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Abstract  

Background: High-grade serous ovarian cancer (HGSOC) is the most frequently 

occurring and most fatal epithelial ovarian cancer (EOC) subtype. The reciprocal 

interplay of the different components encompassed within the tumour 

microenvironment (TME) are fundamental for tumour growth, advancement, and 

therapy response. It is therefore important to be able to deeply characterize the complex 

and diverse TME with multidimensional approaches. 

Aims: The main aim of this project was to establish novel multiparametric mass 

cytometry panels and thoroughly characterise the HGSOC TME. 

Methods: We first developed a novel 35-marker ovarian TME-based Cytometry by 

time-of-flight (CyTOF) panel (pan-tumour panel) and utilized it to examine the effects 

of six different tissue dissociation methods on cell surface antigen expression profiles 

in HGSOC tumour samples (Paper I). We further established an unique immune panel 

(pan-immune) for the detailed immunophenotyping of chemo-naïve HGSOC patients. 

The individual tumour immune microenvironments were characterized with tailored 

computational analysis (Paper II). With the use of an established merging algorithm—

CyTOFmerge—the pan-tumour and pan-immune datasets were merged for a more in-

depth immune delineation of the ten ovarian chemo-naïve TME profiles in addition to 

tumour and stromal cell phenotyping (Paper III).  

Results: We have established a novel ovarian TME-based CyTOF panel for HGSOC 

that is capable of delineating the immune, tumour, and stromal cells of the TME. 

Utilizing this panel, we demonstrated that, although the six tissue dissociation methods 

have a certain level of influence on the TME antigen expression profiles, inter-patient 

differences between the tumour samples are still clear. In addition, we identified a 

previously undescribed stem-like cell subset (Paper I). We have developed a unique 

34-marker immune panel and have provided a detailed characterization of the ovarian 

tumour immune microenvironment of chemo-naïve patients. We identified a high 

degree of interpatient immune cell heterogenicity and discovered an abundance of 

conventional dendritic cells (DC), natural killer (NK) cells, and unassigned 
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hematopoietic cells. Certain monocyte and dendritic cell (DC) clusters have shown 

prognostic relevance within the ovarian TME (Paper II). The merged dataset analysis 

revealed a new level of complexity with a more in-depth immune (myeloid cells) 

delineation in addition to tumour and stromal (fibroblast subsets) cell phenotypes. We 

identified an even higher degree of interpatient TME heterogenicity and a novel tumour 

cell metacluster, CD45-CD56-(EpCAM-FOLR1-CD24-). As a benefit of integrating the 

datasets, we identified even higher clinical associations (from 12 [pan-tumour dataset] 

to 20 [merged dataset]). Furthermore, most of these observed associations were majorly 

between PFS, OS, and infiltrating immune cell subsets (Paper III).  

Conclusions and consequences: (Paper I) In conclusion, the panel represents a 

promising profiling tool for the in-depth phenotyping of the HGSOC TME cell subsets. 

Although the tissue dissociation methods have influence on the TME antigen 

expression profiles, inter-patient differences are still clear. (Paper II) Our findings 

revealed a high degree of heterogeneity and identified phenotypic profiles that can be 

explored for use in HGSOC phenotypic profiling. (Paper III) Together, the merged 

sketching illustrates that comprehensive individual TME mapping for HGSOC patients 

can contribute to a better understanding each patient’s unique micromilieu given the 

need for more personalized treatment approaches. 
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1. Introduction 

High-grade serous ovarian carcinoma (HGSOC) is the most common and most lethal 

epithelial ovarian cancer (EOC) subtype. It is characterised by ubiquitous mutations in 

the TP53 gene, coupled with homologous recombination repair machinery deficiency 

(HRR) including dysfunction in the BReast CAncer (BRCA) genes, as well as 

chromosomal instability (1). The tumours are heterogeneous, characterised by different 

microenvironmental features (2). As our understanding of the molecular background 

grows, molecular (BRCA mutations, HRR deficiencies) and phenotypic profiling 

(platinum sensitivity, degree of debulking) are beginning to be integrated into clinical 

practice and trials. It is believed that the introduction of poly-ADP-ribose-polymerase 

(PARP) inhibitors in frontline treatment is producing an overall survival (OS) benefit 

(3). Further improvements will require rethinking, and a roadmap for research priorities 

has been outlined (4). A more comprehensive profile and understanding of the tumour 

microenvironment is currently considered to be a leading research priority, in the hope 

that it will enable the development of better strategies for managing this disease (5). 

1.1 High-Grade Serous Ovarian Cancer 

1.1.1 Epidemiology 

EOC is the sixth most common malignant neoplasm and the leading cause of death 

from gynaecological malignancies in the Western world. Due to the intra-abdominal 

location of these tumours and the number of unspecific symptoms, the majority of 

women all over the world are diagnosed at advanced stages (6). Together with a rapid 

development of chemotherapy resistance and the evasion of immunological 

surveillance, this explains at least in part, these patients’ dismal prognoses (4). 

According to the Cancer Registry of Norway, the ovarian cancer mortality rate is high 

but has improved in recent years (2013–2019) (Fig. 1). In 2019, 306 patients died from 

the disease in Norway (7).  

The lifetime risk for a woman in Norway to develop ovarian cancer is estimated to be 



 16 

around 1 in 77; the age-adjusted incidence rate (new cases per 100 000 people per year) 

was 18.6 for Norway in 2019, and 528 new cases were reported in 2019 (Fig. 1) (7). 

Although the incidence rates in developed countries in North America and elsewhere 

in Europe are the highest in the world, Norway’s rate is not far behind. 

