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Abstract

This thesis is dedicated to exploring sequences with good correlation properties. Pe-
riodic sequences with desirable correlation properties have numerous applications in
communications. Ideally, one would like to have a set of sequences whose out-of-
phase auto-correlation magnitudes and cross-correlation magnitudes are very small,
preferably zero. However, theoretical bounds show that the maximum magnitudes of
auto-correlation and cross-correlation of a sequence set are mutually constrained, i.e., if
a set of sequences possesses good auto-correlation properties, then the cross-correlation
properties are not good and vice versa. The design of sequence sets that achieve those
theoretical bounds is therefore of great interest. In addition, instead of pursuing the least
possible correlation values within an entire period, it is also interesting to investigate
families of sequences with ideal correlation in a smaller zone around the origin. Such
sequences are referred to as sequences with zero correlation zone or ZCZ sequences,
which have been extensively studied due to their applications in 4G LTE and 5G NR
systems, as well as quasi-synchronous code-division multiple-access communication
systems.

Paper I and a part of Paper II aim to construct sequence sets with low correlation
within a whole period. Paper I presents a construction of sequence sets that meets the
Sarwate bound. The construction builds a connection between generalised Frank se-
quences and combinatorial objects, circular Florentine arrays. The size of the sequence
sets is determined by the existence of circular Florentine arrays of some order. Paper II
further connects circular Florentine arrays to a unified construction of perfect polyphase
sequences, which include generalised Frank sequences as a special case. The size of a
sequence set that meets the Sarwate bound, depends on a divisor of the period of the
employed sequences, as well as the existence of circular Florentine arrays.

Paper III-VI and a part of Paper II are devoted to ZCZ sequences. Papers II and
III propose infinite families of optimal ZCZ sequence sets with respect to some bound,
which are used to eliminate interference within a single cell in a cellular network.
Papers V, VI and a part of Paper II focus on constructions of multiple optimal ZCZ
sequence sets with favorable inter-set cross-correlation, which can be used in multi-
user communication environments to minimize inter-cell interference. In particular,
Paper II employs circular Florentine arrays and improves the number of the optimal
ZCZ sequence sets with optimal inter-set cross-correlation property in some cases.
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Outline

This thesis consists of an introductory part and six scientific papers. Chapter 1 gives an
introduction to the background, objectives and related works, as well as a brief summary
of the papers. Discussions and future work are presented in Chapter 2. The papers
included in this thesis (Chapter 3) are:

I Dan Zhang and Tor Helleseth, New optimal sets of perfect polyphase sequences
based on circular Florentine arrays, IEEE International Symposium on Informa-
tion Theory (ISIT), Los Angeles, CA, USA, pp. 2921-2925 (2020).

II Dan Zhang and Tor Helleseth, Sequences with good correlations based on circular
Florentine arrays, IEEE Transactions on Information Theory (submitted, Nov
2020).

III Dan Zhang, Zero correlation zone sequences from a unified construction of per-
fect polyphase sequences, IEEE International Symposium on Information Theory
(ISIT), Paris, France, pp. 2269-2273 (2019).

IV Dan Zhang, Chunlei Li and Matthew Geoffrey Parker, New optimal zero-
correlation zone sequences based on IF-ZAZ sequences and interleaving tech-
nique, partly presented at the conference SETA (2020) (to be submitted).

V Zhengchun Zhou, Dan Zhang, Tor Helleseth, and Jinming Wen, A construction of
multiple optimal ZCZ sequences with good cross correlation, IEEE Transactions
on Information Theory, vol. 64, no. 2, pp. 1340-1346 (2018).

VI Dan Zhang, Matthew Geoffrey Parker, and Tor Helleseth, Polyphase zero corre-
lation zone sequences from generalised bent functions, Cryptography and Com-
munications, 12, pp. 325-335 (2020).
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Chapter 1

Introduction

Sequences and their properties have been widely studied in different research areas
because their valuable characteristics are used in many applications. Correlation func-
tions are a measure of similarity among sequences. Specifically, the auto-correlation
(AC) function assesses the similarity of a sequence with its cyclic shifts, and the cross-
correlation (CC) function represents the similarity between two different sequences.
Sequences with desirable correlation properties have been used in communication sys-
tems and radar systems for identification, synchronization, ranging, and interference
mitigation [27].

Multiple Access Interference (MAI) and Multipath Interference (MPI) are two com-
mon interferences that corrupt signal transmission in wireless communication environ-
ments. MAI is caused by a device, access point or base-station when several users
simultaneously try to communicate with it, while MPI occurs when the transmitted sig-
nal undergoes different propagation paths to reach a specific receiver. In the following,
we briefly explain how correlation functions of sequences are used to mitigate the MAI
and MPI in Code-Division Multiple Access (CDMA) systems [78].

Each user in a CDMA system is assigned with a spreading sequence to modulate
their signal. The best performance occurs when there is good separation between the
signal of a desired user and the signals of other users. The separation of the signals is
made by correlating the transmitted signal with the spreading sequence of the desired
user. If the signal matches a user’s spreading sequence, i.e., they are the same sequence,
the correlator at the receiver gives the AC values which allow the system to extract the
signal. To mitigate MPI, the AC value at any non-zero time offset should be as close to
zero as possible. If a user’s spreading sequence has nothing in common with the signal,
the (cross) correlation should be as close to zero as possible and then the signal will not
be extracted. So low CC is used to separate the appropriate signal from signals meant
for other receivers, thereby mitigating MAI. Sequences with low AC sidelobes and CC
values are usually sought in the design of sequence families.

CDMA technique uses spreading sequences with desired correlation properties to
spread data signals and to be assigned to individual users. Correlation property is a
main feature for the selection of spreading sequences. According to new requirements
in some specific environments, new metrics such as Metric Factor, Peak-to-Sidelobe
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Level (PSL) and Peak to Average Power Ratio (PAPR) are recently considered as new
criteria for sequence selection. For example, developing power-efficient and low energy
consumption technologies becomes a new trend in communication systems, and this
can be improved by a proper selection of properties of sequences to be used [9]. Some
desirable characteristics of sequence sets, as described in [45], are 1) long length of
the sequences; 2) large number of available sequences in the set; 3) good correlation
(AC and CC) properties; 4) low complexity in construction and storing; 5) and good
performance in metrics such as PSL, PAPR and Metric Factor. In this thesis, we mainly
consider the first three characteristics of sequences.

The ultimate goal in sequence design with respect to the correlation property is
to have a sequence set whose AC values at all non-zero shifts and CC values at all
shifts are zero. Unfortunately, such an ideal sequence set does not exist according to
some theoretical bounds such as Welch, Sidelnikov, and Sarwate bounds [79, 83, 104].
In practice, the values of AC and CC functions can be balanced according to desired
properties. There are different ways to achieve a good trade-off between them. For
example, it is possible to define the following two families of sequences:

• a family of sequences exhibiting ideal AC values at all non-zero shifts and low
CC values at all shifts, i.e., the CC values are permitted to be different from zero;

• a family of sequences having ideal AC values and CC values at some zone of shifts
around the origin, i.e., the AC and CC values are allowed to be non-zero outside
the zone.

The second family is referred to as a sequence set with zero correlation zone (ZCZ).
Constructing these two desirable families of sequences is the main goal of this thesis.

The rest of Introduction is organised as follows. Section 1.1 presents some basic
notations and definitions, as well as the mathematical formulations of the two research
questions mentioned above. Section 1.2 focuses on the first research question. Some
known and related works are given, after which we briefly introduce the main results of
Papers I and II. Section 1.3 addresses the second research question. Some related work
and main contributions of this thesis are presented.

1.1 Sequences

We confine our discussion to periodic sequences in this thesis. Basic definitions of
sequences and some related theoretical bounds are introduced in Section 1.1.1. Sec-
tion 1.1.2 briefly presents some known work on the design of sequences with good
correlation. Section 1.1.3 introduces the research objectives in this thesis.
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1.1.1 Sequences and correlation bounds
Periodic sequences

In digital communications, sequences are often categorized by constellations over which
they are defined, e.g., PSK (phase shift keying), ASK (amplitude shift keying), APSK
(amplitude and phase shift keying), QAM (quadrature amplitude modulation), etc.
When the PSK modulation is employed in digital communications, sequences are fre-
quently defined over complex numbers with magnitude 1. Polyphase (@-ary) sequences
are a special subset of PSK sequences, which are the main focus in this thesis.

A sequence s = (B(0), B(1), · · · ) is called a complex @-ary or polyphase sequence
if all the coordinates are @-th roots of unity, i.e., B(C) = l 5 (C)

@ for C ≥ 0, where l@ is a
primitive @-th root of unity in C and 5 (C) ∈ {0, 1, · · · , @ − 1}. A sequence s is called
a binary sequence when @ = 2, i.e., B(C) ∈ {−1, 1} for all C ≥ 0, and it is called a
quaternary sequence when @ = 4.

A sequence s is said to be periodic if B(C) = B(C + #) for all C ≥ 0, where # is a
positive integer. The integer # is called the period of s if # is the smallest integer such
that B(C) = B(C + #) for all C ≥ 0. For convenience, a sequence s of period # is denoted
by s = (B(0), B(1), · · · , B(# − 1)) or s = {B(C)}#−1

C=0 .
Two sequences s1 and s2 are said to be cyclically equivalent if there exists an integer

g such that
B1(C) = B2(C + g)

for all C, otherwise they are said to be cyclically distinct.

Correlation Functions

Let S = {s0, s1, · · · , s"−1} denote an (#, ") sequence set, where # is the period of
each sequence and " is the size of the sequence set S. For 0 ≤ 8, 9 ≤ " − 1, the
(periodic) cross-correlation function of s8 and s 9 at shift g is defined as

's8 ,s 9 (g) =
#−1∑
C=0

B8 (C + g) [B 9 (C)]∗,

where C + g is reduced modulo # and [B 9 (C)]∗ is the complex conjugate of the complex
number B 9 (C).When s8 = s 9 , 's8 ,s8 (g) is called the auto-correlation function of s8. In this
case, we write 's8 (g) = 's8 ,s8 (g) for short. Note that 's8 (g) is always equal to # when
g ≡ 0 mod # . We call 's8 (g), g . 0 mod # , out-of-phase AC values. Correlation
functions have the following properties [79, 82]:

• 's8 ,s 9 (g) = 's8 ,s 9 (g + #);

• 's8 ,s 9 (−g) = ['s 9 ,s8 (g)]∗;

• 's8 (−g) = ['s8 (g)]∗;
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•
∑#−1
g=0 's8 ,s 9 (g) =

∑#−1
g=0 s8 (g)

∑#−1
g=0 [s 9 (g)]∗;

•
∑#−1
g=0 |'s8 ,s 9 (g) |2 =

∑#−1
g=0 's8 (g) ['s 9 (g)]∗,

where |G | is the magnitude of a complex number G.
A sequence s is said to be perfect or have ideal AC if all the out-of-phase AC values

are equal to zero, i.e.,

's(g) =
{

0 5 >A ∀g ≠ 0 ∈ Z# ;
# 5 >A g = 0 ∈ Z# ,

where Z# denotes the ring of integers modulo # . However, perfect sequences are rare
in general (more details about perfect sequences are introduced in Section 1.2.1).

A set S is called periodically uncorrelated if the CC value between any two distinct
sequences in S at any shift is zero, i.e.,

's8 ,s 9 (g) = 0,∀g ∈ Z# ,∀s8, s 9 ∈ S with 8 ≠ 9 .

A set S is called periodically complementary if the sum of all ACs of sequences in
S at the same nonzero shift is zero, namely,∑

s∈S
's(g) = 0,∀g ∈ Z# with g ≠ 0.

The term good AC refers to maximum value at the origin and low magnitudes of AC
values for all out-of-phase time shifts, while the term good CC refers to low magnitudes
of CC values at all time shifts.

Correlation Bounds

Given a set of " sequences of period # , the maximum out-of-phase periodic AC
magnitude, denoted by \0, and maximum periodic CC magnitude, denoted by \2, are
defined by

\0 = max{|'s8 (g) | : s8 ∈ S, 0 < g < #},
and

\2 = max{|'s8 ,s 9 (g) | : s8 ≠ s 9 ∈ S, 0 ≤ g < #},
respectively. The maximum periodic correlation magnitude is defined by \<0G =
max(\0, \2). Three important bounds on periodic correlation functions are as follows.

• Welch’s bound [104]: It is based on the squares of the magnitudes of the inner
product between all pair of sequences. A lower bound on \max depending on the
number of the sequences " and the period of the sequences # is given by

\max ≥ #
√

" − 1
"# − 1

.
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• Sidelnikov’s bound [83]: For any (#, ") sequence set with " ≥ # ,

\max &
{ √

2# for the binary case;√
# for other cases.

• Sarwate’s bound [79]: It was shown that \0 and \2 are related through the in-
equality

\2
2

#
+ # − 1
# (" − 1)

\2
0

#
≥ 1,

which provides a lower bound on one of the maxima if the value of the other is
specified. Compared with the Welch bound, the Sarwate bound treats the inner
products corresponding to AC and CC separately. When \2 and \0 are replaced
by \<0G, the Welch bound can be obtained.

1.1.2 Sequences with good correlation
Sequence design has gradually become a broad research area as different communication
scenarios impose different requirements on the properties of sequences. Researchers
have various focuses as well. Some of them concentrate on binary sequences or
quaternary sequences, while others are interested in @-ary sequences. Some researchers
focus only on sequences with good AC, while others investigate sequences with both
good AC and CC. In the following, we briefly give an overview of some known works
on sequences with good correlation.

Sequences with good AC

Sequenceswith goodAChave applications in pulse compression radars, synchronization
systems, cryptography, in addition to spread spectrum communication systems such as
CDMA [27]. In the following, we roughly classify sequences based on their alphabets
and discuss the best AC property they can achieve.

i) Binary and quaternary sequences

For a binary sequence s of period # , it is well known that the smallest possible value of
AC function 's(g) for all 0 < g < # can be classified into the following four types [43]:

i) 's(g) ∈ {0, 4} if # ≡ 0 mod 4;

ii) 's(g) ∈ {1,−3} if # ≡ 1 mod 4;

iii) 's(g) ∈ {2,−2} if # ≡ 2 mod 4;

iv) 's(g) ∈ {−1, 3} if # ≡ 3 mod 4.

For the first case, when 's(g) = 0 for all 0 < g < # , i.e., the maximum out-of-phase
periodic AC magnitude \0 = 0, then s is a perfect binary sequence. Unfortunately, the
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only known example is (1, 1, 1,−1) and it is shown [51] that perfect binary sequences
do not exist for length < 12100, except for length 4. Binary sequences with AC values
dropping in the above four cases are said to be optimal. Many known families of
optimal binary sequences are constructed from combinatorial objects. For example,
the well-known binary <-sequences and Gordon-Wills-Welch (GMW) sequences with
optimal AC correspond to difference sets with Singer parameters in combinatorics [29].

Perfect quaternary sequences have only been found for periods 2, 4, 8 and 16. It is
conjectured in [14] that no perfect sequences with period larger than 16 exist. Therefore,
quaternary sequences with \0 = 1 for odd # and \0 = 2 for even # are said to have
optimal AC. We refer the reader to [8, 24, 38, 41, 43, 58, 59] for further information on
optimal binary and quaternary sequences.

ii) Polyphase or @-ary sequences

Non-binary sequences may be divided into two classes [38]. The first class consists of
sequences whose alphabet size can be some small integer compared with their periods,
while the second comprises sequences whose alphabet size is of the order of the period
of the sequences. We introduce these two families of sequences in the following,
respectively.

i) @-ary sequences with small alphabet: No perfect @-ary sequences with small
alphabet have been reported. In this case, @-ary sequences with \0 = 1 are said to
be optimal.

For example, a @-ary <-sequence with period @< − 1 is defined by

s = {B(C) = lTr< (UC )
@ }@<−1

C=0 ,

where @ is a prime, < ≥ 1 is an integer, Tr< (G) =
∑<−1
8=0 G@

8 is the absolute trace
function from the finite field F@< to the subfield F@, and U is a primitive element
in F@< . Then

's(g) =
{ −1 8 5 g . 0 mod @< − 1,
@< − 1 8 5 g ≡ 0 mod @< − 1.

In particular, when @ = 2, s is an optimal binary <-sequence. Many other
optimal @-ary sequences have been proposed such as GMWsequences [29], Dillon
sequences [13], Helleseth-Gong sequences [37]. We refer the reader to [4,38] for
further information.

ii) @-ary sequences with large alphabet: Even though the large size of the alphabet
might be a disadvantage in some applications, there exist infinite families of perfect
polyphase sequences in this case. For a sequence s = {B(C) = l 5 (C)

@ }, { 5 (C)} in this
case are often defined over the ring of integers modulo @, i.e., Z@. Therefore, @-ary
(polyphase) sequences with large alphabet are also referred to as Z@-sequences.
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The research topics in this thesis are based on perfect polyphase sequences. A list
of known perfect polyphase sequences will be given in Section 1.2.1. We omit
here to avoid repetition.

We have introduced the smallest possible AC values for @-ary sequences. As we
have mentioned, perfect sequences are relatively rare, and only @-ary sequences with
large alphabet have infinite families of perfect sequences. A family of sequences, named
almost perfect sequences, have been intensively studied as well. Instead of focusing
on the smallest possible AC values, almost perfect sequences are defined as complex
periodic sequences such that the out-of-phase AC values are zero with one exception. Of
course, it would be useful if the exceptional value is also small, but this is not required.
More information on almost perfect sequences can be found in [43, 75, 105].

Sequences sets with good correlation

Since numerous sequences with good AC have been studied, it is natural to investigate
their cross-correlation properties. It is well known that the 3-decimation of an <-
sequence s3 = {B(3C) = Tr< (U3C)}@

<−1
C=0 is also an <-sequence, provided that 3 is co-

prime to the period # = @< −1. The cross-correlation function between an <-sequence
and its 3-decimated sequence has been completely determined for some values of 3. For
example, binary cases 3 = 2<

2 +1 − 1 and < ≡ 0 mod 4 by Niho [68] and 3 = 2<
2 + 3 and

< even by Helleseth [36]. For more information on different values of 3 for non-binary
cases, readers are referred to [38, 107].

A natural way to construct families of sequences with low correlation, is to choose
from sequences with optimal or ideal AC in which any pair of sequences maintains low
CC values. Due to the theoretical bounds, it is of great interest to design a sequence set
with
√
# ≤ \max ≤

√
2# , where # is the period of the sequences in the family.

Two known families based on binary <-sequences are families of Gold and Kasami
sequences [26] [44]. Let s = {B(C)} be an <-sequence of period # = 2< − 1.

• Gold sequences: Let 3 = 2: + 1 with gcd(:, <) = 1. The Gold sequence set of
size # + 2 is defined by

S = {B(C)} ∪ {B(3C)} ∪ {B(C) + B(3 (C + g)) |0 ≤ g < #},

where \<0G =
√

2(# + 1) + 1.

• Kasami sequences: Let 3 = 2<
2 + 1 and < be an even integer. The Kasami

sequence set of size 2<
2 is defined by

S = {B(C)} ∪ {B(C) + B(3 (C + g)) |0 ≤ g < 2
<
2 − 1},

where \<0G = 2<
2 + 1.

Note that both sets do not strictly meet theoretical bounds. But they are optimal
with respect to Sidelnikov’s bound and Welch’s bound, respectively, because they are
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proven to have the least possible values of \<0G for the given alphabet, period and
family size. Other families that are asymptotically optimal with respect to Welch bound
are bent sequences by Olsen, Scholtz and Welch [69], and sequences constructed by
Sidelnikov [83]. Many families of @-ary sequences having small alphabet with low
correlation have also been proposed. Excellent surveys and fundamental discussions on
related topics can be found [24, 38].

For @-ary sequences with large alphabet, there exist several classes of known con-
structions of perfect sequences (see Section 1.2.1). Families of perfect sequences with
low CC are one of the main focuses in this thesis. To avoid repetition, more details about
related work are presented in Section 1.2.2. Some other constructions of sequences with
large alphabet and low correlation are reported in [1, 64, 80].

1.1.3 Research objectives
Following the previous discussion on sequences with good correlation, we introduce
two research topics in this thesis.

As we have mentioned, there exist known infinite families of perfect polyphase
sequences. Choosing sequences from these families such that they exhibit low CC
values is one of the research objectives in this thesis. In the following, we investigate
what is the best CC property they can achieve according to the theoretical bound.

Different from Welch’s bound and Sidelnikov’s bound that give lower bounds on
\max, Sarwate’s bound shows that \0 and \2 are related through

\2
2

#
+ # − 1
# (" − 1)

\2
0

#
≥ 1. (1.1)

When each sequence in a set is perfect, i.e., \0 = 0, then a lower bound on \2 implied
by (1.1) is

\2 ≥
√
#,

where # is the period of the sequences in the set. A pair of perfect sequences with
\2 =
√
# is said to be an optimal pair. A set of perfect sequences is said to have optimal

correlation when each pair in the set is an optimal pair.
Due to practical applications, one would like the number of perfect sequences with

optimal correlation to be as large as possible. We see from (1.1) that the parameter
" vanishes when \0 = 0 is zero. It is unknown how large a set of perfect sequences
with optimal correlation can be. A list of known works on this topic as well as the
constructions in this thesis is presented in Section 1.2.

All three theoretical bounds introduced in Section 1.1.1 imply that it is impossible to
have sequences which have simultaneously zero out-of-phase AC and zero CC during
an entire period. However, sequences with both simultaneously being zero in a smaller
zone around the origin do exist. Such sequences with zero correlation zone (ZCZ) are
called ZCZ sequences. The other research objective of this thesis is to construct optimal
ZCZ sequence sets with respect to some theoretical bound. More details about ZCZ
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sequences including related works and new results are given in Section 1.3.

1.2 Perfect polyphase sequences with optimal correlation
In this section, we focus on sets of perfect polyphase sequences whose maximum
cross-correlation magnitude meets the Sarwate bound. It is worth mentioning that such
families of sequences also asymptotically meet the Sidelnikov bound, and they nearly
meet the Welch bound when the number of sequences is close to the period of the
sequences. Since they are based on perfect polyphase sequences, we first give a brief
introduction to all known perfect polyphase sequences in Section 1.2.1, after which
related works are presented in Section 1.2.2. Finally, we give summaries of Paper I and
a part of Paper II that describe our contributions on this topic in Section 1.2.3.

1.2.1 Perfect polyphase sequences
Perfect sequences have been extensively studied because of their applications in spread
spectrum communications [84], channel estimation and fast start-up equalization [65],
pulse compression radars [25, 48], sonar systems [108], and system identication [102].

Many different types of perfect sequences have been reported. Perfect unimodular
(PSK) sequences are studied in [22] [23]. Golomb and Lüke proposed synthesized
perfect real-valued sequences in [28, 56]. We know that (1, 1, 1,−1) is the only known
perfect binary sequence. By allowing 0, constructions of perfect 0,±1 sequences
are presented in [39, 82]. Polyphase sequences allowing one or some zeros are also
studied, which are called almost-polyphase sequences. Constructions of perfect almost-
polyphase sequences are reported in [46, 47, 50, 57]. Polyphase sequences are special
PSK sequences with constant magnitude. We limit our discussion to perfect polyphase
sequences in the thesis.

We first give some transformations which preserve the ideal AC property. Let
s = {B(C)}#−1

C=0 be a perfect sequence of period # . Then the variants of the sequence s
under the following transformations are still perfect sequences [14].

i) Scaling: B(C) → 2B(C) for any nonzero complex number 2;

ii) Cyclic shift: B(C) → B(C + g) for any integer g;

iii) Decimation: B(C) → B(3C) for any integer 3 satisfying gcd(3, #) = 1;

iv) Conjugation: B(C) → B∗(C);

v) Linear-frequency modulation: B(C) → B(C)Z C , where Z is any complex =-th root
of unity.

Beside these perfectness-preserving transformations, the product of two perfect
sequences with relatively prime periods is also perfect [56]. Two perfect sequences of
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the same period are said to be equivalent if one can be obtained from the other via the
successive application of the above transformations.

