
Western Norway University of Applied Sciences
Department of Computer science, Electrical engineering and

Mathematical sciences

Development and Evaluation
of a Software System for

Fire Risk Prediction

Master’s Thesis

Authors: Eivind Dagsland Halderaker, Andreas Evjenth

Supervisors: Lars Michael Kristensen, Ruben Dobler Strand

June 1, 2021

Abstract

Fire risks is a broad research topic that is important to many different stakeholders,

from fire departments and municipalities, to homeowners. Reducing risks of fires

includes not only infrastructure to extinguish flames, such as fire brigades, but also

warning systems to alert of fires as early as possible, like smoke alarms. Risks can

be further mitigated, by having a system to detect locations with high risk, both at

present time but also predicted days ahead. It is this system and its concepts that is

the core of this thesis. Stakeholders can be alerted of the high risk areas and take

steps accordingly; Fire brigades can allocate more resources at a given place and

time, and the general public can reduce or avoid risky behaviour, such as burning

garden waste.

The DYNAMIC research project has developed a model for estimating relative in-

door humidity based on outdoor weather conditions. The indoor humidity can in turn

be used to determine the time to flash-over after an ignition has occurred. This thesis

centers around implementing and extending the usability of this model. A system of

micro-services, hosted in the cloud, makes the fire risks available for stakeholders.

They can add locations of interest to the system, see current and predicted risks in

a heat-map imposed on a geographical map, and subscribe to be notified if specific

locations have high risks.

Historic weather data from the last 5 days are used to model the current risk for

a location. By extending the data with weather forecasts, the predicted fire risks are

also modelled. Experiments have been conducted to demonstrate that the predictions

yields accurate fire risks. During February 2021, fire risks for 74 locations, spread

across Norway, have been continuously collected in order to validate the system.

i

Acknowledgements

We would like to thank Lars Michael Kristensen and Ruben Dobler Strand for super-

vising and guiding us through this thesis. The insights about the DYNAMIC research

project and the specifics of fire risks and risk modelling has provided great value to

our work. Andreas Evjenth, Eivind Dagsland Halderaker

June 1, 2021

ii

Contents

1 Introduction 2

1.1 The DYNAMIC Research Project . 2

1.1.1 Fire risk prediction model . 3

1.2 Research Questions . 4

1.3 Research Method . 6

1.4 Thesis structure . 7

2 Background and Related Work 9

2.1 Fire Risk Prediction . 9

2.1.1 Partial Risk Indicies . 10

2.1.2 Chandler Burning Index . 10

2.2 Weather Data Sources . 11

2.2.1 The Norwegian Meteorological Institute 12

2.2.2 Netatmo . 21

2.2.3 StormGeo . 23

2.2.4 The European Centre for Weather Forecasts 23

2.2.5 OpenWeather . 25

2.2.6 Comparing Weather Sources . 25

2.3 Software Architecture . 25

2.3.1 Microservices . 26

2.3.2 RESTful services . 26

2.3.3 Spring Boot . 27

2.3.4 Cloud Hosting . 27

3 Design and System Requirements 28

3.1 System Requirements . 28

iii

3.2 Deployment and DevOps . 30

3.2.1 Fire Risk Model . 31

3.2.2 Fire Risk Services and Data Harvesting Service 31

3.2.3 Middleware . 31

3.2.4 Frontend . 32

4 Fire Risk Model (FRM) 33

4.1 System Overview . 34

4.2 Mathematical Formulas and Implementation 34

4.2.1 Modelling Relative Humidity . 34

4.2.2 Time To Flash-over . 41

4.2.3 Fire Risk Factor . 43

4.2.4 Interpolation . 44

4.3 Deployment and DevOps . 44

5 Fire Risk Services (FRS) 46

5.1 System Overview . 46

5.2 Endpoints . 47

5.2.1 Heartbeat . 48

5.2.2 Add locations . 48

5.2.3 Firerisk . 48

5.2.4 Firerisk factor . 49

5.3 Database . 49

5.4 Deployment and DevOps . 50

6 Data Harvesting Service (DHS) 51

6.1 System Overview . 51

6.2 Endpoints . 53

6.2.1 Measurements . 53

6.2.2 Location exists . 54

6.2.3 Add location . 55

6.2.4 Historical Measurements . 56

6.3 Scheduled Services . 56

6.4 Database . 57

6.5 Deployment and DevOps . 58

iv

7 Middleware 60

7.1 System Overview . 60

7.2 Endpoints . 61

7.3 Scheduled Services . 65

7.4 Deployment and DevOps . 65

7.5 Database . 66

7.6 Testing . 68

8 Front-end Single Page Web Application 70

8.1 Project Structure . 70

8.1.1 React . 71

8.1.2 TypeScript . 72

8.1.3 Leaflet & React Leaflet . 73

8.2 Features . 74

8.3 Fetching Data from the Middleware . 76

8.4 DevOps . 77

9 Experiments and Evaluation 79

9.1 Locations . 79

9.2 Experiment 1: Predicting Time to Flashover 81

9.2.1 Collecting Fire Risks . 81

9.2.2 Analysing the Data . 82

9.2.3 Largest difference . 85

9.2.4 Prediction deviation . 86

9.3 Experiment 2: TTF Weather Data Sources 87

9.3.1 Data . 87

9.3.2 Analysing the Data . 89

9.4 Experiment 3: Historical Fire Risk 2013 - 2021 89

9.4.1 Data . 90

9.4.2 Analysing the Data . 92

9.5 Experiment 4: Winter of 2020/2021 . 92

9.5.1 Analysing the Data . 94

9.6 Experiment 5: Data Storage and Computation Time 96

9.6.1 Processing utilization . 96

9.6.2 System test . 96

v

9.7 Conclusion . 99

10Conclusion and Future Work 101

10.1Conclusion on experiments . 101

10.2Research Questions Revisited . 103

10.3Threats to validity . 104

10.4Discussion . 105

10.5Future Work . 106

Bibliography 114

Appendices 119

A Locations used for Experiments 121

B URL to the Source Code of implementations 123

1

Chapter 1

Introduction

Fire has for a long time been a resource for humanity, but it also poses great risks.

Conflagrations and large fires are a threat to human lives and wildlife, and can lead

to great monetary damage as well. In Norway, wooden houses is prevalent, in existing

structures, as well as new buildings. Reducing fire risk in and near houses is therefore

a worthwhile effort.

1.1 The DYNAMIC Research Project

DYNAMIC [37] is an interdisciplinary research project focusing on fire risk assessment

in wooden houses, heathland, and the Wildland-Urban Interface (WUI) zone. The

project places people at the center, and aims to protect against threats involving fires.

The tasks of the DYNAMIC Project are divided into four Work Packages (WPs):

WP1: Risk modelling and warning systems. The project has developed [23] and

implemented [44] a model for predicting fire risk in wooden houses in cold climates.

The model uses applied physics for modelling a generic house in an area. DYNAMIC

aims to create similar models for heathland WUI fire risk and conflagration risk.

WP2: Adaptive management of Calluna heathland to mitigate WUI fire risk. Cal-

luna heathland is a cultural landscape common along the European west coast from

2

Protugal to Norway. As it is not widespread globally, there are currently no proper ap-

proaches to assess fire risk in these landscapes. WP2 emphasizes collaboration with

prescribed burner groups to help them mitigate the risk of accidental larger fires, and

by studying their organisational structure.

WP3: Risk-based emergency planning and dimensioning. By combining the results

from WP1 and WP2, one can develop applications for fire risk prediction to be used

by emergency services. One such application can inform fire brigades of local high

fire disaster areas, another can be developed for fire fighters to conduct virtual reality

training scenarios.

WP4: Synthesis, knowledge transfer, stakeholder involvement and communica-

tion. The DYNAMIC Project aims to increase awareness of fire risk by involving stake-

holders and organize it with an eight member advisory group. These stakeholders

consist of researchers, fire fighters and their officers, farmers, policy makers, and

administrators.

This thesis contributes to WP 1 and WP 3 by continuing the work of the fire risk

model and expanding its features, by developing an early warning fire risk system

delivered as a cloud-based solution.

1.1.1 Fire risk prediction model

In 2019, Stokkenes [44] implemented Log’s model for fire risk [23]. The model calcu-

lates Time To Flash-over (TTF) in a single wooden structure. The term flash-over has

no set definition in the literature, but one commonly used definition is: "The transition

from a localized fire to the general conflagration within the compartment when all fuel

surfaces are burning." [9]

As the fire risk in these structures is a result of the relative humidity in wood, the

TTF is in turn affected by the humidity in the air [23] [21]. Because of this, outdoor

relative humidity and outdoor air temperature are the two weather elements supplied

as data to the model.

3

Stokkenes [44] developed a prototype and conducted an initial validation based

on weather data collected during the winter of 2018/2019. The prototype application

consists of three microservices. One service is responsible for harvesting the weather

data, another service handles the fire risk calculation, and the third service acts as

a controller by handling the communication between external services and the users,

and the other two services. The three microservices communicate via REST APIs.

The fire risk prediction model was evaluated by collecting data from four locations:

Bergen, Haugesund, Gjøvik and Lærdal from December 2018 to April 2019. This data

was then used to compute results from the model to see how the Time To Flash-over

varied during the season. The data harvesting service used APIs from The Norwe-

gian Meteorological Institute (MET) and two Netatmo stations as sources of data.

Stokkenes [44] used Netatmo stations to validate the fire risk model. These Netatmo

stations are consumer grade, in contrast to The Norwegian Meteorological Institute’s

quality assured measurements [6].

Another part of evaluation was to compare Time To Flash-over based on forecasts

to ones based on historical data. In addition, the fire risk prediction model can be

calibrated using a few days of weather data before starting the model on other data.

As such, Stokkenes compared how the model calculates fire risk based on forecast

data, after being calibrated using a measurements, to measurements from the the

same period. The last experiment calculated Time To Flash-over during historical

fires, Lærdal at 18th of January 2014 and Kongsberg at 24th of December 2017. By

collecting the measured weather data from the days leading up to the fires, the model

expectedly returned low Time To Flash-over, around 4 minutes TTF leading up to both

fires.

1.2 Research Questions

As described in section 1.1, the proposed research questions aims at contributing to

WP 1 and WP 3 in the DYNAMIC research project. The research questions proposed

below for this thesis are directed towards this effort. Below we list and discuss the

research questions underlying this thesis.

4

RQ1: How can different weather services be combined to obtain one unified data

service, that can provide weather measurements and forecasts for the fire risk

model?

RQ2: How can a software architecture that implements a complex fire risk notifi-

cation system composed of multiple independent cloud-hosted services be de-

signed?

RQ3: Can the fire risk model be combined with weather forecast data to predict ac-

curate fire risk indications?

RQ1
There are multiple considerations when utilizing weather data for fire risk indications.

First, different weather services present their data in different formats, which needs

to be converted prior to be input into the model. It may be available by download at

a website, REST APIs, or GraphQL APIs [17], and needs to be parsed and converted

into a single format used by the application. Another consideration is the type of

weather data provided, a service may offer forecasts, measurements from a station,

or interpolated data. The different types of data must be distingushed and combined

correctly, in order to produce desired output. When collecting from specific stations,

the distribution of these is an important factor as the application should calculate fire

risk based on the desired location. Weather data is a broad term, and as such, not

all weather data services provide the necessary weather parameters needed for fire

risk prediction. Further, not all services provide their data for free, and there can be

limitations on how often data can be requested. The update frequency of a service,

and whether or not previous measurements or forecasts are available is also aspects

that needs to be considered.

RQ2
A robust design and software architecture is vital when designing complex systems.

The system has multiple requirements and should preferably be hosted as a cloud

service. In general, the system shall compute fire risks, collect weather data and

notify subscribers. It can be developed as one monolith or several microservices, and

each application needs to be configured and hosted in a suitable cloud service.

5

RQ3

The fire risk indications can provide great value if it produces accurate fire risk pre-

diction for the near-future. By using forecast data as input to the model this can be

achieved and compared to fire risk indications computed from measurements. Know-

ing how the fire risk indications will be in the coming days allows stakeholders to

initiate proactive measures, as to mitigate the upcoming risk, be it fire brigades allo-

cating crew or public authorities notifying the general public of high risk periods.

1.3 Research Method

In this thesis, we propose Design Science [52] as the foundation for the research

methodology. The guidelines proposed by Hevner et al. [19], serves as a solid frame-

work for iteratively developing and evaluating an artefact that can be used to answer

the research questions. The artefact is required to answer all of the questions, but the

rigorous evaluation of it is especially important in RQ3 which aims at extending the

fire risk model in the DYNAMIC research project.

The seven guidelines of design science research and how they are related to this

thesis is as follows:

• Design as an Artefact: In this thesis, we develop and implement a fire risk

notification system that will be used to answer the research questions

• Problem Relevance: Fire risks and mitigation are important topics, which af-

fects human lives. Increasing the knowledge base with regards to fire risks and

how weather influences the risks, is of high relevance to the application domain.

• Design evaluation: Following best practices for developing the software system

that is the artefact, combined with experiments, will demonstrate the utility of

the design.

• Research Contributions: The answers to the research questions are useful to

the DYNAMIC research project.

• Research Rigour: Using the design artefact, experiments can be conducted on

a large data set for evaluation of the artefact and its output.

6

• Design as a Search Process: The design artefact will consist of multiple soft-

ware services that can be iteratively developed and improved.

• Communication of Research: This thesis serves as the main communication

of the research conducted.

1.4 Thesis structure

This thesis is a collaborative effort of two authors, as a result of merging two prob-

lem statements, that partially overlapped, as evident through the research questions.

Originally, each author focused on different part of the system, but after the merging,

the entire system, that will be implemented in this thesis, are considered. The rest

of this introduction outlines the chapters of the thesis, and if relevant, specify which

author was the lead author of that chapter.

Chapter 2 surveys existing research on the topic of fire detection, risk, and manage-

ment. Data sources for fetching weather measurements and forecasts, which are

related to predicting fire risks, are presented. Finally, key concepts useful for un-

derstanding the other parts of the thesis are detailed. Section 2.2 is written by

Halderaker.

Chapter 3 gives an overview of the software architecture and system that has been

developed to answer the research questions.

Chapter 4 outlines the Fire Risk Model (FRM), the mathematical formulas and the

corresponding implementation. Both Fire Risk Model (FRM) and Fire Risk Ser-

vices (FRS) originally was the parts of the system that overlapped between the

theses.

Chapter 5 present the Fire Risk Services (FRS), which use the FRM to calculate a

fire risk.

Chapter 6 concerns the Data Harvesting Service (DHS), which is implemented to

provide weather data to the FRM. It uses the open weather APIs detailed in

Chapter 2. The software and chapter have been written by Halderaker.

Chapter 7 is concerned with providing the business logic to provide fire risks pro-

vided by FRS to the front-end application, as well as notifications. The software

and chapter are written by Evjenth.

7

Chapter 8 provide the interface to fire risks provided by the Middleware to the end-

users, through front-end applications. The software and chapter is written by

Evjenth.

Chapter 9 describes a series of experiments that uses the developed systems to in-

vestigate their usefulness and to provide data to answer the research questions.

Chapter 10 concludes and summarize the work carried out in this thesis. Some re-

flections are given to related and future work and how one may utilize the solu-

tions developed in this thesis.

In Appendix B URLs to the implementations can be found, as well as data collected

in the experiments.

8

Chapter 2

Background and Related Work

Fire risk is a international research topic, and multiple models have been developed

for predicting fire risks. In this chapter, we discuss the various models and approaches

in the literature, and lastly potential sources of weather data for fire risk prediction.

2.1 Fire Risk Prediction

Fire risk research is such a broad research field, and a large variety of research and

research methods exists. Different researchers and projects tackle the problem in

varying ways.

Cortez and Morais [4] used data mining techniques, such as Support Vector Ma-

chines and Random Forests, with real-time data gathered from local sensors to pre-

dict small fires in Portugal. The features of their data consisted of four measurements

from sensors (rain, wind, temperature, and humidity), combined with components of

the Canadian Fire Weather Index (FWI) collected from previous fires. Their model was

capable of predicting the burned area of smaller fires as they occurred.

San-Miguel-Ayanz et al. [41] at the European Commission developed The Euro-

pean Forest Information System (EFFIS). This system consists of multiple subsystems

handling different aspects of forest fire management, from forest fire danger forecast

9

to active fire detection and post-fire analysis. Their forest fire danger forecast uses

weather data to compute a common European fire danger index for over 30 countries

in Europe. The weather data is collected from two meteorological forecast models,

the French Météo-France and the Deutsche Wetter Dienst, combined with daily ob-

servations from weather stations across Europe. Similar to Cortez and Morais, EFFIS

calculate the forest fire danger using the Canadian Fire Weather Index. Rusu et al.[40]

employs unsupervised machine learning by doing outlier detection to data simulated

by the Weather and Research Forecasting model (WRF-ARW) [7] to predict fire risk.

The Australia’s 2019-2020 mega-fires burnt unprecedented large areas of vegeta-

tion, and Ward et al. [51] discusses the impact of such fires on wildlife and the need

for recovery of threatened populations in both burnt and un-burnt areas. For wildfires

in Australia, one model has been developed to determine likely speed and direction of

the front of the fire [3]. It uses wind speed and dead fuel moisture content as inputs

to calculate likely development of the fire. The wind speed is measured, and dead fuel

moisture is either measured or estimated based on other factors.

Tsipis et al. [49] demonstrated a distributed Cloud/Fog IoT Solution for detecting

wildfire while managing network throughput and energy consumption by reducing

data collection. The distributed Wireless Sensor Network (WSN) of devices collected

temperature and relative humidity data, and they could therefore utilize the Chandler

Burning Index, which is a popular metric for assessing fire ignition risks.

2.1.1 Partial Risk Indicies

Another solution that do not rely on WSNs was proposed by Anezakis et al. [1]. It

focuses on wild-fires in Greece and develops four partial risk indices that considerers

weather, drought, topography and vegetation, amongst other factors, to determine an

overall fire risk index.

2.1.2 Chandler Burning Index

The Chandler Burning Index (CBI) is a tool used to calculate a numerical index of fire

danger. It only uses relative humidity and temperature as input, and is therefore sim-

ple to calculate. Since it does not take into account historic weather or fuel moisture

10

content of available material, it can lose some accuracy. A modified version of the CBI

uses monthly predicted humidities and temperatures to obtain a value.

The modified equation [43] is

CBI = (((110− 1.373RH)− 0.54 ∗ (10.20− T))(124 ∗ 10−0.0142∗RH))/60

where

RH = forecast monthly mean afternoon relative humidity (percent)

T = forecast monthly mean afternoon temperature (degrees Celsius)

A number between 50-75 is categorized as a moderate fire risk, and lower val-

ues are lower risk, and higher values equates to higher risks. A value above 97.5 is

categorized as an extreme fire risk.

The CBI can be a good tool for calculating forest fires. The fire risk model de-

veloped by the DYNAMIC research project, details a numeric approach for modelling

relative indoor humidity and fuel moisture content, which can be a more useful tool

for predicting indoor fire risks.

2.2 Weather Data Sources

The models discussed above use different data sources as their foundation. Particu-

larly, meteorological data is a core data source when predicting fire risk, with tem-

perature and relative humidity being important factors. Do et al. [8] interpolated high

resolution meteorological data by combining data from local weather sensors with

satellite data, which can be used by the fire prediction models. Bodrozic [2] employed

sensor networks, where each network consisted of video cameras and meteorological

stations to collect data to predict forest fires in Croatia. Common for many of these

are IoT devices collecting weather data combined with quality controlled observations,

which gets aggregated and analysed to achieve a deeper insight.

11

Choosing the right sources of weather data is important. The fire risk model devel-

oped in the DYNAMIC research project, and implemented in this thesis, uses outside

temperature, wind speed, and outside relative humidity as input at specific time inter-

vals. The quality of these sources need to be validated according to how they reflect

the real weather. Some sources use industrial meteorological stations, while others

use consumer grade sensors for their measurements. A second factor to quality is how

widespread the measurements are, i.e., for a given location, how close is the nearest

measurement of meteorological data. A data point measured by a weather station

might not be representative for a place at a 10 km distance of the weather station due

to local variations.

