) is just a straight line (up to a pivotal coe�cient). For this

reason, one should never assign any normalisation factors to such caps and cups.

As an example, consider some physical process that corresponds to a knot K in

the graphical calculus (oriented and labelled by q ∈ L). In order to normalise the

knot, we always scale it by a factor of d
−B(K)
q where B denotes the bridge number.

Proposition 2.17.

dadb =
∑

c

Nab
c dc (2.1.47)

Proof.

where the �rst and third equalities respectively use the completeness relation and inner

product, and the deformation in the second equality can be seen to follow from the

pivotal identity (see Figure 2.7 below).
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Figure 2.7: Illustration of how pivotality can be applied in the proof of Proposition 2.17.
One of the trivalent vertices has been circled for ease of interpretation. A slightly less
diagrammatic proof (using the leg-bending maps) can be found in [Wolf]. The depicted
deformation is a standard move that is frequently used in the graphical calculus.

From (2.1.47), it is clear that

d0 = 1 (2.1.48)

De�nition 2.18. The fusion matrix Na of a ∈ L is given by [Na]bc = Nab
c .

Actually, (2.1.47) tells us that we can deduce the quantum dimensions of a theory given

its fusion rules. This can be seen as follows. Let k be the rank of the theory and assign

L an index set {0, 1, . . . , k− 1}. Letting j denote the index for b ∈ L, note that (2.1.47)

is the jth row of the eigenvalue equation

Nad = dad (2.1.49)

where d = (d0, . . . , dk−1)T ∈ Ck. The Frobenius-Perron theorem for nonnegative matrices

tells us that a fusion matrix has an eigenvalue λ′ ∈ R>0 such that all other eigenvalues

λ satisfy |λ| ≤ λ′. Furthermore, λ′ has algebraic and geometric multiplicity one (i.e.

λ′ is unique and nondegenerate), and has a corresponding eigenvector x all of whose

components lie in R>0 (i.e. a `positive eigenvector'). Any other positive eigenvector of

the fusion matrix is a multiple of x. The eigenvalue λ′ is called the Frobenius-Perron

eigenvalue. Inspecting (2.1.49), we see that da is the Frobenius-Perron eigenvalue of Na,

and that each fusion matrix has the (normalised) positive eigenvector d\D corresponding

to its Frobenius-Perron eigenvalue.9 From this point of view, the triviality of d0 is an

obvious consequence of N1 being the identity matrix. It is easy to see that

N ā = (Na)T = CNaC (2.1.50)

9Mathematicians call the Frobenius-Perron eigenvalue of Na the Frobenius-Perron dimension of a
in order to distinguish it from the quantum dimension da. This is since these two quantities may di�er
by a sign in the more general setting of a (spherical) fusion category. This distinction is not necessary
for our purposes as we are implicitly working within the con�nes of a unitary fusion category: quantum
mechanics demands the presence of a Hermitian inner product on the triangular spaces (which ensures
that the quantum dimensions are positive), and so the quantum dimension will always coincide with
the Frobenius-Perron dimension.
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Then (2.1.43) can also be seen by noting that a (fusion) matrix and its transpose have

the same spectrum. It is also straightforward to check that the dimension of the fusion

space of n charges a in superselection sector b is given by

dim(V a···a
b ) =

[
(Na)n−1

]
ab

(2.1.51)

Further note that if a is self-dual, then Na is symmetric whence all of its eigenvalues are

real; it follows that all eigenvalues λ (excluding the Frobenius-Perron eigenvalue) of Na

satisfy |λ| < da. Since N
a is unitarily diagonalisable, then for large n

(Na)n ∼ dnaPd (2.1.52)

(where Pd is the orthogonal projector onto d\D) since all other terms in the diagonali-

sation become negligible for large n. Plugging (2.1.52) into (2.1.51), we see that

dim(V a···a
b ) ∼ dnadb

D2
(2.1.53)

Finally, note the following key relationship between the quantum dimension da and the

F -symbol [F aāa
a ]00.

from which it follows that

[F aāa
a ]00 =

ta
da

(2.1.54)

and that t0 = 1. There are various other identities relating F -symbols and quantum

dimensions; for instance, the leg-bending maps can be understood in terms of F -symbols

and quantum dimensions (see e.g. [Bonderson, Wolf]).

2.2 Braiding

For a theory of anyons, one of the most valuable (if not the most valuable) pieces of data

is the exchange statistics amongst its constituent charges. Speci�cally, we want explicit

matrix representations for exchange operators between pairs of anyons. The �rst thing

to note is that in order to obtain matrix representations, we must �x a basis on the

pertinent fusion space. Doing so involves
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(a) Specifying a fusion basis

(b) Fixing a basis on the triangular spaces

From a practical perspective, point (a) can be seen as �xing a measurement basis (which

simply corresponds to specifying the order in which we measure the fusion outcomes

of a system of anyons). However, point (b) corresponds to a certain degeneracy in

our algebraic description. If our exchange matrices depend on some arti�cial choice of

basis, can they tell us anything about what we might expect to observe? This is further

addressed in Section 2.4.

Returning to point (a), we will see that for a given pair of anyons, it su�ces to consider

their exchange matrix in a fusion basis where the pair is in a direct fusion channel (this

is called an R-matrix ). The exchange matrix for a pair of anyons in an indirect fusion

channel can then be found by conjugating their R-matrix by some appropriate sequence

of F -matrices.

2.2.1 R-Matrices

The R-matrix Rab
c describes the clockwise exchange of two charges a and b in a direct

fusion channel of total charge c is an isomorphism

Rab
c : V ab

c
∼→ V ba

c (2.2.1)

Specifying a basis on the spaces in (2.2.1), the action of Rab
c is given by

(2.2.2)

in the graphical calculus. We may also de�ne a matrix

Rab : V ab ∼→ V ba (2.2.3)

where Rab :=
⊕

cR
ab
c is block-diagonal with block dimensions {Nab

c }c . We similarly let

(R−1)ab denote the anticlockwise exchange of a and b i.e.

(Rab)−1 = (R−1)ba (2.2.4)
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where

(2.2.5)

Remark 2.19.

(i) Since the R-matrices for a theory of anyons correspond to (statistical) evolutions

in a closed quantum system, they are unitary.

(ii) Braiding with the vacuum is trivial (it is equivalent to doing nothing) i.e.

Ra0
a = R0a

a = 1 , a ∈ L (2.2.6)

(iii) Given any theory of anyons (with multiplicity), it is unknown if there will always

exist some gauge (i.e. some permissible choice of basis on the triangular spaces)

such that all matrices Rab
c (with Nab

c > 1) are diagonal [Wang].

2.2.2 Coherence II: Hexagon Equations

Consider n-particle fusion space V q1...qn where q1, . . . , qn ∈ L and n ≥ 3. Let s and s′ be

any two distinct permutations of the string q1 . . . qn. Let D and D′ be any decomposi-

tion of V s and V s′ respectively. It may be possible that multiple distinct sequences of F

and R-moves realise an isomorphism B : D → D′ (corresponding to the action of some

�xed n-braid). Having speci�ed a basis on the constituent triangular spaces of V s and

V s′ , the resulting matrix representation of B must be the same for all such sequences.

This coherence condition is ful�lled if al of thel F and R-symbols of the theory satisfy

the hexagon equations (2.2.7) below.

The hexagon equations:
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commute for all a, b, c, d ∈ L.

(2.2.7)

Figure 2.8: An illustration of the fusion trees in (2.2.7).

Note that the only di�erence between the two hexagon equations is the orienta-

tion of the R-moves. Fix initial state |ab→ x;α〉 |xc→ d;λ〉 and terminal state

|bz → d; ρ〉 |ca→ z; γ〉 in (2.2.7). This gives us
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∑

y,β,µ,σ

[
F bca
d

]
(z,γ,ρ)(y,β,σ)

[Ray
d ]σµ

[
F abc
d

]
(y,β,µ)(x,α,λ)

=
∑

δ,ε

[Rac
z ]γε

[
F bac
d

]
(z,ε,ρ)(x,δ,λ)

[
Rab
x

]
δα

(2.2.8a)

∑

y,β,µ,σ

[
F bca
d

]
(z,γ,ρ)(y,β,σ)

[(
R−1

)ay
d

]
σµ

[
F abc
d

]
(y,β,µ)(x,α,λ)

=
∑

δ,ε

[(
R−1

)ac
z

]
γε

[
F bac
d

]
(z,ε,ρ)(x,δ,λ)

[(
R−1

)ab
x

]
δα

(2.2.8b)

which in a multiplicity-free theory becomes

∑

y

[
F bca
d

]
zy

[Ray
d ]
[
F abc
d

]
yx

= [Rac
z ]
[
F bac
d

]
zx

[
Rab
x

]
(2.2.9a)

∑

y

[
F bca
d

]
zy

[(
R−1

)ay
d

] [
F abc
d

]
yx

=
[(
R−1

)ac
z

] [
F bac
d

]
zx

[(
R−1

)ab
x

]
(2.2.9b)

Remark 2.20.

(i) We have seen that all the F -matrices for a theory of anyons must be unitary (this

follows from the Hermitian inner product structure on our fusion spaces), as well

as the R-matrices. The unitarity of both types of matrices is a simple consequence

of the postulates of quantum mechanics. From an algebraic perspective, one might

wonder the following: given the unitary F -matrices for a theory of anyons (i.e.

unitary solutions of the pentagon equations for some set of fusion rules), is it ever

possible to �nd any non-unitary R-matrices that solve the hexagon equations with

respect to these F -matrices? The answer is no [Gal14].

(ii) The hexagon equations ensure that the Yang-Baxter equation is satis�ed (meaning

our strands have braid isotopy in the graphical calculus, which is consistent with

what is required for the worldlines of anyons), and essentially that braiding is

well-de�ned in our algebraic model.

2.2.3 B-Matrices

We can also obtain representations of the exchange operator for two adjacent charges a

and b by considering its action with respect to a fusion basis in which a and b are in an

indirect fusion channel. As mentioned above, such a representation can be determined

by

(1) Transforming into a fusion basis where the charges are in a direct fusion channel
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(2) Applying the R-matrix

(3) Transforming back to the original fusion basis

Since steps (1) and (3) correspond to applying a sequence of F -matrices, it is clear that

the resulting exchange matrix will always be unitary (as required). Below is the simplest

example of such a procedure (where we call the resulting matrix a B-matrix ).

where
⊕

e V
ab
e ⊗ V ec

d

F abc
d ⊕

f V
af
d ⊗ V bc

f

B
a(bc)
d

y

yR
bc

⊕
g V

ac
g ⊗ V gb

d

F acb
d ⊕

f V
af
d ⊗ V cb

f

(2.2.10)

That is,

B
a(bc)
d =

(
F acb
d

)†
RbcF abc

d (2.2.11)

Similarly, we write

(B−1)
a(bc)
d =

(
F acb
d

)†
(R−1)bcF abc

d (2.2.12)

Remark 2.21. (Braid representations). The action of braiding on a given system of

anyons de�nes a local "unitary linear representation of the coloured braid groupoid".10

In the instance where all anyons have the same charge, specifying a fusion basis (and

�xing a basis on the triangular spaces) de�nes s a unitary linear representation of the

braid group. For instance, suppose we have a representation ρ : Bn → U(s) for the

n-particle system V q···q
x of dimension s (where n ≥ 2). Each ρ(σi) has the same set

(without multiplicity) of eigenvalues {r1, . . . , rk}. The representation ρ can thus be seen

as a restriction of a representation

ρ̃ : C[Bn]→ Hn(Q, k)→ U(s) (2.2.13)

factoring through the generalised Hecke algebra Hn(Q, k) (which is de�ned to be the

quotient of C[Bn] by the ideal Q(σi) that is generated by Πk
j=1(σi − rj)).

10The meaning of this is expounded upon in Appendix A of Chapter 3. The `locality' of the repre-
sentation refers to the fact that the action of a single exchange can only be nontrivial for the `local' part
of the fusion space (associated to the exchanged pair).
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2.2.4 Abelianity

A charge a ∈ L is called abelian if it has a unique fusion channel with any b ∈ L.

Otherwise, a is called nonabelian.11

� a ∈ L is called abelian if
∑

cN
ab
c = 1 for each b ∈ L. A theory is called abelian if

every charge is abelian; in this case, note that (L,×) is a �nite abelian group.12

� a ∈ L is called nonabelian if there exists some b ∈ L such that
∑

cN
ab
c > 1. Clearly,

any such b is also nonabelian.

Proposition 2.22.13 If a is abelian then da = 1. Otherwise, da ≥
√

2.

Proof. If a is abelian then d2
a = dadā = d1 = 1. Next, let us show that

∑
cN

aā
c = 1 (i.e.

that a is `invertible') only if a is abelian. If a is invertible, then for any b ∈ L we have

that
∑

eN
āe
b N

ab
e = 1, whence

∑
eN

ab
e = 1 for all b (i.e. a is abelian). It follows that for

a nonabelian, d2
a =

∑
cN

aā
c dc > 1. The lower bound for the quantum dimension of a

nonabelian charge a is only attained when a× ā = 1 + x where x is abelian.

Note that Proposition 2.22 does not make use of commutativity (F5). This means that

it will also hold in the more general setting of a unitary (spherical) fusion category.

2.3 Twisting

Anyons can perform 2π-rotations. In order to diagrammatically track such operations,

let us promote our worldlines to worldribbons. Then 2π twists of the charge a ∈ L are

given by the maps

(2.3.1)

where ϑa ∈ C× is called the topological spin of a and corresponds to a 2π clockwise

rotation.
11The nomenclature derives from the fact that if a has multiple fusion channels with some charge b,

then the exchange matrix for a and b will be de�ned on a space of dimension > 1. Then for exchanges
between `nonabelian' charges, the statistical evolution will typically depend on the order of exchanges.

12Indeed, �nite abelian groups can give rise to theories of anyons (e.g. Zn theories). Some further
details can be found in [Bonderson, Simon].

13When da < 2, the Jones index theorem from subfactor theory tells us that da ∈ {2 cos(πn )}∞n=3.
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Figure 2.9: Twists may also be seen as above by pulling the ribbon taut.

The topological spins must satisfy the followng two conditions for all labels.14

= (2.3.2a)

∑

λ

[Ryx
z ]µλ [Rxy

z ]λν =
ϑz
ϑxϑy

δµν (2.3.2b)

In particular, (2.3.2a) says that twists can be pushed around a closed loop and that

ϑa = ϑā (2.3.3)

The ribbon relation (2.3.2b) is illustrated by (2.3.4), where the second equality can be

seen by pulling taut the ribbon from the tops and bottom. The operator Ryx ◦ Rxy is

called the monodromy operator of x and y, and is denoted by Mxy.

(Ryx ◦Rxy) = = =
ϑz
ϑxϑy

(2.3.4)

It is slightly tedious to draw diagrams with ribbons. We pass back to strands by writing

(a)
i

=
i

, (b)
i

=
i

(2.3.5)

where (a) and (b) respectively correspond to clockwise and anticlockwise twists (compare

14From a mathematical perspective, the twisting of anyons is well-motivated. This is since a unitary
braided fusion category admits a unique unitary ribbon structure [ENO05, Gal14]. The conditions
(2.3.2a)-(2.3.2b) come from the de�nition of ribbon structure. Nonetheless, the discourse of this section
can be understood simply by manipulating diagrams: this is the power of the graphical calculus.
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to Figure 2.9). Indeed, note that

(2.3.6)

whence (2.3.5)(a) is consistent with (2.3.2a) (and similarly for (2.3.5)(b)). Also note

that this assignment is consistent with braid isotopy and pivotality i.e.

(2.3.7)

where the 2nd and 3rd equalities follow from braid isotopy, and the 4th from pivotality.

We can easily derive a few more identities for the topological spin. Note that

whence we have

ϑa =
1

da

∑

c

dc tr (Raa
c ) (2.3.8)

Also,

from which it follows that

ϑa = ta (Rāa
0 )
∗

(2.3.9)

We can deduce that ϑa ∈ U(1) and ϑ0 = 1 (as expected).

De�nition 2.23. The T -matrix of a theory of anyons is given by [T ]ab = ϑaδab.
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Remark 2.24. (Rationality of spins). The Anderson-Moore-Vafa theorem [AM88,

Vafa88] tells us that the topological spin is a root of unity for each a ∈ L. For a proof,

we refer the reader to [Kitaev06, Theorem E.10]. It follows that the monodromy of any

pair of charges has �nite order.

2.4 Gauge Freedom

There is generally some mathematical redundancy amongst the F and R-symbols de-

scribing a theory, arising from the U(Nab
c ) freedom when �xing an orthonormal basis on

triangular spaces V ab
c . In this context, a change of (orthonormal) basis is referred to as

a gauge transformation. From a practical perspective, this is important since we should

not expect gauge-variant quantities to correspond to physical observations.

Let uabc denote a gauge transformation on V ab
c , where

|ab→ c;µ〉 =
∑

µ′

[uabc ]µ′µ |ab→ c;µ′〉 (2.4.1)

Note that gauge-transformed F and R-matrices will also be unitary (since our gauge

transformations are unitary). R-matrices transform as15

(
Rab
c

)′
= ubac R

ab
c

(
uabc
)†

(2.4.2)

and F -symbols transform as16

[(
F abc
d

)′]
(f,ν′1,ν

′
2),(e,µ′1,µ

′
2)

=
∑

µ1,µ2,ν1,ν2

[uafd ]ν′2ν2 [u
bc
f ]ν′1ν1

[
F abc
d

]
(f,ν1,ν2),(e,µ1,µ2)

[
(
uabe
)†

]µ1µ′1 [(u
ec
d )†]µ2µ′2

(2.4.3)

In the absence of multiplicities, the above transformations are simply

(
Rab
c

)′
=
ubac
uabc

Rab
c ,

[(
F abc
d

)′]
fe

=
uafd u

bc
f

uabe u
ec
d

[
F abc
d

]
fe

(2.4.4)

We also have

ua0
a = u0a

a = 1 , a ∈ L (2.4.5)

so that gauge transformations respect the triviality of both braiding with the vacuum,

15The form of the gauge transformations in [Bonderson] are the transpose of the form in which they
appear here. This is since we have opposite conventions for the order of indices in our F , R, and gauge
transformation matrices.

16See footnote 15.
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and F -matrices acting on a triple of labels containing 1.

2.4.1 Some Gauge-Invariant Quantities

We will now highlight a few important gauge-invariant quantities.

(1) It is clear that the fusion rules and quantum dimensions are gauge-invariant.

(2) The topological spins are gauge-invariant. This can be seen from

ϑa =
1

da

∑

c

dc tr
(
uaac R

aa
c (uaac )†

)
=

1

da

∑

c

dc tr (Raa
c )

(3) The monodromy operator Mab is gauge-invariant. In order to see this, note that

(
Rba
c

)′ ◦
(
Rab
c

)′
= uabc R

ba
c R

ab
c (uabc )† =

ϑc
ϑaϑb

uabc (uabc )† = Rba
c ◦Rab

c

(4) It is clear that symbols of the form Raa
c will be gauge-invariant when Naa

c = 1.

(5) Note (in a multiplicity-free instance) that symbols of the form
[
F abc
b

]
bb
are gauge-

invariant. As an immediate consequence, we see that the symbol [F aaa
a ]00 is gauge-

invariant when a is self-dual, whence from (2.1.54) it follows that the Frobenius-

Schur indicator κa is gauge-invariant.

(6) Consider V abc
d (where all of the fusion outcomes are multiplicity-free), and suppose

we have a �xed fusion channel |ab→ e〉 |ec→ d〉. If we fuse b and c �rst instead,

then the probability p(bc→ f |ab→ e) that b and c will fuse to a charge f is given

by |
[
F abc
d

]
fe
|2. It is trivial to verify that this probability is gauge-invariant.

2.5 S-Matrix and Modularity

2.5.1 Properties of the S-Matrix

We will summarise the properties of the S-matrix and highlight its relation to modular-

ity; further details and omitted calculations can be found in [Kitaev06, Appendix E].
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We have seen that the unknot corresponds to the quantum dimensions of a theory. The

Hopf link corresponds to another useful quantity. For a theory of rank k, the (topological)

S-matrix is the k × k matrix given by17

[S]ab = sab =
1

D a b (2.5.1)

and the unnormalised S-matrix is given by S̃ = DS. Noting that sab is the quantum

trace (i.e. the braid closure) of the monodromy of a and b̄, we have

sab =
1

D
∑

c

ϑc
ϑaϑb

Nab̄
c dc (2.5.2)

and that

a b = s̃∗ab (2.5.3)

Using (2.5.2) and the symmetries of the fusion coe�cients, we also see that

sab = sba , sab = sāb̄ (2.5.4)

i.e.

ST = S , [C, S] = 0 (2.5.5)

As usual, we order the labels in L such that the �rst label is 1. It is clear that the

1st row and column of S is the normalised vector of quantum dimensions. By pulling

the cup over the cap in the left component of (2.5.1) and evaluating the resulting twists

[Kitaev06], we see that

sab = s∗āb (2.5.6)

i.e.

S† = SC (2.5.7)

It is clear that the S-matrix is gauge-invariant. The following identity is also useful, and

17The orientation of our components follows the same convention as in [Kitaev06]. Note that other
sources may use di�erent conventions e.g. as in [Bonderson].
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is easily veri�ed by applying the quantum trace.

(2.5.8)

This can be used to derive the equation

∑

c

Nab
c scx =

saxsbx
s0x

(2.5.9)

which can be seen as a row (for label b ∈ L) of the eigenvalue equation

Nasx =
sax
s0x

sx (2.5.10)

where the eigenvector sx is a column of S (for label x ∈ L). It follows that any column

of the S-matrix is an eigenvector of any fusion matrix (noting that the columns of S may

be linearly dependent). For the 1st column of S (i.e. x = 0), (2.5.10) is just (2.1.49).

Then by the Frobenius-Perron theorem, we also have that

∣∣∣∣
sax
s0x

∣∣∣∣ ≤ da , a ∈ L (2.5.11)

where sax\s0x = da if and only if sx is a (real) multiple of d(= Ds0).18

Remark 2.25. (Self-duality). If a is self-dual, then Na is real-symmetric (and so it

has real eigenvalues). We can then deduce from (2.5.10) that all entries in the row and

column (of S) for label a are real. A self-dual theory thus has a real-symmetric S-matrix.

De�nition 2.26.

(i) A charge a ∈ L is called transparent if its monodromy with any charge x is trivial.

(ii) A theory of anyons is said to have nondegenerate braiding if its only transparent

charge is 1.

(iii) A theory of anyons is called modular if its S-matrix is unitary.

Theorem 2.27.19 A theory of anyons has nondegenerate braiding if and only if it is

modular.

18It follows that sx cannot be a (real) multiple of d for x nonabelian.
19A proof of this crucial theorem can be found in [Kitaev06, Appendix E].
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Remark 2.28.20 (Rank of S vs. degeneracy of braiding). Following Theorem

2.27, it is natural to wonder whether the rank of the S-matrix somehow quanti�es the

degeneracy of the braiding. The opposite extreme of Theorem 2.27 would be that the

S-matrix has rank one if and only if the braiding is fully degenerate (i.e. all charges are

transparent): indeed, this is true. By [Kitaev06, Lemma E.13.], x is transparent if and

only if

Nasx = dasx , a ∈ L (2.5.12)

which can happen (by the Frobenius-Perron theorem) if and only if sx is a real (thus

positive) multiple of d.21 Thus, S has rank one if and only if all charges are transparent.

Terminology 2.29. The information encoded by the S and T -matrix of a theory is

called its modular data, and is written {S, T}.

2.5.2 Modular Theories

From (2.5.10), for each a ∈ L we have

NaS = SDa , [Da]mn =
sam
s0m

δmn (2.5.13)

When a theory is modular, S is unitary whence

Na = SDaS
∗ (2.5.14)

Remark 2.30. By the associativity and commutativity of fusion, we have

[Na, N b] = 0 , a, b ∈ L (2.5.15)

from which it follows (using N ā = (Na)T ) that fusion matrices are normal (and hence,

unitarily diagonalisable). It is also clear from (2.5.15) that all of the fusion matrices

are simultaneously diagonalisable. For a modular theory, the columns of the S-matrix

constitute a simultaneous orthonormal eigenbasis for all of the fusion matrices. For a

non-modular theory, the S-matrix is just some degenerate matrix of eigenvectors with

respect to any fusion matrix. Given a non-modular theory, we can still de�ne a matrix S ′

whose columns are a simultaneous orthonormal eigenbasis for all of the fusion matrices:

20In category-theoretic jargon, a generic theory of anyons is described by a unitary ribbon fusion
category C (also called a unitary premodular category), while a modular (a.k.a bosonic) theory is
described by a unitary modular tensor category. The labels L are precisely the isomorphism classes of
objects in C, and the Müger centre Z2(C) of the category contains all transparent objects. When Z2(C)
only contains objects isomorphic to the trivial object, C is called modular; else C is premodular. If Z2(C)
contains all objects in C, then C is called a symmetric fusion category.

21This tells us that nonabelian charges cannot be transparent.
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any such matrix is called a mock S-matrix [BGH+20].

By inspecting the element [Na]bc of (2.5.14), we arrive at the Verlinde formula

Nab
c =

∑

x

saxsbxsc̄x
s0x

(2.5.16)

which tells us that all of the fusion coe�cients of a theory are encoded in its S-matrix.

Remark 2.31. (Why modularity?)

(i) Modularity can be motivated pragmatically. R-matrices of the form Rab where

a 6= b are gauge-variant, and therefore cannot correspond to measurable quantities.

On the other hand, monodromies are gauge-invariant. Since the monodromy of any

transparent label is trivial, there is no reason to allow for nontrivial transparent

labels in our algebraic models (as they cannot be statistically distinguished from

the vacuum in practice).

(ii) Modularity comes at a price: there are many non-modular theories of anyons whose

description is of practical importance. Let f an abelian charge. R-matrices of the

form Rff are gauge-invariant, and assuming modularity has the undesirable e�ect

of discarding theories with transparent objects f such that −1 is an eigenvalue

of Rff (e.g. fermions). Unitary modular tensor categories (i.e. modular theories

of anyons) are thus limited to describing (2 + 1)-dimensional bosonic topological

orders. Fermions are typically present in systems of interest (e.g. fractional quan-

tum Hall liquids), and so it is desirable to have an algebraic model that is �almost�

modular i.e. where the only nontrivial transparent object is a fermion: this has

led to the development of spin modular categories [BGH+17].

(iii) It is conjectured that every modular theory of anyons corresponds to a unitary

Chern-Simons-Witten TQFT for some pair (G, λ), where G is a compact Lie group

and λ ∈ H4(BG;Z) is a cohomology class [HRW08, MS89, Witten89:II].

Remark 2.32. ("Modularity"). Let Θ := D−1
∑

a d
2
aϑa. A modular theory of anyons

satis�es22,

(ST )3 = ΘC , S2 = C , C2 = I (2.5.17)

Note that C2 = I holds for any theory, and that S2 = C follows from (2.5.7) and the

unitarity of S. A proof of (ST )3 = ΘC is given in [Kitaev06, Theorem E.14.].

22The relations (2.5.17) bear close semblance to the generators of the modular group (which describes
the symmetries of the moduli space of elliptic functions). This is not a coincidence. Modular categories
contain lots of structure, and are further explored in [BK01].



50 The Algebraic Theory of Anyons

Remark 2.33. (Prime decomposition of modular theories). Points (ii)-(v) below

follow from [Müg03].

(i) Given one or more theories of anyons as an input, there are many di�erent ways

to produce the data for a distinct theory of anyons [Bonderson, Section 5.7]. In

particular, given two theories with label sets L1 and L2, we can de�ne a product

theory23 with label set L = L1 × L2 where for a ∈ L we write a = (a1, a2) (and

similarly for b, c etc.), and

V ab
c
∼= V a1b1

c1
⊗ V a2b2

c2
(2.5.18)

[
F abc
d

]
(f,µ,ν)(e,α,β)

=
[
F a1b1c1
d1

]
(f1,µ1,ν1)(e1,α1,β1)

[
F a2b2c2
d2

]
(f2,µ2,ν2)(e2,α2,β2)

(2.5.19)

[
Rab
c

]
µν

=
[
Ra1b1
c1

]
µ1ν1

[
Ra2b2
c2

]
µ2ν2

(2.5.20)

The S-matrix of the product theory is the tensor product of those of the constituent

theories. Note that there is no interaction between the constituent theories in this

construction.

(ii) A modular theory of anyons is called prime if its only nontrivial modular factor

theory is itself.

(iii) Any modular theory of anyons can be realised as a �nite product of prime modular

theories. Furthermore, this factorisation is generally non-unique (unless the only

abelian charge is the vacuum).

(iv) A (nontrivial) modular factor theory B of a modular theoryA is realised as modular

subtheory24 B ⊂ A. We write

A = B × B̃ (2.5.21)

(where B̃ must also be a modular factor theory). It follows that a modular theory

is prime if its only nontrivial modular subtheory is itself.

(v) It can be shown that the restriction of A to the subset of charges that have trivial

monodromy with all of the charges in modular subtheory B is also a modular

subtheory: this new subtheory of A is denoted by B′ and is called the relative

commutant (or centraliser) of B in A . Furthermore, B̃ = B′ in (2.5.21), and

B′′ = B (2.5.22a)

DA = DBDB′ (2.5.22b)

23In category-theoretic terms, a `product theory' is the Deligne product of unitary ribbon categories.
24A subtheory B of A is a restriction A|B. Note that a subtheory is produced by restriction to a

subset of charges that is closed under fusion and obeys (F1)-(F5).
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Remark 2.34. (Minimal data). A braided fusion category C is uniquely speci�ed by

its `skeletal data' i.e. its associated fusion rules and (gauge class of) F and R-symbols.

For categories of large rank, the skeletal data becomes unwieldy. A natural question

follows: is this the smallest set of data that uniquely speci�es C? It was previously con-

jectured that a modular category should be uniquely speci�ed by its modular data; this

was disproved by counterexample (two modular categories of rank 49 were found to have

the same modular data)25,26 [MS21]. In [BDG+19], the authors showed that the triple

{S, T,W} (where W is the Whitehead link) distinguishes between the counterexamples

in [MS21]; it remains an open question whether this new triple is a faithful invariant of

modular categories.

Example 2.35. (Fusion rules for modular theories of rank 2). Let L = {1, q}.
The only nontrivial fusion rule is

q ⊗ q = 1 +mq , m ∈ N0

Writing d := dq, we have d
2 = 1 +md, whence (by d > 0)

d =
m+

√
m2 + 4

2
(2.5.23)

We also have

N q =

(
0 1

1 m

)
, S̃ =

(
1 d

d x

)

where x is unknown. We know that N q has eigenvalues {d,−1
d
} since det(N q) = −1.

Then by inspecting the equation N qsq = −1
d
sq, we see that x = −1.27 Then

x = −1 =
∑

c

N qq
c ϑcϑ

−2
q dc = ϑ−2

q (1 +mdϑq) =⇒ md = −ϑq − ϑ−1
q ≤ 2

So using (2.5.23), we see that the only possibilities are m = 0, 1. Note that this alone

does not guarantee the existence of modular theories for m = 0, 1. However, we will see

that these fusion rules do indeed give rise to modular theories: m = 0, 1 respectively

yield the semion and Fibonacci theories. Note that

Ssemion =
1√
2

(
1 1

1 −1

)
, SFib =

1√
2 + φ

(
1 φ

φ −1

)
(2.5.24)

where φ = 1+
√

5
2

is the golden ratio.

25The authors also proved that arbitrarily many inequivalent modular categories can share the same
modular data.

26It is currently unknown whether there exists a counterexample of lower rank.
27A slicker way: note that S2 = C = I. Then S must have eigenvalues ±1, so tr(S) = 0.
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2.6 Theories of Anyons

2.6.1 Classi�cation

Naturally, we would like to classify theories of anyons (and ideally, obtain their associated

F and R-symbols). The most naive approach would be to: (1) take some consistent

fusion rules, (2) solve the pentagon and hexagon equations, (3) determine the gauge

classes of unitary solutions28, (4) repeat for new fusion rules. In practice, this approach

is unfeasible (largely due to the di�culty of solving the pentagon and hexagon equations

as the rank increases). Vastly more re�ned approaches are used in classi�cation e�orts.

Remark 2.36. (Classifying fusion categories). Classi�ying theories of anyons can

be seen as part of the much larger mathematical programme of classifying fusion cat-

egories.29 This is a challenging task that can be made slightly easier by limiting the

search to categories that admit some extra structure or obey certain constraints30. For

instance,

- Fusion categories C (over C) of were classi�ed up to rank 2 in [Ostrik03]. This was

extended to rank 3 for C pivotal in [Ostrik15].

- Premodular categories (over C) have been classi�ed up to rank 4 [Ostrik08, Bru16].

This was extended to rank 5 for C pseudounitary in [BM18].

- Since modular categories admit a prime factorisation [Müg03], it su�ces to classify

prime modular categories. Unitary modular categories were classi�ed up to rank

4 in [RSW09]; this was extended to rank 5 in [BHRW16:I]. Partial progress has

been made for rank 6 [Cream19, Green19]. A classi�cation of unitary premodular

categories yields a classi�cation31 of theories of anyons. Similarly, a classi�cation

of unitary modular categories yields a classi�cation of bosonic theories of anyons.

- Spin modular categories were classi�ed up to rank 11 in [BGH+20]. A classi�cation

of spin modular categories results in a classi�cation of fermionic theories of anyons

(i.e. theories that are almost modular but contain one fermion).