In the following, we give a list of all known constructions of perfect polyphase
sequences. Twowell-known families are Zadoff-Chu sequences and Frank-Zadoff (a.k.a.
Frank-Zadoff-Heimiller) sequences, and many other constructions are based on these
two families. There are also several constructions from one-dimensional generalised
bent functions. A unified construction that includes all these families is also presented.

Based on Zadoff-Chu sequences

• Zadoff-Chu sequences [10] [18] 1972

B(C) =
{
l

1
2 C

2+2C
# C = 0, 1, · · · , # − 1, 5 >A # 4E4=,

lC (C+1)/2+2C# C = 0, 1, · · · , # − 1, 5 >A # >33,

where 2 is any integer.

• Ipatov sequences [42] 1979

B(C) = lC2+2C# , C = 0, 1, · · · , # − 1, # odd, 2 is any integer,

In 1985, Kumar, Scholtz and Welch investigated this class of sequences from the
perspective of generalised bent functions [49, Th. 2]. It was explained in [73] that
Ipatov sequences are equal to Zadoff-Chu sequences of odd period # .

• Milewski sequences [65] 1983

B(C) = 0(C2 mod <)lC1C2
<ℎ+1 , C = 0, 1, · · · , # − 1,

where # = <2ℎ+1,< ≥ 2 is an integer, C = C1+ C2 ·<ℎ, 0 ≤ C1 < <ℎ, 0 ≤ C2 < <ℎ+1,
and {0(8)} is a Zadoff-Chu sequence of period <.

• Generalised chirp-like sequences by Popović [73] 1992

B(C) = 0(C)1(C mod <), C = 0, 1, · · · , # − 1, (1.2)

where {0(C)} is a Zadoff-Chu sequence of period # = A<2, A and < are any
positive integers, and {1(8)}<−1

8=0 is any sequence of < complex number having
magnitude 1.

We can see from above that generalised chirp-like sequences and Milewski se-
quences are based on Zadoff-Chu sequences. It is obvious that generalised chirp-like
sequences include Zadoff-Chu sequences and Ipatov sequences as special cases. It
was shown [66] that Milewski sequences in some case are special cases of generalised
chirp-like sequences, but not completely included by them.
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Based on Frank-Zadoff-Heimiller sequences

• Heimiller sequences [35] 1961

B(C) = lc(C1)·(C2+f(C1))? ,

where # = ?2, ? is prime, C = C1 + C2 · ?, 0 ≤ C1, C2 < ?, c is an arbitrary
permutation of Z? and f is an arbitrary function from Z? to Z?.

• Frank-Zadoff sequences [19] 1962

B(C) = lC1·C2< , (1.3)

where # = <2, < is any positive integer, C = C1 + C2 · <, 0 ≤ C1, C2 < <.

• Generalised Frank sequences by Kumar, Scholtz and Welch [49] 1985

B(C) = l<c(C1)·C2+f(C1)# , (1.4)

where # = <2, < is any positive integer, C = C1 + C2 ·< and 0 ≤ C1, C2 < <, c is an
arbitrary permutation of Z< and f is an arbitrary function from Z< to Z# .

• Modulatable orthogonal sequences by Suehiro and Hatori [89] 1988

B(C) = lC1·C2< 1(C1), (1.5)

where # = <2, < is any positive integer, C = C1 + C2 · <, 0 ≤ C1, C2 < <, and
{1(8)}<−1

8=0 is any sequence of < complex number having magnitude 1.

In this class, generalised Frank sequences are the most general case and include all
the other cases as special cases.

Based on bent functions

An <-dimensional (generalized) bent function 5 : Z<@ → Z@ is defined as a function
with the property that all the <-dimensional Fourier coefficients of 5 (·) defined by

� (_) = 1
@</2

∑
G∈Z<@

l
5 (G)−_) G
@ , ∀_ ∈ Z<@

have unit magnitude. When < = 1, it is called one-dimensional bent function. It is
known [21,66] that a one-dimensional function 5 is bent if and only if the corresponding
sequence {B(C) = l 5 (C)

@ } is perfect. In 1985, Kumar, Scholtz and Welch proposed three
constructions of one-dimensional bent functions [49]. Two of them are included by
generalised chirp-like sequences. The third one is well-known as generalised Frank
sequences. We introduce two other families as follows.
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• Generalised bent function by Chung and Kumar [11] 1989
Let @ be an integer with @ . 2 mod 4. A function 5 : Z@ → Z@ defined by

5 (C + 1) = 5 (C) + 0(C), ∀ C and 5 (0) ∈ Z@,

where {0(C)} satisfy{ ∑A−1
C=0 0(C) = 0(mod A);

0(C + <A) = 0(C) + 2<A,∀C ∈ ZA ,∀< ∈ Z@/A ,

for some integer 2with gcd(2, @) = 1, and A is any integer satisfying A ≡ @( mod 2)
and A2 |@, is bent. Later Mow gave a closed-form of this recursive construction,
which is included as a special case in a unified construction of perfect polyphase
sequences [66].

• Bent function by Gabidulin [21] 1995
Let @ = ?2ℎ, where ? is a prime and ℎ is a positive integer. Let C = C1 + C2?ℎ,
where 0 ≤ C1, C2 ≤ ?ℎ − 1. Then a function 5 : Z@ → Z@ defined by

5 (C) = � (C1) + G2� (G1)?ℎ,

where � is any function taking values in Z@ and � is a permutation over Z?ℎ , is
bent. Note that this construction is a special case of generalised Frank sequences.

Based on known perfect sequences

The idea of constructing new perfect sequences based on known ones is not new. For
example, Mileswki sequences and generalised chirp-like sequence are based on known
perfect sequences, specifically, Zadoff-Chu sequences. However, the construction by
Gabidulin is based on any perfect sequences of prime period.

• Gabidulin sequences [20] 1993

B(C) = 0(C2)lC1C3?ℎ
lC1C2
?ℎ+1 , C = 0, 1, · · · , # − 1,

where # = ?2ℎ+1, ? is prime, C = C1 + C2 · ?ℎ + C3 · ?ℎ+1, 0 ≤ C1 < ?ℎ, 0 ≤ C2 < ?,
0 ≤ C3 < ?ℎ, and {0(C2)} is a perfect sequence of period ?.
It is pointed out by Fan and Darnell [16] that this is equivalent to Milewshi
sequences if the perfect sequence {0(C2)} is a Zadoff-Chu sequence.

A unified construction of perfect sequences

• Mow’s unified construction [67] 1996

B(C) = l<2(A)U(;):2+V(;):+6(;)
A< , (1.6)
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where # = A<2, A and< are positive integers, C = :<+ ;, 0 ≤ : < A<, 0 ≤ ; < <,
2(A) is 1 when A is odd and 1

2 otherwise, U : Z< → ZA is any function with
623 (U(;), A) = 1, V : Z< → ZA< is any function such that ; ↦→ V(;) mod < is a
permutation over Z<, and 6 is any function over the rational numbers.

This unified construction includes all the previously mentioned constructions as
special cases. Moreover, it was proven that no more perfect sequences can be obtained
by applying the perfectness-preserving transformations and the direct construction to
the unified construction. It was also conjectured that this unified construction describes
all the perfect sequences that exist [67].

Discussions

There are some related works on perfect polyphase sequences in recent years. Liu and
Fan presented modified Chu sequences with smaller alphabet size [54]. For even period
case, it is no longer a perfect sequence. For odd period case, it is the same as normal Chu
sequences, which is included in the unified construction. Following the similar idea as
in [54], Blake and Tirkel derived a construction of perfect polyphase sequences based
on the generalised Frank sequences [5]. In 2009, Ma and Ng investigated non-existence
of ?-ary perfect sequences [61], where ? is an odd prime. In 2014, Soltanalian
and Stoica studied the existence of perfect polyphase sequences with a prime-size
alphabet [85]. In 2016, Park, Song, Kim and Golomb proposed a construction of
perfect polyphase sequences based on generators and array structures [70], which are
essentially generalised Frank sequences of prime period. Later this result was extended
to a general case in [86] and the generated sequences are equivalent to generalised Frank
sequences.

1.2.2 Related works
In this subsection, we give an overview of sets of perfect polyphase sequences with
optimal correlation, i.e., the maximum CC magnitude \2 =

√
# , where # is the period

of the sequences. As we have discussed previously in Section 1.1.3, the size of such
sequence set vanishes in the Sarwate bound. It is unclear how large the size can be.
However, one would like the size to be as large as possible due to practical applications.
In the following, we give a list of known constructions that are based on different perfect
polyphase sequences.

• Based on Zadoff-Chu sequences by Sarwate [79] 1979

S = {B 9 (C) = l" 9 C
2

# , C = 0, 1, · · · , # − 1, # odd | 1 ≤ 9 ≤ ? − 1},

where ? is the smallest prime divisor of odd # and" 9 is the multiplicative inverse
of 9 modulo # .
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• Based on Zadoff-Chu sequences by Alltop [1] 1980

S = {B 9 (C) = l 9 C2

# , C = 0, 1, · · · , # − 1, # odd | 1 ≤ 9 ≤ ? − 1},

where ? is the smallest prime divisor of odd # .

• Based on decimations of Frank-Zadoff-Heimiller sequences by Alltop [2] 1984

S = {B 9 (C) = l 9 C1·C2
? | gcd( 9 , #) = 1 and gcd(( 91−1 92)2 − 1, #) = 1},

where # = ?2, ? is prime, C = C1 + C2 · <, 0 ≤ C1, C2 < <, and 91, 92 are any two
distinct integers that are coprime to # . The largest families meeting the Sarwate
bound contain (? − 1)/2 distinct sequences.

• Based on modulatable orthogonal sequences by Suehiro and Hatori [89] 1988

S = {B 9 (C) = l 9 C1·C2
? 1(C1) | 1 ≤ 9 ≤ ? − 1},

where # = ?2, ? is prime, C = C1 + C2 · ?, 0 ≤ C1, C2 < <, and {1(8)}<−1
8=1 is any

sequence of < complex numbers having magnitude 1.

• Based on generalised chirp-like sequences by Popović [73] 1992

S = {{B 9 (C) = l 9 C (C+1)+2C
# 1(C mod <)}#−1

C=0 | gcd( 9 , #) = 1 and gcd( 91− 92, #) = 1},

where # is odd, # = A<2 with A and < are any positive integers, {1(8)}<−1
8=0 is

any sequence of < complex numbers having magnitude 1, and 91, 92 are any two
distinct integers that are coprime to # . When 1 ≤ 9 ≤ ? − 1, the construction
yields ? − 1 sequences with optimal correlation, where ? is the smallest prime
divisor of # .

• Based on Frank-Zadoff-Heimiller sequences by Gabidulin [20] 1993

S = {B 9 (C) = l 9 C1·C2
? 1(C1) | 1 ≤ 9 ≤ ? − 1},

where # = ?2: , ? is an odd prime, C = C1 + C2 · ?, 0 ≤ C1, C2 < ?: , and {1(8)}<−1
8=1

is any sequence of < complex numbers having magnitude 1.
Note that this is a special case of the construction by Suehiro and Hatori [89].

• Based on Gabidulin sequences [20] 1993

S = {B 9 (C) = l 9 C22
? l

C1C3
?ℎ
lC1C2
?ℎ+1 | 1 ≤ 9 ≤ ? − 1},

where # = ?2ℎ+1, ? is an odd prime, C = C1 + C2 · ?ℎ + C3 · ?ℎ+1, 0 ≤ C1 < ?ℎ,
0 ≤ C2 < ?, 0 ≤ C3 < ?ℎ.

• Based on the unified construction by Mow [67] 1996
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S = {B 9 (C) = l<2(A) 9 :
2+ 9 ;:+6(;)

A< | 1 ≤ 9 ≤ ? − 1},
where # = A<2, A and< are positive integers, C = :<+ ;, 0 ≤ : < A<, 0 ≤ ; < <,
2(A) is 1 when A is odd and 1

2 otherwise, 6 is any function over the rational numbers
and ? is the smallest prime divisor of # .

• Based on generators and array structures by Park et al. [70] 2016

S = {B 9 (C) = l 9c(C1)·C2+f(C1)
? | 1 ≤ 9 ≤ ? − 1},

where # = ?2, ? is an odd prime, C = C1 + C2 · ?, 0 ≤ C1, C2 < <, f is an arbitrary
function over Z?, and c is a permutation of Z? such that 91c(C1 + g′) = 92c(C1)
has exactly one solution for all g′ = 0, 1, · · · , ? − 1 and 1 ≤ 91 ≠ 92 ≤ ? − 1.
Note that sequences in this construction are generalised Frank sequences of prime
period. Later this construction was extended to the case of odd # in [86], which
is essentially based on generalised Frank sequences of odd period.

We can see that the size of all above constructions is based on the smallest prime
divisor ? of the period # and the number of perfect polyphase sequences with optimal
correlation is at most ? − 1. In addition, all of these constructions are defined only for
odd period, and they are trivial when # is even.

Papers I and II build a connection between polyphase sequences and well-studied
combinatorial objects, circular Florentine arrays. From this connection, perfect se-
quences with optimum cross-correlation properties are derived. Moreover, the size of
the perfect sequences depends on the existence of circular Florentine arrays. As a re-
sult, the number of the perfect sequences with optimal correlation is improved for some
cases, compared with the previous results.

1.2.3 Summaries of Paper I and a part of Paper II
Paper I concerns generalised Frank sequences. The connection between circular Floren-
tine arrays and generalised Frank sequences allows us to derive �2 (#) perfect sequences
of period #2 with optimal correlation, where �2 (#) is the maximum number such that
an �2 (#) × # circular Florentine array exists. The main construction is as follows.

Let # be a positive integer and � be an " × # circular Florentine array, where
" = �2 (#). A set of permutations from each row of � is denoted by Π, i.e., Π =
{c0, c1, · · · c"−1}. A sequence set of period #2 of size " is defined as

S = {s8 | s8 (C) = l# ·c8 (C1)C2+f(C1)#2 , 0 ≤ 8 ≤ " − 1},

where C = C1 + C2 · # , 0 ≤ C1, C2 < # , c8 ∈ Π for 0 ≤ 8 ≤ " − 1, and f is an arbitrary
function from Z# to Z#2 . Then S is a set of perfect sequences with optimal correlation.

The general lower bound on �2 (#) is ? − 1, where ? is the smallest prime divisor
of # . But for non-prime # , the lower bound on �2 (#) has been proved for many cases.
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Then the number of perfect sequences with optimal cross-correlation is improved as a
result. Unfortunately, �2 (#) = 1 when # is even. No optimal pair of perfect polyphase
sequences can be derived.

Paper II extends the results in Paper I and adopts the unified construction of perfect
polyphase sequences in (1.6) to obtain families of perfect sequences with optimal
correlation.

Let # = A<2, where A and < are positive integers. Let A∗ denote the smallest prime
divisor of A. Let � be an �2 (<) × < circular Florentine array over Z<, where �2 (<)
is the maximum number such that an �2 (<) × < circular Florentine array exists. We
denote % = {V1, V2, · · · V�2 (<)} a set of permutations over Z< from each row of �. Let
" = min(A∗ − 1, �2 (<)) be the minimum of A∗ − 1 and �2 (<). When A ≠ 1, a set of
perfect sequences of size " defined by

S = {s 9 |B 9 (C) = l<2(A) 9 C
2
1+V 9 (C2)C1+6(C2)

A< , 1 ≤ 9 ≤ "},

meets the Sarwate bound, where C = C1< + C2 for 0 ≤ C1 < A< and 0 ≤ C2 < <, V 9 ∈ %
for 1 ≤ 9 ≤ " , and functions 2 and 6 are the same as defined in (1.6).

When A = 1, the construction in Paper II is the same as that in Paper I. When
A ≠ 1, the number of the perfect sequences with optimal correlation is determined by
the minimum of A∗ − 1 and �2 (<), which improves the previous results for some cases
due to the existence of circular Florentine arrays.

Paper II also presents a construction of multiple ZCZ sequence sets with low inter-set
cross-correlation. To avoid repetition, more details are introduced in Section 1.3.3.

1.3 ZCZ sequence sets
In this section, we introduce the other research topic in this thesis: ZCZ sequences. The
definition of ZCZ sequences and the theoretical bound, as well as their applications, are
presented in Section 1.3.1. Section 1.3.2 gives an overview of known work and briefly
mentions the contribution of this thesis. Section 1.3.3 summarizes the main results in
Papers II-VI.

1.3.1 ZCZ sequences and their bound
In Quasi-Synchronous Code-Division Multiple-Access (QS-CDMA) communication
systems [88], a time delay between the signals of different users within a few chips is
allowed. To eliminate co-channel and multipath interference in such systems, a new
type of spreading sequences called zero correlation zone (ZCZ) or low correlation zone
(LCZ) sequences were proposed [17, 88]. Later Tang, Fan and Matsufuji [93] gave
the corresponding bound on the correlation function of ZCZ(resp. LCZ) sequence set.
Since then, many researchers have been devoted to constructing optimal ZCZ(resp.
LCZ) sequence sets with respect to the bound. Meanwhile, the concept of zero correla-
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tion zone has been extended to two-dimensional sequence sets [30] and complementary
sequence sets [15], respectively. However, these two topics are beyond the scope of our
discussion in this thesis.

ZCZ sequenceswith desirable properties have also applications inmulti-antenna [77],
underwater acoustic [76], ultrawideband [106], free-space optical communications [63]
and inverse synthetic aperture radar imaging [60]. In telecommunication industry, ZCZ
sequences have been used as uplink random access channel preambles in the fourth-
generation cellular standard LTE [81] and 5G physical random access channel [71].

Definition

Let S = {s0, s1, · · · , s"−1} be a sequence set of size " of period # . The set S is called
an (#, ", /)-ZCZ sequence set if

's8 (g) = 0 for (0 < |g | < I0)

and
's8 ,s 9 (g) = 0 for (0 ≤ |g | < I2 and 8 ≠ 9),

where / = min(I0, I2) is called the length of the zero correlation zone.

0

Z Z ZZ

N

Auto-correlation

N
Cross-correlation

0

Z Z ZZ

NN

Figure 1.1: ZCZ sequences

ZCZ sequences are a class of spreading sequences with ideal correlation within a
zone around the origin (see Figure 1.1). They are also referred to as interference free
window (IFW) sequences (codes) in [87]. AZCZ sequence set is generally characterized
by the sequence period, the size of the set, the length of the ZCZ and the number of
phases of the sequence elements. Given a sequence set of size " of period # , the
following bound gives an upper bound on the ZCZ length.
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Tang-Fan-Matsufuji Bound

Given an (#, ", /)-ZCZ sequence set, the parameters are restricted by

"/ ≤ #, (1.7)

i.e., the ZCZ length / is upper bounded by the period of sequences # divided by the
size " [93]. A ZCZ sequence set meeting this bound is said to be optimal.

ZCZ sequences have zero out-of-phase auto-correlation and cross-correlation simul-
taneously in a zone around the origin. When the correlation of sequences in the zone
is not zero but very small, they are called sequences with low correlation zone or LCZ
sequences. The bound (1.7) and a lower bound on correlation of LCZ sequences, were
derived from the Welch bound [93].

As we can see from (1.7), it has no restrictions on the behaviour of the correlation
functions outside the zero correlation zone. Thus, trivial constructions of ZCZ sequence
set can be derived based on perfect sequences as follows. Let s be a perfect sequences
of period # = "/ , where " and / are positive integers. Then s and its cyclic shifts
form a set, defined by

S = {B 9 (C) = B(C + 9 /) | 0 ≤ 9 ≤ " − 1},

which is an optimal (#, ", /)-ZCZ sequence set. However, the CC function values
of two sequences at shift |g | = / can be equal to # . This can be a defect in practice
when a time delay is longer than expected. Therefore, it is important to construct ZCZ
sequence sets in which all the sequences are cyclically distinct.

Two families of ZCZ sequences

Before presenting more related work on the design of ZCZ sequences, we introduce two
special classes of ZCZ sequences with additional favorable properties as follows.

• Uncorrelated ZCZ sequence sets are a family of ZCZ sequences which have zero
CC values across all shifts. When AC functions of each sequence have non-zero
values only at subperiodic shifts, such uncorrelated ZCZ sequence sets are also
referred to as Interference-Free Zero-Autocorrelation Zone (IF-ZAZ) sequence
sets [74].

• A ZCZ sequence set is composed of perfect sequences. Instead of ideal CC
properties, each sequence in such a set has ideal AC property, i.e., each sequence
is a perfect sequence.

Since the theoretical bounds imply that it is impossible to have ideal AC and CC
properties simultaneously within an entire period, these two families of ZCZ sequences
illustrate the trade-offs between AC and CC properties, and have ideal CC and AC
properties, respectively (see Figure 1.2).
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Uncorrelated ZCZ sequences
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Figure 1.2

1.3.2 Related works
ZCZ sequences are a family of sequences that exhibits an ideal correlation zone among
their members, which have been extensively studied because of their wide applications.
Numerous constructions of ZCZ sequence sets based on different methods have been
proposed. Moreover, to minimize the inter-cell interference in multi-user communica-
tion environments, constructions of multiple ZCZ sequence sets with favorable inter-set
cross-correlation properties have also attracted lots of attention. In the following, we
give a brief introduction to known constructions of ZCZ sequence sets and multiple
ZCZ sequence sets, respectively. The contribution of this thesis and some related works
are also included.

ZCZ sequence sets

A number of studies on constructing ZCZ sequence sets have been reported. Construc-
tions presented in [3, 12, 90, 91] are based on complementary sequence sets. In this
thesis, we mainly focus on constructions based on based on perfect sequences.

There are several methods to generate ZCZ sequences from perfect sequences.
Constructions derived by using the transform domain method are proposed in [6, 55,
101]. Interleaving techniques were proven to be effective in [40, 92, 110]. Some other
constructions by manipulating perfect sequences in different ways are reported in [32,
62,72,74,97–99]. Among these, constructions in [32,62,97] can be reinterpreted from
an interleaving perspective. We further discuss some related works in the following.

A: Transform domain method

Given a sequence s of period # , its discrete Fourier transform (DFT) generates a discrete
periodic spectrum {�:}, where �: =

∑#−1
C=0 B(C)4−8 2cC:

# , 0 ≤ : ≤ # −1. The relationship
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between the AC function of s and its DFT is

�∗:�: = |�: |2 =
#−1∑
g=0

's(g)48
2cg:
# .

When 's(g) = 0 for ∀g . 0 mod # , then |�: |2 = 's(0) for all 0 ≤ : ≤ # − 1. It
follows that s is a perfect sequence if and only if all components of {�:} have the same
magnitude |�: | =

√
's(0). Similarly, for two sequences s1 and s2 of period # , they are

uncorrelated, i.e., 's1,s2 (g) = 0 for ∀g, if and only if �1,:�
∗
2,: = 0 for ∀: , where {�1,:}

and {�2,:} are discrete Fourier transforms of s1 and s2, respectively.
Basically, the transform domainmethod transforms the correlation requirements into

transform domain identities. With desirable properties of the spectral representations,
sequences can be recovered by employing inverse discrete Fourier transforms. For
example, IF-ZAZ (uncorrelated ZCZ) sequences were derived in [101] by using a set of
orthogonal tones, i.e., the spectral representations of any two sequences are orthogonal.
Instead of good CC properties, Liu, Chen and Su [55] made use of the fact that the
spectrum of perfect sequences have constant magnitude and presented ZCZ sequences
with ideal AC property. Instead of DFT, Brodzik used finite Zak transform (FZT) and
derived several Zak space constructions of ZCZ sequences, including constructions of
IF-ZAZ sequences [6, 7].

B: IF-ZAZ sequence sets

Several constructions of IF-ZAZ sequences based on transform domain method are
mentioned above. We introduce two other constructions in the following.