The different weather services update their measurements and forecasts on dis-

tinct intervals of time. To query a weather service more frequently than their update

intervals is meaningless, since one would obtain identical data to the previous query.

As such, a weather service’s update interval needs to be taken into account.

2.2.1 The Norwegian Meteorological Institute

The Norwegian Meteorological Institute (MET) is a leading actor in Norway and is

a government funded organisation. Together with the Norwegian Broadcasting Cor-

poration (NRK), MET runs the website Yr.no, a public forecast service. Even though

MET is a Norwegian actor, they provide coverage all around the globe. To provide this

global coverage, MET use data from partner institutions, such as the European Centre

for Medium-Range Weather Forecasts (ECMWF) and the European Organisation for

the Exploitation of Meteorological Satellites (EUMETSAT). However, the forecasts are

still updated more frequently in Scandinavia and Finland. Their weather forecast can

be accessed either via their website Yr.no or the associated REST API [30] for broader

use in applications and systems. Each forecast consist of air pressure at sea level,

cloud area fraction, wind speed and direction, and more, but the most relevant for our

system are air temperature, wind speed, and relative humidity. The REST API provide

forecasts with hourly intervals for the first three days, and six hour intervals for the

next seven days.

An example of a request to consume their API is a HTTP GET request to:

12

https://api.met.no/weatherapi/locationforecast/2.0/complete?altitude=50&
lat=60.3&lon=5.3.

The forecast is provided in three formats: compact, complete, and classic. The com-

pact format response contains only the most used weather parameters in a JSON body;

complete is equivalent, but contains a forecast for every weather parameter MET of-

fer; and lastly classic is a legacy XML response. Altitude is an optional parameter to

specify meters above sea level, while lat and long are abbreviations for latitude and

longitude, respectively, and are required parameters. As such, the example provided

is a request for the weather forecast including all weather parameters at coordinate

latitude 60.3 degrees and longitude 5.3 degrees and 50 meters above sea level. The

JSON object returned from a compact forecast can be seen in Listing 2.1.

13

https://api.met.no/weatherapi/locationforecast/2.0/complete?altitude=50&lat=60.3&lon=5.3
https://api.met.no/weatherapi/locationforecast/2.0/complete?altitude=50&lat=60.3&lon=5.3

14

1 {
2 "type": "Feature",
3 "geometry": {
4 "type": "Point",
5 "coordinates": [
6 5.3,
7 60.3,
8 42
9]

10 },
11 "properties": {
12 "meta": {
13 ...
14 },
15 "timeseries": [
16 {
17 "time": "2021-04-22T10:00:00Z",
18 "data": {
19 "instant": {
20 "details": {
21 "air_pressure_at_sea_level": 1021.5,
22 "air_temperature": 6.9,
23 "cloud_area_fraction": 27.6,
24 "relative_humidity": 58.3,
25 "wind_from_direction": 338.0,
26 "wind_speed": 6.7
27 }
28 },
29 ...
30 }
31 },
32 {
33 "time": "2021-04-22T11:00:00Z",
34 "data": {
35 "instant": {
36 "details": {
37 "air_pressure_at_sea_level": 1022.0,
38 "air_temperature": 7.2,
39 "cloud_area_fraction": 24.9,
40 "relative_humidity": 56.7,
41 "wind_from_direction": 334.4,
42 "wind_speed": 7.1
43 }
44 },
45 ...
46 }
47 },
48 ...
49]
50 }
51 }

Listing 2.1: Example of a JSON response body from the MET forecast REST API

Another service The Norwegian Meteorological Institute provide is the Frost

API [30]. Through this API, MET provide access to their archive of historical weather

and climate data, along with metadata for each meteorological station. Its base path

is https://frost.met.no/ and requires user credentials to use. These credentials can

be requested by accessing

https://frost.met.no/auth/requestCredentials.html

and entering an email. The response contains a client ID and client secret. The secret

is only needed when requesting data not open to the public [25], while the client ID

needs to be provided as username in Authorization header of all HTTP requests to the

Frost API. If the client ID is not provided in the Authorization header, a HTTP 401

Unauthorized response is returned.

To request weather observations for a location, one can request IDs of nearby

stations, and then query the API with the station ID, the desired types of observations,

and the desired time interval. Nearby MET stations can be find using the endpoint:

/sources/v0.jsonld?types=SensorSystem&geometry=nearest(POINT(5.7331 58.97)
)&nearestmaxcount=10&elements=air_temperature,relative_humidity,
wind_speed

The types parameter specifies the type of station, with SensorSystem being station

with measuring sensors. Other types are InterpolatedDataset and RegionDataset.

geometry=nearest(POINT(5.7331 58.97)) defines the coordinate to find nearby sta-

tions, with the first number being longitude and the second number being latitude.

The parameter nearestmaxcount=10 is how many stations the response should con-

tain. Lastly elements=air_temperature,relative_humidity,wind_speed requires

each station to have data of the specified elements. The different types of elements

include air temperature, wind speed, grass temperature, air pressure at sea level,

relative humidity, and more. The nearby stations returned can be seen in Listing 2.2

15

https://frost.met.no/
https://frost.met.no/auth/requestCredentials.html
/sources/v0.jsonld?types=SensorSystem&geometry=nearest(POINT(5.7331 58.97))&nearestmaxcount=10&elements=air_temperature,relative_humidity,wind_speed
/sources/v0.jsonld?types=SensorSystem&geometry=nearest(POINT(5.7331 58.97))&nearestmaxcount=10&elements=air_temperature,relative_humidity,wind_speed
/sources/v0.jsonld?types=SensorSystem&geometry=nearest(POINT(5.7331 58.97))&nearestmaxcount=10&elements=air_temperature,relative_humidity,wind_speed
types
SensorSystem
InterpolatedDataset
RegionDataset
geometry=nearest(POINT(5.7331 58.97))
nearestmaxcount=10
elements=air_temperature,relative_humidity,wind_speed

16

1 {
2 "@context": "https://frost.met.no/schema",
3 "@type": "SourceResponse",
4 "apiVersion": "v0",
5 "license": "https://creativecommons.org/licenses/by/3.0/no/",
6 "createdAt": "2021-04-22T10:50:59Z",
7 "queryTime": 3.498,
8 "currentItemCount": 10,
9 "itemsPerPage": 10,

10 "offset": 0,
11 "totalItemCount": 10,
12 "currentLink": "...",
13 "data": [
14 {
15 "@type": "SensorSystem",
16 "id": "SN44640",
17 "name": "STAVANGER - VÅLAND",
18 "shortName": "Våland",
19 "country": "Norge",
20 "countryCode": "NO",
21 "wmoId": 1416,
22 "geometry": {
23 "@type": "Point",
24 "coordinates": [
25 5.7278,
26 58.9563
27],
28 "nearest": false
29 },
30 "distance": 1.55338065213,
31 ...
32 },
33 {
34 "@type": "SensorSystem",
35 "id": "SN44560",
36 "name": "SOLA",
37 "shortName": "Sola",
38 "country": "Norge",
39 "countryCode": "NO",
40 "wmoId": 1415,
41 "geometry": {
42 "@type": "Point",
43 "coordinates": [
44 5.637,
45 58.8843
46],
47 "nearest": false
48 },
49 "distance": 11.01035180888,
50 ...
51 },
52 ...
53]
54 }

Listing 2.2: Example of a JSON response from the Frost nearby stations endpoint

When the desired stations are found, the Frost API has an endpoint to the find meta

data about each station. This endpoint returns time series available at the station, i.e.

the periods the station has collected measurements:

/observations/availableTimeSeries/v0.jsonld?elements=air_temperature,
relative_humidity,wind_speed&timeresolutions=PT1H&sources=SN50540&
referencetime=2021-01-01T00:00/2021-01-31T00:00

The parameter elements is mentioned previously, timeresolutions specifies the

resolution of the time series. PT1H is one hour between each data point and is

an ISO-8601 time value. The sources parameter is the specific station ID, while

referencetime specifies the time interval to check. The two timestamps are sepa-

rated by a /, where the first timestamp is the start time and the second is the end

time of the series. An example response can be seen in Listing 2.3. The endpoint can

be used to check if a specific station still collects measurements, or it merely previ-

ously did, and it does not return actual measurements. Each time series contain a

field elementId specifying the type of observation, another called validFrom specify-

ing that the station started collected measurement at the timestamp, and an optional

field validTo. The field validTo is the timestamp at the end of a period of collecting

said type of measurements. When a time series does not contain validTo, the station

currently collects this type of measurement, as the time series has no set end.

17

/observations/availableTimeSeries/v0.jsonld?elements=air_temperature,relative_humidity,wind_speed&timeresolutions=PT1H&sources=SN50540&referencetime=2021-01-01T00:00/2021-01-31T00:00
/observations/availableTimeSeries/v0.jsonld?elements=air_temperature,relative_humidity,wind_speed&timeresolutions=PT1H&sources=SN50540&referencetime=2021-01-01T00:00/2021-01-31T00:00
/observations/availableTimeSeries/v0.jsonld?elements=air_temperature,relative_humidity,wind_speed&timeresolutions=PT1H&sources=SN50540&referencetime=2021-01-01T00:00/2021-01-31T00:00
elements
timeresolutions
sources
referencetime
/

181 {
2 "@context": "https://frost.met.no/schema",
3 "@type": "ObservationTimeSeriesResponse",
4 "apiVersion": "v0",
5 "license": "https://creativecommons.org/licenses/by/3.0/no/",
6 "createdAt": "2021-04-22T11:07:59Z",
7 "queryTime": 0.204,
8 "currentItemCount": 3,
9 "itemsPerPage": 3,

10 "offset": 0,
11 "totalItemCount": 3,
12 "currentLink": "...",
13 "data": [
14 {
15 "sourceId": "SN50540:0",
16 "level": {
17 "levelType": "height_above_ground",
18 "unit": "m",
19 "value": 2
20 },
21 "validFrom": "1997-03-13T00:00:00.000Z",
22 "validTo": "2008-05-07T00:00:00.000Z",
23 "timeOffset": "PT0H",
24 "timeResolution": "PT1H",
25 "timeSeriesId": 0,
26 "elementId": "relative_humidity",
27 "unit": "percent",
28 ...
29 },
30 {
31 "sourceId": "SN50540:0",
32 "level": {
33 "levelType": "height_above_ground",
34 "unit": "m",
35 "value": 2
36 },
37 "validFrom": "2008-05-07T00:00:00.000Z",
38 "validTo": "2014-07-08T06:45:30.000Z",
39 "timeOffset": "PT0H",
40 "timeResolution": "PT1H",
41 "timeSeriesId": 0,
42 "elementId": "relative_humidity",
43 "unit": "percent",
44 ...
45 },
46 {
47 "sourceId": "SN50540:0",
48 "level": {
49 "levelType": "height_above_ground",
50 "unit": "m",
51 "value": 2
52 },
53 "validFrom": "2005-09-22T00:00:00.000Z",
54 "timeOffset": "PT0H",
55 "timeResolution": "PT1H",
56 "timeSeriesId": 0,
57 "elementId": "air_temperature",
58 "unit": "degC",
59 ...
60 },
61 ...
62]
63 }

Listing 2.3: Example of a JSON response from the Frost available timeseries endpoint

To request actual observations the /observations/ endpoint can be used:

/observations/v0.jsonld?sources=SN50500&referencetime=2020-11-
16T11:00:00/2020-11-26T11:20:03.593696633&elements=air_temperature,
relative_humidity,wind_speed&timeresolutions=PT1H

These parameters act similar to the /observations/availableTimeSeries/v0.jsonld

endpoint with sources being the station id, referencetime the time periode, elements

specifies the types of weather data, and timeresolutions is the desired resolution of

the weather data. An example response can be seen in Listing 2.4, where elementId

is the type of measurement, and value contains the measured value, e.g. 9.1 degrees

air temperature, or 80% relative humidity. The observations are hourly in most cases,

but can be every six hours in cases of missing data.

The Norwegian Meteorological Institute provide multiple other endpoints in the

Frost REST API. Some endpoints include complex calculations, such as maximum and

minimum values of an observation over a timespan, mean values and summations.

19

/observations/
/observations/v0.jsonld?sources=SN50500&referencetime=2020-11-16T11:00:00/2020-11-26T11:20:03.593696633&elements=air_temperature,relative_humidity,wind_speed&timeresolutions=PT1H
/observations/v0.jsonld?sources=SN50500&referencetime=2020-11-16T11:00:00/2020-11-26T11:20:03.593696633&elements=air_temperature,relative_humidity,wind_speed&timeresolutions=PT1H
/observations/v0.jsonld?sources=SN50500&referencetime=2020-11-16T11:00:00/2020-11-26T11:20:03.593696633&elements=air_temperature,relative_humidity,wind_speed&timeresolutions=PT1H
/observations/availableTimeSeries/v0.jsonld
sources
referencetime
elements
timeresolutions

20

1 {
2 "@context": "https://frost.met.no/schema",
3 "@type": "ObservationResponse",
4 "apiVersion": "v0",
5 "license": "https://creativecommons.org/licenses/by/3.0/no/",
6 "createdAt": "2021-04-22T11:14:19Z",
7 "queryTime": 0.902,
8 "currentItemCount": 241,
9 "itemsPerPage": 241,

10 "offset": 0,
11 "totalItemCount": 241,
12 "currentLink": "...",
13 "data": [
14 {
15 "sourceId": "SN50500:0",
16 "referenceTime": "2020-11-16T11:00:00.000Z",
17 "observations": [
18 {
19 "elementId": "air_temperature",
20 "value": 9.1,
21 "unit": "degC",
22 "level": {
23 "levelType": "height_above_ground",
24 "unit": "m",
25 "value": 2
26 },
27 ...
28 },
29 {
30 "elementId": "relative_humidity",
31 "value": 80,
32 "unit": "percent",
33 "level": {
34 "levelType": "height_above_ground",
35 "unit": "m",
36 "value": 2
37 },
38 ...
39 },
40 {
41 "elementId": "wind_speed",
42 "value": 3.4,
43 "unit": "m/s",
44 "level": {
45 "levelType": "height_above_ground",
46 "unit": "m",
47 "value": 10
48 },
49 ...
50 }
51]
52 },
53 ...
54]
55 }

Listing 2.4: Example of a JSON response from the Frost observations endpoint

2.2.2 Netatmo

Another actor is Netatmo, which provide Smart Home Weather Stations [26] for the

general public to set up at home for an affordable price. Each station consist of two

devices, an indoor module and an outdoor module, where the inside module acts as

a control hub connected to Wi-Fi. The indoor module captures the indoor climate in

terms of temperature, relative humidity, CO2 in ppm, and noise level in decibel. The

outdoor module measure temperature, relative humidity, and barometric pressure.

One can connect additional Netatmo modules, such as smart anemometer and smart

rain gauge, to enable measurements of wind speed and rain. Netatmo stations record

measurements every five minutes and are stored on the station [27]. Owners of a

station can request data from the indoor module via the REST API with an access

token, and permit applications to access measurements from their station. The latest

measurement from the outdoor module, however, is publicly available online via a

weather map [28] and through the weather REST API [29]. The base path for the API

is https://api.netatmo.com/.

To gain access to Netatmo’s REST API, one needs to create an account at their

website and then register an application by filling in a form. The form requires an

application name, a description, name, and email to the application’s data protection

officer. Having done this, the application receives a client identifier and a secret.

Figure 2.1: Requesting a Netatmo token in Postman

21

https://api.netatmo.com/

These can be used to authenticate and generate an Oauth [31] access token for

the REST API by sending a HTTP POST request to the endpoint /oauth2/token with

a body consisting of form data including client secret, client identifier, Netatmo user-

name, Netatmo password, and a request to be granted a Oauth password that can be

used as token. This can be seen in Figure 2.1.

If the request is correct, the response shown in Listing 2.5 is returned as a 200 OK

HTTP response, and if the request is incorrect a 400 Bad Request is returned.

1 {
2 "access_token": "5d9b4f2643c228000b7bdd99|883374864ab06009ed9b2bc303f9566f",
3 "refresh_token": "5d9b4f2643c228000b7bdd99|ca778d606336a96c5dc18de5c666a9b7",
4 "scope": ["read_station"],
5 "expires_in": 10800,
6 "expire_in": 10800
7 }

Listing 2.5: Response from requesting a Netatmo access token.

Access tokens are only available for a periode, and before the access token ex-

pires, a new HTTP POST request can be sent to /oauth2/token to renew it. The body

of the request must contain client identifier, client secret, refresh token, and a field to

specify a request to refresh the access token, as seen in Figure 2.2. The response for

renewing a token is identical to Listing 2.5

Figure 2.2: Refreshing a Netatmo token in Postman.

22

/oauth2/token
/oauth2/token

When an access token has been obtained, one can request public measurements

from the outdoor modules using the url:

/api/getpublicdata?lat_ne=60.2&lon_ne=5.3&lat_sw=60.1&lon_sw=5.2&filter=
true

When collecting measurements from Netatmo, one has to specify two coordinates,

one in north eastern corner of a polygon and the other in the south western corner.

The parameter lat_ne specifies the latitude of the north eastern corner, while lon_ne

specifies the longitude of the north eastern corner, and similarly for the south western

corner. These are then used to find all stations inside this polygon. The JSON contain-

ing the measurements are shown in Listing 2.6. The filter parameter deicides whether

or not to filter out abnormal measurements. The filter Netatmo use is The Norwegian

Meteorological Institute’s TITAN (auTomatIc daTa quAlity coNtrol) [48][5].

2.2.3 StormGeo

A third actor is StormGeo, a privately held weather service provider. Their main

focus is to provide weather services for the industry [47]. StormGeo offer a weather

REST API [46] and through this API one can access short-term and long-term weather

forecasts as well as climate information for a location. They also analyse different

forecasting model, such as ECMWF’s, at specific locations for customers [45], and

many additional services.

2.2.4 The European Centre for Weather Forecasts

The European Centre for Medium-Range Weather Forecasts (ECMWF) is an indepen-

dent intergovernmental organisation [10]. As the name suggests, ECMWF produce

weather forecasts, air quality analysis, ocean wave predictions, and more. They have a

number of datasets available, however, not all are open to the public ECMWF-datasets,

and they focus on partner organisations.

23

/api/getpublicdata?lat_ne=60.2&lon_ne=5.3&lat_sw=60.1&lon_sw=5.2&filter=true
/api/getpublicdata?lat_ne=60.2&lon_ne=5.3&lat_sw=60.1&lon_sw=5.2&filter=true
lat_ne
lon_ne

24

1 {
2 "body": [
3 {
4 "_id": "70:ee:50:52:ee:8c",
5 "measures": {
6 "02:00:00:53:06:4a": {
7 "res": {
8 "1619102755": [
9 10.2,

10 50
11]
12 },
13 "type": [
14 "temperature",
15 "humidity"
16]
17 },
18 ...
19 },
20 ...
21 },
22 {
23 "_id": "70:ee:50:20:9d:96",
24 "measures": {
25 "02:00:00:33:f3:48": {
26 "res": {
27 "1619102748": [
28 7.5,
29 61
30]
31 },
32 "type": [
33 "temperature",
34 "humidity"
35]
36 },
37 ...
38 },
39 ...
40 },
41 ...
42],
43 ...
44 }

Listing 2.6: Measurements from Netatmo’s public data endpoint

2.2.5 OpenWeather

A fifth actor is OpenWeather. OpenWeather is a private company and provide weather

data via both their website https://openweathermap.org/ and their REST API. These

APIs contain various data such as current weather, historical weather, and daily fore-

casts. To use their API, one has to sign up to their site, and users have limits based

on their subscription level which includes Free, Startup, Developer, Professional, and

Enterprise [32].

2.2.6 Comparing Weather Sources

For this thesis, the Netatmo API, MET’s Frost API and MET’s forecast API were cho-

sen as sources of meteorological data. These provide their data for free via publicly

available REST APIs, compared to OpenWeather being free up to a limit model, Storm-

Geo’s focus on businesses, and ECMWF’s focus on partner organisations. In addition,

Netatmo and The Norwegian Meteorological Institute was used by Stokkenes [44].