28Each gauge class will uniquely specify a theory of anyons.
29For the unfamiliar reader, fusion categories can be characterised as follows: take some (not neces-

sarily commutative) fusion rules satisfying (F1)-(F4), and solve the pentagon equation. Then fusion
categories will correspond to the gauge classes of solutions. Some further details on fusion categories
can be found in Part II of this thesis, and a rigorous introduction can be found in [EGNO].

30E.g. pivotality, sphericality, braiding, modularity, (pseudo)unitarity, (weak) integrality etc.
31Here, `classi�cation' means knowing which fusion rules will give rise to a theory of anyons. In

[RSW09], some skeletal data is also tabulated. While mathematicians are generally not interested in
skeletal data, it is important for physical applications.
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Remark 2.37. (Towards a "periodic table" of theories). An immediate question:

are there �nitely many theories of anyons of a given rank?

(i) A result known as Ocneanu rigidity tells us that a fusion algebra admits �nitely

many categori�cations, and that a fusion category admits �nitely many braidings

[ENO05]. This means that any given set of fusion rules can only give rise to �nitely

many theories of anyons.32

(ii) It was shown in [BHRW16:II] that there are �nitely many modular categories of

any given rank. This rank-�niteness theorem was strengthened to the case of G-

crossed braided fusion categories in [JMNR20]. It follows that for a given rank,

there are �nitely many sets of fusion rules that can give rise to a theory of anyons

(and thus, �nitely many theories of anyons of a given rank).

(iii) Ocneanu rigidity and rank-�niteness motivate the analogy of building a `periodic

table' of anyonic theories. If we restrict our attention to bosonic theories, this idea

holds even greater allure. Recall that modular categories admit a prime factorisa-

tion: then elements of our table will be given by prime modular theories.33

2.6.2 Some Basic Examples

Given a set of fusion rules with su�ciently low rank34, solving the pentagon and hexagon

equations by hand is a manageable (yet possibly tedious) task. We will describe the data

of the theories arising from the Z2, Fibonacci and Ising fusion rules below. These are

simple but important theories that are ubiquitous in the literature. First, let us make a

few observations.

� If all of the F -symbols are real and the three R-matrices are diagonal in hexagon

equation (2.2.8a), then `inverse' hexagon equation (2.2.8b) is just its complex con-

jugate. In such an instance, it follows that (2.2.8b) does not need to be checked

32Ocneanu rigidity has the following physical interpretation: the Hamiltonian realising a system of
anyons is stable under small deformations. Roughly, due to the discrete nature of the solution set, we
cannot `deform' one theory into another.

33There is no canonical convention for the organisation of such a table. One approach for the table
of bosonic theories could be to have elements in one-to-one correspondence with the modular data of
prime theories. It has been shown that all known examples of modular categories that share the same
modular data are related to one another by a construction called ribbon zesting [DGP+20]. Following
the periodic table analogy, it has been proposed that a bosonic theory of anyons A should be called a
modular isotope of a bosonic theory B with the same modular data, if it can be obtained by zesting B.
However, it is not known whether modular data is an invariant of modular categories up to zesting i.e.
whether or not there exist more exotic examples of modular categories (beyond those found in [MS21])
that share the same modular data but are not related by zesting.

34Say, less than 4.
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once we have solved for (2.2.8a). E.g. in a multiplicity-free theory with real F -

matrices, it is su�cient to solve for only one of the equations (2.2.8a)-(2.2.8b).

� Given a theory A, we can obtain its mirror theory AP by applying a spatial parity

transformation. The S, F and R-matrices of AP will be given by the Hermitian

conjugate of those in A. In order to convince yourself of this, consider the pen-

tagon and hexagon equations (2.1.29) and (2.2.7), and imagine `viewing them from

behind'. Applying a parity transformation �ips the `handedness' or chirality of the

theory.35

In the following, all theories are self-dual, multiplicity-free, and all charges have

Frobenius-Schur indicator +1 unless stated otherwise. We do not state the twists since

they can be deduced using ϑa = κa (Raa
0 )∗, and we only state the quantum dimension

of nonabelian charges (since it is 1 otherwise). Details regarding the gauge group and

level of the Chern-Simons theories corresponding to the modular theories below may be

found in [RSW09, Simon].36

Z2 fusion rule Let L = {1, s} where the only nontrivial fusion rule is

s× s = 1

This gives rise to four theories whose nontrivial F and R-symbols are

(i) F sss
s = −1, Rss = i

(ii) F sss
s = −1, Rss = −i

(iii) Rss = −1

(iv) No nontrivial symbols.

Theories (i)-(ii) are a mirror pair: they are respectively the right and left-handed semion

theories (where s is called a semion37). They have κs = −1 and are both modular, and

their S-matrix is written in (2.5.24). Theories (iii)-(iv) are completely degenerate: they

35Many theories of anyons have a �eld-theoretic description given by a Chern-Simons theory with
gauge group G (a compact Lie group) and level k ∈ H4(BG,Z) (an integer). Such a theory is denoted
by Gk, and its mirror theory is G−k. See also Remark 2.31(iii).

36There exists a `duality' between certain Chern-Simons theories. For instance, the right and left-
handed Fibonacci theories are respectively realised by (G2)1 and (F4)1 i.e. there is a duality between
(G2)1 and (F4)−1. Some further details can be found in [CHO19].

37I.e halfway between a boson and fermion.
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respectively describe bosons and fermions. Each entry of their S-matrix is 1/
√

2.

Fibonacci fusion rule Let L = {1, τ} where the only nontrivial fusion rule is

τ × τ = 1 + τ

This gives rise to a mirror pair of theories called the Fibonacci theories (where τ is called

a Fibonacci anyon38), both of which are modular. The nontrivial F and R-symbols of

the right-handed theory are given by

F τττ
τ =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
, Rττ =

(
e−i

4π
5 0

0 ei
3π
5

)
(2.6.1)

where dτ = φ = 1+
√

5
2

(golden ratio), and the S-matrix for both theories is in (2.5.24).

Ising fusion rules Let L = {1, σ, ψ} where the nontrivial fusion rules are

σ × σ = 1 + ψ , σ × ψ = σ , ψ × ψ = 1

This gives rise to four pairs of mirror theories, two of which have κσ = −1. All eight

theories are modular. The four theories with with κσ = 1 are called Ising theories (where

σ is called an Ising anyon). We give the nontrivial F and R-symbols for one of each of

the Ising pairs:

Rσσ = e−i
π
8

(
1 0

0 i

)
, F σσσ

σ =
1√
2

(
1 1

1 −1

)

Rσψ
σ = Rψσ

σ = −i , Rψψ
0 = −1 , Fψσψ

σ = F σψσ
σ = −1

(2.6.2)

Rσσ = ei
7π
8

(
1 0

0 i

)
, F σσσ

σ =
1√
2

(
1 1

1 −1

)

Rσψ
σ = Rψσ

σ = −i , Rψψ
0 = −1 , Fψσψ

σ = F σψσ
σ = −1

(2.6.3)

The four theories with with κσ = −1 are called SU(2)2 theories. We give the nontrivial

38For n τ -particles, note that dim (V τ...τ1 ) is given by the nth term of the Fibonacci sequence.
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F and R-symbols for one of each of the SU(2)2 pairs:

Rσσ = ei
5π
8

(
1 0

0 −i

)
, F σσσ

σ = − 1√
2

(
1 1

1 −1

)

Rσψ
σ = Rψσ

σ = i , Rψψ
0 = −1 , Fψσψ

σ = F σψσ
σ = −1

(2.6.4)

Rσσ = e−i
3π
8

(
1 0

0 −i

)
, F σσσ

σ = − 1√
2

(
1 1

1 −1

)

Rσψ
σ = Rψσ

σ = i , Rψψ
0 =− 1 , Fψσψ

σ = F σψσ
σ = −1

(2.6.5)

dσ =
√

2 and the S-matrix for all 8 theories is

S =
1

2




1
√

2 1√
2 0 −

√
2

1 −
√

2 1


 (2.6.6)

Data for some other theories is tabulated in [Bonderson], and data for prime modular the-

ories up to rank 4 can be found in [RSW09]. Data for various quantum group categories

can be found in [AS10]. An extensive catalogue of modular tensor categories can be

found at [GHY], and a tabulation of small multiplicity-free fusion rings at [AnyonWiki].
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FUSION STRUCTURE FROM EXCHANGE SYMMETRY IN
(2+1)-DIMENSIONS

SACHIN J. VALERA†

Abstract. Until recently, a careful derivation of the fusion structure of anyons
from some underlying physical principles has been lacking. In [Shi et al., Ann.
Phys., 418 (2020)], the authors achieved this goal by starting from a conjectured
form of entanglement area law for 2D gapped systems. In this work, we instead start
with the principle of exchange symmetry, and determine the minimal prescription of
additional postulates needed to make contact with unitary ribbon fusion categories
as the appropriate algebraic framework for modelling anyons. Assuming that 2D
quasiparticles are spatially localised, we build a functor from the coloured braid
groupoid to the category of �nite-dimensional Hilbert spaces. Using this functor,
we construct a precise notion of exchange symmetry, allowing us to recover the core
fusion properties of anyons. In particular, given a system of n quasiparticles, we
show that the action of a certain n-braid βn uniquely speci�es its superselection
sectors. We then provide an overview of the braiding and fusion structure of anyons
in the usual setting of braided 6j fusion systems. By positing the duality axiom of
[A. Kitaev, Ann. Phys., 321(1) (2006)] and assuming that there are �nitely many
distinct topological charges, we arrive at the framework of ribbon categories.

1. Introduction

The study and classi�cation of topological phases of matter is a pervasive theme of
contemporary physics. Quasiparticles with exotic exchange statistics (called �anyons�)
are a hallmark of two-dimensional topological phases. The experimental realisa-
tion and control of anyons is a much sought-after goal, owing especially to proposed
schemes for the robust processing of quantum information [1, 2, 3].

The algebraic theory of anyons (of which various detailed accounts may be found
[4, 5, 6, 7, 8]) is considered mature [9, 10]. It is well-understood that the statistical
properties of anyons arise due to the distinguished topology of exchange trajectories
in two dimensions. In a given theory, anyons are distinguished by their �topological
charges� which characterise their mutual statistics. However, it is further expected
that these charges possess a fusion structure wherein the `combination' (or fusion) of
two anyons e�ectively results in a single anyon that may possibly exist in a superposi-
tion of topological charges. In some expositions, fusion is motivated using �ux-charge
composite toy models. Fusion structure is also readily apparent in 2D spin-lattice
models such as the toric code. However, a careful treatment of the emergence of
this fusion structure in a general setting is lacking. We therefore seek to provide a
ground-up construction of the braiding and fusion structure of anyons.

Quantum symmetries is an umbrella term for the algebraic structures that are used
to describe topological quantum matter. Ribbon fusion categories provide the math-
ematical framework for studying the statistical behaviour of anyons. Often, anyons
are introduced through a discussion of identical particles: the same arguments that

†Selmer Center, Department of Informatics, University of Bergen, Norway .



lead us to conclude that there are only bosons and fermions in three or more spatial
dimensions, instead indicate the possibility of fractional statistics in two dimensions.
There is an unfortunate gulf between the language of identical particles and that of
ribbon categories. Our objective is to clarify the connection between quantum sym-
metries and the elementary, yet profound principle of exchange symmetry in quantum
mechanics. Superselection sectors play a key role in our exposition.

A series of `assumptions' or postulates A1-A3 are given throughout the text. They
are proposed as the minimal prescription needed to recover ribbon fusion categories
(as an algebraic model for anyons) from exchange symmetry in (2 + 1)-dimensions.
Here, A2-A3 are presented in terms slightly more simpli�ed than in the main text.
The �associativity condition� in A3 refers to (6.24).

A1. Two-dimensional quasiparticles are spatially localised phenomena.

A2. (i) The Hilbert space of �nitely many quasiparticles is �nite-dimensional.
(ii) A theory of anyons has �nitely many distinct topological charges.

A3. For any topological charge q, there exists a dual charge q̄ such that a
certain associativity condition is satis�ed with respect to their fusion.

The localisation condition A1 is a relevant physical consideration. Less satisfyingly,
�niteness assumption A2 appears to be prescribed for mathematical convenience.
Some physical motivation is provided for Kitaev's duality axiom A3 in [4]. The
main results of this paper are presented in Sections 4 and 5, where we show that
A1 and A2(i) are su�cient to recover the core braiding and fusion structure of 2D
quasiparticles. In Section 6, we outline how A2(ii) and A3 are required to make
contact with ribbon fusion categories as algebraic models for anyons.

1.1. Relation to existing work. In attempting to derive fusion structure from
some underlying physical principles, our work is similar in spirit to [11] where the
authors show that such structure may be recovered from the entanglement area law

(1.1) S(A) = αl − γ
where S(A) is the von Neumann entropy of a simply-connected region A, l is the
perimeter of A and γ is a constant correction term (which the authors also show to
be equal to lnD, where D is the total quantum dimension of the anyon theory).

Our approach Approach in [11]

Physical principle Exchange symmetry Entanglement area law

Construction
Local representations of
coloured braid groupoid

Information convex sets

While the construction in [11] may be more fundamental, the narrative of exchange
symmetry might be more familiar to the majority of readers. F and R symbols can
be recovered from our construction, and we are able to arrive at the usual formalism
(of unitary ribbon fusion categories) for modelling theories of anyons. Ultimately,
the two approaches will o�er di�erent insights and will appeal to di�erent audiences.
However, we suggest that they might be viewed as complementing one another. By
assuming (1.1) it follows that A2(i) implies A2(ii) [11, Theorem 4.1], and that for



any topological charge q there exists a unique dual charge q̄ such that they will fuse
to the vacuum in a unique way [11, Proposition 4.9]. Combining the two approaches,
we arrive at an alternative to A1-A3:1

P1. Two-dimensional quasiparticles are spatially localised phenomena.

P2. The Hilbert space of �nitely many quasiparticles is �nite-dimensional.

P3. The system of quasiparticles satis�es entanglement area law (1.1).

1.2. Outline of paper. In Section 2, we recap the notion of superselection rules and
identical particles. This is followed by a discussion of the di�erence between particle
exchanges in two and three spatial dimensions. In Section 3, we formulate exchange
symmetry via the action of the motion group of a many-particle system, and relate
this to the boson-fermion superselection rule for fundamental particles.

In Section 4, we consider the action of braiding on a system of 2D quasiparticles.
The localisation condition A1 means that this action is generally not given by a
representation of the braid group; instead, it is given by a local representation of the
�coloured� braid groupoid. This action is described in Section 4.1, and we discuss its
interpretation as a functor in Appendix A. The heart of our construction is presented
in Section 4.2, where we adapt the de�nition of exchange symmetry from Section 3
to formulate an appropriate commutator via the braiding action. This gives rise to a
notion of exchange symmetry on all subsystems of quasiparticles. In Section 4.3, we
see how the associated superselection sectors of subsystems �t together to describe
the Hilbert space of the whole system.

In Section 5, we present our main results. We show that the superselection sectors
of an n-quasiparticle system correspond to the eigenspaces under the action of an
n-braid βn which we call the superselection braid (Theorem 5.1). We recover the core
fusion structure amongst these superselection sectors by showing that they exhibit
the same statistical behaviour as quasiparticles, allowing us to identify them as such
(Theorem 5.5). The associativity and commutativity of fusion is deduced in Corol-
lary 5.7. We prove several braid identities pertaining to βn and see that this braid
encodes the structure of all fusion trees for an n-quasiparticle fusion space (Theorem
5.9). We �nally show that βn is the unique braid (up to orientation) whose action
speci�es the superselection sectors of an n-quasiparticle system (Theorem 5.11).

In Section 6, we review the braiding and fusion structure from Section 5 within
the usual setting of braided 6j fusion systems, and present the additional postulates
required to make contact with the framework of ribbon fusion categories. In Section
6.3, we observe some R-matrix identities that follow from our construction: these
reveal some information about the spectrum of βn, and provide an ansatz for the
monodromy operator which is consistent with the categorical ribbon relation.

In Section 7, we give a concise summary of our exposition, and speculate on a
possible extension of our construction.

1The authors of [11] advocate for using two local entropic constraints [11, A0-A1] in lieu of (1.1).



2. Preliminaries

2.1. Superselection rules and identical particles. Consider a system with Hilbert
space H. A superselection rule (SSR) is given by a normal operator Ĵ : H → H where

(2.1) [Ô, Ĵ ] = 0

for all observables Ô of the system. Suppose that H′ and H′′ are any two distinct
superselection sectors (eigenspaces of Ĵ). Then (2.1) tells us that for any |ψ′〉 ∈ H′,
|ψ′′〉 ∈ H′′ and any observable Ô on H, we have
(2.2) 〈ψ′| Ô |ψ′′〉 = 0

The de�ning feature of SSRs is that they preclude the observation of relative phases
between states from distinct superselection sectors: let |ψ〉 = α |ψ′〉 + β |ψ′′〉 and
|ψ

θ
〉 = α |ψ′〉+ eiθβ |ψ′′〉 be normalised states. We have

(2.3) 〈Ô〉ψ = 〈Ô〉ψ
θ

= tr(Ôρ̂) for all Ô, θ

where ρ̂ = |α|2 |ψ′〉 〈ψ′| + |β|2 |ψ′′〉 〈ψ′′| (i.e. if superpositions ψ
θ
were to exist, we

would be incapable of physically distinguishing them from a statistical mixture).

Examples of superselection observables2 include spin, mass3 and electric charge. Notably,
the spin SSR concerns the superposition of integer and half-integer spins: by the spin-
statistics theorem, this is equivalent to the boson-fermion SSR. These two equivalent
SSRs are sometimes referred to as the univalence SSR.

The intrinsic properties of a particle may be characterised as corresponding to quantum
numbers with an associated SSR. Two particles are identical if all of their intrinsic
properties match exactly e.g. all electrons are identical.

2.2. Particle exchanges. Consider the exchanges of n identical particles4 on a con-
nected m-manifoldM for m ≥ 2. The homotopy classes of exchange trajectories in
M form a group Gn(M) ∼= π1(Un(M)) under composition (the fundamental group
of the nth unordered con�guration space ofM). We will call this the motion group.
We are interested in two cases for M. Firstly, we have Gn(Rd) ∼= Sn (the symmet-
ric group) for d ≥ 3. Here, a tangle5 is homotopic to 0 tangles and exchanges are
insensitive to orientation (Figure 1).

Figure 1. Exchange trajectories in Rd for (a) a clockwise tangle
(right), and (b) single exchanges. When d ≥ 3, deformations `'' lift
the strands through the extra spatial dimension(s).

2SSRs for which Ĵ is an observable.
3Bargmann's mass SSR arises through demanding the Galilean covariance of the Schrödinger

equation: this only pertains to nonrelativistic systems, since Galilean symmetry is superseded by
Poincaré symmetry in special relativity.

4It will be assumed that particles are point-like.
5We call two successive exchanges of the same orientation on a pair of adjacent particles a tangle.



Secondly, for a surface S we have Gn(S) ∼= Bn(S) (the surface braid group). Given
any n points in (the interior of) S, we can take some disc D ⊂ S such that all n
points lie inside D. We know that Gn(D2) ∼= Bn where D2 is the 2-disc and

(2.4) Bn =

〈
σ1, . . . , σn−1

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi , |i− j| ≥ 2

〉

is the Artin braid group. We will denote the identity element by e. The braid
relations for Bn thus also hold in Bn(S) [12]. When considering particle exchanges
on a surface S, we henceforth restrict our attention to Bn(D2).

Figure 2. Particles are considered as lying in some disc D ⊂ S. Since
we are only interested in the topology of exchange trajectories and
Bn(D2) ∼= Bn(D), we can restrict our attention to particles in D2.

Remark 2.1. In particular, this means that what we learn about the exchange
statistics of particles on a disc is also applicable to particles on surfaces with arbitrary
topology.

Figure 3. A braid diagram with n strands will be interpreted as a
worldline diagram for n particles on a disc. We will let the time axis
run downwards. The above diagram depicts this for the 3-braid σ2σ1.

3. Exchange Symmetry in Three or More Spatial Dimensions

A permutation of n identical particles will be indistinguishable from the original
con�guration: this is called exchange symmetry and may be concisely expressed by

(3.1) [Ô, ρ(g)] = 0

for all observables Ô on H (the n-particle Hilbert space), and all g in the n-particle
motion group G where ρ : G→ U(H) is the unitary linear representation describing
the evolution in H under the action of G. It is easy to see that if (3.2) holds for all
generators gi of G, then (3.1) follows.

(3.2) [Ô, ρ(gi)] = 0



Recall that Sn is the motion group of n particles in Rd for d ≥ 3. We write

(3.3) Sn =

〈
s1, . . . , sn−1

s2
i = e

sisi+1si = si+1sisi+1

sisj = sjsi , |i− j| ≥ 2

〉

If dim(H) = 1, it is clear that ρ can only be one of ρ± where

ρ± : Sn → U(1)

si 7→ ±1
(3.4)

If two identical particles are exchanged and their wavefunction is scaled by +1, they
are called bosons ; if their wavefunction is scaled by −1, they are called fermions.

Letting dim(H) > 1, it is consistent to expect that statistical evolutions determined
by higher-dimensional representations of the symmetric group should be possible.
Such exchange statistics are referred to as parastatistics. However, `paraparticles'
have never been observed in nature, and all known fundamental particles may be
classi�ed as being either a boson or a fermion. Indeed, the classi�cation of identical
particles as being either bosons or fermions is sometimes included as a postulate of
quantum mechanics (called the symmetrisation postulate). If this postulate is relaxed
then it can still be shown (under the pertinent constraints) that the boson-fermion
classi�cation will hold [13, 14, 15].

In order for (3.1) to be consistent with the symmetrisation postulate, we must levy
some restrictions on ρ when G = Sn and dim(H) > 1. The eigenvalues of ρ(si) belong
to a nonempty subset of {±1}. We respectively denote the corresponding eigenspaces
(one of which is possibly zero-dimensional) by H±i . Since each such eigenspace de�nes
a superselection sector and the n particles are identical (and are thus either all bosons
or all fermions by the postulate), ρ must be such that H±i = H±j for all i, j. We thus
have H = H+⊕H− (i.e. the subscripts are dropped). Under this restriction, we may
thus recover the boson-fermion SSR from (3.1).

Remark 3.1. For a system of n bosons or fermions, there is typically no subspace
describing a subsystem of k < n particles. This is implicit in the structure of Fock

space6 (hereH(k)
(±) denotes the space of (anti)symmetric states for k identical particles):

(3.5) H± = H(0) ⊕H(1) ⊕H(2)
± ⊕H(3)

± ⊕ . . .

E.g. H(2)
+ 6⊂ H(3)

+ . For instance, states such as 1√
2
(|01〉 − |10〉) ∈ H(2)

− do not describe

a physical entanglement, since the subsystem for an individual particle is physically
inaccessible [16]. This is in contrast to anyonic systems which have a well-de�ned
description of state spaces for particle subsystems (since anyons are localised phe-
nomena). Nonetheless, there exist circumstances under which some notion of distin-
guishability amongst n identical bosons or fermions may be recovered: for instance,
when their wavefunctions have (approximately) disjoint compact support. This can
happen if the particles are far apart, or separated by su�ciently strong potentials.

6As a consequence of the mass SSR, note that the sectors of Fock space correspond to a SSR for
the particle number operator in the nonrelativistic limit.



4. Exchange Symmetry in Two Spatial Dimensions

4.1. Quasiparticles and braiding. Although there are no fundamental particles
in two spatial dimensions, it is well-known that various two-dimensional systems
are theoretically capable of supporting localised excitations with fractional statistics
[17, 18, 19, 20]: these emergent phenomena are known as quasiparticles7; they have
no internal degrees of freedom and may thus be considered as identical. The localised
nature of these excitations is instrumental in the emergence of fusion structure.

A1. Two-dimensional quasiparticles are spatially localised phenomena.

Recall that Bn is the motion group of n particles on a disc. Then for a two-
quasiparticle system with Hilbert space V , the action of the motion group is is given
by a unitary linear representation

(4.1) ρ : B2 → U(V)

The eigenvalues {eiuX }X of ρ(σ1) lie in U(1), and we have the corresponding decom-
position V =

⊕
X VX where eigenspaces VX de�ne superselection sectors by exchange

symmetry as expressed in (3.1).8 The possibly arbitrary exchange phase eiuX is what
earns anyons their namesake [21].

Remark 4.1. Now consider an n-particle system for n ≥ 2. A1 permits us to
consider the Hilbert space associated with a subsystem of k adjacent quasiparticles
(where 2 ≤ k ≤ n). Consequently, the action of the motion subgroup Bk on any
such subsystem will be independent of the rest of the system. The description of the
superselection sectors and exchange statistics given by the action of B2 on some pair
of quasipartilces is thus a property intrinsic to said pair.

Consider a 2-quasiparticle subsystem (of particles labelled qi and qi+1 located at the
ith and i+ 1th positions respectively) of an n-quasiparticle system. Denote the Hilbert
space of this subsystem by V{qi,qi+1} where {qi, qi+1} is an unordered set. Following
Remark 4.1, (4.1) de�nes a �xed action

(4.2) ρ{qi,qi+1} : B2 → U(V{qi,qi+1})

on qi and qi+1, and we write the eigenspace decomposition V{qi,qi+1} =
⊕

X V
{qi,qi+1}
X

for ρ{qi,qi+1}(σ1). We label the quasiparticles from 1 to n and let S{1,...,n} be the
set whose elements are all possible permutations of the string 12 . . . n. Given some
s ∈ S{1,...,n} we write s = q1 . . . qn where qi is the i

th character of string s. We denote
the Hilbert space for quasiparticles q1 . . . qn (in that order) by V q1...qn or V s. E.g.
V q1...qiqi+1...qn and V q1...qi+1qi...qn are the state spaces assigned to the system in the
initial and �nal time-slices of Figure 4 respectively.

7We will use the terms `quasiparticle' and `particle' interchangeably.
8It is assumed that the superselection sectors are �nite-dimensional, and that the number of

distinct superselection sectors is �nite. This assumption is later codi�ed as A2 in Section 6.1.



Figure 4. The clockwise exchange of quasiparticles qi and qi+1.

Let ρs
∣∣
V s

(σi) be the unitary linear transformation describing the action of braid
σi ∈ Bn on the n-quasiparticle system (as shown in Figure 4). For n > 2,

(4.3) V q1...qiqi+1...qn ∼= V q1...qi+1qi...qn ∼=
⊕

X

V{qi,qi+1}
X ⊗ V̄ (s)

X

where V̄
(s)
X denotes the state space for the rest of the system when qi and qi+1 are in

superselection sector X. The spaces V q1...qiqi+1...qn and V q1...qi+1qi...qn may be identi�ed
under the action of the subgroup 〈σ1, . . . , σi−2, σ̂i−1, σi, σ̂i+1, σi+2, . . . σn−1〉, but are
only equivalent up to isomorphism under the action of Bn. This is because the action
of Bn on the system will generally depend upon the order of the quasiparticles for
n > 2. E.g. the action of σ1 ∈ B3 on V 123 will di�er from its action on V 231 (unless
ρ{1,2} and ρ{2,3} are the same). We must therefore distinguish between the spaces
{V s}s∈S{1,...,n} in order to consider the action of braiding on the whole system.

(4.4) ρs
∣∣
V s

(σ±1
i ) =

⊕

X

[
ρX{qi,qi+1}(σ

±1
1 )⊗ id

V̄
(s)
X

]

where ρX{qi,qi+1} is the subrepresentation given by restricting ρ{qi,qi+1} to V{qi,qi+1}
X .

De�nition 4.2. ρs(σ
±1
i ) denotes the action of (anti)clockwise exchanging qi and qi+1

on an n-particle Hilbert space. It is therefore necessary that u ∈ S{1,...,n} contains
the substring qiqi+1 or qi+1qi for any V

u on which ρs(σ
±1
i ) is de�ned. Following from

(4.4), that is

(4.5) ρs
∣∣
V u

(σ±1
i ) =

⊕

X

[
ρX{qi,qi+1}(σ

±1
1 )⊗ id

V̄
(u)
X

]

The above tells us that the right way to think about the action of braiding on an n-
quasiparticle system is as follows: let {V s}s be de�ned as above and let b(s) ∈ S{1,...n}
be the obvious permutation9 of s for any b ∈ Bn . We construct an action of the
braids b ∈ Bn as linear transformations between spaces {V s}s. This action is de�ned
through a collection of functions {ρs}s such that (B0)-(B5) hold for any s ∈ S{1,...n}
and for all b, b1, b2 ∈ Bn.

9E.g. σ±1
i (q1 . . . qiqi+1 . . . qn) = q1 . . . qi+1qi . . . qn . That is, b(s) is the string obtained by reading

o� the labels of the endpoints of braid b when its starting points are labelled (left-to-right) by the
characters of s.



(B0) The domain of ρs is the braid group Bn

(B1) The image of b under ρs is a linear transformation

(4.6) ρs(b) :
⊕

u∈Us,b
V u →

⊕

s′∈S{1,...,n}

V s′

where the elements u ∈ Us,b ⊆ S{1,...,n} index the direct summands

{V u}u ⊆ {V s′}s′ that constitute the domain of ρs(b). We have

(4.7) Us,e := S{1,...,n}

(B2) For any u ∈ Us,b, we have linear isomorphism

(4.8) ρs
∣∣
V u

(b) : V u ∼−→ V b(u)

and if u′ /∈ Us,b then ρs(b) is unde�ned on V u′ .

(B3) Given b such that b = b2b1, then for any u such that u ∈ Us,b1 and
b1(u) ∈ Ub1(s),b2 , we have

(4.9) ρs
∣∣
V u

(b2b1) = ρb1(s)

∣∣
V b1(u)

(b2) ◦ ρs
∣∣
V u

(b1)

(B4) ρs
∣∣
V u

(b) is a unitary transformation i.e. for u ∈ Us,b the map ρs
∣∣
V u

(b)
has Hermitian adjoint

(4.10)
(
ρs
∣∣
V u

(b)
)†

= ρb(s)
∣∣
V b(u)

(b−1)

where

ρb(s)
∣∣
V b(u)

(b−1) ◦ ρs
∣∣
V u

(b) = idV u = ρs
∣∣
V u

(e)(4.11a)

ρs
∣∣
V u

(b) ◦ ρb(s)
∣∣
V b(u)

(b−1) = idV b(u) = ρb(s)
∣∣
V b(u)

(e)(4.11b)

(B5) ρs
∣∣
V u

(σ±1
i ) is de�ned as in De�nition 4.2 for u ∈ Us,σ±1

i

Let us unpack some details. Firstly, what constitutes Us,b? (B4) tells us that ρs
∣∣
V u

(b)

is invertible10, whence we must have

(4.12) u ∈ Us,b ⇐⇒ b(u) ∈ Ub(s),b−1

and therefore

(4.13) u ∈ Us,σ±1
i
⇐⇒ σi(u) ∈ Uσi(s),σ∓1

i

Combining this with (B5), we deduce that Us,σi contains all u ∈ S{1,...,n} such that

(i) u contains the substring qiqi+1 or qi+1qi
(ii) u satis�es (4.13)

That is, Us,σi contains all u such that u contains the substring qiqi+1 or qi+1qi, and
for which said substring does not begin at the i− 1th or i+ 1th character of u.

Clearly, Us,σi = Us,σ−1
i
. (B3) tells us that if u ∈ Us,b1 and b1(u) ∈ Ub1(s),b2 , then

u ∈ Us,b1b2 . One can check that (B3) together with (4.13) yields (4.12) as required.
Also, by combining (B3) with our knowledge of Us,σ±1

i
, we can �nd Us,b.11

10In fact, it tells us that ρs
∣∣
V u(b) is a diagonalisable, norm-preserving map for any u ∈ Us,b.

11Note that in this construction of Us,b, one considers all braid words of minimal length for b.



Remark 4.3. (Well-de�nedness and existence)
We know that for u ∈ Us,b, the map ρs

∣∣
V u

(b) may be parsed into a composition of
maps of the form in (4.5). When n ≥ 3, there exist braids b for which there is more
than one way to write b as a product of generators (i.e. as a braid word). This
results in ρs

∣∣
V u

(b) being given by distinct compositions. In order for the action {ρs}s
to be well-de�ned, we require that all distinct compositions for a given ρs

∣∣
V u

(b) are

equal.12 This intricate requirement is known as a coherence condition: we later see
that it is ful�lled by demanding that matrix representations for maps of the form (4.5)
satisfy the so-called hexagon equations (see Remark 6.3). For the current purposes of
our construction, we will just assume that such (nontrivial) actions (satisfying this
coherence condition) exist.

For any map ρs
∣∣
V u

(b), we have

(4.14) ρs
∣∣
V u

(b) = ρs
∣∣
V u

(b · e) = ρs
∣∣
V u

(b) ◦ ρs
∣∣
V u

(e)

whence it is clear that (4.7) must hold and that ρs
∣∣
V u

(e) = idV u . Also note that we
always have s ∈ Us,b, and so we may write

(4.15) ρs
∣∣
V s

: Bn → Hom


V s,

⊕

s′∈S{1,...,n}

V s′




where ρs
∣∣
V s

(b) : V s ∼−→ V b(s) is a unitary linear transformation.