We introduced a unified construction of perfect popyphase sequences in Sec-
tion 1.2.1 [67]. This construction can be viewed as interleaving an uncorrelated and
complementary set of sequences defined as follows. LetU = {u0, u1, · · · , u<} be a set
of < sequences. For 0 ≤ ; < <, each sequence u; of period A< is defined by

D; (:) = l<2(A)U(;):
2+V(;):+6(;)

A< , 0 ≤ : < A<, (1.8)

where A and < are positive integers, functions 2, U, V and 6 are the same as defined
in (1.6). Apart from the uncorrelated and complementary properties ofU given in [67],
Paper III shows that all sequences inU possess a common zero correlation zone A . In
other words,U is an (A<, <, A) IF-ZAZ sequence set.

Since 6 is any function over the rational numbers, let 6 = <6′, where 6′ is any
function over the rational numbers. Then each sequence u; above can be written as

D; (:) = l2(A)U(;):
2+6′(;)

A l
V(;):
A< ,

where l2(A)U(;):
2+6′(;)

A is a Zadoff-Chu sequence of period A . This is generalised to any
perfect sequences of period A by Popović [74] as follows. Let U′ = {u′0, u′1, · · · , u′<}
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be a set of < sequences. For 0 ≤ ; < <, each sequence u′; of period A< is defined by

D′; (:) = 0; (: mod A)l;:A<, 0 ≤ : < A<,

where a; is any perfect sequence of period A. Then the setU′ is an (A<, <, A) IF-ZAZ
sequence set and has exactly the same properties asU.

These two constructions of IF-ZAZ sequence sets employ a short perfect sequence,
and the period of the generated ZCZ sequences is a multiple of that of the perfect
sequences.

C: Based on modulatable perfect sequences

In the following, we introduce several constructions based on modulatable perfect
sequences. The generated ZCZ sequences have the same period as the employed perfect
sequence.

Let c be a perfect sequence of period # . Then c is called modulatable if the
corresponding modulated sequence defined by

B(C) = 2(C) · 1(C mod <) (1.9)

is also perfect, where< |# , c is called a carrier sequence, and b is any complex sequence
of period < and is called a modulation sequence. The terminology of modulatable or-
thogonal (perfect) sequences was used in [89], where c is a Frank-Zadoff sequences (see
(1.5)). More generally, the generalised Frank sequences (1.4) are also examples of mod-
ulatable perfect sequences. Later Popović [73] chose c to be Zadoff-Chu sequences and
the corresponding modulated sequences are known as generalized chirp-like sequences
(see (1.2)). To construct ZCZ sequences based on modulatable perfect sequences, it is
common to use the same carrier sequence and adopt different modulation sequences
such that the constructed sequences possess good CC properties.

Constructions of ZCZ sequence sets based on different modulatable perfect se-
quences have been proposed. Popović [72] derived optimal ZCZ sequences based on
generalized chirp-like sequences. There are also several constructions based on gener-
alised Frank sequences. Since generalised Frank sequences are related to bent functions
and discrete Fourier transform (DFT) matrix, constructions of multiple ZCZ sequence
sets based on functions in Papers V and VI and DFT matrix in [98, 99] are essentially
based on generalised Frank sequences.

Inspired by the work mentioned above, it is natural to consider other perfect se-
quences. Mow gave a unified construction of perfect polyphase sequences in (1.6),
which includes generalised Frank function and generalized chirp-like sequences. In
addition to the construction of IF-ZAZ sequences in (1.8), Paper III also gives a con-
struction of optimal ZCZ sequence sets with the expression (1.9) based on the unified
construction. Moreover, each generated ZCZ sequence is also a perfect sequence.
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D: Interleaving technique

Interleaving technique has been an important tool for sequence design, which allows
us to generate sequences with long periods and desirable properties based on short
sequences with good correlation.

Let a = (0(0), 0(1), · · · , 0(# − 1)) be a perfect sequence of period # . Let e =
(40, 41, · · · , 4"−1) be a sequence of length " defined over Z# . Let ! be the left cyclic
shift operator such that !48 (a) denotes the 48-element left cyclically shifted version of a.
Then one can obtain an # × " matrix

!e(a) =



040 041 · · · 04"−1

040+1 041+1 · · · 04"−1+1
...

...
. . .

...

040+#−1 041+#−1 · · · 04"−1+#−1


,

denoted by !e(a) = [!40 (a) ∼ !41 (a) ∼ · · · ∼ !4"−1 (a)] for convenience. By
concatenating the successive rows of the matrix !e(a), one obtains an interleaved
sequence a of length #" , where a and e are called the component and shift sequences
of a, respectively. Mathematically, the interleaved sequence a of period #" can be
expressed by

0(C) = 0(8 + 9") = 0( 9 + 48),
where 0 ≤ 9 ≤ # −1, 0 ≤ 8 ≤ " −1. A sequence set of size " based on the interleaved
sequence can be defined by

S = {B: (C) = 0(C) · 1: (8) = 0( 9 + 48) · 1: (8) | 1 ≤ : ≤ "},

where C = 8 + 9" , 0 ≤ 9 ≤ # − 1, 0 ≤ 8 ≤ " − 1, and b: = {1: (8)} is the :-th row of
an " × " orthogonal matrix �.

The key of interleaving technique is to construct an appropriate shift sequence such
that the sequence set S has desirable properties. ZCZ sequence sets are derived for the
following cases:

• 4C = "−1C (mod #), when 623 (#, ") = 1 [62],

• 4C = #
" C (mod #), when " |# [97],

• 4C = C (mod #), when # |" [97].

Later Tang and Mow [92] presented a general construction of shift sequences, which
includes the three cases above. We omit the expression here due to space constraints.

Instead of using a single shift sequence, a set of shift sequences can be used to
increase the size of ZCZ sequences as follows. Let E = {e0, e1, · · · , e!−1} be a set of
shift sequences of length " . A sequence set of size "! of period #" can be defined
by

S = {B;: (C) = 0( 9 + 4;8 ) · 1: (8) | 1 ≤ : ≤ ", 0 ≤ ; ≤ !},
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where C = 8 + 9" , 0 ≤ 9 ≤ # − 1, 0 ≤ 8 ≤ " − 1, and b: = {1: (8)} is the :-th row of
an " × " orthogonal matrix �.

Several constructions of ZCZ sequence sets with the expression above have been
proposed. In [31], Hayashi employed a set of ! = 2=′ + 1 shift sequences of length
" = 2, where =′ is an odd integer. Later this result was extended to the case " = 4
in [32], where perfect ternary sequences were employed. Zhou, Tang and Gong gave
a construction of shift sequence sets with " = 2 [110]. Later, more general " was
considered by Hu and Gong [40]. A set of shift sequences, called a phase-shift vector
set, was also proposed by Hayashi and Matsufuji [34].

All these constructions of shift sequence sets have strong constraints on the pa-
rameters under which the constructed ZCZ sequence set is optimal, as well as complex
expressions. It is a challenge to construct sets of shift sequences with simple expressions
and few constrains on the parameters.

In Paper IV, instead of trying to construct multiple shift sequences, we use
multiple component sequences to increase the size of ZCZ sequences. Let U =
{u0, u1, · · · , u<−1} be a set of < sequences of period =, where # = =<. Let e be
a sequence of length " defined over Z# . A sequence set of size <" of period #" can
be defined by

S = {B: (C) = D8 mod < ( 9 + 4b 8<c) · 1: (8) | 1 ≤ : ≤ <"}, (1.10)

where C = 8 + 9<" , 0 ≤ 9 ≤ = − 1, 0 ≤ 8 ≤ <" − 1, and b: = {1: (8)} is the :-th row
of an <" × <" orthogonal matrix �. With a set U and a shift sequence e properly
chosen, optimal ZCZ sequences can be derived.

Multiple ZCZ sequence sets

In a cellular network, a ZCZ sequence set can be used to eliminate MAI and MPI
in a single cell. However, sequences transmitted in different cells may also interfere
with each other in multi-user environments. To minimize inter-cell interference, one
promising solution is to construct multiple ZCZ sequence sets with favorable inter-set
cross correlation.

Let S = {S: | 0 ≤ : ≤ "2} be a set of "2 sequence sets. For each 0 ≤ : ≤ "2,
S: = {s:0 , s:1 , · · · , s:"1−1} is a set of "1 sequences of period # . It is preferable to
construct the set S with the following properties:



's:8
(g) = 0 for (0 < |g | < I0 and ∀:),

's:8 ,s:9
(g) = 0 for (0 ≤ |g | < I2, 8 ≠ 9 and ∀:),

|'s:8 ,s;9
(g) | ≤ X for (0 ≤ |g | < /2, : ≠ ; and ∀8, 9),

where /1 = min(I0, I2) is called intra-set ZCZ length. Note that each set S: is an
(#, "1, /1)-ZCZ sequence set and the maximum magnitude of the inter-set cross-
correlation values within a zone is upper bounded by a constant X. We discuss the
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A:   𝛿 = 0 B:   𝛿 ≠ 0    
     small

C:  𝑍1 < 𝑍2

D: 𝑍2 = 𝑁
F: 𝑍2 ≤ 𝑍1  G: 𝑍2 = 𝑁

Multiple ZCZ sequence sets

  E

A: Mutually orthogonal ZCZ (MOZCZ) sequence sets
B: Multiple ZCZ sequence sets with low inter-set cross-correlation 
C: Asymmetric ZCZ sequence sets
D: Asymmetric ZCZ sequence sets with inter-set uncorrelated sequences
E: Each ZCZ sequence set is optimal. All the sets together is also an optimal ZCZ sequence set.
F: Multiple ZCZ sequence sets with low inter-set cross-correlation within a small zone
G: Multiple ZCZ sequence sets with low inter-set cross-correlation within an entire period

parameter X in the following two cases, after which some related works are given,
respectively.

When X = 0, multiple ZCZ sequence sets possess a common zero correlation zone
/ = min(/1, /2), where /2 is called the inter-set ZCZ length. Thus, the set S (all ZCZ
sequences together) is an (#, "1"2, /)-ZCZ sequence set.

When X ≠ 0 and X is a small value compared with the period of the sequences, we
say such multiple ZCZ sets have low inter-set cross-correlation.

A: Multiple ZCZ sequence sets with a common zero correlation zone

When X = 0 and /2 = 1, such multiple ZCZ sequence are called mutually orthogonal
ZCZ (MOZCZ) sequence sets, i.e., any two sequences that belong to different ZCZ
sequence sets are orthogonal. Many constructions of MOZCZ sequence sets have been
proposed. Based on mutually orthogonal complementary sequence sets (MOCSS),
MOZCZ sequence sets were proposed in [3]. Based on interleaving technique, MOZCZ
sequence sets from perfect sequences and orthogonal codes were derived in [100]. For
more constructions of MOZCZ sequence sets, the readers are referred to [53, 109] and
the references therein.

When X = 0 and /1 < /2, such multiple ZCZ sequence are known as asymmetric
ZCZ sequence sets. Asymmetric ZCZ sequence sets emphasize the property that the
inter-set ZCZ length is larger than the intra-set ZCZ length. A number of studies have
been proposed [33,90,91,94–96,103]. A special case is when X = 0 and /2 = # , which
implies that any two sequences from different sequence sets are uncorrelated. Asym-
metric ZCZ sequence sets with inter-set uncorrelated sequences have been presented
in [95, 103].
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It was proposed as an open problem in [90] to construct multiple ZCZ sets satisfying
two requirements: 1) each set is an optimal ZCZ set and 2) these sets possess a common
zero correlation zone such that all sequences together from an optimal ZCZ set. Most
of the previous results only satisfy one of these two requirements. In [91] [90], each set
can be optimal but all these sets together can not generate an optimal ZCZ set. There
are also many other constructions where all sets together can be optimal or almost
optimal, but the optimality does not hold for a single set [33,94–96,103]. Multiple ZCZ
polyphase sequence sets proposed in [53, 99] meet both requirements. Two arbitrary
sequences that belongs to different ZCZ sequence sets are orthogonal in [53], i.e. / = 1.
The construction in [99] is derived from DFT matrices and orthogonal codes.

B: Multiple ZCZ sequence sets with low inter-set cross-correlation

Some constructions consider the inter-set cross-correlation property within the same
zone as intra-set ZCZ zone, i.e., /2 ≤ /1. Two families of multiple ZCZ binary
sequence sets with low inter-set cross-correlation within the zone /2 = /1 were derived
by constructing specific mutually orthogonal complementary sequence sets in [90, Th.
4, Th. 5]. Based on Zadoff-Chu sequences, Li et al. [52] obtained quaternary multiple
ZCZ sequence sets with low inter-set cross-correlation within the zone /2 = /1 = 4.

Multiple ZCZ sequence sets having low inter-set cross-correlation within an entire
period, i.e., /2 = # , are of particular interest in this thesis. In the following, we
introduce some known constructions and our contributions.

Based on Zadoff-Chu sequences, # − 1 ZCZ sequence sets with parameters
(#, ⌊#/ ⌋

, /) are used in 4G LTE systems as physical random access channel (PRACH)
sequences, where # is a prime [71, 81]. Moreover, all employed sequences are perfect
and the maximum inter-set cross-correlation is equal to

√
# , which meets the Sar-

wate bound. Therefore, such multiple ZCZ sequence sets possess optimal inter-set
cross-correlation property.

Popović proposed ZCZ sequence sets based on generalised chirp-like sequences [72].
Together with a construction of the generalised chirp-like sequences with optimal cross-
correlation property in [73], ? − 1 ZCZ sequence sets with optimal inter-set cross-
correlation are derived as a result, where ? is the smallest prime divisor of the period
of the sequences.

Paper V presents a construction of # − 1 ZCZ sequence sets of period #2 based
on a class of functions, of which the inter-set cross-correlation is equal to # for any
shift g, where # is prime. The generated sequences are essentially generalised Frank
sequences of prime period, and thus each ZCZ sequence is perfect. Moreover, each set
is an optimal (#2, #, #)-ZCZ sequence set.

Later the results are generalised to odd case # in Paper VI and ? − 1 ZCZ sequence
sets are obtained, where ? is the smallest prime divisor of # . The key to the optimal
inter-set cross-correlation property is to construct a set of permutations satisfying certain
properties. Paper VI presents a construction of permutation sets such that each ZCZ
sequence set is optimal and sequences from different sets possess the optimal inter-set
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cross-correlation property.
As we can see above, the number of the ZCZ sequence sets having optimal inter-set

cross-correlation is ?−1 in all the previous constructions, where ? is the smallest prime
divisor of the period of the sequences. Paper II proposes a construction of multiple
ZCZ sequence sets based on circular Florentine arrays, which improves the number of
the ZCZ sequence sets with optimal inter-set cross-correlation due to the existence of
circular Florentine arrays.

1.3.3 Summaries of Papers III-VI and a part of Paper II
Paper III presents two constructions of ZCZ sequence set based on a unified construction
of perfect sequences. The first construction defined by

S =
{
s8, 0 ≤ 8 < < | B8 (C) = l<2(A)U(;):

2+V(;):+8A6(;)
A<

}

generates optimal ZCZ sequence sets with parameters (A<2, <, A<), where C = :< + ;,
0 ≤ : < A<, 0 ≤ ; < <, functions 2, U, and V are defined in (1.6), function 6 is any
permutation over Z< such that there exist no 21 and 22 in Z∗< with

21 · (V(;) mod <) + 22 · 6(;) = 0,

where Z∗< = Z< \ {0}. The condition on functions V and 6 ensures that all the
sequences are cyclically distinct. In addition, each ZCZ sequence is also perfect by (1.6).
The second construction defined by (1.8) produces IF-ZAZ sequences with parameters
(A<, <, A). The first construction have the optimal AC property in the sense that each
sequence is perfect, while the second construction exhibits the optimal CC property,
because any two different sequences are uncorrelated.

Paper IV proposes a new interleaving approach to constructing ZCZ sequence sets.
Instead of constructing new shift sequences, we employ multiple component sequences
with certain properties and derive ZCZ sequence sets with flexible parameters. The
main results are as follows. With a proper single shift sequence of length " , the con-
structed setS defined by (1.10) is an (#", <", <I)-ZCZ sequence set when the initial
set U is an (=, <, I) IF-ZAZ sequence set, where # = =<. The new construction
has a smaller alphabet compared with an initial IF-ZAZ sequence set with the same
parameters. Furthermore, the construction (1.10) is related to constructions based on
perfect sequences whenU is properly chosen. Compared with known related construc-
tions, our construction has a less restrictive condition under which the constructed ZCZ
sequence set is optimal. New optimal ZCZ sequence sets are obtained as a result.

Note that when " = 1, the construction(1.10) becomes

S = {B: (C) = D8 ( 9) · 1: (8) | 1 ≤ : ≤ <},

where C = 8 + 9<, 0 ≤ 9 ≤ = − 1, 0 ≤ 8 ≤ < − 1, and b: = {1: (8)} is the :-th row of an
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< × < orthogonal matrix �. This generates an (=<, <, <I)-ZCZ sequence set based
on any given initial (=, <, I) IF-ZAZ sequence set, which includes the construction in
Paper III as a special case.

Papers V and VI address multiple ZCZ sequence sets with low inter-set cross-
correlation. The generated multiple ZCZ sequence sets have following properties:
1) each sequence in each set is perfect; 2) each set is an optimal ZCZ sequence set; 3)
multiple sets possess optimal inter-set cross-correlation property. The number of the
ZCZ sequence sets in both papers is one less than the smallest prime divisor of the
period of the sequences.

Paper V generates multiple ZCZ sequence sets based on perfect non-linear functions
which are known as Frank-Zadoff sequences of prime periods. The construction is as
follows.

Let ? be an odd prime integer. For each 1 ≤ < < ?, define a sequence set S< of
period ?2 and size ? as

S< = {s<D : s<D , {B<D (C)}?
2−1
C=0 , 0 ≤ D < ?}.

Herein, for each 0 ≤ C < ?2,

B<D (C) = l<c(C1)·C2+Df(C1)? , (1.11)

where C = C1 + C2 · ? and 0 ≤ C1, C2 < ?, c and X satisfy conditions

• c is a permutation of Z? such that the equation c(G + 0) ≡ 2c(G) (mod ?) has
exactly one solution for any given 0 ∈ Z?;

• f is a permutation of Z? satisfying f ≠ :c + ; for any :, ; ∈ Z?.
The contribution of Paper V is that we give explicit constraints on permutations c and f
that ensure desired properties. The constraint on c ensures the optimal inter-set cross-
correlation property, while the constraint on the relationship between c and f assures
that all the sequences are cyclically inequivalent. In addition, we present a construction
of such permutations meeting these requirements.

Paper VI generalises the results in Paper V to the case that ? is odd. Let # be an odd
integer andM be an index set. WedenoteΠ = {c< | c< is a permutation overZ# for< ∈
M} a set of permutations. For each < ∈ M, we define a sequence set as

S< = {s<= | s<= (C) = lc< (C1)·C2+=·f(C1)# , 0 ≤ = < #},

where C = C1 + C2 · # , 0 ≤ C1, C2 < # , c< ∈ Π and f is a permutation over Z# . We show
that each set is an optimal (#2, #, #)-ZCZ sequence set.

We further prove that these |M| ZCZ sequence sets possess optimal cross-correlation
if and only if the following conditions are satisfied:

• c<1 (C1 + g1) ≡ c<2 (C1) (mod #) has only one solution for g1 ∈ Z# and <1 ≠
<2 ∈ M,
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• f is a permutation over Z# such that there exist no 21 and 22 in Z∗# satisfying
21 · c< (C1) + 22 · f(C1) = 0 for each < ∈ M,

where |M| is the cardinality of the setM.
The contribution of Paper VI is to extend the constraints in Paper V to a general

representation and propose a construction of permutation sets Π that meets the require-
ments. Moreover, the requirement for the permutation set Π inspired us to employ
combinatorial objects to generate sequences with optimal correlation in Papers I and II.

The rest of Paper II presents a construction of multiple optimal ZCZ sequence sets
based on the connection between circular Florentine arrays and the unified construction
of perfect polyphase sequences. Let # = A<2, where A and < are positive integers. Let

" =

{
�2 (<) when A = 1,
min(A∗ − 1, �2 (<)) when A ≠ 1.

where A∗ is the smallest prime divisor of A and �2 (<) is the maximum number such that
an �2 (<) × < circular Florentine array � over Z< exists. Let % = {V1, V2, · · · V�2 (<)}
be a set of permutations from each row of �. Then " sequence sets can be defined as
follows.

For each 1 ≤ 9 ≤ " , a sequence set of size < of period # is defined as

S 9 = {s 98 |B 98 (C) = l
<2(A) 9 C21+V 9 (C2)C1+8A6(C2)
A< , 0 ≤ 8 < <},

where C = C1< + C2, 0 ≤ C1 < A<, 0 ≤ C2 < <, function 2 is the same as defined in (1.6),
V 9 ∈ % for 1 ≤ 9 ≤ " , and 6 is a permutation over Z< satisfying certain properties.

Each sequence is perfect and each set is an optimal (#, <, A<)-ZCZ sequence set.
The maximum inter-set CCmagnitude is

√
# , which achieves the Sarwate bound. When

A ≠ 1, the number of the ZCZ sequence sets depends on the minimum between A∗ − 1
and �2 (<). When A = 1 and < is non-prime, " ≥ @ − 1, which improves the results in
Paper V and VI.



Chapter 2

Discussion and future work

This thesis concerns perfect polyphase sequences with low cross-correlation and ZCZ
sequences based on perfect sequences. These two topics are connected, because perfect
polyphase sequences with low cross-correlation can induce multiple ZCZ sequences
with low inter-set cross-correlation, and the number of perfect sequences with low
cross-correlation affects the number of the ZCZ sequence sets with optimal inter-set
cross-correlation.

Since it is difficult to find new perfect polyphase sequences, most constructions
of perfect polyphase sequences with low cross-correlation are based on the known
perfect polyphase sequences. The goal is to find as many as possible perfect polyphase
sequences of the same period with optimal cross-correlation. As we have discussed,
the number of such sequences is limited by the smallest prime divisor of the period
of the sequences or the existence of circular Florentine arrays of some order. Instead
of restricting to the optimal cross-correlation property, it will be of great interest in
the future to construct sequence sets with a larger size having almost optimal cross-
correlation. Meanwhile, it will be interesting is to find new perfect polyphase sequences
despite of the difficulty.

Based on different expressions, we classify some known constructions of ZCZ
sequences of period #" into the following three representations:

1) B1(8 + 9") = 01( 9 + 48) · 11(8), 0 ≤ 9 ≤ # − 1, 0 ≤ 8 ≤ " − 1

2) B2(8 + 9") = 02(8 + 9") · 12(8), 0 ≤ 9 ≤ # − 1, 0 ≤ 8 ≤ " − 1

3) B3(8 + 9") = 03( 9) · 13(8 + 9"), 0 ≤ 9 ≤ # − 1, 0 ≤ 8 ≤ " − 1

where a1, a2 and a3 are perfect sequence of period # , #" , and # , respectively; b1,
b2 and b3 are complex sequences of period " , " , and #" , respectively; and e is a
sequence of length " defined over Z# . Here we call a1, a2 and a3 are carrier sequences
and b1, b2 and b3 are modulation sequences. ZCZ sequence sets are derived by applying
different modulation sequences on the same or different carrier sequences. Modulation
sequences are used to preserve the orthogonality between ZCZ sequences.

Construction based on interleaving technique in [92] has the expression of Case 1).
The main difficulty for this case is to find appropriate constructions of shift sequences
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such that the generated sequences have desirable properties. Constructions in [40,110]
used multiple shift sequences e to increase the number of sequences, while Paper IV
adopts multiple component sequence a1 to achieve flexible parameters.

For the expression of Case 2), [72] chooses a2 to be Zadoff-Chu sequences, while
Papers V and VI adopt generalised Frank sequences. Paper III shows that the unified
construction of perfect polyphase sequence is also applicable.

Case 3) generates IF-ZAZ sequences. In [67], a3 is chosen to be Zadoff-Chu
sequences. It was shown in [74] that a3 can be any perfect sequences (not necessary
to be perfect polyphase sequences). One disadvantage of these constructions is that the
alphabet is always equal to or larger than the period of sequences.

For future work on the design of ZCZ sequences, the following research questions
are interesting to explore.