 

Figure 1. Norwegian epidemiological data of ovarian cancer (graph adapted from 

Cancer Registry 2019 (7)). 

The incidence rates are lowest in developing countries such as those of Africa and Asia. 

According to the National Cancer Registry Programme (NCRP, Bangalore, India), 

there were around 4818 ovarian cancer cases registered in the various cancer registries 

in India during the period 2012–2014: The number of cases differed from 15 cases in 

Nagaland to 688 cases in Delhi (Table 1) (8).  
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beneficial (3, 10).  

1.1.2 Pathogenesis 

The origin and pathogenesis of EOC have been mysterious for decades, with different 

concepts being introduced, but traditionally it was regarded as a single disease entity, 

irrespective of the histopathologic subtype (11). Today, EOC is subdivided primarily 

into at least five different histological subtypes with different aetiologies, genetic 

backgrounds, phenotypic characteristics and clinical features (Table 2) (12). The 

frequency of the subtypes differs as well, with HGSOC being the most common and 

lethal subtype (70%) and low-grade serous carcinoma (<5%) being the rarest.  

Table 2. Clinical and molecular features of the five most common ovarian cancer 

types (table adapted from Prat et al. (12)). 

 

Initiation 

In light of the novel findings produced by large clinicopathologic and molecular 

genetic studies over the past decade, it is now accepted that the majority of HGSOCs 

arise from an extraovarian site, the epithelium in the fimbriated distal part of the 

fallopian tubes (Fig. 2). Why the epithelium in the tubes is susceptible remains 

unknown (13), but there is reason to believe that inflammation plays a role, as it does 

in many types of cancer. Associations with both peritoneal (endometriosis, talc and 

infections) and ovulation-induced inflammation processes have been reported (14). 

More recently, Nené et al. showed that an aberrant cervico-vaginal microbiome may 

also be a contributing factor, especially in BRCA mutation carriers (15). 
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How these cells transform and disseminate remain unclear, but several inflammation-

inducing factors originating from the fallopian tubes, follicular fluid or the peritoneum 

may be part of the cause (13). Epithelial cells are exposed to elevated levels of 

inflammatory mediators (such as cytokines, prostaglandins, reactive oxygen species 

(ROS)) and growth factors which promote a chronic inflammatory microenvironment 

(14). Precursor lesions in the tubes with distinct ‘p53 signatures’, evolving into so-

called secretory cell outgrowths (SCOUTs) and serous tubal intraepithelial carcinomas 

(STICs) can be established. STICs are described as the immediate precursor to invasive 

HGSOC and the earliest histologically recognisable lesion in the pathogenesis of high-

grade serous carcinoma (16). STICs are the most accepted preneoplastic lesion, as they 

share the same morphological gene mutation of TP53, with positive p53 and H2AX 

stainings and missing expression of Ki-67, as has also been observed in HGSOC 

tumours (17). Nevertheless, Lohmussar et al. recently reported results supporting the 

dual origin hypothesis of HGSOC, highlighting both the ovarian surface epithelium 

(OSE) and STICs as potential candidate tissues of origin in an organoid-based tumour 

progression model (18).  

Activin A, a component of follicular fluid, may stimulate STIC cells to migrate to the 

ovary, where they develop further into a primary tumour upon mesenchymal-to-

epithelial transition (MET) (19). Another possible pathogenesis mechanism is the 

implantation of the normal fimbria epithelium on the denuded ovarian surface at the 

site of rupture when ovulation occurs, following tumour development in the inclusion 

cysts (20). Once the tumour is established, the proinflammatory microenvironment will 

promote further dissemination and establishment of metastasis, ascitic fluid production 

and development of chemoresistance (14). 

HGSOC is often susceptible to widespread carcinomatosis, with micrometastases all 

over the abdominal cavity. It usually metastasis through the transcoelomic route, in 

contrast to other carcinomas which spread via the hematogenous route (21). This may 

result from the shedding of small clusters of malignant cells directly from the ovary or 

fallopian tube into the surrounding tissue, such as the peritoneal lining. The release of 

vascular endothelial growth factors (VEGF) and blocked lymph vessels from malignant 
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cell clusters cause leaky vessels, resulting in the formation of ascites fluid (22). 

Characteristically, the malignant cells remain confined in the peritoneal cavity, in direct 

contact with intraperitoneal fluid both as peritoneal implants and solid tumour masses, 

as well as free-floating tumour cells and cell aggregates (spheroids) (23). 

 

Figure 2. Cells of origin for HGSOC (image adapted from Khalid et al. (24)). 

Genetics 

In recent years, notable progress has been made in understanding the different steps of 

pathogenesis in HGSOC. With the exception of their presence in TP53 and 

BRCA1/BRCA2, point mutations in tumour suppressors are relatively uncommon (25). 

Instead, HGSOC is characterised by genomic structural variations and DNA copy 

number changes, making it chromosomally unstable. These are drivers of molecular 

subtype specifications (Fig. 3) and lead to global changes in gene expression (4).  

The Cancer Genome Atlas (TCGA) study of HGSOC revealed BRCA1 and BRCA2 

mutations in 22% and TP53 mutation in 96% of cases, with only nine more additional 

mutations identified in CSMD3, NF1, CDK12, FAT3, GABRA6 and RB1 genes. A 

smaller group of HR DNA-repair-associated mutations can be found in RAD51C, 

BRIP1, RAD51D, PTEN (6% loss of function), ATM and ATR genes (4, 25).  
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Figure 3. Pathogenesis of high-grade serous carcinomas (image adapted from 

Bowtell et al. (4)). 