Take any b ∈ Bn whose image under the epimorphism η : Bn → Sn (whose kernel is
the normal subgroup PBn of n-strand pure braids) is a permutation of the form

(
1 · · · i− 1 i i+ 1 i+ 2 · · · n
b(1) · · · b(i− 1) j j + 1 b(i+ 2) · · · b(n)

)

or (
1 · · · i− 1 i i+ 1 i+ 2 · · · n
b(1) · · · b(i− 1) j + 1 j b(i+ 2) · · · b(n)

)

Then for all u ∈ Us,σi ∩ Ub(s),σj ,
(4.16) ρs

∣∣
V u

(σ±1
i ) = ρb(s)

∣∣
V u

(σ±1
j )

The above construction for the �action� {ρs}s of n-braids on the spaces {V s}s can
be thought of as a unitary linear representation of the braid groupoid for n distinctly
coloured strands. A further discussion of this statement is provided in Appendix A.

4.2. Exchange symmetry for n quasiparticles. Recall that superselection sectors
arise from exchange symmetry as in (3.1). A subtle but crucial point in this equation
is that the n-particle Hilbert space does not depend on the order of the particles.
This necessity becomes clearer when we try to write down a (naive) version of (3.1)
compatible with the braiding action described above:

[Ô, ρs(b)] = 0 for all s ∈ S{1,...,n} and all b ∈ Bn

12Of course, there are cases where two distinct compositions may `automatically' be equal by
commutativity of constituent maps.



For starters, the image of ρs(b) could be in any one of the spaces {V s}s, so the space
of observables should be de�ned on the n-particle Hilbert space �modulo ordering�.
Let us denote such a space by V [n] where [n] := {1, . . . , n} is an unordered set. This
also makes sense physically, since we should not have di�erent sets of observables
depending on the order of the particles (by indistinguishability). This also excludes
observables de�ned on subsystems (which is desirable as we want to consider the
exchange symmetry mechanism local to all n quasiparticles). However, in order for
the commutator to be well-de�ned, the braiding action must also be de�ned on V [n].

Altogether, the correct adaptation of (3.1) should be given by a commutator of the
form

(4.17) [Ô, ρ[n](g)] = 0

for all n-particle observables Ô de�ned on V [n] and for all g ∈ En ≤ Bn, where

(4.18) ρ[n] : En → U(V [n])

is some unitary linear representation.

At �rst, this formulation of exchange symmetry appears rather abstract. In order to
obtain a better understanding of what is meant by (4.17)-(4.18), we will outline their
construction from the action {ρs}s. Take En to be the subset of n-braids such that
for any g ∈ En, b ∈ Bn and s ∈ S{1,...,n}, we have
(4.19) ρb(s)(g) · ρs(b) |ψ〉 = eiuQ |ψ〉
where V s =

⊕
Q V

s
Q is the eigenspace decomposition under the unitary operator ρs(g)

with ρs(g) |ψ〉 = eiuQ |ψ〉 for any |ψ〉 ∈ V s
Q. Equation (4.19) demands that V s

Q is the

eiuQ-eigenspace of ρs(g) for all s. Since the eiuQ-eigenspace (of the action of g ∈ En) is
stable under the action of all n-braids, it is independent of the order of the particles:

we thus denote it by V [n]
Q where V [n] =

⊕
Q V

[n]
Q . The action of g on V [n] is denoted

by ρ[n](g) where

(4.20) ρ[n](g) =
∑

Q

eiuQP̂Q

and where P̂Q is a normalised projector onto V [n]
Q . We will see that En is a subgroup

generated by a single n-braid i.e.

(4.21) En = 〈βn〉 ≤ Bn

and we will therefore call βn ∈ Bn the superselection braid. The n-quasiparticle
Hilbert space �modulo ordering� may therefore be understood as the representation
space in (4.18), which in turn is constructed through the action {ρs}s of n-braids on
the spaces {V s}s.13 From the above, it is clear that V [n]

Q
∼= V s

Q for any s.

Since the action of the superselection n-braid does not depend on the order of the
particles, the braid itself should not favour any single particle over another. This
hints that the braid should realise

(
n
2

)
exchanges (i.e. each pair is exchanged once).

13Recall from (4.5) that the action {ρs}s can be formulated in terms of the pairwise action (4.2).
The n-fold exchange symmetry mechanism (4.17) may thus be thought of as emerging from the
pairwise exchange symmetries among its constituents.



By the innate symmetry of the representation space V [n], we expect that the braid
word βn should also satisfy several internal symmetries. Indeed, we will subsequently
see that these properties are satis�ed, and that the superselection braid is given by

(4.22) βn = σ1σ2 . . . σn−1 · σ1σ2 . . . σn−2 · . . . · σ1 , n ≥ 2

and β1 = e. Studying the action of this braid reveals the fusion structure amongst
quasiparticles and hints at their topological spin structure. This is key in connecting
the narrative of exchange symmetry to the framework of braided fusion categories.

4.3. Superselection sectors for n quasiparticles. Given a system V q1...qn of n > 2
quasiparticles, note that exchange symmetry (4.17) is de�ned with respect to all
subsystems of k adjacent quasiparticles (where 2 ≤ k ≤ n) i.e.

(4.23) [Ô, ρ[k](βk)] = 0

for all observables Ô on V [k].14 We therefore have a hierarchy of exchange symmetries.
The next step is to understand how these all �t together. Equation (4.23) tells us that

the eigenspaces {V [k]
X }X of ρ[k](βk) de�ne superselection sectors. Take the k-particle

subsystem V q1...qk and write the decomposition into k-particle superselection sectors
as
⊕

X V
q1...qk
X = V q1...qk .

(Q) How are {V q1...qk
X }X understood in the context of the full n-particle system?

Let k < n and write the decomposition into n-particle superselection sectors as⊕
Q V

q1...qn
Q = V q1...qn . Suppose the n-particle state is in superselection sector V q1...qn

Q .

The most general way to decompose V q1...qn
Q with respect to the k-particle subsystem

is

(4.24) V q1...qn
Q

∼=
⊕

X

V q1...qk
X ⊗ V X,qk+1...qn

Q

where V
X,qk+1...qn
Q denotes the state space for the rest of the system when q1, . . . , qk

are in superselection sector X.

Let us compare (4.3) and (4.24) when i = 1 and k = 2. In this case, V q1q2
X
∼= V{q1,q2}X

and
⊕

Q V
X,qk+1...qn
Q

∼= V̄
(s)
X . Spaces V q1q2

X and V q2q1
X may be identi�ed with V{q1,q2}X

when considered as representation spaces of B2, but are distinguished between in
the context of a larger system (since we usually need to keep track of the particle
ordering) and are thus only considered equivalent up to isomorphism.

We can also partition an n > 3 particle system into subsystems V q1...qk and V qk+1...qn

where we assume 2 ≤ k ≤ n − 2. Denote the superselection sectors of each by
{V q1...qk

X }X and {V qk+1...qn
Y }Y . Suppose the n-particle state is in superselection sec-

tor V q1...qn
Q . The most general way to decompose V q1...qn

Q with respect to the two
subsystems is

(4.25) V q1...qn
Q

∼=
⊕

X,Y

V q1...qk
X ⊗ V XY

Q ⊗ V qk+1...qn
Y

The spaces {V XY
Q }X,Y may be thought of as constraining the superselection sectors

of the subsystems by relating them to the n-particle superselection sector.

14In the instance of subsystems, [k] denotes the unordered set of labels for the k particles.



If dim(V XY
Q ) = d, this may be interpreted as the superselection sector Q containing

superselection sectors X and Y in �d distinct ways�. We may have d = 0, but it is
also clear that at least one of the spaces {V XY

Q } must be nonzero.15 By comparing
(4.24) and (4.25), we see that

(4.26) V
X,qk+1...qn
Q

∼=
⊕

Y

V XY
Q ⊗ V qk+1...qn

Y

Analogously to (4.24) we can write V q1...qn
Q =

⊕
Y V

q1...qk,Y
Q ⊗ V

qk+1...qn
Y whence it

similarly follows that

(4.27) V q1...qk,Y
Q

∼=
⊕

X

V q1...qk
X ⊗ V XY

Q

In light of the above, it is easy to check that a �1-quasiparticle Hilbert space� must be
canonically isomorphic to C. It is therefore standard practice to omit a 1-quasiparticle
Hilbert space in a decomposition.

Remark 4.4. (Superselection sectors of subsystems)
Another salient feature emerges from the hierarchy of superselection sectors in system
of n quasiparticles for n > 2. To illustrate this, consider decomposition (4.24). While
the spaces {V q1...qk

X }X still de�ne superselection sectors locally (i.e. with respect to
the k-particle subsystem), they do not de�ne superselection sectors in the context of
the larger system.16 This is because the k-particle exchange symmetry mechanism
is superseded by the n-particle mechanism. Indeed, the superselection sectors of the
subsystem are entangled with the rest of the system in (4.24).17 Crucially, this means
that when we consider the entire system, it is possible to observe linear superpositions
over the spaces {V q1...qk

X }X . It is also possible that interactions between the subsystem
and the rest of the system induce transitions between superselection sectors of the
subsystem.

5. The Superselection Braid and Fusion Structure

In Section 4.2, we outlined the method for determining the superselection sectors
using the action {ρs}s. The �rst task is to �nd the subset En of all n-braids satisfying
(4.19). For any candidate braid g ∈ Bn, it su�ces to check that (4.19) is satis�ed by
b = σ±1

i for all i. It will be convenient to de�ne the following notation for braids:

(5.1) σi1...ik−1ik := σi1 . . . σik−1
σik , bj := σ12...j for all j ≥ 1, and b0 := e

We argued that a reasonable heuristic for an element of En would be that it exchanges
each pair of quasiparticles once. Take the ansatz

(5.2) βn = bn−1bn−2 . . . b1 , n ≥ 2

E.g. β2 = σ1, β3 = σ121, β4 = σ123121 etc. We also set β1 := e. In Theorem 5.1, we will
show that βn ∈ En. Therefore, (the action of) βn speci�es the superselection sectors;
in fact, it does so uniquely up to orientation (Theorem 5.11) which proves (4.21) i.e.
En = 〈βn〉 ≤ Bn. For this reason, we will refer to βn as the superselection braid.

15This is equivalent to saying at least one of the spaces {V X,qk+1...qn
Q }X must be nonzero in (4.24).

16When we look at the whole system �from afar� we expect it to be in the ground state. This
means that the superselection sector of the whole system should correspond to the vacuum, which
later motivates the notion of �dual charges�.

17Speci�cally, when X runs over > 1 index and at least two of the spaces {V X,qk+1...qn
Q }X are

nonzero.



5.1. The superselection braid.

Theorem 5.1. (Superselection sectors)
We have the eigenspace decomposition V s =

⊕
Q V

s
Q under ρs(βn) where

ρs(βn) : V s
Q → V

βn(s)
Q

|Ψ〉 7→ eiuQ |Ψ〉
, n ≥ 2(5.3)

for any s ∈ S{1,...,n}.

Figure 5. βn has length
(
n
2

)
. The above diagram depicts β4.

Let us recap the rest of the construction from Section 4.2. Theorem 5.1 allows us to

identify the spaces {V s
Q}s as the eiuQ-eigenspace V [n]

Q under the action of βn. Write,

(5.4) V [n] =
⊕

Q

V [n]
Q

In particular, this corresponds to a unitary representation

(5.5) ρ[n] : 〈βn〉 ≤ Bn → U(V [n])

where

ρ[n](βn) : V [n]
Q → V

[n]
Q

|ϕ〉 7→ eiuQ |ϕ〉
(5.6)

That is,

(5.7) ρ[n](βn) =
∑

Q

eiuQP̂Q

where P̂Q is a normalised projector onto V [n]
Q . Since the representation space V [n] is

the n-quasiparticle Hilbert space (modulo ordering), exchange symmetry is given by

(5.8) [Ô, ρ[n](βn)] = 0

for all n-particle observables Ô on V [n]. The spaces {V [n]
Q }Q are superselection sectors

of the system, and we have shown by construction that each superselection sector
is preserved under the action of of any n-braid. It follows that V s

Q de�nes a super-
selection sector for any (s,Q). In conclusion, the superselection sectors of an n-
quasiparticle system are given by the eigenspaces of the action of the braid βn.



Corollary 5.2. Given |Ψ〉 ∈ V s
Q as in Theorem 5.1,

(5.9) ρs(β
−1
n ) |Ψ〉 = e−iuQ |Ψ〉

Proof. Let s̃ := βn(s) (i.e. string s in reverse order). By Theorem 5.1,

ρs̃(βn) [ρs(βn) |Ψ〉] = eiuQ [ρs(βn) |Ψ〉]
=⇒ ρs̃(βn) |Ψ〉 = eiuQ |Ψ〉

=⇒ [ρs̃(βn)]† |Ψ〉 = e−iuQ |Ψ〉

where the second line is well-de�ned since it can be shown that s ∈ Us̃,βn . �

In order to prove Theorem 5.1, we will need the braid identity in Lemma 5.3 (whose
proof is given in Appendix B.1).

Lemma 5.3. Let n ≥ 2. Then for i = 1, . . . , n− 1,

(5.10) βnσ
±1
i = σ±1

n−iβn

Proof of Theorem 5.1.

Take n-quasiparticle space V s for some chosen s ∈ S{1,...,n}. We write the eigenspace
decomposition V s =

⊕
Q V

s
Q under ρs(βn) where

ρs(βn) : V s
Q → V

βn(s)
Q

|Ψ〉 7→ eiuQ |Ψ〉
, n ≥ 2(5.11)

Then for 1 ≤ i ≤ n− 1,

ρs(βnσ
±1
i ) |Ψ〉 = ρσi(s)(βn)

[
ρs(σ

±1
i ) |Ψ〉

]

and

ρs(βnσ
±1
i ) |Ψ〉 = ρs(σ

±1
n−iβn) |Ψ〉 (by Lemma 5.3)

= eiuQ
[
ρβn(s)(σ

±1
n−i) |Ψ〉

]

where σi(s) swaps the ith and (i + 1)th characters of s, and βn(s) reverses the order
of the characters in s. Then by (4.16), we have

ρβn(s)(σ
±1
n−i) |Ψ〉 = ρs(σ

±1
i ) |Ψ〉

It follows that the image of V s
Q under ρs(σ

±1
i ) is the eiuQ-eigenspace of ρσi(s)(βn), so

we write

ρs(σ
±1
i )
(
V s
Q

)
=: V

σi(s)
Q

The result follows. �



5.2. Fusion structure. A composite collection of quasiparticles will exhibit the
same statistical behaviour as a single quasiparticle under exchanges: the scheme
under which a collection of quasiparticles is considered as a composite is known as
fusion. In this section, we will carefully show the emergence of this behaviour by
considering the action of the superselection braid.

De�nition 5.4. We de�ne tk,l to be the braid in Bk+l that clockwise exchanges
k strands with l strands. Similarly, we de�ne uk,l to be the braid in Bk+l that
anticlockwise exchanges k strands with l strands. Clearly, t−1

k,l = ul,k.

Figure 6. (i) tk,l , (ii) uk,l

For any a ∈ N0, we have the homomorphism

ra : Bn → Bn+a

σi 7→ σi+a
(5.12)

where ra1 ◦ ra2 = ra1+a2 . We also have the anti-automorphism

χ : Bn → Bn

σi 7→ σi
(5.13)

which reverses the order of the generators in a braid word. Let
←−
b := χ(b). Note that

tk,l = r0(
←−
bl ) · r1(

←−
bl ) · . . . · rk−1(

←−
bl )

= rl−1(bk) · . . . · r1(bk) · r0(bk)
(5.14)

and that
←−
tk,l = tl,k.

Consider some n-quasiparticle system V s
Q in �xed superselection sector Q for some

s ∈ S{1,...,n} where n ≥ 2. Partition s into nonempty substringsm1,m2 i.e. V
s
Q = V m1,m2

Q

and denote the length of string mi by |mi|. We write eigenspace decompositions

(5.15) V m1 =
⊕

X

V m1
X , V m2 =

⊕

Y

V m2
Y

under ρm1(β|m1|) and ρm2(β|m2|). Similarly to (4.25), we have the decompositions

V m1,m2

Q
∼=
⊕

X,Y

V m1
X ⊗ V XY

Q ⊗ V m2
Y(5.16a)

V m2,m1

Q
∼=
⊕

X,Y

V m2
Y ⊗ V Y X

Q ⊗ V m1
X(5.16b)



Theorem 5.5. (Fusion)
For an n-quasiparticle system V s

Q with �xed superselection sector Q, consider its de-
composition as in (5.16a). Let (k, l) := (|m1|, |m2|) and take (X, Y ) = (x, y) such
that V xy

Q is nonzero. Take arbitrary |ψ〉 := |ψx〉 |ψxyQ 〉 |ψy〉 ∈ V m1
x ⊗ V xy

Q ⊗ V m2
y where

we have eigenvalues

ρm1(βk) |ψx〉 = eiux |ψx〉 , ρm2(βl) |ψy〉 = eiuy |ψy〉 , ρs(βk+l) |ψ〉 = eiuQ |ψ〉
Then,

(i) ρs(tk,l) |ψ〉 = ei(uQ−ux−uy) |ψ〉
(ii) Eigenspaces are preserved under exchanges i.e.

(5.17) ρs(tk,l) : V m1
x ⊗ V xy

Q ⊗ V m2
y

∼→ V m2
y ⊗ V yx

Q ⊗ V m1
x

(iii) ρm2,m1(tl,k) [ρm1,m2(tk,l) |ψ〉] = ei(uQ−ux−uy) [ρm1,m2(tk,l) |ψ〉], and so

(5.18) ρs(tl,k · tk,l) |ψ〉 = ei2(uQ−ux−uy) |ψ〉

Corollary 5.6.

(5.19) ρs(uk,l) |ψ〉 = e−i(uQ−ux−uy) |ψ〉

Proof.

[ρm2,m1(tl,k)]
† ρm2,m1(tl,k)ρm1,m2(tk,l) |ψ〉 = ρm1,m2(tk,l) |ψ〉

=⇒ ρm1,m2(uk,l)
[
ei2(uQ−ux−uy) |ψ〉

]
= ei(uQ−ux−uy) |ψ〉

�

Theorem 5.5 tells us that the k and l-quasiparticle composites m1 and m2 (in eigen-
states of ρm1(βk) and ρm2(βl) respectively) behave identically to a pair of quasi-
particles under exchange: if we �x eigenspaces V m1

x and V m2
y such that V xy

Q is nonzero,
then composites m1 and m2 behave as a pair of quasiparticles in superselection sector
Q with exchange phase ei(uQ−ux−uy). The eigenspaces of ρm1(βk) and ρm2(βl) may thus
be considered as representing di�erent `types' of quasiparticles (since the exchange
phase depends on x and y). We will refer to the `type' of a quasiparticle as its (topo-
logical) charge. If e.g. k > 1, we say that the collection m1 of quasiparticles fuses
to a quasiparticle of charge x.18 It follows that the possible (x, y) for which V xy

Q is
nonzero represent the distinct possible fusion outcomes here.

Recall from Remark 4.4 that we can have a coherent superposition of distinct fu-
sion outcomes for an entangled subsystem of quasiparticles. Furthermore, since the
eigenspaces of any ρΣ(βn) (where Σ is an unordered set of quasiparticles of cardinal-
ity n) can be identi�ed with quasiparticle charges, it follows that the superselection
sector of a system can be identi�ed with a (composite) quasiparticle of �xed charge.
A complete system of quasiparticles thus has �xed total charge (fusion outcome).

18For k=1, note that ux = 0 since the eigenvalue of ρm1
(β1) is trivial. Let m1 = qj . In (5.17), we

write x = qj i.e. qj `fuses to itself'. Note that V
qj
qj = V qj since the eigenspace is the whole space,

and recall that a 1-quasiparticle Hilbert space is canonically isomorphic to C.



Figure 7. (i) The fusion diagram graphically depicting an arbitrary
state in V m1

x ⊗ V xy
Q ⊗ V m2

y where f1 ∈ V m1
x , f2 ∈ V m2

y and g ∈ V xy
Q .

(ii) Composite charges x and y are exchanged in superselection sector
Q, so the fusion state acquires phase ei(uQ−ux−uy) relative to (i).

This lends the hitherto abstract factor V xy
Q in (5.17) a more tangible interpretation:

V m1
x ⊗ V xy

Q ⊗ V m2
y is the space of states describing the process where collection m1

fuses to (a quasiparticle of charge) x, collection m2 fuses to y, and then x and y
fuse to Q (see Figure 7(i)). The interpretation of any such tensor decomposition
follows analogously. Such Hilbert spaces are thus known as fusion spaces and their
constituent states are called fusion states.

Corollary 5.7. Fusion is commutative and associative.

Proof. Commutativity follows from Theorem 5.1: the possible fusion outcomes for an
n-quasiparticle system correspond to the eigenspaces of ρ[n](βn) on V [n] (whence the
order of the n quasiparticles is irrelevant).
Associativity follows from recursive application of Theorem 5.5 i.e. further partition-
ing m1 and m2 and so on until no further partitions can be made: we will view such a
recursive choice of partitions as a full rooted binary tree with n leaves. This provides
us with a fusion tree illustrating the order in which n quasiparticles are fused (see
Figure 8). Since Q corresponds to an arbitrary eigenspace of ρs(βn), it follows that
the set of possible fusion outcomes (i.e. the set of possible labels for the root) does
not depend on the order in which fusion occurs. �

Figure 8. All possible fusion trees for 4 particles. For n particles,
the number of possible fusion trees is given by Cn−1 = 1

n

(
2n−2
n−1

)
i.e. the

(n− 1)th Catalan number.



By the associativity and commutativity of fusion, the charge of an unordered collection
Σ of quasiparticles can be thought of as a property of any connected region of the
system in which solely the excitations in Σ are enclosed. This is one of the reasons
that quasiparticle charge is called `topological' (as opposed to e.g. electric charge
which is de�ned geometrically via the charge density). Similarly to electric charge,
we have seen that topological charge may correspond to a superselection rule of a
system; but unlike electric charge, we may also observe a superposition of topological
charges (for an entangled subsystem).

Figure 9. Winding a quasiparticle collection m1 of charge x around
collection m2 of charge y in a region of total charge Q accumulates sta-
tistical phase ei2(uQ−ux−uy). This diagram illustrates the same process
as on the left-hand side of Figure 7(ii) but with an additional exchange.

Remark 5.8. Take care to note that statistical phases of the form eiuQ are not a
property of charge Q alone, but arise as eigenvalues of some ρs(βn) i.e. the phase also
depends on the constituent charges fusing to Q. To this end, a better notation for
eiuQ would be ωΣ

Q ∈ U(1) where Σ is the unordered set of constituent characters of s.
Nonetheless, we have opted for the former notation for sake of presentation.

As indicated by Theorem 5.5, fusion generally does not correspond to a physical pro-
cess but rather describes how a collection of charges may be considered as a composite
charge. Of course, the measurement of a fusion outcome is physically signi�cant.

In order to prove Theorems 5.5, we will need the braid identities in Theorem 5.9
(whose proof is given in Appendix B.2). Theorem 5.9 shows that the superselection
braid may be de�ned recursively.19,20

Theorem 5.9. (Superselection braid by recursion)
Let n ≥ 2. For any positive integers k, l such that k + l = n, βn is given by

(i) [βl · rl(βk)] tk,l
(ii) tk,l [βk · rk(βl)]
(iii) βl · tk,l · βk
(iv) rl(βk) · tk,l · rk(βl)

and β1 := e. The terms enclosed in square brackets commute.

19Choosing between forms (i)-(iv) at each decision (and permuting the terms in square brackets
if desired) parses βn into a composition of braids of the form rd(tk,l). The braid word (5.2) for βn
is recovered by choosing (ii) at every iteration with l = 1.

20Note that β−1
n is given by (i)-(iv) but with a superscript `−1' on each t and β. This is easily

seen by inverting (i)-(iv).



Proof of Theorem 5.5.

Let ṽ denote the reverse of a string v.

(i) Using Theorem 5.9(ii),

ρs(βn) |ψ〉 = ρm̃1,m̃2(tk,l) ρm1,m2 ([βk · rk(βl)]) |ψ〉
= ρm̃1,m̃2(tk,l)

[
ei(ux+uy) |ψ〉

]

Recalling that ρs(βn) |ψ〉 = eiuQ |ψ〉, we deduce that
ρm̃1,m̃2(tk,l) : V m̃1

x ⊗ V xy
Q ⊗ V m̃2

y → V s̃
Q

|φ〉 7→ ei(uQ−ux−uy) |φ〉
(ii) We know that

(5.20) ρs(tk,l) : V m1
x ⊗ V xy

Q ⊗ V m2
y → V m2m1

Q

where V m2,m1

Q has decomposition (5.16b). We wish to show that the range of
(5.20) is restricted as in (5.17). Using Theorem 5.5(i) and Theorem 5.9(iii),

ρs(βn) |ψ〉 = ρm2,m̃1(βl) ρm̃1,m2(tk,l) ρm1,m2(βk) |ψ〉
= ρm2,m̃1(βl)

[
ei(uQ−uy) |ψ〉

]

and since ρs(βn) |ψ〉 = eiuQ |ψ〉, we deduce that
(5.21) ρm̃1,m2(tk,l) : V m̃1 ⊗ V xy

Q ⊗ V m2
y →

⊕

X

V m2
y ⊗ V yX

Q ⊗ V m̃1
X

Similarly, by using Theorem 5.5(i) and Theorem 5.9(iv) we may deduce that

(5.22) ρm1,m̃2(tk,l) : V m1 ⊗ V xy
Q ⊗ V m̃2

y →
⊕

Y

V m̃2
Y ⊗ V Y x

Q ⊗ V m1
x

Combining (5.21) and (5.22), the result follows.

(iii) By identities (i) and (ii) of Theorem 5.9,

(5.23) β2
n = tl,k

[
rl(β

2
k) · β2

l

]
tk,l

whence

ρs(β
2
n) |ψ〉 = ei2(ux+uy) [ρm2,m1(tl,k) · ρm1,m2(tk,l) |ψ〉]

=⇒ ρm2,m1(tl,k) [ρm1,m2(tk,l) |ψ〉] = ei2(uQ−ux−uy) |ψ〉
=⇒ ρm2,m1(tl,k) [ρm1,m2(tk,l) |ψ〉] = ei(uQ−ux−uy) [ρm1,m2(tk,l) |ψ〉]
where we used parts (i) and (ii) of Theorem 5.5 in the third and �rst lines
respectively.

�
Given the fusion space V s =

⊕
Q V

s
Q (where s = q1 . . . qn ∈ S{1,...,n} and Q indexes

the superselection sectors), �x a fusion tree (as in Figure 8): each of the n− 1 fusion
vertices21 corresponds to an eigenspace of ρs(v)(β|s(v)|), where for a fusion vertex v we
let s(v) denote the substring of s given by the leaves descending from v, and |s(v)|
denotes the length of s(v). Note that 2 ≤ |s(v)| ≤ n.

21By �fusion vertices�, we mean vertices in the fusion tree with two or more incident edges i.e.
any vertex that is not a leaf. Leaves correspond to initial quasiparticles.



We thus label each fusion vertex v with an eigenspace of ρs(v)(β|s(v)|) (recall that
such a label represents a �xed topological charge and is called a `fusion outcome'
in this context). Such a labelling is called admissible if the corresponding fusion
subspace of V s has nonzero dimension. Note that the root label corresponds to the
superselection sector of the system. Observe that �xing a fusion tree speci�es a
decomposition of V s in terms of the eigenspaces of {ρs(v)(β|s(v)|)}v . We write such
a decomposition in the form yielded by recursive application of (5.16a) e.g. a fusion
tree of the form illustrated in Figure 10 speci�es the decomposition

(5.24) V q1q2q3q4 ∼=
⊕

X1,X2,Q

V q1q2
X1
⊗ V X1,q3

X2
⊗ V X2,q4

Q

Figure 10. The labels x1, x2 and q correspond to eigenspaces of
ρq1q2(β2), ρq1q2q3(β3) and ρq1q2q3q4(β4) respectively. The triple (x1, x2, q)
of charges is an admissible labelling of the tree if the fusion subspace
V q1q2
x1
⊗ V x,q3

x2
⊗ V x2,q4

Q ⊆ V q1q2q3q4 is nonzero.

Theorem 5.9 provides a method for parsing βn into a composition of braids of
the form rd(tk,l). Any such parsing involves making a choice of n − 1 partitions.
From any possible sequence of partitions, we can always recover a fusion tree with
which the parsing of βn is compatible. By compatibility, we mean that it is readily
apparent how the fusion tree will transform under the action of βn i.e. βn can be parsed
into a sequence of braids that each have a well-de�ned action on the decomposed
components of the system. The incoming branches of each fusion vertex in the tree
are clockwise exchanged and so the initial fusion tree is sent to its mirror image. The
braid βn is thus compatible with all n-leaf fusion trees (as expected).

Figure 11. tk,l clockwise exchanges the incoming branches of a fusion
vertex that has k leaves and l leaves stemming from it.

Remark 5.10. Given |ψ〉 ∈ V s
Q , we know that ρs(βn) |ψ〉 = eiuQ |ψ〉. It is illuminat-

ing to examine how the phase eiuQ arises given a decomposition of V s
Q . Consider any

admissibly labelled fusion tree in V q1...qn
Q (whence the root has label Q). We know

that ρs(βn) will clockwise exchange the incoming branches of every fusion vertex. For
any fusion vertex, the clockwise exchange is given by



where the phase evolution follows from Theorem 5.5. It is easy to see that the total
phase evolution acquired by clockwise exchanging the incoming branches of every

fusion vertex will be ei[uQ−(uq1+···+uqn )] (phases associated to internal nodes of the
tree will cancel). Finally, observe that the uqi are zeroes (since they are arguments
of eigenvalues under the action of β1 = e).

Theorem 5.11. (Uniqueness of the superselection braid)
β±1
n are the unique braids under whose action the fusion space decomposes into the

superselection sectors of an n-quasiparticle system.

A proof of Theorem 5.11 is outlined in Appendix C.

6. Theories of Anyons

This section primarily serves to connect the narrative of Section 5 with the standard
formalism in the literature, by outlining the additional postulates (A2-A3) required
to make contact with the usual algebraic theory of anyons. Our presentation thus
omits various details, and is not intended as an introduction. For a more detailed
treatment, we refer the reader to [4, 5, 6, 7, 8]. In relation to additional insights
arising from consideration of the superselection braid, we highlight Section 6.3.

6.1. Labels and �niteness. In any standard theory of anyons, it is assumed that
there are �nitely many distinct topological charges. A theory of anyons thus comes
equipped with a �nite set of labels L whose cardinality is called the rank of the theory.
It is also assumed that the representation space in (4.2) is �nite which immediately

tells us that dim(V{a,b}c ) is �nite for any a, b, c ∈ L (from which it easily follows that a
fusion space for �nitely many quasiparticles is �nite-dimensional). We package these
two assumptions into the �niteness assumption A2 below.

De�nition 6.1. Given fusion space V ab
c for any a, b, c ∈ L , we writeNab

c := dim(V ab
c ).

The quantities {Nab
c }a,b,c∈L are called the fusion coe�cients of the theory.

Since dim(V{a,b}c ) = dim(V ab
c ) = dim(V ba

c ) we have the symmetry

(6.1) Nab
c = N ba

c for all a, b, c ∈ L

which is consistent with the commutativity of fusion from Corollary 5.7. The quantity
Nab
c may be thought of as counting `the distinct number of ways charges a and b can

fuse to charge c'. Note that dim(V ab) =
∑

c∈LN
ab
c and that if Nab

c = 0 then a and
b cannot fuse to c. Consider V abc

d for any a, b, c, d ∈ L. By associativity of fusion
(Corollary 5.7), the decompositions of a fusion space must be isomorphic

(6.2)
⊕

e

V ab
e ⊗ V ec

d
∼=
⊕

f

V af
d ⊗ V bc

f

and so the fusion coe�cients satisfy the associativity relation

(6.3)
∑

e∈L
Nab
e N

ec
d =

∑

f∈L
Naf
d N bc

f



A2. A theory of anyons has �nitely many distinct topological charges and all fusion
coe�cients are �nite.

Any label set will include the trivial label (denoted by 0) which represents (the
topological charge of) the vacuum: the fusion of any charge with the vacuum yields
the original charge i.e. N0q

r ∝ δqr for any q, r ∈ L. Since we always have the freedom
to insert the trivial charge anywhere, we must have

(6.4) dim(V ab
c ) = dim(V a0b

c ) = dim(V 0ab
c ) = dim(V ab0

c )

Associativity and (6.4) tell us that Na0
a N

ab
c = Nab

c N
0b
b = Nab

c and so Na0
a = N b0

b = 1
for all a, b ∈ L. Thus,

(6.5) N q0
r = N0q

r = δqr for any q, r ∈ L

Following the presentation in [4], write V a0
a = spanC{|αa〉} and V 0b

b = spanC{|βb〉}.
The relation between the spaces in (6.4) is characterised by trivial isomorphisms

αq : C→ V q0
q

z 7→ z |αq〉
βq : C→ V 0q

q

z 7→ z |βq〉
(6.6)

e.g. V ab
c

αa∼−→ V a0
a ⊗ V ab

c and V ab
c

βb∼−→ V ab
c ⊗ V 0b

b . By associativity we see that αa and
βb are related (see Remark 6.3 and Appendix D). Braiding with the vacuum must be
trivial i.e. using the same notation as in (4.2),

(6.7) ρ{q,0}(σ
±1
1 ) = 1 for all q ∈ L

6.2. Braided 6j fusion systems. We write orthonormal bases

(6.8) V ab
c = spanC{|ab→ c;µ〉}µ , V ba

c = spanC{|ba→ c;µ〉}µ
of fusion states given any a, b, c ∈ L where 1 ≤ µ ≤ Nab

c for Nab
c 6= 0.