• Construction of ZCZ sequences based on the transform domain method proposed
in [55] consists of equivalent sequences. It will be interesting to find constraints
in transform domain such that all the generated ZCZ sequences are cyclically
distinct.

• For the design of multiple ZCZ sequence sets, it will be interesting to construct
multiple optimal ZCZ sequence sets with new parameters for which all the se-
quences together also form an optimal ZCZ sequence set.

• The Tang-Fan-Matsufuji Bound shows that the number of the ZCZ sequences "
is upper bounded by the period of sequences # divided by the zero correlation
zone / . This implies that the number of ZCZ sequences is always smaller than
the period, which is too small to accommodate all users in a cell [71]. It will be
interesting to design sequences with good correlation and a large family size.



Bibliography

[1] W. Alltop. Complex sequences with low periodic correlations (corresp.). IEEE
Transactions on Information Theory, 26(3):350–354, May 1980.

[2] W. Alltop. Decimations of the Frank-Heimiller sequences. IEEE Transactions
on Communications, 32(7):851–853, July 1984.

[3] R.AppuswamyandA.K.Chaturvedi. Anew framework for constructingmutually
orthogonal complementary sets and ZCZ sequences. IEEE Transactions on
Information theory, 52(8):3817–3826, 2006.

[4] K. T. Arasu. Sequences and arrays with desirable correlation properties. In In
D. Crnković and V. Tonchev, editors, Information Security, Coding Theory and
Related Combinatorics, NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur.,
volume 29, pages 136–171, 2011.

[5] S. T. Blake and A. Z. Tirkel. A construction for perfect periodic autocorrelation
sequences. In K.-U. Schmidt and A. Winterhof, editors, Sequences and Their
Applications - SETA 2014, pages 104–108, Cham, 2014. Springer International
Publishing.

[6] A. K. Brodzik. New polyphase sequence sets with all-zero cross-correlation. In
2012 IEEE International Symposium on Information Theory Proceedings, pages
1421–1424, July 2012.

[7] A. K. Brodzik. On certain sets of polyphase sequences with sparse and highly
structured Zak and Fourier transforms. IEEE Transactions on Information The-
ory, 59(10):6907–6916, 2013.

[8] Y. Cai and C. Ding. Binary sequences with optimal autocorrelation. Theoretical
Computer Science, 410(24):2316 – 2322, 2009.

[9] T.-S. Chen, Y.-S. Chen, C.-Y. Chang, and C.-L. Wang. Green technologies for
wireless communications andmobile computing. Communications, IET, 5:2595–
2597, 12 2011.

[10] D. Chu. Polyphase codes with good periodic correlation properties (corresp.).
IEEE Transactions on information theory, 18(4):531–532, 1972.



32 BIBLIOGRAPHY

[11] H. Chung and P. V. Kumar. A new general construction for generalized bent
functions. IEEE Transactions on Information Theory, 35(1):206–209, Jan 1989.

[12] X. Deng and P. Fan. Spreading sequence sets with zero correlation zone. Elec-
tronics Letters, 36(11):1, 2000.

[13] J. F. Dillon. New p-ary perfect sequences and difference sets with Singer param-
eters. In T. Helleseth, P. V. Kumar, and K. Yang, editors, Sequences and their
Applications, pages 23–33, London, 2002. Springer London.

[14] P. Fan and M. Darnell . Sequence design for communications applications.
Communications Systems, Techniques, and Applications Series. J. Wiley, New
York, 1996.

[15] P. Fan, W. Yuan, and Y. Tu. Z-complementary binary sequences. IEEE Signal
Processing Letters, 14(8):509–512, 2007.

[16] P. Z. Fan and M. Darnell. The synthesis of perfect sequences. In C. Boyd, editor,
Cryptography and Coding, pages 63–73, Berlin, Heidelberg, 1995. Springer
Berlin Heidelberg.

[17] P. Z. Fan, N. Suehiro, N.Kuroyanagi, andX.M.Deng. A class of binary sequences
with zero correlation zone. IEE Electtron. Lett., 35(10):777–779, 1999.

[18] R. Frank. Comments on "polyphase codes with good periodic correlation proper-
ties" byChu, DavidC. IEEETransactions on InformationTheory, 19(2):244–244,
1973.

[19] R. Frank and S. Zadoff. Phase shift pulse codes with good periodic correlation
properties (corresp.). IRE Transactions on Information Theory, 8(6):381–382,
1962.

[20] E.M.Gabidulin. Non-binary sequenceswith the perfect periodic auto-correlation
and with optimal periodic cross-correlation. In Proceedings. IEEE International
Symposium on Information Theory, pages 412–412, 1993.

[21] E. M. Gabidulin. Partial classification of sequences with perfect autocorrelation
and bent functions. In Proc. IEEE International Symposium on Information
Theory (ISIT), Whistler, page 467, 1995.

[22] E. M. Gabidulin and V. V. Shorin. New sequences with zero autocorrelation.
Probl. Inf. Transm., 38(4):255–267, Oct. 2002.

[23] E. M. Gabidulin and V. V. Shorin. Unimodular perfect sequences of length ?B.
IEEE Transactions on Information Theory, 51(3):1163–1166, 2005.

[24] G. Garg, T. Helleseth, and P. V. Kumar. Recent Advances in Low-Correlation
Sequences, pages 63–92. Springer US, Boston, MA, 2009.



BIBLIOGRAPHY 33

[25] B. Getz and N. Levanon. Weight effects on the periodic ambiguity function.
IEEE Transactions on Aerospace and Electronic Systems, 31(1):182–193, 1995.

[26] R. Gold. Optimal binary sequences for spread spectrum multiplexing (corresp.).
IEEE Transactions on Information Theory, 13(4):619–621, 1967.

[27] S. Golomb and G. Gong. Signal Design for Good Correlation: for Wireless
Communication, Cryptography, and Radar. Cambridge University Press, 2005.

[28] S. W. Golomb. Two-valued sequences with perfect periodic autocorrelation.
IEEE Transactions on Aerospace and Electronic Systems, 28(2):383–386, 1992.

[29] B. Gordon, W. H. Mills, and L. R. Welch. Some new difference sets. Canidian
Journal of Mathematics, 14(4):614–625, 1962.

[30] T. Hayashi. A class of two-dimensional binary sequences with zero-correlation
zone. IEEE Signal Processing Letters, 9(7):217–221, 2002.

[31] T.Hayashi. Optimal zero-correlation zone sequence set constructed froma perfect
sequence. In 7th IEEE International Conference on Computer and Information
Technology (CIT 2007), pages 475–479, 2007.

[32] T.Hayashi. A class of zero-correlation zone sequence set using a perfect sequence.
IEEE Signal Processing Letters, 16(4):331–334, April 2009.

[33] T. Hayashi, T. Maeda, S. Kanemoto, and S. Matsufuji. A novel construction of
zero-correlation zone sequence set with wide inter-subset zero-correlation zone.
In Proceedings of the Fifth International Workshop on Signal Design and Its
Applications in Communications, pages 25–28, Oct 2011.

[34] T. Hayashi and S. Matsufuji. A generalized construction of optimal zero-
correlation zone sequence set from a perfect sequence. In 2009 Fourth Inter-
national Workshop on Signal Design and its Applications in Communications,
pages 24–27, 2009.

[35] R. Heimiller. Phase shift pulse codes with good periodic correlation properties.
IRE Transactions on Information Theory, 7(4):254–257, 1961.

[36] T. Helleseth. Some results about the cross-correlation function between two
maximal linear sequences. Discrete Mathematics, 16(3):209 – 232, 1976.

[37] T. Helleseth and Guang Gong. New nonbinary sequences with ideal two-level
autocorrelation. IEEE Transactions on Information Theory, 48(11):2868–2872,
2002.

[38] T. Helleseth and P. V. Kumar. Sequences with low correlation. In V. S. Pless and
W. C. Huffman, editors, Handbook of Coding Theory, Vol. I, II, chapter 21, page
1765–1853, 1998.



34 BIBLIOGRAPHY

[39] T. Hoholdt and J. Justesen. Ternary sequences with perfect periodic autocor-
relation (corresp.). IEEE Transactions on Information Theory, 29(4):597–600,
1983.

[40] H. Hu and G. Gong. New sets of zero or low correlation zone sequences via
interleaving techniques. IEEE Transactions on Information Theory, 56(4):1702–
1713, April 2010.

[41] W. Huffman, J.-L. Kim, and P. Solé. Concise Encyclopedia of Coding Theory.
Chapman and Hall/CRC, 2021.

[42] V. P. Ipatov. Multiphase sequences spectrums. Izvestiya VUZ. Radioelektronika
(Radioelectronics and Communications systems), 22:80–82, 1979.

[43] D. Jungnickel andA. Pott. Perfect and almost perfect sequences. Discrete Applied
Mathematics, 95(1):331 – 359, 1999.

[44] T. Kasami. Weight distribution formula for some class of cyclic codes. Technical
Report No. R-285, Coordinated Science Laboratory, University of Illinois at
Urbana- Champaign, 1996.

[45] D. Kedia, M. Duhan, and S. L. Maskara. Evaluation of correlation properties of
orthogonal spreading codes for CDMAwireless mobile communication. In 2010
IEEE 2nd International Advance Computing Conference (IACC), pages 325–330,
2010.

[46] E. Krengel. New polyphase perfect sequences with small alpabet. Electron. Lett.,
44(17):1013–1014, 2008.

[47] E. I. Krengel. Some constructions of almost-perfect, odd-perfect and perfect
polyphase and almost-polyphase sequences. In C. Carlet and A. Pott, editors,
Sequences and Their Applications – SETA 2010, pages 387–398, Berlin, Heidel-
berg, 2010. Springer Berlin Heidelberg.

[48] F. F. Kretschmer and K. Gerlach. Low sidelobe radar waveforms derived from
orthogonal matrices. IEEE Transactions on Aerospace and Electronic Systems,
27(1):92–102, 1991.

[49] P. V. Kumar, R. A. Scholtz, and L. R.Welch. Generalized bent functions and their
properties. Journal of Combinatorial Theory, Series A, 40(1):90–107, 1985.

[50] C. Lee. Perfect @-ary sequences from multiplicative charactes over GF(?).
Electron. Lett., 3628(9):833–835, 1992.

[51] B. Leonard D. Cyclic Difference Sets. Springer-Verlag Berlin Heidelberg, 1971.

[52] J. Li, J. Fan, and X. Tang. A generic construction of generalized chirp-like
sequence sets with optimal zero correlation property. IEEE Communications
Letters, 17(3):549–552, 2013.



BIBLIOGRAPHY 35

[53] Y. B. Li, C. Q. Xu, and K. Liu. Construction of mutually orthogonal zero
correlation zone polyphase sequence sets. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, E94-A(4):1159–1164,
2011.

[54] Y. Liu and P. Fan. Modified Chu sequences with smaller alphabet size. Electron.
Lett., 40(10):598–599, 2004.

[55] Y.-C. Liu, C.-W. Chen, and Y. T. Su. New constructions of zero-correlation zone
sequences. IEEE Transactions on Information Theory, 59(8):4994–5007, 2013.

[56] H. D. Lüke. Sequences and arrays with perfect periodic correlation. IEEE
Transactions on Aerospace and Electronic Systems, 24(3):287–294, 1988.

[57] H. D. Lüke. BTP transform and perfect sequences with small phase alphabet.
IEEE Transactions on Aerospace and Electronic Systems, 32(1):497–499, 1996.

[58] H. D. Lüke, H. D. Schotten, and H. Hadinejad-Mahram. Generalised sidel-
nikov sequences with optimal autocorrelation properties. Electron. Lett.,
36(6):525–527, 2000.

[59] H. D. Lüke, H. D. Schotten, and H. Hadinejad-Mahram. Binary and quadriphase
sequences with optimal autocorrelation properties: a survey. IEEE Trans. Inform.
Theory, 49(12):3271–3282, 2003.

[60] C. Ma, T. S. Yeo, C. S. Tan, and Z. Liu. Three-dimensional imaging of targets
using colocated mimo radar. IEEE Transactions on Geoscience and Remote
Sensing, 49(8):3009–3021, 2011.

[61] S. L. Ma andW. S. Ng. On non-existence of perfect and nearly perfect sequences.
Int. J. Inf. Coding Theory, 1(1):15–38, Mar. 2009.

[62] S. Matsufuji, N. Kuroyanagi, N. Suehiro, and P. Fan. Two types of polyphase
sequence sets for approximately synchronized CDMA systems. IEICE Transac-
tions on Fundamentals of Electronics Communications and Computer Sciences,
E86A:229–234, 01 2003.

[63] T. Matsumoto, Y. Suwaki, and S. Matsufuji. Experimental evaluation of parallel
transmission using optical ZCZ-CDMA system. In 2009 Fourth International
Workshop on Signal Design and its Applications in Communications, pages 118–
121, 2009.

[64] T. McGree. Signal sets with optimal correlation properties. IEEE Transactions
on Communications, 31(9):1109–1112, 1983.

[65] A. Milewski. Periodic sequences with optimal properties for channel estima-
tion and fast start-up equalization. IBM Journal of Research and Development,
27(5):426–431, Sep. 1983.



36 BIBLIOGRAPHY

[66] W. H. Mow. Sequence Design for Spread Spectrum. The Chinese University
Press (Chinese University of Hong Kong, Shatin, Hong Kong), 1995.

[67] W. H. Mow. A new unified construction of perfect root-of-unity sequences. In
Proceedings of ISSSTA’95 International Symposium on Spread Spectrum Tech-
niques and Applications, volume 3, pages 955–959, 1996.

[68] Y. Niho. Multi-valued cross-correlation functions between two maximal linear
recursive sequences. PhD Thesis, University of California, 1972.

[69] J. Olsen, R. Scholtz, and L. Welch. Bent-function sequences. IEEE Transactions
on Information Theory, 28(6):858–864, 1982.

[70] K. Park, H. Song, D. S. Kim, and S. W. Golomb. Optimal families of perfect
polyphase sequences from the array structure of fermat-quotient sequences. IEEE
Transactions on Information Theory, 62(2):1076–1086, Feb 2016.

[71] R. A. Pitaval, B.M. Popović, P.Wang, and F. Berggren. Overcoming 5G PRACH
capacity shortfall: Supersets of Zadoff–Chu sequenceswith low-correlation zone.
IEEE Transactions on Communications, 68(9):5673–5688, 2020.

[72] B. M. Popovic and O. Mauritz. Generalized chirp-like sequences with zero
correlation zone. IEEE Transactions on Information Theory, 56(6):2957–2960,
2010.

[73] B. M. Popović. Generalized chirp-like polyphase sequences with optimum corre-
lation properties. IEEE Transactions on Information Theory, 38(4):1406–1409,
July 1992.

[74] B. M. Popović. Optimum sets of interference-free sequences with zero auto-
correlation zones. IEEE Transactions on Information Theory, 64(4):2876–2882,
April 2018.

[75] A. Pott and S. P. Bradley. Existence and nonexistence of almost-perfect autocor-
relation sequences. IEEE Transactions on Information Theory, 41(1):301–304,
1995.

[76] F. Qu, L. Yang, and T. C. Yang. High reliability direct-sequence spread spectrum
for underwater acoustic communications. In OCEANS 2009, pages 1–6, 2009.

[77] K. Rajawat and A. K. Chaturvedi. Near optimal training sequences for low
complexity symbol timing estimation in mimo systems. IEEE Transactions on
Communications, 58(1):281–288, 2010.

[78] T. S. Rappaport. Wireless communications - principles and practice. 1996.

[79] D. Sarwate. Bounds on crosscorrelation and autocorrelation of sequences (cor-
resp.). IEEE Transactions on Information Theory, 25(6):720–724, 1979.



BIBLIOGRAPHY 37

[80] R. A. Scholtz and L. Welch. Group characters: sequences with good correlation
properties. IEEE Transactions on Information theory, IT-24:79–84, 1978.

[81] S. Sesia, I. Toufik, and M. Baker. LTE - The UMTS Long Term Evolution: From
Theory to Practice: Second Edition. 2011.

[82] D. Shedd and D. V. Sarwate. Construction of sequences with good correlation
properties (corresp.). IEEE Transactions on Information Theory, 25(1):94–97,
1979.

[83] V. M. Sidelnikov. On mutual correlation of sequences. Soviet Math. Dokl,
12:197–201, 1971.

[84] M. K. Simon, J. k. Omura, R. A. Scholtz, and B. K. Levitt. Spread Spectrum
Communications Handbook. McGraw-Hill, New York, NY, USA: McGraw-Hill,
2002.

[85] M. Soltanalian and P. Stoica. On prime root-of-unity sequences with perfect
periodic correlation. IEEE Transactions on Signal Processing, 62(20):5458–
5470, 2014.

[86] M. K. Song and H. Song. A construction of odd length generators for opti-
mal families of perfect sequences. IEEE Transactions on Information Theory,
64(4):2901–2909, April 2018.

[87] S. Stanczak, H. Boche, and M. Haardt. Are LAS-codes a miracle ? In GLOBE-
COM’01. IEEE Global Telecommunications Conference (Cat. No.01CH37270),
volume 1, pages 589–593 vol.1, 2001.

[88] N. Suehiro. A signal design without co-channel interference for approximately
synchronized CDMA systems. IEEE Journal on Selected Areas in Communica-
tions, 12(5):837–841, 1994.

[89] N. Suehiro and M. Hatori. Modulatable orthogonal sequences and their applica-
tion to SSMA systems. IEEE Transactions on Information Theory, 34(1):93–100,
Jan 1988.

[90] X. Tang, P. Fan, and J. Lindner. Multiple binary ZCZ sequence sets with good
cross-correlation property based on complementary sequence sets. IEEE Trans-
actions on Information Theory, 56(8):4038–4045, 2010.

[91] X. Tang and W. H. Mow. Design of spreading codes for quasi-synchronous
CDMA with intercell interference. IEEE Journal on Selected Areas in Commu-
nications, 24(1):84–93, 2006.

[92] X. Tang and W. H. Mow. A new systematic construction of zero correlation
zone sequences based on interleaved perfect sequences. IEEE Transactions on
Information Theory, 54(12):5729–5734, Dec 2008.



38 BIBLIOGRAPHY

[93] X. H. Tang, P. Z. Fan, and S.Matsufuji. Lower bounds on correlation of spreading
sequence set with low or zero correlation zone. Electronics Letters, 36(6):551–
552, 2000.

[94] H. Torii, T. Matsumoto, andM. Nakamura. A newmethod for constructing asym-
metric ZCZ sequence sets. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, 95(9):1577–1586, 2012.

[95] H. Torii, T. Matsumoto, and M. Nakamura. Optimal polyphase asymmetric ZCZ
sequence sets including uncorrelated sequences. Journal of Signal Processing,
16(6):487–494, 2012.

[96] H. Torii, T.Matsumoto, andM.Nakamura. Extension ofmethods for constructing
polyphase asymmetric ZCZ sequence sets. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences, E96.A:2244–2252,
November 2013.

[97] H. Torii, M. Nakamura, and N. Suehiro. A new class of zero-correlation zone
sequences. IEEE Transactions on Information Theory, 50(3):559–565, 2004.

[98] H. Torii, M. Nakamura, and N. Suehiro. A new class of polyphase sequence
sets with optimal zero-correlation zones. IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, E88-A(7):1987–1994,
2005.

[99] H. Torii, M. Satoh, T. Matsumoto, and M. Nakamura. New generalised mutually
orthogonal ZCZ sequence sets constructed fromDFTmatrix. In Recent advances
in communications circuits and technological innovation: proceedings of the 3rd
European conference of circuits technology and devices (ECCTD ’12), pages
262–267, 2012.

[100] H. Torii, M. Satoh, T. Matsumoto, and M. Nakamura. Generalized mutually
orthogonal ZCZ sequence sets based on perfect sequences and orthogonal codes.
In 2013 15th International Conference onAdvancedCommunications Technology
(ICACT), pages 894–899, 2013.

[101] L.-S. Tsai and Y. T. Su. Transform domain approach for sequence design and its
applications. IEEE Journal on Selected Areas in Communications, 24(1):75–83,
Jan 2006.

[102] R. Van Schyndel. Using phase-modulated probe signals to recover delays from
higher order non-linear systems. In Biomedical Research in 2001 IEEE Engi-
neering in Medicine and Biology, pages 94–97, 2001.

[103] L. Wang, X. Zeng, and H. Wen. Asymmetric ZCZ sequence sets with inter-
subset uncorrelated sequences via interleaved technique. IEICE Transactions on



BIBLIOGRAPHY 39

Fundamentals of Electronics, Communications and Computer Sciences, (2):751–
756, 2017.

[104] L. Welch. Lower bounds on the maximum cross correlation of signals (corresp.).
IEEE Transactions on Information Theory, 20(3):397–399, 1974.

[105] J. Wolfmann. Almost perfect autocorrelation sequences. IEEE Transactions on
Information Theory, 38(4):1412–1418, 1992.

[106] D. Wu, P. Spasojevic, and I. Seskar. Orthogonal variable spreading factor codes
with zero-correlation zone for TS-UWB. In IEEE Wireless Communications and
Networking Conference, 2005, volume 2, pages 807–812 Vol. 2, 2005.

[107] Y. Xia, C. Li, X. Zeng, and T. Helleseth. Some results on cross-correlation
distribution between a ?-ary <-sequence and its decimated sequences. IEEE
Transactions on Information Theory, 60(11):7368–7381, 2014.

[108] L. Xu, Q. Liang, X. Wu, and B. Zhang. Phase coded waveform design for sonar
sensor network. In 2011 6th International ICST Conference on Communications
and Networking in China (CHINACOM), pages 251–256, 2011.

[109] Z. Zhang, F. Zeng, and G. Xuan. Mutually orthogonal sets of complementary
sequences for multi-carrier CDMA systems. 09 2010.

[110] Z. Zhou, X. Tang, and G. Gong. A new class of sequences with zero or low cor-
relation zone based on interleaving technique. IEEE Transactions on Information
Theory, 54(9):4267–4273, Sep. 2008.



40 BIBLIOGRAPHY



Chapter 3

Scientific results



42 Scientific results



I

Paper I

3.1 New optimal sets of perfect polyphase sequences based
on circular Florentine arrays

Dan Zhang and Tor Helleseth
IEEE International Symposium on Information Theory (ISIT), Los Angeles, CA, USA,
pp. 2921-2925 (2020)



I

44 Scientific results



New Optimal Sets of Perfect Polyphase Sequences
Based on Circular Florentine Arrays

Dan Zhang
email: dan.zhang@uib.no

Tor Helleseth
email: tor.helleseth@uib.no

Abstract
Families of periodic sequences with some desirable auto-correlation and crosscorrela-

tion properties have applications in communications and radar systems for identification,
synchronization, ranging, or interference mitigation. A sequence is said to be a polyphase
sequence if all the coordinates are =-th roots of unity. In this paper, we develop a connec-
tion between generalised Frank sequences and well-studied combinatorial objects: circular
Florentine arrays. From this connection, we can derive an optimal set of perfect polyphase
sequences with respect to the Sarvate bound. Furthermore, the size of the optimal set
is determined by the existence of circular Florentine arrays. As a result, the size of an
optimal set of perfect sequences is increased, compared with the previous results, where
the size depends on the smallest prime divisor of the period.

1 Introduction
The periodic cross-correlation value of two complex sequences u = {D(C)}#−1

C=0 and v =
{E(C)}#−1

C=0 of period # at shift g is defined as

'u,v(g) =
#−1∑
C=0

D(C + g)E∗(C), 0 ≤ g < #,

where C + g is taken modulo # and E∗(C) is the complex conjugate of the complex number
E(C). When two sequences u and v are identical, the periodic cross-correlation function is
called auto-correlation function, and is denoted by 'u(g). Sequences with good periodic auto-
correlation have been widely used in digital communication systems and pulse compression
radars [1, 2]. In many cases, sequences having small (preferably zero) out-of-phase auto-
correlation magnitude are required. In particular, a sequence is said to be perfect if all the
out-of-phase periodic auto-correlation coefficients are zero, i.e., 'u(g) = 0 for g . 0 mod # .
There is so far only one example of a binary perfect sequence of period four [1].