Based on transcriptional data, HGSOC can be stratified into four promoter methylation 

subtypes (immunoreactive, differentiated, proliferative and mesenchymal clusters) and 

seven copy number signatures, all of which are associated with different tumour 

microenvironmental features and clinical outcomes (25, 26).  

Around half of HGSOCs display defects in the homologous recombination repair 

(HRR) and homologous recombination deficiency (HRD) pathways, which mainly 

arise from germline and somatic mutations or from epigenetic changes in the BRCA1/2 

genes, and, to a relatively lesser extent, from mutations in other molecules in the HRR 

pathways (4, 26). The gene products of BRCA1/2 are involved in the maintenance of 

genomic stability and DNA damage repair, as well as apoptosis and transcriptional 

regulation. HRR is a key determinant of platinum and poly (ADP-ribose) polymerase 

inhibitors (PARPi) sensitivity (27). Some tumours without HRR defects have 

amplification of the CCNE1 gene, which is associated with acquired chemoresistance 

and poor prognosis (4, 25). Together with the tumour cell’s plasticity, these molecular 

alterations result in the establishment of a highly heterogeneous disease (see also 

Section 1.2.1) (28). Molecular traits for most other HGSOCs with no apparent HRR 

defects are poorly defined. The only genetics information currently used in clinical 

practice is TP53 mutations for diagnostics and BRCA1/BRCA2 mutations for 

identification of hereditary and selection of treatment (4). Although HRD testing is 

used more and more, in Norway so far it has only applied for patients participating in 

clinical trials (29). 
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Gene expression profiles have been identified which are associated with debulking 

status, OS and response to platinum therapy (30). To date, at least 15 ovarian cancer 

genome-wide association studies have been performed, most of which have evaluated 

susceptibility loci along with clinical outcomes (31). The TCGA study indicated that 

the immunoreactive molecular subtype was associated with superior OS and the 

mesenchymal subtype with the worst OS (32). These findings were in line with an 

earlier classification, published by Tothill et al. in 2008, which were based on 

unsupervised hierarchically clustered gene expression data from 285 high-grade 

advanced tumours (33). Although these data were refined and validated independently, 

the use of gene expression biomarkers in clinical settings is still challenging due to 

important shortcomings, including lack of identification of robust gene signatures in 

larger cohort samples with strong statistical interference. However, Millstein et al. 

recently identified a high-confidence HGSOC prognostic signature which has proven 

useful for stratifying patients in a treatment-specific manner. When tested with gene 

set enrichment analysis, the developed signature demonstrated promising results, 

highlighting the role of the immune system in OS of ovarian cancer (34). Hence, 

supporting the potential use and need for further investigation of immune therapy and 

targeted treatments for HGSOC. 

1.1.3 Aetiology and risk factors 

There are many genetic and phenotypic risk factors which contribute to an individual’s 

risk of developing cancer. Approximately 85–90% of ovarian cancers are believed to 

be sporadic, while 10–15% are hereditary (6). Substantial variation exists on the basis 

of ethnicity and geography—e.g. the age-adjusted incidence rate (new cases per 

100 000) in Norway was 15.6 (2018) (25) and 5.3 in India (based on data from 2012–

2014) (8). 

Germline BRCA1 mutation carriers face a 39–46% risk of developing ovarian 

carcinoma by the age of 70, whereas only 10–27% of women with inherited BRCA2 

mutation are at risk of developing ovarian cancer (35). The cancers occurring in these 

women are usually HGSOCs and manifest at an earlier age than the sporadic cases. 

Low-penetrance mutations in genes such as BRIP1, RAD1C, RAD1D, BARD1, CHEK2, 
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MER11A, RAD50, PALB2 and ATM, all important for HRR, are vital (36-38). 

Mismatch repair genes (MSH2 and MLH1), which predisposed for hereditary 

nonpolyposis colorectal cancer (HNPCC or Lynch syndrome) (39) can also increase 

the susceptibility. These women develop the disorder about 10 years earlier than 

women with a non-hereditary form.  

EOC are seldom diagnosed in pre-menopausal women (<45 years old); as with other 

epithelial cancers, the disease tends to be diagnosed more frequently with increasing 

age. Identification of non-genetic risk factors are based primarily on epidemiological 

findings. In their review paper from 2012, Hunn and Rodriguez tried to separate them 

into different groups (reproductive, hormonal, inflammatory, dietary and surgical), 

some being distinct while others were overlapping (40). Many of the risk factors are 

associated with the absolute number of ovulations a woman experiences throughout the 

course of her life, and positive associations with both early menarche and late 

menopause have been recognised. Use of oral contraceptives (length-of-use 

dependent), pregnancies (number dependent) and breastfeeding reduce the risk (41). 

Infertility, polycystic ovarian syndrome and obesity are independent risk factors, while 

the risk associated with use of drugs used for assisted reproduction is still unclear (42, 

43). The positive correlation between chronic inflammation such as endometrioses and 

the development of clear cell and endometroid cancers are clear. Environmental factors 

such as pelvic inflammatory disease, smoking and talc can also be triggers (14). The 

role dysbiosis plays in the microbiome must be further evaluated (15).  

In high-risk groups, 80–95% risk reduction is reported with traditional prophylactic 

bilateral risk-reducing salpingo-oophorectomy. Based on recent findings on fallopian 

tubal precursor lesions, supported by ongoing studies such as the Preventing Ovarian 

Cancer through early Excision of Tubes and late Ovarian Removal (PROTECTOR) 

and Women Choosing Surgical Prevention (WISP) trials, it has been suggested that 

removing the fallopian tubes might be sufficient, allowing for removal of ovaries to be 

delayed or even for the ovaries to be retained.  
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1.1.4 Symptoms, diagnostics and staging 

EOC symptoms are not explicit and consist of abdominal or pelvic discomfort, 

gastrointestinal problems, unexplainable weight loss and/or vaginal bleeding, and they 

can at least in part be explained by intra-abdominal localisation of tumour tissues, 

indicating advanced disease stage. Typically, they may manifest themselves months 

before diagnosis. Late diagnosis is one of the most serious challenges with this 

disorder, and as already mentioned in EOC almost 75% of patients have advanced 

disease by the time of diagnosis (44, 45). 