Figure 12. A graphical depiction of the fusion state |ab→ c;µ〉. We
will implicitly assume that our fusion vertices are normalised.

The dual space of a fusion space has natural interpretation as a `splitting space' i.e.

(6.9)

for any a, b, c ∈ L. Fusion coe�cients may thus also be thought of `splitting' coe�-
cients. Given an orthonormal basis, we can use the graphical calculus to express the



inner product and completeness relation on V ab :

(6.10)

The R-matrices of a theory are given by a matrix representation of the unitary
operators from (4.2), typically in an eigenbasis: given any a, b ∈ L we have the

eigenspace decomposition V{a,b} =
⊕

Q∈L V
{a,b}
Q under ρ{a,b} where

(6.11) ρ{a,b}(σ
±1
1 ) |ψ〉 = e±iuQ |ψ〉

for |ψ〉 ∈ V{a,b}Q with Q such that Nab
Q 6= 0. We write R-matrices

(6.12) Rab
Q : V ab

Q
∼→ V ba

Q , Rba
Q : V ba

Q
∼→ V ab

Q

where we let

Rab
Q = Rba

Q =

Nab
Q⊕

j=1

[eiuQ ](6.13a)

Rab :=
⊕

Q∈L : Nab
Q 6=0

[
Rab
Q

]
, Rba :=

⊕

Q∈L : Nba
Q 6=0

[
Rba
Q

]
(6.13b)

It is clear that Rab = Rba here.22 Following (6.7), we have

(6.14) Rq0
q = R0q

q = 1

for all q ∈ L. We let (R−1)ab denote the anticlockwise exchange i.e.

(6.15) (Rab)−1 = (R−1)ba

For an n-quasiparticle fusion space V q1...qn (where q1, . . . , qn ∈ L) let D1 and D2 be
decompositions of this space corresponding to distinct fusion trees. By associativity,
we have an isomorphism

(6.16) F : D1 → D2

Fixing a basis of fusion states, we see that F ∈ Aut(V q1...qn) is a change of basis
matrix. Observe that F is given by any sequence of so-called F-moves that transform
between decompositions of the form

22R-matrices need not always be diagonal and symmetric in their upper indices. However, our
construction has implicitly `�xed a gauge' where this is the case; see Remark 6.2 and (D.6).



Such transformations are realised by the F-matrices of a theory. These are matrices
F abc
d ∈ Aut(V abc

d ) for any a, b, c, d ∈ L where

(6.17) F abc
d :

⊕

e∈L
V ab
e ⊗ V ec

d
∼−→
⊕

f∈L
V af
d ⊗ V bc

f

This is a unitary matrix representing the isomorphism in (6.2). That is, F abc
d trans-

forms between the bases

(6.18)
{
|ab→ e;µe1〉 |ec→ d;µe2〉

}
e,µe1,µ

e
2

and
{
|af → d; νf2 〉 |bc→ f ; νf1 〉

}
f,νf1 ,ν

f
2

This change of basis is graphically expressed as

(6.19)

Distinct fusion trees specify distinct bases on the fusion space and are therefore also
called fusion bases. Since Rab is de�ned for an eigenbasis of V ab, we must �x a fusion
basis such that the factors {V ab

Q }Q∈L appear in the decomposition of the fusion space:
for any such fusion basis, we say that `a and b are in a direct fusion channel '. That
is, R-matrices can only act on two charges in a direct fusion channel.

Figure 13. Charges a and b are in a direct fusion channel with
outcome Q. The above is a graphical expression of the equation
Rab |ab→ Q;µ〉 =

[
Rab
Q

]
µµ
|ab→ Q;µ〉 ∈ spanC{|ba→ Q;µ〉} ⊆ V ba

Q

where the matrix Rab is de�ned as in (6.13a) and (6.13b).

We may obtain a (possibly non-diagonal) representation of the exchange operator
for two adjacent quasiparticles a and b in a system by considering its action with
respect to a fusion basis in which a and b are in an indirect fusion channel.23 Such
a representation can be determined by transforming into a fusion basis where the
charges are in a direct fusion channel, applying the R-matrix and then transforming
back to the original fusion basis. Below is the simplest example of such a procedure.

23Non-diagonal representations arise since �xing an indirect fusion channel of two charges means
that we are not in an eigenbasis of the exchange operator for these charges. Since we are not in an
eigenbasis, we cannot apply the R-matrix directly.



where

(6.20)

⊕
e V

ab
e ⊗ V ec

d

F abc
d

⊕
f V

af
d ⊗ V bc

f

B
a(bc)
d

y

yR
bc

⊕
g V

ac
g ⊗ V gb

d

F acb
d

⊕
f V

af
d ⊗ V cb

f

That is,

(6.21) B
a(bc)
d =

(
F acb
d

)†
RbcF abc

d

where

(6.22) Rbc =
⊕

f∈L : Naf
d Nbc

f 6=0

Rbc
f

A charge q ∈ L such that
∑

u∈LN
qx
u = 1 for all x ∈ L corresponds to an abelian

anyon (since its exchange statistics with any other charge will always be given by
a phase). Otherwise, q corresponds to a non-Abelian anyon (since there exists a
charge with which its exchange statistics are given by a higher-dimensional unitary
transformation). An abelian theory of anyons is one in which there are no non-
abelian anyons. Observe that given a �xed fusion basis and an explicit choice of
orthonormal basis for a fusion space of n identical charges, we obtain a unitary matrix
representation of the braid group Bn.

Remark 6.2. (Gauge freedom)
There is generally some redundancy amongst the F and R symbols24 of a theory:
this arises from the U(Nab

c ) freedom when �xing an orthonormal basis on the spaces
{V ab

c }a,b,c∈L . A change of basis25 is called a gauge transformation. We can only
attach physical signi�cance to gauge-invariant quantities.
Although R-symbols are generally gauge-variant, gauge transformations are de�ned
to respect the triviality of braiding with the vacuum (i.e. (6.14) is gauge-invariant by
construction). A monodromy is a composition

(6.23) Rba ◦Rab =: Mab

It can be shown that monodromies are gauge-invariant, whence it follows that the ac-
tion of any pure braid is gauge-invariant. We implicitly �xed a gauge where Rab = Rba

for all a, b ∈ L in our construction: we will call this the symmetric gauge. R-matrices
are not necessarily diagonal and symmetric in their upper indices outside of this gauge.
Nonetheless, monodromy matrices are always diagonal and symmetric in their upper
indices.

24F and R symbols refer to the entries of F and R matrices. F -symbols are also called 6j symbols.
25This is not to be confused with a change of fusion basis.



Remark 6.3. (Coherence conditions)
Isomorphisms between fusion spaces must be `compatible' with one another. That
is, distinct sequences of isomorphisms (F-moves, R-moves and isomorphisms α and
β from (6.6)) between two given spaces should correspond to the same isomorphism.
Such compatibility requirements are called coherence conditions. Remarkably, all
coherence conditions are ful�lled if the triangle, pentagon and hexagon equations are
satis�ed. Some additional details are provided in Appendix D.

(i) All isomorphisms α and β from (6.6) must be compatible with associativity
(F-moves). This coherence condition is ful�lled if the triangle equations (D.1)
are satis�ed.

(ii) Recall the isomorphism F from (6.16). It may be possible that multiple
distinct sequences of F-moves realise F . Given some basis, the matrix re-
presentation of F must be the same for all such sequences. This coherence
condition is ful�lled if all F -symbols satisfy the pentagon equation (D.2).

(iii) Consider n-quasiparticle space V q1...qn where q1, . . . , qn ∈ L and n ≥ 3. Let
s and s′ be any two distinct permutations of the string q1 . . . qn. Let D and
D′ be any decomposition of V s and V s′ respectively. It may be possible
that multiple distinct sequences of F and R moves realise the isomorphism
B : D → D′ corresponding to the action of some n-braid. Given some basis,
the matrix representation of B must be the same for all such sequences. This
coherence condition is ful�lled if all F and R symbols satisfy the hexagon
equations (D.7).

For each charge in a theory of anyons, there exists a dual charge wihich with it may
fuse to the vacuum. More precisely, we incorporate Kitaev's duality axiom from [4]:

A3. For each q ∈ L, there exists some q̄ ∈ L and |ξ〉 ∈ V qq̄
0 , |η〉 ∈ V q̄q

0 such that

(6.24) 〈αq ⊗ η|F qq̄q
q |ξ ⊗ βq〉 6= 0

where αq, βq are as de�ned in (6.6).

Proposition 6.4. [4, Lemma E.3.] For q ∈ L, there exists unique q̄ ∈ L such that

(6.25) Npq
0 = N qp

0 = δpq̄

This proposition follows from A3 and says that any charge has a unique dual charge
with which it annihilates in a unique way. Together with associativity, A3 tells us
that for any a, b, c ∈ L we have Nab

c̄ N
c̄c
0 = Naā

0 N bc
ā and so Nab

c̄ = N bc
ā . We thus have

(6.26) Nab
c = N bc̄

ā = N c̄a
b̄

Corollary 6.5. Any topological charge q ∈ L may realise a superselection sector.

Proof. We know that it is possible for a fusion outcome to realise a superselection
sector. Suppose there exists a charge q ∈ L such that it is not a fusion outcome for
any pair of charges. For any charge b there exists a charge c such that N q̄b

c 6= 0. By
(6.26) we have N q̄b

c = N bc̄
q which gives a contradiction. E

We see that the duality axiom permits any charge to realise a superselection sector.
For this reason, labels are often called topological charges and superselection sectors
interchangeably in the literature.



For a, b, c ∈ L we de�ne linear maps Kab
c and Labc ,

(6.27)

These are clearly invertible (whence Nab
c = N āc

b = N cb̄
a ). Observe that

26

(6.28)

where (i) corresponds to symmetries of the form in (6.26), and the composition of
(i) and (ii) tells us that Nab

c = N b̄ā
c̄ . Together with (6.1), these identities generate all

symmetries of the fusion coe�cients. Summarising these, for all a, b, c ∈ L we have

Nab
c = N ba

c(6.29a)

Nab
c = N bc̄

ā = N c̄a
b̄(6.29b)

Nab
c = N b̄ā

c̄(6.29c)

De�nition 6.6. Altogether, a �nite label set L with fusion coe�cients, F -symbols
and R-symbols as described above satisfying the triangle, pentagon and hexagon
equations is called a braided 6j fusion system.

6.3. Eigenvalues of the superselection braid. In Remark 5.10, we examined the
action of the superselection braid on any decomposition of the space V s

Q (where s is
any permutation of some n �xed labels). We know that this action results in the same
statistical phase independently of the given permutation or decompositon. Our obser-
vations from Remark 5.10 look more interesting when recast in terms of R-matrices.
Namely, for any choice of labels 1, 2, 3, 4 ∈ L such that V 123

4 is nonzero, the elements

of the table below are equal for any choice of e, f, g such that N12
e N

e3
4 , N

23
f N

f1
4 and

N13
g N

g2
4 are nonzero and where there exists a choice of gauge such that the relevant

R-matrices may be written as in (6.13a)-(6.13b).

R21
e ⊗Re3

4 R12
e ⊗Re3

4 R3e
4 ⊗R12

e R3e
4 ⊗R21

e

R32
f ⊗Rf1

4 R23
f ⊗Rf1

4 R1f
4 ⊗R23

f R1f
4 ⊗R32

f

R31
g ⊗Rg2

4 R13
g ⊗Rg2

4 R2g
4 ⊗R13

g R2g
4 ⊗R31

4

26The isomorphisms Kbc̄
ā ◦
(
Lbc̄
ā

)−1◦Kab
c and Lc̄a

b ◦(K c̄a
b )
−1◦Lab

c correspond to the CPT symmetry

of V ab
c . Indeed, in [4, Theorem E.6.] it is shown that these two maps are coincide (and are isometries),

which is is equivalent to the statement that a unitary fusion category admits a pivotal structure.



Let rabc denote the phase Rab
c = rabc Ik (where Ik is the k × k identity matrix and

k = Nab
c ). Noting that rabc = rbac in the �xed gauge, the above equivalences may be

expressed as

(6.30) r12
e r

e3
4 = r23

f r
f1
4 = r13

g r
g2
4

for any choice of e, f, g as speci�ed above. The identity (6.30) characterises the
fact that the statistical evolution under the action of the superselection braid is
independent of the fusion basis and order of quasiparticles. However, this identity
also has the weakness of being gauge-dependent. We easily obtain a gauge-invariant
form of (6.30): writing Mab

c = mab
c Ik (where m

ab
c = mba

c is the monodromy phase),

(6.31) m12
e m

e3
4 = m23

f m
f1
4 = m13

g m
g2
4

for any choice of e, f, g as speci�ed above. This gives us the following ansatz: for
every q ∈ L we may assign a quantity ϑq ∈ U(1) such that

(6.32) mab
c =

ϑc
ϑaϑb

for all a, b, c such that Nab
c 6= 0

Indeed, this ansatz turns out to be correct (see Section 6.5): the quantity ϑq is called
the topological spin of q and is the phase evolution under a clockwise 2π-rotation
of charge q. For a system of charges q1, . . . , qn with overall charge Q, the gauge-
invariant statistical evolution under the action of the pure braid β2

n is thus given by
(6.33) (whose form is consistent with Remark 5.8).

(6.33)
ϑQ

ϑq1 · . . . · ϑqn

6.4. Fusion algebras and their categori�cation.

De�nition 6.7. Let ZB be a free Z-module with �nite basis B = {bi}i∈I . We equip
ZB with a bilinear product

· : ZB × ZB → ZB

(bi, bj) 7→
∑

k∈I
cijk bk , cijk ∈ N0

such that the following hold for all i, j, k ∈ I :

(i) There exists an element 1 := b0 ∈ B such that 1 · bi = bi · 1 = bi
(ii) (bi · bj) · bk = bi · (bj · bk)
(iii)

∑
l∈I c

ij
l > 0

(iv) There exists an involution i 7→ i∗ of I such that cij0 = cji0 = δi∗j
The unital, associative Z-algebra A = (ZB, · ) satisfying the above is called a fusion
algebra. If we also have (v) then A is called a commutative fusion algebra.

(v) bi · bj = bj · bi
The quantities {cijk }i,j,k∈I act as the structure constants of a fusion algebra. We can
also express properties (i),(ii) and (v) in terms of these constants: (i) ci0j = c0i

j = δij,

(ii)
∑

p c
ij
p c

pk
u =

∑
r c

ir
u c

jk
r and (v) cijk = cjik . The structure constants clearly have

symmetries of the same form as in (6.29b) (and (6.29a) for a commutative algebra).
Observing that the ∗-involution may be extended to an anti-automorphism of A, it
easily follows that the structure constants also have symmetry of the form (6.29c).



A commutative fusion algebra A admits a categori�cation if there exists a braided

6j fusion system with label set L and a bijection φ : B → L such that cijk = N
φ(i)φ(j)
φ(k)

for all i, j, k ∈ B. It is possible for a given A to admit more than one categori�ca-
tion, although only �nitely many27 (up to gauge equivalence and relabelling). The
categori�cation of A yields a braided fusion category (whose skeletal data is given by
the braided 6j fusion system). From a physical perspective, we are only interested
in categories for which (there exists a choice of gauge where) all associated F and R
symbols are unitary; namely, unitary braided fusion categories.

6.5. Ribbon structure. It is known that a unitary braided fusion category admits
a unique unitary ribbon structure [23, 24]. In terms of the R-symbols of the category,
this means that for every q ∈ L, there exists a quantity ϑq ∈ U(1) such that the
ribbon relation (6.34) is full�lled. This tells us that given a unitary braided 6j fusion
system, the ansatz (6.32) is correct and has a unique set of solutions.

(6.34)
∑

λ

[
Rba
c

]
µλ

[
Rab
c

]
λν

=
ϑc
ϑaϑb

δµν

Physically, ϑq is the phase evolution induced by a clockwise 2π-rotation of a charge q,
and is called its topological spin. The topological spins are roots of unity [4, 22] and
are gauge-invariant. The ribbon relation allows us to promote quasiparticle worldlines
to worldribbons, or equivalently tells us how to evaluate type-I Reidemeister moves
on worldlines (Figure 14).

Figure 14. (i) The ribbon relation illustrated through the deforma-
tion of worldribbons. Boundaries are �xed at the initial and �nal time
slices. (ii) Type-I Reidemeister twists correspond to 2π-rotations.

To summarise, the algebraic structure arising from exchange symmetry in two spa-
tial dimensions (under assumptions A1-A3) corresponds to a unitary ribbon fusion
category (also called a unitary premodular category). A theory of anyons has all of
its data contained in a such a category and is determined (up to gauge equivalence)
by the skeletal data of the category (fusion coe�cients, F -symbols and R-symbols).
The underlying fusion algebra encodes the fusion rules of the theory.28 The rank-
�niteness theorem for braided fusion categories [25] tells us that there are �nitely
many theories of anyons for any given rank. Finally, we note that the deduction in
Remark 2.1 is veri�ed, for instance, by the toric code modular tensor category which
describes quasiparticles on a torus.

27This result is known as Ocneanu rigidty.
28Note that for the basis B of the fusion algebra for an abelian theory of anyons, (B, · ) de�nes

an abelian group.



6.6. Modularity. Pursuing a classi�cation of theories of anyons motivates that of
unitary ribbon fusion categories [26]. Levying a nondegeneracy condition on the
braiding results in a unitary modular tensor category : the extra structure possessed
by such categories makes their classi�cation more tractable [27, 28, 29].

De�nition 6.8. Suppose monodromy operator Mxq is the identity for all labels q.
The label x is then said to be transparent. The braiding is called nondegenerate if
the trivial label is the only transparent one.

Modularity can be physically motivated as follows. R-matrices of the form Rab where
a 6= b are not gauge-invariant, and therefore cannot correspond to measurable quanti-
ties. On the other hand, monodromies are gauge-invariant. Since the monodromy of
any transparent label is trivial, there is no reason to allow for nontrivial transparent
labels in our algebraic models, as they cannot be distinguished from the vacuum in
practice.

However, modularity comes at a price. Let f be such that N ff
q ∈ {0, 1} for all q.

R-matrices of the form Rff are gauge-invariant, and so assuming modularity has the
undesirable e�ect of discarding theories with transparent objects f such that −1 is
an eigenvalue of Rff (e.g. fermions). Modular tensor categories are thus limited
to describing (2 + 1)-dimensional bosonic topological orders. Fermions are typically
present in systems of interest (e.g. fractional quantum Hall liquids), and so it is
desirable to have an algebraic model that is �almost� modular i.e. where the only
nontrivial transparent object is a fermion. This has led to the development of spin
modular categories [30].

7. Concluding Remarks and Outlook

The majority of this paper is devoted to considering the action of braiding on
quasiparticle systems. To this end, the �superselection braid� proved to be central to
our exposition. We saw that its action uniquely speci�ed the superselection sectors
of a system, illuminated the fusion structure amongst them and suggested the ribbon
relation. Using exchange symmetry as our guiding physical principle, we showed that
postulates A1-A3 su�ce to recover unitary ribbon fusion categories as a framework
for modelling anyons. Taking into account the results of [11], we also suggested an
alternative set of postulates P1-P3 in Section 1.1.

A motion group may be de�ned in a more general context than that found in
Section 2.2 in order to describe the `motions' of a (typically disconnected) nonempty
submanifold N in manifoldM [31]. IfM = R3 and N is given by n disjoint loops
then the motion group is the loop braid group LBn. Physically, we expect LBn to play
a similar role in describing the exchange statistics of loop-like excitations in (3 + 1)-
dimensions to that of the braid group for point-like excitations in (2 + 1)-dimensions
[32]. The next possible generalisation could be to consider the statistics of knotted
loops. The representation theory of motion groups and their relation to higher-
dimensional TQFTs and topological phases of matter is an active area of research. In
the case of loop excitations, various inroads have been made [33, 34, 35, 36, 37, 38].
By formulating exchange symmetry in terms of the local representations of motion
groups, the methods presented in this paper might be extended by adapting them to
the setting of higher-dimensional excitations.
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Appendix A. The Coloured Braid Groupoid and its Action

De�nition A.1. A groupoid with base B is a set G with maps α, ω : G → B and a
partially de�ned binary operation (·, ·) : G×G→ G such that for all f, g, h ∈ G,

(i) gh is de�ned whenever α(g) = ω(h), and in this case we have α(gh) = α(h)
and ω(gh) = ω(g).

(ii) If either of (fg)h or f(gh) is de�ned then so is the other, and they are equal.
(iii) For each g, there are left and right identity elements respectively denoted by

λg, ρg ∈ G, for which we have λgg = g = gρg.
(iv) Each g has an inverse g−1 ∈ G satisfying g−1g = ρg and gg

−1 = λg.

Note that a group is a groupoid G whose base contains a single element.

Consider the set of all possible n-braids where for any braid, each strand is assigned a
distinct colour (and we always have the same n colours to choose from). Equivalently,
this may be thought of as bijectively assigning a number from {1, . . . , n} to each of
the n strands in a given braid. Thus, for any n-braid b ∈ Bn, there are now n!
distincly `coloured' versions of it contained in our set.
Under composition (i.e. stacking of braids), it is clear that our set possesses the
structure of a groupoid. In this instance, the base is B = S{1,...,n} yielding the braid
groupoid Bn(B) for n distinctly coloured strands.

Figure 15. α(g) = 123 and ω(g) = 321

Remark A.2. Given any s ∈ S{1,...,n}, the subset of all braids g ∈ Bn(B) such that
α(g) = ω(g) = s de�nes a subgroup isomorphic to the pure braid group PBn.

We can equivalently understand a groupoid G with base B as a category G whose
collection of objects Ob(G) is given by B, and where for any x, y ∈ B we have

(A.1) Hom(x, y) = {g ∈ G : α(g) = x, ω(g) = y}
where g ∈ Hom(x, y) is a morphism from x to y. Note that all morphisms in the
category G are isomorphisms (by invertibility). When B = S{1,...,n}, Remark A.2 is
equivalent to saying that there is a group isomorphism Aut(s) ∼= PBn for each s ∈ B.

The categorical framework is convenient for understanding what is meant by a unitary
linear representation of Bn(B). In our case, this will be a functor

(A.2) Z : Bn(B)→ FdHilb

where FdHilb is the category of �nite Hilbert spaces, and where the image of any
morphism under Z is a unitary linear transformation.29

29FdHilb is equipped with a dagger structure given by the Hermitian adjoint.



Finally, it is worth mentioning the choice of base B for Bn(B). The coloured braid
groupoid Bn(B) is de�ned for a choice of base B = S{l1,...,ln} where li ∈ L (for some
set of labels L). When constructing the action {ρs}s in Section 4, we do not assume
any equalities among the representations {ρ{i,j}}i,j in order to maintain generality.
This means that all n strands in any given braid must be distinctly labelled, and
explains the choice of base B = S{1,...,n}.

• Suppose ρ{1,i} = ρ{2,i} for all i. This is equivalent to having B = S{1,1,3,4,...,n}
(i.e. n− 1 colours for n strands, where only 2 strands have the same colour).
• Suppose ρ{i,j} coincide for all i, j. This is equivalent to having B = S{1,...,1}
(i.e. all strands have the same colour). In this instance, Bn(B) ∼= Bn and
(A.2) is a unitary linear representation of Bn.

This suggests that a braided monoidal category C with Ob(C) = L is a sensible way to
model a theory of anyons. Indeed, this is the case (anyons are algebraically modelled
using braided fusion categories). The key step is to identify the existence of a fusion
structure amongst the labels in L : the primary objective of this paper is to show
how such structure emerges as a direct consequence of exchange symmetry.



Appendix B. Proofs

B.1. Proofs from Section 5.1. In order to prove Lemma 5.3, we must �rst show
the identities in Lemma B.1.

Lemma B.1.

(i) βnσn−1 = σ1βn , n ≥ 2
(ii) bnσn−i = σn+1−i bn , i = 1, . . . , n− 1 where n ≥ 2

Proof.

(i) b2
n = bn−1bn−2σnσn−1σn

= bn−1bn−2σn−1σnσn−1 = b2
n−1σnσn−1

= b2
n−2(σn−1σn−2)(σnσn−1)

= . . . = b2
1σ21σ32 . . . (σnσn−1) = σ1bnbn−1

whence

βnσn−1 = bn−1bn−2σn−1βn−2 = b2
n−1βn−2

= σ1bn−1bn−2βn−2 = σ1βn

(ii) For n = 2, the identity is simply σ121 = σ212. Proceeding by induction, assume
that the lemma holds for some n. For 2 ≤ i ≤ n, we have

bn+1σn+1−i = bnσn+1σn+1−i = bnσn+1−iσn+1 (where n+ 1− i ∈ {1, . . . , n− 1})
= σn+2−ibnσn+1 (by induction hypothesis)

= σn+2−ibn+1

For i = 1, we show the result directly:

bnσn−1 = bn−2σn−1σnσn−1 = bn−2σnσn−1σn = σnbn

�
Proof of Lemma 5.3.

Let us �rst show that

(B.1) βnσi = σn−iβn

For n = 2, (B.1) is simply β2σ1 = σ2
1 = σ1β2. Proceeding by induction, assume that

(B.1) holds for some n. For 1 ≤ i ≤ n− 1, we have

βn+1σi = bnβnσi = bnσn−iβn (by induction hypothesis)

= σn+1−ibnβn (by Lemma B.1(ii))

= σn+1−iβn+1

For i = n, we want to show βn+1σn = σ1βn+1, which is just Lemma B.1(i). It remains
to show that

(B.2) βnσ
−1
i = σ−1

n−iβn

Lemma B.1 implies

(B.3a) βnσ
−1
n−1 = σ−1

1 βn , n ≥ 2

(B.3b) bnσ
−1
n−i = σ−1

n+1−ibn , i = 1, . . . , n− 1 where n ≥ 2

Using identities (B.3a)-(B.3b), the proof of (B.2) follows similarly to that of (B.1). �



B.2. Proofs from Section 5.2. In order to prove Theorem 5.9, we will �rst need
to prove Lemmas B.2-B.5 and Proposition B.6.

Lemma B.2.

(B.4) βk = rk−2(b1) · . . . · r1(bk−2) · r0(bk−1) , k ≥ 2

Proof.

bn+1bn = σ1...n+1 · σ1...n

= σ1...n · σ1...n−1σn+1σn = bnbn−1σn+1σn

= bn−1bn−2(σnσn−1)(σn+1σn)

= . . . = b2b1(σ32 · . . . · σn,n−1 · σn+1,n)

= σ12σ1(σ32 · . . . · σn,n−1 · σn+1,n)

= σ21(σ2 · σ32 · . . . · σn,n−1 · σn+1,n)

= σ21(σ32 · σ343 · σ54 · . . . · σn+1,n)

= · · · = (σ21 · σ32 · σ43 · . . . · σn+1,n)σn+1

= σ2...n+1 · bn+1 = r1(bn) · bn+1

from which we see that

βk = bk−1 · . . . · b1 = (bk−1bk−2) · bk−3 · . . . · b1

= r1(bk−2) · bk−1 · bk−3 · . . . · b1

= r1(bk−2) · bk−2 · bk−3 · . . . · b1 · σk−1

= r1(bk−2) · βk−1 · σk−1

= . . . = r1(bk−2) · . . . · r1(b1) · β2 · (σ2 · . . . · σk−1) = r1(βk−1) · bk−1

whence

βk = r1(βk−1) · bk−1

= r1(r1(βk−2) · bk−2) · bk−1 = r2(βk−2) · r1(bk−2) · bk−1

= . . . = rk−2(β2) · rk−3(b2) · . . . · r1(bk−2) · r0(bk−1)

�
Lemma B.3.

(B.5) bn−1

←−
bn =

←−
bn · r1(bn−1)

Proof.

bn−1

←−
bn = σ1...n−1 · σn...1

= bn−2 · σn−1σnσn−1 ·
←−−
bn−2 = σn(bn−2 · σn−1 ·

←−−
bn−2)σn

= σn(bn−2 ·
←−−
bn−1)σn

= . . . = σn...3(b1 ·
←−
b2 )σ3...n

= σn...3(σ1σ21)σ3...n = (σn...3σ21)(σ2σ3...n)

�



Lemma B.4. βn is a palindrome i.e. βn =
←−
βn.

Proof.

σnβn = σnbn−1βn−1 = (bn−2 · σn) · σn−1βn−1

= . . . = (bn−2 · σn) · (bn−3 · σn−1) · . . . · (b1σ3) · σ2β2

= (bn−2 · . . . · b1)(σnσn−1 · . . . · σ3)σ2σ1 = βn−1

←−
bn

whence

βn+1 = bnβn = bn−1(σnβn) = bn−1βn−1

←−
bn

= bn−2(σn−1βn−1)
←−
bn = bn−2βn−2

←−−
bn−1

←−
bn

= . . . = b2β2

←−
b3 · . . . ·

←−
bn

= σ1σ21

←−
b3 · . . . ·

←−
bn =

←−−
βn+1

�
Lemma B.5.

(i) σi · tk,l = tk,l · rk(σi) , 1 ≤ i ≤ l − 1 , k ≥ 1 , l > 1
(ii) tk,l · σi = rl(σi) · tk,l , 1 ≤ i ≤ k − 1 , k > 1 , l ≥ 1

Proof. (These identities are graphically obvious; see Figure 16 below)

(i) Claim:
For l > 1 and j ≥ 0, we have

(B.6) σi · rj(
←−
bl ) = rj(

←−
bl ) · σi+1 , 1 + j ≤ i ≤ (l − 1) + j

For l = 2, (B.6) is simply σ1+j(σ2+jσ1+j) = (σ2+jσ1+j)σ2+j. For l = 3,

i = 1 + j : σ1+j(σ3+jσ2+jσ1+j) = σ3+j(σ1+jσ2+jσ1+j) = (σ3+jσ2+jσ1+j)σ2+j

i = 2 + j : σ2+j(σ3+jσ2+jσ1+j) = σ3+j(σ2+jσ3+jσ1+j) = (σ3+jσ2+jσ1+j)σ2+j

(B.7)

Let l ≥ 4. For 2 + j ≤ i ≤ (l − 2) + j,

σi · rj(
←−
bl ) = σi · σl+j...1+j = σl+j...i+2 · σiσi+1σi · σi−1...1+j

= σl+j...i+2 · σi+1σiσi+1 · σi−1...1+j

= rj(
←−
bl ) · σi+1

For i = 1 + j,

σ1+j · rj(
←−
bl ) = σ1+j · σl+j...1+j = σl+j...3+j · σ1+jσ2+jσ1+j = rj(

←−
bl ) · σ2+j

and for i = (l − 1) + j,

σ(l−1)+j · rj(
←−
bl ) = σ(l−1)+jσl+jσ(l−1)+j · σ(l−2)+j...1+j = rj(

←−
bl )σl+j

This shows the claim. Recall from (5.14) that tk,l =
[
r0(
←−
bl ) · . . . · rk−1(

←−
bl )
]
.

By applying the claim k times for j = 0, . . . , k − 1 (in increasing order) to
σi · tk,l for 1 ≤ i ≤ l − 1, we obtain

(B.8) σi ·
[
r0(
←−
bl ) · . . . · rk−1(

←−
bl )
]

=
[
r0(
←−
bl ) · . . . · rk−1(

←−
bl )
]
· rk(σi)

(ii) Applying anti-automorphism χ to (i) and relabelling yields the result.

�



Proposition B.6. Given any positive integers k, l such that k + l ≥ 2, we have

(i) βk+l = [rl(βk) · βl] tk,l
(ii) βk+l = tl,k [rl(βk) · βl]

where rl(βk) and βl commute.

Proof.

(i) By Lemma B.2, we have

(B.9) βk+l = rk+l−2(b1) · rk+l−3(b2) · . . . · r0(bk+l−1)

and
rl(βk) = rl (rk−2(b1) · rk−3(b2) · . . . · r0(bk−1))

= rk+l−2(b1) · rk+l−3(b2) · . . . · rl(bk−1)
(B.10)

whence it su�ces to show that

(B.11) rl−1(bk) · . . . · r0(bk+l−1) = [rl−2(b1) · . . . · r0(bl−1)] ·
[
r0(
←−
bl ) · . . . · rk−1(

←−
bl )
]

where the right-hand side of (B.11) is βl · tk,l. We prove (B.11) by induction.

First, perform induction on l for �xed k. The base case (k, l) = (k, 1) is

(B.12) r0(bk) = r0(b1) · . . . · rk−1(b1)

which is clearly true. Now suppose (B.11) holds for some l given �xed k.
Then we want to show that (B.11) also holds for (k, l + 1) i.e.

(B.13) rl(bk) · . . . · r0(bk+l) = [rl−1(b1) · . . . · r0(bl)] ·
[
r0(
←−−
bl+1) · . . . · rk−1(

←−−
bl+1)

]

Observe that

tk,l+1 =
[
σl+1 · r0(

←−
bl )
]
·
[
σl+2 · r1(

←−
bl )
]
· . . . ·

[
σl+k · rk−1(

←−
bl )
]

= σl+1,...,l+k ·
[
r0(
←−
bl ) · . . . · rk−1(

←−
bl )
]

= rl(bk) · tk,l
and so the right-hand side of (B.13) is

βl+1 · tk,l+1 = blβl · rl(bk)tk,l = blrl(bk) · βltk,l
= bk+l · βl · tk,l
(B.11)

= bk+l · rl−1(bk) · . . . · r0(bk+l−1)

where the �nal equality follows by the induction hypothesis. Thus, in order
to show (B.13), we must show that

(B.14) rl(bk) · . . . · r0(bk+l) = bk+l · rl−1(bk) · . . . · r0(bk+l−1)

under the induction hypothesis. Lemma B.1(ii) tells us that bnσi = σi+1bn for
any n ≥ 2 and 1 ≤ i ≤ n − 1. Applying this result to the right-hand side of
(B.14), we see that bk+l acts on each rj term by r1 as it moves to its right,
yielding the left-hand side. This completes the induction on l.