Spread spectrummultiple access systems also demand minimum possible cross-correlation
between the sequences within a set of sequences having good auto-correlation properties. Let
S be a set of " sequences of period # . The maximum out-of-phase periodic auto-correlation
magnitude is denoted by '0 and defined by '0 = max{|'s8 (g) | : s8 ∈ S, 0 < g < #}.
The maximum periodic cross-correlation magnitude is denoted by '2 and defined by '2 =
max{|'s8 ,s 9 (g) | : s8 ≠ s 9 ∈ S, 0 ≤ g < #}. Sarwate [3] showed that '0 and '2 are related
through the inequality

'2
2

#
+ # − 1
# (" − 1)

'2
0

#
≥ 1,
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Table 1: Optimal sets of perfect polyphase sequences

References [3] [4] [5] [6] [7] [8] [9] this paper [10]
Class of

perfect sequences
Generalized chirp-like

sequences Generalised Frank sequences Unified

Period of
perfect sequences # B<2 #2 # = &2 # = &2 #2 #2 B<2

Size of optimal set ? − 1 ? − 1 (? − 1)/2 & − 1 & − 1 ? − 1 �2 (#) ? − 1
# is an odd integer; ? is the smallest prime divisor of the period; & is an odd prime;
B is a square-free integer; < is a positive integer; �2 (#) is the maximum number such that an �2 (#) ×#
circular Florentine array exists.

which provides a lower bound on one of the maxima if the value of the other is specified. When
'0 is zero, i.e., all the sequences in S are perfect, the lower bound on '2 is equal to

√
# . A set

of perfect sequences meeting this bound is called an optimal set of perfect sequences. We can
see that " vanishes if '0 is zero, thus, the inequality no longer depends on " . Therefore, there
are no bounds on the size of an optimal set of perfect sequences. In this paper, we are interested
in how large the size of an optimal set of perfect sequences can be. Many constructions of
optimal sets based on the known perfect sequences have been investigated.

In [4] and [3], Frank-Zadoff-Chu sequences of odd period were employed to get an optimal
set of ? − 1 perfect sequences, where ? is the smallest prime divisor of the period. Popović [5]
presented an optimal set of ?−1 generalized chirp-like sequences. Alltop [6] obtained optimal
sets from (? − 1)/2 decimations of the Frank-Heimiller sequences of period #2, where #
is an odd integer. Suehiro and Hatori [7] proposed an optimal set of # − 1 modulatable
orthogonal sequences of period #2, where # is a prime number. Mow [10] classified all the
known perfect polyphase sequences into four classes: I) Generalised Frank sequences [11], II)
Generalized chirp-like polyphase sequences [5], III) Milewski sequences [12], and IV) perfect
polyphase sequences associated with the general construction of generalised bent function [13].
Furthermore, Mow [10] proposed a unified construction of perfect polyphase sequences, which
included all the perfect sequences mentioned above as special cases. Thus, an optimal set of
size ? − 1 from the unified construction was derived.

Park et al. recently presented perfect polyphase sequences based on generators and array
structures [8], which are essentially special cases of generalised Frank sequences. When
a generator of length # is a permutation over Z# , the associated family is a set of perfect
sequences of period #2, where # is an odd prime. This is equivalent to the requirements in
Theorem 3 [11] that c is a permutation over Z# and 6 is any function on Z# . Each optimal
generator can induce an optimal set of # − 1 perfect sequences. This result was later extended
to the case of odd # and an optimal set of ?−1 perfect sequences of period #2 were derived [9].

We can see that the sizes of the optimal sets are all based on the smallest prime divisor of
the period according to all papers mentioned above. The size of an optimal set is at most ? − 1,
where ? is the smallest prime divisor of the period (see table I). In this paper, we present a
construction of optimal sets based on generalised Frank sequences and cyclic Florentine arrays,
where the size of an optimal set is determined by the existence of cyclic Florentine arrays. As
a result, the size of an optimal set is improved compared with the known results.

The rest of the paper is organised as follows. Section II gives an introduction to cyclic
Florentine arrays. We build a connection between circular Florentine arrays and generalised
Frank sequences in Section III. A construction of optimal sets of perfect sequences is derived
consequently. Section IV concludes this paper.
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2 Preliminaries
An < × = Tuscan-: array has < rows and = columns such that 1) each row is a permutation
of = symbols and 2) for any two symbols 0 and 1, and for each C from 1 to : , there is at most
one row in which 1 is the C-th symbol to the right of 0. In particular, a Tuscan-(= − 1) array is
referred to as a Florentine array. If it is also a Latin square, we may call it a Vatican square. We
call an = × = square a Latin square if its rows and columns are all permutations of = symbols.

An < × = circular Florentine array is an array of = distinct symbols in < circular rows
such that each row contains every symbol exactly once and that for any pair of distinct symbols
and for each C from 1 to = − 1 there is at most one row in which 1 occurs C steps (circularly)
to the right of 0. By definition, an < × = circular Florentine array is an array in which the
Tuscan-(= − 1) property holds when the rows are taken to be circular. See Table II for an
example of a 4× 15 circular Florentine array. For each positive integer = ≥ 2, we denote �2 (=)
the maximum number such that an �2 (=) × = circular Florentine array exists.

Lemma 1. (1) �2 (=) = 1 when = is even [14], and

(2) ? − 1 ≤ �2 (=) ≤ = − 1, where ? is the smallest prime factor of = [15], and

(3) �2 (=) = = − 1 when = is a prime [15], and

(4) �2 (=) ≤ = − 3 when = ≡ 15 mod 18 [15].

Circular Florentine arrays are connected to other combinatorial objects. For example,
an < × = circular Florentine array is equivalent to an (=, < + 1; 1) difference matrix [16].
Moreover, circular Florentine arrays are also related with a set of Mutually Orthogonal Latin
Squares (MOLS) having an additional property.

Lemma 2. [15] There exists a circular Florentine array of size < × = if and only if there exists
a set of < mutually orthogonal Latin squares of order = such that the rows of any squares are
cyclic shifts of each other and that every square is obtainable from any other only by permuting
the rows.

Table 2: A 4 × 15 circular Florentine array

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 7 1 8 2 12 3 11 9 4 13 5 14 6 10
0 4 11 7 10 1 13 9 5 8 3 6 2 14 12
0 13 7 2 11 6 14 10 3 5 12 9 1 4 8

Table 3: Possible values of �2 (=) for odd composite = [15]

= �2 (=) = �2 (=) = �2 (=)
9 2 35 4, · · · , 33 57 7, · · · , 55
15 4 39 3, · · · , 38 63 6, · · · , 62
21 5, · · · , 19 45 2, · · · , 43 65 4, · · · , 63
25 4, · · · , 24 49 6, · · · , 48 69 2, · · · , 66
27 4, · · · , 26 51 2, · · · , 48 75 2, · · · , 73
33 3, · · · , 30 55 4, · · · , 54 77 6, · · · , 75
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The basic lower bound on �2 (=) is ? − 1, where ? is the smallest prime factor of =, which
can be improved by Lemma 2 and known constructions of MOLS with the desirable property
in [17–19] (see Table III). For example, �2 (21) ≥ 5, �2 (33) ≥ 3, �2 (39) ≥ 3, �2 (57) ≥ 7, and
�2 (63) ≥ 6. In this paper, we are interested in the bounds on �2 (=), because they determine
how large an optimal set of perfect sequences can be in the next section. The following lemma
will help to build a connection between a circular Florentine array and an optimal set of perfect
sequences.

Let � be an < × = circular Florentine array on Z=. In matrix notation, the rows are indexed
as 0 to < − 1 while the columns are indexed as 0 to = − 1 mod =. According to the definition,
each row, denoted by c8 for 0 ≤ 8 ≤ <−1, is a permutation of Z=. And for each ; from 1 to =−1,
(�(8, 9), �(8, 9 + ;)) ≠ (�(A, :), �(A, : + ;)) unless 8 = A and 9 = : , where 0 ≤ 8, A ≤ <−1 and
0 ≤ 9 , : ≤ = − 1. In other words, for each ; . 0 mod =, (c8 ( 9), c8 ( 9 + ;)) = (cA (:), cA (: + ;))
if and only if 8 = A and 9 = : .

Lemma3. For 0 ≤ 8 ≠ A ≤ <−1, c8 (C) = cA (C+; ′) only has one solution for each 0 ≤ ; ′ ≤ =−1.

Proof. Assume that on the contrary, there exists ; ′ such that c8 (C) = cA (C + ; ′) has two or more
than two solutions. Let C1 and C2 be two of the solutions. Then we have c8 (C1) = cA (C1 + ; ′)
and c8 (C2) = cA (C2 + ; ′). As a consequence, (c8 (C1), c8 (C2)) = (cA (C1 + ; ′), cA (C2 + ; ′)), which
contradicts the definition of the circular Florentine array. Hence, c8 (C) = cA (C + ; ′) only has
one solution for each 0 ≤ ; ′ ≤ = − 1 for 0 ≤ 8 ≠ A ≤ < − 1.

3 Optimal set of perfect sequences
In this section, we develop a connection between generalised Frank sequences and circular
Florentine arrays. From this connection, we can generate an optimal set of �2 (#) perfect
sequences of period #2, where # is any positive integer and �2 (#) is the maximum number
such that an �2 (#) × # circular Florentine array exists. We first give a brief introduction to
generalised Frank sequences before giving the main construction.

Generalized Frank sequences constitute a class of perfect polyphase sequences which are
from one-dimensional bent function and were proposed by Kumar, Scholtz and Welch in [11].

Lemma 4. [11] Let # be a positive integer and l# be a primitive #-th root of unity. Let

(i) c be a permutation of elements in Z# and let

(ii) f be an arbitrary function from Z# to Z#2 .

Then B(C) = l# ·C2c(C1)+f(C1)
#2 where C = C1 + # · C2, 0 ≤ C1, C2 < # , is a perfect sequence of period

#2.

The sequences in Lemma 4 were first discovered by Frank and Zadoff [20] in the case f = 0
and c being the identity permutation. Heimiller [21] found the sequences l# ·c(C1) (C2+ℎ(C1))

#2 for
the case of prime # , where ℎ is also an arbitrary function on Z# . Lemma 4 is a more general
construction.

By Lemma 4, there are in total #!#2< perfect sequences of period #2. In order to generate
an optimal set from these sequences, the maximum cross-correlation magnitude of any two
distinct sequences should be # . In the following, we give a construction of optimal sets and
prove that the cross-correlation functions between any two distinct sequences have constant
magnitude # .
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Let # be a positive integer. Let � be an < × # circular Florentine array. For convenience,
the set of permutations from the rows of � is denoted by Π, i.e., Π = {c0, c1, · · · c<−1}. A set
of sequences of period #2 is defined as

S = {s8 | s8 (C) = l# ·c8 (C1)C2+f(C1)#2 , 0 ≤ 8 ≤ < − 1},
where C = C1 + C2 · # , 0 ≤ C1, C2 < # , c8 ∈ Π for 0 ≤ 8 ≤ < − 1, and f is an arbitrary function
from Z# to Z#2 .
Theorem 1. The set S is an optimal set of perfect sequences.
Proof. Since each c8 (C1) is a permutation over Z# , each sequence in S is perfect by Lemma 4.
For any shift 0 ≤ g < #2, we rewrite g = g1 + g2 · # , where 0 ≤ g1, g2 < # , and define

XC1,g1 =

{
0 if C1 + g1 < #,
1 if C1 + g1 ≥ #.

Let s8 and sA be two sequences in S, where 0 ≤ 8 ≠ A ≤ < − 1. Then the cross-correlation
between s8 and sA is given by

's8 ,sA (g) =
#2−1∑
C=0

B8 (C + g)BA∗(C)

=
#−1∑
C2=0

#−1∑
C1=0

l
# ·c8 (C1+g1) (C2+g2+XC1 ,g1 )+f(C1+g1)
#2 · l−(# ·cA (C1)C2+f(C1))

#2

=
#−1∑
C1=0

l
# ·c8 (C1+g1) (g2+XC1 ,g1 )+f(C1+g1)−f(C1)
#2 ·

#−1∑
C2=0

l(c8 (C1+g1)−cA (C1))C2# .

(1)

The inner sum of the last identity above is zero unless

c8 (C1 + g1) ≡ cA (C1) mod #.

By Lemma 3, the above equation has a unique solution for any shift g1 ∈ Z# and 8 ≠ A.
Therefore, we have |'s8 ,sA (g) | = # for all 0 ≤ g < #2 − 1.

We give an example to illustrate Theorem 1 before some remarks to conclude this section.
Example 1. Let # = 15 and a 4×15 circular Florentine array is provided in Table II. The per-
mutation set from the rows of the circular Florentine array is denoted by Π = {c0, c1, c2, c3}.
For simplicity, let f = 0. Then a set of sequences of period 225 is defined as

S = {s8 | s8 (C) = lc8 (C1)C215 , 0 ≤ 8 ≤ 3},
where C = C1 + C2 · 15, 0 ≤ C1, C2 < 15, c8 ∈ Π for 0 ≤ 8 ≤ 3. It is verifiable that

• each sequence is perfect; and

• |'s8 ,sA (g) | = 15 for any 0 ≤ g ≤ 224, 0 ≤ 8 ≠ A ≤ 3,
which are consistent with Theorem 1.

Given an < × # circular Florentine array, we can get an optimal set of size < from
generalised Frank sequences of period #2 by Theorem 1. As mentioned in the introduction,
the size of all the previous optimal sets is at most ? − 1, where ? is the smallest divisor of the
period of the sequences. Table IV gives a comparison between the smallest divisor of some #
and �2 (#), where �2 (#) is the maximum number such that an �2 (#) × = circular Florentine
array exists. Thus, we can see that the size of an optimal set is increased by the construction in
this paper.
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Table 4: Comparison of �2 (#) and ? − 1

# �2 (#) ? − 1 # �2 (#) ? − 1
15 4 2 21 5, · · · , 19 2
27 4, · · · , 26 2 33 3, · · · , 30 2
39 3, · · · , 38 2 57 7, · · · , 55 2
63 6, · · · , 62 2 · · ·

4 Conclusion
In this paper, we built a connection between the generalised Frank sequences and circular
Florentine arrays. We derived optimal sets of �2 (#) perfect sequences of period #2, where
�2 (#) is the maximum number such that an �2 (#) × # circular Florentine array exists. The
general lower bound on �2 (#) is ? − 1, where ? is the smallest prime divisor of # . But in
many cases, the lower bound on �2 (#) is improved by Lemma 2 (see Table IV). Therefore, we
improved the size of an optimal set of perfect polyphase sequences, compared with previous
research papers, where the size is at most ? − 1.
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Abstract

Sequence families with Zero Correlation Zone (ZCZ) can be used in quasi-synchronous
code-division multiple-access (QS-CDMA) communication systems. This paper proposes
two methods for constructing polyphase ZCZ sequence sets by using a unified construction
of perfect polyphase sequences. The first method generates sets of perfect sequences with
zero cross-correlation zone, i.e., sets such that the out-of-phase autocorrelation of each
sequence is zero and the cross-correlation of any two sequences in a set is zero in some
zone around the origin. The second method produces sets of so-called interference-free
sequences with zero autocorrelation zone, i.e., sets such that the cross-correlation of any
two sequences in a set is zero at any shift and the autocorrelation of each sequence is zero
in some zone around the origin. Moreover, each generated ZCZ sequence set is optimal
with respect to the Tang-Fan-Matsufuji bound.

1 Introduction
Families of periodic sequences with some desirable autocorrelation (AC) and cross-correlation
(CC) properties have applications in communications and radar systems for identification,
synchronization, ranging, or interference mitigation. For example, to minimize multiple access
interference and self-interference in a multiuser and multipath environment, one would like
to have an ideal sequence set, where the out-of-phase AC of each sequence is zero and the
CC of any pair of sequences at any shift is zero. Unfortunately, no such ideal sequence set
exists according to the Sawarte bound [17]. It is therefore impossible to have sequences which
have simultaneously impulse-like AC and zero CC during an entire period. However, sets of
sequences satisfying both of these properties simultaneously in some smaller zone around the
origin (called the zero-correlation zone, or ZCZ) do exist. Sequences with such properties
are known as ZCZ sequences. They have been extensively studied in recent years due to
their important applications in QS-CDMA systems, where a time delay between the signals
of different users within a few chips is allowed. ZCZ sequences can eliminate both multiple
access interference and multipath interference in such a system [4] [5]. A ZCZ sequence set is
generally characterized by the sequence period, the size of the set, the length of the ZCZ and
the number of phases of the sequence elements. The Tang-Fan-Matsufuji bound [18] shows
there is a tradeoff between the set size and the ZCZ length for any given sequence period. ZCZ
sequence sets are said to be optimal if they meet this bound.

A number of studies on constructing ZCZ sequence sets have been reported. The meth-
ods presented in [1, 4, 19, 21] are based on complementary sequence sets, while interleaving
techniques were proven to be effective in [7, 20, 23, 28]. There were also several constructions
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derived by manipulating perfect sequences [8, 11, 16, 23]. ZCZ sequence sets were obtained
in [2, 10, 22] using the transform domain method. One special class of ZCZ sequence sets
having nonzero AC only at subperiodic correlation shifts and zero CC across all shifts are
referred to as interference-free ZCZ sequence sets [2, 13, 16, 22]. Some ZCZ sequence sets
can be partitioned into smaller subsets so that the ZCZ length between any two sequences
from different subsets is larger than that between sequences from the same subsets. These are
referred to as asymmetric ZCZ (A-ZCZ) sequence sets [19, 21, 24, 25].

In this paper, we propose two constructions of polyphase ZCZ sequence sets based on a
unified construction of perfect polyphase sequences. The first construction generates sets of
perfect sequences with zero cross-correlation zone. The second construction produces sets of
interference-free sequences with zero autocorrelation zone. We give some conditions under
which all the ZCZ sequences generated by our constructions are cyclically distinct (meaning
that one sequence cannot be obtained by taking a cyclic shift of another). Moreover, each
generated ZCZ sequence set is optimal with respect to the Tang-Fan-Matsufuji bound. Our
construction includes some previous results as special cases [14, 29].

2 Preliminaries
Wedenote the ring of integersmodulo# byZ# , where# is a positive integer. Letu = {D(C)}#−1

C=0
and v = {E(C)}#−1

C=0 be two complex sequences of period # . The (periodic) cross-correlation
(CC) of u and v at shift g is defined as

'u,v(g) =
#−1∑
C=0

D(C + g)E∗(C), 0 ≤ g < #,

where C + g is reduced modulo # and G∗ is the complex conjugate of the complex number G.
When u = v, then 'u,u(g) is called the auto-correlation (AC) of u. In this case, we write
'u(g) = 'u,u(g) for short. A sequence u is said to be perfect if 'u(g) = 0 for all 0 < g < # .

Consider a sequence set S of size " of period # . The set S is called periodically
uncorrelated if the correlation between any two distinct sequences in S at any shift is zero, i.e.,

'u,v(g) = 0,∀g ∈ Z# ,∀u, v ∈ S with u ≠ v.

The set S is called periodically complementary if the sum of all ACs of sequences in S at
the same nonzero shift is zero, specifically,∑

u∈S
'u(g) = 0,∀g ∈ Z# with g ≠ 0.

Definition 1. Let S = {s< = {B< (C)}#−1
C=0 , 0 ≤ < < "} be a set of " sequences of period # .

The set S is called an (#, ", /2I)-ZCZ sequence set if

's8 ,s 9 (g) = 0 for (0 < |g | < /2I)

and
's8 ,s 9 (g) = 0 for (g = 0 and 8 ≠ 9),

where /2I is called the length of the zero correlation zone.
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The following lemma shows that /2I is bounded from above by a value depending on the
sequence period and the size of the sequence set. Any sequence set meeting this bound is an
optimal ZCZ set.

Lemma 1. [18] Let S be an (#, ", /2I)-ZCZ sequence set. Then

"/2I ≤ #.

A polyphase sequence is a sequence whose elements are are all complex roots of unity of
the form 4G?(82cG) where G is a rational number and 8 =

√
−1. A sequence is perfect if its out-

of-phase periodic autocorrelation is always equal to zero. Perfect polyphase sequences have
attracted a lot of attention from engineers and researchers for decades due to their applications
in spread spectrum systems such as pulse compression radars, DS/SSMA, FH/SSMA, etc.
Mow [26] classified all known perfect polyphase sequences into four classes: generalised
Frank sequences [9], generalised chirp-like sequences [15], Milewski sequences [12], and
perfect polyphase sequences associatedwith generalised bent functions [3]. Mow also proposed
a unified construction of perfect polyphase sequences, which includes all of the four special
cases above. Moreover, Mow conjectured that the unified construction describes all the perfect
polyphase sequences that exist.

Lemma 2. [26] For any positive integers A and < with A a square-free integer, let a polyphase
sequence s of period A<2 be defined by

B(:< + ;) = exp(82c 5 (:< + ;)/A<)
for any ; ∈ Z< and any : ∈ ZA<, with

5 (:< + ;) = <2(A)U(;):2 + V(;): + 6(;), (1)

where

2(A) =
{

1 for r odd,
1
2 for r even,

U is any function over ZA with 623 (U(;), A) = 1 for all ; ∈ Z<, V : Z< → ZA< is any function
such that ; ↦→ V(;) (mod <) is a permutation over Z<, and 6 is any function over the rational
numbers. Then B is a perfect sequence.

The next lemma on exponential sums will be used to prove the ZCZ property of the main
construction in the next section.

Lemma 3. [26] For any positive integer @ and 0, 1 ∈ Z2@ with 0@ + 1 even, we have���∑@−1

D=0
exp(8c(0D2 + 1D)/@)

���2
=

{
3@ 1 ≡ 0(@/3) (mod 23)
0 1 . 0(@/3) (mod 23),

where 3 = gcd(0, @).
In the following section, we use the unified construction of perfect sequences in Lemma 2

to construct two types of ZCZ sequence sets. The first type has sequences with zero AC across
all out-of-phase shifts and nonzero CC only at sub-periodic correlation shifts. For convenience,
we call such sets ZCCZ sets. The second type has nonzero AC only at subperiodic correlation
shifts and zero CC across all shifts, i.e. interference-free sequences with zero autocorrelation
zones; for short, we call these ZACZ sets.



76 Scientific results

3 Optimal ZCZ sequence sets
3.1 Construction of ZCCZ sets
In this section, we employ Mow’s unified construction to construct ZCCZ sets which consist
of perfect sequences with zero cross-correlation zone. With additional restrictions on the
functions 6 and V in Lemma 2, we can derive ZCZ sequence sets with desirable properties.

Construction 1. Let A and < be integers with A square-free. Let lA< be a primitive A<-th root
of unity. A sequence set of size < of period # = A<2 is denoted by

S = {s= = {B= (C)}#−1
C=0 , 0 ≤ = < <}.

For each =, the sequence s= is defined as

B= (:< + ;) = l
5= (:<+;)
A< , 0 ≤ ; < <, 0 ≤ : < A<,

with
5= (:< + ;) = <2(A)U(;):2 + V(;): + =A6(;),

where

2(A) =
{

1 for r odd,
1
2 for r even,

U is any function over ZA with 623 (U(;), A) = 1 for all ; ∈ Z<, V : Z< → ZA< is any function
such that ; ↦→ V(;) (mod <) is a permutation over Z<, and 6 is any permutation over Z< such
that there exist no 21 and 22 in Z∗< with 21 · (V(;) mod <) +22 ·6(;) = 0, where Z∗< = Z< \ {0}.

Note that cyclically equivalent sequences are not desirable in practical applications [6],
since they are not treated as essentially different sequences. The next lemma ensures that all
the sequences in the constructed set are cyclically distinct.

Lemma 4. All the sequences in S, given by Construction 1, are cyclically distinct.

We leave out the proof due to space constraints.

Theorem 1. The sequence set S, given by Construction 1, is a (A<2, <, A<)-ZCZ sequence
set.

Proof. Since each sequence is obtained from Mow’s unified construction in Lemma 2, all the
sequences in S are perfect.