Forecasts are provided by MET, while both Netatmo and MET’s Frost API provide

historical measurements. MET have high quality controlled stations covering all of

Norway, while Netatmo’s customer grade have a high density in urban areas, close to

houses.

2.3 Software Architecture

The software systems presented in chapter 3 outlines a fairly complex architecture of

independently cloud-hosted components. This section prefaces the chapter, by provid-

ing some fundamental explanations of the core features.

25

https://openweathermap.org/

2.3.1 Microservices

Microservices [11] are a loose term for describing the development of applications and

systems as multiple, independently deployable services. The services can be created

with different frameworks and languages, and hosted on different platforms. They

can also all be created by the same framework and hosted on the same platform.

Each microservice serves a distinct purpose, and they often communicate through

lightweight mechanisms, such as RESTful interfaces.

Microservices can offer many benefits: development and deployment can be

achieved more independently than in a larger monolithic application. Load balanc-

ing and resource management can be optimized more easily. For a system that uses

many microservices and where some of them get a significant amount of requests,

many cloud hosting services can automatically deploy copied instances of the specific

service to handle the traffic, without having to instantiate other services that are not

experience high traffic.

2.3.2 RESTful services

Some of the systems developed in this thesis, are developed as RESTful web APIs,

otherwise known as REST APIs. Each of them have a base-URL from where they are

deployed, and exposes some endpoints which can be used to interact with the service.

The services are stateless, meaning they do not keep track of prior interactions with

the same client. The client must therefore provide all the required parameters for

the service to complete the request. The underlying communications between the

services are through HTTP, which uses standardized methods, such as GET, POST and

OPTIONS, to complete the requests.

26

2.3.3 Spring Boot

Spring boot is an application framework that can be used to build RESTful web ser-

vices in Java. It has a lot of built-in libraries and resources, and simplifies the setup

and configuration of a web service. The Spring Initializr [42] can be used to setup a

Maven or Gradle project with many of the useful Spring libraries included. By setting

up the projects as Maven or Gradle projects, continuous integration and deployment

(CI/CD) and hosting can be simplified, since all of the external dependencies are de-

clared within the project.

2.3.4 Cloud Hosting

When developing a system that will be made available to end-users in a browser, the

software needs to be deployed somewhere. This can be done on a dedicated server,

but another popular option is to use a cloud-provider to host the software. There are

many cloud-providers with Google Cloud, Microsoft Azure and AWS being some of the

most popular providers.

Another popular cloud-provider is Heroku, which is what has been used for the

systems detailed in chapter 3. Heroku offers hosting of applications to a base URL.

This allows the different sub-systems to be developed as separate applications that

communicates with each other through an RESTful protocol. Heroku supports differ-

ent frameworks and languages, most interesting Maven/Gradle (Java) applications as

well as Node (Javascript) applications. This has allowed us to build the entire tech-

nology stack in Heroku, from front-end and Middleware, to RESTful web APIs for the

back-end.

27

Chapter 3

Design and System Requirements

This chapter presents the components of the fire risk prediction system. There are

five components: The Fire Risk Model (FRM), the REST API service using the model

as a library called Fire Risk Services (FRS), the Data Harvesting Service (DHS) to

collect the weather data, the front-end web application, and finally the middleware

enabling communication between the FRS and the front-end. All these services run as

independent microservices. To the end user, however, the application appear as one,

with only a couple of endpoints.

Figure 3.1 illustrates how the systems are organized and communicate with each

other. On the left, the front-end systems are connected to the Middleware. The Mid-

dleware uses information from the database to return results to the users, as well as

sending requests to the FRS system for calculating new fire risks. The FRS in turn,

requests weather data from the DHS in order to complete the fire risk calculations.

3.1 System Requirements

A large system as this with several components has certain requirements set while

developing. These are detailed below.

28

Figure 3.1: A birds eye view of the software architecture of the system.

The system should be modular with separate concerns for each service and the

different parts should be loosely coupled. Defining interfaces, such as REST API end-

points, for each service and the format of the intended data sent between them, helps

when multiple developers work on the same system. The business logic within each

service could be changed, updated, or rewritten without it affecting other services.

When a user request a fire risk prediction, it should not take long to compute the

result. Instead of computing it on a received request, the system can save time by

pre-computing fire risks.

The computed fire risks should be visualised to the user. A user needs to under-

stand what is presented and what the system is capable of. A front-end, e.g. a web

application is needed as an interface to the rest of the system. In addition, users will

be interested in fire risk at specific locations.

The whole system is built around the fire risk model mentioned previously. It is

used to estimate indoor humidity, time to flash-over, and a general fire risk. The model

consists of several mathematical formulas, constants, and variables. These need to be

29

thoroughly tested with known input and results. Variables should be clearly defined

in the code, and easily changed to deploy a new version of the model.

Figure 3.2 illustrates how data flows when a user requests a fire risk by selecting

a location in the front-end application.

Figure 3.2: Data flow for fetching a fire risk for a location.

3.2 Deployment and DevOps

All the applications of the system, except the Fire Risk Model, are hosted on the

cloud service Heroku. When deploying, Heroku builds the application and replaces

the previously hosted version. The data in the database is not affected by deployment

process and the deployment process does not invalidate any client sessions. If a user

starts a series of requests that first targets the older version of the application, and

then the newer one, there should not be any cause of errors. This is partly due to

the fact that the handling of the client is stateless. The applications do not store or

remember any previous interactions with the client, so the client must include any

and all details required to complete a request.

30

3.2.1 Fire Risk Model

The Fire Risk Model is not per se hosted as an application running in the cloud, but

rather as a library to be used by the other applications of the system, mainly Fire Risk

Services. To be available to other applications, the model is hosted as a Maven [24]

library using GitHub Packages [54]. Github has a feature called Actions that can be

used to build, run, and test the source code before deploying it to a private Maven

repository. After deployment, any Maven compatible application can configure access

to the repository. However, a GitHub secret is needed.

3.2.2 Fire Risk Services and Data Harvesting Service

Both the Fire Risk Services and Data Harvesting Service applications are hosted on

Heroku and import the Fire Risk Model library. As the Fire Risk Model is hosted

in a private Maven repository, the Heroku Command Line Interface (CLI) is used to

deploy the applications. This is due to Maven needing the GitHub secret to access the

private Maven repository containing the FRM, which is easier to setup locally using

the Heroku CLI compared to GitHub Actions.

3.2.3 Middleware

The Middleware application is deployed to Heroku as a Gradle project. The Heroku

project is connected to the source code, hosted in GitHub, and any time there are

changes on the default branch (merges and commits), a new version is built and de-

ployed. Heroku integrates well with GitHub Actions, such that if a unit test fails during

the testing stage, the deployment stage will not execute. Testing is described more in

section 7.6.

31

3.2.4 Frontend

The frontend uses a similar pipeline for development, testing, and deployment. De-

pendencies are declared in a package.json-file and a tool, called Yarn, is used for

installing the dependencies and building and running the project. Changes on the

default branch are detected by the GitHub Action, and if it passes the tests, Heroku

will build a production optimized bundle of the code and deploy it.

32

Chapter 4

Fire Risk Model (FRM)

The Fire Risk Model application is an implementation of Log’s [23] modelling of indoor

humidity in a single-family house. The indoor humidity can be used to estimate Time

To Flash-over (TTF), which can serve as a fire risk indication. Computing the TTF

based on forecasted weather data, further enables fire risk predictions. Then, com-

bining the predicted TTF with forecasted wind speeds, may express a conflagration

risk, which could be used to initiate proactive measures, and hence, reduce upcoming

risk peaks. This conflagration risk can further be categorized into levels of risk. In

general, the computed fire risk express a risk level for a single-family house, depend-

ing on the specific construction principle and internal materials. Since first published,

the model has since gotten minor improvements by the DYNAMIC research project.

In this chapter, we present the Fire Risk Model, the formulas behind the model, and

their implementation.

To model indoor humidity, the model iteratively estimates the effect of three main

factors; (1) Internal humidity production by humans or appliances inside the house,

(2) the exchange of water vapour from hygroscopic materials inside the house, such

as wood and gypsum, and (3) air exchange between indoor and outdoor air via differ-

ent ventilation principles. Each iteration is separated by a time-step and the initial

indoor humidity is set to 35%. The outdoor temperature, relative humidity, and op-

tionally wind speed is given as parameters at every time-step from sources of weather

data. Typically, the collected weather data is interpolated to fit the required timestep

33

in order to achieve numerical stability within the mode. The humidity produced by

humans is set constant as it is meant to be an approximation of water vapour within

an average living room.

Considering that the initial indoor humidity is a "best guess" at 35%, the model

need some time to adjust. The modelled indoor humidity and associated concentra-

tion of water, called Fuel Moisture Content (FMC), in the outermost layer of the hygro-

scopic linings can be used to calculate an estimate of the Time To Flash-over (TTF) in

minutes. As mentioned, TTF can be combined with forecasted wind speed to express

a conflagration risk.

4.1 System Overview

The implementation of the FRM is developed as a Java library. Having the model

as a plain Java library has several benefits. The Fire Risk Model can be published

and easily imported into other projects. Being independent of frameworks makes it

straight forward for new developers to contribute and require less framework specific

experience. A library can be versioned to let developers of it update the library and

publish new versions incrementally. Meanwhile, applications importing the library

can specify versions and update on their own accord. The concrete implementation of

the Fire Risk Model is available via [15].

4.2 Mathematical Formulas and Implementation

In this section, the formulas and their implementation in Java is described.

4.2.1 Modelling Relative Humidity

The first iteration of the model is based on estimated initial values and "best guesses",

while later iterations model the new relative humidity based on the previous relative

34

humidity. The implementation the initial values can be seen in Listing 4.1. Line 2-6

specifies the constant indoor temperature, initial indoor relative humidity, and initial

water concentration of indoor wooden panels, based on the specified indoor RH.

1 public static RelativeHumidityModelStep modelInitialHumidityStep(Observation
↪→ firstObservation) {

2 // Constants
3 Temperature temperatureInside = ModelHumidity.temperatureInside;
4 double RH_in = ModelHumidity.InitialRH_in;
5 double C_w_sat_inConstantly =

↪→ WaterExchangeInVentilation.C_w_sat(temperatureInside);
6 double c_w_in = RH_in * C_w_sat_inConstantly;
7
8 // Calculations to find c_wall
9 double[] waterConcentrationInWall = initialWaterConcentration(RH_in);

10
11 double concentrationInFirstLayer = waterConcentrationInWall[0];
12 double concentrationInSecondLayer = waterConcentrationInWall[1];
13
14 double C_surface = WaterExchangeInWall.C_surface(concentrationInFirstLayer,

↪→ concentrationInSecondLayer);
15 double RH_wall = WaterExchangeInWall.RH_wall(C_surface);
16 double beta =

↪→ WaterExchangeInVentilation.airDilutionRateBeta(firstObservation.getTemp());
17 double c_wall = WaterExchangeInWall.c_wall(RH_wall, RH_in,

↪→ C_w_sat_inConstantly);
18 double c_ac = WaterExchangeInVentilation.c_ac(firstObservation.getTemp(),

↪→ firstObservation.getHumidity().getHumidityPercentage());
19 LocalDateTime timestamp = firstObservation.getTimeObserved();
20
21 WallDto wallDto = new WallDto(waterConcentrationInWall, C_surface, RH_wall,

↪→ c_wall);
22
23 VentilationDto ventilationDto = new VentilationDto(beta, c_ac);
24
25 StepDto stepDto = new StepDto(c_w_in, RH_in, timestamp);
26
27 return new RelativeHumidityModelStep(ventilationDto, wallDto, stepDto);
28 }

Listing 4.1: Implementation of setting the initial values.

The initial RH of the modelled house is set to 35%. The wall’s indoor wooden

panels, with thickness L, are modelled through N sublayers with respective wa-

ter concentrations, called Fuel Moisture Content (FMC). In line 9 the initial wa-

ter concentration is set in all the layers of panel in the wall by calling the method

initialWaterConcentration, as shown in Listing 4.2. Initially, all layers have equal FMC.

The number N is set as N = L
∆x

, where ∆x is the thickness of each sublayer.

35

1 private static double[] initialWaterConcentration(RelativeHumidityModelStep
↪→ relativeHumidityModelStep) {

2 double initialWaterConcentration = WaterExchangeInWall.
3 convertFMCToConcentration(WaterExchangeInWall.
4 FMCForInitialConcentrationInFirstLayer(relativeHumidityModelStep.RH_in));
5
6 double[] waterConcentrationInWall = new

↪→ double[WaterExchangeInWall.NPanelSubLayers];
7 Arrays.fill(waterConcentrationInWall, initialWaterConcentration);
8
9 return waterConcentrationInWall;

10 }

Listing 4.2: Method for setting initial water concetration.

The method FMCForInitialConcentrationInFirstLayer calculates the FMC specified in

Equation 4.1.

FMC = 0.0017 + 0.2524 ·RH − 0.1986 ·RH2 + 0.0279 ·RH3 + 0.167 ·RH4 (4.1)

In line 17, the mean FMC, or water concentration at the surface, Csurface, of the

first 2mm depth of the panels are calculated.

RHwall is the relative humidity of the air at the wall surface and in line 18 it is

calculated based on Equation 4.2.

RHwall = 0.0698− 1.258 ·FMC + 125.35 ·FMC2− 809.43 ·FMC3 + 1583.8 ·FMC4 (4.2)

The value beta is a measure of air exchange, given by

β = 1− e(−ACH·∆t
3600s

) (4.3)

1 public static double airDilutionRateBeta(Temperature temperature) {
2 double ACH = ACH(temperature);
3
4 return 1 - Math.exp((-ACH * WaterExchangeInWall.deltaT) / 3600);
5 }

Listing 4.3: Air exchange beta

36

The implementation can be seen in Listing 4.3 and is based on the number of air

changes per hour (ACH),

ACH = γ ·

√
1

Tout
− 1

Tin

Tout
(4.4)

where Tin and Tout is the temperature inside and outside, respectively, at the first time

step of modelling. The indoor temperature is set to a constant 22°C, while outdoor

temperature is a variable from observations.

ċwall in line 22 is a measure of the change of water concentration in the bulk air

given off by the wooden walls in the house,

ċwall =
ṁwall

Vh
(4.5)

Listing 4.4 shows the implemented method using the value ṁwall.

1 public static double c_wall(double previousRHwall, double previousRHin, double
↪→ CwsatIn) {

2 double mWall = mWall(previousRHwall, previousRHin, CwsatIn);
3
4 return mWall / volume;
5 }

Listing 4.4: Calculation of ċwall

ṁwall is the transfer of moisture across the wooden wall surfaces, measured in kg/s,

and Vh is the volume of the modelled living room, in m3. Vh is set to a default volume

of 150m3, while ṁwall is calculated as,

ṁwall =
Aex ·Dw,a ·∆C ·∆t

δ
(4.6)

1 public static double mWall(double previousRHwall, double previousRHin, double
↪→ CwsatIn) {

2 double deltaC = deltaC(previousRHwall, previousRHin, CwsatIn);
3
4 return (A_ex * Dwa * deltaC * deltaT) / boundaryThicknessLayer;
5
6 }

Listing 4.5: Calculation of ṁwall

37

Aex is the total area of the wood in contact with the bulk air, exchanging hu-

midity. Dw,a is the diffusion coefficient of water in air at 22°C and is a constant of

2.5 · 10−10m2/s. A thin layer of air adjacent to the wall surface is know as the boundary

layer, δ, and it takes the value 0.01m [23]. This layer separates the bulk air and the

wooden panels, while ∆t is the time step between each iteration of the model.

∆C is computed as

∆C = (RHwall −RHin) ∗ Cw,sat,in (4.7)

ċac is the last value to calculate in the first iteration, on line 24. It is a measure of

the change in water vapour concentration due to ventilation,

ċac =
ṁac

Vh
(4.8)

The implemented method is shown in Listing 4.6.

1 public static double c_ac(Temperature temperatureOutside, double RHout) {
2 double beta = airDilutionRateBeta(temperatureOutside);
3 double CwsatOut = C_w_sat(temperatureOutside);
4 double Cwout = Cw(RHout, CwsatOut);
5
6 return (beta * Cwout * (temperatureOutside.kelvin() /

↪→ temperatureInside.kelvin()));
7
8 }

Listing 4.6: Calculation of ċac

Similarly to ṁwall, ṁac represents the change of air mass through different ven-

tilation principles. Standard rates within the model is based on natural ventilation,

ṁac = β · Vh · Cw,out ·
Tout
Tin

(4.9)

Cw,out can be expressed by RHout, as a fraction between 0-1, and Cw,sat,out,

Cw,out = RHout ∗ Cw,sat,out (4.10)

where saturated water concentration in kg/m3 is,

Cw,sat,out =
Pw,sat,out ·Mw

R · Tout,k
(4.11)

38

Mw is the molecular weight of water vapour, R is the universal gas constant, and

Tout,k is the outside temperature expressed in Kelvin, and Pw,sat,out is saturated vapour

pressure,

Pw,sat,out = 610.78 · e
17.2694·Tout,c
Tout,c·238.3 (4.12)

Tout,c is outside temperature in Kelvin.

Having set the initial variables in the first iteration, the model needs to calculate

dC, the change in water concentration inside the living room, for every subsequent

iteration. The implementation is presented below in Listing 4.7, which rely on both

the observation and previous model iteration to calculate the updated RH.

1 public RelativeHumidityModelStep modelRelativeHumidity(Observation observation,
↪→ RelativeHumidityModelStep previousResultStep) {

2 Temperature temperatureInside = ModelHumidity.temperatureInside;
3
4 // ventilation
5 double CwsatInConstantly =

↪→ WaterExchangeInVentilation.C_w_sat(temperatureInside);
6 VentilationDto ventilationDto = WaterExchangeInVentilation.step(observation);
7
8 // Wall
9 WallDto wallDto = WaterExchangeInWall.step(previousResultStep,

↪→ CwsatInConstantly);
10
11 // Rest of the values
12 StepDto stepDto = step(observation, ventilationDto, previousResultStep,

↪→ CwsatInConstantly);
13
14 return new RelativeHumidityModelStep(ventilationDto, wallDto, stepDto);
15 }
16
17 StepDto step(Observation observation, VentilationDto ventilationDto,

↪→ RelativeHumidityModelStep previousResultStep, double CwsatInConstantly) {
18 double c_w_in = ModelHumidity.updateCwIn(ventilationDto.getBeta(),

↪→ previousResultStep);
19 double RH_in = ModelHumidity.updateRHin(c_w_in, CwsatInConstantly);
20 LocalDateTime timestamp = observation.getTimeObserved();
21 return new StepDto(c_w_in, RH_in, timestamp);
22 }

Listing 4.7: Model current step.

Most of the logic is similar to initialRelativeHumidity, but the values from the pre-

vious step are used to update the current step.

In line 9, in the step method, the method updateWaterConcentrationInWallLayers is

used as each layer is affected by their neighbouring layers.

39

1 private static double[]
↪→ updateWaterConcentrationInWallLayers(RelativeHumidityModelStep
↪→ previousResultStep, double CwsatInConstantly) {

2 double[] updatedWaterConcentrations = new
↪→ double[WaterExchangeInWall.NPanelSubLayers];

3
4 double[] previousWaterConcentration = previousResultStep.waterConcentrationInWall;
5
6 updatedWaterConcentrations[0] =

↪→ WaterExchangeInWall.concentrationFirstLayer(previousWaterConcentration[0],
↪→ previousResultStep.RH_in, previousResultStep.RH_wall, CwsatInConstantly,
↪→ previousWaterConcentration[1]);

7
8 for (int layer = 1; layer < updatedWaterConcentrations.length - 1; layer++) {
9 updatedWaterConcentrations[layer] = WaterExchangeInWall.