Next, we perform induction on k for �xed l. The base case (k, l) = (1, l) is

(B.15) rl−1(b1) · . . . · r0(bl) = [rl−2(b1) · . . . · r0(bl−1)] · r0(
←−
bl )

which we show via repeated application of Lemma B.3 on the right-hand side.

[rl−2(b1) · . . . · r0(bl−1)] · r0(
←−
bl )

(B.5)
=
[
rl−2(b1) · . . . · r1(bl−2) · r0(

←−
bl )
]
· r1(bl−1)

= [rl−2(b1) · . . . · r2(bl−3)] ·
[
r1(bl−2) · r1(

←−−
bl−1)σ1

]
· r1(bl−1)

(B.5)
=
[
rl−2(b1) · . . . · r2(bl−3) · r1(

←−−
bl−1)

]
· [r2(bl−2)σ1] · r1(bl−1)

= [rl−2(b1) · . . . · r3(bl−4)] ·
[
r2(bl−3) · r1(

←−−
bl−1)

]
· [r2(bl−2)σ1] · r1(bl−1)

= [rl−2(b1) · . . . · r3(bl−4)] ·
[
r2(bl−3) · r2(

←−−
bl−2)σ2

]
· [r2(bl−2)σ1] · r1(bl−1)

(B.5)
=
[
rl−2(b1) · . . . · r3(bl−4) · r2(

←−−
bl−2)

]
· [r3(bl−3) · σ2] · [r2(bl−2)σ1] · r1(bl−1)

= . . . = rl−2(b1) · rl−3(
←−
b3 ) · [rl−2(b2)σl−3] · [rl−3(b3)σl−4] · . . . · [r2(bl−2)σ1] · r1(bl−1)

=
[
rl−2(b1) · rl−2(

←−
b2 )σl−2

]
· [rl−2(b2)σl−3] · [rl−3(b3)σl−4] · . . . · [r2(bl−2)σ1] · r1(bl−1)

(B.5)
= rl−2(

←−
b2 ) · [rl−1(b1)σl−2] · [rl−2(b2)σl−3] · [rl−3(b3)σl−4] · . . . · [r2(bl−2)σ1] · r1(bl−1)

Observe that σiri(bl−i) = σiσi+1,...,l = ri−1(bl−i+1) for 1 ≤ i < l, whence

[rl−2(b1) · . . . · r0(bl−1)] · r0(
←−
bl ) = rl−2(

←−
b2 ) · rl−1(b1) · [rl−3(b3) · . . . · r0(bl)]

= σl,l−1,l · [rl−3(b3) · . . . · r0(bl)]

= rl−1(b1) · rl−2(b2) · . . . · r0(bl)

which proves the base case. Now suppose (B.11) holds for some k given �xed
l. Then we want to show that (B.11) also holds for (k + 1, l) i.e.

(B.16) rl−1(bk+1) · . . . · r0(bk+l) = [rl−2(b1) · . . . · r0(bl−1)] ·
[
r0(
←−
bl ) · . . . · rk(

←−
bl )
]

Observe that tk+1,l = tk,l · rk(
←−
bl ), and so the right-hand side of (B.16) is

βl · tk+1,l = (βl · tk,l) · rk(
←−
bl )

(B.11)
= [rl−1(bk) · . . . · r0(bk+l−1)] · rk(

←−
bl )

where the second equality follows by the induction hypothesis. Thus, in order
to show (B.16), we must show that

(B.17) rl−1(bk+1) · . . . · r0(bk+l) = [rl−1(bk) · . . . · r0(bk+l−1)] · rk(
←−
bl )

under the induction hypothesis. For l = 1, (B.17) is

(B.18) r0(bk+1) = r0(bk) · rk(
←−
b1 )

which is clearly true.



Claim:

(B.19) ri−1(bk+l−i) · rk+i−1(
←−−−
bl−i+1) = rk+i(

←−
bl−i) · ri−1(bk+l−i+1)

where 1 ≤ i ≤ l − 1 and l ≥ 2. Expanding the left-hand side, we get

σi...k+l−1 · σk+l...k+i = σi...k+l · σk+l−1...k+i

= σi...k+l−2 · (σk+l−1 · σk+l · σk+l−1) · σk+l−2...k+i

= σi...k+l−2 · (σk+l · σk+l−1 · σk+l) · σk+l−2...k+i

= σk+l · (σi...k+l · σk+l−2...k+i)

(B.20)

It can be shown that

(B.21) ri−1(bk+l−i+1) · rk+i−1(
←−−−−−
bl−i−j+1) = σk+l−j+1

(
ri−1(bk+l−i+1) · rk+i−1(

←−−−
bl−i−j)

)

for 1 ≤ j ≤ l − i which we can recursively apply (for j = 2 to l − i) to the
parenthesised expression in the last line of (B.20) to obtain

σi...k+l · σk+l−2...k+i = σk+l−1...k+i+1 · σi...k+l

This proves the claim (B.19).

We recursively apply (B.19) to the right-hand side of (B.17) for i = 1 to l − 1:

[rl−1(bk) · . . . · r0(bk+l−1)] · rk(
←−
bl )

(B.19)
= [rl−1(bk) · . . . · r1(bk+l−2)] rk+1(

←−−
bl−1) · r0(bk+l)

(B.19)
= . . .

(B.19)
= rl−1(bk) · rk+l−1(

←−
b1 ) · [rl−2(bk+2) · . . . · r0(bk+l)]

= rl−1(bk+1) · rl−2(bk+2) · . . . · r0(bk+l)

which is the left-hand side of (B.17). This completes the induction on k.

(ii) Applying the anti-automorphism χ to (i), we get
←−−
βk+l =

←−
tk,l

[←−
βl · rl(

←−
βk)
]

= tl,k [βl · rl(βk)]
where the second line follows by Lemma B.4 and

←−
tk,l = tl,k. It is clear that βl

commutes with rl(βk). The result follows.

�
Proof of Theorem 5.9.

Expressions (i) and (ii) were already proved in Proposition B.6. From Lemma B.5,
it easily follows that for any positive integers30 k, l, we have

βl · tk,l = tk,l · rk(βl)(B.22a)

tk,l · βk = rl(βk) · tk,l(B.22b)

Expressions (iii) and (iv) are implied by (i) and (ii) using either one of (B.22a),(B.22b).
�

30Lemma B.5 implies (B.22a) and (B.22b) for l > 1 and k > 1 respectively. However, it is trivial
to see that (B.22a) and (B.22b) also hold for l = 1 and k = 1 respectively.



Figure 16. The identities in Lemma B.5 are easily seen through braid
isotopy. We illustrate these identities for (k, l) = (2, 2).



Appendix C. Uniqueness of the Superselection Braid

Proof of Theorem 5.11.

Consider any fusion tree for an n-quasiparticle system. Label each of the (n − 1)
fusion vertices in the tree with an admissible fusion outcome: in particular, the root
is assigned label Q corresponding to a superselection sector of the system.

Any superselection braid Λn must be some composition of braids of the form rd(t
±1
k,l )

(since it must be compatible with the fusion trees). Recall that such braids have
associated exchange phase of the form in Theorem 5.5(i) (and Corollary 5.6). The
statistical phase induced by Λn should not depend on the labels of any internal ver-
tices, and should only depend on the root label Q (since the associated eigenspaces
should correspond to the n-quasiparticle superselection sectors): we thus denote this
phase by λn(Q). We know Λ1 = e and Λ2 is uniquely given by σ1 (up to orientation).

Take an arbitrary fusion vertex v in the tree, and suppose that Λn does not contain
the braid that exchanges its incoming branches. This introduces the dependence of
λn(Q) on (a) the labels of the immediate children of v (unless they are leaves), and
(b) the labels of the parent and sibling of v (unless v is the root). It follows that Λn

must either (i) exchange every pair of incoming branches once, or (ii) exchange no
branches. Since Λn does not act trivially for n > 1, it must do the former.
By similar considerations, we see that unless the orientation of the branch-exchanging
braid acting on a fusion vertex v matches that of the branch-exchanging braids acting
on its parent (unless v is the root) and immediate children, then λn(Q) acquires a
dependence on some labels other than Q.

We thus know that Λn must exchange every pair of incoming branches once, and
that every such exchange must be oriented the same. By construction, all possi-
ble superselection braids have the same associated eigenspaces (namely the super-
selection sectors of the system). The above further tells us that all possible super-
selection braids whose orientations match have identical associated spectra {λn(Q)}Q
(while all possible superselection braids of the opposite orientation have identical
associated spectra {λ∗n(Q)}Q).

Next, observe that any Λn must contain the braid that exchanges the incident branches
of the root node. Thus, any given Λn of clockwise orientation must be of one or more
of the following forms for any k, l such that n = k + l :

(1) [Λl · rl(Λk)] tk,l
(2) tk,l [Λk · rk(Λl)]
(3) Λl · tk,l · Λk

(4) rl(Λk) · tk,l · rk(Λl)

where for any �xed one of the above four forms, the expressions for all possible k, l
must be equal. By Theorem 5.9, we know that all four forms are equal and are
precisely Λn = βn.

31 �

31For Λn anticlockwise, simply append a superscript `−1' to each t in (1)-(4). By Theorem 5.9,
they are all equivalent to β−1

n .



Appendix D. Coherence Identities

(i) The triangle equations are given by

commute for all a, b, c ∈ L.

(D.1)

It can be shown that triangle equations (D.1) (ii) and (iii) follow as corollaries
of fundamental triangle equation (i) and the pentagon equation [4].
Illustrating the fusion trees in (D.1),

where dashed lines denote the vacuum. Independently of the gauge, symbols
F a0b
c , F 0ab

c and F ab0
c correspond to the identity map32. Then following (6.6), it

is clear that the triangle equations will be trivially satis�ed.

(ii) We have the pentagon equation33 :

commutes for all a, b, c, d, e ∈ L.

(D.2)

32In the 6j fusion system formalism, this requirement is referred to as the triangle axiom [8].
33This has a nice interpretation in terms of associahedra (convex polytopes whose vertices and

edges respectively correspond to distinct fusion bases and F-moves between them); see [4].



Illustrating the fusion trees in (D.2),

The pentagon equation (D.2) may be written

(D.3)
∑

p,r

(F abr
e ⊗ idV cdr )(idV abp ⊗F pcd

e ) =
∑

q,s,t

(idV ase ⊗F bcd
s )(F atd

e ⊗ idV bct )(F abc
q ⊗ idV qde )

Fixing the fusion states in the initial and terminal fusion basis, we obtain an
entry-wise form of (D.3) which is useful for direct calculations. Fix initial
state

|ab→ p;α〉 |pc→ q; β〉 |qd→ e;λ〉
and terminal state

|as→ e; ρ〉 |br → s; δ〉 |cd→ r; γ〉
This gives us

∑

σ

[
F abr
e

]
(s,δ,ρ)(p,α,σ)

[
F pcd
e

]
(r,γ,σ)(q,β,λ)

=
∑

t,µ,ν,η

[
F bcd
s

]
(r,γ,δ)(t,µ,η)

[
F atd
e

]
(s,η,ρ)(q,ν,λ)

[
F abc
q

]
(t,µ,ν)(p,α,β)

(D.4)

In a multiplicity-free theory (a theory where all fusion coe�cients are either
0 or 1), (D.4) is simply

(D.5)
[
F abr
e

]
sp

[
F pcd
e

]
rq

=
∑

t

[
F bcd
s

]
rt

[
F atd
e

]
sq

[
F abc
q

]
tp

The pentagon equation is also known as the Biedenharn-Elliot identity.

(iii) R-matrices are transformations between bases of the form in (6.8). In the
graphical calculus,

(D.6)

(D.6) is the gauge-free description of an R-matrix. Note that the matrix Rab

is block-diagonal with block dimensions {Nab
c }c .



We have the hexagon equations34 :

commute for all a, b, c, d ∈ L.

(D.7)

Figure 17. An illustration of the fusion trees in (D.7).

34We roughly sketch the origin of the hexagon equations. Consider the set Fn of n-leaf fusion
trees. Let Fn be the set whose elements are given by those in Fn but with all possible permutations
of the string q1 . . . qn labelling the leaves (so that |Fn| = n! · |Fn|). We de�ne a digraph KRn to have
vertex set Fn and edges given by all F and (identically oriented) R moves transforming between
the elements of Fn. Any pair of adjacent vertices will share precisely one edge. In order to have
compatibility between all F and R moves, it su�ces to demand that the Yang-Baxter equation is
satis�ed: we thus only need to consider subgraphs of the form KR3 i.e. the Franklin graph. This
graph may be drawn as a dodecagon containing six hexagons and three (automatically commutative)
quadrilaterals. The Yang-Baxter equation holds if the dodecagon commutes: imposing the hexagon
equations ensures that the hexagons commute, and consequently that the dodecagon commutes. We
remark that by restricting the edges of KRn to only permit R-moves acting on two leaves in a direct
fusion channel, we obtain the graph corresponding to the nth permutoassociahedron [39].



Note that the only di�erence between the two hexagon equations is the orien-
tation of the R-moves. Fix initial state |ab→ x;α〉 |xc→ d;λ〉 and terminal
state |bz → d; ρ〉 |ca→ z; γ〉 in (D.7). This gives us

∑

y,β,µ,σ

[
F bca
d

]
(z,γ,ρ)(y,β,σ)

[Ray
d ]σµ

[
F abc
d

]
(y,β,µ)(x,α,λ)

=
∑

δ,ε

[Rac
z ]γε

[
F bac
d

]
(z,ε,ρ)(x,δ,λ)

[
Rab
x

]
δα

(D.8a)

∑

y,β,µ,σ

[
F bca
d

]
(z,γ,ρ)(y,β,σ)

[(
R−1

)ay
d

]
σµ

[
F abc
d

]
(y,β,µ)(x,α,λ)

=
∑

δ,ε

[(
R−1

)ac
z

]
γε

[
F bac
d

]
(z,ε,ρ)(x,δ,λ)

[(
R−1

)ab
x

]
δα

(D.8b)

which in the construction from (6.13a)-(6.13b) becomes
∑

y,β,µ

[
F bca
d

]
(z,γ,ρ)(y,β,µ)

[Ray
d ]µµ

[
F abc
d

]
(y,β,µ)(x,α,λ)

= [Rac
z ]γγ

[
F bac
d

]
(z,γ,ρ)(x,α,λ)

[
Rab
x

]
αα

(D.9a)

∑

y,β,µ

[
F bca
d

]
(z,γ,ρ)(y,β,µ)

[(
R−1

)ay
d

]
µµ

[
F abc
d

]
(y,β,µ)(x,α,λ)

=
[(
R−1

)ac
z

]
γγ

[
F bac
d

]
(z,γ,ρ)(x,α,λ)

[(
R−1

)ab
x

]
αα

(D.9b)

and which in a multiplicity-free theory becomes
∑

y

[
F bca
d

]
zy

[Ray
d ]
[
F abc
d

]
yx

= [Rac
z ]
[
F bac
d

]
zx

[
Rab
x

]
(D.10a)

∑

y

[
F bca
d

]
zy

[(
R−1

)ay
d

] [
F abc
d

]
yx

=
[(
R−1

)ac
z

] [
F bac
d

]
zx

[(
R−1

)ab
x

]
(D.10b)
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SKEIN-THEORETIC METHODS FOR UNITARY FUSION
CATEGORIES

SACHIN J. VALERA† AND ANUP POUDEL§

Abstract. Unitary fusion categories (UFCs) have gained increased attention due to
emerging connections with quantum physics. We consider a fusion rule of the form

q ⊗ q ∼= 1⊕⊕k
i=1 xi in a UFC C, and extract information using the graphical calculus.

For instance, we classify all associated skein relations when k = 1, 2 and C is ribbon. In
particular, we also consider the instances where q is antisymmetrically self-dual. Our
main results follow from considering the action of a rotation operator on a �canonical
basis�. Assuming self-duality of the summands xi, some general observations are made
e.g. the real-symmetricity of the F -matrix F qqq

q . We then �nd explicit formulae for
F qqq
q when k = 2 and C is ribbon, and see that the spectrum of the rotation operator

distinguishes between the Kau�man and Dubrovnik polynomials.

1. Introduction

Fusion categories have played an important role in understanding structures arising
from quantum physics, and lie at the heart of quantum algebra and quantum topology.
Some fusion categories can be extended to ribbon fusion categories (RFCs): these gad-
gets are rich in structure, and carry a lot of information. Since ribbon categories are
endowed with the topological properties of ribbon graphs, they naturally lend themselves
to investigation from a skein-theoretic perspective. For instance, it is known that one can
fashion link (in fact, 3-manifold) invariants from RFCs: seminal work in this direction
was carried out by Reshetikhin and Turaev [1], followed by Kuperberg who used a skein-
theoretic method to obtain new link invariants associated to quantum groups coming
from Lie algebras of type A2, B2, C2 and G2 [2, 3]. In a similar vein, an important class
of RFCs known as Temperley-Lieb-Jones categories can be understood using Kau�man
and Lins' planar algebra of Jones-Wenzl idempotents at roots of unity [4, 5].

Understanding unitary fusion categories (i.e. fusion categories with a positive dagger
structure) is crucial to developing an algebraic framework for describing topological phases
of matter (TPMs). Indeed, unitary modular tensor categories (MTCs) have proved to be
useful in the program for classifying (bosonic) TPMs and (2 + 1)-dimensional topological
quantum �eld theories (TQFTs) [6, 7, 8]. The connection between link invariants and
TQFTs was �rst observed by Witten when he gave an interpretation of the Jones poly-
nomial in the context of Chern-Simons QFTs [9].

Although the classi�cation of fusion categories is beyond our current capabilities,
weaker variants of this problem can be studied by structural embellishment (e.g. impos-
ing pivotality, braiding, (pre)modularity); but even with these modi�cations, the prob-
lem remains out of reach. It has been shown that there are �nitely many braided fusion
categories of any given rank [10], whence there are �nitely many commutative fusion
algebras (of a given rank) that admit categori�cation. The categori�cations admitted by
a (commutative) fusion algebra can be explicitly calculated by solving the pentagon (and

†Selmer Center, Department of Informatics, University of Bergen, Norway .
§Department of Mathematics, The University of Iowa, Iowa City, USA.



hexagon) equations: doing so recovers all of the information contained in the categories.
However, solving these equations quickly becomes intractable as the rank grows. This
motivates the idea of determining additional general relations between unknowns, in an
attempt to reduce the size of the parameter space. In this spirit, much of our exposition
revolves around starting with a fusion rule of the form

(1.1) q ⊗ q ∼= 1⊕
k⊕

i=1

xi

and applying skein-theoretic methods to deduce some properties of the underlying cate-
gory C and the associated quantum invariants. Our work is inspired by [11, Theorems 3.1
& 3.2]: using a rotation operator on End(q⊗2) for C ribbon and q symmetrically self-dual1,
the authors discuss the link invariants coming from q invertible and (1.1) for k = 1, 2. In
each case, they also give some relations between the eigenvalues of the R-matrix Rqq.

We systematically recover and extend the results of [11, Theorems 3.1 & 3.2] in Section 3.
Our main contributions are contained in Section 4, where we uncover a relationship be-
tween the rotation operator and the F -matrix F qqq

q (under certain assumptions), thereby
allowing us to deduce some properties of said matrix. We note that understanding F -
matrices is particularly important for many physical applications (e.g.in the study of
TPMs, topological quantum computation, quantum tensor networks).

1.1. Outline of the paper.

In Section 2, we detail the relevant mathematical background. In Section 2.6, we intro-
duce a canonical orthonormal basis of �jumping jacks� on End(q⊗2) (for 1.1) that features
throughout our main exposition. In Section 2.11, we de�ne some conventions that are
followed in the main discourse. The rotation operator (one of the tools most central to
this paper) is introduced in Section 2.12, and a supplementary discussion is provided in
Appendix C.

In Section 3, we consider the action of the rotation operator on crossings in End(q⊗2)
so as to ascertain the link invariants associated to the fusion rule (1.1) for k = 1, 2. The
Jones, Kau�man and Dubrovnik polynomials are recovered, and we �nd three additional
skein relations coming from the antisymmetrically self-dual cases. In Appendix D, the
narrative of the Section 3 is reframed in terms of braid group representations. In particu-
lar, observing that braid representations associated to fusion rules of the form q⊗2 ∼= 1⊕y
factor through the Iwahori-Hecke and Temperley-Lieb algebras, we derive a skein relation
for the framed HOMFLY-PT polynomial (from which we recover the quantum invariants
associated to (1.1) for k = 1). In Appendix E, we give a few insights into invariants
coming from antisymmetrically self-dual objects.

In Section 4, we apply the rotation operator to the canonical basis of jumping jacks
on End(q⊗2) for a unitary spherical fusion category C. In doing so, we require that the
summands in (1.1) are self-dual (Remark 4.2). Theorem 4.3 determines the components
of a �bone� morphism (a rotated jumping jack) in the canonical basis: we use this to
prove some �bubble-popping� identities (Corollary 4.5) and to make some general obser-
vations, a highlight of which is the real-symmetricity of F qqq

q (Corollary 4.6). As a simple
application, we deduce the form of F qqq

q when k = 1 in (1.1).

1For a reminder of the de�nition of (anti)symmetrically self-dual objects, we direct the reader to
Appendix A.



We proceed to apply the results of Section 3 in order to derive explicit formulae for F qqq
q

when C is also ribbon and k = 2 (Theorem 4.8), and deduce that q cannot be antisym-
metrically self-dual in this instance (Corollary 4.9). It is also observed that the spectrum
of the rotation operator distinguishes between the Kau�man and Dubrovnik invariants.
In Section 4.3, we investigate some properties of bases for End(q⊗2) whose elements are
permuted (up to a sign) under the action of the rotation operator. We apply our results
to construct such bases when k = 2; the diagonalisation of the rotation operator follows
as an immediate consequence.

In Section 5, we review the contents of our work with an eye to future extensions.

1.2. Acknowledgements. Both authors would like to thank Corey Jones and Dave
Penneys for organising the 2019 OSU Quantum Symmetries Summer Reseach Program
(with grant support from David Penneys' NSF grant DMS 1654159) where they met.
Sachin Valera also wishes to thank Daniel R. Copeland for helpful discussions, and for
acquainting him with the rotation operator and the results of [11] (at aforementioned
research program) without which this work would not have been possible.

2. Preliminaries

We provide an overview of various concepts that are used throughout this work. For
further details on some of these topics, we refer the reader to [12, 13, 14, 15].

2.1. Tensor categories. Recall that a tensor category C is a k-linear, rigid monoidal
category with End(1) ∼= k (where 1 denotes the unit object). We henceforth let k = C.
By a simple object X ∈ C, we mean an object X such that every nonzero f ∈ End(X)
is an isomorphism. For any object X ∈ C, its left and right dual objects are respectively
denoted by X∗ and ∗X. Every object X ∈ C comes with the (co) evX and (co) ev′X
morphisms, which are the left and right (co)evaluations respectively.2

evX : X∗ ⊗X → 1 coevX : 1→ X ⊗X∗

ev′X : X ⊗ ∗X → 1 coev′X : 1→ ∗X ⊗X
Dual objects are unique up to unique isomorphism [12, Proposition 2.10.5]. Throughout
the rest of this paper, we identify left and right duals, and denote the dual of X by X∗.

2.2. Pivotality, sphericality and quantum trace. A pivotal tensor category C is a
tensor category with a collection of isomorphisms (called a pivotal structure) aX : X

∼−→ X∗∗

natural in X and satisfying aX⊗Y = aX ⊗ aY for all objects X, Y ∈ C. For any X ∈ C
and any morphism f ∈ End(X), the left and right quantum traces of f are de�ned as

(2.1a) T̃ rl(f) := evX ◦(idX∗ ⊗f) ◦ coev′X ∈ End(1)

(2.1b) T̃ rr(f) := ev′X ◦(f ⊗ idX∗) ◦ coevX ∈ End(1)

If the left and right quantum traces coincide, then C is called a spherical tensor category.
Hence, for a spherical tensor category, we can unambiguously de�ne the quantum trace
for any object X ∈ C and any morphism f ∈ End(X). That is,

(2.2) T̃ r(f) := T̃ rl(f) = T̃ rr(f)

and the quantum dimension dX of an object X is is given by (2.3), noting that dX = dX∗ .

dX := T̃ r(idX)(2.3)

2The compatibility of these morphisms with the monoidal structure is ensured by the rigidity axioms.



2.3. Fusion categories and trivalent vertices. A fusion category C is a semisimple
tensor category with only �nitely many simple objects up to isomorphism.

Remark 2.1 (Skeleton of C). Let Irr(C) denote a set of representatives of isomorphism
classes of simple objects in C. Let Xi ∈ Irr(C), where i ∈ I for some index set I ⊆ Z≥0
and X0 := 1. We also let i∗ denote j ∈ I such that Xj = X∗i . The cardinality of Irr(C) is
called the rank of C. When we restrict to working with objects in Irr(C), it is understood
that we are working in the skeleton of C: this is the full subcategory of C on the subset
of objects Irr(C), and is equivalent to C. A category is called skeletal if it contains one
object in each isomorphism class. See also Remarks 2.7 and 2.8.

The so-called fusion rules for C are encoded by the fusion coe�cients N ij
k ∈ Z≥0 where

Xi ⊗Xj =
⊕

k∈I
N ij
k Xk, i, j ∈ I.(2.4)

We also have (where δij denotes the Kronecker delta)

N i0
j = N0i

j = δij(2.5)

There is a graphical calculus associated with morphisms for any tensor category C. We
adopt the pessimistic convention i.e. our diagrams are viewed as morphisms going from
top-to-bottom. Any edge is oriented and labelled by an object X ∈ C; and for 1 ∈ C, the
edge is either invisible or emphasised by a dotted line. Diagrams representing morphisms
in the skeleton of a fusion category C have edges labelled by objects Xi ∈ Irr(C). A
trivalent vertex represents a projection from a twofold tensor product onto a summand (or
conversely, an inclusion of a summand into such a product). E.g. we have the projections

(2.6) spanC

{ XjXi

Xk
µ

}N ij
k

µ=1

= Hom(Xi ⊗Xj, Xk)

where the left-hand side constitutes a basis for Hom(Xi ⊗ Xj, Xk). Similarly, �ipping
the trivalent vertices upside-down in (2.6), we obtain a basis of inclusion morphisms for
Hom(Xk, Xi ⊗Xj). End(Xi) ∼= C, whence diagrammatically, we have

= λf

Xi

Xi

Xi

(2.7)

where f ∈ End(Xi) and λ ∈ C.

2.4. Dagger structure, inner product and unitarity. Let C be a fusion category.
Then C is called a dagger fusion category if it is equipped with an involutive, contravariant
functor † : C → C such that it acts as the identity on objects, and satis�es (2.8a)-(2.8d)
where for any morphisms f : X → Y , we have †(f) = f † : Y → X where f † is called the
adjoint of f . For morphisms f, g ∈ C and scalars λ1, λ2 ∈ C, the †-functor satis�es

(idX)† = idX(2.8a)

(g ◦ f)† = f † ◦ g†(2.8b)

(f ⊗ g)† = f † ⊗ g†(2.8c)

(λ1 · f + λ2 · g)† = λ∗1 · f † + λ∗2 · g†(2.8d)



where for (2.8b) we have f : X → Y and g : Y → Z for some objects X, Y, Z ∈ C. Note
that λ∗ denotes the complex conjugate of λ ∈ C. Considering the skeleton of C, we have

Hom(Xi ⊗Xj, Xk)
†
∼−→ Hom(Xk, Xi ⊗Xj)

XjXi

Xk

µ †7−→
Xi Xj

Xkµ
(2.9)

We can de�ne a sesquilinear form

〈g, f〉 = tr(fg†)(2.10)

where f, g ∈ Hom(Y,X) and fg† ∈ End(X) for any X, Y ∈ C. Further note that
〈f, g〉 = 〈g, f〉∗(2.11)

whence, (2.10) actually de�nes a Hermitian form.3

Consider two elements eµ and eν of the basis in (2.6). Then

eνe
†
µ = = λ

Xk

, λ ∈ C

Note that

(2.12) λ = tr(eνe
†
µ) = tr(e†µeν) = tr







whence λ vanishes for µ 6= ν. It follows that (2.6) de�nes an orthogonal basis with respect
to the Hermitian form. We may thus write

= λlijk · δlkδµν
Xk

, λlijk ∈ C(2.13)

where the factor of δlk follows from Schur's lemma.

Proposition 2.2. λkijk is real.

Proof. Taking the adjoint of (2.13), the result is immediate. �

Remark 2.3 (Basis for Hom-space). Consider the space Hom(X, Y ) in the skeleton
of C (where at least one of X or Y is not simple). This space is isomorphic to a direct
sum of Hom-spaces of the form Hom(

⊗m
k=1Xik ,

⊗n
l=1Xjl) where Xik , Xjl ∈ Irr(C). We

thus consider spaces of the form

Hom

(
m⊗

k=1

Xik ,
n⊗

l=1

Xjl

)
∼=
⊕

b∈Irr(C)
Hom

(
m⊗

k=1

Xik , b

)
⊗ Hom

(
b,

n⊗

l=1

Xjl

)
(2.14)

3Let η : Hom(Y,X)
∼→ Hom(Y X∗,1). We may equivalently write 〈g, f〉 = η(f)(η(g))† ∈ End(1) ∼= C.



Writing V X
Y := Hom(X, Y ), further note that

V
Xi1 ···Xim
b

∼=
⊕

e1,...,em−2∈Irr(C)
V
Xi1Xi2
e1 ⊗ V e1Xi3

e2 ⊗ · · · ⊗ V em−3Xim−1
em−2 ⊗ V em−2Xim

b(2.15a)

V b
Xj1 ···Xjn

∼=
⊕

f1,...,fn−2∈Irr(C)
V b
fn−2Xjn

⊗ V fn−2

fn−3Xjn−1
⊗ · · · ⊗ V f2

f1Xj3
⊗ V f1

Xj1Xj2
(2.15b)

The decompositions in (2.15a) and (2.15b) correspond to a choice of fusion basis on the
respective Hom-spaces.

Figure 1. By a �fusion basis�, we mean a parenthesisation of
⊗

kXik .
Diagrammatically, a fusion basis corresponds to a full rooted binary tree
on a space of the form in (2.15a) or (2.15b). The above trees illustrate the
fusion bases for a space of the form V abcd

e . The number of distinct fusion
bases for an n-fold product is given by the (n− 1)th Catalan number.

Using the basis from (2.6), and �xing fusion bases as in (2.15a) and (2.15b), we obtain
the following basis4:

Hom

(
m⊗

k=1

Xik ,
n⊗

l=1

Xjl

)
= spanC









b,e1,··· ,em−2,f1,··· ,fn−2
µ1,··· ,µm−2,ν1,··· ,νn−2

(2.16)

Let {ei}i denote elements of the basis in (2.16). Then we can write

g =
∑

i

giei and f =
∑

i

fiei(2.17)

where fi, gi ∈ C. Let X ′ :=
⊗m

i=1Xi. We write eie
†
j =: Kij ẽij where the value of Kij is

determined by the following three cases:

(1) eie
†
j vanishes, in which case Kij := 0.

(2) eie
†
j ∈ End(X ′) and contains no loops, in which case Kij := 1.

4Note that inpermissible values of the indices do not contribute to the basis. Labels µi and νj
respectively denote the multiplicities of trivalent vertices associated to ei and fj (they are not annotated
on the basis in (2.16) so as not to clutter the diagram).



(3) eie
†
j ∈ End(X ′) and contains loops, in which case Kij is a product of some scalars

λabca ∈ R coming from loops of the form (2.13).

where in cases (2) and (3), ẽij is a basis element of the form (2.16) in End(X ′). Then

〈g, f〉 = tr

(∑

i,j

fig
∗
jeie

†
j

)
= tr

(∑

i,j

fig
∗
jKij ẽij

)
=
∑

i

fig
∗
iKii

Remark 2.4 (Positive dagger structure). Note that

〈f, f〉 =
∑

i

|fi|2Kii(2.18)

Hence, given Kii > 0, our Hermitian form de�nes a Hermitian inner product. This is
ensured by setting λkijk > 0 in (2.13). Under this constraint, our category is said to have
a positive dagger structure. Furthermore, this means that C is a unitary fusion category
(see also Remarks 2.7 and 2.8). Also note that basis in (2.16) is orthogonal with respect
to this inner product. If C is also spherical, viewing the quantum dimension of an object
as an inner product immediately shows that it must be positive. Throughout this paper,
we assume that any category we work with possesses a positive dagger structure.

2.5. Frobenius-Schur indicator. Let C be a unitary pivotal fusion category. Following
[17, Proposition 3.9], we identify zig-zag morphisms with the pivotal structure:

X X∗ X∗∗
= aX

X

X∗∗µ

µ′

(2.19)

Thus, passing to the skeleton yields

Xi Xi
=

Xi
tiX∗i

µ

µ′

(2.20)

where ti ∈ C× is called a pivotal coe�cient. It can be shown [15, Lemma E.3] that
(2.20) implies (2.21), whence the indices on the trivalent vertices in (2.19) and (2.20)
can be dropped.