For any shift 0 ≤ g < A<2, we write g = g1 · < + g2, where 0 ≤ g1 < A< and 0 ≤ g2 < <.
The cross-correlation of B=1 (C) and B=2 (C) for =1 ≠ =2 at shift g is

's=1 ,s=2
(g) =

#−1∑
C=0

B=1 (C + g)B∗=2 (C)

=
<−1∑
;=0

l
<2(A)U(;+g2)g2

1+V(;+g2)g1+=1A6(;+g2)−=2A6(;)
A<

A<−1∑
:=0

l
<2(A) (U(;+g2)−U(;)):2+(2<2(A)U(;+g2)g1+V(;+g2)−V(;)):
A< .
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We now consider the inner sum from equation above and examine two cases.
Case i) g2 ≠ 0: to apply Lemma 3, let @ = A<, 0 = 2[<2(A) (U(; + g2) − U(;))] and

1 = 2[2<2(A)U(; + g2)g1 + V(; + g2) − V(;)]. Note that 0@ + 1 is even. Since 623 (U(;), A) = 1
for all ; ∈ Z<, U(;+g2)−U(;) is even. Therefore 2(A) (U(;+g2)−U(;)) is always an integer and<
divides 3. So the condition 1 ≡ 0(@/3) mod 23 in Lemma 3 implies that 1 ≡ 0(@/3) mod 2<.
Plugging in the values of 0, 1, we have V(;+g2) ≡ V(;) mod <, which is impossible for g2 ≠ 0.
It follows from Lemma 3 that the inner sum is zero for g2 ≠ 0. Therefore, 's=1 ,s=2

(g) = 0 for
g2 ≠ 0.

Case ii) g2 = 0: then the inner sum becomes
∑A<−1

:=0 l22(A)U(;)g1:
A = <

∑A−1
:=0 l

22(A)U(;)g1:
A .

Since 623 (U(;), A) = 1 for all ; ∈ Z<, then 22(A)U(;)g1 . 0 mod A if g1 . 0 mod A , which
means the inner sum is zero. Therefore 's=1 ,s=2

(g) = 0 for g2 = 0 and g1 . 0 mod A.
When g1 = g2 = 0, we have

's=1 ,s=2
(g) = A<

<−1∑
;=0

l
(=1−=2)6(;)
< ,

which is zero because =1 ≠ =2 and 6 is a permutation over Z<.
Combining the above cases, S is a sequence set with ZCZ length A<, which is optimal by

Lemma 1.

Note that we can also interpret Construction 1 from the perspective of a “modulation”
sequence as in [14]. A sequence of period # with a divisor < is defined as B(C) = 0(C)1(C mod
<)where 0(C) is a “carrier” sequence and 1(C mod <) is a “modulation” sequence of< arbitrary
root of unities. A sequence set can be obtained by using the same carrier sequencewith different
modulation sequences. This can be a ZCZ sequence set if the carrier sequence is well chosen
and the different modulation sequences are orthogonal. Moreover, the number of different
orthogonal modulation sequences determines the size of the sequence set. It is also important
to ensure that all sequences in the set are cyclically distinct. In our case, B= (C) in Construction
1 can be rewritten as B= (C) = 0(C)1= (C mod <), where 0(C) = 0(:< + ;) = l

<2(A)U(;):2+V(;):
A<

and 1= (C mod <) = l
=6(;)
< . We proved that all the sequences in the set are cyclically distinct

and the constructed set is an optimal ZCZ set with respect to the Tang-Fan-Matsufuji bound.
In [14], the Zadoff-Chu sequence was employed as a carrier sequence, which is a special

case of the unified construction. The authors proposed two types of orthogonal modulation
sequences: discrete Fourier transform (DFT) sequences and binary Hadamard sequences.
As pointed out in [29], orthogonal modulation sequences obtained from the discrete Fourier
transform (DFT) may lead to equivalent sequences in the set. Additionally, it is easy to
check that the ZCZ sequence sets obtained by the binary Hadamard sequences given in [14]
always lead to equivalent sequences. In our work, instead of discrete Fourier transform (DFT)
sequences, we employ the generalised DFT sequences 1= (C mod <) = l

=6(;)
< . The condition

on the functions 6 and V in the carrier sequence ensures that the resulting sequences are
inequivalent.

In [29], the authors derived optimal (?2, ?, ?)-ZCZ sequence sets from perfect nonlinear
functions for an odd prime ?. The construction can also be viewed as a carrier sequence from a
special case of generalised Frank sequences with modulation sequences from generalised DFT
sequences, which is a special case of our construction.

Construction 1 includes both [14] and [29] as special cases. The parameters in this paper
are more flexible than those in [29]. The parameters in [14] can be flexible, but this comes
at a cost to the autocorrelation property. The corresponding sequence could be perfect if the
parameters are carefully chosen. Moreover, as mentioned before, the constructions in [14] may
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produce equivalent sequences, while we derive the conditions under which all the sequences
in the set are cyclically inequivalent.

3.2 Construction of ZACZ sets
In this subsection, we examine the structure of one perfect sequence from the unified con-
struction and decompose it in a special way. Then we get a sequence set with some desirable
properties. The cross-correlation between any two different sequences is zero for all shifts, i.e.,
the set is uncorrelated. Each sequence has a zero autocorrelation zone. Thus, we obtain a set
of interference-free sequences with zero autocorrelation zone.

We can rewrite the sequence of period # = A<2 in Lemma 2 in the form of an A< × <
matrix such that the sequence can be reproduced by concatenating successive rows of the
matrix. Every column can then be regarded as a new sequence. Thus, we derive a sequence
set of size < as follows.
Construction 2. Let A and < be integers. Let lA< be a primitive A<-th root of unity. A
sequence set of size < of period A< is denoted by

U = {u; = {D; (:)}A<−1
:=0 , 0 ≤ ; < <}.

For each ;, the sequence u; is defined as

D; (:) = l
5; (:)
A< = l

<2(A)U(;):2+V(;):
A< , 0 ≤ : < A<,

where

2(A) =
{

1 for r odd,
1
2 for r even,

U is any function over ZA with 623 (U(;), A) = 1 for all ; ∈ Z< and V : Z< → ZA< is any
function such that ; ↦→ V(;) (mod<) is a permutation over Z<.
Lemma 5. [26] The setU is periodically uncorrelated and complementary.

Using the property of the setU being periodically uncorrelated, it is easy to prove thatU
is an optimal ZACZ set.
Theorem 2. The setU in Construction 2 is an optimal (rm, m, r)-ZCZ sequence set.
Proof. Lemma 5 shows thatU is periodically uncorrelated. To prove the ZCZ property of this
set, we only need to consider the autocorrelation property of the sequences in the set.

The autocorrelation of u; at shift g is

'u; (g) =
A<−1∑
:=0

D; (: + g)D∗; (:)

=
A<−1∑
:=0

l
<2(A)U(;) (:+g)2+V(;) (:+g)−<2(A)U(;):2−V(;):
A<

= <l
<2(A)U(;)g2+V(;)g
A<

A−1∑
:=0

l22(A)U(;)g:
A .

Since 623 (U(;), A) = 1 for all ; ∈ Z<, 22(A)U(;)g . 0 mod A provided that g . 0 mod A,
which means the sum above is zero for g . 0 mod A. So 'u; (g) = 0 for g . 0 mod A.

Thus, the constructed setU is an optimal (A<, <, A)-ZCZ sequence set with respect to the
Tang-Fan-Matsufuji bound.
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Note that it is not necessary for A to be square-free in Construction 2. Since the set U is
uncorrelated, it is obvious that all the sequences inU are cyclically distinct.

We can rewrite D; (:) in Construction 2 as l2(A)U(;):2

A l
V(;):
A< . When A is odd, l<2(A)U(;):2

A

corresponds to an Ipatov sequence of period A , which is also a Zadoff-Chu seqeunce of odd
length. When A is even, l2(A)U(;):2

A is a Zadoff-Chu seqeunce of even length. If V(;) = ;, then
the set U is a special case of the construction in [16]. However, V in our construction is any
function over ZA< such that ; ↦→ V(;) (mod<) is a permutation on Z<, which means that our
construction is more general in this specific case.

4 Conclusion
We introduced two constructions of ZCZ sequence sets based on the unified construction of
perfect polyphase sequences. We showed that each ZCZ set obtained using these constructions
is optimal with respect to the Tang-Fan-Matsufuji bound.
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Abstract

Zero correlation zone (ZCZ) sequences are a class of spreading sequences having
ideal auto-correlation and cross-correlation in a zone around the origin. They have been
extensively studied in recent years due to their important applications in quasi-synchronous
code division multiple access (QS-CDMA) systems. In this paper, a construction of ZCZ
sequence sets is proposed based on perfect nonlinear functions. It generates multiple ZCZ
sequence sets with the properties: (1) each sequence is perfect in the sense that its out-of-
phase auto-correlation is always zero; (2) each ZCZ sequence set is optimal with respect to
the Tang-Fan-Matsufuji bound in which all the sequences are pairwise cyclically distinct;
and (3) the maximum inter-set cross-correlation of multiple sequence sets achieves the
well-known Sarwate bound.

Index terms—Spreading sequence, zero correlation zone (ZCZ), inter-set cross-correlation,
quasi-synchronous code division multiple access (QS-CDMA), Tang-Fan-Matsufuji bound.

1 Introduction
Code-division multiple-access (CDMA) has been widely applied in digital cellular systems.
For quasi-synchronous CDMA (QS-CDMA) systems, a time delay between the signals of
different users within a few chips is allowed, which provides more flexibility in designing
communication systems. In order to utilize this advantage, a new class of spreading sequences,
called zero correlation zone (ZCZ) sequences [8], were employed inQS-CDMA systems, which
can eliminate both multiple access interference and multipath interference in such a system [9].
In addition to this application, ZCZ sequences also have good performance in MIMO [30],
ranging systems [5], and OFDM [15].

A set of ZCZ sequences consists of equal-length sequences whose out-of-phase auto-
correlation and cross-correlation are all equal to zero over the range of delays |g | < /2I, where
g is a time shift and /2I is called the length of ZCZ. Let S be a ZCZ sequence set of period
# with set size " and ZCZ length /2I. In order to accommodate a large number of users
and to ease the synchronization requirement, it is usually desirable that " and /2I are both as
large as possible for a given sequence length in the design of ZCZ sequence sets. However,
the Tang-Fan-Matsufuji bound [23] implies that the parameters of a ZCZ sequence set have to
satisfy "/2I ≤ # . That is, for any given sequence period # , there is a tradeoff between the set
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size " and ZCZ length /2I. A ZCZ sequence set meeting the theoretical bound with equality
is said to be optimal. Searching optimal ZCZ sequence sets has been an interesting research
topic in recent years. Many classes of optimal ZCZ sequence sets have been reported in the
literature (see [9, 10, 18, 20, 24, 25, 27, 31], and references therein).

There is a similar scenario in the conventional spreading sequence design for asynchronous
CDMA(A-CDMA) systems, which is also limited by some theoretical bounds such as theWelch
bound [28]. In [12], Gong introduced a concept of intraference among sequences, which is
referred to as the inter-set cross-correlation of multiple sequence sets (i.e., cross-correlation
between any two sequences from distinct sets), and then proposed some constructions for yield-
ing multiple sequence sets with low correlation. To the best of our knowledge, the analogous
inter-set cross-correlation of spreading sequences in synchronous CDMA (S-CDMA) systems
was proposed by Yang and Kumar [29]. Based on the so-called bent functions and semi-
bent functions, they obtained several classes of orthogonal sequence sets with low inter-set
cross-correlation [29].

Table 1: The parameters of some multiple ZCZ sequence sets

Period Phase Set size /2I

The inter-set Maximal inter-set
Referencesnumber cross-correlation cross-correlation

of sets zone / in zone /
2= 2 2= 1 2=−1 2= 2 =

2 [29]
2=+2 (& − 1) 2 2=+1 & 2=−1 & 2 =+4

2 (& − 1) [26] †

2=+2 (& − 1) 2 2=+1 & 2= & 2 =+5
2 (& − 1) [26] ‡

2=+1& + 2& − 2 3 2=+1 & 2=−1 & 2 =+2
2 & [24]†

2=+1& + 2& − 2 3 2=+1 & 2= & 2 =+3
2 & [24]‡

2=+2 4 2= 4 2= 4 2 =+4
2 [17]

# = "! # " ! a(#) #
√
# [20]§

?2 ? ? ? ? − 1 ?2 ? This paper ∗
† = is even ‡ = is odd * ? is any odd prime & is a positive integer with certain property. § a(#) = |� |,
where � is a subset of {8 : 1 ≤ 8 < #, gcd(8, #) = 1} such that gcd(81 − 82, #) = 1 for all 81 ≠ 82 ∈ �.

Facing this challenge of ZCZ sequence design, one similarly promising solution is to
construct multiple ZCZ sequence sets with favorable inter-set cross correlation. Specifically, it
is desirable to obtain  ZCZ sequence sets S<, 0 ≤ < <  , with the following properties

1. each S< is an optimal ZCZ sequence set with respect to the Tang-Fan-Matsufuji bound;
and

2. the  sequence sets have low inter-set cross correlation within a certain zone with length
/ , i.e., the maximal inter-set cross-correlation value is less than or equal to a constant X,
which is small compared with the length # .

It is worthwhile to point out that multiple ZCZ sequence sets can be used in multiuser en-
vironments to enlarge the application of ZCZ sequences [24]. As mentioned above, a vast
amount of knowledge exists for the design of single ZCZ sequence set, but relatively little is
known about the multiple ones. In recent years, some progress on the constructions of multiple
ZCZ sequence sets has been made. In [1], Appuswamy and Chaturvedi constructed mutu-
ally orthogonal binary ZCZ sequence sets from mutually orthogonal complementary sequence
sets (MOCSS) and orthogonal matrices, i.e. / = 0 and X = 0. Tang and Mow presented a
systematic construction of many new families of generalized loosely synchronized codes with
low intercode cross-correlation properties within a certain window [24]. Later in [26], Tang,
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Fan, and Lindner generated multiple ZCZ sequence sets with good inter-set cross-correlation
from some specific families of MOCSS. Recently in [17], Li, Tan, and Tang obtained quater-
nary multiple sets with good correlation property based on Zadoff-Chu sequences [4]. The
parameters of these known multiple ZCZ sequence sets are listed in Table I. As pointed out
by one of the anonymous reviews, the construction of ZCZ sequence sets in [20] based on
Zadoff-Chu sequences can be extended to obtain multiple ZCZ sequence sets whose maximum
inter-set cross-correlation achieves the Sarwate bound (see Remark 3 in Section 3 for more
details). The parameters of this class of multiple ZCZ sequence sets are also listed in Table
I. It will be seen later that some ZCZ sequences generated by the construction in [20] may be
cyclically equivalent. Note that cyclically equivalent sequences are not desirable in practically
applications [13], since they are not treated as essentially different sequences.

Perfect nonlinear functions (PNFs) are a class of functions with optimal nonlinearity which
have important applications in cryptography, sequences and coding theory. In cryptography,
PNFs can be used to construct keystream generators for stream ciphers, S-boxes for block
ciphers, building blocks for hash algorithms, and authentication codes [19], [7]. In coding
theory, they permit to construct good error correcting codes [2]. In sequences, they are
used to obtain frequency-hopping sequences with good Hamming correlation for FH-CDMA
communication systems [6].

The objective of this paper is to present a construction of multiple ZCZ sequence sets using
perfect nonlinear functions over a cyclic group. Like the construction in [20], this construction
also generates multiple ZCZ sets with properties: (1) each sequence is perfect in the sense that
its out-of-phase auto-correlation is always zero; (2) each ZCZ sequence set is optimal with
respect to the Tang-Fan-Matsufuji bound; and (3) the maximum inter-set cross-correlation
of multiple sequence sets achieves the well-known Sarwate bound. Most notably, we can
mathematically prove that all the generated ZCZ sequences are cyclically distinct. The key of
our construction is to find suitable permutations with certain properties. As a comparison with
the known ones, the parameters of our multiple ZCZ sequence sets are also listed in Table I.

2 PRELIMINARIES
Let S be a family of " complex roots of unity sequences of period # , which can be written as

S = {s0, s1, . . . , s"−1},
s8 = (B8 (0), B8 (1), · · · , B8 (# − 1)) = {B8 (C)}#−1

C=0 ,

where each B8 (C) is a complex number with modulus 1. For two sequences, say u = {D(C)}#−1
C=0

and v = {E(C)}#−1
C=0 in S, their (periodic) cross-correlation function at a shift of g is defined by

'u,v(g) =
#−1∑
C=0

D(C + g)E∗(C), 0 ≤ g < #,

where C + g is reduced modulo # and G∗ is the complex conjugate of the complex number
G. When u = v, 'u,u(g) is called the auto-correlation function of u. In this case, we write
'u,u(g) = 'u(g) for short. A sequence u is said to be perfect if 'u(g) = 0 for all 0 < g < # .
Two sequences u and v are said to be cyclically equivalent if there exists some 0 ≤ g < # and
a constant complex number 2 with |2 | = 1 such that E(C) = 2D(C + g) for all 0 ≤ C < # (i.e.,
|'u,v(g) | = #). Otherwise they are said to be cyclically distinct. In practical applications, all
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employed sequences are preferred to be cyclically distinct since cyclically equivalent sequences
are not treated as essentially different sequences [12], [13].

For the sequence set S, the maximum out-of-phase periodic auto-correlation magnitude '0
and the maximum periodic cross-correlation magnitude '2 are respectively defined by

'0 = max{|'u(g) | : u ∈ S, 0 < g < #},

and

'2 = max{|'u,v(g) | : u, v ∈ S, u ≠ v, 0 ≤ g < #}.

The following is the well-known Sarwate bound on '0 and '2.

Lemma 1. ( [22]) For any sequence set S with " sequences of period # ,

'2
2

#
+ # − 1
# (" − 1)

'2
0

#
≥ 1. (1)

Lemma 1 tells us that it is impossible to get a sequence set with both '0 and '2 being
zero. This implies that the cross-correlation and nontrivial auto-correlation can not be zero
for all g. However, this can be achieved when the time shift g is located at some zone around
the origin, which motivated the notion and development of the so-called zero correlation zone
sequences [8].

Definition 1. Let S be a set of " sequences of period # , then the zero correlation zone /2I is
defined as

/2I = max{) : 'u,v(g) = 0 for (0 < |g | < )) or
(g = 0 and u ≠ v),∀ u, v ∈ S}.

Moreover, S is called an (#, ", /2I)-ZCZ sequence set.

Since |'u,v(−g) | = |'v,u(g) |, it suffices to compute the correlation function of sequences
in S with 0 ≤ g < # , i.e.,

/2I = max{) : 'u,v(g) = 0 for (0 < g < )) or
(g = 0 and u ≠ v),∀ u, v ∈ S}.

The following bound implies that there is a tradeoff among the parameters of any ZCZ
sequence set.

Lemma 2. (Tang-Fan-Matsufuji bound [23]) Let S be a set of " sequences of period # with
ZCZ length /2I, then

"/2I ≤ #.
A ZCZ sequence set meeting the Tang-Fan-Matsufuji bound with equality is said to be

optimal.
In this paper, we will construct multiple optimal ZCZ sequence sets whose maximal inter-

set cross-correlation achieves the Sarwate bound in Lemma 1. Our construction is based on
perfect nonlinear functions (PNFs) which have important applications in cryptography and
coding theory. In what follows, we shall give a brief introduction to PNFs. For more details
on PNFs and their applications, the reader is referred to [3].
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Let 5 be a function from a finite abelian group (�, +) to another finite abelian group (�, +).
We say that 5 is linear if and only if 5 (G + H) = 5 (G) + 5 (H) for all G, H ∈ �. A measure of
nonlinearity of 5 is defined as

% 5 = max
0≠0∈�

max
1∈�
|{G ∈ � : 5 (G + 0) − 5 (G) = 1}|

|�| ,

where |�| denotes the cardinality of the set �. It is easily seen that % 5 ≥ 1
|� | [3]. Then 5 is

called a PNF if % 5 = 1
|� | . It is easily verified that 5 is a PNF if and only if

|{G ∈ � : 5 (G + 0) − 5 (G) = 1}| = |�||� | (2)

for any nonzero 0 ∈ � and any 1 ∈ �. Thus PNF exists only when |� | is a divisor of |�|.
Let Z= denote the ring of integers modulo =, where = is a positive integer. The following is

a known class of PNFs from Z?2 to Z?. Herein and hereafter ? is an odd prime.

Lemma 3. [3] Let 6 be a function from Z?2 to Z? defined by

6(C) = C1 · C2 mod ?, 0 ≤ C < ?2,

where C = C1 + C2 · ? and 0 ≤ C1, C2 < ?. Then 6 is a PNF from Z?2 to Z?.

Using the PNF in Lemma 3, we can obtain a complex sequence s = {B(C)}?2−1
C=0 of period ?2

over the ?-th root of unity, where B(C) = l6(C)? for each 0 ≤ C < ?2 andl? is a primitive ?-th root
of unity. Based on (2), it is clear that s is a perfect sequence. In fact, this sequence is the well-
known Frank-Zadoff sequence [11,14]. PNFs can also be used to construct frequency-hopping
sequences with optimal auto-correlation (see [6] for more details).

The following construction of PNFs is a generalization of Lemma 3. It is closely related
with the Maiorana-McFarland construction of bent functions from F? × F? to F? [16].
Lemma 4. Let c be an arbitrary permutation of Z? and f be an arbitrary function from Z? to
Z?. Define a function from Z?2 to Z? as

5 (C) = c(C1) · C2 + f(C1) mod ?, 0 ≤ C < ?2,

where C = C1 + C2 · ? and 0 ≤ C1, C2 < ?. Then 5 is a PNF from Z?2 to Z?.

Proof. The conclusion follows directly from Theorem 16 in [3].

The following result shows that one can obtain a family of PNFs from one PNF in Lemma
4, which will be used to construct the desirable multiple ZCZ sequence sets in the sequel.

Lemma 5. Let c be an arbitrary given permutation of Z? and f be an arbitrary given function
from Z? to Z?. Let F = { 5<,D : 1 ≤ < < ? , 0 ≤ D < ? } be a family of functions from Z?2 to
Z?, where

5<,D (C) = <c(C1) · C2 + Df(C1) mod ? (3)

for each 0 ≤ C < ?2 with C = C1 + C2 · ? and 0 ≤ C1, C2 < ?. Then each function in F is a PNF.

Proof. The conclusion follows from the fact that <c(C1) is a permutation for any 1 ≤ < < ?
and Lemma 4.
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3 Multiple ZCZ sequence sets from perfect nonlinear func-
tions

In this section, we present a simple construction of multiple ZCZ sequence sets with good
properties from a subclass of PNFs in Lemma 5. Before doing this, we first fix some notations.

Let Z? denote the ring of integers modulo ? and l? be a primitive ?-th root of unity, where
? is an odd prime. We also need Z∗? = Z? \ {0} and Z∗∗? = Z? \ {0, 1}.
Construction 1. Let c be a permutation ofZ? such that the equation c(G+0) ≡ 2c(G) ( mod ?)
has only one solution for any given 0 ∈ Z? and 2 ∈ Z∗∗? . Let f be a permutation of Z? satisfying
f ≠ :c + ; for any :, ; ∈ Z?. For each 1 ≤ < < ?, define a sequence set S< as

S< = {s<D : s<D , {B<D (C)}?
2−1
C=0 , 0 ≤ D < ?}.

Herein, for each 0 ≤ C < ?2,
B<D (C) = l 5<,D (C)

? , (4)

where 5<,D (C) is the function from Z?2 to Z? given by (3).

For the sake of convenience, we fix some notations that will be used frequently to prove
our main results in the sequel. Denote g = g1 + g2 · ? for any time shift 0 ≤ g < ?2, where
0 ≤ g1, g2 < ?. We also denote C = C1 + C2 · ? for any integer 0 ≤ C < ?2, where 0 ≤ C1, C2 < ?.
Define

XC1,g1 =

{
0 if C1 + g1 < ?,
1 if C1 + g1 > ?.