10 concentrationMiddleLayers(previousWaterConcentration[layer],
↪→ previousWaterConcentration[layer - 1],
↪→ previousWaterConcentration[layer + 1]);

11 }
12
13 updatedWaterConcentrations[WaterExchangeInWall.NPanelSubLayers - 1] =

↪→ WaterExchangeInWall.
14 concentrationInnermostLayer(
15 previousWaterConcentration[WaterExchangeInWall.NPanelSubLayers - 1],

↪→ previousWaterConcentration[WaterExchangeInWall.NPanelSubLayers - 2]
16);
17
18 return updatedWaterConcentrations;
19 }

Listing 4.8: Updating the water concentration in the differnent layers

The concentration in the first layer, at index 0, can be found by,

C1t+∆t
= C1(t)

+
∆t

∆x
·
(
Dw,a

δ
· (RHin(t)

−RHwall(t)) · Csat,in +
Dw,s

∆x
· (C2(t)

− C2(t)
)

)
(4.13)

where t+ ∆t refers to the next iteration, while t refers to the previously calculated

iteration.

Layer 2 to N − 1 is affected by the neighbouring panels and the previous water

concentration of the layer. The water concentration in the layers can be determined

from,

Cn(t+∆t)
= Cn(t)

+ Fo · (Cn−1(t)
− 2Cn(t)

+ Cn+1(t)
) (4.14)

Finally, the Nth layer is the last layer and only affected by its one neighbour.

40

CN(t+∆t)
= CN(t)

+ Fo · (CN−1(t)
− CN(t)

) (4.15)

In line 18 of modelRelativeHumidity, the method updateCwIn is invoked to update the

water concentration inside the house living room in the new iteration using Equation

4.16.

Cw,in(t+∆t)
= (1− β) · Cw,in(t)

+ ċwall(t) + ċac(t) + ċsupply(t)
(4.16)

The implementation can be seen in Listing 4.9.

1 public static double updateCwIn(double beta, double previous_Cw_in, double
↪→ previous_c_wall, double previous_c_ac, double previous_c_supply) {

2 return (1 - beta) * previous_Cw_in + previous_c_wall + previous_c_ac +
↪→ previous_c_supply;

3 }

Listing 4.9: Updating the water concentration inside the house

At last, line 19 sets the updated relative humidity indoor. This is done by convert-

ing it from a concentration to a percentage, as seen in Listing 4.10.

1 public static double updateRHin(double CwIn, double CwsatIn) {
2 return CwIn / CwsatIn;
3 }

Listing 4.10: Updating relative humidity inside the house

4.2.2 Time To Flash-over

Modelling the relative humidity indoor is only the first step towards a meaningful mea-

sure of fire risk, Time To Flash-over. The term flash-over is defined previously as "The

transition from a localized fire to the general conflagration within the compartment

when all fuel surfaces are burning." [9]

41

1 public static TimeToFlashover ttf(double[] waterConcentrationInWall, double deltaX,
↪→ LocalDateTime timestamp) {

2 int n = numberOfLayersInTargetDepth(deltaX, metersOfWoodPanelToUseForTTF);
3
4 double averageWaterConcentrationInFirstNLayers = 0;
5 for (int layerIndex = 0; layerIndex < n; layerIndex++) {
6 averageWaterConcentrationInFirstNLayers +=

↪→ waterConcentrationInWall[layerIndex] / n;
7 }
8
9 // Calculate fuel moisture content

10 double fmc =
↪→ ModelHumidity.fmcInPercentage(averageWaterConcentrationInFirstNLayers);

11
12 // Calculate ttf
13 double ttf = ttfFromFMC(fmc);
14 return new TimeToFlashover(ttf, timestamp);
15 }

Listing 4.11: Calculation of Time To Flash-over.

In the equation for Time To Flash-over, the Fuel Moisture Content (FMC) in the first

2 mm of the wooden panels is used. FMC is either given as a weight percentage or

as a value in the unit interval. In the equation for Time To Flash-over, Equation 4.17,

the former is used, weight percentage, FMCwt%. The method is presented in Listings

4.11, while the formula itself is shown in Listings 4.12. Note that the equation is valid

in the interval 20% - 60% RH [21].

tFO ≈ 2.0 · e0.16·FMCwt% (4.17)

As the model splits the wooden panels into discrete layers, the number of layers

within the first 2 mm is calculated first. Secondly, the average water concentration of

these layers are found, and converted to FMCwt%. Finally, the Time To Flash-over is

calculated.

1 private static double ttfFromFMC(double fmc) {
2 return 2.0 * Math.exp(0.16 * fmc);
3 }

Listing 4.12: Calculation of Time To Flash-over based on Fuel Moisture Content.

42

4.2.3 Fire Risk Factor

As Time To Flash-over can be hard to grasp by itself, the DYNAMIC research project

has described a fire risk factor, which combines TTF with wind to produce a general

expression of conflagration risk. In urban environments, structures are constructed

in close proximity to each other and, as such, wind poses a real risk in spreading fires

to nearby buildings or over large distances.

The fire risk factor, Rf combines the area coverage dry wood factor, α, with wind

energy influence, v, as seen in Equation 4.18, and the implementation is presented in

Listing 4.13.

Rf = α · v (4.18)

1 public static FireRiskFactor riskFactor(TimeToFlashover ttf, WindSpeed
↪→ measuredWindSpeed, LocalDateTime timestamp) {

2 double alpha = alpha(ttf, timestamp);
3
4 double v = v(measuredWindSpeed);
5 return new FireRiskFactor(R_f(alpha, v));
6 }

Listing 4.13: Calculation of Fire Risk Factor.

The area coverage dry wood factor uses TTF at 50% as a reference level, compared

to the relative humidity (RH).

α ≈
(
tFO(50%RH)

tFO(X%RH)

)3

(4.19)

The wind energy influence, v, is defined if greater than the critical wind velocity,

uc. If it is lower, the influence is 1 and does not add to the Fire Risk Factor.

v ≈
(
u

uc

)3

, u > uc (4.20)

In the implementation uc is set to 10m/s.

The resulting Fire Risk Factor can be categorized into levels of risk, as seen in

Table 4.1. These categories lets non-technical people relate to the fire risk factor.

43

Value Rf Description
0 ≤ Rf < 4 Low risk
4 ≤ Rf < 10 Medium risk
10 ≤ Rf < 30 High risk
30 ≤ Rf < 60 Very high risk
60 ≤ Rf Extreme risk

Table 4.1: Fire risk categories

4.2.4 Interpolation

The model requires weather observation for each of the steps in the computation, but

since each step is much shorter (720 seconds) than the window of the weather obser-

vations (1 hour), the list of weather observations needs to be filled with interpolated

data. To get the correct frequency of observations, of 720 seconds, there needs to be

4 interpolated observations between each of the observation provided to the model.

Temperature, humidity, and optionally wind, are interpolated linearly. E.g., if the first

observation is at 13:00 with an air temperature of 10°celsius and the second is at

14:00 with 12°celsius, The first will be at 13:12 with 10.4 degrees, second at 13:24

with 10.8, third at 13:36 with 11.2, and lastly fourth at 13:48 with an air temperature

of 11.6 degrees. Each with 12 minutes between them and (12 − 10)/N = 0.4 degrees

difference.

4.3 Deployment and DevOps

The Fire Risk Model is published as a Java library via GitHub Packages [54] and

Maven [24]. In the pom.xml file that Maven uses to handle all dependencies and

configurations for building the project, there is a version number. When code changes

are committed to the main branch in GitHub, a script runs automatically to build the

project and deploy it as a package with the new - incremented - version number.

Listing 4.14 shows the script used for this. The two top-nodes in the script, on and

jobs describes when the action will run, and what it does when it runs. Here, on says

that this action will run every time code are pushed to the main branch. This happens

44

when local commits are pushed to the repository, and when pull requests are merged

into the branch. Line 13-35 declared a series of steps to run. 13-21 are steps for set-

ting up the runtime environment with Java, and configuring the settings that Maven

uses. Line 22-35 are the steps that deploys the package using Maven. First, a .jar-file

are deployed locally on the runtime environment. On line 25, a secret is provided

from the GitHub repository, such that it has read and write access to the packages

directory. Then finally, on line 31-35 the local file is uploaded to GitHub Packages to a

specific directory, here named ’myPackage’.

1 name: Java CI with Maven
2
3 on:
4 push:
5 branches:
6 - main
7 jobs:
8 build:
9

10 runs-on: ubuntu-latest
11
12 steps:
13 - uses: actions/checkout@v2
14 - uses: actions/setup-java@v1
15 with:
16 java-version: 14
17 settings-path: ".m2/"
18 - uses: actions/cache@v2
19 with:
20 path: ~/.m2/repository
21 key: ${{ runner.os }}-${{ hashFiles(’**/pom.xml’) }}
22 - name: Publish package
23 run: mvn $MAVEN_CLI_OPTS clean deploy
24 env:
25 GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
26 MAVEN_CLI_OPTS: "-s .m2/settings.xml --batch-mode"
27 - name: Copying target jar
28 run: |
29 mkdir myTarget
30 cp target/*.jar myTarget
31 - name: Uploading jar
32 uses: actions/upload-artifact@v2
33 with:
34 name: myPackage
35 path: myTarget

Listing 4.14: GitHub Action for deploying new package to GitHub Packages.

45

Chapter 5

Fire Risk Services (FRS)

The Fire Risk Model (FRM) is implemented as a library in java, and are not, by default,

usable as a RESTful web service. The Fire Risk Services (FRS) wraps the implemen-

tation of the FRM and exposes its features through a selection of endpoints. Some

additional endpoints are implemented to add new locations to the DHS. In this chap-

ter, we present the Fire Risk Services and its endpoints.

5.1 System Overview

Following Figure 3.1, the FRS is a service that negotiates information between the

Middleware and the Data Harvesting Service (DHS). Requests from the Middleware

are fulfilled by requesting data from the DHS, and returning calculated results from

the FRM based on that data. When the Middleware requests new locations to be

tracked by the DHS, the requests are simply passed along without modifications.

The system is implemented as a RESTful web API using the Spring Boot framework.

Dependencies, such as the FRM, are listed in a file pom.xml which allows Maven to

build the project without any local dependencies. Figure 5.1 shows a class diagram for

some of the functionality implemented in the project. The concrete implementation of

the Fire Risk Services is available via [16].

46

Figure 5.1: Class diagram for the FRS.

5.2 Endpoints

The list below list every endpoint in Fire Risk Services. The following subsections

explain the endpoints in more details.

47

• GET /heartbeat

• POST /location/add

• POST /firerisk

• POST /fireriskfactor

5.2.1 Heartbeat

The heartbeat-endpoint is a request that simply returns a "200 OK" status with a

random unique identifier (UUID). It is used by the Fire Risk Services to prevent the

deployed applications, Middleware and DHS, from going into a sleep mode. This was

a necessity for collecting data for the experiments detailed in chapter 9, as they re-

quired scheduled services, and Heroku applications automatically enters sleep mode

after 30 minutes of inactivity.

5.2.2 Add locations

The /location/add endpoint accepts a JSON body with a location. It passes along the

location to the corresponding endpoint of the DHS for adding locations. This endpoint

is mainly used by the Middleware when users subscribe to a location, but can also be

used to inject new locations that bypasses the Middleware.

The Middleware could request the endpoint of the DHS directly, but following the

separation of concerns, and the overall architecture described in Figure 3.1, the FRS

should transparently handle any requests from the Middleware.

5.2.3 Firerisk

The /firerisk endpoint accepts a JSON body with a location. It requests weather

data from the DHS for the locations, and models a fire risks that is returned. If the

DHS does not have data for that location, an exception is thrown.

48

/heartbeat
/location/add
/firerisk
/fireriskfactor
/location/add
/firerisk

In Listing 5.1, code for usage of Fire Risk Model (FRM) is shown. The observations

of air temperature, relative humidity, and wind speed are requested from Data Har-

vesting Service, mapped into the FRM Observations, and interpolated before given as

parameter to Fire Risk Model’s method to compute a fire risk result.

1
2 List<ObservationResponse> observationResponse =

↪→ dataHarvesterCalls.getObservationsAtLocationFromDataHarvester(location,
↪→ measurementSource.toString(), previousDaysOfMeasurements, resolution);

3
4 List<Observation> observations =

↪→ ObservationMapper.mapObservationResponseToObservations(observationResponse);
5
6 List<Observation> interpolatedObservations = Interpolation.generate(observations,

↪→ (int) WaterExchangeInWall.deltaT);
7
8 stopWatch.start();
9

10 fireRiskResult = FireRiskModel.computeFireRiskResult(interpolatedObservations);
11
12 stopWatch.stop();

Listing 5.1: Usage of the Fire Risk Model in the Fire Risk Services

5.2.4 Firerisk factor

The /fireriskfactor endpoint does the same as the The firerisk endpoint, but

uses the FRM to model a factor instead of the TTF value. It include wind in the

calculations, and is useful combined with the TTF to model risk of fire spreading

between structures.

5.3 Database

The Fire Risk Services does not need to be connected to any database for the services

that it provides, but during development and the experiments, which are conducted

in Chapter 9, the time used to compute each fire risk by the FRM was stored in a

database, in addition to storing historical Time To Flash-over calculations. The config-

urations for connecting to a database are defined in the file application.properties. For

simplicity, this system uses the same database as the Middleware and Data Harvesting

Service, but is not required to do so.

49

/fireriskfactor
firerisk

5.4 Deployment and DevOps

The FRS is deployed as a stand-alone web API in a cloud-provider, named Heroku.

Deployment is done through a CLI tool called Heroku CLI [18]. Heroku uses a wrapper

for Maven, which is included in the project structure, to build and serve the web API.

The source code is versioned and maintained in GitHub.

50

Chapter 6

Data Harvesting Service (DHS)

As the Fire Risk Model requires various weather data as input, the Data Harvesting

Service is responsible for collecting it at the specified locations. It collects weather

measurements to use from The Norwegian Meteorological Institute’s Frost API and

Netatmo’s API. In this chapter we present the Data Harvesting Service and its end-

points used to interface the service.

6.1 System Overview

The application is, similar to Fire Risk Services, written in Java with the Spring Boot

framework. Figure 6.1 lists most of the top-level packages in the project, following

recommended best practices for structuring a Spring Boot application. Figure 6.2

gives an overview of the implementation. Classes with the Controller suffix are re-

sponsible for defining endpoints, classes with the Service suffix implement the main

business logic, while the Repository suffix is used for classes interfacing the database,

and the Calls suffix is used for classes responsible for requesting data via external

APIs. The concrete implementation of the Data Harvesting Service is available via

[12].

51

data-harvester
apicalls
config
controller
exception
model
repository
scheduledtasks
service
Application

Figure 6.1: File structure of Data Harvesting Service

Figure 6.2: Class diagram for the DHS.

52

6.2 Endpoints

The application has four main REST API endpoints:

• GET /measurements/({latitude},{longitude})?

historicalMeasurementSource={string}&previousDaysOfMeasurements={integer}

&historicalMeasurementResolution={integer}&forecastResolution={integer}

• GET /location/exists/({latitude},{longitude})

• POST /location

• GET /frost/observations/({latitude},{longitude})?

startTimeString=timestamp&endTimeString=timestamp

Below we provide more details on the services provided by the endpoints.

6.2.1 Measurements

The endpoint /measurements/({latitude},{longitude}) is the one Fire Risk Ser-

vices sends a HTTP GET request in order to get the weather data needed to calculate

a fire risk. Based on sensitivity studies undertaken by the DYNAMIC research project,

the Fire Risk Model needs approximately five days to achieve a sufficiently accurate

relative humidity. As a result, to calculate an accurate indication of the fire risk in

an area for the present time, modelling relative humidity the previous five days is

preferable.

To predict fire risk for the future, the DHS uses weather forecasts from MET as

a replacement for the measurements. Figure 6.3 shows how DHS combines weather

measurements and forecasts. A database is used by the DHS to store the gathered

weather measurements and forecast. Weather data from all three weather services

are collected and stored as the service runs. The code can to get weather data from

the database can be seen in Listing 6.1. Measurements from Netatmo and Frost are

collected every hour by the DHS, while the MET forecasts are collected every sixth

hour.

53

/measurements/({latitude},{longitude})?
historicalMeasurementSource={string}&previousDaysOfMeasurements={integer}
&historicalMeasurementResolution={integer}&forecastResolution={integer}
/location/exists/({latitude},{longitude})
/location
/frost/observations/({latitude},{longitude})?
startTimeString=timestamp&endTimeString=timestamp
/measurements/({latitude},{longitude})

Figure 6.3: Usage of relevant weather data

1 public List<Measurement> getHistoricalMeasurementsAndForecast(Location location, long
↪→ previousDaysOfMeasurements) throws NoFrostStationNearbyException,
↪→ NoMeasurementsException, MeasurementCollectionException,
↪→ MetForecastRequestException {

2
3 List<Measurement> historicMeasurements = measurementRepository.
4 findMeasurementByMeasurementId_LocationAndMeasurementSource
5 AndMeasurementId_TimestampBetween(location, MeasurementSource.FROST,

↪→ LocalDateTime.now().minusDays(previousDaysOfMeasurements),
↪→ LocalDateTime.now());

6
7 List<Measurement> forecast = measurementRepository.
8 findMeasurementByMeasurementId_LocationAndMeasurementSource
9 AndForecastCollectedAtBetween(location, MeasurementSource.MET_FORECAST,

↪→ LocalDateTime.now().minusHours(6), LocalDateTime.now(),
↪→ LocalDateTime.now());

10
11 return Stream
12 .concat(historicMeasurements.stream(), forecast.stream())
13 .collect(Collectors.toList());
14 }

Listing 6.1: Requesting measurements and forecast from the database.

6.2.2 Location exists

The endpoint /location/exists/({latitude},{longitude}) responds to whether

not the Data Harvesting Service application actively collects weather data for a spe-

cific location.

54

/location/exists/({latitude},{longitude})

6.2.3 Add location

The endpoint /location is to add a new location for which weather data is to be

retrieved. The location coordinates are contained in the request body. When adding

a new location for the service to collect data for, one sends a HTTP POST request

to the endpoint. The request consists of a JSON body with three fields: latitude,

longitude, daysToCollectMeasurements, shown in Figure 6.2. Latitude and longitude

represent the coordinates of the location and daysToCollectMeasurements describes

how many days the Data Harvesting Service should store the measurements after

being collected.

1 {
2 "latitude": 62.1453,
3 "longitude": 6.0748,
4 "daysToCollectMeasurements": 5
5 }

Listing 6.2: An example JSON body of a request to add a location.

As the Data Harvesting Service receives the request, it first checks the associ-

ated database for existing locations. If the requested location already is stored, then

a HTTP 400 Bad Request response is returned, as there is no use in collecting the

same measurements twice. If not, the closest MET station is found from the Frost

API. The API lets one request nearby stations with observations of temperature, rel-

ative humidity, and wind speed. However, it does not differentiate between stations

actively collecting measurements and those that previously did. To avoid this, the

Data Harvesting Service request the ten closest stations. Based on this, stations

with no time series of these three weather observation types of temperature, rela-

tive humidity, and wind speed, in the last couple of days are filtered out by using the

/observations/availableTimeSeries endpoint.

Finally, the station with lowest distance to the requested location is chosen. Mea-

surements collected at this station from the past days are requested and stored. How

many days of past measurements is dependent on the field daysToCollectMeasure-

ments in the request.This design makes it easy to test different values. After the

measurements are stored, the location is stored with information regarding the MET

station and how long to keep measurements. If everything was successful, an HTTP

200 OK response is returned.

55

/location
/observations/availableTimeSeries

6.2.4 Historical Measurements

The endpoint /frost/observations/({latitude},{longitude}) is used in the ex-

periments to request historical measurements from MET’s Frost API for multiple days.

The code can be seen in Listing 6.3. Line 4 requests meta data about the closest Frost

station and Line 6 and 7 requests the measurements for the station. Line 9-11 throws

an exception in case no measurements are returned. Finally, the measurements are

mapped to Fire Risk Model’s format.

1 public List<Observation> getObservationsFromClosestFrostStation(Location
↪→ location,LocalDateTime startTime,LocalDateTime endTime)

2 throws NoFrostStationNearbyException,MeasurementCollectionException,
↪→ NoMeasurementsException {

3
4 FrostStation frostStation = getClosestStation(location,startTime,endTime);
5
6 List<Measurement>previousFrostMeasurements =
7 getMeasurementsAtLocation(frostStation,location,startTime,endTime);
8
9 if(previousFrostMeasurements.isEmpty()){

10 throw new NoMeasurementsException();
11 }
12
13 return FireRiskServiceMapper.mapToObservationResponse(previousFrostMeasurements);
14 }

Listing 6.3: Collecting historical measurements from Frost.