N ij
0 = N ji

0 = δij∗(2.21)

It can also be shown (Proposition A.1) that

(2.22) |ti| = 1 , ti∗= t∗i

• If Xi is non self-dual, we will assume that ti = 1. This choice is always possible
through a unitary ("gauge") transformation of the trivalent vertices in (2.20).
• If Xi is self-dual, then ti is called the Frobenius-Schur indicator and is written κi;
this quantity is invariant under any unitary transformations of trivalent vertices,
and is therefore a �xed property of Xi. Furthermore, (2.22) tells us that κi = ±1.
The object Xi is said to be (anti)symmetrically self-dual when κi is (−1 or) +1.



Further details are given in Appendix A. Following (2.20), we can make the identi�cation

(2.23)
X∗k

=
Xk

which allows us to slide arrows around cups and caps.

2.6. Normalisation and partial trace.

Remark 2.5. A unitary fusion category admits a unique spherical (and corresponding pivotal) structure [16, Prop. 8.23].

Let C be a unitary spherical fusion category. We will henceforth use labels i ∈ I to
denote objects Xi ∈ Irr(C).
Remark 2.6. (Multiplicity-free) Since the results of this paper pertain to fusion rules
without multiplicity, we shall henceforth assume our fusion categories to be multiplicity-
free i.e. N ij

k ∈ {0, 1} for all i, j, k (unless stated otherwise). This obviates the need to
index trivalent vertices (e.g. µ can be omitted in (2.6) and (2.9) in this instance).

We adopt a normalisation convention where trivalent vertices as in (2.6) are normalised

through a scaling of factor 4

√
dk
didj

. Further details are provided in Appendix B. Under

this normalisation, observe that

(2.24) λkijk =

√
didj
dk

in (2.13). Following Remark 2.3, we have a canonical (orthonormal) basis

(2.25) Hom(i⊗ j, l ⊗m) = spanC

{(
4

√
d2k

didjdldm

)

l m

i j

k

}

k∈I:N ij
k N

lm
k 6=0

where we call the graphical components of the basis diagrams jumping jacks or jack
morphisms. Using the canonical basis for End(i⊗ j), we have the decomposition

idi⊗j =
i j

=
∑

k∈I:N ij
k 6=0

√
dk
didj i j

i j

k(2.26)

For any morphism f ∈ Hom(i1⊗ i2 · · · ⊗ in, j1⊗ j2 · · · ⊗ jn), one can de�ne a right partial
trace if in = jn, and a left partial trace if i1 = j1.

f f

... ...

... ...

i1 in−1

in

j1 jn−1

i2 in

j2 jn

i1

Figure 2. The right and left partial traces of f .



Now suppose that C is also spherical. We de�ne the phi-net

(2.27) Φ(i, j, k) := T̃ r





 = =

where the �nal diagram corresponds to the left and right partial trace of a basis jack in
End(i∗ ⊗ k). Following (2.24), we know that

(2.28) Φ(i, j, k) =

√
didj
dk
· T̃ r(idk) =

√
didjdk

Given a, b, c self-dual, we de�ne the theta-net

(2.29) Θ(a, b, c) :=

where we have left the edges unoriented (since the labels are self-dual). Note that
Θ(a, b, c) = Φ(a, b, c). Applying the left and right partial traces to (2.26), we get

(2.30) didj =
∑

k∈I:N ij
k 6=0

√
dk
didj

Φ(i∗, k, j) =
∑

k

N ij
k dk

2.7. F -matrices. Recall that a monoidal category C has associativity isomorphisms
αX,Y,Z : (X ⊗ Y )⊗ Z ∼−→ X ⊗ (Y ⊗ Z) for any objects X, Y, Z ∈ C. These isomorphisms
satisfy compatibility conditions given by the pentagon and triangle axioms.

For a skeletal fusion category, after making a choice of basis for each Hom(i⊗ j, k) where
i, j, k ∈ I, we obtain a block-diagonal matrix Aabc corresponding to each associativity
isomorphism αa,b,c where a, b, c ∈ I. Each block in Aabc is called an F -matrix, and is
written F abc

d (where d indexes each block). As a map, F abc
d represents the isomorphism

(2.31) and can be interpreted as a change of (fusion) basis on Hom(a⊗ b⊗ c, d).

F abc
d :

⊕

e

Hom(a⊗ b, e)⊗ Hom(e⊗ c, d)
∼−→
⊕

f

Hom(a⊗ f, d)⊗ Hom(b⊗ c, f)(2.31)

where Aabc =
⊕

d F
abc
d . In the graphical calculus,

(2.32)

=
∑

f [F abc
d ]fe

a b c

d

f

a b c

d

e

The entries of an F -matrix are called F -symbols (or 6j-symbols). In terms of the fusion

coe�cients, associativity is expressed as

∑

e

Nab
e N

ec
d =

∑

f

Naf
d N bc

f(2.33)



Remark 2.7 (Skeletal data I). Given a fusion category C, its skeletal data is given by
the set of all fusion coe�cients and F -symbols; this data completely characterises C. The
F -symbols satisfy the pentagon equation coming from the pentagon axiom. If C has a
positive dagger structure, it is easy to see that all associated F -matrices will be unitary
(and so C is called unitary).

2.8. Braided tensor categories. Recall that for any two objects X and Y in a braided
tensor category C, a braiding is a natural isomorphism cX,Y : X ⊗ Y ∼−→ Y ⊗X which is
compatible with the associativity isomorphisms: this is ensured by the hexagon axioms,
and the braidings consequently satisfy the Yang-Baxter equation

(2.34) (cY,Z ⊗ idX) ◦ (idY ⊗cX,Z) ◦ (cX,Y ⊗ idZ) = (idZ ⊗cX,Y ) ◦ (cX,Z ⊗ idY ) ◦ (idX ⊗cY,Z)

for any X, Y, Z ∈ C. This a�ords us braid isotopy in the graphical calculus.

(a)
X Y X Y

=
(b)

X Y Z X Y Z

=

Figure 3. (a) (cX,Y )−1 ◦ cX,Y = idX⊗Y , (b) Yang-Baxter equation.

For a skeletal braided fusion category, after making a choice of basis for each Hom(i⊗j, k)
where i, j, k ∈ I, we obtain a block-diagonal matrix Rij corresponding to each braiding
isomorphism ci,j. In the multiplicity-free case, each block is a 1×1 matrix denoted by Rij

k

(where k indexes each block) whose entry is called an R-symbol. By abuse of notation,
we will use Rij

k to denote the 1 × 1 matrix and the R-symbol interchangeably. In the
graphical calculus, the R-symbols are given by

(2.35)
k

i j

:= Rij
k
k

i j

whence in the graphical calculus, the R-matrix is given by

Rij :=
i j (2.25)

=
∑

k∈I:N ij
k 6=0

Rij
k

√
dk
didj j i

i j

k(2.36)

Thus, the R-matrix is diagonal; speci�cally, we have

Rij =
⊕

k∈I:N ij
k 6=0

Rij
k(2.37)

In the presence of a braiding, all fusion coe�cients clearly satisfy

N ij
k = N ji

k(2.38)

Remark 2.8 (Skeletal data II). Given a braided fusion category C, its skeletal data is
given by the set of all fusion coe�cients, F -symbols and R-symbols; this data completely
characterises C.5 The F -symbols and R-symbols satisfy the hexagon equations coming
from the hexagon axioms. If C has a positive dagger structure, then the category is
called unitary: we know that all associated F -matrices will be unitary; furthermore, all
associated R-matrices must also be unitary, since every admissible braiding on a unitary
fusion category must also be unitary [18, Theorem 3.2].

5The skeletal data of a ribbon fusion category or modular tensor category is also given by this set.



2.9. Ribbon structure. A spherical braided fusion category C is called a ribbon fusion
(or premodular) category. This is a braided fusion category with a ribbon structure, which
is given by a natural isomorphism θX : X

∼→ X called the twist that satis�es

θX⊗Y = cY,X ◦ cX,Y ◦ (θX ⊗ θY )(2.39a)

(θX)∗ = θX∗(2.39b)

for all X, Y ∈ C, and where ∗ denotes the dual functor on the left-hand side of (2.39b).
Graphically, the twist is de�ned as follows for a skeletal ribbon category:

(2.40) (a)
i

θi7−→
i

= ϑi
i

, (b)
i

θ−1
i7−→

i
= ϑ−1i

i

where ϑi ∈ C×. Note that (2.40b) follows from (2.40a), since by braid isotopy (and
pivotality),

(2.41)

=
i i

Further note that
(2.42)

i∗i

θi

i∗i

(θi)
∗

i i∗i∗i

θi∗

i i∗

i∗ i∗ i∗
(2.40a)

= = = (2.39b)
=

whence we obtain (2.43a). Equation (2.43b) follows similarly.

(2.43) (a)
i

=
i

, (b)
i

=
i

From (2.42), the skeletal form of (2.39b) is also made apparent:

(2.44) ϑi = ϑi∗

Taking the left and right partial traces for the crossing
i i

, note that

(2.45) = = = ϑidi

Resolving the crossing in the �rst diagram of (2.45) using (2.36), it easy to check that

(2.46) ϑi =
1

di

∑

k

Rii
k dk

It can also be shown (Appendix A) that for i self-dual,

(2.47) ϑi = κi
(
Rii

0

)−1

In the graphical calculus for ribbon categories, edges may be promoted from lines to
ribbons, and twists are 2π clockwise self-rotations of a ribbon. A labelled edge is assumed



to be oriented from top-to-bottom. For instance, (2.44) can be observed from

(2.48) =

where the twist is pushed around the closed ribbon. For any x, y, z ∈ Irr(C), (2.39a) may
be illustrated via the action of the monodromy on a basis element of Hom(x⊗ y, z):

(2.49) (Ryx ◦Rxy) = = =
ϑz
ϑxϑy

where we have relaxed the multiplicity-free assumption. Thus,

(2.50)
∑

λ

[Ryx
z ]µλ [Rxy

z ]λν =
ϑz
ϑxϑy

δµν

Graphically, ribbon structure a�ords our diagrams equivalence under braid isotopy on
the 2-sphere. We henceforth refer to braid isotopy on the 2-sphere as framed isotopy.

Remark 2.9.

(i) The Anderson-Moore-Vafa theorem [19, 20] tells us that the twist factor ϑi is a
root of unity for all i ∈ I. For a proof, we refer the reader to [15, Theorem E.10].

(ii) A unitary braided fusion category admits a unique unitary ribbon structure [18].

Proposition 2.10. Let C be a unitary ribbon fusion category. Then for any x ∈ Irr(C),

(2.51) dx ∈ {1} ∪ [
√

2,∞)

Proof. We know that dx > 0 by unitarity. Using (2.30), we have dxd1 = dx, whence
d1 = 1. It will be useful to classify x according to whether it satis�es the property6

(P0)
∑

z N
xy
z = 1 for all y ∈ Irr(C)

Claim: x satis�es (P0) if and only if x is invertible (i.e. x⊗ x∗ = 1).
If x satis�es (P0), then x is clearly invertible. If x is invertible, then x∗ ⊗ x ⊗ y = y for
all y ∈ Irr(C). Thus,

∑
z N

x∗z
y Nxy

z = 1, whence
∑

z N
xy
z = 1 for all y. This shows the

claim. It immediately follows that if x satis�es (P0), then so does x∗. Now,

(i) If x satis�es (P0), then dxdx∗ = d2x = d1 = 1, whence dx = 1.
(ii) If x does not satisfy (P0), then dxdx∗ = d2x = d1 +

∑
y 6=1N

xx∗
y dy > 1, whence

dx > 1. The lower bound is attained when x ⊗ x∗ = 1 ⊕ y for some y satisfying
(P0). Thus, dx ≥

√
2.

�

6In a �eld-theoretic context, (P0) characterises the abelianity of a quasiparticle.



2.10. Modularity. Let C be a braided fusion category. An object X in C such that

(2.52) cY,X ◦ cX,Y = idX⊗Y

for all objects Y in C is called transparent. If all transparent objects in C are isomorphic
to 1, then the braiding is called non-degenerate.
Further assume that C is ribbon. We de�ne7 the matrix S̃ where

(2.53) [S̃]xy := x y , x, y ∈ Irr(C)

i.e. the left and right partial trace of Ry∗x ◦Rxy∗ . The S-matrix is S :=
1

D S̃ where

(2.54) D :=
∑

x∈Irr(C)

√
d2x

is called the total quantum dimension of C. A ribbon fusion category C is called a
modular tensor category (MTC) if it has a non-degenerate braiding (or equivalently, if
the associated S-matrix is invertible).

2.11. Additional conventions. Throughout much of this paper, we consider a fusion
category C containing a fusion rule of the form

q ⊗ q = 1⊕
k⊕

i=1

xi(2.55)

where q, xi ∈ Irr(C) and objects xi are distinct. In this context, we �x some conventions:

• Unlabelled, unoriented edges are understood to represent edges labelled by the
self-dual object q.
• Greek indices (e.g. λ) will be used to denote elements in I for which N qq

λ 6= 0.
Latin indices (e.g. i) will be used to denote elements in I \{0} for which N qq

i 6= 0.

For instance, (2.36) may be written as follows for i = j = q:

=
∑

λ

Rqq
λ

√
dλ
dq

λ = Rqq
0

1

dq
+
∑

i

Rqq
i

√
di
dq

i(2.56)

where we call the jumping jacks on the right-hand side of (2.56) i-jacks.

2.12. Rotation operator. We follow the conventions of Section 2.11, and further assume
that C is pivotal. Let f ∈ End(q⊗2) and f ′ := idq⊗f ⊗ idq ∈ End(q⊗4). We de�ne the
rotation operator

ϕ : f 7→ f ′ 7→ (idq⊗ idq⊗ evq)︸ ︷︷ ︸
∈ Hom(q⊗4,q⊗2⊗1)

◦f ′ ◦ (coevq⊗ idq⊗ idq)︸ ︷︷ ︸
∈ Hom(1⊗q⊗2,q⊗4)

(2.57)

7We caution the reader that conventions for the orientation of (2.53) vary in the literature.



Hence, ϕ(f) ∈ Hom(1⊗q⊗2, q⊗2⊗1) = End(q⊗2). Graphically, ϕ acts as an anticlockwise
π
2
-rotation on a morphism in End(q⊗2):

(2.58)

f
ϕ7−→ f=f

By C-linearity of C and bilinearity of the bifunctor “ ⊗ ” on morphisms, note that ϕ is
a C-linear operator. Further note that ϕ4(f) = f (as demonstrated in (2.59), where the
�nal diagram can be straightened to the �rst diagram).
(2.59)

ϕ7−→ ϕ7−→ ϕ7−→ ϕ7−→f f f f f

To the knowledge of the authors, the �rst instance where the rotation operator was used
in a categorical context was in [11]. See Appendix C for a supplementary excursion on
the rotation of morphisms.

3. Some Framed Invariants from Ribbon Categories

Let C be a unitary ribbon fusion category containing a fusion rule of the form

(3.1) q ⊗ q = 1⊕
k⊕

i=1

xi

where q, xi ∈ Irr(C) and objects xi are distinct. Framed, oriented links whose compo-
nents are labelled by elements of Irr(C) can be thought of as morphisms in End(1); the
value in C to which any such link evaluates is invariant under framed isotopy. Restated,
given an oriented8 link diagram D whose components are labelled as such, there is a
complex-valued function whose value is constant on the framed isotopy class of D. Such
a function coincides with the notion of a framed link invariant (when none of the labels
are antisymmetrically self-dual).
Let ΛC,q denote the framed link invariant for oriented links with all components labelled
by q ∈ Irr(C) symmetrically self-dual. For q antisymmetrically self-dual, ΛC,q denotes the
polynomial-valued function obtained from applying the associated skein relation to a link
diagram.9 Our goal is to extract information pertaining to ΛC,q when q satis�es (3.1); in
particular, we use the rotation operator ϕ to �nd relations amongst dq and the eigenvalues
of Rqq. We do this for the trivial case (i.e. q⊗2 = 1) and then for cases k = 1, 2. When q
is symmetrically self-dual (i.e. κq = 1), it is easy to see that

(3.2) Λ̃C,q(L) = ϑ−w(D)
q ΛC,q(D)

8In the instance where all labels are self-dual, D is an unoriented diagram.
9This is further explored in Appendix E.



is an oriented link invariant (where L is the oriented link for which D is a diagram, and
w is the writhe).

Much of the exposition in this section is already well-established and has been presented
in [11] (see Theorems 3.1 & 3.2) where a broader discussion may be found. However, we
choose to include this material for its relevance to our main results in Section 4. Further-
more, our approach di�ers slightly to that taken in [11] and we also treat the instances
where q is antisymmetrically self-dual (i.e. κq = −1), which leads to an extended discus-
sion in Appendix E. In Appendix D, the narrative of this section is approached from the
perspective of braid group representations. We follow the conventions �xed in Section
2.11.

Rqq is diagonalisable in the canonical basis, so we may resolve crossings as follows:

(3.3) =
∑

λ

Rqq
λ

√
dλ
dq

λ and =
∑

λ

(Rqq
λ )−1

√
dλ
dq

λ

Also,

(3.4) ϕ
( )

= = κq

3.1. Trivial case. Here, the fusion rule is given by

(3.5) q ⊗ q = 1

Let α := Rqq
0 . Then from (3.3),

=
α

dq
and =

α−1

dq
(3.6)

whence ϕ
( )

= α
dq

. Using (3.4) and comparing coe�cients, we get

α = κqα−1 =⇒ α2 = κq.
and so we have the following two possibilities:

(1) For κq = 1, Rqq
0 = ±1 with skein relation

(3.7) = and = 1

(2) For κq = −1, Rqq
0 = ±i with skein relation

(3.8) = − and = 1

3.2. k=1. Now our fusion rule is of the form

(3.9) q ⊗ q = 1⊕ x
Let α := Rqq

0 and β := Rqq
x . Using (3.3) and (2.26), we resolve the crossings in the basis{

,
}
to get

=
1

dq
(α− β) + β(3.10a)



=
1

dq
(α−1 − β−1) + β−1(3.10b)

whence

(3.11) ϕ
( )

= β +
1

dq
(α− β)

Then using (3.4) and comparing coe�cients with (3.10b), we have

: κqβ−1 =
1

dq
(α− β) =⇒ α = κqdqβ−1 + β(3.12a)

: κqβ =
1

dq
(α−1 − β−1) =⇒ α−1 = κqdqβ + β−1(3.12b)

which can be solved to get

(3.13) dq = −κq(β2 + β−2) , α = −β−3

We thus have the following two possibilities:

(1) For κq = 1, Rqq = diag(−β−3, β) with skein relation

(3.14) = β + β−1 and = −(β2 + β−2)

i.e. the Kau�man bracket.

(2) For κq = −1, Rqq = diag(−β−3, β) with skein relation

(3.15) = β − β−1 and = β2 + β−2

3.3. k=2. Our fusion rule is of the form

(3.16) q ⊗ q = 1⊕ x⊕ y
Let α := Rqq

0 , β := Rqq
x and γ := Rqq

y . Using (3.3) and (2.26), we resolve the crossings in

the basis
{

, , x
}
to get

= A +B x + C(3.17a)

= A′ +B′ x + C−1(3.17b)

where

A :=
1

dq
(α− γ), B :=

√
dx
dq

(β − γ), C := γ

A′ :=
1

dq
(α−1 − γ−1), B′ :=

√
dx
dq

(β−1 − γ−1)

Remark 3.1. We henceforth set β 6= γ. The case B,B′ = 0 is treated in Section 3.3.1.

Eliminating the x-jacks and rearranging yields

=

(
A− A′B

B′

)
+

(
C − C−1B

B′

)
+
B

B′
(3.18a)

=⇒ ϕ
( )

=

(
A− A′B

B′

)
+

(
C − C−1B

B′

)
+ κq

B

B′
(3.18b)



Using (3.17a) to express ϕ
( )

in our chosen basis,

ϕ
( )

=

(
A− A′B

B′
+ κq

CB

B′

)
+

(
C − C−1B

B′
+ κq

AB

B′

)
+ κq

B2

B′
x

Applying (3.4) and comparing coe�cients with (3.17b), we have

x : B′ = ±B(3.19a)

: A′ = κqC +
B

B′
(A− κqC−1)(3.19b)

: A′ = κqC +
B′

B
(A− κqC−1)(3.19c)

Thus,

(3.20) B′ = ±B , A′ = κq(C ∓ C−1)± A

Remark 3.2 (Caveat). When κq = −1, there is a di�erence in sign betweeen (vertical)
twists and their �horizontal� counterparts (i.e. a π

2
-rotated version). This is taken into

account when solving for Cases 3 and 4 below. For instance,

= u =⇒ = u

=⇒ u = κqϑq

There are now four cases to examine (for B′ = ±B and κq = ±1).

Case 1: Let B′ = B and κq = 1. Then (3.18a) becomes

(3.21) − = D
(

−
)

where D := C − C−1. Stacking on top of and using (3.21) ,

= D2
(

−
)(

−
)

+D
(

− + −
)

+

= D2
(

− − dq +
)

+D(ϑq − ϑ−1q ) +D
(

−
)

+

(3.21)
= D

[
(2− dq)D + ϑq − ϑ−1q

]
−D2 +D2

(
−

)
+

= D
[
(1− dq)D + ϑq − ϑ−1q

]
+

whence by Reidemeister-II,

(i) D =
ϑq − ϑ−1q
dq − 1

or (ii) D = 0

For (i), note that D is well-de�ned since dq > 1. Then

(3.22) dq =
α−1 − α
γ − γ−1 + 1 =

α−1 − α
β − β−1 + 1



where the second equality10 follows from B′ = B. Since D 6= 0, we have β, γ 6= ±1 and
so (3.22) is also well-de�ned.

Case 2: Let B′ = −B and κq = 1. Then (3.18a) becomes

+ = K
(

+
)

(3.23)

where K := C + C−1. Similarly, we get

(i) K =
ϑq + ϑ−1q
dq + 1

or (ii) K = 0

where for (i),

(3.24) dq =
α−1 + α

γ + γ−1
− 1 =

α−1 + α

β + β−1
− 1

Case 3: Let B′ = B and κq = −1. Then (3.18a) becomes

− = D
(

+
)

(3.25)

Similarly, we get

(i) D =
ϑq − ϑ−1q
dq + 1

or (ii) D = 0

where for (i),

(3.26) dq =
α− α−1
γ − γ−1 − 1 =

α− α−1
β − β−1 − 1

Case 4: Let B′ = −B and κq = −1. Then (3.18a) becomes

+ = K
(

−
)

(3.27)

Similarly, we get

(i) K =
ϑq + ϑ−1q
dq − 1

or (ii) K = 0

where for (i),

(3.28) dq = −α
−1 + α

γ + γ−1
+ 1 = −α

−1 + α

β + β−1
+ 1

Remark 3.3. Cases D = 0 and K = 0 for κq = ±1 are covered in Section 3.3.1.

For B′ = B we have β−β−1 = γ−γ−1 = D whence sin(arg β) = sin(arg γ). Since β 6= γ,
we have arg β + arg γ = π. Thus,

(3.29) βγ = −1 and D = β + γ , B′ = B

10Heuristically, this equality also follows by the symmetry of the construction in β and γ. That is, we
could have alternatively used the y-jack in our chosen basis.



For B′ = −B we have β + β−1 = γ + γ−1 = K whence cos(arg β) = cos(arg γ). Since
β 6= γ, we have arg β + arg γ = 2π. Thus,

(3.30) βγ = +1 and K = β + γ , B′ = −B
Following the notation in [11], we let z := β + γ and a := ϑq. Summarising these four
cases (where β 6= γ and z 6= 0),

(1) For B′ = B and κq = 1, Rqq = diag(α, β,−β−1) with skein relation

(3.31) − = z
(

−
)

and =
a− a−1

z
+ 1

i.e. the framed Dubrovnik polynomial.

(2) For B′ = −B and κq = 1, Rqq = diag(α, β, β−1) with skein relation

(3.32) + = z
(

+
)

and =
a+ a−1

z
− 1

i.e. the framed Kau�man polynomial.

(3) For B′ = B and κq = −1, Rqq = diag(α, β,−β−1) with skein relation

(3.33) − = z
(

+
)

and =
a− a−1

z
− 1

(4) For B′ = −B and κq = −1, Rqq = diag(α, β, β−1) with skein relation

(3.34) + = z
(

−
)

and =
a+ a−1

z
+ 1

Remark 3.4. Let L denote a link, D a corresponding diagram, and w(D) the writhe of

D (given some choice of orientation on D). Let Λ
(1)
(a,z) and Λ

(2)
(a,z) respectively denote the

framed Dubrovnik (3.31) and framed Kau�man (3.32) polynomial. Then

(3.35) Λ
(1)
(a,z)(D) = i−w(D)(−1)c(L)Λ

(2)
(ia,−iz)(D)

noting that the writhe does not depend on the choice of orientation modulo 4. The
relation (3.35) was proved by Lickorish in [21].11

3.3.1. Special cases.

(1) Suppose B,B′ = 0 (i.e. β = γ). Then (3.17a) and (3.17b) become (3.10a) and

(3.10b). That is, the crossings lie in the subspace span
{

,
}
. Thus,

κq = 1 κq = −1

Skein relation (3.14) (3.15)
Rqq diag(−β−3, β, β) diag(−β−3, β, β)

(2) Suppose D = 0 with κq = ±1. Then

(A′, B′, C−1) = (A,B,C) =⇒ α, β, γ ∈ {±1}
11There is a sign error in the statement of (3.35) in [21] which has been corrected here. The same

correction appears in [11].



and using (3.17a),(3.17b) and β 6= γ we get

(3.36) Rqq = (α,±1,∓1) and = , α ∈ {±1}

(3) Suppose K = 0 with κq = ±1. Then

(A′, B′, C−1) = (−A,−B,−C) =⇒ α, β, γ ∈ {±i}
and using (3.17a),(3.17b) and β 6= γ we get

(3.37) Rqq = (α,±i,∓i) and = − , α ∈ {±i}

4. Main Results

Let C be a unitary spherical fusion category containing a fusion rule of the form

(4.1) q ⊗ q = 1⊕
⊕

i

xi

where q, xi ∈ Irr(C), objects xi are distinct and where N := dim (End(q⊗2)) ≥ 2.
We write fµν :=

[
F qqq
q

]
µν
. For any simple object x in the decomposition of q⊗2, the

symmetries of the fusion coe�cients give N qq
x = Nxq

q = N qx
q = N qq

x∗ . Firstly, this tells
us that the indices of fµν run over 1 and {xi}i. Secondly, this tells us that the set
{xi}i is closed under taking duals: this allows us to de�ne a (charge) conjugation matrix
C := δµµ∗ where µ indexes 1 and {xi}i. We follow the conventions from Section 2.11 and
let σ(A) denote the spectrum of a linear operator A.

4.1. Rotation operator in the canonical basis.

Lemma 4.1.

(i) f0λ = κq
√
dλ
dq

(ii) δλ0 = κq
∑

ρ

√
dρ

dq
fρλ

(iii)

q µ

λ q

q

=κqdqfµλ

(iv)

µ q

q ρ

q

=κqdqδµλ
∑

ρ fρλ

Proof.

(4.2)

λ =
∑

ρ fρλ ρ



(i) Capping o� the rightmost pair of leaves in (4.2) gives

λ =
∑

ρ fρλ ρ =⇒ κq
λ

=
∑

ρ fρλδρ0dq

=⇒ κq
√
dλ
dq

=
∑

ρ

fρλδρ0.

(ii) Capping o� the leftmost pair of leaves in (4.2) gives

=
∑

ρ fρλ =⇒ δλ0dq
ρ

= κq
∑

ρ fρλλ ρ
q

=⇒ δλ0 = κq
∑

ρ

√
dρ

dq
fρλ

(iii) Stacking the adjoint tree of the right-hand side on (4.2) gives

λ

µ

ρ

µ

=
∑

ρ fρλ =⇒ κq
µ

λ
= fµλ

µ

µ

=
dq√
dµ
fµλ µ = dqfµλ



(iv) Stacking the adjoint tree of the left-hand side on (4.2) gives

λ

µ

ρ

µ

=
∑

ρ fρλ =⇒ δµλ
dq√
dλ

= κq
∑

ρ fρλ
µλ

ρ

=⇒ κqdqδµλ
µ

ρ
=
∑

ρ fρλ

�

Note that plugging the adjoint of (iii) into (iv) yields
∑

ρ fρλf
∗
ρµ = δλµ, which agrees with

the unitarity of F qqq
q .

Remark 4.2. (Duality)
In the following, we wish to consider the action of rotation operator ϕ on our canonical
basis. Expanding some arbitrary h ∈ End(q⊗2) in this basis, it is clear that ϕ2 = C . When
considering the image of an x-jack under ϕ, the directed edge calls for extra caution. For
x 6= 1 we have

(4.3)

x
x =ϕ

where we call the right-hand side a bone morphism. Observing that the jack morphism
may equivalently be represented with a slant,

x
x

ϕ =
(4.4a)

x
x∗ϕ =

(4.4b)

For the x-bone to be well-de�ned, we must be able to identify (4.4a), (4.4b) and (4.3).
The adjunction of (4.4a) yields

†
−̃→x x

and since the bone is taken to be self-adjoint, we require that x = x∗. When considering
ϕ in the canonical basis we must therefore assume that C = id i.e. {xi}i are self-dual in
(4.1). This obviates the need to direct any edges in our diagrams.



Theorem 4.3. (Bones via jacks)
Given fusion rule (4.1) with xi self-dual, we have

(4.5)
λ

=

√
dλ
dq

+ κq
∑

i

fiλ i

Proof. Expanding the bone in the canonical basis,

(4.6)
λ

= aλ +
∑

i

bλi i

Given a morphism h ∈ End(q⊗2), let h′ := idq⊗h ∈ End(q⊗3). Then we de�ne the linear
map Ω : h 7→ h′ 7→ (evq⊗ idq) ◦ h′. Applying Ω to (4.6), we get

+κq
∑

i b
λ
i= κqaλλ i=⇒

= aλ i+
∑

i b
λ
i

λ

From (2.32), we see that (aλ, bλi ) = (κqf0λ,κqfiλ). The result follows from Lemma 4.1(i).
�

Corollary 4.4. Let D denote the matrix representation of a rotation operator ϕ in the
canonical basis. Then

(i) D = κqF qqq
q

(ii) F qqq
q is self-inverse

(iii) fλ0 = f0λ
(iv) The parity of all entries in σ(ϕ) cannot be the same

Proof.

(i) Follows directly from Theorem 4.3.
(ii) D2 = C where C = id (since {xi}i are self-dual), whence the result follows by (i).

(iii) For λ = 0, note that (4.5) is (2.26) and so fi0 = κq
√
di
dq

. The result follows from

Lemma 4.1(i).
(iv) Since ϕ is an involution for C = id, its spectrum can only consist of ±1 s. Observe

that | tr(F qqq
q )| < N since |fii| ≤ 1 and |f00| = 1

dq
< 1. By (i), tr(ϕ) = κq tr(F qqq

q )

whence (iv) follows.

�
Corollary 4.4(ii) can also be shown by applying linear map Ω′ : h 7→ h′′ 7→ (idq⊗ evq)◦h′′
to (4.6), where h ∈ End(q⊗2) and h′′ := h⊗ idq.
Stated di�erently, Corollary 4.4(iv) says that there are strictly less than N linearly inde-
pendent formal diagrams in End(q⊗2) that are (anti)symmetric under rotation.

Corollary 4.5. (Bubble-popping)

(i)
=
√
di

i

(ii) j

i

= κq
dq√
di
fij

i



(iii)

j

i

=

√
didj

dq
+
∑

k

dq√
dk
fkifkj k

(iv)

i

j

= κqd2qfij

(v) i

j
=
√
didj + d2q

∑
k fkifkj

See also (4.9).

Proof.

(i) Cup o� the bottom of an i-bone and use (4.5) to get

=
√
di

i
=

√
di
dq

Indeed, capping o� both sides agrees with Θ(q, i, q) = Φ(q, i, q) = dq
√
di.

(ii) Stacking a j-bone on top of an i-jack and using (4.5), we get

(4.7)

j

= κqfij

i

i
= κq

dq√
di
fij

ii

(iii) Stack an i-bone on top of a j-bone and use (4.5).

(iv)

i

jj

i= κq
dq√
di
fij =⇒ = κq

dq√
di
fij ii

whence the result follows from Φ(q, i, q) = dq
√
di. Alternatively, this identity co-

incides with taking the quantum trace of Lemma 4.1(iii) for (µ, λ) = (i, j).

(v) Take the left and right partial traces of (iii) and plug in Φ(q, k, q).

�

Corollary 4.6. F qqq
q is real-symmetric.

Proof. Corollary 4.4(ii) tells us that F qqq
q is Hermitian. It thus su�ces to show that F qqq

q

is one of (a) real or (b) symmetric; nonetheless, we will show both explicitly. Applying



the left and right partial traces to (4.7), we obtain

(4.8)

i

j

= κqd2qfij

(a) Inverting the pretzel in Corollary 4.5(iv) via adjunction and comparing the result
to (4.8), we see that fij = f ∗ij. We know that entries f0λ and fλ0 are also real from
Lemma 4.1(i) and Corollary 4.4(iii).

(b) Note that (4.8) can be deformed to the quantum trace of Lemma 4.1(iii) for
(µ, λ) = (j, i). Comparing scalars, we see that fij = fji. We also know that
f0λ = fλ0 from Corollary 4.4(iii).