The following lemma gives the set size of each sequence set generated by Construction 1.

Lemma 6. For each 1 ≤ < < ?, all sequences in S< are cyclically shift distinct. Thus the set
size of each S< is ?.

Proof. Let s<D and s<E be any two sequences in S<, where 0 ≤ D ≠ E < ?. Assume on the
contrary that they are cyclically shift equivalent, then there exist some integers g and A such
that

B<D (C) = B<E (C + g) · lA?
for all 0 ≤ C < ?2. According to (3), we must have

<c(C1) · C2 + Df(C1) ≡ <c(C1 + g1) · (C2 + g2 + XC1,g1)+
Ef(C1 + g1) + A (mod ?) (5)

for all 0 ≤ C1, C2 < ?. We distinguish between the following two cases to prove that this is
impossible.

When g1 = 0, XC1,g1 = 0 for all 0 ≤ C1 < ?, it is easy to verify that Equation (5) holds for all
0 ≤ C1, C2 < ? if and only if

f(C1) ≡ <g2
D − E · c(C1) +

A

D − E (mod ?)

holds for all 0 ≤ C1 < ?. This is impossible for any 0 ≤ g2 < ? since f ≠ :c + ; for any
:, ; ∈ Z?.
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When g1 ≠ 0, on the other hand, we can deduce from (5) that

<(c(C1 + g1) − c(C1)) · C2 + <c(C1 + g1) · (g2 + XC1,g1)+
Ef(C1 + g1) − Df(C1) ≡ A (mod ?). (6)

Note that c is a permutation and g1 ≠ 0. Thus c(C1 + g1) − c(C1) ≠ 0 for any 0 ≤ C1 < ?. It
follows that, for any given 0 ≤ C1 < ?, there exists at least one C2 with 0 ≤ C2 < ? such that (6)
does not hold.

The analysis above shows that s<D and s<E are cyclically shift distinct. This finishes the proof
of the lemma.

The following is the main result of this paper.

Theorem 1. Let S<, 1 ≤ < < ?, be the multiple sequence sets generated by Construction 1.
Then,

1. Each sequence in S< is perfect;

2. Each S< is an optimal (?2, ?, ?)-ZCZ sequence set.

3. |'s<D ,s=E (g) | = ? for all 0 ≤ g < ?2, 1 ≤ < ≠ = < ?, and 0 ≤ D, E < ?.

Proof. According to Lemma 5, each 5<,D (C) is a PNF from Z?2 to Z?, which means that the
corresponding sequence s<D in S< defined by (4) is perfect. This completes the proof of Part
1).

We now prove Part 2). Let s<D and s<E be two sequences in S<, where 0 ≤ D ≠ E < ? and
1 ≤ < < ?. We distinguish between the following two cases to calculate the correlation of s<D
and s<E :

's<D ,s<E (g) =
?2−1∑
C=0

l
B<D (C+g)−B<E (C)
? .

Case i), when g = 0: In this case, g1 = g2 = 0. It then follows from (4) and (3) that

's<D ,s<E (g) =
?−1∑
C2=0

?−1∑
C1=0

l(D−E)f(C1)?

=0,

where the second identity followed from the fact that (D − E)f is a permutation of Z? for any
D ≠ E.

Case ii), when 0 < g < ?: In this case, g2 = 0 and 0 < g1 < ?. By (4) and (3), we have

's<D ,s<E (g)

=
?−1∑
C2=0

?−1∑
C1=0

l
<c (C1+g1) ·(C2+XC1 ,g1 )+Df (C1+g1)−(<c (C1) ·C2+Ef (C1))
?

=
?−1∑
C1=0

l
<c (C1+g1) ·XC1 ,g1+Df (C1+g1)−Ef (C1)
?

?−1∑
C2=0

l<(c (C1+g1)−c (C1))C2
?

= 0,

where the last identity was due to <(c(C1 + g1) − c(C1)) . 0 (mod ?) for any 0 < g1 < ?,
since 1 ≤ < < ? and c is a permutation of Z?.
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The discussion in the two cases above together with Lemma 6 means that each S< is a
(?2, ?, /2I)-ZCZ set with /2I ≥ ?. On the other hand, according to the Tang-Fan-Matsufuji
bound of (2), we have /2I ≤ ?. Therefore each S< is a (?2, ?, ?)-ZCZ set and is optimal with
respect to the Tang-Fan-Matsufuji bound.

Finally, we prove Part 3). Let s<D and s=E be two sequences inS< andS=, respectively, where
1 ≤ < ≠ = < ?, and 0 ≤ D, E < ?. Then the inter-set cross-correlation between s<D and s=E is
given by

's<D ,s=E (g) =
?2−1∑
C=0

l
B<D (C+g)−B=E (C)
?

=
?−1∑
C2=0

?−1∑
C1=0

l
<c (C1+g1) (C2+g2+XC1 ,g1 )+Df (C1+g1)−(=c (C1)C2+Ef (C1))
?

=
?−1∑
C1=0

l
<c (C1+g1) (g2+XC1 ,g1 )+Df (C1+g1)−Ef (C1)
?

?−1∑
C2=0

l (<c (C1+g1)−=c (C1))C2
? .

The inner sum is zero unless

<c(C1 + g1) ≡ =c(C1) (mod ?). (7)

Note that we have assumed that c(G + 0) ≡ 2c(G) (mod ?) has a unique solution G in Z? for all
0 ∈ Z? and 2 ∈ Z∗∗? . This means that (7) has only one solution of C1 in Z? for any 0 ≤ g1 < ?
and any 1 ≤ < ≠ = < ?. Therefore, |'s<D ,s=E (g) | = ? for all 1 ≤ < ≠ = < ? and 0 ≤ D, E < ?.
This completes the proof of this theorem.

Remark 1. The conclusions in 1) and 3) of Theorem 1 imply that any pair of two sequences
from two different ZCZ sequence sets S< and S= is optimal with respect to the Sarwate bound
of (1). If we select any one sequence from each S<, then we derive a set of sequences of period
?2 with set size ? − 1 which is optimal with respect to the Sarwate bound. This means that the
maximum inter-set cross-correlation of these ZCZ sequence sets achieves the Sarwate bound.

The following lemma presents a class of permutations satisfying the condition of c in
Construction 1.

Lemma 7. Let c(G) = G4, where 4 is a positive integer with gcd(? − 1, 4) = 1. Then c(G) is a
permutation of Z? such that the equation c(G + 0) ≡ 2c(G) (mod ?) has only one solution in
Z? for any 0 ∈ Z? and any 2 ∈ Z∗∗? .
Proof. Since ? is an odd prime and gcd(? − 1, 4) = 1, it is clear that c(G) is a permutation of
Z?, and c(G) = 0 (resp. c(G) = 1) if and only if G = 0 (resp. G = 1). When 0 = 0, the equation
c(G + 0) ≡ 2c(G) (mod ?) becomes

(2 − 1)c(G) ≡ 0 (mod ?)
which has a unique solution G = 0 in Z? for any 2 ∈ Z∗∗? . On the other hand, when 0 ∈ Z∗?,
G = 0 can never be a solution of the equation c(G + 0) ≡ 2c(G) (mod ?). Then c(G + 0) ≡
2c(G) (mod ?) has the same solutions as the equation

c
(0
G
+ 1

)
≡ 2 (mod ?)
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which has a unique solution G = 0
c−1 (2)−1 for any 0 ∈ Z∗? and 2 ∈ Z∗∗? , where c−1 is the inverse

mapping of c(G). This completes the proof of the lemma.

The following result follows directly from Lemma 7 and Theorem 1.

Corollary 1. Let c(G) = G4, where 4 is a positive integer with gcd(? − 1, 4) = 1. Let f
be any permutation of Z? satisfying f ≠ :c + ; for any :, ; ∈ Z?. Then the sequence sets
S<, 1 ≤ < < ?, generated by Construction 1 have the following properties

1. Each sequence in S< is perfect;

2. Each S< is an optimal (?2, ?, ?)-ZCZ sequence set;

3. |'s<D ,s=E (g) | = ? for all 0 ≤ g < ?2, 1 ≤ < ≠ = < ?, and 0 ≤ D, E < ?.

Remark 2. It might be possible to obtain more permutations c of Z? satisfying the condition
in Construction 1 other than the ones mentioned in Lemma 7. The reader is kindly invited to
search such permutations.

In the following, we use an example to illustrate Construction 1.

Example 1. Let ? = 5, c(G) = G3 and f(G) = G. By the construction above, then we can obtain
4 optimal ZCZ sequence sets of which the first two ones are

S1 = {s1
0, s1

1, s1
2, s1

3, s1
4}, S2 = {s2

0, s2
1, s2

2, s2
3, s2

4},

where

s1
0 = {1, l2

5, 1, 1, l
3
5, 1, l

3
5, l

3
5, l

2
5, l

2
5, 1, l

4
5, l

1
5, l

4
5, l

1
5,

1, 1, l4
5, l

1
5, 1, 1, l

1
5, l

2
5, l

3
5, l

4
5},

s1
1 = {1, l3

5, l
2
5, l

3
5, l

2
5, 1, l

4
5, 1, 1, l

1
5, 1, 1, l

3
5, l

2
5, 1, 1,

l1
5, l

1
5, l

4
5, l

4
5, 1, l

2
5, l

4
5, l

1
5, l

3
5},

s1
2 = {1, l4

5, l
4
5, l

1
5, l

1
5, 1, 1, l

2
5, l

3
5, 1, 1, l

1
5, 1, 1, l

4
5, 1,

l2
5, l

3
5, l

2
5, l

3
5, 1, l

3
5, l

1
5, l

4
5, l

2
5},

s1
3 = {1, 1, l1

5, l
4
5, 1, 1, l

1
5, l

4
5, l

1
5, l

4
5, 1, l

2
5, l

2
5, l

3
5, l

3
5,

1, l3
5, 1, 1, l

2
5, 1, l

4
5, l

3
5, l

2
5, l

1
5},

s1
4 = {1, l1

5, l
3
5, l

2
5, l

4
5, 1, l

2
5, l

1
5, l

4
5, l

3
5, 1, l

3
5, l

4
5, l

1
5,

l2
5, 1, l

4
5, l

2
5, l

3
5, l

1
5, 1, 1, 1, 1, 1},

s2
0 = {1, l3

5, l
3
5, l

2
5, l

2
5, 1, 1, l

4
5, l

1
5, 1, 1, l

2
5, 1, 1, l

3
5, 1,

l4
5, l

1
5, l

4
5, l

1
5, 1, l

1
5, l

2
5, l

3
5, l

4
5},
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s2
1 = {1, l4

5, 1, 1, l
1
5, 1, l

1
5, l

1
5, l

4
5, l

4
5, 1, l

3
5, l

2
5, l

3
5, l

2
5,

1, 1, l3
5, l

2
5, 1, 1, l

2
5, l

4
5, l

1
5, l

3
5},

s2
2 = {1, 1, l2

5, l
3
5, 1, 1, l

2
5, l

3
5, l

2
5, l

3
5, 1, l

4
5, l

4
5, l

1
5, l

1
5,

1, l1
5, 1, 1, l

4
5, 1, l

3
5, l

1
5, l

4
5, l

2
5},

s2
3 = {1, l1

5, l
4
5, l

1
5, l

4
5, 1, l

3
5, 1, 1, l

2
5, 1, 1, l

1
5, l

4
5, 1, 1,

l2
5, l

2
5, l

3
5, l

3
5, 1, l

4
5, l

3
5, l

2
5, l

1
5},

s2
4 = {1, l2

5, l
1
5, l

4
5, l

3
5, 1, l

4
5, l

2
5, l

3
5, l

1
5, 1, l

1
5, l

3
5, l

2
5,

l4
5, 1, l

3
5, l

4
5, l

1
5, l

2
5, 1, 1, 1, 1, 1}.

It is easy to verify that

• each sequence is perfect;

• each S< is an optimal (25, 5, 5)-ZCZ sequence set, where 1 ≤ < ≤ 4; and

• |'s<D ,s=E (g) | = 5 for all 0 ≤ g ≤ 24, 1 ≤ < ≠ = ≤ 4, and 0 ≤ D, E ≤ 4.

These observations are consistent with Theorem 1.

Remark 3. In [20], Popovic and Mauritz proposed a construction of ZCZ sequence sets based
on the well-known Zadoff-Chu sequences [4]. The basic idea of this construction is to modulate
a Zadoff-Chu sequence using a set of different orthogonal sequences. As pointed out by one of
the anonymous reviews, by modulating a group of appropriately chosen Zadoff-Chu sequences,
this construction can be extended to obtain multiple ZCZ sequence sets achieving the Sarwate
bound by modulating suitably chosen Zadoff-Chu sequences. However, one point that should
be mentioned here is that some ZCZ sequences generated in [20] may be cyclically equivalent.

Let # = "! for two positive integers " and !, and let � be a subset of {8 : 1 ≤ 8 <
#, gcd(8, #) = 1} such that gcd(81 − 82, #) = 1 for all 81 ≠ 82 ∈ �. For each 8 ∈ �, let
a8 = (08 (0), 08 (1), · · · , 08 (# − 1)) be the Zadoff-Chu sequence of period # defined by

08 (C) = l8C (C+# mod 2)/2
# , C = 0, 1, · · · , # − 1.

We now give a brief introduction to the construction of ZCZ sequences in [20]. Let a8 be
defined as above and � = {b 9 = (1 9 (0), 1 9 (1), · · · , 1 9 (" − 1)) : 0 ≤ 9 ≤ " − 1} be a set
of " orthogonal sequences with period " . From each a8 (8 ∈ �) and �, one can obtain a
sequence set

C8 = {c89 = (289 (0), 289 (1), · · · , 289 (# − 1)) : 0 ≤ 9 ≤ " − 1} (8)

in which each c89 is a sequence of period # defined by

289 (C) = 08 (C)1 9 (C mod "), 0 ≤ C ≤ # − 1.

It turns out in [20] that each C8 is an (#, ", !) sequence set meeting the Tang-Fan-Matusufuji
bound. Furthermore, according to Theorem 2 in [21], the cross-correlation between each
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sequence in C81 and each sequence in C82 (81, 82 ∈ �) achieves the Sarwate bound. This
observation is due to one of the anonymous reviews.

In [20], two interesting classes of modulation orthogonal sequences were chosen from the
discrete Fourier transform (DFT) matrix and and the binary Hadamard sequences (See Section
II of [20] for more details). In these two cases, the numerical data by Magma Program shows
that there always exist cyclically equivalent sequences in each C8 for each period # = "!
with 6 ≤ # ≤ 200 and " ≥ 3. Two specific examples are given as follows.

Let # = 9, " = 3 and ! = 3. Let the modulation orthogonal sequences be chosen from the
DFT matrix of order " as

1 9 (C) = l 9 C
" , 0 ≤ 9 , C ≤ " − 1.

Then the sequences in C1 are given by

c1
0 = (l0

9, l
1
9, l

3
9, l

6
9, l

1
9, l

6
9, l

3
9, l

1
9, l

0
9),

c1
1 = (l0

9, l
4
9, l

0
9, l

6
9, l

4
9, l

3
9, l

3
9, l

4
9, l

6
9),

c1
2 = (l0

9, l
7
9, l

6
9, l

6
9, l

7
9, l

0
9, l

3
9, l

7
9, l

3
9).

Note that 21
2(C) = F3

92
1
1(C + 3) = F6

92
1
0(C + 6) for all 0 ≤ C < 9. Therefore all sequences in C1

are cyclically equivalent and are essentially the same sequence.
Let # = 8, " = 4, and ! = 2. Let the modulation orthogonal sequences be chosen from

the binary Hadamard sequences as

1= ( 9) = (−1)
∑4−1

;=0 =; 9; , =, 9 = 0, 1, 2, · · · , " − 1, " = 24,

where =; , 9; are the bits of the binary 4-bits long binary representations of integers = and 9 .
Then the sequences in C1 are given by

c1
0 = (l0

8, l
1
2
8 , l

2
8, l

9
2
8 , l

0
8, l

9
2
8 , l

2
8, l

1
2
8 ),

c1
1 = (l0

8, l
9
2
8 , l

2
8, l

1
2
8 , l

0
8, l

1
2
8 , l

2
8, l

9
2
8 ),

c1
2 = (l0

8, l
1
2
8 , l

6
8, l

1
2
8 , l

0
8, l

9
2
8 , l

6
8, l

9
2
8 ),

c1
3 = (l0

8, l
9
2
8 , l

6
8, l

9
2
8 , l

0
8, l

1
2
8 , l

6
8, l

1
2
8 ).

It is easily seen that c1
0 and c1

1 are cyclically equivalent, and c1
2 and c1

3 are also cyclically
equivalent.

Therefore an interesting problem is to study how to select the orthogonal sequences b8
such that all the resultant ZCZ sequences from the construction in [20] can be mathematically
proven to be cyclically distinct.

Remark 4. Note that there is a one-to-one correspondence between complex roots of unity
sequences of period # with perfect autocorrelation and perfect nonlinear functions over the
cyclic group Z# . For the PNFs in Lemma 3, where c(G) = G and f(G) = 0 for any G ∈ Z?, the
corresponding sequence is the well-known Frank-Zadoff sequence [11, 14] of period ?2 with
perfect autocorrelation. However, this class of PNFs does not meet the conditions on c and f
in Construction 1 and cannot lead to multiple ZCZ sequence sets in which any two sequences
are cyclically inequivalent. However, the interpretation of Frank-Zadoff sequences in terms of
PNFs motivates us to utilize PNFs in Lemma 5 to obtain the desirable multiple ZCZ sequence
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sets. This interpretation also convert the problem of finding inequivalent ZCZ sequences to
the one of searching two suitable permutations meeting the conditions in Construction 1. An
infinite family of such permutations does exist as shown by Lemma 7.

It may be possible to address the equivalent problem of ZCZ sequences in [20] from the
viewpoint of perfect nonlinear functions under the framework developed in this paper. This
would be one of our future work. The reader is also kindly invited to join this adventure.

4 Concluding remarks
In this paper, we proposed a method to construct multiple optimal ZCZ sequence sets with
favorable inter-set cross-correlation property from perfect nonlinear functions. It would be
possible and interesting to obtain more multiple ZCZ sequence sets with good properties
from other known perfect nonlinear functions. One of our future work is to combine the
method from the view point of perfect nonlinear functions and the construction in [20] to
get multiple optimal ZCZ sequences in other parameter regimes such that all sequences are
pairwise cyclically distinct.
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Abstract

Sequence families with zero correlation zone (ZCZ) have been extensively studied
in recent years due to their important applications in quasi-synchronous code-division
multiple-access (QS-CDMA) systems. To accommodate multiuser environments, multiple
ZCZ sequence sets with low inter-set cross-correlation are expected. In this paper, we
propose a construction of polyphase ZCZ sequences based on generalised bent functions.
Moreover, multiple polyphase ZCZ sequence sets with good inter-set cross-correlation are
presented. Each generated ZCZ sequence set is optimal with respect to the Tang-Fan-
Matsufuji bound.

Index terms— quasi-synchronous code-division multiple-access (QS-CDMA), zero
correlation zone (ZCZ), sequences, perfect autocorrelation, orthogonal sequences.

1 Introduction
To implement an interference-free asynchronous code-division multiple-access (A-CDMA)
communication system, one would like to have an ideal periodic sequence set, where the out-
of-phase autocorrelation (AC) of each sequence is zero and the cross-correlation (CC) of any
pair of sequences at any shift is also zero. Unfortunately, such an ideal sequence set does not
exist according to the Welch bound [23] or the Sawarte bound [17]. It is therefore impossible
to have sequences which have simultaneously impulse-like AC and zero CC during an entire
period. However, for QS-CDMA systems, a time delay is allowed between the signals of
different users within a few shifts. To utilize this advantage, a new class of sequences having
impulse-likeACand zeroCC in some smaller zone around the origin (called the zero-correlation
zone), was introduced to eliminate both multiple access interference and multipath interference
in such a system [3, 6]. Sequences with such properties are known as Zero Correlation Zone
(ZCZ) sequences. A ZCZ sequence set is generally characterized by the sequence period, the
size of the set, the length of the ZCZ and the number of phases of the sequence elements. To
accommodate multiple access users and to ease the synchronization requirement, it is desirable
to have a ZCZ sequence set with the set size and the ZCZ length as large as possible for any
given period. However, the Tang-Fan-Matsufuji bound [20] implies that there is a tradeoff
between the set size and the ZCZ length for any given sequence period. ZCZ sequence sets are
said to be optimal if they meet this bound. A number of studies on optimal ZCZ sequence sets
have been reported in the literature ( [5, 6, 14, 15, 19, 22]).
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To resist inter-cell interference caused by users from different cells in CDMA systems, a
concept of intraference among sequences was introduced in [9, 24], which is referred to as the
inter-set cross-correlation of multiple sequence sets. Facing the same challenge in the design
of ZCZ sequences, it is expected to construct multiple ZCZ sequence sets with low inter-set
cross-correlation. This would allow us to extend the application of ZCZ sequences in multiuser
environments [19]. Some progress on the construction of multiple ZCZ sequence sets has
been made in recent years. Mutually orthogonal binary ZCZ sequence sets from mutually
orthogonal complementary sequence sets (MOCSS) and orthogonal matrices were constructed
in [1]. Tang and Mow presented systematic constructions of generalized loosely synchronized
codes with low intercode cross-correlation properties within a certain window [19]. Later,
multiple ZCZ sequence sets from some specific families of MOCSS were generated in [18].
Recently, Tang and Li [12] obtained quaternary multiple sets with low correlation based on
Zadoff-Chu sequences. Very recently, [13] and [25] presented multiple ZCZ sequence sets with
good inter-set cross-correlation from discrete Fourier transform matrices and perfect nonlinear
functions, respectively. According to the requirements in [25], the construction in [13] may
lead to equivalent sequences.

In this paper, we employ generalised bent functions to construct optimal polyphase ZCZ
sequence sets. Some conditions are derived underwhich all the ZCZ sequences generated by our
construction are cyclically distinct (meaning that one sequence cannot be obtained by taking a
cyclic shift of another). Moreover, we propose a general construction of multiple ZCZ sequence
sets. To implement this general construction, we need a set of permutations satisfying some
given properties. Given such a permutation set, we derive ?<8= − 1 multiple optimal polyphase
ZCZ sequence sets with good inter-set cross-correlation in the sense that the maximum inter-set
cross-correlation of multiple sequence sets achieves the Sarwate bound [17], where ?<8= is the
smallest prime divisor of the period of the sequences. Our construction includes some previous
results as a special case [25].

The paper is organised as follows. We give some preliminaries and useful notation in Sect.
2. In Sect. 3, we obtain optimal polyphase ZCZ sequence sets from generalised bent functions.
In Sect. 4, we present a generic construction of multiple polyphase ZCZ sequence sets with
good inter-set cross-correlation. An example is presented to illustrate our main results in Sect.
5. Finally, we give some concluding remarks.

2 Preliminaries
We denote the ring of integers modulo # by Z# , where # is a positive integer. Denote by
〈G〉# the remainder G mod # for any integer G. Let u = {D(C)}#−1

C=0 and v = {E(C)}#−1
C=0 be two

complex sequences of period # . The (periodic) cross-correlation (CC) of u and v at shift g is
defined as

'u,v(g) =
#−1∑
C=0

D(C + g)E∗(C), 0 ≤ g < #,

where C + g is taken modulo # and G∗ is the complex conjugate of the complex number G.
When u = v, 'u,u(g) is called the auto-correlation (AC) of u, or 'u(g) = 'u,u(g) for short. A
sequence u is said to be perfect if 'u(g) = 0 for all 0 < g < # .

Let S = {s<, 0 ≤ < < "} be a set of " sequences of period # . The maximum
out-of-phase periodic auto-correlation magnitude is denoted by '0 and defined by

'0 = max{|'s8 (g) | : s8 ∈ S, 0 < g < #}.
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The maximum periodic cross-correlation magnitude is denoted by '2 and defined by

'2 = max{|'s8 ,s 9 (g) | : s8 ≠ s 9 ∈ S, 0 ≤ g < #}.
The following lemma is the well-known Sarwate bound on '0 and '2. The set S is said to

be optimal if '0 and '2 meet the bound.