6.3 Scheduled Services

Weather measurements and forecasts are periodically collected from the stored loca-

tions. To distribute the workload, data is collected at specific times for each source

by setting up cron jobs, as seen in Listing 6.4. Every sixth hour at five minutes past

the hour, 06:05, 12:05, 18:05, and 24:05, the forecast from MET is collected for each

location and stored in the connected database. Similarly, every hour at 17 minutes

past, a measurement from the closest MET station is collected. Lastly, every hour at

42 minutes past, measurements from Netatmo stations near each location is collected

and averaged to produce one average measurement for each location.

56

/frost/observations/({latitude},{longitude})

To define the corners required by Netatmo’s endpoint /getpublicdata, a 10km by

10km polygon is calculated with the desired location in the center. A filter option is

used when requesting stations to filter out stations with abnormal measurements. The

forecast from MET is requested less frequent, as its purpose is to replace the previous

forecast with a slightly more accurate one. We assume that forecasts rarely change

significally from hour to hour. When collecting from the Frost API, the closest station

for each location is requested.

1 @Scheduled(cron = "0 41 * * * ?")
2 public void getMeasurements() {
3 System.out.println("New measurements being collected");
4
5 List<Location> locations = locationService.getAllLocations();
6
7 for (Location location : locations) {
8 try {
9 Measurement averageMeasurementsFromArea =

↪→ netatmoService.getAverageMeasurementsFromArea(location);
10 measurementRepository.save(averageMeasurementsFromArea);
11 System.out.println("Collected measurement: " +

↪→ averageMeasurementsFromArea);
12 } catch (NoNetamoStationNearbyException e) {
13 System.out.println("Found no measurement at location " + location);
14 }
15 }
16 }

Listing 6.4: A scheduled service as a cron job collecting Netatmo measurement.

6.4 Database

The Data Harvesting Service uses a database to store measurements, information

about each location, and the configured minimum distance between each location.

For the experiments, a MSSQL database hosted on HVL was used. The Measurement

class can be seen Listing 6.5 and is used as an internal representation of a requested

observation or forecast, and the id class is presented in Listing 6.6. As measurements

can only be created from Netatmo, The Norwegian Meteorological Institute’s Frost

API, or The Norwegian Meteorological Institute’s forecast, they each have a method to

create a Measurement object without directly using the constructor, which is private.

The @Entity notation is used in Spring Boot to indicate classes to be mapped into tables

in the database.

57

/getpublicdata

1 @Entity
2 public class Measurement {
3
4 @EmbeddedId
5 private MeasurementId measurementId;
6 private double temperature;
7 private double humidity;
8 private Double windSpeed;
9 private MeasurementSource measurementSource;

10 private LocalDateTime forecastCollectedAt;
11
12 public static Measurement asNetatmoMeasurement(LocalDateTime date, Location

↪→ location, double temperature,
13 double humidity, Double windSpeed) {
14 return new Measurement(new MeasurementId(date, location), temperature,

↪→ humidity, windSpeed,
15 MeasurementSource.NETATMO, null);
16 }
17
18 public static Measurement asFrostMeasurement(LocalDateTime date, Location

↪→ location, Optional<Double> temperature,
19 Optional<Double> humidity, Optional<Double> maybeWindSpeed) throws

↪→ MeasurementCollectionException {
20 Double windSpeed = null;
21 if (maybeWindSpeed.isPresent()) {
22 windSpeed = maybeWindSpeed.get();
23 }
24 return new Measurement(new MeasurementId(date, location),
25 temperature.orElseThrow(MeasurementCollectionException::new),
26 humidity.orElseThrow(MeasurementCollectionException::new), windSpeed,

↪→ MeasurementSource.FROST, null);
27 }
28
29 public static Measurement asMetForecast(LocalDateTime date, Location location,

↪→ double temperature, double humidity,
30 Double windSpeed) {
31 return new Measurement(new MeasurementId(date, location), temperature,

↪→ humidity, windSpeed,
32 MeasurementSource.MET_FORECAST, LocalDateTime.now());
33 }
34 }

Listing 6.5: Measurement class stored in the database

6.5 Deployment and DevOps

The application is deployed as a web API on Heroku. As DHS uses Fire Risk Model as

a library to send measurements in the correct format, the application is deployed via

the Heroku CLI [18]. Similarly to Fire Risk Services and the implementations to other

services, the DHS source code is hosted on GitHub.

58

59

1 public class MeasurementId implements Serializable {
2 @NotNull
3 private LocalDateTime timestamp;
4 @NotNull
5 private Location location;
6 }

Listing 6.6: Measurement class id

Chapter 7

Middleware

The Middleware is a system that makes the Fire Risk Services (FRS) and Fire Risk

Model accessible for the end-users in the front-end clients. It is a Spring Boot appli-

cation with a similar structure as the FRS and the DHS, and it provides a separation

of concerns between the front-end logic and the FRS. It handles database connec-

tions and fetching of fire risks from the database and from the FRS. It exposes and

maintains a database of subscribed locations and associated fire risks, as well as noti-

fying subscribed users when fire risks are high for their locations. In this chapter, we

present the Middleware application, its endpoints, and scheduled services.

7.1 System Overview

In broad terms, the Middleware accepts requests from the front-end for fetching loca-

tions and fire risks, as well as adding new locations to the DHS, and fetching aggre-

gated fire risk predictions and historical data.

The application is a RESTful web API built with the Spring Boot framework, and

share a lot of similarities with the DHS and FRS. It uses a pipeline of source code ->

git -> GitHub Actions -> Heroku Deployment.

60

All external dependencies that the application uses (e.g. Gson and Lombok), are

declared in a Gradle file. By declaring all external dependencies, the project can be

cloned from the git repository and Gradle will download all the dependencies. This is

a neat feature to be able to develop the code application from any computer, but it is

also a necessity for building the application in a CI environment (GitHub Actions) and

for automatic deployments in Heroku.

middleware
controller
dto
model
repository
service
exception

Figure 7.1: File structure of the Middleware project

Figure 7.1 lists the top-level packages in the project. It follows the same best

practices as the DHS for structuring Spring Boot web projects. Figure 7.2 gives an

overview of the implementation.

The next sections describe the key features of the Middleware in greater details,

and how it was modified to facilitate the experiments detailed in Chapter 9. The

implementation of the Middleware is available via [14].

7.2 Endpoints

The application exposes services through a set of endpoints and operations. The main

endpoints are location, firerisk, statistics and subscriptions. Each of them are imple-

mented as a separate REST-controller in the Spring Boot-application, using the folder

structure presented in Figure 7.1.

61

Figure 7.2: Class diagram for the Middleware.

• GET /locations

• POST /location

• POST /firerisk/factor

• POST /firerisk/ttf

• GET /firerisk/ttf/report.csv

• GET /firerisk/ttf/report.csv?latitude={string}longitude={string}

The first four endpoints are used by the Frontend applications. /locations is used

to fetch a list of all the locations that the Middleware keeps track of. It allows the

Frontend to fetch firerisks for different locations, and the locations can be presented

to the user as a list or on a map, which is detailed more in Chapter 8.

The endpoint returns a JSON-array of location entities converted to strings, and a

typical response is shown in Listing 7.1.

62

1 [
2 {
3 "latitude": 62.1453,
4 "longitude": 6.0748,
5 "id": 1,
6 "radius": 150
7 },
8 {
9 "latitude": 59.0017,

10 "longitude": 3.9472,
11 "id": 2,
12 "radius": 150
13 },
14 {
15 "latitude": 58.9853,
16 "longitude": 11.2748,
17 "id": 3,
18 "radius": 150
19 },
20]

Listing 7.1: An example JSON body of a request to get all locations

The /firerisk endpoint takes a location as input (which is provided by the previous

endpoint), and returns the current fire risk for that location. If no recent fire risks

are stored in the database for that location, a request is sent to the Fire Risk Services

(FRS) for calculating a new fire risks. The endpoint returns a fire risk with information

about date, status, measurement source, and a list of TTF values, where the first

value in the list is the current risk, while the rest is predicted TTF values with one

hour intervals up to 9 days into the future. Table 7.1 is an example of such a call,

represented in a table format. The values in the first column are the timestamps (with

resolution down to hours), and the right column are their corresponding TTF values

in minutes.

The last two endpoints are implemented as a way of collecting a larger amount

of data from the services for statistical analysis. The usage of these endpoint are to

facilitate the analysis done in Chapter 9. The /reportall endpoint finds all the fire risks

in the database that are collected with the Scheduled Services, described in section

7.3, and groups them together by location id and measurement source, and returns a

downloadable csv file with each row containing a list of ttf values. The last endpoint

is just a filtering for the same functionality, that only collects fire risks for a specific

location.

63

64

locationId 1
measurementSource FROST
2021-02-10 01 3.871
2021-02-10 02 3.868
2021-02-10 03 3.861
2021-02-10 04 3.851
2021-02-10 05 3.841
2021-02-10 06 3.835
2021-02-10 07 3.833
2021-02-10 08 3.838
2021-02-10 09 3.846
2021-02-10 10 3.853
2021-02-10 11 3.858
2021-02-10 12 3.861
2021-02-10 13 3.865
2021-02-10 14 3.868
2021-02-10 15 3.870
2021-02-10 16 3.869
2021-02-10 17 3.864
2021-02-10 18 3.857
2021-02-10 19 3.849
2021-02-10 20 3.841
2021-02-10 21 3.832
2021-02-10 22 3.823
2021-02-10 23 3.814
2021-02-11 00 3.804
2021-02-11 01 3.794

Table 7.1: Data stored for a single fire risk request. The full request includes more
rows than displayed.

7.3 Scheduled Services

In addition to the RESTful services that the Middleware offers, the Middleware also

implements logic that runs at fixed intervals, by fetching fire risks for every location

once an hour. This ensures that up-to-date fire risks are available to the end-users,

and it is a scalable solution that only increases in resource utilization linearly by the

amount of locations that are subscribed to, and not by the number of users.

There are currently two functions running as scheduled services: one is fetching

fire risks for all locations with Netatmo as data source, and another with Frost. Both

runs once every hour, but are spaced in time to prevent overloading the Fire Risk

Services and the Data Harvesting Services. The first runs at the time X:29 and the

other at X:53, where X is the hour.

The scheduled times can be arbitrary, but they are based on the scheduled ser-

vices that the Data Harvesting Services are using to fetch weather data. By running

the Netatmo call after new data has been fetched for Netatmo data in the Data Har-

vesting Services, the fire risks that are calculated are as updated as possible. This is

equivalent for the call to Frost.

7.4 Deployment and DevOps

The Middleware application is deployed to Heroku as a Gradle project. The Heroku

project is connected to the source code, hosted in GitHub, and any time there are

changes on the default branch (merges and commits), Heroku rebuilds the application

and redeploys it. The data in the database is not affected by deployment process. The

deployment process does not invalidate any client sessions. If a user starts a series

of requests that first targets the older version of the application, and then the newer

one, there should not be any cause of errors. This is partly due to the fact that the

handling of the client is stateless. The application does not store or remember any

previous interactions with the client, so the client must include any and all details

required to complete a request.

65

1 name: Java CI with Gradle
2
3 on:
4 push:
5 branches: [main]
6 pull_request:
7 branches: [main]
8
9 jobs:

10 build:
11
12 runs-on: ubuntu-latest
13
14 steps:
15 - uses: actions/checkout@v2
16 - name: Set up JDK 1.8
17 uses: actions/setup-java@v1
18 with:
19 java-version: 1.8
20 - name: Grant execute permission for gradlew
21 run: chmod +x gradlew
22 - name: Build with Gradle
23 run: ./gradlew build

Listing 7.2: The GitHub Action used for building and testing in CI

Github has a feature called Actions that can be used to build, run and test the

source code in a cloud-hosted environment. Heroku integrates well with this feature,

such that if a unit test fails during the testing stage, the new application will not be

built and deployed on Heroku. Testing is described more in section 7.6. Listing 7.2

show the script that the GitHub Action is running. It specifies which branches in git

that it should run on, which environment it should initialize in the cloud environment

(Linux Ubuntu with JDK 1.8 and permissions to run gradlew), and what commands to

run. The command run: ./gradlew build builds the project and runs the unit tests.

7.5 Database

The application is connected to the same database as the FRS and the Data Harvest-

ing Services. This was merely a convenience, rather than a requirement, since the

microservices do not read and write to the same tables. The entities that the Middle-

ware stores in the database are Locations in Table 7.2 and Firerisks in Table 7.3. The

fire risk entities are stored with a reference to the locations, to make it possible to

retrieve fire risks for specific locations.

66

Column_name Type Length Nullable
id numeric 9 no
latitude float 8 no
longitude float 8 no
name varchar 255 yes
radius float 8 no

Table 7.2: Subscribed Locations SQL table

Column_name Type Length Nullable
id numeric 9 no
date datetime 8 yes
location numeric 9 no
measurement_source int 4 yes
status varchar 255 yes
tag varchar 255 yes
ttfs text 16 yes

Table 7.3: Firerisks SQL table

The database is a MSSQL database hosted on HVL’s servers. It was attempted to

use Heroku’s free SQL-databases for each of the services, but the free tier is limited to

10.000 rows of data in the database, and storing weather data and fire risks exceeds

that within a few days. Following good code practices with low coupling between the

components, switching database was fairly easy. The Spring Boot framework uses an

application.properties file to inject arguments to the run-time environment during

startup of the application. The file contain pairs of keys and values, such as sql-dialect,

database-url, username, password, and other environment values.

When running on localhost, and during unit-testing, the Middleware utilizes an in-

memory database that is instantiated and destroyed between each sessions. This sim-

plifies development, since functionality can be tested with a database, without affect-

ing data in the production database, and bad test-runs will not be kept in successive

runs, causing hard-to-debug issues. By using a separate application.properties file

for testing, the application are unaware of the underlying database structure.

67

7.6 Testing

By separating logic out from the RESTful services, some of the code can be unit tested

in a simple manner. Testing and asserting a certain behavior on the endpoints and

scheduled services are more tricky. However, the Spring Framework provides features

that simplifies the testing. By using mocking, external dependencies can be ignored,

and the code can be tested in isolation.

The Spring Boot framework uses the @Autowired annotation to automatically in-

ject dependencies. It can be used for both fields and constructors, but if there is only

one constructor, the annotation can be omitted. The dependency injection (DI) can be

utilized in test classes as well. By creating mocks for database handlers and rest tem-

plates, the controllers and services can be instantiated with their normal constructors,

but using mocks instead of the normal dependencies.

The Middleware requests data from the FRS for firerisks through the RestTemplate-

class. By mocking it, using the Mockito-library, the requests can have mocked re-

sponses, and the tests can assert that the code handles the expected cases. This does

not validate that the Middleware and FRS communicate correctly, only that the code

that handles the requests and responses operates well on the data it is developed for.

In order to test that the systems communicate as intended, larger integration tests

have to be made. The unit tests are intended to test the Middleware in isolation.

Listing 7.3 demonstrates a test suite that tests the FireRiskController. The project

is configured to use a separate in-memory database for testing og running on local-

host, and therefore, the repositories can be injected by the framework instead of being

mocked. The RestTemplate is mocked to isolate the code under test.

68

1 package com.dynamic.middleware.restservice;
2
3 import ...
4
5 @SpringBootTest
6 public class FireRiskServicesTest {
7
8 @Mock
9 RestTemplate restTemplate;

10
11 @Autowired
12 FireRiskRepository fireRiskRepository;
13
14 @BeforeEach
15 void init() {
16 fireRiskRepository.deleteAll();
17 }
18
19
20 @Test
21 void consumeFireRisk_returnsFireRisk() {
22 // arrange
23 Location location = getArbitraryLocation();
24 String url = GlobalVariables.GET_FIRE_RISK_SERVICES_BASE_URL() + "/firerisk";
25 FireRiskResponse mockedResponse = getDefaultFireRiskResponse();
26 FireRiskServices fireRiskServices = new FireRiskServices(fireRiskRepository,

↪→ restTemplate);
27 when(restTemplate.postForObject(eq(url), any(),

↪→ eq(FireRiskResponse.class))).thenReturn(mockedResponse);
28
29 // act
30
31 FireRisk fireRisk = fireRiskServices.consumeGetFireRisk(location,

↪→ MeasurementSource.FROST, "my tag");
32
33 // assert
34 assertThat(fireRisk).isNotNull();
35 assertThat(fireRisk.getTag()).isEqualTo("my tag");
36
37 }
38
39 }

Listing 7.3: Unit testing with mocks

69

Chapter 8

Front-end Single Page Web

Application

The Fire Risk Services (FRS) provides a service for computing fire risks for locations.

The Middleware provides a set of endpoints for adding and removing locations that

fire risks should be calculated for, as well as sending notifications when risks are

above a threshold. The front-end detailed in this chapter focuses on informing the

risks in an intuitive way, and to provide an graphical interface for the services in the

Middleware. The source code for this project can be found via [13] and the deployed

application at https://firerisk-frontend.herokuapp.com/

8.1 Project Structure

The application is a single page web application, implemented with React [34] and

TypeScript [50], which was chosen for their popularity in the industry and because of

prior knowledge of the frameworks and languages. The folder structure is shown in

Figure 8.1 as a reference point for the further discussion of the technologies and how

the front-end is intended to work. Some entries are not included for brevity.

package.json contains all dependencies used in the project, and other configura-

tions required to run the project. Yarn [53] is used to build and serve the project on

localhost (or in a deployed environment), starting from index.tsx as the entry point.

70

https://firerisk-frontend.herokuapp.com/

firerisk-frontend
src

api
assets
components
interfaces
layout
pages

heatMap
locationMap

redux
reducers
actions.ts
actionTypes.ts
store.ts

App.tsx
index.tsx

package.json

Figure 8.1: Directory for the web application

8.1.1 React

React is a JavaScript library for building interactive user interfaces. It uses a special

syntax called Javascript XML (JSX) combined with JavaScript to build components of

the application. Each component returns a single JSX element which can contain other

JSX elements and normal HTML syntax that will be rendered. Each component can

maintain its own state (but is not required to), and the React library will re-render

a component and its children upon state changes. By only re-rendering portions of

the component tree instead of the entire application, a static web page can become

dynamic without the need for refreshing the entire page or navigating to other pages

provided by a server.

An example of a React Component is Listing 8.1. The component is one of the top-

level components, and even though it contains few lines of code, it has a lot of logic

packed under the hood. The return statement (line 11-22), is a single JSX element,

where the Router element is the root. The Router allows for URL manipulation in the

application. Components inside a Router can use the URL to fetch values, and the

71

URL can be changed to let the Router know that some other component should be

rendered. The Switch component (line 15-19) does just that. Depending on the value

of the URL, it renders the first Route component which has a path parameter that

matches the value. The last Route element has a path value of just /, which means

that it will match any values.

The Switch component is wrapped in the Provider component, line 13-20. The

Provider is part of the React Redux [36] library, which provides a global store for all

components that are below it in the component tree. This acts like a local database

that components can access and will not be lost between re-renders. In this project,

the Redux store maintains locations and fire risks provided by the Middleware.

1 import React from "react";
2 import { BrowserRouter as Router, Switch, Route } from "react-router-dom";
3 import Navbar from "./layout/Navbar";
4 import Timeline from "./pages/timeline/Timeline";
5 import { Provider } from "react-redux";
6 import store from "./redux/store";
7 import LocationMap from "./pages/locationMap/LocationMap";
8 import HeatMap from "./pages/heatMap/HeatMap";
9

10 function Routes(): JSX.Element {
11 return (
12 <Router>
13 <Provider store={store}>
14 <Navbar />
15 <Switch>
16 <Route path="/timeline/:id" component={Timeline} />
17 <Route path="/locations" component={LocationMap} />
18 <Route path="/" component={HeatMap} />
19 </Switch>
20 </Provider>
21 </Router>
22);
23 }
24
25 export default Routes;

Listing 8.1: A React component used for navigation

8.1.2 TypeScript

The application is written in TypeScript [50], which is a typed superset of JavaScript.