As the patients have different problems, it is difficult to establish a recommended 

diagnostic algorithm. Predominant symptoms are thus used to determine the survey of 

methodologies used. Through examinations for the abdomen and genitalia with 

ultrasound, parameters such as the presence of ascites and tumour characteristics are 

measured. Imaging modalities alone or combined, such as computed tomography (CT), 

magnetic resonance imaging (MRI), positron-emissions tomography (PET)-CT, as 

well as serum biomarkers such as cancer antigen 125 (CA125/MUC16) and 

carcinoembryonic antigen (CEA), are also applied. CA125 is an EOC-associated serum 

biomarker often found in elevated levels in women with EOC. To avoid 

misclassifications with gastrointestinal cancers, CEA is included in the standard 

clinical diagnostic algorithms (46-48). On the other hand, the use of human epididymis 

protein 4 (HE4), another EOC associated tumour biomarker, has not yet been 

implemented in Norway. Sometimes upfront laparoscopic- or ultrasound-guided 

biopsies are needed for clinical decision-making. 

Staging is the description of the size and location of the cancer. EOC is staged 

according to the 2014 International Federation of Gynaecology and Obstetrics (FIGO) 

staging system (which was updated in 2018). The stage is determined based on 

perioperative judgements in combination with histopathological evaluation. The four 

disease stages (I–IV) are defined in Table 3 (49) below. 
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Table 3. FIGO Ovarian Cancer Staging (2014) (table adapted from Mutch et al. 

(49)). 

 

1.1.5 Current treatment modalities and challenges 

EOC prognoses have remained poor for years (50). Current prognostic factors include 

age, FIGO stage (5-year survival of Stage IV is 5%, compared to 92% for Stage I), 

degree of debulking surgery, performance status and histological subtype (51, 52). 

Despite this diversity, most patients receive the same standard treatment, which 

includes cytoreductive surgery in combination with platinum-based chemotherapy 

(53). Alternatively, advanced-stage (IIIC and IV) patients could receive three cycles of 

neoadjuvant therapy (NACT) followed by interval debulking surgery (54). The 

addition of anti-angiogenetic agents and PARP inhibitors as maintenance therapy is 

based on phenotypic selection criteria (ICON7) and the presence of mutations in the 

BRCA1 and BRCA2 genes (SOLO1), respectively (55-57). There are also several 

ongoing randomised clinical trials searching for new treatment approaches on the basis 

of histotype and molecular subgroup stratification. 
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Upon recurrence, which is common, patients still receive multiple therapeutics 

(primarily chemotherapy and/or targeted drugs but sometimes also surgery) (Fig. 4), 

but their treatment changes from cure to palliation. New treatment strategies are needed 

to extend chemotherapy-free intervals, as interval periods between successful lines of 

chemotherapeutics become shorter with recurrence (58). 

 

Figure 4. HGSOC progression (graph adapted from Giornelli et al. (58)). 

Cytoreductive surgery 

The goal of cytoreductive surgery, the most important intervention in treatment of 

EOC, is complete tumour resection (meaning residual disease less than 1 cm3) (59). 

Furthermore, the words “debulking” and “cytoreductive surgery” are interchangeably 

utilized in the literature to describe the surgery for the treatment of ovarian cancer 

patients. However, the word “debulking” is considered to mean “reduction of tumor 

mass” relative to the word “cytoreductive” which intends to mean “complete resection 

of the tumor” (60). Initial staging of patients is as mentioned (paragraph 1.1.4) 

evaluated during the primary cytoreductive surgery and thereafter finalised based on 

the conclusive results from the histopathological examinations (Table 3). Macroscopic 

visible residual disease has been shown to be the single most important independent 

negative prognostic factor (51, 61). The extent of debulking is influenced both by the 
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aggressiveness of the surgical approach and the inherent tumour biological 

characteristics and disease stage (62). It remains unknown whether a suboptimal 

disease outcome after surgery is only due to surgical skills or can be explained by the 

intrinsic biology of the tumour itself and residual tumour result in cancer-sustaining 

cell clones. Therefore, in addition to the imaging modalities used (see Section 1.1.4), 

stratification of patients on the basis of tumour biology and the laparoscopic scoring 

algorithm, predictive biomarkers could aid in the identification of patients with the 

benefit of complete tumour debulking (63, 64). Currently, the benefits of radical 

upfront debulking surgery are being addressed in a large international Trial of Radical 

Upfront Surgical Therapy (TRUST) trial (65). On the other hand, systematic pelvic and 

paraaortic lymphadenectomy after complete debulking surgery was investigated in the 

LION trial and was reported to have no benefits for PFS and OS in patients (66). These 

findings have already been implemented in the treatment guidelines. 

The aggressive surgical approaches for metastatic EOC are unique; no other cancers 

have shown a similar advantage once the disease has spread. Surgical training and 

sufficient experience with advanced surgical procedures and handling of complications 

are a prerequisite for treating patients with EOC. Together with centralisation to 

specialised gynaeco-oncologic centres, improved outcome is the result (62, 67). 