Lemma 1. [17] For any sequence set S with " sequences of period # ,

'2
2

#
+ # − 1
# (" − 1)

'2
0

#
≥ 1.

Lemma1 implies that it is impossible to have sequenceswhich have simultaneously impulse-
like AC and zero CC during an entire period. However, sets of sequences satisfying both of
these properties in some smaller zone around the origin do exist, and they are called ZCZ
sequence sets.

Definition 1. Let S = {s< = {B< (C)}#−1
C=0 , 0 ≤ < < "} be a set of " sequences of period # .

The set S is called an (#, ", /2I)-ZCZ sequence set if

's8 ,s 9 (g) = 0 for (0 < |g | < /2I)
and

's8 ,s 9 (g) = 0 for (g = 0 and 8 ≠ 9),
where /2I is called the length of the zero correlation zone.

The following lemma shows that the length of the ZCZ is upper bounded by a value
depending on the sequence period and the size of the sequence set. Any sequence set meeting
this bound is called an optimal ZCZ set.

Lemma 2. [20] Let S be an (#, ", /2I)-ZCZ sequence set. Then

"/2I ≤ #.
Let @ and < be positive integers and l@ be a primitive @-th root of unity. Let Z<@ denote

the set of all <-tuples of elements from Z@. A function 5 : Z<@ → Z@ is called a generalised
bent function (GBF) if all of the complex Fourier coefficients � 5 (_) defined by

� 5 (_) = 1√
@<

∑
G∈Z<@

l
5 (G)−_) G
@ , _ ∈ Z<@

have unit magnitude. The integer < is the dimension of the generalised bent function.
Bent functions are a highly active area of research due to their numerous applications in

information theory, cryptography and coding theory. Research on GBFs started with the work
of Rothaus [16] and Dillon [4], initially focussing on the binary case. Later, Kumar et al. [11]
defined generalised bent functions as the maps from Z<@ to Z@. A survey of GBFs and related
objects is given in [21]. One known class of GBFs that will be used in our constructions is as
follows.

Lemma 3. [11] Let # be a positive integer. The function over Z#2 given by

5 (C) = # · C2c(C1) + f(C1), 0 ≤ C < #2,

where C = C1 + C2 · # , 0 ≤ C1, C2 < # , c is an arbitrary permutation over Z# , and f is an
arbitrary function on Z# , is bent.
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When # is an odd prime, the function 5 above is a perfect non-linear function [2], which
corresponds to the well-known Frank-Zadoff sequence [7, 10]. Multiple ZCZ sequence sets
based on this perfect nonlinear function were presented in [25]. In this paper, we will employ
the GBFs in Lemma 3 to construct multiple optimal ZCZ sequences with some desirable
properties, which generalise some results in [25].

3 Optimal ZCZ sequence set
For any rational function ℎ, one can get its corresponding polyphase sequence by the map

ℎ(:) ↦→ 4G?(2c
√
−1ℎ(:)/#), ∀: ∈ Z# , ℎ(:) ∈ ',

where ℎ is called an index sequence of period # . The corresponding polyphase sequence is
denoted by s. From the properties of the Fourier transform, it is easy to show that

|�ℎ (_) | = 1, ∀_ ∈ Z<@ ⇐⇒ 's(g) = 0, ∀g ∈ Z∗# ,

where Z∗# = Z# \ {0}. Thus, a GBF in fact corresponds to a perfect polyphase sequence. In
particular, the perfect sequences induced by the GBFs in Lemma 3 are known as generalised
Frank sequences [11]. Our construction of ZCZ sequence sets based on the GBFs in Lemma 3
is as follows.

Construction 1. Let c and f be permutations over Z# such that there exist no 21 and 22 in
Z∗# satisfying 21 · c(C1) + 22 · f(C1) = 0. A sequence set is defined as

S = {s= | s= = lc(C1)·C2+=·f(C1)# , 0 ≤ = < #},

where C = C1 + C2 · # and 0 ≤ C1, C2 < # .
Note that cyclically equivalent sequences are not desirable in practical applications [8].

Thus, it is important to ensure that all the sequences in the constructed set are cyclically
distinct. Before doing so, we introduce the following notation. For any shift 0 ≤ g < #2, we
write g = g1 + g2 · # , where 0 ≤ g1, g2 < # , and define

XC1,g1 =

{
0 if C1 + g1 < #,
1 if C1 + g1 ≥ #.

Lemma 4. All the sequences in S, given in Construction 1, are cyclically distinct.

Proof. Let s=1 and s=2 be two sequences inS, where 0 ≤ =1 ≠ =2 < # . Assume on the contrary
that they are cyclically shift equivalent, then there exists some integer 0 ≤ g < #2 such that

B=1 (C) = B=2 (C + g)

for all 0 ≤ C < #2. In other words,

c(C1) · C2 + =1 · f(C1) ≡ c(C1 + g1) · (C2 + g2 + XC1,g1) + =2 · f(C1 + g1) mod # (1)

for all 0 ≤ C1, C2 < # .
Case i) g1 ≠ 0: Equation (1) can be written as

(c(C1) − c(C1 + g1)) · C2 − c(C1 + g1) · (g2 + XC1,g1) − =2 · f(C1 + g1) + =1 · f(C1) ≡ 0 mod #,
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which cannot be simultaneously satisfied for all 0 ≤ C2 < # given a fixed C1 due to 〈c(C1 + g1) −
c(C1)〉# ≠ 0.

Case ii) g1 = 0 and g2 = 0: Equation (1) yields (=2 − =1) · f(C1) ≡ 0 mod #, which is
impossible for all 0 ≤ C1 < # because =1 ≠ =2 and f(C1) is a permutation over Z# .

Case iii) g1 = 0 and g2 ≠ 0 : Equation (1) becomes c(C1) · g2+ (=2−=1) ·f(C1) ≡ 0 mod #,
which is impossible for all 0 ≤ C1 < # , since there exist no 21 and 22 in Z∗# satisfying
21 · c(C1) + 22 · f(C1) = 0.

Therefore, s=1 and s=2 are cyclically distinct.

The above lemma ensures that the set S by Construction 1 contains # cyclically distinct
sequences. Now we are ready to show that the generated set S is an optimal ZCZ sequence set.

Theorem 1. The sequence set S given by Construction 1 is an optimal (#2, #, #)-ZCZ
sequence set.

Proof. Since every sequence is based on the generalised bent function in Lemma 3, each
sequence in the set is perfect in the sense that out-of-phase auto-correlation is 0. The cross-
correlation function of B=1 (C) and B=2 (C) for 0 ≤ =1 ≠ =2 < # at shift g is

's=1 ,s=2
(g) =

)−1∑
C1=0

B=1 (C + g)B∗=2 (C)

=
#−1∑
C1=0

#−1∑
C2=0

l
c(C1+g1)·(C2+g2+XC1 ,g1 )−c(C1)·C2+=1·f(C1+g1)−=2·f(C1)
#

=
#−1∑
C1=0

l
c(C1+g1)·(g2+XC1 ,g1 )+=1·f(C1+g1)−=2·f(C1)
#

#−1∑
C2=0

l(c(C1+g1)−c(C1))·C2# .

(2)

Case i) g1 ≠ 0: Because c(C1) is a permutation over Z# , 〈c(C1 + g1) − c(C1)〉# ≠ 0 for
g1 ≠ 0, which means that the inner sum of the last line in (2) is 0. Then 's=1 ,s=2

(g) = 0 for
g1 ≠ 0.

Case ii) g = 0: Then g1 = g2 = 0. It then follows from (2) that

's=1 ,s=2
(g) =# ·

#−1∑
C1=0

l(=1−=2)·f(C1)
#

which is 0 since f(C1) is a permutation over Z# and =1 ≠ =2.
Combining the above two cases, the sequence set S can be seen to be an (#2, # , #)-ZCZ

sequence set which is optimal with respect to the Tang-Fan-Matsufuji bound.

By Theorem 1, the set S in Construction 1 produces sequences with zero AC across all
out-of-phase shifts and nonzero CC only at sub-periodic correlation shifts. Based on the set
S, we will generate multiple optimal ZCZ sequence sets with good inter-set cross-correlation
in the next section.

4 Multiple ZCZ sequence sets
In this section, we present multiple ZCZ sequence sets based on Construction 1. To get
multiple sets, we need a set of permutations over Z# satisfying certain conditions instead of a
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single permutation c as in Construction 1. We first propose a general construction of multiple
ZCZ sequence sets. After that, we show that a set of permutations over Z# with the specific
properties in Construction 2 does exist.

Construction 2. Let # be a positive integer and f be a permutation over Z# . We denote
Π = {c< | c< is a permutation over Z# for < ∈ M}, where M is an index set. For each
< ∈ M, we define a sequence set as

S< = {s<= | s<= (C) = lc< (C1)·C2+=·f(C1)# , 0 ≤ = < #},

where C = C1 + C2 · # and 0 ≤ C1, C2 < # .
Theorem 2. If the following requirements are satisfied:

1 for each < ∈ M, there exist no 21 and 22 in Z∗# satisfying 21 · c< (C1) + 22 · f(C1) = 0;

2 c<1 (C1 + g1) ≡ c<2 (C1) (mod #) has only one solution for g1 ∈ Z# and <1 ≠ <2 ∈ M,

then the sets S< from Construction 2 have the following properties:

a each sequence in each set S< for < ∈ M is perfect;

b each set S< for < ∈ M is an optimal (#2, #, #)-ZCZ sequence set;

c |'s<1
=1 ,s

<2
=2
(g) | = # for all 0 ≤ g < #2 − 1, 0 ≤ =1, =2 < # and <1 ≠ <2 ∈ M.

Proof. Since each c< (C1) is a permutation over Z# for < ∈ M, each sequence in each set S<
is perfect. By Lemma 4, condition 1) ensures that each set consists of inequivalent sequences.
For < ∈ M , each set S< is an optimal (#2, #, #)-ZCZ sequence set by Lemma 1.

Now we consider the inter-set cross-correlation of two sequences from different sets. Let
s<1
=1 and s<2

=2 be two sequences in S<1 and S<2 , respectively, where 0 ≤ =1, =2 < # and
<1 ≠ <2 ∈ M. Then, the inter-set cross-correlation between s<1

=1 and s<2
=2 is given by

's<1
=1 ,s

<2
=2
(g) =

#2−1∑
C=0

B<1
=1 (C + g)B<2

=2
∗(C)

=
#−1∑
C2=0

#−1∑
C1=0

l
c<1 (C1+g1) (C2+g2+XC1 ,g1 )+=1f(C1+g1)−c<2 (C1)C2−=2f(C1)
#

=
#−1∑
C1=0

l
c<1 (C1+g1) (g2+XC1 ,g1 )+=1f(C1+g1)−=2f(C1)
#

#−1∑
C2=0

l
(c<1 (C1+g1)−c<2 (C1))C2
# .

The inner sum of the last identity above is zero unless

c<1 (C1 + g1) ≡ c<2 (C1) mod #.

Since c<1 (C1 + g1) − c<2 (C1) ≡ 0 (mod #) has a unique solution at any shift g1 ∈ Z# for
<1 ≠ <2 ∈ M, we have |'s<1

=1 ,s
<2
=2
(g) | = # for all 0 ≤ g < #2 − 1, 0 ≤ =1, =2 < # and

<1 ≠ <2 ∈ M.
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Remark 1. Denote by |M| the cardinality of the setM. By Construction 2, |M| multiple ZCZ
sequence sets are derived. Each sequence in each set is perfect and each set is an optimal
ZCZ sequence set. The magnitude of the inter-set cross-correlation between any two sequences
from different sets at any shift is constant, which is optimal with respect to the Sarwate bound.
Hence, an optimal set of size |M| of period #2 can be derived if we select one sequence from
each set S< for < ∈ M.

In order to perform Construction 2, we need to find permutations c< for < ∈ M and f
satisfying the requirements in Theorem2. Once c< for< ∈ M are fixed, we can choose a proper
permutation f over Z# satisfying the condition 1). Therefore, how to produce permutations
c< for < ∈ M satisfying the second requirement of Theorem 2 is crucial for the construction.
For convenience, we call a set of such permutations over Z# a permutation set.

One easy approach to generate permutation sets over Z# is as follows. Let ?<8= be the
smallest prime divisor of # and c be any permutation over Z# . Then a set of permutations
c< (C1) = c(< · C1) for 1 ≤ < ≤ ?<8= − 1 is a permutation set, which can be easily proved.

Another approach to generate new permutation sets is based on the known permutation
sets. Let # =  %, where  and % are odd integers. Again ?<8= is the smallest prime divisor
of # . We rewrite C1 in the form of C3 +  · C4, where 0 ≤ C3 <  and 0 ≤ C4 < %. A set of
functions on Z# is defined as

Π = {c< | c< (C1) =  · ℎ(<C4) + <6(C3), 1 ≤ < ≤ ?<8= − 1}, (3)

where ℎ is any permutation over Z% and {< · 6(C3), 1 ≤ < ≤ ?<8= − 1} is a permutation set
over Z . The following lemma shows that Π is indeed a permutation set.

Lemma 5. The set Π above is a set of permutations such that c<1 (C1 + g1) ≡ c<2 (C1) (mod #)
has only one solution for any given g1 ∈ Z# and 1 ≤ <1 ≠ <2 ≤ ?<8= − 1.

Proof. According to the definition in (3), the index set M = {1, 2, · · · , ?<8= − 1}. For any
shift 0 ≤ g1 < # , we rewrite g1 = g3 +  · g4, where 0 ≤ g3 <  and 0 ≤ g4 < %. Then for
<1, <2 ∈ M, we obtain

c<1 (C1 + g1) − c<2 (C1) =  [ℎ(<1(C4 + g4 + XC3,g3)) − ℎ(<2C4)] + <16(C3 + g3)) − <26(C3),

where

XC3,g3 =

{
0 if C3 + g3 < #,
1 if C3 + g3 ≥ #.

Note that 〈c<1 (C1+g1) −c<2 (C1)〉# = 0 implies 〈c<1 (C1+g1) −c<2 (C1)〉 = 0, which means
〈<16(C3 + g3)) −<26(C3)〉 = 0. Thus, it is easy to verify that 〈c<1 (C1 + g1) − c<2 (C1)〉# = 0 if
and only if 〈<16(C3 + g3)) − <26(C3)〉 = 0 and 〈ℎ(<1(C4 + g4 + XC3,g3)) − ℎ(<2C4)〉% = 0.

For <1 = <2 ∈ M, 〈c<1 (C1 + g1) − c<2 (C1)〉# = 0 if and only if g3 = 0 and g4 = 0, because
6 and ℎ are permutations over Z and Z%, respectively. Therefore, g1 = 0 which imply that
c< (C1) is a permutation over Z# for each < ∈ M.

For <1 ≠ <2 ∈ M, 〈ℎ(<1(C4 + g4 + XC3,g3)) − ℎ(<2C4)〉% = 0 if and only if <1(C4 + g4 +
XC3,g3) ≡ <2C4 mod %, because ℎ is a permutation over Z%. Furthermore, <1(C4 + g4 + XC3,g3) ≡
<2C4 mod % has one unique solution for every g4 ∈ Z%, because gcd(<1 − <2, %) = 1. Since
{< · 6(C3), 1 ≤ < ≤ ?<8= − 1} is a permutation set over Z , 〈<16(C3 + g3)) − <26(C3)〉 = 0
has one unique solution for every g3 ∈ Z . Hence, c<1 (C1 + g1) − c<2 (C1) = 0 has exactly one
solution for every shift g1 ∈ Z# and <1 ≠ <2 ∈ M.
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We can use permutation sets generated above to construct multiple ZCZ sequence sets by
Construction 2. The size of the generated permutation sets is ?<8= − 1, where ?<8= is the
smallest prime divisor of # . Therefore, we can get ?<8= − 1 multiple optimal ZCZ sequence
sets with good inter-set cross-correlation. As we can see that the size of a permutation set
determines how many different multiple sets we can obtain, it would be interesting to construct
other forms of permutation sets with a larger set size.

5 Example
In this section, we give an example to illustrate Construction 2. We first choose a permutation
set, after which we find a permutation f satisfying the condition 1) in Theorem 2. With these
permutations, we perform Construction 2 in the following.

Example 1. Let # = 15 with  = 5 and % = 3. The permutation set Π = {c< | c< (C1) =
 · ℎ(<C4) + <6(C3), 0 < < ≤ 2}, where ℎ(G) = G and 6(G) = G3. Let f(G) = G. By
Construction 2, we can obtain 2 sequence sets of which the first two sequences in each set are
as follows:

s1
0 ={0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 2, 4, 5, 6, 8, 7, 9, 10, 11, 13, 12, 14, 0, 2, 6, 4, 8, 10,

12, 1, 14, 3, 5, 7, 11, 9, 13, 0, 3, 9, 6, 12, 0, 3, 9, 6, 12, 0, 3, 9, 6, 12, 0, 4, 12, 8, 1, 5, 9, 2, 13, 6,
10, 14, 7, 3, 11, 0, 5, 0, 10, 5, 10, 0, 10, 5, 0, 5, 10, 5, 0, 10, 0, 6, 3, 12, 9, 0, 6, 3, 12, 9, 0, 6, 3,
12, 9, 0, 7, 6, 14, 13, 5, 12, 11, 4, 3, 10, 2, 1, 9, 8, 0, 8, 9, 1, 2, 10, 3, 4, 11, 12, 5, 13, 14, 6, 7, 0,
9, 12, 3, 6, 0, 9, 12, 3, 6, 0, 9, 12, 3, 6, 0, 10, 0, 5, 10, 5, 0, 5, 10, 0, 10, 5, 10, 0, 5, 0, 11, 3, 7, 14,
10, 6, 13, 2, 9, 5, 1, 8, 12, 4, 0, 12, 6, 9, 3, 0, 12, 6, 9, 3, 0, 12, 6, 9, 3, 0, 13, 9, 11, 7, 5, 3, 14, 1,
12, 10, 8, 4, 6, 2, 0, 14, 12, 13, 11, 10, 9, 7, 8, 6, 5, 4, 2, 3, 1, 0}.

s1
1 ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 2, 5, 5, 8, 10, 12, 0, 0, 3, 5, 7, 10, 10, 13, 0, 3, 8, 7,

12, 0, 3, 8, 7, 12, 0, 3, 8, 7, 12, 0, 4, 11, 9, 1, 5, 9, 1, 14, 6, 10, 14, 6, 4, 11, 0, 5, 14, 11, 5, 10, 0,
9, 6, 0, 5, 10, 4, 1, 10, 0, 6, 2, 13, 9, 0, 6, 2, 13, 9, 0, 6, 2, 13, 9, 0, 7, 5, 0, 13, 5, 12, 10, 5, 3, 10,
2, 0, 10, 8, 0, 8, 8, 2, 2, 10, 3, 3, 12, 12, 5, 13, 13, 7, 7, 0, 9, 11, 4, 6, 0, 9, 11, 4, 6, 0, 9, 11, 4, 6,
0, 10, 14, 6, 10, 5, 0, 4, 11, 0, 10, 5, 9, 1, 5, 0, 11, 2, 8, 14, 10, 6, 12, 3, 9, 5, 1, 7, 13, 4, 0, 12, 5,
10, 3, 0, 12, 5, 10, 3, 0, 12, 5, 10, 3, 0, 13, 8, 12, 7, 5, 3, 13, 2, 12, 10, 8, 3, 7, 2, 0, 14, 11, 14, 11,
10, 9, 6, 9, 6, 5, 4, 1, 4, 1, 0, 0, 14, 1, 0, 0, 0, 14, 1, 0, 0, 0, 14, 1, 0, 0}.

s2
0 ={0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 4, 3, 10, 12, 11, 14, 13, 5, 7, 6, 9, 8, 0, 4, 2, 8, 6, 5,

9, 7, 13, 11, 10, 14, 12, 3, 1, 0, 6, 3, 12, 9, 0, 6, 3, 12, 9, 0, 6, 3, 12, 9, 0, 8, 4, 1, 12, 10, 3, 14,
11, 7, 5, 13, 9, 6, 2, 0, 10, 5, 5, 0, 5, 0, 10, 10, 5, 10, 5, 0, 0, 10, 0, 12, 6, 9, 3, 0, 12, 6, 9, 3, 0,
12, 6, 9, 3, 0, 14, 7, 13, 6, 10, 9, 2, 8, 1, 5, 4, 12, 3, 11, 0, 1, 8, 2, 9, 5, 6, 13, 7, 14, 10, 11, 3, 12,
4, 0, 3, 9, 6, 12, 0, 3, 9, 6, 12, 0, 3, 9, 6, 12, 0, 5, 10, 10, 0, 10, 0, 5, 5, 10, 5, 10, 0, 0, 5, 0, 7, 11,
14, 3, 5, 12, 1, 4, 8, 10, 2, 6, 9, 13, 0, 9, 12, 3, 6, 0, 9, 12, 3, 6, 0, 9, 12, 3, 6, 0, 11, 13, 7, 9, 10,
6, 8, 2, 4, 5, 1, 3, 12, 14, 0, 13, 14, 11, 12, 5, 3, 4, 1, 2, 10, 8, 9, 6, 7, 0}.



Paper VI 127

s2
1 ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 0, 3, 3, 7, 7, 0, 3, 3, 7, 7, 0, 3, 3, 7, 7, 0, 5, 4, 11, 10,

10, 0, 14, 6, 5, 5, 10, 9, 1, 0, 0, 7, 5, 0, 13, 5, 12, 10, 5, 3, 10, 2, 0, 10, 8, 0, 9, 6, 4, 1, 0, 9, 6, 4,
1, 0, 9, 6, 4, 1, 0, 11, 7, 8, 4, 10, 6, 2, 3, 14, 5, 1, 12, 13, 9, 0, 13, 8, 12, 7, 5, 3, 13, 2, 12, 10, 8,
3, 7, 2, 0, 0, 9, 1, 10, 0, 0, 9, 1, 10, 0, 0, 9, 1, 10, 0, 2, 10, 5, 13, 10, 12, 5, 0, 8, 5, 7, 0, 10, 3, 0,
4, 11, 9, 1, 5, 9, 1, 14, 6, 10, 14, 6, 4, 11, 0, 6, 12, 13, 4, 0, 6, 12, 13, 4, 0, 6, 12, 13, 4, 0, 8, 13,
2, 7, 10, 3, 8, 12, 2, 5, 13, 3, 7, 12, 0, 10, 14, 6, 10, 5, 0, 4, 11, 0, 10, 5, 9, 1, 5, 0, 12, 0, 10, 13,
0, 12, 0, 10, 13, 0, 12, 0, 10, 13, 0, 14, 1, 14, 1, 10, 9, 11, 9, 11, 5, 4, 6, 4, 6, 0}.

It is easy to verify that

• each sequence is perfect;

• each S< is an optimal (225, 15, 15)-ZCZ sequence set, where 1 ≤ < ≤ 2; and

• |'s<1
=1 ,s

<2
=2
(g) | = 15 for all 0 ≤ g ≤ 224, 1 ≤ <1 ≠ <2 ≤ 2, and 0 ≤ =1, =2 ≤ 14.

These observations are consistent with Theorem 2.

6 Conclusion
In this paper, we constructed a class of optimal polyphase ZCZ sequence sets from generalised
bent functions. Some conditions were derived under which all the ZCZ sequences generated
by our construction are cyclically distinct. Furthermore, we proposed a general construction
of multiple ZCZ sequence sets based on generalised bent functions. To implement the general
construction, we also introduced sets of permutation with desirable properties. With such a set
of permutations generated, we derived ?<8= − 1 multiple optimal polyphase ZCZ sequence sets
with good inter-set cross-correlation, where ?<8= is the smallest prime divisor of the period
of the sequences. For further work, it would be worth to study other forms of permutation
sets with the same properties but larger set size. Then we could generate more different sets
with good inter-set cross-correlation by Construction 2. Finally, it would also be possible and
interesting to obtain multiple ZCZ sequence sets with more flexible parameters from other
known functions with high nonlinearity.
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