By having strong typing and type inference at development time, a lot of errors, tradi-

tionally associated with JavaScript, like type errors or wrong shape of objects (meth-

ods and fields are different than expected). Type errors can still occur, especially

72

where the application has to integrate with other non-typed JavaScript libraries, and

wrong assumption are made, like declaring an interface of an object expected from the

Middleware, where the fields does not match reality. The benefits are still quite large;

the internal parts of the application should be without type-errors. Another large ben-

efit is that, once an error in the interface is detected, and updated, all implementation

of that interface with any errors will be failed by the compiler, thus refactoring code

becomes safer.

Line 10 in Listing 8.1 declares that the component should return a JSX.Element. If

something else is returned instead, like a string, number or void, the compiler will not

compile the component.

8.1.3 Leaflet & React Leaflet

Leaflet [22] is a JavaScript library for interactive maps. React Leaflet [35] pro-

vides bindings between between React and Leaflet. The library does not provide the

map data itself, but rather displays an overlay over maps. For this project Open-

StreetMap [33] is used because it easily integrates with Leaflet, and, in addition, is

free and open to use, as long as their name is credited within the map.

Listing 8.2 shows the implementation of a map component in a React application.

The heatMap page describe in figure 8.1 is implemented using the same components

but adds on a lot more logic and other presentational components. It renders a map

component that starts with its center at the geographical center of Norway, and initial

values, like zoom level, are provided.

73

1 import React from "react";
2 import { MapContainer, TileLayer } from "react-leaflet";
3 import { LatLng } from "leaflet";
4
5 const openMapAttribution = ’© <a

↪→ href="http://osm.org/copyright">OpenStreetMap contributors’;
6 const openMapUrl = "https://{s}.tile.openstreetmap.org/{z}/{x}/{y}.png";
7 const centerOfNorway = new LatLng(60.472024, 8.468946)
8
9 function Map() {

10
11 return (
12 <MapContainer
13 center={centerOfNorway}
14 zoom={10}
15 minZoom={6}
16 >
17 <TileLayer
18 url={openMapUrl}
19 attribution={openMapAttribution}
20 />
21 </MapContainer>
22);
23 }
24
25 export default Map;

Listing 8.2: React component for displaying map.

8.2 Features

The main page for the web application is a map, implemented with Leaflet, as de-

scribed in the previous section. The component uses Redux to fetch all the locations

that the Middleware keeps track of, and if the user navigates the map over any of

those locations, a request is made to fetch the current fire risk factor for that location.

When there is a fire risk for a location available, and the location is within the

boundaries of the map, the risk factor will be shown as a colour on the map grid. The

colours are mapped to the Table 4.1, where Low is green, Medium is yellow, High

is orange, Very High is red, and finally Extreme is dark red. Figure 8.2 shows an

example of this.

When a user clicks on a grid cell, a component appears to either display informa-

tion about current risks for that location, or a form to add that location to the list of

locations that the Middleware uses. In the current prototype, it is also possible to

74

Figure 8.2: Map with a superimposed grid of fire risk factors.

delete locations from the Middleware, but that functionality should be restricted to

either some form of admin users, or to the user who added the location. Figure 8.3

shows screenshots of an example of this.

Figure 8.3: Screenshots of adding and removing locations.

The grid that is superimposed on the map, is intended to be fixed relative to the

map. Each grid cell is 1-by-1km, and when the user pans around or zooms in or out, it

has to be recalculated. It is necessary because the grid can not be set directly from the

coordinates or the map itself. The distance between 1 degree of longitude is different

75

depending on latitude (111km at 0◦ latitude, and 55km at 60◦), and the map uses

mercator projections to project the spherical earth to a 2D-map, so locations further

north and south are more stretched.

When the grid needs to be recalculated, it starts at an fixed point (center of Nor-

way), and increments a coordinate in the direction of the current position in exact

1km-intervals. When it has reached the south-west corner of the map boundaries, it

iterates over the visible map and calculates an array of positions that are 1km away

from each other. Each position is then rendered as a translucent (or with a colour if

they contain a fire risk) rectangle on the map. The function for calculating a position

at an relative distance of another position is is shown in Listing 8.3, and if called with

an input of deltaCoordinate([60.0, 5.0], 1000, 0), it would return a location that

is 1000 meters east of the position [60.0, 5.0]. The calculation is not completely cor-

rect, as it makes some assumptions about the radius of the earth, which is not a fixed

values. Since the earth is an oblate spheroid, the radius gets slightly smaller as we

approach the north and south pole. The errors are small enough to not be a critical

problem for this application.

1 const DEGREES_TO_RADIANS = 180.0 / Math.PI;
2 const RADIANS_TO_DEGREES = 1.0 / DEGREES_TO_RADIANS;
3 const r_earth = 6371000.0;
4
5 export const deltaCoordinate = (
6 [latitude, longitude]: LatLngTuple,
7 deltaX: number,
8 deltaY: number
9): LatLngTuple => {

10 const newLatitude = latitude + (deltaY / r_earth) * DEGREES_TO_RADIANS;
11 const newLongitude =
12 longitude +
13 ((deltaX / r_earth) * DEGREES_TO_RADIANS) /
14 Math.cos(latitude * RADIANS_TO_DEGREES);
15 return [newLatitude, newLongitude];
16 };

Listing 8.3: Calculate a position offset from another.

8.3 Fetching Data from the Middleware

The front-end application needs data about locations, subscriptions and fire risks, in

order to be useful. The Middleware has, a described, endpoints that can be used

76

to fetch this data. The front-end application does this by dispatching actions with a

library called Redux thunks [38]. The library allows asynchronous manipulation of the

global redux store, making it suitable for tasks like fetching data from the Middleware

API.

8.4 DevOps

The React components uses Javascript and a special JSX syntax to allow for dynamic

loading of the web page, but in the end, it all compiles down to HTML and Javascript,

and it can be tested in the same way as described for the other systems.

Certain Javascript functions are pure – idempotent and without side effects – and

can easily be tested through unit tests. A framework called Jest [20] has been used

for this project. It uses the keyword Describe to wrap a test suite, and it for a single

unit test. Jest comes with a command line tool that detects all test files that are either

in a __tests__-directory, or uses the file extension .test.js or .spec.js anywhere in the

project.

Listing 8.4 shows a test for fetching a list of subscribed locations. In order to test

the logic in isolation without relying on the Middleware, the fetch-package that is used

for requests to the Middleware is mocked. The tests asserts the expected results for

normal behaviour (a list of locations is returned), as well as when the fetch fails.

The pattern of arranging the tests in the format of arrange/act/assert is indepen-

dent of the programming language, and is used here in the same way as the tests

implemented in Java in the Spring Boot applications. An example test using Jest is

shown in Listing 8.4.

77

1 import { getAllLocations } from "../getAllLocations";
2 import { Location } from "../../interfaces/Location";
3 import fetch from "jest-fetch-mock";
4
5 describe("getAllLocations", () => {
6 beforeEach(() => {
7 fetch.resetMocks();
8 });
9

10 it("should fetch all locations", async () => {
11 const mockedResponse: Location[] = [
12 { id: 1, longitude: 10, latitude: 10, name: "ten" },
13 { id: 2, longitude: 20, latitude: 20, name: "twenty" },
14];
15 fetch.mockResponseOnce(JSON.stringify(mockedResponse));
16
17 const locations: Location[] = await getAllLocations();
18
19 expect(locations).toHaveLength(2);
20 expect(locations[0]).toEqual(mockedResponse[0]);
21 expect(locations[1]).toEqual(mockedResponse[1]);
22 });
23
24 it("should return empty array if fetch fails", async () => {
25 fetch.mockReject(() => Promise.reject("a generic error message"));
26
27 const locations: Location[] = await getAllLocations();
28
29 expect(locations).toHaveLength(0);
30 });
31 });

Listing 8.4: Testing fetch with mocked responses.

78

Chapter 9

Experiments and Evaluation

In this chapter, a series of experiments are conducted to investigate the correctness,

usefulness and scalability of the system that have been developed. During the month

of February, fire risks were calculated for 74 locations, each hour, every day. In ad-

dition, fire risks were predicted every hour up to ten days into the future, and stored

together with its corresponding fire risk. Experiment 1 and 2 is an analysis of the com-

puted data, and Experiment 3, 4 and 5 tests specific parts of the system developed.

9.1 Locations

In order to get realistic and varied data for the experiments, the locations were se-

lected to achieve an even distribution across the country. The largest towns in each

county were added, as well as locations of special interest, mainly wooden structures

worthy of preservation, like "Bryggen i Bergen". Appendix A lists all of the locations

with their coordinates used for the experiments. Figure 9.1 shows the distribution of

locations.

79

80

Figure 9.1: Distribution of the 74 locations used for the experiments.

9.2 Experiment 1: Predicting Time to Flashover

In this experiment, the predicted Time To Flash-over (TTF) based on weather forecasts

were compared to TTFs based on weather measurements. Collecting fire risks and

predictions for many different locations provided a large dataset for analysis.

9.2.1 Collecting Fire Risks

By using the Middleware, the FRS, and the DHS, fire risks for each location were

fetched every hour. Using Scheduled Services, as described in section 7.3, the Mid-

dleware requested fire risks for each location from the Fire Risk Services. This was

done twice every hour: once to calculate fire risks based on Netatmo stations, and

once based on MET stations. The FRS fetched weather data from the DHS and re-

turned the modelled risks computed from the weather data. The weather observations

contain both weather forecasts and measurements. As such, for every hour, an array

of predicted TTFs was included in the fire risks returned to the Middleware, with up

to ten days of predictions.

The data collected is in the time range from 10th of February to 10th of March,

2021. For the 74 locations selected, the amount of data points can be calculated as:

n = (measurementFrequency ∗ 24) ∗measurementSources ∗ locations ∗ days

With a measurement frequency of one (one measurement per hour), two measure-

ment sources (Frost and Netatmo), 74 locations and 28 days, the number of computed

fire risks are:

n = (1 ∗ 24) ∗ 2 ∗ 74 ∗ 28 = 99456

For each fire risk collected, an array of TTFs is stored. The first TTF in the array

is the TTF for the time of the calculation, while the rest are predicted TTFs based on

81

weather forecasts. Each array contains up to 10 days worth of TTF predictions. With

a frequency of 1 per hour, this yields an array of size 240. Each entry in this array

consist of an object containing a timestamp and the modelled TTF value in minutes.

By multiplying the number of fire risks collected during the experiment with the

number of TTF values for each fire risk, we obtain the number of TTF values that were

collected for this experiment:

99456 ∗ 240 = 23, 869, 440

These 23 million data points are not stored in the database as efficiently as they

could have been. However, network latency and storage space is not a concern for

this experiment. Experiment 5, described in section 9.6, goes into more details about

resource management and other optimizations.

Figure 9.2: TTF based on measurements and forecasts for Oslo.

9.2.2 Analysing the Data

As mentioned, each fire risk has a list of TTF values and each value has a correspond-

ing timestamp. The weather observations used to model it comes from measured

82

Figure 9.3: TTF based on measurements and forecasts for Volda.

observations and not from weather forecasts. The subsequent TTF values are predic-

tions for how the TTF will change based on weather forecasts on an hourly basis.

Plotting the first TTF value for each fire risk and plot it, and for each hour similarly

find what TTF value that was predicted for this timestamp 24 hours ago, 48 hours

ago, all the way up to 8 days ago, we obtain graphs similar to Figure 9.3 and 9.2. The

blue line is the TTF values only based on measurements, and are referenced as day

0. Moving from one day of predictions up to eight days, it can be see that the lines

fluctuate more and differ from the fire risk based on measured values.

The deviation between TTF based on measurements and TTF based on forecasts

is to be expected, as the TTF values uses uncertain weather forecasts to model its

predictions. If different weather occurs instead of what was predicted, the fire risks

will, as a consequence, have differences between those that are based on measured

data and those that use an incorrect forecasts. The orange line, which is only pre-

dicting TTF values 24 hours into the future, will naturally stay closer to the blue line,

as weather forecasts normally gets more accurate for shorter periods of time into the

future. Even if the weather forecast is dramatically different from the actual weather,

it takes time for moisture to be transported in and out of the wooden structures, which

constraints the rate of change of fuel moisture content.

83

To figure out how much the predicted risks deviates from the risks computed only

on measured weather data, their relative differences can be calculated using the fol-

lowing formula:

dr =
|x− y|
(|x+y|

2
)

where x and y are the TTF values computed on historic weather data and what it

was predicted to be at that time. Multiplying the values by 100, we get the relative

difference as percentages, shown in Figure 9.4. In the figure, the differences are

calculated for predictions 1, 4 and 8 days into the future. The relative differences

can be calculated for all of the other days as well, but that would render the figure

unintelligible.

Figure 9.4: Relative differences between predicted and current TTFs.

As seen in Figure 9.4, the relative difference for the 1-day predictions never go

above 5%, while the 8-days prediction goes above 15% relative difference multiple

times. The figure is only for a single location, and the values are not necessarily

representative for the other locations, but as we will see in the next sections, and

as might not be a surprise, shorter times of predictions will in general yield lower

difference to the risks based only on measured data.

84

9.2.3 Largest difference

In the experiment, the location with the largest difference between measured and

predicted TTF values is Otternes in Aurland.

Figure 9.5: Predictions for Aurland; Location with largest relative difference.

Figure 9.6: Relative difference of predictions for Aurland.

The day 8 prediction is off by almost 40%. Figure 9.5 and 9.6 show the predictions,

and how far off they are, relative to the day 0 values. It is worth noting that the

predicted value is higher than the actual value, thus it predicts that the risks are

lower than they actually were.

85

9.2.4 Prediction deviation

Comparing the differences between the predicted TTF to the value computed only

based on measured weather data, and group them by how many hours into the future

they make predictions for, the standard deviation, average absolute difference and

average relative difference can be plotted.

Figure 9.7: Standard deviation and average absolute and relative difference for pre-
dicted TTFs.

Figure 9.7 shows the results for this calculation on all 74 locations. From the

graph, we can see that using predictions up to 72 hours yields an average absolute

difference below 0.25 minutes.

86

9.3 Experiment 2: TTF Weather Data Sources

The purpose of this experiment is to investigate how different weather sources affect

the modelled TTF values. Using the same dataset as in Experiment 1 (section 9.2), the

fire risks can be sorted by measurement source and compared against each other per

location. By comparing the modelled fire risks for each location with both sources,

they follow similar trends, as expected.

9.3.1 Data

As detailed in section 6, there are two measurement sources implemented in the Data

Harvesting Service, and the same sources are used for this experiment: Frost and Ne-

tatmo. They are both used to compute fire risks on an hourly basis, and both are used

for the same locations. This means that they can be directly compared against each

other. The application uses uncalibrated Netatmo stations as the application does not

have access to specific calibrated stations. As the predicted fire risks use the same

weather forecasts regardless of the selected measurement source, comparing the pre-

dictions are not of interest; given the same forecasts, they will converge towards the

same predicted TTF values. Therefore, only the fire risks that use exclusively histori-

cal data – the first TTF value for each fire risk – are used. Figures 9.8 and 9.9 shows

the two different sources for two of the locations used during the experiment.

If the computed TTF values for the two different sources are compared against

each other for all of the locations, the difference between Frost and Netatmo becomes

more apparent. Figure 9.10 shows the size of the differences as a histogram. Here,

the difference are found by taking TTFFROST − TTFNETATMO. A negative value

can be interpreted as the value from Frost being lower than the value from Netatmo.

87

Figure 9.8: Frost and Netatmo compared with each other at Bryne.

Figure 9.9: Frost and Netatmo compared with each other at Volda.

88

Figure 9.10: Differences between weather data sources.

9.3.2 Analysing the Data

It is interesting to note that the Frost data consistently reports lower TTF values

than the Netatmo data, even though the differences are negligible. For most of the

computations during the experiment, TTFs computed using weather data from Frost

lead to values that are less than 0.3 minutes lower than TTFs computed using weather

data from Netatmo.

9.4 Experiment 3: Historical Fire Risk 2013 - 2021

Running the system on historical weather data is a way to validate the implementation

of the Fire Risk Model, as one can check if it outputs reasonable values when running

for an extended time. By calculating Time To Flash-over for three locations from 1st

of October 2013 to 1st of April 2021, the FRM is run every time step all year, across

multiple seasons, to check for model stability and seasonal variations.

89

9.4.1 Data

As detailed in Section 2.2.1, The Norwegian Meteorological Institute’s Frost REST

API can be used to request several years worth of weather data. Hourly measurement

were requested and given as input to the model. Three locations of the 74 were

chosen for this experiment: Lærdal, Røros and Flatanger. Lærdal and Flatanger have

had large historical conflagrations, both in January of 2014, while the town of Røros is

a UNESCO World Heritage site [39], known for old wooden houses dating back to the

17th century. October of 2013 was chosen as start date to capture the whole winter

of 2013/2014, which includes the fires of Lærdal and Flatanger. Eight years should

additionally capture yearly variations.

Figure 9.11: Time To Flash-over at Lærdal from 2014 to 2021.

[h]

90

Figure 9.12: Time To Flash-over at Røros from 2014 to 2021.

Figure 9.13: Time To Flash-over at Flatanger from 2014 to 2021.

91

9.4.2 Analysing the Data

In Figure 9.11, 9.12, and 9.13, Time To Flash-over is plotted to visualize it during the

period. Not included is five days in September, starting 26th of September at 12 AM to

12 AM at 1st of October, to help initialize the model. Looking at the figure, there are

distinct differences spikes of high TTF during the summer, while the winter months

are fairly stable low, around 4-5 minutes TTF.

After running, the results were analysed to figure out how many model iterations

had Time To Flash-over under four minutes for each winter, to figure out each lo-

cation’s most dangerous winters. The Fire Risk Model has 720 seconds, or 12 min-

utes, between each iteration, and as such, we count every instance of below four

minutes TTF as 12 minutes. Number of iterations per day = (60 minutes/12 minutes) ∗
24 hours = 120. Flatanger had at most 23 days during the winter of 2015/2016, Lærdal

had 50 days during the winter of 2017/2018, while Røros had a total of 130 days out

of a total of 182 days during the winter of 2017/2018. This analysis shows that at

Røros more than 2/3s of the winter of 2017/2018 were below four minutes TTF. From

these results, there does not seem to be any specific about the winter of 2013/2014,

when the fires in Lærdal and Flatanger happened, based on Time To Flash-over alone.

However, including wind could change the picture.

Some statistics of these three location can be seen in Table 9.14, 9.15, and 9.16

based on quarterly fire risks. Winter is defined as December to February, spring is

March to May, summer is June to August and autumn is September to November. The

Time To Flash-over varied the most during the summer and autumn with a standard

deviation of over 1 for all locations. However, the average TTF is higher with over 7

minutes during the summer and 5-6 minutes during the autumn.

9.5 Experiment 4: Winter of 2020/2021

Experiment 4 looks at the 74 locations used in Experiment 1 and Experiment 2 for an

analysis of the winter of 2020/2021, 1st of October to 31st of March. It uses MET’s

Frost API and hourly measurements over the period for all 74 locations as input to the

model, similar to Experiment 9.4.

92

93

Season Max Min Average Std
Winter (Dec. - Feb.) 5.56 3.07 4.43 0.52
Spring (Mar. - May) 8.53 3.23 4.92 0.82

Summer (Jun. - Aug.) 13.99 5.41 8.65 1.67
Autumn (Oct. - Nov.) 11.17 3.71 6.16 1.36

Figure 9.14: Seasonal statistics from Lærdal 2013 to 2021.

Season Max Min Average Std
Winter (Dec. - Feb.) 6.38 3.09 4.73 0.60
Spring (Mar. - May) 8.30 3.46 5.32 0.83

Summer (Jun. - Aug.) 16.03 5.86 9.64 2.04
Autumn (Oct. - Nov.) 12.14 4.00 6.77 1.60

Figure 9.15: Seasonal statistics from Flatanger 2013 to 2021.