Alternatively, for patients for whom optimal tumour resection is not an option either 

because of coexisting illnesses, age and performance status or the spread of the disease, 

NACT followed by interval debulking surgery can be offered (68). This management 

strategy has been shown to increase the rate of complete cytoreduction and to reduce 

morbidity. 

Fluorescent image-guided surgery (FIGS), a recently emerging surgical strategy, has 

been used to improve optimal tumour debulking intraoperatively (69). The first in-

human study was performed by van Dam et al., with folate conjugated to fluorescein 

isothiocyanate (FITC) as the tracer (70). The use of different fluorescent dye 

conjugated mAbs directed against different tumour-associated antigens is being tested 

(71). 
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Secondary debulking will probably be used more often in the future, as the randomised 

phase III multicentre studies DESKTOP III and SOC-1 have shown a substantial 

increase in PFS in properly selected patients for whom platinum still is an option (72-

74). The OS data from DESKTOP III was presented at ASCO2020 and they are also 

favourable (73).  The effect of further debulking attempts is still experimental and 

should only be offered to selective patients (75). Studies conducted in the late 1990s 

showed that surgery for platinum-resistant disease is usually not recommended (65). 

Palliative surgery is considered an option only when surgical intervention could aid in 

resolving gastrointestinal obstructions caused by ovarian cancer metastasis (76). 

Chemotherapy 

Except for patients with low-risk FIGO stage IA tumours, frontline adjuvant 

chemotherapy after debulking surgery with platinum-taxane regimens is offered and 

yields a response rate of > 80% with 40–60% complete responses. This finding is also 

supported by the results of clinical trials with improved OS and PFS rates (77). Based 

on the toxicity profile, since the mid-1980s the standard treatment regimen in Norway 

has included six cycles of paclitaxel (175 mg/m2) combined with carboplatin (AUC, 5 

or 6) every third week (53). On the other hand, NACT, which is offered primarily to 

inoperable patients, usually comprises 3 cycles of the same chemotherapy regimen 

followed by 3 treatment rounds after interval debulking surgery (78). 

Bevacizumab was introduced in the frontline setting more than 10 years ago for 

selected groups of patients. In Norway, its use is approved by the authorities for so-

called ‘high-risk’ patients for 18 months (7.5 mg/m2); complete tumour resection is not 

possible during PDS (residual disease  1cm), in patients with stage IV disease and in 

patients receiving NACT. Indications for use and the dosage administered differ in 

different parts of Europe (56, 79).  

PARPi is a relatively new group of drugs. Data from the SOLO-1 study evaluating the 

effect of the PARPi olaparib as a consolidation therapy as part of frontline therapy was 

impressive, showing an increase in PFS > 3 years when the treatment groups were 

compared (57), and as already mentioned the OS data is also promising (3). Based on 
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data presented in 2018 (57) the drug was approved for use in Norway, and BRCA 

carriers and women with somatic BRCA mutation are currently offered olaparib as a 

consolidation therapy for 2 years if they are responding to platinum as part of the first 

line treatment regimen. At present patients qualifying for both olaparib and 

bevacizumab are offered only olaparib, as the data from the PAOLA-1 study did not 

clearly show which patient group would benefit from the combination (80).  

Despite the various efforts to improve frontline and maintenance treatment, recurrence 

is common in HGSOC patients (80–90%). The traditional classification of relapsed 

patients has changed to women experiencing progression of disease within  6 months 

(previously referred to as ‘platinum-resistant relapse’), or who fail to respond at all to 

frontline treatment or relapse within 4–6 weeks (previously classified as ‘platinum-

refractory’) after completing a platinum-based regimen. As understanding of the 

disease is constantly improving, there exists today less rigid paradigm for recurrent 

ovarian cancer treatment than only a couple of years back. Patients who still have 

platinum as an option regularly receive carboplatin combined with pegylated liposomal 

doxorubicin (PLD), paclitaxel or gemcitabine, whereas those for whom platinum is not 

an option often receive one of the three combination drugs as a single agent therapy 

(58). Nevertheless, there is considerable emphasis on the categorisation of patients 

based on their clinical characteristics for better treatment outcomes. Mirza et al. and 

Glajzer et al. recently highlighted the importance of identifying treatment algorithms 

for improved patient selection with treatment benefit (81, 82). Targeted therapeutics in 

a recurrent set up has been shown to prolong PFS2 in both platinum-sensitive disease 

(PARPi: ARIEL3, SOLO-2; bevacizumab: OCEANS, GOG213) and platinum-

resistant disease (bevacizumab: AURELIA) (83-87). In Norway, bevacizumab is 

approved for use in patients experiencing recurrent disease and symptomatic large 

volumes of ascites and/or pleural effusions. Furthermore, PARPi are approved for use 

as consolidation therapy in patients with recurrence treated with a platinum-containing 

regimen who have responded to platinum until progression. Olaparib is approved for 

BRCA mutated patients (SOLO-2) as well as BRCA wild-type patients while niraparib 

is only approved for BRCA wild-type patients (NOVA trial)(85, 88). 
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In addition to extending chemotherapy-free intervals between successive lines of 

treatment in relapsed patients, there is a greater need to support conventional 

chemotherapy regimens with more new selective targeted therapies with lower 

cytotoxic profiles. 

Targeted therapy in use for HGSOC 

Since Hanahan and Weinberg’s landmark definition of the biological characteristics 

which enable tumour growth and metastatic dissemination as the ‘hallmarks of cancer’, 

in addition to a repertoire of recruited, apparently normal cells that contribute to the 

acquisition of hallmark traits by creating the "tumor microenvironment”, there have 

been increased efforts to identify a more selective treatment approach and therapeutic 

target identification (Fig. 5) (89, 90).  

