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Abstract

Medical images play an essential role in the process of diagnostics and detection
of a variety of diseases. Whether it being anatomical features or molecular cells,
medical imaging help visualize and gain insight into the human body. These
images are a crucial aid in the process of diagnosing patients. While these images
are informative, they can also be quite di Ccullt to interpret, necessitating highly
trained medical professionals to read the images. The amount of medical images
produced is enormous compared to the amount of professionals whose task it is
to interpret them. The diagnosis can also vary based on the medical professional
who inspects the image.

The recent rise of a new generation of Computer Aided Detection (CAD)
systems based on machine learning has become more and more important to
battle this problem. These systems aids the medical professional in the diag-
nostic process. This can lead to a more consistent and accurate interpretations
of medical images by removing some human bias. In addition, such systems
can be used to decrease the workload by either filtering out images deemed as
belonging to healthy subjects, to be otherwise not of interest, or marking images
as indicating a risk.

When creating CAD systems utilizing machine learning you are very de-
pendent on data. Since the systems will typically be placed in very delicate,
high-risk situations, the quality of the data is always a priority. A common
problem in medical imaging research is not getting su [cieht data. Not that
there is a shortage of images, but to be used in research, they typically have
to be de-identified or anonymized. This process has to be verified manually
and is therefore time-consuming. With the impressive advancement of machine
learning in recent decades, it seems natural to attempt de-identification using
machine learning, especially because several powerful models are being applied
to similar tasks in other fields. One key reason for the success of machine learn-
ing is its ability to detect and generate patterns. Currently, there are several
applications that perform de-identification by placing black-boxes on top of in-
formation detected as being sensitive [I], [Z]. However, the black boxes can end
up hiding also other parts of the image, but ideally all non-sensitive features in
the image should be preserved. In this thesis we investigate the e [edt of using
image-to-image deep learning to automate 2D medical image de-identification
by detecting the sensitive information, and removing it without the use of black
boxes. Our results indicate that de-identification models based on machine
learning can result in viable and powerful solutions. The deep learning models
manage to accurately detect and remove text, without large negative impact on
the original image. Fig. [Tillustrates the results of this thesis.



Figure 1: Complete system overview of our work. A medical image is passed
through two stages based on two di [erknt deep learning models, indicated with
the blue boxes. The first model (top row) detects the text and the second model

(bottom row) removes the text.
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Chapter 1

Introduction

Machine Learning is becoming more and more important in all sectors of our
world, whether it be in research, or for grocery shopping [10], the possibilities
are endless as long as the amount of data is su cient. This especially applies in
medicine, a eld where machine learning combined with expertise in medicine
can create solutions that outperform what either can do alone [11] and the
amount of generated data is substantial. The data volume is also rapidly grow-
ing, with it being estimated that 153 exabytes of health data were produced
worldwide in 2013, compared to the projection of 2.314 exabytes in 2020 [12].
Data engineering is already being used more and more in medicine, with exam-
ples being drug discovery [13], cognitive science, as well as many other related
practices, and will only continue to become more important in the future. One
of the issues with data within the eld of medicine is that large parts of it
contain sensitive information. If this data is going to be used for research it
has to be anonymized or de-identied. This is a very time-consuming task
and is often done manually, increasing the already large workload of healthcare
workers. There have been several studies on how the intensity of healthcare
workers' workload is negatively impacting their performance and mental health
[14]. Creating good solutions and tools that lessen the burden of healthcare
workers' workload is, therefore, very important and relevant. De-identifying
medical records and images is a costly process as well, where professionals often
charge hourly rates. If the dataset is large enough the cost of such a process
would be substantial. When done manually you also have the issue of human
bias and what that person considers to be sensitive information. Neamatullah
et. al [15] reported that the recall score of human annotators ranged from 63 to
94 % when de-identifying medical records.

Data anonymization has become more and more important, whether it is
within medicine or data gathered by private corporations. This is especially
true after the introduction of the General Data Protection Regulation (GDPR)
in July 2018 [16]. Our aim for this thesis is to create a system of deep learning
models that will be able to detect and remove burnt in text in medical images
at a level that complies with GDPR. An ideal solution would work well enough
to replace the existing de-identi cation software at MMIV. This will help ease
the work ow of the de-identi cation process if done successfully. We hope that
such a system will contribute to generating richer datasets so the images can be
used in powerful models and further medical research without breaking any laws



surrounding privacy and patient con dentiality. We also hope that by creating
this system, we can reduce the amount of manual work by healthcare workers,
as the results of the current solution have to be veri ed manually.

In this work, we have explored di erent image-to-image and object detection
models. By taking this approach we have been through di erent theories and
technologies within the eld of machine and deep learning. Another aspect of
this thesis will be the generation of realistic training data for such models. Since
our models can not use real medical data, we have to generate synthetic data,
which mirrors that of real life data.