Season Max Min Average Std
Winter (Dec. - Feb.) 5.06 2.29 3.78 0.50
Spring (Mar. - May) 7.74 2.66 4.51 0.80

Summer (Jun. - Aug.) 13.32 5.20 7.86 1.44
Autumn (Oct. - Nov.) 9.72 3.12 5.46 1.20

Figure 9.16: Seasonal statistics from Røros 2013 to 2021.

Figure 9.17: Time To Flash-over in Aurland during the winter of 2020/2021.

Figure 9.18: Time To Flash-over at Bryggen in Bergen during the winter of 2020/2021.

9.5.1 Analysing the Data

The results from three selected locations are visualized in Figure 9.17, 9.18, and 9.19.

To analyse the data, periods of consecutive low TTF were identified. The majority of

locations, 43 out of 74, had at least a week of consecutive TTF at less than 3.5 minutes.

94

Figure 9.19: Time To Flash-over at Mo i Rana during the winter of 2020/2021.

The most prominent was Mo i Rana, just south of the Arctic circle, with 27 days at less

than 3.5 minutes, and even 11 days less than 3 minutes.

Month Max Min Average Std
Oct. 2020 10.37 4.21 6.98 1.19
Nov. 2020 8.83 3.37 6.30 0.97
Dec. 2020 7.22 3.11 5.31 0.72
Jan. 2021 5.82 2.61 4.20 0.55
Feb. 2021 6.38 2.29 4.05 0.85
Mar. 2021 6.92 3.19 4.95 0.69

Figure 9.20: Monthly statistics from all 74 locations during the winter of 2020/2021
combined.

In Figure 9.20 statistics from the months of October 2020 to March 2021 based

on all 74 location is shown. Time To Flash-over averages at about 4 minutes during

the months of January and February and locations with under 3 minutes, compared to

October and November at 6-7 minutes on average.

95

9.6 Experiment 5: Data Storage and Computation

Time

Given that the system is built as cloud-hosted applications, some considerations to the

network latency and usage, CPU usage, and storage requirements should be made.

By analysing the resource management required to conduct Experiment 1 and 2, es-

timates on how the systems will scale can be made. Bottlenecks may not be detected

during the experiment, such as third-party API rate limits, but general metrics of the

resource management can still be useful for an informed decision on hosting and fu-

ture improvements.

9.6.1 Processing utilization

When a fire risk is requested from the Middleware to the FRS, the observation data is

fetched from the Data Harvesting Service and a stopwatch object is used to to measure

how long it takes for the model to calculate fire risks for the observations. Since all the

data from the database is fetched before the stopwatch starts, and it stops before the

data is returned to the Middleware, this can give a good indication on the processing

requirements of the Fire Risk Model. All the data is loaded in memory, so there are no

I/O operations to disk or database during the modelling phase.

The stopwatch measures time in nanoseconds, because when using milliseconds,

the result took more often than not 0ms. Stopwatch timings are visualised in Figure

9.21. Given that the calculations are so fast, there is no need to focus further on this

metric at this time.

9.6.2 System test

One of the operations that the Middleware performs is a scheduled service that re-

quests fire risks from the FRS for all of the locations, and store it in the database. In

order to complete this service, a sequence of actions has to take place:

96

Figure 9.21: Distribution of CPU time used for fire risk calculations.

1. All locations are fetched from the database

2. For each location, a fire risk is requested from the FRS

3. For each request the FRS requests weather data from DHS, then it calculates

and returns a firerisk

4. The firerisk is stored in the database

Three consecutive runs of this service yielded a runtime of 245433ms, 243457ms

and 242573ms, with an average of 243821ms, or roughly four minutes. The runtime

of this service relies on multiple factors: response time from the database, response

time from the Data Harvesting Service, and the time it takes to calculate the results

and transport the requests and responses across the services. Since this is not a

service that the end-user has to wait for, time is not critical. However, as the number

of locations in the database increase, the service will become slower.

The main bottleneck is waiting for the external weather data services. This can

be mitigated by pre-fetching and storing the weather data in the database, but that

97

would come with the cost of added storage space, so there is a trade-off that needs

to be considered. For the time being, a runtime of around 4 minutes are well within

acceptable limits for a service to only runs every hour (or less frequent than that).

When an end-user accessing the web application requests a fire risk for a specific

location, the number of actions required to complete the action is a bit simpler, as

described by diagram 9.22.

Figure 9.22: Sequence of actions for fetching stored fire risks.

Some testing on this scenario reveals that the request is usually completed within

2-3 seconds. This is a fairly high waiting time for a web service that an end-user waits

for, but it is not unreasonably high. This can easily be mitigated in the Middleware by

simply caching the results and keeping a map of fire risks for the different locations

in memory.

98

9.7 Conclusion

After conducting these series of experiments, some conclusions can be made. These

experiments are summarised in Table 9.1.

n name description

1 TTF Development Development of TTF at day x, with a de-
creasing window of forecast weather.

2 TTF - Weather
sources

Development of TTF at day x, as de-
scribed above, but utilizing different
weather sources.

3 Historical Fire Risk
2014 - 2021

Validate the Fire Risk Services based on
historical weather data from three loca-
tions to validate the Fire Risk Model and
analyse the outputted Time To Flash-over
over time.

4 Historical Fire Risk -
Winter of 2020/2021

Validate the Fire Risk Services based on
historical weather data based on all 74
locations to validate the Fire Risk Model
and analyse the outputted Time To Flash-
over over the winter of 2020/2021.

5 Data Storage and
Computation Time

Consideration of data storage and compu-
tation time.

Table 9.1: List of experiments.

By using the DHS, FRS and the Middleware, it was possible to fetch weather data,

model risks on measured data and predictions on forecasts, and store the risks in a

database in a way that they could later be used for analysis.

By comparing early predictions to later risks based only on measured weather

data, it was shown that the predicted values were sufficiently accurate to be used for

predicting fire risks. For a prediction 72 hour earlier compared to the risk based on

99

measured weather data, the standard deviation was below 0.3 minutes. This seems

to fit the resolution of the forecast data, which is hourly the first three days, and then

every sixth hours for the next seven days. As the model linearly interpolates between

each observation, a resolution of six hours might not reflect the changes during the

day.

Using Frost data, the modelled TTF values are consistently lower, compared to

results modelled on Netatmo data. Overall, both sources predicts similar fire risks. As

mentioned in section 6, measurements from Frost are collected from the closest MET

station, with no guarantee to how close it to the desired location. Netatmo however,

finds the stations within a polygon of 10 km by 10 km with the requested location in

the middle. As a result, comparing a MET more than 5 km away will not necessarily

be representative, due to variations in local weather.

The model seem to run stable when run over several years. The Fire Risk Model

outputs higher TTF during the summer, while a stable low during the winters. Low

TTF is not a huge problem in itself. However, if the low Time To Flash-over persists

over a longer period, then the likelihood of an ignition happening increases.

Based on TTF alone, January of 2014 does not seem extreme and periods of low

TTF occur every winter. Nevertheless, some winters have longer periods of low TTF,

such as the winter of 2020/2021.

The Fire Risk Model (FRM) is sufficiently fast, to the point where the modelling

itself is negligible compared to the preparation of the data. The services that fetches

fire risks at scheduled frequencies, uses around 4 minutes to fetch fire risks for 74

locations. The most time-consuming part is waiting for the external weather data and

reading/writing from the database. The requests for fire risks at a single location only

reads data from the database, and therefore only takes a couple of seconds without

any form of caching.

100

Chapter 10

Conclusion and Future Work

In this thesis, the fire risk model developed by Log [23] has been implemented, and

services required for subscribing to locations and fetching weather data has been de-

veloped. The cloud-hosted microservices can be used from a front-end application,

and during the month of February, the services were used to compute fire risks and

predictions. Computed data was then analysed in accordance with predefined experi-

ments in order to further investigate proposed research questions.

Five applications have been created in this thesis: Data Harvesting Service, Fire

Risk Services, Fire Risk Model, Middleware and the Front-end web application. Users

are able to use the system through the web application, which request fire risk from

the Middleware. If the fire risk for the location is stored in the database, it is returned,

if not, the Middleware request a fire risk from the Fire Risk Services. The FRS use

the Fire Risk Model combined with weather data from the Data Harvesting Service to

compute a fire risk and return it to the Middleware.

10.1 Conclusion on experiments

To validate the application, five quantitative experiments were conducted; one to com-

pare weather forecast to measurements, one to compare the two sources of measure-

ments, Netatmo and The Norwegian Meteorological Institute’s Frost API, two differ-

ent experiments to validate the Fire Risk Model on historical data over several years

101

and the winter of 2020/2021, and the final experiment looked at different aspects of

the system itself, such as data storage and computation time.

Experiment 1 compared fire risks based on weather measurement with fire risks

based on weather forecasts. By sampling a wide distribution of locations, it was

demonstrated that the standard deviation of time to flashover predicted three days

into the future were below 0.3 minutes. The deviation increases for prediction further

into the future, partly because weather forecasts gets less accurate further into the

future, as well as the resolution of forecasts going from 1 hour windows to 6 hour

windows somewhere around 72 hours (3 days). Furthermore, the decreasing tempo-

ral resolution results in inaccurate modelling as the linear interpolation of the model

excludes natural daytime variations.

For fire risks predicted all the way up to eight days into the future, a specific pre-

diction with relative differences of 35% compared to the fire risks computed from

measured weather data were found. This turns out to more than a full minute of dif-

ference in predicted TTF and ’actual’ TTF. By restricting the predictions to 72 hours,

sufficiently accurate predictions are achieved. This in turn, should allow for fire de-

partments to be notified prior to upcoming risk peaks, allowing proactive measures to

be initiated.

Experiment 2 compared the fire risks computed from the two different weather

sources implemented by the Data Harvesting Service. The differences between the

two sources were small enough that using one or the other have little impact on the ac-

tual values computed. By having multiple weather sources that yields similar results,

the DHS can use the best suited source to completing requests, based on availability

of data from the sources for a given location without the Fire Risk Services needing

to know (or care) about what sources have been used. These can be chosen based on

proximity to the location.

In Experiment 3 and 4, the FRS and DHS are used to compute fire risks over many

years for specific locations. A repeating pattern emerges from the graphs: lower

TTF, in the winter months, and higher in the summer months. During the winter of

2014/2015, the TTF values in Lærdalsøyri were low, but appears in accordance with

the seasonal variations seen during the considered period, winter 2013/2014 until

winter 2021.

102

And finally, in Experiment 5, resource usage of the microservices were investi-

gated. The CPU usage needed to calculate fire risks were measured and demonstrated

to be negligible. Fetching new fire risks for 74 locations takes a couple of minutes,

and the time taken will increase linearly if more locations are added. Most of the time

is spent waiting for external weather services to provide the requested data.

10.2 Research Questions Revisited

In this section, we return to the research questions proposed in the introduction of

this thesis, and reflect if the artefacts developed in combination with the experiments

conducted, can be used to answer the questions.

RQ1: How can different weather services be combined to obtain one unified

data service, that can provide weather measurements and forecasts for the fire

risk model?

The developed applications combines weather data from Netatmo and MET via their

respective REST APIs. These services have their own format, which is parsed and

mapped to Data Harvesting Service’s internal representation. The Fire Risk Services

can then request this data to compute a fire risk using the Fire Risk Model. These are

requested periodically to save time when requested.

RQ2: How can a software architecture that implements a complex fire risk

notification system composed of multiple independent cloud-hosted services

be designed?

The developed application uses a microservices architecture design. The system is

split into multiple separate applications, each with its own responsibilities. The ap-

plications are hosted on the cloud service Heroku, but with individual cloud hosting

configurations.

RQ3: Can the fire risk model be combined with weather forecast data to

predict accurate fire risk indications?

Stokkenes [44] has already demonstrated that weather data can be used for historic

fire risk computations, and by using the services developed in this thesis, the model

can be extended with weather forecasts to predict fire risk in the near-future. Experi-

ment 1 concludes that the predicted fire risks are accurate for up to 72 hours.

103

10.3 Threats to validity

The microservices developed in this thesis does fairly complex tasks. Numeric compu-

tations are done on weather data using a mathematical model, and location data and

other data is parsed from one service to the other. In this section, we discuss potential

threats to the validity of the experiments we have conducted and the conclusions we

have drawn from them.

The fire risk model developed in [23] is based on a generic living space, and makes

some assumptions about air volume, water produced, thickness of the wooden pan-

els, and air exchanged with the outside. All these factors affect how fast humidity

can be transported into and out of the wooden panels, which in turn determines how

the outside weather affects the Time To Flash-over. The assumptions are necessary to

compute the risks, but it also means that if all the houses in an area have qualities that

leads to higher or lower indoor relative humidity, the computed risks will not be accu-

rate. Hence, a generic approach to "houses" might be unsuited, but for stakeholders

with good knowledge of fire and risk analysis, the model can still be an important tool.

The model was translated from a set of equations in an Excel spreadsheet to a Java

library. During that process, bugs and errors may have been introduced. The risks of

that happening have been mitigated by using the data output from the spreadsheet

as a basis for unit-tests. The output from the model implemented in Java has also

produced reasonable outputs during the experiments.

Stokkenes [44] demonstrated that weather data could be used to accurately model

indoor humidity. This is fundamental to the implemented model, in order to develop

a system that can provide fire risks for any location in Norway, without having on-site

measurements.

Another threat to the validity of the fire risks, is that for any given location, the

exact weather is not known. The measurement sources provide open APIs to collect

weather data from the nearest devices, and some clever combination of multiple de-

vices can be used to interpolate the weather for a location. For instance, if location

B does not have a measurement device, but is mid-way between location A and C,

which have devices, it can seem reasonable to take the average between them to get

the weather at location B. Nevertheless, given the geographic differences in Norway,

location A, B, and C can have fundamentally different weather patterns.

104

10.4 Discussion

The microservices and front-end application developed in this thesis has been de-

signed with two conflicting interests; To collect as much current data as possible dur-

ing an extended period of time for the experiments, and to work as a self-contained

system that cleans up old data automatically, such that the data stored in the database

does not need to be manually removed every time too much data is stored. For the

limited time of the experiments, it was possible to store all the fire risks and request

new weather data from the external sources every hour, but this is not a very scalable

solution. When the experiments are not running, a scheduled service deletes all fire

risks older than a month.

The Middleware can also cache recent fire risks fetched for the front-end appli-

cation. If the same data is requested multiple times from the same (or different)

front-end users, the cached data can be returned instead of requesting new fire risks

from the Fire Risk Services.

Based on the results from Experiment 1, section 9.2, forecast for up to 3 days ahead

can reliably be used. Consequently, DHS does not need to collect new measurements

every hour. With the Frost API, it is possible to request previously measured weather

observations, and, as such, the DHS could request measured data every 6 hours,

12 hours or even once a day and use the forecast for the hours in-between. If the

measurements are requested every 6 hours: 00:00, 06:00, 12:00, and 18:00, a fire

risk computed at 14:00 could use measurements up to 12:00, and for 13:00 and later

use the forecast. This will not work when using Netatmo however, as the API only lets

one request the current measurement. By requesting weather data less frequently,

the DHS saves resource usage by fewer API requests and less time processing the

response. In the current version, the Data Harvesting Service collect data every hour,

and the Middleware request an updated Fire Risk Model iteration afterwards. If the

DHS collects less frequently, the FRM iterations would not need to be recomputed as

often too. By strategically choosing the intervals of the data collection and at which

times it runs, up-to-date measurements and forecasts can still be available at critical

moments, while saving computational time and resource usage.

105

An example of this, is for the usage of the system by a fire department. If the data

is harvested every 6 hours, at hours 00, 06, 12 and 18, new data will be available each

morning, and also updated data at the middle of the work-day.

10.5 Future Work

One aspect of the system, specifically the Data Harvesting Service, that could improve

weather data quality is how to choose the weather data source. The Norwegian Me-

teorological Institute’s Frost API is a quality controlled source, but the stations are

spread out. One option is to do interpolation on multiple weather stations based on

proximity.

With the Fire Risk Services current usage of the Fire Risk Model, it requests five

days of weather data measurements to initialize the model in addition to weather

forecast, and then runs the model on all the data with every fire risk request. An alter-

native is to store the state of the model after it is initialized on weather measurements,

which can be used to start the model from when the next request happens. This way,

the FRS only model the five days once, and whenever it receives a request, the FRM

only need to be run on data collected since previous request and the forecast. This

reduces the amount of stored measurements significantly.

For usage of Netatmo as a data source, the application has a set request for stations

within a 10-by-10 km polygon with four corners and does not widen this if the are few

or none stations.

All endpoints are currently open to all of the Internet. Authorization should be

added to avoid malicious users. Particularly the endpoints to add or remove locations

are sensitive and ought-to only be available to specific users with admin permission.

An experiment to validate that the modelled RH (and the TTF that is calculated on

RH) matches the actual values, can be conducted. Similar to Stokkenes’ [44] work. By

using Netatmo stations, a small scale experiment can be performed. This experiment

is not a proper validation of the model itself, but it can be a good indication of whether

the weather data accurately predicts indoor RH.

106

For locations that are not close to a measurement device, it may be more accurate

to use the near-future weather forecast for that location as the actual historical data

input to the model for calculating fire risks instead of attempting to uses the nearest

measurement device. The closest devices might be a long distance away, or one could

average, interpolate, or extrapolate the measured data between multiple devices. One

of the major challenges is determining if weather forecasts are actually correct, and/or

by which margin they are incorrect.

107

108

List of Figures

2.1 Requesting a Netatmo token in Postman . 21

2.2 Refreshing a Netatmo token in Postman. 22

3.1 A birds eye view of the software architecture of the system. 29

3.2 Data flow for fetching a fire risk for a location. 30

5.1 Class diagram for the FRS. 47

6.1 File structure of Data Harvesting Service 52

6.2 Class diagram for the DHS. 52

6.3 Usage of relevant weather data . 54

7.1 File structure of the Middleware project . 61

7.2 Class diagram for the Middleware. 62

8.1 Directory for the web application . 71

8.2 Map with a superimposed grid of fire risk factors. 75

8.3 Screenshots of adding and removing locations. 75

109

9.1 Distribution of the 74 locations used for the experiments. 80

9.2 TTF based on measurements and forecasts for Oslo. 82

9.3 TTF based on measurements and forecasts for Volda. 83

9.4 Relative differences between predicted and current TTFs. 84

9.5 Predictions for Aurland; Location with largest relative difference. 85

9.6 Relative difference of predictions for Aurland. 85

9.7 Standard deviation and average absolute and relative difference for pre-

dicted TTFs. 86

9.8 Frost and Netatmo compared with each other at Bryne. 88

9.9 Frost and Netatmo compared with each other at Volda. 88

9.10Differences between weather data sources. 89

9.11Time To Flash-over at Lærdal from 2014 to 2021. 90

9.12Time To Flash-over at Røros from 2014 to 2021. 91

9.13Time To Flash-over at Flatanger from 2014 to 2021. 91

9.14Seasonal statistics from Lærdal 2013 to 2021. 93

9.15Seasonal statistics from Flatanger 2013 to 2021. 93

9.16Seasonal statistics from Røros 2013 to 2021. 93

9.17Time To Flash-over in Aurland during the winter of 2020/2021. 94

9.18Time To Flash-over at Bryggen in Bergen during the winter of 2020/2021. 94

9.19Time To Flash-over at Mo i Rana during the winter of 2020/2021. 95

9.20Monthly statistics from all 74 locations during the winter of 2020/2021

combined. 95

9.21Distribution of CPU time used for fire risk calculations. 97

9.22Sequence of actions for fetching stored fire risks. 98

110

List of Tables

4.1 Fire risk categories . 44

7.1 Data stored for a single fire risk request. The full request includes more

rows than displayed. 64

7.2 Subscribed Locations SQL table . 67

7.3 Firerisks SQL table . 67

9.1 List of experiments. 99

A.1 List of locations. 122

111

Listings

2.1 Example of a JSON response body from the MET forecast REST API 14

2.2 Example of a JSON response from the Frost nearby stations endpoint . . . 16

2.3 Example of a JSON response from the Frost available timeseries endpoint 18

2.4 Example of a JSON response from the Frost observations endpoint 20

2.5 Response from requesting a Netatmo access token. 22

2.6 Measurements from Netatmo’s public data endpoint 24

4.1 Implementation of setting the initial values. 35

4.2 Method for setting initial water concetration. 36

4.3 Air exchange beta . 36

4.4 Calculation of ċwall . 37

4.5 Calculation of ṁwall . 37

4.6 Calculation of ċac . 38

4.7 Model current step. 39

4.8 Updating the water concentration in the differnent layers 40

4.9 Updating the water concentration inside the house 41

4.10Updating relative humidity inside the house 41

4.11Calculation of Time To Flash-over. 42

4.12Calculation of Time To Flash-over based on Fuel Moisture Content. 42

4.13Calculation of Fire Risk Factor. 43

4.14GitHub Action for deploying new package to GitHub Packages. 45

5.1 Usage of the Fire Risk Model in the Fire Risk Services 49

6.1 Requesting measurements and forecast from the database. 54

6.2 An example JSON body of a request to add a location. 55

6.3 Collecting historical measurements from Frost. 56

6.4 A scheduled service as a cron job collecting Netatmo measurement. 57

6.5 Measurement class stored in the database 58

112

6.6 Measurement class id . 59

7.1 An example JSON body of a request to get all locations 63

7.2 The GitHub Action used for building and testing in CI 66

7.3 Unit testing with mocks . 69

8.1 A React component used for navigation . 72

8.2 React component for displaying map. 74

8.3 Calculate a position offset from another. 76

8.4 Testing fetch with mocked responses. 78

113

Bibliography

[1] Vardis Anezakis et al. “A Hybrid Soft Computing Approach Producing Robust

Forest Fire Risk Indices”. In: A Hybrid Soft Computing Approach Producing

Robust Forest Fire Risk Indicies. Vol. 475. Sept. 2016. doi: 10.1007/978-3-

319-44944-9_17.