 

Figure 5. Therapeutic targeting of the hallmarks of cancer (image adapted from 

Hanahan and Weinberg (89)). 
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Only drugs targeting the two hallmarks, angiogenesis (the VEGF-inhibitor 

bevacizumab) and genomic instability (the PARPi – olaparib, niraparib, rucaparib), are 

approved by the Food and Drug Administration (FDA) and/or the European Medicines 

Agency (EMA) for treating patients with EOC. 

Inhibition of angiogenesis 

Very often hypoxia-driven proangiogenic pathways are activated in HGSOC, with 

increased production of VEGF and other proangiogenic factors which promote 

formation of new blood vessels. Tumour angiogenesis is induced early in the process 

of tumour progression. The activated angiogenic switch then leads to 

neovascularisation, often giving rise to leaky vessels which provides access for the 

tumor cells to penetrate and metastasize to other parts of the body apart from supplying 

nutrients and oxygen to the tumours.  This results in deprived tumour perfusion, 

reduced drug diffusion and the formation of effusions  (89). Given the central 

importance of angiogenesis to the development of ovarian cancer, it was natural that 

this biological system was chosen as the point of attack for more targeted treatment of 

this disease (91). 

Bevacizumab (a humanised monoclonal antibody) was the first EMA-approved 

angiogenesis inhibitor (2011) for high-risk patients (Stage IIIC–IV) in frontline settings 

(GOG218 and ICON7); a year later it was approved for recurrent, platinum-sensitive 

disease (GOG213 and OCEANS) (79, 83, 84, 92). It was also specifically assessed in 

combination with weekly paclitaxel in recurrent platinum-resistant disease and was 

shown to have improved PFS but without prolonged OS (AURELIA) (86). As 

mentioned above, the use of bevacizumab in advanced-stage high-risk patients in the 

frontline setting and recurrent disease with large volumes of ascites and/or pleural 

effusions is the standard treatment in many countries, including Norway, due to its 

improvement of PFS and patients’ QoL (56, 79, 86). Despite these advantages, both 

the FDA and the EMA have approved the use of bevacizumab only once, either in the 

frontline or the recurrent setting. Based on the data from GOG218 trial, CD31 is 

suggested to be a predictive biomarker for bevacizumab therapy response (58, 93). 
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Interestingly, high concentrations of CD31+ vessels show a positive association with 

increased tumour infiltration of effector T cells (94). Several other anti-angiogenic 

agents, including thrombospondin, receptor tyrosine kinases (cediranib, pazopanib, 

nintedanib and angiopoietin) and trebananib have been developed and studied but have 

not shown relevant clinical efficacy (95-97). 

PARPi  

Approximately 50% of HGSOC patients have underlying HRR deficiencies. HRR 

deficiencies mainly arise following somatic or germline mutations in BRCA1 and 

BRCA2 genes, which are involved in maintenance of genomic stability and DNA 

damage repair (98). Loss of heterozygosity (LOH) due to BRCA1 hypermethylation 

and functional loss or gain of other genes (RAD51C, RAD51D, BRIP1, PTEN, ATM 

and ATR) involved in HRR are also reasons for HRR defects (99, 100). The proteins 

PARP1 and PARP2 are involved in single-strand breaks (SSB), which help to avoid 

double-strand breaks (DSB) during DNA replication. Inhibition of PARP1 leads to 

SSB repair failure, which in and of itself does not affect DSB repair; however, repeated 

SSBs have been shown to collapse replication forks, resulting in DSBs. Hence, if both 

PARP1 and BRCA proteins are deficient in the same cell, this combined effect results 

in chromosomal instability and even death, also known as ‘synthetic lethality’ (101). 

This favourable prognostic genomic instability is the foundation of the effectiveness of 

PARPi. PARP1 is the best-characterised PARP protein: Basically, PARPi traps 

PARP1, making HRR-deficient cells accumulate SSBs, which collapses replication 

forks, as mentioned above, resulting in DSBs and finally cell apoptosis. This ability to 

‘trap’ the PARP-DNA complex explains the different magnitudes of cytotoxicity 

exerted by the PARPi; of the five PARPi to date, talazoparib appears to be the most 

potent PARP trapper studied so far, although it is still not approved by either the FDA 

or the EMA for clinical use (102).  

Due to the exceptional effects shown in studies, both in the frontline and the recurrent 

setting in platinum-sensitive disease, in the last few years the EMA and the FDA have 

approved the use of many different PARP inhibitors. Olaparib was the first EMA- and 
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FDA-approved PARP-inhibitor for newly diagnosed EOC in BRCA mutation patients 

with advanced disease as maintenance therapy after finishing chemotherapy, based on 

the results from SOLO-1 (57). Different PARPis (olaparib, niraparib and rucaparib) 

have been approved to treat recurrent platinum-sensitive disease, based on data from 

promising studies (the SOLO-2, NOVA and ARIEL3 studies, respectively) (85, 88, 

103), and today more and more countries are allowing use of PARPi for the whole 

patient population with platinum-sensitive disease. In most studies, the gain in PFS for 

BRCA mutation patients, the gain in PFS for HRD patients and the gain in PFS for 

wild-type are comparable, but the drugs differ in their panels of side effects. Data from 

trials combining targeted therapies like the AVANOVA (bevacizumab + niraparib) and 

ICON9 (cediranib + olaparib) trials were encouraging, (104, 105). It is the hope that 

the increased in the platinum-free intervals will avoid development of platinum 

resistance in platinum-sensitive relapsed disease. More studies examining effects in 

patients for whom platinum is not an option are however necessary.  