�

In light of Corollary 4.6, we may further simplify Corollary 4.5(v) to
(4.9)

i

j

=
√
didj + δijd

2
q

4.2. Computing some F -symbols. We now turn our attention to calculating F qqq
q for

q self-dual using the rotation operator. If q⊗ q = 1 then F qqq
q = [f00] =

[
κq
dq

]
. In the case

q ⊗ q = 1⊕ x, we have

(4.10) F qqq
q = κq




1

dq

√
d2q − 1

dq√
d2q − 1

dq
− 1

dq




Since x is necessarily self-dual, we may apply the corollaries of Theorem 4.3. Indeed,
(4.10) follows almost immediately from Lemma 4.1(i) and Corollary 4.4(iii); all that re-
mains is to �nd fxx. Applying Corollaries 4.4(i) and (iv), we have tr

(
F qqq
q

)
= κq tr(ϕ) = 0

whence fxx = −κq
dq
.

If we promote C to be ribbon, we may also determine fxx by combining the skein theory

from Section 3.2 with Theorem 4.3. Resolving as in (3.10a) and rotating,

ϕ
( )

=
1

dq
α +

√
dx
dq

β
x

=
1

dq
α

(
1

dq
+

√
dx
dq

x

)
+

√
dx
dq

β

(√
dx
dq

+ κqfxx x

)

=
α + βdx
d2q

+

√
dx
dq

(
α

dq
+ κqβfxx

)
x

Comparing coe�cients with the -crossing, the cup-cap component corresponds to

(2.46), while the x-jack component yields fxx = β−2 − κq
dq
αβ−1. Plugging in the values

from (3.13), we get fxx = −κq
dq
.



Remark 4.7. Another approach to extracting information via the rotation operator
is to stack a crossing on its image under ϕ and then solve for the equation levied by
Reidemeister-II. This approach is equivalent to the one taken above i.e. solving

(4.11)

ϕ
( ) = κq

is clearly equivalent to solving ϕ
( )

= κq . Of course, this is solved with respect

to some choice of basis B. For the case q ⊗ q = 1 ⊕ x, it is interesting to observe that

�xing B =
{

,
}

gave us information pertaining to Rqq, while �xing B canonical

gave us information about F qqq
q . Moreover, the information extracted via the latter basis

relied on that found using the former basis.

Now suppose that q ⊗ q = 1⊕ x⊕ y where C = id and C is ribbon. Following (3.17a),

ϕ
( )

= A +B
x

+ C

Thm. 4.3
= A +

(√
dx
dq

B + C

)
+ κqfxxB x + κqfyxB y

(2.26)
=

(
A+ κq

dq√
dy
fyxB

)
+

(√
dx
dq

B + C − κq√
dy
fyxB

)

+ κq

(
fxxB −

√
dx
dy
fyxB

)
x

Solving ϕ
( )

= κq with respect to basis
{

, , x
}
, we match coe�cients

with (3.17b) to obtain

: A = κq

(
C−1 − dq√

dy
fyxB

)
(4.12a)

: A′ = κq
(
C +

√
dx
dq

B

)
− 1√

dy
fyxB(4.12b)

x : B′ = B

(
fxx −

√
dx
dy
fyx

)
(4.12c)

Suppose B,B′ 6= 0. Recall from (3.20) that B′ = ±B. Also by Lemma 4.1(i) & (ii),

(4.13) − κq
√
di
dq

=
∑

j

√
djfji

whence for i = x,

(4.14) fxx = −
(
κq
dq

+

√
dy
dx
fyx

)



Combining (4.12c) and (4.14) eventually yields

(4.15) (fxx, fyx) =

(
∓ dx

(dq ∓ κq)dq
± 1,

∓
√
dxdy

(dq ∓ κq)dq

)
, B′ = ±B

Setting i = y in (4.13) gives fyy = −(κq
dq

+
√

dx
dy
fxy). By Corollary 4.6, we have fxy = fyx

whence

(4.16) fyy =
∓ dy

(dq ∓ κq)dq
± 1 , B′ = ±B

Theorem 4.8. Let C be a unitary ribbon fusion category containing a fusion rule

(4.17) q ⊗ q = 1⊕ x⊕ y
where x, y, q ∈ Irr(C). If Rqq

x 6= Rqq
y then Rqq

x R
qq
y = ±1 where

• If Rqq
x R

qq
y = −1 then dq = κq

(
ϑq − ϑ−1q
Rqq
x +Rqq

y
+ 1

)
and the associated skein relation

is given by (a) the framed Dubrovnik polynomial (3.31) for κq = 1 and (b) (3.33)
for κq = −1.

• If Rqq
x R

qq
y = 1 then dq = κq

(
ϑq + ϑ−1q
Rqq
x +Rqq

y
− 1

)
and the associated skein relation is

given by (c) the framed Kau�man polynomial (3.32) for κq = 1 and (d) (3.34) for
κq = −1.

If x and y are self-dual then

(i) For Rqq
x R

qq
y = −1, we have

(4.18) F qqq
q = κq




1

dq

√
dx

dq

√
dy

dq
√
dx

dq

− dx
(κqdq − 1)dq

+ 1
−
√
dxdy

(κqdq − 1)dq

√
dy

dq

−
√
dxdy

(κqdq − 1)dq

− dy
(κqdq − 1)dq

+ 1




(ii) For Rqq
x R

qq
y = 1, we have

(4.19) F qqq
q = κq




1

dq

√
dx

dq

√
dy

dq
√
dx

dq

dx

(κqdq + 1)dq
− 1

√
dxdy

(κqdq + 1)dq

√
dy

dq

√
dxdy

(κqdq + 1)dq

dy

(κqdq + 1)dq
− 1






Corollary 4.9. For a unitary ribbon fusion category C containing a fusion rule of the
form (4.17) with x and y self-dual, we have

(i) q is symmetrically self-dual

(ii) σ(ϕ) =

{
{+1,+1,−1} , ΛC,q is the framed Dubrovnik polynomial

{+1,−1,−1} , ΛC,q is the framed Kau�man polynomial

Proof.

(i) tr
(
F qqq
q

)
= ±3 for Rqq

x R
qq
y = ∓1 when κq = −1. The result follows by Corollaries

4.4 (i) and (iv).
(ii) By (i), ΛC,q is either the framed Dubrovnik or Kau�man polynomial. For the

former, tr(F qqq
q ) = 1 and for the latter tr(F qqq

q ) = −1. The result follows by
Corollary 4.4 (i).

�

4.3. Some new bases. As an application of the results thus far, we establish some new
bases for End(q⊗2) where

(4.20) q ⊗ q = 1⊕ x⊕ y
in a unitary ribbon fusion category C with x and y self-dual. First, let us make some
observations for q such that

(4.21) q ⊗ q = 1⊕
k⊕

i=1

xi

with q, xi ∈ Irr(C) and distinct self-dual objects xi. We restrict our search to bases B
satisfying the following property12:

(P1) The elements of B are permuted under the action of ϕ (up to a sign for 1-cycles).

We will see that bases satisfying this property are closely related to the eigenbasis of ϕ.
Clearly, the matrix representation of ϕ in such a basis is a symmetric permutation ma-
trix with −1's permitted along the diagonal. The permutation consists of 2-cycles and
signed 1-cycles. Then +1's and −1's along the matrix diagonal respectively correspond
to `positive' and `negative' 1-cycles. Let

N := dim
(
End(q⊗2)

)
, n := #{cycles}

b := #{positive 1-cycles} , f := #{negative 1-cycles}
Assume B satisfying (P1) exists. Then write B = {Dij}(n,l(i))(i,j) where i indexes the n

cycles and l(i) is the length of the ith cycle. We have

ϕ(Dij) =





Di,j+1 , l(i) = 2

Dij , i indexes a positive 1-cycle

−Dij , i indexes a negative 1-cycle

(4.22)

where j denotes j modulo 2. Recall that σ(ϕ) must consist of a mixture of ±1's. Let V1
and V−1 respectively denote the +1 and −1 eigenspaces of ϕ. Then

(4.23) dim(V1) = n− f , dim(V−1) = n− b
12Recall that the method employed for determining ΛC,q in Section 3 relied on expressing a crossing

as a linear combination of morphisms that were invariant under the action of the rotation operator (up
to permutation). This motivates the study of bases satisfying (P1).



whence

(4.24) N = 2n− b− f and

⌈
N

2

⌉
≤ n ≤ N

where the upper bound is realised when B is an eigenbasis for ϕ.

Example 4.10. We can use the above to determine the possible actions (as a signed
permutation) of ϕ on B given σ(ϕ). We will denote such an action by the signed cycle
type (a1, . . . , an) where |ai| = l(i) and ai = ±1 encodes the sign of a 1-cycle. In the
following, we exclude the instances where n = N (i.e. eigenbases).

(i) N = 2 :
(n, b, f) (1, 0, 0)
σ(ϕ) {+1,−1}

Cycle type (2)

(ii) N = 3 :
(n, b, f) (2, 1, 0) (2, 0, 1)
σ(ϕ) {+1,+1,−1} {+1,−1,−1}

Cycle type (2, 1) (2,−1)

(iii) N = 4 : (1st instance where there are two distinct cycle types for the same σ(ϕ)).

(n, b, f) (3, 1, 1) (3, 2, 0) (3,0,2) (2,0,0)
σ(ϕ) {+1 + 1,−1,−1} {+1,+1,+1,−1} {+1,−1,−1,−1} {+1,+1,−1,−1}

Cycle type (2, 1,−1) (2, 1, 1) (2,−1,−1) (2, 2)

etc.

• We already encountered basis
{

,
}
corresponding to Example 4.10(i).

• Let C be the unitary (G2)2 ribbon category and take q ∈ Irr(C) with fusion rule

q ⊗ q = 1 ⊕ x ⊕ y ⊕ q. There exists a basis
{

, , ,
}

on End(q⊗2)

[3]. This is basis of cycle type (2, 2), whence we see from Example 4.10(iii) and
Corollary 4.4(i) that F qqq

q is traceless.

• We show by construction that there exist bases corresponding to Example 4.10(ii).

We de�ne

(4.25) JX := X +
X

and J ′X :=
X − X

Observe that for (4.20),

+ =

√
dx

dq − 1
Jx +

√
dy

dq − 1
Jy(4.26a)

− = −
√
dx

dq + 1
J ′x −

√
dy

dq + 1
J ′y(4.26b)

whence
√
dx Jx +

√
dy J ′y = (dq − 1)

(
+

)
− 2
√
dy y(4.27a)

√
dx Jx −

√
dy J ′y = (dq + 1)

(
−

)
+ 2
√
dx

x
(4.27b)



Recall from Corollary 4.9(i) that κq = 1. Expanding in the canonical basis,

√
dx Jx +

√
dy J ′y =

(
dq −

1

dq

)
+
√
dx

(
1− 1

dq

)
x −

√
dy

(
1 +

1

dq

)
y

(4.28a)

√
dx Jx −

√
dy J ′y =

(
1

dq
− dq + 2

dx

dq

)
+
√
dx

(
1 +

1

dq
+ 2fxx

)
x

(4.28b)

+

[√
dy

(
1 +

1

dq

)
+ 2
√
dxfyx

]
y

where in (4.28b) we used (4.5). Let

(4.29) J +
xy :=

√
dx Jx +

√
dy J ′y , J −xy :=

√
dx Jx −

√
dy J ′y

Lemma 4.11. J +
xy and J −xy are linearly independent.

Proof. ϕ(J +
xy) = J −xy. Suppose J −xy = zJ +

xy for some z ∈ C. Then ϕ(J +
xy) = zJ +

xy whence
J +
xy = ±J −xy. For z = +1 and z = −1 we respectively get J ′y = 0 and Jx = 0, both of

which yield a contradiction. E

Theorem 4.12. Let q be de�ned as in (4.20). Then

(i)
{
J +
xy , J −xy , +

}
de�nes a basis for End(q⊗2) when ΛC,q is the framed

Dubrovnik polynomial.

(ii)
{
J +
xy , J −xy , −

}
de�nes a basis for End(q⊗2) when ΛC,q is the framed

Kau�man polynomial.

Note that the bases in the above theorem satisfy (P1) (see Example 4.10(ii)), and that
we can permute labels x and y by the symmetry of our construction.

Proof. By Lemma 4.11, it su�ces in each case to show that the �nal basis element is not
a linear combination of the �rst two. For c1, c2 ∈ C,

c1J +
xy + c2J −xy = a1 + a2 x + a3 y

where

a1 :=
1

dq

[
(1− d2q)(c2 − c1) + 2c2dx

]
, a2 :=

√
dx

[(
1 +

1

dq

)
c2 +

(
1− 1

dq

)
c1 + 2c2fxx

]

a3 :=
√
dy



(

1 +
1

dq

)
(c2 − c1) + 2c2

√
dx

dy
fyx




Recall from (4.12c) that

(4.30)

√
dx

dy
fyx = fxx − r



where r = 1,−1 when ΛC,q is the framed Dubrovnik and framed Kau�man polynomial
respectively. Thus,

(4.31) a3 =

√
dy

dx
a2 − 2

√
dy(c1 + rc2)

(i) Suppose there exist c1 and c2 such that c1J +
xy + c2J −xy = + . Then

(a1, a2, a3) =

(
1 +

1

dq
,

√
dx

dq
,

√
dy

dq

)
. Setting r = 1, (4.31) gives c1 = −c2. Now

comparing values for a1 yields

c1 =
1

2

(
1 + dq

dy

)
, c2 = −1

2

(
1 + dq

dy

)

whence comparing values for a2 yields

fxx = − dy

dq(1 + dq)
− 1

dq

where we can manipulate the right-hand side to get

− dy

dq(1 + dq)
− 1

dq
= −1 +

dx

dq(dq − 1)
− 2dx

dq(d2q − 1)

(4.18)
= −fxx −

2dx

dq(d2q − 1)

implying that fxx = − dx

dq(d2q − 1)
. Rearranging the expression for fxx from (4.18),

fxx = 1− dx

(dq − 1)dq
=
dq(d

2
q − 1)− dx(dq + 1)

dq(d2q − 1)
=

dqdy − dx
dq(d2q − 1)

whence we arrive at a contradiction since dq, dy 6= 0. E

(ii) Suppose there exist c1 and c2 such that c1J +
xy + c2J −xy = − . Then

(a1, a2, a3) =

(
1

dq
− 1,

√
dx

dq
,

√
dy

dq

)
. Setting r = −1, (4.31) gives c1 = c2. Now

comparing values for a1 yields

c1 = c2 =
1

2

(
1− dq
dx

)

whence comparing values for a3 yields

fyx =

√
dxdy

(dq − 1)dq

From (4.19), fyx =

√
dxdy

(dq + 1)dq
whence we arrive at a contradiction since dq 6= 0. E



Corollary 4.13. (Diagonalising ϕ)
Following the notation from (4.23), we have End(q⊗2) = V1 ⊕ V−1.

(i) If ΛC,q is the framed Dubrovnik polynomial then

(4.32) V1 = span
{
Jx , +

}
, V−1 = span

{
J ′y
}

(ii) If ΛC,q is the framed Kau�man polynomial then

(4.33) V1 = span {Jx} , V−1 = span
{
J ′y , −

}

Proof. Given b1, b2, b3 ∈ C, we have

ϕ
(
b1J +

xy + b2J −xy + b3

(
±

))
= b1J −xy + b2J +

xy + b3

(
±

)

The result then easily follows from solving

b1J −xy + b2J +
xy + b3

(
±

)
= ±

(
b1J +

xy + b2J −xy + b3

(
±

))

�

Remark 4.14.

(i) For the N = 2 case,
{

+ , −
}
trivially de�nes an eigenbasis for ϕ.

(ii) By symmetry of our construction, we may permute labels x and y in (4.32) and
(4.33). For e.g. (4.32), this tells us that Jy ∈ V1 and J ′x ∈ V−1. Recovering the
precise linear relations is a straightforward task.

5. Concluding Remarks and Outlook

Using the rotation operator, we exploited the graphical calculus as a tool for exploring
unitary spherical fusion categories (and their braided counterparts). We also used this
approach to learn more about the link invariants associated to fusion rules of a particular
form. Below, we summarise some of the highlights of the paper and discuss some possible
directions for future work.

5.1. Quantum invariants.

Using the rotation operator, we extended [11, Theorems 3.1 & 3.2] to cover the anti-
symmetrically self-dual cases. This produced skein relations (3.15), (3.33) and (3.34): to
the knowledge of the authors, these have not previously appeared in the literature. In
Appendix E, we brie�y investigated some properties of invariants associated to antisym-
metrically self-dual objects.

We considered the framed link invariants ΛC,q associated to (3.1) for k = 1, 2. A natural
extension of this narrative would be to solve the problem below.

Problem 1. What is ΛC,q when (i) k ≥ 3 , (ii) the fusion rule for q⊗2 is not multiplicity-
free?

Partial results are known for (i) when k = 3. If q⊗2 = 1⊕ x⊕ y ⊕ q, then ΛC,q is said to be
Kuperberg's G2 invariant in most �nontrivial� cases [11]. See also [22].



We narrowed our focus to discussing skein-theoretic methods for evaluating link diagrams
in End(1) when all components are labelled by the same self-dual element q ∈ Irr(C). More
generally, one could ask the same question but for

(i) �Polychromatic� link diagrams (i.e. components may have distinct labels), or
(ii) When the labels are not necessarily self-dual (so that orientation matters).

For instance, when C is a Temperley-Lieb-Jones (TLJ) category, then any polychromatic
link diagram can be evaluated as an element of the Kau�man bracket skein algebra: each
component is replaced by the corresponding closed Jones-Wenzl idempotent, and the
diagram is evaluated via skein relations (3.14). In TLJ categories, all objects are sym-
metrically self-dual. An important class of TQFTs known as Jones-Kau�man theories
are described by TLJ categories (e.g. Ising and Fibonacci MTCs): here, Jones-Wenzl
idempotents may be reinterpreted as anyons [26].

In Appendix D, we studied unitary representations of C[Bn] that factor through the
Iwahori-Hecke and Temperley-Lieb algebras. This resulted in a skein relation (D.17) for
the framed HOMFLY-PT polynomial, which specialised to (3.14)-(3.15) in the context of
a RFC C (since b = ±a−1 when κq = ±1). In this vein, we pose the following question.

Problem 2. Is there some 3-variable link polynomial that specialises to (3.31)-(3.34)?

At the end of Appendix D, we see that the representation of C[Bn] associated to ΛC,q for
q⊗2 = 1⊕x⊕y should factor through the cubic Hecke algebra Hn(Q, 3) and the Temperley-
Lieb algebra. This motivates Problem 2 by analogy with the q⊗2 = 1⊕ x exposition.

5.2. F-Symbols.

In Section 4, we considered the action of the rotation operator ϕ on a basis of jumping
jacks for End(q⊗2). This was for a unitary spherical fusion category C containing a fusion
rule of the form q⊗2 = 1⊕⊕i xi with all the xi self-dual. We deduced that ϕ = κqF qqq

q

(Theorem 4.3) and that F qqq
q is real-symmetric (Corollary 4.6). For instances where C

admits a braiding and q⊗2 = 1 ⊕ x ⊕ y (with x and y self-dual), we found formulae for
F qqq
q in terms of the quantum dimensions (Theorem 4.8), and concluded that κq 6= −1

(Corollary 4.9). We also saw that the spectrum of the rotation operator distinguishes
between the Dubrovnik and Kau�man invariants (Corollary 4.9). Obvious extensions of
this work would entail relaxing various assumptions e.g. as in the problem below.

Problem 3. Can the results of Section 4 be extended to the case where

(a) the simple summands in q⊗2 are non self-dual?
(b) C is not unitary?

and can we extend Theorem 4.8 to determine general formulae for F qqq
q when

(c) C does not admit a braiding?
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Appendix A. Pivotal Coefficients

A pivotal structure on a fusion category C a�ords our diagrams 2π- rotational isotopy.
For example, for a trivalent vertex with a, b and c ∈ Irr(C), we have

a b

c

a b

c

=

Applying the identity to a cap, this gives

=
a aa a∗ a a∗

= =⇒

We write

= ta

a a

where ta ∈ C× by way of the pivotal structure.

Proposition A.1. (i) |ta| = 1 , (ii) ta∗ = t∗a.

Proof.

(i) Let t̃a := |ta|2. Then

(ii) Observe that

whence the result follows by (i).

�

Consequently, when a = a∗, we have that ta = ±1. In this instance, ta is called the
Frobenius-Schur indicator and is written κa := ta. As stated in Section 2.5, ta is called
the pivotal coe�cient of a ∈ Irr(C). It is straightforward to show that ta is gauge-invariant
if and only if a = a∗.When a is non self-dual it is typical to �x the gauge such that ta = 1.



When a is self-dual,

(i) a is called symmetrically self-dual if κa = 1
(ii) a is called antisymmetrically self-dual if κa = −1

If C is a unitary ribbon fusion category, note that

a a∗ a a∗

= Raa∗
0 =⇒

a

= Raa∗
0

a

=⇒
a

= Raa∗
0 ta

a

That is, ϑ−1a = Raa∗
0 ta. In particular, for a self-dual we have ϑa = κa(Raa

0 )−1.



Appendix B. Normalisation

Let C be a spherical fusion category with positive dagger structure. Recall from Section 2.4
that the Hom-spaces of C come with a Hermitian inner product 〈·, ·〉. We can write

(B.1) T̃ r(idx) =
〈x∗ x

,
x∗ x〉

=: dx > 0

We want to assign a factor of νx
∗x

0 to the above cup in order to normalise it with respect

to the inner product i.e. νx
∗x

0 = d
− 1

2
x . Sphericality gives us dx = dx∗ and so νx

∗x
0 = νxx

∗
0 .

Using the same notation as in (2.13), we have

(B.2) =

〈 yx

z
,

yx

z

〉

z
= λzxyz

z
, λzxyz > 0

We want to scale the trivalent vertices appearing in (B.2) by a normalising factor νxyz = λ
−1/2
zxyz

in a manner that is consistent with the factor νxx
∗

0 . Using the dagger structure, note that
the normalisation factor for the adjoint trivalent vertex is also νxyz . Expanding the identity
operator for End(x⊗ y) in the canonical basis,

idx⊗y = =
∑

µ,z(ν
xy
z )2 z

x y

x yx y

T̃ r
=⇒ dxdy =

∑
µ,z(ν

xy
z )2 z

x y

x y

=
∑

z N
xy
z Bxy

z (νxyz )2

where we de�ne Bxy
z :=

z

x y

x y

Proposition B.1.

(i) Bxy
z satis�es the same symmetries as Nxy

z for a fusion category i.e.

Bxy
z = Bz∗x

y∗ = Byz∗
x∗ , Bxy

z = By∗x∗
z∗

(ii) Bxy
z ∈ R>0

(iii) Bx0
z = B0x

z = δxzdx
(iv) Bxy

z = dz(ν
xy
z )−2

Proof.

(i)

z

x y

x y

Bxy
z = =

x y
z

x y

=

y

y
x∗ z = x∗

y

z

y

= Byz∗
x∗

Also,

Bxy
z =

y

y
x∗ z= z x∗ y

y

z∗ x= = z∗
y x

= By∗x∗
z∗



(ii) From the proof of (i), Bxy
z = ||

x∗z

y ||
2

dy = (νx
∗z
y )−2dy > 0

(iii) Follows immediately upon inspection of Bxy
z

(iv)

y∗ x∗Bxy
z

(i)
= Byz∗

x∗ = x∗

y

z

y

=

z∗

z∗

= x∗
y∗

z

z

= (νxyz )−2dz

�

By (iv), we have that (νxyz )2 =
dz
Bxy
z

where Bxy
z must satisfy (i)-(iii) above. Note that

(νx
∗x

0 )2 =
d0
Bx∗x

0

=
1

Bx0
x

=
1

dx

which is consistent with our cap and cup normalisation. The simplest such candidate
(satisfying (i)-(iii)) for Bxy

z is
√
dxdydz, whose corresponding normalisation is

(B.3) νxyz = 4

√
dz
dxdy

(and consequently λzxyz =
√

dxdy
dz

) which is the convention used in the literature.13 It

is easy to see that the F -symbols (2.32) and R-symbols (2.35) are invariant under the
prescribed normalisation.

13For example, an alternative choice for Bxy
z could be 1

3 (
√
dxdydz + dx + dy + dz − 1).



Appendix C. Rotated Morphisms

The rotation operator ϕ as de�ned in Section 2 has a simple generalisation to Hom(q⊗m, q⊗n)
(where q is still assumed to be self-dual, and m,n ∈ Z>0). Let at least one of m or n be
greater than one, and f ∈ Hom(q⊗m, q⊗n). We have

(C.1)

where the left and right diagrams respectively illustrate ϕ(f) for an (anti)clockwise rota-
tion and where 1 ≤ l ≤ min{m,n}. A further variant is studied in [23].

Example C.1. Let m = n = 3 and l = 1 with ϕ anticlockwise. Then ϕ6 = id. Let,

f0 = , f1 = , f2 =

f3 = , f4 = , f5 =

Observe that ϕ(fk) = κqfk+1 where k denotes a residue modulo 6, and that fk+3 = fk.
Suppose there exist α, β ∈ C such that f2 = αf0 + βf1. Applying ϕ, we get

f0 = αf1 + βf2 = αf1 + β(αf0 + βf1)

=⇒ f1 =
1− αβ
α + β2

f0

where in the �nal line we assume that β3 6= −1 and α 6= β−1. Thus, f0, f1 and f2 are
either (a) linearly independent, (b) linearly dependent with f2 = αf0 + βf1 such that
β3 = −1 and α = β−1 or (c) collinear. In the collinear case, note that fk is an eigenvector
of ϕ; coupling this with the fact that ϕ3(fk) = κqfk, we have that ϕ(fk) = ωfk where ω
is a 3rd root of κq. It follows that fk+1 = κqωfk (and so all of the morphisms are related
to one another by a scaling of some 6th root of unity).



Appendix D. Unitary Representations of the Braid Group

We now review part of the exposition in Section 3 from a slightly di�erent perspective.
While much of the discourse here is well-known, we feel that it would be amiss to exclude
this material from our presentation. The n-strand braid group is given by

(D.1) Bn =

〈
σ1, . . . , σn−1

σiσi+1σi = σi+1σiσi+1

σiσj = σjσi , |i− j| ≥ 2

〉

whose graphical interpretation is given in Figure 4. We also have the symmetric group

(D.2) Sn =

〈
s1, . . . , sn−1

s2i = e
sisi+1si = si+1sisi+1

sisj = sjsi , |i− j| ≥ 2

〉

σi = ... ...

1 i− 1 i i+ 1 i+ 2 n......

σ−1i = ... ...

1 i− 1 i i+ 1 i+ 2 n......

Figure 4. Braid words are read from right-to-left. Braids are drawn and
composed from top-to-bottom in accord with our pessimistic convention.

There is an epimorphism ψ : Bn → Sn where ψ(σ±1i ) = si. The pure braid group PBn

is a normal subgroup of Bn given by kerψ. That is, Bn�PBn
∼= Sn. There is a closely

related quotient for the algebra C[Bn]; namely, we take the ideal Q(σi) generated by
(σi − r1)(σi − r2) where r1, r2 ∈ C×. Then

(D.3) C[Bn]�Q(σi)
∼= Hn(r1, r2)

where Hn(r1, r2) is called the Iwahori-Hecke algebra. Indeed, Hn(±1,∓1) ∼= C[Sn] (and so
the Iwahori-Hecke algebra can be thought of as a deformation of C[Sn]). Let T1, . . . , Tn−1
be the generators of the Hn(r1, r2). The generators satisfy relations

(Ti − r1)(Ti − r2) = 0(D.4a)

TiTi+1Ti = Ti+1TiTi+1(D.4b)

TiTj = TjTi , |i− j| ≥ 2(D.4c)

where (D.4a) is called the Hecke relation. Viewing the Iwahori-Hecke algebra as a vec-
tor space, we have dimC(Hn) = n!. The generalised Hecke algebra Hn(Q, k) is given by
the quotient of C[Bn] by the ideal Q(σi) which is now generated by Πk

j=1(σi − rj) where
rj ∈ C× and k ≥ 2. Hn(Q, k) has the same presentation as the Iwahori-Hecke algebra
except that (D.4a) is now replaced with the generalised Hecke relation Πk

j=1(Ti− rj) = 0.

Let C be a ribbon fusion category and take some q ∈ Irr(C). Then

(D.5) End
(
q⊗n
)

=
⊕

X

Hom
(
q⊗n, X

)
⊗ Hom

(
X, q⊗n

)

where X indexes all the simple objects appearing in the decomposition of q⊗n. Fixing a
fusion basis on Hom (q⊗n, x) for some X = x de�nes a linear representation

(D.6) ρ : Bn → U(V qn

x ) , V qn

x := Hom
(
q⊗n, x

)



where U(V qn

x ) denotes the group of unitary matrices on V qn

x . Let n ≥ 2. There exists
at least one i such that ρ(σi) = R, where R is a diagonal matrix whose eigenvalues are
some subset of the eigenvalues of Rqq (eigenvalues are counted without multiplicity here).
Let {r1, . . . , rk} denote the eigenvalues of R where the ri ∈ U(1) are distinct and may
appear in R with arbitrary nonzero multiplicity. We de�ne

(D.7) p(Z) = (Z − r1Is) · . . . · (Z − rkIs)
where k ≤ s := dim(V qn

x ), Is is the s × s identity matrix and Z is an s × s matrix with
entries in C. It is clear that p(R′) = 0 (where R′ is any matrix similar to R); this is an
instance of the Cayley-Hamilton theorem. It follows that p (ρ(σi)) = 0 for all i, whence14

(D.8) ρ : C[Bn]→ Hn(Q, k)→ U(V qn

x )

i.e. ρ factors through the generalised Hecke algebra Hn(Q, k).

In Section 3.1, we considered a fusion rule q ⊗ q = 1. Clearly, = z for some

z ∈ C×. Applying (3.4), we see that z = ±1 for κq = ±1. For κq = +1, (D.8) becomes

ρ(u) : C[Bn]→ C[Sn] → U(1)

σj 7−→ sj 7−→ u
, u = ±1(D.9)

For κq = −1, (D.8) becomes

ρ(u) : C[Bn]→ C[Sn] → U(1)

σj 7−→ ±isj 7−→ u
, u = ±i(D.10)

In Section 3.2, we considered a fusion rule q⊗q = 1⊕y. This means that our crossings
can be written

= a + b(D.11a)

= c + d(D.11b)

where a, b, c, d ∈ C×. This motivates the idea that the homomorphism (D.8) should
also factor through some algebra of cup-cap diagrams and non-intersecting strands (for
n ≥ 3); this is precisely the Temperley-Lieb algebra TLn(δ): an associative A -algebra
(where A is a commutative ring) with generators U1, . . . , Un−1 satisfying relations

U2
i = δUi , δ ∈ A(D.12a)

UiUjUi = Ui , |i− j| = 1(D.12b)

UiUj = UjUi , |i− j| ≥ 2(D.12c)

Ui = δ =... ...

1 i− 1 i i+ 1 i+ 2 n......

Figure 5. Diagrams run from top-to-bottom. The identity element is
given by n vertical strands.

14In (D.8), ρ is a C-linear extension of ρ in (D.6). Through an abuse of notation, we implicitly assume
that the representation in (D.8) is restricted to Bn so as to coincide with (D.6).



TLn(δ) is a free A -module of rank Cn where Cn denotes the nth Catalan number. Fol-
lowing (D.11a)-(D.11b), we construct a C-linear map

ζ : C[Bn]→ TLn(δ)

σi 7→ a+ bUi

σ−1i 7→ c+ dUi

, A = C[a±1, b±1, c±1, d±1](D.13)

Proposition D.1. ζ de�nes an algebra homomorphism if and only if c = a−1, d = b−1

and δ = −(ab−1 + a−1b).

We henceforth assume that c, d and δ are as in Proposition D.1. Since our representation

(D.14) ρ : C[Bn]
ζ→ TLn(δ)→ U(V qn

x )

is unitary, the conditions in Proposition D.2 (adapted from [26, p.237]) must hold.

Proposition D.2. Given ρ as in (D.14), we have U †i = Ui and |a| = |b| = 1.

From (D.8) we know that ρ must also factor through Hn(Q, k). Since we are considering
a fusion rule of the form q⊗2 = y ⊕ z, we have that
(D.15) ρ : C[Bn]→ Hn(r1, r2)→ U(V qn

x )

It is easy to check that (D.14) is compatible with (D.15). Following Proposition D.2,

U †i = Ui ⇐⇒
[
b−1 (ρ(σi)− a)

]†
= b−1 (ρ(σi)− a)

⇐⇒ b (ρ(σi))
† − a∗b = b∗ρ(σi)− b∗a

⇐⇒
(
ρ(σi) + a∗b2

)
(ρ(σi)− a) = 0

whence

(D.16) ρ : C[Bn]→ Hn(−a∗b2, a)→ TLn(δ)→ U(V qn

x )

Speci�cally, we have the following commutative diagram of linear homomorphisms:

C[Bn] Hn(−a−1b2, a)

TLn(δ)

U(V qn

x )

φ

ζ
η

ρ′

a, b ∈ U(1)

with δ = −(ab−1 + a−1b)

ρ = ρ′ ◦ ζ

where φ(σi) = Ti such that kerφ is generated by (σi+a−1b2)(σi−a), and η(Ti) = a+ bUi.
We may thus resolve crossings using skein relations

= a + b

= a−1 + b−1
, = −(ab−1 + a−1b)(D.17)

Note that the resolution of the crossings in (D.17) implies

(D.18) − b2 = (a− a−1b2)



which is simply the Hecke (skein) relation for Hn(−a−1b2, a). To recover the boxed result
in Section 3.2, we consider relations (D.17) in the setting of a ribbon category. Note that

(D.19) ϑqdq = = a + b = −a2b−1

whence ϑq = −a2b−1. But we also have that Rqq
0 = a−1b2 whence (2.47) tells us that

b = ±a−1 for κq = ±1. Another way of seeing this is by applying (3.4) to (D.17).