[2] L. Bodrozic, D. Stipanicev, and M. Stula. “Agent based data collecting in a forest

fire monitoring system”. In: (2006), pp. 326–330.

[3] N. Cheney, James Gould, and Wendy Anderson. “Prediction of Fire Spread in

Grasslands”. In: International Journal of Wildland Fire - INT J WILDLAND FIRE

8 (Mar. 1998). doi: 10.1071/WF9980001.

[4] Paulo Cortez and Aníbal de Jesus Raimundo Morais. A data mining approach to

predict forest fires using meteorological data. 2007.

[5] Daegil. “Personal email to Netatmo regarding the filter option in their API”.

unpublished. Feb. 2021.

[6] Data and products available from MET. 2017 (accessed October 23, 2020). url:

https://www.met.no/en/free-meteorological-data/Data-and-products-

available-from-MET.

[7] D. P. Dee et al. “The ERA-Interim reanalysis: configuration and performance of

the data assimilation system”. In: Quarterly Journal of the Royal Meteorological

Society 137.656 (2011), pp. 553–597. doi: 10.1002/qj.828. eprint: https:

//rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.828. url: https:

//rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.828.

[8] Khac Phong Do et al. “Spatial Interpolation and Assimilation Methods for Satel-

lite and Ground Meteorological Data in Vietnam”. In: (2015).

114

https://doi.org/10.1007/978-3-319-44944-9_17
https://doi.org/10.1007/978-3-319-44944-9_17
https://doi.org/10.1071/WF9980001
https://www.met.no/en/free-meteorological-data/Data-and-products-available-from-MET
https://www.met.no/en/free-meteorological-data/Data-and-products-available-from-MET
https://doi.org/10.1002/qj.828
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.828
https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.828
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.828
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/qj.828

[9] Dougal Drysdale. An Introduction to Fire Dynamics: Third Edition. John Wiley &

Sons, Ltd, 2011.

[10] ECMWF Who We Are. accessed April 23, 2021. url: https://www.ecmwf.int/

en/about/who-we-are.

[11] Martin Fowler and James Lewis. Microservices, a definition of this new architec-

tural term. url: https://martinfowler.com/articles/microservices.html.

[12] GitHub Data Harvesting Service. accessed May 31, 2021. url: https://github.

com/selabhvl/data-harvester.

[13] GitHub Fire Risk Front-End. accessed May 31, 2021. url: https://github.com/

Evjenth/fireriskfrontend.

[14] GitHub Fire Risk Middleware. accessed May 31, 2021. url: https://github.

com/selabhvl/middleware.

[15] GitHub Fire Risk Model. accessed May 31, 2021. url: https://github.com/

selabhvl/fireriskmodel.

[16] GitHub Fire Risk Service. accessed May 31, 2021. url: https://github.com/

selabhvl/fireriskservices.

[17] GraphQL. accessed May 3, 2021. url: https://graphql.org/.

[18] Heroku CLI. accessed May 22, 2021. url: https://devcenter.heroku.com/

articles/heroku-cli.

[19] Alan Hevner et al. Design Science in Information Systems Research. Sept. 2013.

doi: 10.2307/25148625.

[20] jest testing framework. accessed May 10, 2021. url: https://jestjs.io/docs/

api.

[21] Arjen Kraaijeveld et al. “Burning Rate and Time to Flashover in Wooden ¼ scale

Compartments as a Function of Fuel Moisture Content”. In: July 2016.

[22] Leaflet. accessed May 13, 2021. url: https://leafletjs.com/.

[23] Torgrim Log. “Modeling Indoor Relative Humidity and Wood Moisture Content

as a Proxy for Wooden Home Fire Risk”. In: Sensors 19.22 (Nov. 2019), p. 5050.

doi: 10.3390/s19225050. url: https://doi.org/10.3390/s19225050.

[24] Maven. accessed December 3, 2020. url: https://maven.apache.org/.

115

https://www.ecmwf.int/en/about/who-we-are
https://www.ecmwf.int/en/about/who-we-are
https://martinfowler.com/articles/microservices.html
https://github.com/selabhvl/data-harvester
https://github.com/selabhvl/data-harvester
https://github.com/Evjenth/fireriskfrontend
https://github.com/Evjenth/fireriskfrontend
https://github.com/selabhvl/middleware
https://github.com/selabhvl/middleware
https://github.com/selabhvl/fireriskmodel
https://github.com/selabhvl/fireriskmodel
https://github.com/selabhvl/fireriskservices
https://github.com/selabhvl/fireriskservices
https://graphql.org/
https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli
https://doi.org/10.2307/25148625
https://jestjs.io/docs/api
https://jestjs.io/docs/api
https://leafletjs.com/
https://doi.org/10.3390/s19225050
https://doi.org/10.3390/s19225050
https://maven.apache.org/

[25] MET Frost API secret. accessed April 22, 2021. url: https://frost.met.no/

howto.htmlhttps://frost.met.no/howto.html.

[26] Netatmo Smart Weather Station. https://www.netatmo.com/en-eu/weather/

weatherstation. Accessed: 06-05-2020.

[27] Netatmo weather station specification. accessed April 23, 2021. url: https:

//www.netatmo.com/en-eu/weather/weatherstation/specifications.

[28] Netatmo Weathermap. https://weathermap.netatmo.com/. Accessed: 06-05-

2020.

[29] Netatmo’s weather REST API. accessed March 17, 2021. url: https://dev.

netatmo.com/apidocumentation/weather.

[30] Norwegian Meteorological Institute ’s Frost REST API. accessed March 17,

2021. url: https://frost.met.no/index.html.

[31] Oauth. accessed March 17, 2021. url: https://oauth.net/.

[32] Open Weather Pricing. accessed April 23, 2021. url: https://openweathermap.

org/price.

[33] OpenStreetmap. accessed May 4, 2021. url: https://www.openstreetmap.org.

[34] React. accessed May 10, 2021. url: https://reactjs.org/.

[35] React Leaflet. accessed May 4, 2021. url: https://react-leaflet.js.org/

docs/api-map.

[36] React Redux. accessed May 13, 2021. url: https://react-redux.js.org/.

[37] Reducing fire disaster risk through dynamic risk assessment and management

(DYNAMIC). 2019.

[38] Redux thunks. accessed May 13, 2021. url: https://github.com/reduxjs/

redux-thunk.

[39] Røros Mining Town and the Circumference. Accessed April 27, 2021. url: https:

//whc.unesco.org/en/list/55/.

[40] Laura Rusu et al. “Data-Driven Prediction and Visualisation of Dynamic Bush-

fire Risks”. In: Databases Theory and Applications. Ed. by Muhammad Aamir

Cheema, Wenjie Zhang, and Lijun Chang. Cham: Springer International Pub-

lishing, 2016, pp. 457–461. isbn: 978-3-319-46922-5.

116

https://frost.met.no/howto.htmlhttps://frost.met.no/howto.html
https://frost.met.no/howto.htmlhttps://frost.met.no/howto.html
https://www.netatmo.com/en-eu/weather/weatherstation
https://www.netatmo.com/en-eu/weather/weatherstation
https://www.netatmo.com/en-eu/weather/weatherstation/specifications
https://www.netatmo.com/en-eu/weather/weatherstation/specifications
https://weathermap.netatmo.com/
https://dev.netatmo.com/apidocumentation/weather
https://dev.netatmo.com/apidocumentation/weather
https://frost.met.no/index.html
https://oauth.net/
https://openweathermap.org/price
https://openweathermap.org/price
https://www.openstreetmap.org
https://reactjs.org/
https://react-leaflet.js.org/docs/api-map
https://react-leaflet.js.org/docs/api-map
https://react-redux.js.org/
https://github.com/reduxjs/redux-thunk
https://github.com/reduxjs/redux-thunk
https://whc.unesco.org/en/list/55/
https://whc.unesco.org/en/list/55/

[41] Jesús San-Miguel-Ayanz et al. “Comprehensive Monitoring of Wildfires in Eu-

rope: The European Forest Fire Information System (EFFIS)”. In: Approaches

to Managing Disaster. Ed. by John Tiefenbacher. Rijeka: IntechOpen, 2012.

Chap. 5. doi: 10.5772/28441. url: https://doi.org/10.5772/28441.

[42] Spring Initializr. Accessed April 26, 2021. url: https://start.spring.io/.

[43] Stillwater Weather. https://stillwaterweather.com/chandlerburningindex.

php. Accessed: 2021-24-03.

[44] Sindre Stokkenes. “Implementation and Evaluation of a Fire Risk Indication

Model”. MA thesis. Department of Computing, Western Norway University of

Applied Sciences, 2019.

[45] StormGeo Research and Development. accessed April 23, 2021. url: https :

//www.stormgeo.com/company/research-and-development/.

[46] StormGeo REST API. accessed April 23, 2021. url: https://webapi.stormgeo.

com/.

[47] StormGeo Who We Are. accessed April 23, 2021. url: https://www.stormgeo.

com/company/who-we-are/.

[48] TITAN (auTomatIc daTa quAlity coNtrol). accessed February 25, 2021. url:

https://github.com/metno/TITAN.

[49] Athanasios Tsipis et al. “An Alertness-Adjustable Cloud/Fog IoT Solution for

Timely Environmental Monitoring Based on Wildfire Risk Forecasting”. In: En-

ergies 13.14 (2020). issn: 1996-1073. doi: 10.3390/en13143693. url: https:

//www.mdpi.com/1996-1073/13/14/3693.

[50] TypeScript Programming Language. accessed May 11, 2021. url: https://www.

typescriptlang.org/.

[51] Michelle Ward et al. “Impact of 2019–2020 mega-fires on Australian fauna habi-

tat”. In: Nature Ecology & Evolution 4 (Oct. 2020), pp. 1–6. doi: 10.1038/

s41559-020-1251-1.

[52] Roel Wieringa. Design Science Methodology for Information Systems and Soft-

ware Engineering. Jan. 2014, pp. 1–332. isbn: 978-3-662-43838-1. doi: 10.1007/

978-3-662-43839-8.

[53] Yarn. accessed May 13, 2021. url: https://yarnpkg.com/.

117

https://doi.org/10.5772/28441
https://doi.org/10.5772/28441
https://start.spring.io/
https://stillwaterweather.com/chandlerburningindex.php
https://stillwaterweather.com/chandlerburningindex.php
https://www.stormgeo.com/company/research-and-development/
https://www.stormgeo.com/company/research-and-development/
https://webapi.stormgeo.com/
https://webapi.stormgeo.com/
https://www.stormgeo.com/company/who-we-are/
https://www.stormgeo.com/company/who-we-are/
https://github.com/metno/TITAN
https://doi.org/10.3390/en13143693
https://www.mdpi.com/1996-1073/13/14/3693
https://www.mdpi.com/1996-1073/13/14/3693
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://doi.org/10.1038/s41559-020-1251-1
https://doi.org/10.1038/s41559-020-1251-1
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://yarnpkg.com/

[54] Your packages, at home with their code. accessed December 3, 2020. url:

https://github.com/features/packages.

118

https://github.com/features/packages

Appendices

119

Appendix A

Locations used for Experiments

121

122

Place Coordinates
Oslo 59.9139° N, 10.7522° E
Stavanger 58.9700° N, 5.7331° E
Haugesund 59.4136° N, 5.2680° E
Bryne 58.7358° N, 5.6477° E
Kopervik 59.2837° N, 5.3069° E
Ålesund 62.4722° N, 6.1495° E
Molde 62.7372° N, 7.1607° E
Kristiansund 63.1103° N, 7.7281° E
Ørsta 62.1981° N, 6.1276° E
Volda 62.1453° N, 6.0748° E
Bodø 67.2829° N, 14.4151° E
Mo (Mo I Rana) 66.3137° N, 14.1420° E
Narvik 68.4385° N, 17.4273° E
Mosjøen 65.8369° N, 13.1934° E
Fauske 67.2592° N, 15.3916° E
Drammen 59.7441° N, 10.2045° E
Fredrikstad 59.2205° N, 10.9347° E
Moss 59.4260° N, 10.6985° E
Halden 59.1330° N, 11.3875° E
Kongsberg 59.6689° N, 9.6502° E
Hamar 60.7945° N, 11.0680° E
Lillehammer 61.1153° N, 10.4662° E
Gjøvik 60.7954° N, 10.6916° E
Elverum 60.8821° N, 11.5625° E
Porsgrunn 59.1386° N, 9.6555° E
Tønsberg 59.2676° N, 10.4076° E
Sandefjord 59.1313° N, 10.2166° E
Larvik 59.0538° N, 10.0295° E
Kristiansand 58.1599° N, 8.0182° E
Arendal 58.4618° N, 8.7724° E
Korsvik 58.1447° N, 8.0744° E
Grimstad 58.3447° N, 8.5949° E
Bergen 60.3913° N, 5.3221° E
Askøy 60.4619° N, 5.0893° E
Leirvik 59.7798° N, 5.5005° E
Osøyro 60.1839° N, 5.4638° E
Knarrevik 60.3738° N, 5.1578° E
Trondheim 63.4305° N, 10.3951° E
Stjørdalshalsen 63.4712° N, 10.9189° E
Steinkjer 64.0150° N, 11.4953° E
Levanger 63.7464° N, 11.3005° E
Alta 69.9689° N, 23.2716° E
Hammerfest 70.6634° N, 23.6820° E
Vadsø 70.1583° N, 29.8117° E
Kirkenes 69.7269° N, 30.0450° E
Bjørnevatn 69.6675° N, 29.9872° E
Haugesund Sentrum 59.4138° N, 5.2679° E
Haugesund Hasseløy 59.4171° N, 5.2535° E
Skudeneshamn 59.1470° N, 5.2656° E
Stavanger Gamlebyen 58.9722° N, 5.7259° E
Røros 62.5867° N, 11.3870° E
Henningsvær 68.1545° N, 14.2070° E
Hemnesberg 66.2246° N, 13.6243° E
Lærdalsøyri 61.0992° N, 7.4816° E
Bryggen I Bergen 60.3977° N, 5.3246° E
Bleik 69.2719° N, 15.9559° E
Arendal Kolbjørnsvik 58.4502° N, 8.7614° E
Arendal Tyholmen 58.4583° N, 8.7654° E
Askøy Gamle Strusshamn 60.4053° N, 5.1922° E
Aurland Låvi 60.8770° N, 7.2521° E
Aurland Otternes 60.8756° N, 7.1489° E
Aurland Undredal 60.9497° N, 7.1030° E
Bamble Herre 59.1044° N, 9.5579° E
Bamble Langesund 59.0005° N, 9.7447° E
Bamble Stathelle 59.0452° N, 9.6982° E
Bergen Laksevåg 60.3810° N, 5.2593° E
Bergen Marken 60.3906° N, 5.3322° E
Bergen Nordnes 60.3988° N, 5.3076° E
Bergen Nøstet 60.3938° N, 5.3148° E
Bergen Salhus 60.5048° N, 5.2663° E
Bergen Sandviken 60.4120° N, 5.3253° E
Bergen Skuteviken 60.4027° N, 5.3215° E
Bergen Sydnes 60.3894° N, 5.3172° E
Bergen Vågsbunnen 60.3940° N, 5.3282° E

Table A.1: List of locations.

Appendix B

URL to the Source Code of

implementations

URLs for each implemented application is presented below.

• Fire Risk Model: https://github.com/selabhvl/fireriskmodel

• Fire Risk Services: https://github.com/selabhvl/fireriskservices

• Data Harvesting Service: https://github.com/selabhvl/data-harvester

• Middleware: https://github.com/selabhvl/middleware

• Front-End: https://github.com/Evjenth/fireriskfrontend

URLs to the files containing the data used for experiments are found here:

• https://drive.google.com/file/d/1GOR_B3qbaF2eY-ppSfEtlh-sLSBkc2Ql/view?

usp=sharing

123

https://github.com/selabhvl/fireriskmodel
https://github.com/selabhvl/fireriskservices
https://github.com/selabhvl/data-harvester
https://github.com/selabhvl/middleware
https://github.com/Evjenth/fireriskfrontend
https://drive.google.com/file/d/1GOR_B3qbaF2eY-ppSfEtlh-sLSBkc2Ql/view?usp=sharing
https://drive.google.com/file/d/1GOR_B3qbaF2eY-ppSfEtlh-sLSBkc2Ql/view?usp=sharing

	Introduction
	The DYNAMIC Research Project
	Fire risk prediction model

	Research Questions
	Research Method
	Thesis structure

	Background and Related Work
	Fire Risk Prediction
	Partial Risk Indicies
	Chandler Burning Index

	Weather Data Sources
	The Norwegian Meteorological Institute
	Netatmo
	StormGeo
	The European Centre for Weather Forecasts
	OpenWeather
	Comparing Weather Sources

	Software Architecture
	Microservices
	RESTful services
	Spring Boot
	Cloud Hosting

	Design and System Requirements
	System Requirements
	Deployment and DevOps
	FRM
	FRS and DHS
	Middleware
	Frontend

	FRM
	System Overview
	Mathematical Formulas and Implementation
	Modelling Relative Humidity
	TTF
	Fire Risk Factor
	Interpolation

	Deployment and DevOps

	FRS
	System Overview
	Endpoints
	Heartbeat
	Add locations
	Firerisk
	Firerisk factor

	Database
	Deployment and DevOps

	DHS
	System Overview
	Endpoints
	Measurements
	Location exists
	Add location
	Historical Measurements

	Scheduled Services
	Database
	Deployment and DevOps

	Middleware
	System Overview
	Endpoints
	Scheduled Services
	Deployment and DevOps
	Database
	Testing

	Front-end Single Page Web Application
	Project Structure
	React
	TypeScript
	Leaflet & React Leaflet

	Features
	Fetching Data from the Middleware
	DevOps

	Experiments and Evaluation
	Locations
	Experiment 1: Predicting Time to Flashover
	Collecting Fire Risks
	Analysing the Data
	Largest difference
	Prediction deviation

	Experiment 2: TTF Weather Data Sources
	Data
	Analysing the Data

	Experiment 3: Historical Fire Risk 2013 - 2021
	Data
	Analysing the Data

	Experiment 4: Winter of 2020/2021
	Analysing the Data

	Experiment 5: Data Storage and Computation Time
	Processing utilization
	System test

	Conclusion

	Conclusion and Future Work
	Conclusion on experiments
	Research Questions Revisited
	Threats to validity
	Discussion
	Future Work

	Bibliography
	Appendices
	Locations used for Experiments
	URL to the Source Code of implementations