The DNA damage response (DDR) constitutes a network of proteins which coordinate 

the cell-cycle progression with DNA repair to avoid DNA damage being passed 

permanently to daughter cells (106). Apart from ataxia-telangiectasia mutated (ATM), 

ATM- & Rad3-related (ATR) and DNA-dependent protein kinase catalytic subunit 

kinases (DNA-PKcs), are the key proteins that signal DNA damage to DNA repair 

pathways and cell-cycle checkpoints. There are around 450 genes coding for proteins 

involved in DDR (107-111). Currently, in addition to PARPi, the improvement in our 

understanding of DDR biology is enabling the exploitation of more DDR-targeting 

molecules (112).  

However, the microenvironment of the tumour cells, which is genetically more stable 

than the tumour cells themselves, is attractive as a point of attack for therapeutic 

intervention and is gaining momentum (see Section 1.1.5), which will allow more 

cancer hallmarks to be targeted (Fig. 5). 
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1.1.6 Biomarkers 

The Biomarkers Definitions Working Group defines a biomarker as ‘a characteristic 

that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention’ (113). As mentioned earlier, the hallmarks of cancer not only aid in 

understanding the complexity of the tumours but also give meaningful insights into 

identifying such characteristic biomarkers of the disease (89, 90). Biomarkers play a 

vital role in the diagnosis, prognosis and predictiveness of EOC. CA125, p53 and HE4 

are used as diagnostic biomarkers, respectively, to identify and assess the disease and 

its progression in EOC (114). Of the several predictive biomarkers, such as BRCAness, 

platinum sensitivity (response to PARPi) (100, 115), absence of CCNE1 amplification, 

immune status and age (chemotherapy response) (116), tumour T-cell infiltration, 

mutational burden and PD-L1 expression (117, 118), only a few are used in clinical 

settings. Prognostic biomarkers such as FIGO stage, tumour grade, degree of debulking 

surgery, performance status, and BRCA1/2 mutational status help avoiding 

overtreatment in patients. In addition to germline BRCA status, mutational signatures, 

including alterations in CHEK1/2, PALB2, RAD51C and other genes in the HRR 

pathway, have also proven to be sensitive biomarkers to PARPi (100, 115). The future 

awaits more defined panels of tumour biomarkers, including individualised molecular 

tumour profiling using techniques such as CyTOF and liquid biopsies with blood-borne 

cancer-related cell-free DNA and/or tumour-associated proteins as well as circulating 

tumour cells (CTC). 

1.2 Tumour microenvironment (TME) 

Current investigations of the 10 different traits which together comprise the hallmarks 

of cancer have demonstrated compelling evidence that these functional traits gained by 

the tumour cells (tumour cells, cancer stem cells) involve other cellular (mesothelial 

cells, adipocytes, stromal cells such as cancer-associated fibroblasts, pericytes, 

endothelial cells and immune cells) and non-cellular components (extracellular matrix 

components, growth factors, chemokines and cytokines) of their immediate 
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surroundings termed as the tumour microenvironment (TME) (Fig. 6) (89). Within this 

milieu, tumour-driven stimuli prompt cells to reprogram themselves into tumour-

supporting phenotypes, thereby creating a tumour-permissive environment; this plays 

a pivotal role in tumour formation and the progression and regulation of ascites 

production (119). Though, there is an ongoing discussion if tumor cells themselves are 

part of the TME, we have considered to include them as well. 

 

Figure 6. The tumour microenvironment (image adapted from Hanahan & 

Weinberg (89)) 

Similar to other solid tumours, there is an escalating appreciation of the critical role 

that TME plays in promoting and sustaining HGSOC growth, response to therapies, 

chemoresistance, recurrence and metastasis (2, 5, 120). Characteristics such as intra-

abdominal localisation, metastatic tropism, cellular plasticity, presence of a cancer 

stem cell niche (for further details, see Section 1.2.2) and genetic instability (see 

Section 1.1.2), govern the interplay between the different cellular compartments in the 

TME, which facilitates the inter- and intratumour molecular and phenotypic 

heterogeneity that characterise HGSOC (13, 28, 120-125). Signalling within the TME 

is achieved through cell-to-cell contact or the release of soluble factors such as 

cytokines and exosomes (120). 
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1.2.1 Constituents of the HGSOC TME 

HGSOC spreads primarily by transcoelomic dissemination through direct migration of 

ovarian cancer cells to the peritoneal cavity and omentum via the peritoneal fluid (126). 

However, recent studies indicate that the hematogenous route may also play a role 

(127). The disease remains confined most often to the abdominal cavity. Together, this 

results in an intra-abdominal milieu consisting of both the primary tumour, peritoneal 

implants, omental metastasis and ascitic fluid (a non-solid component). Cancer 

progression is majorly driven by this intra-abdominal tumour environment rather than 

the properties of the tumour itself and contributes predominantly to prognosis (128). 

Cellular decomposition of the HGSOC TME  

Ovarian TME comprises three major cellular compartments: (1) tumour cells (cancer 

cells, cancer stem cells); (2) stromal cells (cancer-associated fibroblasts, pericytes, 

endothelial cells); and (3) immune cells (T cells, MDSCs, dendritic cells, TAMs) and 

other non-cellular components (extracellular matrix components, growth factors, 

cytokines and chemokines) (Fig. 7). The different constituents have characteristic as 

well as overlapping functions (129). 
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Figure 7. Ovarian TME components and its characteristic functions (image 

adapted from Yang et al. (129)). 