Remark D.3. The skein relations (D.17) correspond to the framed HOMFLY-PT poly-
nomial. In order to see this, consider the well-known Lickorish-Millet presentation [27]
of the HOMFLY-PT skein relations,

(D.20) l + l−1 +m = 0 , = 1

Then setting

(D.21) l = ±ib−1 , m = ∓i(ab−1 − a−1b)
recovers (D.18). Finally, with l and m as in (D.21),

l + l−1 +m = 0

(D.17)
=⇒ − a2b−1l − a−2bl−1 +m = 0

=⇒ − (ab−1 + a−1b) =

whence we have the rescaled loop value = −(ab−1 +a−1b). Let H̃ denote the framed

HOMFLY-PT polynomial, L be a link and D a corresponding link diagram. Then the
(unframed) HOMFLY-PT polynomial H is simply

(D.22) H(L) = (−a−2b)w(D)H̃(D)

where w denotes the writhe. The HOMFLY-PT invariant can be derived by applying a
normalised Markov trace to the Iwahori-Hecke algebra; this trace is characterised by its
action on the basis elements of the HOMFLY-PT skein algebra of the annulus15 [24, 25].

We omit an analogous discussion for the fusion rule q⊗q = 1⊕x⊕y, and solely remark
that since there must exist p1, p2, p3, p4 nonzero such that

(D.23) p1 + p2 + p3 + p4 = 0

this indicates that the representation should factor through the Temperley-Lieb algebra,
which in turn motivates the construction of a linear map

ζ ′ : C[Bn]→ TLn(δ)

σi + aσ−1i 7→ b+ cUi
(D.24)

where a, b, c ∈ C× and δ ∈ C[a±1, b±1, c±1] are such that ζ ′ de�nes a homomorphism. It
is also clear that the representation should factor through Hn(Q, 3).

15Given Hn(r1, r2), the HOMFLY-PT skein algebra Hn(r1, r2) is obtained by joining the ends of the

strands (where the ith top is respectively connected to the ith bottom). We have Hn
∼= Hn�[·, ·] (i.e. the

quotient by the ideal generated by the commutator) and dimC (Hn) is given by the nth partition number.



Appendix E. Invariants coming from κq = −1

Given a skein relation associated to the fusion rule (3.1) for κq = −1, we can de�ne
a polynomial-valued function ΛC,q that acts on any link diagram D. Since invariants
ΛC,q coming from κq = −1 are derived from a setting where an isotopy of the form

ϕ−→ = − introduces a di�erence in sign, it is natural to ask whether the

invariant ΛC,q carries such a sensitivity.

Problem E.1. Let D and D′ be link diagrams that are equivalent under framed isotopy,
and let k := 1

2
|W(D)−W(D′)| whereW denotes the local writhe16. Is it always true that

(E.1) ΛC,q(D
′) = (−1)kΛC,q(D)

given ΛC,q for some q with κq = −1?

E.1. Understanding the invariant (3.15). The skein relation (3.15) must be applied
locally i.e. the link must be without orientation, and the relation should be applied to
crossings precisely as they appear.

For instance, while a twist of the form would be resolved as a positive crossing if it

were oriented, we only take into account the local form of the crossing (which is negative
here). Letting [·]β denote the invariant (3.15),

(E.2)






β

= β3 ,

[ ]

β

= −β3

whence we see that the categorical distinction between horizontal and vertical twists
(Remark 3.2) carries over to the invariant (3.15). Of course, this observation is subsumed
by the following:

Proposition E.2. The answer to Problem E.1 is positive when q⊗2 = 1⊕ x.
Proof. In this case, we know that Λ := ΛC,q is given by (3.15). In the following, we assume
that all diagrams are projected onto the plane. It su�ces to consider an isotopy D → Ď
which is one of: (i) a Reidemeister-0 move (i.e. an ambient isotopy) such that only one
crossing has its sign �ipped under the deformation (so k = 1); (ii) a Reidemeister-II
move; (iii) a Reidemeister-III move.

(i) Given a link diagram D containing some crossing , we let D0 and D∞ re-

spectively denote the same diagram but with the crossing smoothed to and

. We consider Λ(D) and Λ(Ď), �rst applying the skein relation to the crossing

whose sign was �ipped: suppose (without loss of generality) that the crossing in

D was . Then

Λ(D) = β · Λ(D0)− β−1 · Λ(D∞)

Λ(Ď) = β−1 · Λ(Ď0)− β · Λ(Ď∞)

Label the boundary points of the crossing in D as , and so in Ď said

16The local writhe W of a link diagram D is de�ned as the sum over the signs of all crossings in D,

where and respectively contribute +1 and −1.



crossing is either or . Then it is easy to see that the smoothings

D → D0 and Ď → Ď∞ are locally identical, whence the diagrams D0 and Ď∞ are
also equivalent under ambient isotopy. It follows that Λ(D0) = Λ(Ď∞). Similarly,
Λ(Ď0) = Λ(D∞). Thus, Λ(Ď) = −Λ(D).

(ii) Two crossings have their signs �ipped under a Reidemeister-II move (so k = 2).
Thus, (E.1) respects the invariance of Λ under Reidemeister-II i.e. Λ(Ď) = Λ(D).

(iii) Either zero or two crossings have their signs �ipped under a Reidemeister-III
move (so k = 0 or 2). It follows that (E.1) respects the invariance of Λ under
Reidemeister-III i.e. Λ(Ď) = Λ(D).

Since D → D′ in Problem E.1 is a composition of moves (i)-(iii), the result follows. �
Thus, [D]β is invariant under framed isotopy up to a sign which depends on W(D) e.g.

(E.3)

[ ]

β

= −






β

=






β

From Figure 6, we see that (E.3) is equal to β2d2 − d− d + β−2d2 (where d := β2 + β−2

is the value of the loop).

Figure 6. When we apply the skein relation (3.15), we must take care to
account for any minus signs accumulated if we choose to rotate crossings
mid-evaluation e.g. if the parenthesised route is taken above (for which the
resulting minus signs are highlighted in red).

In summary, we have seen that while (3.15) is invariant under Reidemeister-II and III
moves, it retains sensitivity to pivotality at some level: when a link diagram is isotoped in
a way that locally rotates crossings, this introduces �internal zig-zags� that are detected
by the invariant.

Remark E.3.

(i) In light of the above, referring to invariants ΛC,q associated to q antisymmetrically
self-dual as �framed link invariants" could be considered an abuse of terminology.
We therefore propose the term pivotal framed invariant for (3.15). Similarly, if
some invariant associated to κq = −1 is sensitive to the local writhe in the same



way as (3.15), then it should also be identi�ed as a pivotal framed invariant.17

A pivotal framed invariant ΛC,q may be normalised as in (3.2), thus removing its
sensitivity to framing. Nonetheless, the pivotal discrimination remains: we there-
fore propose that the resulting invariant should similarly be called an (oriented)
pivotal invariant.

(ii) Although the topological motivation for studying (3.15) and other ΛC,q for κq = −1
may be unclear, we suggest the following counterpoint: in the categorical setting,
these invariants arise naturally; they give the evaluation of a link diagram (in
End(1) whose components are all labelled by q) up to a possible factor of −1
coming from zig-zag morphisms. Whether these invariants have more interesting
applications outside the categorical context remains to be seen.

(iii) One can obtain the skein relation

(E.4) β − β−1 = (β2 − β−2)

from (3.15), noting that we have further endowed it with pessimistic orientation.
This skein relation de�nes a framed oriented link invariant. Furthermore, the
resulting polynomial of a framed oriented link L coincides with the Kau�man
bracket polynomial of the framed link L̃ (which is L without orientation). In
order to see this, take an oriented link diagram D for L. We can isotope D to
obtain a diagram D′ whose crossings locally appear with pessimistic orientation.
Now observe that applying the oriented skein relation (E.4) to D′ is the same as
applying the skein relation (D.18) (with b = a−1 and a = β) to the link diagram
D̃ (which is the diagram D′ without orientation).

17E.g. if the answer to Problem E.1 is positive, then we propose that all invariants associated to
κq = −1 should be termed as such.
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5. Some Physical Remarks and Examples

Throughout this chapter, we will assume that C is a unitary ribbon fusion category

(URFC), and that any trivalent vertices implicitly carry the normalisation described in

Section 2.1.8. In Section 5.1, we will use the graphical calculus to look at some examples

of entangling operators. In Section 5.2, we provide some explicit examples of calculations

for the evaluation of link diagrams in End(1): this can be seen as supplementary to the

narrative of Chapter 4. The language used in this chapter is a mixture of that found in

Part I and Chapter 4, so we will begin by summarising some of the jargon.

In what follows, we will also use the notation

V a1...am
b1...bn

:= Hom(
m⊗

i=1

ai,
n⊗

j=1

bj) (5.0.1)

Remark 5.1. If q ∈ Irr(C) is a self-dual abelian charge, then we know from Chapter 4:

Section 3.1 (or Appendix D), that q is always one of the following:

(i) q is called a boson if ϑq = +1

(ii) q is called a fermion3 if ϑq = −1

(iii) q is called a semion if ϑq = ±i

where in the above, ϑq = Rqq
0 . Semions q always have κq = −1.

1For a unitary spherical fusion category, the Frobenius-Perron dimension coincides with the quantum
dimension. If we relax unitarity, these two quantities may di�er by a sign. By Proposition 2.22,
FPdim(x) ∈ {1} ∪ [

√
2,∞) for a unitary spherical fusion category.

2And similarly, `splitting states' for Hom(x,
⊗n

i=1 xi).
3This nomenclature allows for non-transparent fermions (e.g. the ψ-particle in an Ising theory).
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URFC C Anyonic system

Simple objects Anyons/quasiparticles

Dual object Antiparticle

Trivial object/1 Vacuum

Label x ∈ Irr(C) Topological charge/anyon `type' x ∈ L

Frobenius-Perron dimension1 FPdim(x) Quantum dimension dx

FPdim(x) = 1 x is an abelian anyon

FPdim(x) > 1 x is a nonabelian anyon

Hom(
⊗n

i=1 xi, x), Hom(x,
⊗n

i=1 xi) Fusion/splitting Hilbert space

Morphisms Physical processes/operators/worldlines

Nonzero (normalised) ψ ∈ Hom(
⊗n

i=1 xi, x) Fusion state2

Parenthesisation of x1 ⊗ · · · ⊗ xn Choice of fusion basis/order

Associator/F -matrix Change of fusion basis

Braiding/R-matrix Particle exchange

Evaluation/coevaluation Annihilation/creation

Twist factor ϑx Topological spin of x

Table 5.1: Dictionary of terms adapted from [Wang, Table 6.1]



5.1 Entanglement 157

5.1 Entanglement

If the total (topological) charge of a collection of adjacent quasiparticles is �xed (Figure

5.1), this charge is called the superselection sector of the charges; else, the whole col-

lection of quasiparticles exist in a superposition of total charges (i.e. a superposition of

fusion states).

Figure 5.1: f1 ∈ V x
x1...xn

and f2 ∈ V x1...xn
x′ . The system of particles x1, . . . , xn lies in

superselection sector x′ = x (Schur's lemma). This is conservation of (topological)
charge.

Figure 5.2: f ∈ V x
x1...xm

, g ∈ V y
y1...yn

and p ∈ V x1...xmy1...yn
x′y′ . -k denotes k lines carrying

some permissible labels and orientations. νj is a (linear combination of) permissible
diagram(s) of oriented braided (possibly twisted) strands, and possibly trivalent vertices.

Now take two adjacent systems of quasiparticles x1, . . . , xm and y1, . . . , yn that are ini-

tialised in superselection sectors x and y respectively (Figure 5.2). Consider the following

cases (which are clearly not exhaustive).

(1) k = l = 0. Then ν1 ∈ V x1...xm
x , ν2 ∈ V y1...yn

y and ν3 ∈ C.

(2) Only one of k and l is nonzero. Then if k is zero, we have ν1 ∈ V x1...xm
x ; and if l is

zero, we have ν2 ∈ V y1...yn
y .

(3) where k and l are nonzero.

In the above cases, there is no interaction (or trivial interaction) between the two systems,

and they respectively remain in superselection sectors x and y.
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(4) where k and l′ are nonzero, ν3 is a (k′+ l′)-braid such

that it cannot be partitioned as in (3); and the incoming and outgoing strands on

a given side are connected. There are two possibilities:

(a) There is only one permissible label for each of x′ and y′.4 Then the interaction

will have caused the systems to respectively transition into superselection

sectors x′ and y′ post-braiding.

(b) Else, ν3 is an example of an entangling operator since we cannot write p ∈
V x1...xmy1...yn
x′y′ as p = f ′ ⊗ g′ for some f ′ ∈ V x1...xm

x′ and g′ ∈ V y1...yn
y′ . Here,

`tangling' between systems results in the entanglement of their fusion states.

For instance,

=
∑

c

N by
c

ϑc
ϑbϑy

(5.1.1)

This shows that the left-hand side is not an inner product for y nontrivial, and so x′

is not necessarily x (i.e. it is possible that the total charge of a and b is no longer be

constrained to a single possibility, in which case a and b are entangled with y).

Figure 5.3: Extension of Figure 5.2. h ∈ V z
xy, h

′ ∈ V x′y′
z and p′ ∈ V x1...xmy1...yn

z .

If ν3 is as in cases (1)-(4a) for Figure 5.3, then we may write p′ = f ′ ⊗ h′ ⊗ g′ for some

f ′ ∈ V x1...xm
x′ and g′ ∈ V y1...yn

y′ . That is, p′ has a nonzero component in precisely one

4E.g. this could happen if m = n = 1; or if each system is composed of abelian anyons; or if
V x1...xmy1...yn
z is 1-dimensional in Figure 5.3. In all these examples, (x′, y′) = (x, y). However, it is also

possible to have examples where (x′, y′) 6= (x, y) e.g. Example 5.2.
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summand of (5.1.2). Note that we are guaranteed (x′, y′) = (x, y) in cases (1)-(3).

V x1...xmy1...yn
z

∼=
⊕

x′,y′

V x1...xm
x′ ⊗ V x′y′

z ⊗ V y1...yn
y′ (5.1.2)

If ν3 is as in case (4b), then the two systems no longer belong to local superselection

sectors post-braiding: they can only be said lie in the global superselection sector z. In

particular, p′ has nonzero components in more than one summand of (5.1.2), and thus

corresponds to an entangled fusion state with respect to the two systems. Let us consider

some concrete examples.

Example 5.2. Take the Ising theory (2.6.2) with

F := F σσσ
σ =

1√
2

(
1 1

1 −1

)
, R := Rσσ = e−i

π
8

(
1 0

0 i

)
(5.1.3)

where κσ = 1 and the matrices act on a basis in the order 1, ψ. Take the process

(5.1.4)

and consider the space V σσσσ
ψ with the fusion basis �xed as follows:

V σσσσ
ψ

∼=
⊕

x′,y′

V σσ
x′ ⊗ V x′y′

ψ ⊗ V σσ
y′ = spanC{|x′y′〉}x′,y′:Nσσ

x′ N
x′y′
ψ Nσσ

y′ 6=0
(5.1.5)

Note that (x′, y′) takes values (1, ψ) or (ψ,1). From (5.1.4), the system is initialised in

state |ψ1〉. Performing a trivial change of basis,

(
F σσ1
ψ ⊗ idV σσ1

)
|ψ1〉 = ∈ V σσ

ψ ⊗ V σσσ
σ

It su�ces to consider V σσσ
σ to compute the action of the braiding. We have

V σσσ
σ = spanC



 ,



 =: spanC {|1〉 , |ψ〉}
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Write

(
a

b

)
= a |1〉+ b |ψ〉. The action of the braiding is given by

FR2F−1

(
1

0

)
= e−

iπ
4

(
0 1

1 0

)(
1

0

)
= e−

iπ
4 |ψ〉

Post-braiding, we thus have

∈ V σσ
ψ ⊗ V σσσ

σ

Switching back to the original basis in (5.1.4),

(
F σσψ
ψ

)−1

⊗ idV σσψ [
F σσψ
ψ

]−1

=
[
F σσψ
ψ

]−1

|1ψ〉

whence (5.1.4) is

=

(5.1.6)

Thus, the monodromy of the middle pair of Ising anyons results in the `teleportation' of

the fermion from the left pair to the right pair. This is an example of case (4a).

Example 5.3. (Bell state via Ising anyons)

We �x the same Ising theory with F and R as in Example 5.2. Take the process

(5.1.7)

and consider the space V σσσσ
1 with the fusion basis �xed as follows:

V σσσσ
1

∼=
⊕

x′,y′

V σσ
x′ ⊗ V x′y′

1 ⊗ V σσ
y′ = spanC{|x′y′〉}x′,y′:Nσσ

x′ N
x′y′
1Nσσ

y′
6=0

(5.1.8)

Note that (x′, y′) takes values (1,1) or (ψ, ψ). From (5.1.7), the system is initialised in
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state |11〉. Performing a trivial change of basis,

(
idV σσ1

⊗
[
F 1σσ
1

]−1
)
|11〉 = ∈ V σσσ

σ ⊗ V σσ
1

It su�ces to consider V σσσ
σ to compute the action of the braiding. We have

V σσσ
σ = spanC



 ,



 =: spanC {|1〉 , |ψ〉}

Write

(
a

b

)
= a |1〉+ b |ψ〉. The action of the braiding is given by

F−1R−1F

(
1

0

)
=
e
iπ
8

2

(
1− i 1 + i

1 + i 1− i

)(
1

0

)
=
e
iπ
8

√
2

(
e−

iπ
4

e
iπ
4

)

Post-braiding, we thus have

1√
2


 + i


 ∈ V σσσ

σ ⊗ V σσ
1

Switching back to the original basis in (5.1.7),

idV σσ1
⊗F 1σσ

1
,

idV σσψ ⊗F
ψσσ
1

where F 1σσ
1 = Fψσσ

1 = [1]. Note that the change of basis on the left is trivial. It follows

that (5.1.7) is

=
1√
2


 + i ·


 (5.1.9)

where the fusion state is
1√
2

(|11〉+ i |ψψ〉) ∈ V σσσσ
1 (5.1.10)

This is a Bell state: the fusion states of the left and right pairs of Ising anyons are

maximally entangled. Thus, the anticlockwise exchange of the middle pair of anyons

realises an example of an entangling operator. We can concretely interpret this exchange
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as an entangling quantum gate:

Figure 5.4: (i) b is a 4-braid whose strands are labelled by Ising anyons. Letting |1〉
and |ψ〉 correspond to logical basis states |0〉 and |1〉 respectively, (i) can be interpreted
as a quantum circuit as in (ii). (ii) is a 2-qubit quantum circuit initialised in state
|0〉 ⊗ |0〉, and with C representing some con�guration of quantum gates corresponding
to the action of b. (iii) b = σ−1

2 . (iv) The quantum circuit realised by b = σ−1
2 . If the

orientation of the exchange is reversed in (iii), we simply append a Pauli-Z gate to the
bottom wire in (iv).

This is an example of a process of the form in Figure 5.2 that is not described by cases

(1)-(4).

Example 5.4. Take the Fibonacci theory (2.6.1) with

F := F τττ
τ =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
, R := Rττ =

(
e−i

4π
5 0

0 ei
3π
5

)
(5.1.11)

where κσ = 1 and the matrices act on a basis in the order 1, τ . Take the process

(5.1.12)

and consider the space V ττττ
1 with the fusion basis �xed as follows:

V ττττ
1

∼=
⊕

x′,y′

V ττ
x′ ⊗ V x′y′

1 ⊗ V ττ
y′ = spanC{|x′y′〉}x′,y′:Nττ

x′ N
x′y′
1 Nττ

y′ 6=0
(5.1.13)

Note that (x′, y′) takes values (1,1) or (τ, τ). From (5.1.12), the system is initialised in

state |11〉. Performing a trivial change of basis,

(
idV ττ1

⊗
[
F 1ττ
τ

]−1
)
|11〉 = ∈ V τττ

τ ⊗ V ττ
1
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It su�ces to consider V τττ
τ to compute the action of the braiding. We have

V τττ
τ = spanC



 ,



 =: spanC {|1〉 , |τ〉}

Write

(
a

b

)
= a |1〉+ b |ψ〉. The action of the braiding is given by

F−1R2F

(
1

0

)
= e−

i8π
5

(
φ−2 + φ−1ei

4π
5 φ−3/2(1− ei 4π5 )

φ−3/2(1− ei 4π5 ) φ−1 + φ−2ei
4π
5

)(
1

0

)
=

(
−φ−2

φ−3/2
(
e−i

8π
5 − e−i 4π5

)
)

Post-braiding, we thus have

φ−2 + φ−3/2
(
e−i

4π
5 − ei 2π5

)
∈ V τττ

τ ⊗ V ττ
1

Switching back to the original basis in (5.1.12),

idV ττ1
⊗F 1ττ

1
,

idV τττ ⊗F τττ
1

where F 1ττ
1 = F τττ

1 = [1]. Note that the change of basis on the left is trivial. It follows

that (5.1.12) is

= φ−2 · + φ−3/2
(
e−i

4π
5 − ei 2π5

)
·

(5.1.14)

where the fusion state is

φ−2 |11〉+ φ−3/2
(
e−i

4π
5 − ei 2π5

)
|ττ〉 ∈ V ττττ

1 (5.1.15)

Thus, the monodromy of the middle pair of Fibonacci anyons entangles the fusion states

of the left and right pair. This is an example of case (4b), where `tangling' two systems

results in their entanglement.
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5.2 Evaluation of Link Diagrams

In the physical context, link diagrams in End(1) correspond to a process where anyons

are pair-created from the vacuum, braided, and then fused straight back to the vacuum.

Given such a diagram D, its amplitude 〈W (D)〉 may be evaluated via skeletal data for C,
or by using a skein-theoretic method.5 In order for 〈W (D)〉 to be a physically meaningful

quantity, it must be gauge-invariant. We will begin by discussing these two approaches,

and then we will compute some concrete examples (where in each example, we evaluate

the link diagram using both methods).

Procedure 5.5 (〈W (D)〉 via skeleton of C).

(1) Isotope D (using only Reidemeister-II and III moves)6 so that we obtain some

bridge representation D′. That is,

D
isotopy

D′ = (5.2.1)

where b is a 2n-braid, and κ1 & κ2 are some con�gurations of n non-intersecting

caps and cups respectively.

(2) κ1 corresponds to a normalised element of Hom(1,
⊗2n

k=1 Xik). Take the adjoint

morphism |ψ0〉 ∈ Hom(
⊗2n

k=1 Xik ,1).

(3) Using some operator F , transform |ψ0〉 into a fusion basis compatible with the

con�guration κ2 (labels do not matter).

(4) Transform F |ψ0〉 using the operator ρ(b) where ρ is a unitary linear action of the

braid groupoid on 2n strands in the primed fusion basis.

(5) κ2 corresponds to a normalised element |ψ′0〉 ∈ Hom(
⊗2n

k=1 Xjk ,1). 〈W (D)〉 is
found by applying the linear functional 〈ψ′0| to the fusion state obtained in (4).

5In the instance that the theory of anyons given by C is realised by a Chern-Simons theory, it is
typical to call the diagram D a `Wilson loop'. The quantity 〈W (D)〉 is called the expectation value of
the Wilson loop, and may also be evaluated via a functional integral using the Chern-Simons action (see
e.g. [NSS+08, Section 3]).

6In cases where there are components of D spanned by antisymmetrically self-dual anyons, we also
need to account for any signs accumulated from straightening zig-zags along these components.
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More succinctly, Procedure 5.5 tells us that

〈W (D)〉 = (−1)z 〈ψ′0| ρ(b)F |ψ0〉 (5.2.2)

where |ψ0〉 and |ψ′0〉 are called vacuum states, and z is the total number of zig-zags

straightened along components spanned by antisymmetrically self-dual anyons in (1);

note that there may be more than one fusion basis compatible with each of κ1 and κ2.

Figure 5.5: For a process given by a link diagram D as in (i), we isotope this into a
diagram D′ (as in step (1) of Procedure 5.5) illustrated in (ii), where we have outlined
the areas of D′ corresponding to κ1, κ2 and b.

We now consider some concrete examples. For each of these, we assume that each

component of the link diagram is spanned by a self-dual anyon, and that the topological

charge of anyons spanning distinct components is the same. We will also have that κ2 is

a re�ection (in the horizontal) of κ1, so F = id and |ψ′0〉 = |ψ0〉 in Procedure 5.5. Hence,

〈W (D)〉 = (−1)z 〈ψ0| ρ(b) |ψ0〉 (5.2.3)

where ρ : B2n → U(V q⊗2n

1 ) is a unitary linear representation of the braid group, and q is

the topological charge of each component. In each example, we compute 〈W (D)〉 using
Procedure 5.5, and also skein-theoretically. For the latter approach, we have

〈W (D)〉 = (−1)zd−B(L)
q ΛC,q(D) (5.2.4)

where L is the link for which D is a diagram, B(L) is the bridge number of L, and ΛC,q is

the operator that evaluates link diagrams (via the skein relation associated to the fusion

rule for q⊗2) as de�ned as in Chapter 4. The factor d
−B(L)
q accounts for the normalisa-

tion of d
−1/2
q assigned to caps and cups, of which there are 2B(L).7

7In the context of Procedure 5.5, note that B(L) = n.
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In the examples that follow, it is easy to see that 〈W (D)〉 is a gauge-invariant quantity:

when ΛC,q is given by one of the skein relations (3.14)-(3.15) or (3.31)-(3.34) (in Chapter

4), the coe�cients in the skein relation are gauge-invariant.

Example 5.6. Take the Fibonacci theory (2.6.1), where F and R are as in Example

5.4, and let D be given by the right-handed trefoil

spanned by Fibonacci anyon τ . Then,

|ψ0〉 = ∈ V τττ
τ ⊗ V ττ

1

It su�ces to consider V τττ
τ to compute the action of the braiding, which is

F−1R3F = e−i
2π
5 F

(
1 0

0 ei
π
5

)
F = e−i

2π
5

(
φ−2 + ei

π
5 φ−1 φ−3/2(1 + e−i

π
5 )

φ−3/2(1− eiπ5 ) φ−1 − e−iπ5 φ−2

)

whence 〈W (D)〉 = e−i
2π
5 φ−2 + e−i

π
5 φ−1. Alternatively, we know that Λ := ΛC,τ is the

Kau�man bracket (Chapter 4: (3.14)). Then,

Λ(D) = β

〈 〉
+ β−1

〈 〉
(= βS̃ττ + β−1ϑ−2

τ dτ )

where the Kau�man bracket of the Hopf link is β6 + β2 + β−2 + β−6, whence

〈D〉 = β7 + β3 + β−1 − β−9 (5.2.5)

Recalling that β = Rττ
τ here, 〈D〉 = e−i

2π
5 +e−i

π
5 φ. Then using (5.2.4), 〈W (D)〉 = d−2

τ 〈D〉
(which agrees with our skeletal calculation).

Example 5.7. Take the SU(2)2 theory (2.6.4), where κσ = −1,

F := F σσσ
σ = − 1√

2

(
1 1

1 −1

)
, R := Rσσ = ei

5π
8

(
1 0

0 −i

)
(5.2.6)

and the matrices act on a basis in the order 1, ψ. Let D be given by

D =
isotopy

= D′
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(i.e. the left-handed trefoil) spanned by Ising anyon σ. Then,

|ψ0〉 = ∈ V σσ
1 ⊗ V σσσ

σ

It su�ces to consider V σσσ
σ to compute the action of the braiding, which is

FRF−1R−1FRF−1 = − 1√
2
e−i

π
8

(
−1 1

1 1

)

whence 〈W (D)〉 = 1√
2
e−i

π
8 . Alternatively, Λ := ΛC,σ is given by (3.15) in Chapter 4.

Then,

Λ(D) = β−1 · Λ





− β · Λ

( )
(= β−1S̃σσ − βϑ2

σdσ)

where

Λ





 = β · Λ

( )
− β−1 · Λ

( )
(= βϑqdq − β−1κqϑ−1

q dq)

= β

[
β · Λ

( )
− β−1 · Λ

( )]

− β−1

[
β · Λ

( )
− β−1 · Λ

( )]
= β6 + β2 + β−2 + β−6

whence Λ(D) = −β9 + β + β−3 + β−7. Recalling that β = Rσσ
ψ here, Λ(D) =

√
2e−i

π
8 .

Then using (5.2.4), 〈W (D)〉 = d−2
σ Λ(D) (which agrees with our skeletal calculation).

Example 5.8. Let C be the (A1, 5) 1
2
unitary modular category, for which the pertinent

skeletal data is tabulated in [RSW09]. We have Irr(C) = {1, α, β} and nontrivial fusion

rules

α⊗ α = 1⊕ β , α⊗ β = α⊕ β , β ⊗ β = 1⊕ α⊕ β

where κα = κβ = 1, dα = 2 cos(π
7
), dβ = 2 cos(2π

7
)+1, andRββ = diag(e−i

10π
7 , e−i

2π
7 , e−i

5π
7 )

acts on a basis in the order 1, α, β. Let R := Rββ, F := F βββ
β , and let D be given by
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i.e. the Hopf link , both of whose components are spanned by a β-particle. Then,

|ψ0〉 = ∈ V βββ
β ⊗ V ββ

1

It su�ces to consider V βββ
β to compute the action of the braiding, which is given by

F−1R2F . Using Lemma 5.1 (i) from Chapter 4, and that F is real-symmetric (Chapter

4: Corollary 5.7), we see that

〈W (D)〉 = 〈ψ̄0|F−1R2F |ψ̄0〉 =
(

1
dβ

√
dα
dβ

1√
dβ

)(
e−i

6π
7

1
dβ

e−i
4π
7

√
dα
dβ

ei
4π
7

1√
dβ

)T

= e−i
6π
7

1

d2
β

+ e−i
4π
7
dα
d2
β

+ ei
4π
7

1

dβ

where |ψ̄0〉 denotes the component of |ψ0〉 in V βββ
β . Alternatively, we know that Λ := ΛC,β

is the framed Dubrovnik polynomial (Chapter 4: (3.31)). Then,

Λ





− Λ

( )
= z

[
Λ

( )
− Λ

( )]

whence Λ(D) = d2
β + dβz(a − a−1). Recalling that a = ϑβ and z = Rββ

α + Rββ
β here, we

get Λ(D) = −dα (= S̃ββ). Then using (5.2.4), we get 〈W (D)〉 = d−2
β Λ(D), which agrees

with our skeletal calculation.
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Appendices





A. Decoupled Dynamics

We have a particle of mass m moving in potential

V (r) = Vxy(x, y) + Vz(z), r ∈ R3 (A.0.1)

and the ansatz

ψ(r) = ψxy(x, y)ψz(z) (A.0.2)

The Hamiltonian is then given by

Ĥ =
p̂2

2m
+ V̂ (r) = − ~2

2m
∇2 + V̂xy + V̂z (A.0.3)

and the Schrödinger equation for eigenenergy E(i) is

∇2ψ − 2m

~2
(V̂xy + V̂z − E(i))ψ = 0 (A.0.4)

Substituting ansatz (A.0.2),

∇2ψxyψz −
2m

~2
(V̂xy + V̂z − E(i))ψxyψz = 0

=⇒ ψxy∇2ψz + ψz∇2ψxy −
2m

~2
V̂xyψxyψz −

2m

~2
V̂zψxyψz +

2mE(i)

~2
ψxyψz = 0

=⇒ ψxy

(
∇2ψz −

2m

~2
ψz(V̂z − E(i)

z )

)
+ ψz

(
∇2ψxy −

2m

~2
ψxy(V̂xy − E(i)

xy )

)
= 0

where E(i) = E
(i)
xy + E

(i)
z . This shows that the ansatz holds given that ψxy(x, y) satis�es

the two-dimensional Schrödinger equation subject to Vxy(x, y), and that ψz(z) satis�es

the one-dimensional Schrödinger equation subject to Vz(z).
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B. Fusion Trees and Catalan Numbers

Let gn denote the number of fusion trees with n leaves. A little thought reveals that

gn =
n−1∑

i=1

gi · gn−i , g1 = 1 (B.0.1)

We will solve (B.0.1) using generating functions i.e. the coe�cients of f(x) =
∑∞

n=0 fnx
n

will encode the number of fusion trees. To do so, simply set fn−1 = gn. Then (B.0.1)

becomes

fn =
n−1∑

i=0

fi · fn−1−i , f0 = 1 (B.0.2)

and so

f(x) = 1 +
∞∑

n=1

n−1∑

i=0

fi · fn−1−i x
n = 1 +

∞∑

n=0

n∑

i=0

fi · fn−i xn+1 = 1 + x(f(x))2 (B.0.3)

where solving for f(x) yields

f(x) =
1±
√

1− 4x

2x
=

2

1∓
√

1− 4x

and f(0) = 1 we must have f(x) = 1−√1−4x
2x

. We can expand the square root as

(1− 4x)
1
2 = 1− 2

∞∑

n=1

1

n

(
2n− 2

n− 1

)
xn (B.0.4)

which tells us that

f(x) =
∞∑

n=0

1

n+ 1

(
2n

n

)
xn (B.0.5)

That is,

fn =
1

n+ 1

(
2n

n

)
, n ≥ 0 (B.0.6)

which is the Catalan sequence. Thus, gn is the (n− 1)th Catalan number for n ≥ 1.
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