This thesis will be split into three parts. Part I, Background will provide
the reader with the theoretical background in regards to machine learning, deep
learning, and medical imaging. Chapter 2 starts with a quick overview of ma-
chine learning, explaining the fundamental theory. Then we move on to looking
more speci cally at deep learning, computer vision, neural network architec-
tures and medical imaging. The goal of Chapter 2 is to provide the necessary
knowledge required to understand the work we present in part 2 Experiments.

In chapter 3, we state the research questions our work aims to solve, as well as
hypotheses for how we will attempt to solve the task of de-identi cation.

In part Il, Experiments, we will present our experiments in de-identi cation.
First o, in chapter 4 we will give an introduction to the experiments conducted.
Chapter 5 will go over our approach to detect burnt-in text using RetinaNet,
discuss the methods and material used, as well as the results obtained from
the experiment. In chapter 6, we present a proof-of-concept experiment re-
garding text-removal using Generative Adversarial Networks(GAN) and Unet
with feature loss as the loss function. The following chapter 7 will continue the
work in the previous experiment, introducing an improved version of the proof-
of-concept work. Chapter 8 goes through how we created a de-identi cation
prototype application, by combining the text-detection and text-removal mod-
els.

Lastly, we have part IlIl Discussion and further work where we will discuss
and evaluate di erent aspects of the experiments and thesis as a whole.
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Chapter 2

Theoretical background

2.1 A quick overview of machine learning

In this chapter, we will go over some basic concepts, techniques and ideas in
machine learning (ML), as it is necessary to understand the fundamentals before
we cover the more speci c theory used in our thesis.

2.1.1 What is machine learning?

Machine learning (ML) is a branch of arti cial intelligence (Al), the study of al-
gorithms that automatically improve with experience. This is achieved through
a combination of computer science, mathematics and statistics, creating ways
for computers to learn. The history of machine learning stretches back to the
1950s, but it is currently experiencing a tremendous amount of interest.

In machine learning, there are three main categories of learning: supervised
learning, unsupervised learning and reinforcement learning, distinguished by
how the systems consume data.

In supervised learning, we provide the model with labelled data
with the goal of being able to make predictions on unseen examples
based on the labelled data. Supervised learning is used in many elds
such as economics and marketing where a large amount of labelled data is
available. Moreover, there are two categories within supervised learning:




regression and classi cation problems. In classi cation, the goal is to
predict the label/category of the input such as whether an animal is a
cat or a dog. In regression, the goal is to predict continuous values,
examples being house pricing based on size, location, age, etc, as well a$
predicting stock prices. In supervised learning, common algorithms used
include linear regression, decision trees, k-nearest neighbor and neural
networks.

As for unsupervised learning , instead of learning from labelled data,
the algorithms are given unlabeled data with the hopes that the ma-
chine recognizes patterns and discovers information not previously de-
tected. Common tasks within unsupervised learning include clustering
and anomaly detection [17]. Due to being able to use unlabeled data, un-
supervised learning allows for larger datasets with less data engineering,
thus saving both time and resources. However, unsupervised learning
will not be optimal for every type of task. The reason for this is that the
algorithms used are supposed to nd their own connections and struc-
tures, meaning that there are no right or wrong answers due to the fact
that while results might make no sense to humans, it does for the ma-
chine. In unsupervised learning, algorithms such as K-means, Principal
Component Analysis (PCA) and K-nearest neighbors (K-NN) are often
used.

The goal of reinforcement learning is to train intelligent agents
to take actions in order to maximize reward. Simply put, if the agent
performs the right action, it's rewarded. Optionally you could also pe-
nalize the agent for taking the wrong action. Reinforcement learning can
be used for tasks such as self-driving cars, automated drones and video
game Al.

There are alsohybrid learners such as self-supervised learning and
semi-supervised learning where the data contains less or no labelled data.

Strengths and limitations

One of the nice things about machine learning is that it is viable in a wide area
of applications, from self-driving cars to recommending movies to watch. Using
ML to handle and analyze complex data is very useful as well, a task that could
potentially be extremely time-consuming if done manually by humans. One of
the examples as previously mentioned is unsupervised learning, often used to
notice patterns that are hard for humans to nd, giving us a new perspective
over what we are trying to solve. While this all sounds great, ML is not without
its limitations. First of all, to be able to do anything, you would need a su -
cient amount of data. ML is also restricted by the computing power it needs.
One of the reasons that ML has become relevant in recent times is due to the
breakthroughs and improvements relating to computing power, but depending
on how complex you make the model, there might not be su cient resources to
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