1. Tumour cell compartment 

(a). Cancer cells 

HGSOC cancer cells lack genomic stability due to the presence of TP53 mutation, 

along with HRD in 50% tumours (see Section 1.1.2) (4, 26). It is the TP53 mutation 

that allows cancer cells to tolerate DNA repair deficiencies, copy number abnormalities 

and multiple large chromosomal structural variants without undergoing cell cycle arrest 

or apoptosis (130). The inherent plasticity of tumour cells which allow them to switch 

between epithelial and mesenchymal characteristics, combined with the unstable 

genetic status, as mentioned above, creates an overwhelming intra-tumoral 

heterogeneity which represents a distinct therapeutic challenge. The proinflammatory 

microenvironment not only helps these tumour cells to transform upon MET and 

further disseminate to form a primary tumour in the ovarian site, but also promotes 
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metastasis through EMT transition, along with the production of ascitic fluid and the 

development of chemoresistance (28, 120). Known cell surface markers expressed on 

the ovarian cancer cells include EpCAM, TAG72 and FOLR1 (131-133). 

(b). Cancer stem cells 

HGSOC is a stem cell-driven tumour type (134). However, the exact cell of origin 

remains elusive (135). It is widely believed that cancer cells and cancer stem cells 

(CSCs) maintain a dynamic equilibrium regulated by a cascade of signalling pathways 

which, when disturbed, facilitate the cancer cells gaining stem-like properties (136). 

CSCs are highly plastic, flexible and dynamic, with the ability to self-renew and 

differentiate into various cell types based on the cues of the TME. CSCs are potentially 

able to develop into an entire tumour from a single cell. These CSCs hold increased 

capacity to resist unfavourable biological conditions such as a low proliferation rate, 

upregulation of efflux pumps and detoxifying enzymes (134). Emerging evidence 

suggests that CSCs are responsible for tumour recurrence and drug-resistance (134, 

136, 137). 

According to the more recent described cellular plasticity model, tumour cells can 

switch between stem-cell like and differentiated states so that some differentiated non-

tumorigenic malignant cells can dedifferentiate into CSCs (also mentioned in section 

1.2.2 – The ovarian cancer stem cell niche) (138, 139). Considerable effort has been 

made to define and characterise these cells, as reviewed by Hatina et al. and Chaffer & 

Weinberg (134, 139). Known cell surface markers expressed on tumour-initiating 

cancer stem cells (CSCs) include CD44, CD133, CD24, CD144, CD117, EpCAM and 

ALDH1A1 (137).  

CD44+ cells possess a distinctive genetic profile in relation to chemoresistance and 

tumorigenicity and are actively involved in NFB activity, with the potential to 

promote a pro-inflammatory TME (140). CD133+ cells show higher tumorigenic 

capacity and increased chemoresistance. Through multiple signalling pathways, 

CD133 can also modulate the stemness and metastatic potential of a tumour (141, 142). 

Beyond being a putative CSC marker, CD24 is also associated with cell adhesion, 
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mediating attachment of tumour cells to fibronectin or collagen during metastatic 

dissemination (71, 143). CD24 has the ability to induce EMT via PI3K/AKT and 

MAPK pathways, supporting the possibility that it is a significant metastatic 

progression marker for poor clinical outcome (144, 145).  

CD117+ cells have self-renewal and differentiation capacity with high heterogeneity 

(146); they also promote chemoresistance and exhibit tumour-initiation through Wnt/β-

catenin-ATP-binding cassette G2 signalling (147). From a clinical perspective, high 

expression of CD117+ is correlated with poor PFS rate and possible peritoneal 

metastasis (148, 149). ALDH+ cells exhibit a functioning role in mediating drug 

resistance with improved DNA repair and increased drug efflux transporters (150, 151). 

Clinically, a higher percentage of ALDH+ cells is associated with poor outcomes (152), 

so a comprehensive approach to elucidate the complete spectrum of ovarian CSCs and 

its heterogeneity would be a way forward-an achievement which is potentially around 

the corner, given the recent advances in single-cell protein measurements (153). 

2. Stromal cell compartment 

(a). Endothelial cells  

Endothelial cells are cells lining blood and lymphatic vessels, representing the 

interspace for transendothelial migration of inflammatory cells into the surrounding 

tissue. They are known to express CD34, CD31 (also a predictive biomarker for 

bevacizumab therapy response), CD105 and CD146 (154-158), and can also function 

as semi-professional antigen presenting cells (154-158). Blood vessels play a crucial 

role in oxygen and nutrient supply (155). Angiogenesis is a complicated process 

involving angiogenic activators such as VEGF, PDGF, FGF-2, TGF and TGF, 

TNF, interleukin 8 (IL-8) and prostaglandin E2, along with angiogenic inhibitors such 

as angiopoietin (Angs), thrombospondin 1 (TSP-1), and endostatin (159, 160). 

Angiogenesis in tumours is a dysregulated process; the vessels are structurally 

abnormal with junctional defects, tortuous, dilated, hyperpermeable and poorly 

covered by surrounding cells with blood flow patchy perfusion (89, 155). Expression 

of VEGF indicates poor clinical outcomes; on the other hand, enhanced Angs 
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expression is associated with increased relapse and decreased survival rates (161-164). 

Multiple studies have as mentioned been undertaken targeting angiogenesis. High 

endothelial venules, together with recruited inflammatory cells from circulation, form 

the immune aggregates which support an adaptive anti-tumour immune response (129). 

(b). Cancer-associated fibroblasts 

Fibroblasts within the tumour milieu are known as cancer-associated fibroblasts 

(CAFs) and hold the ability to transdifferentiate from other cell types such as pericytes, 

epithelial cells and endothelial cells through exposure to VEGF, PDGF, TGF-, ROS 

and MMPs (165-167). CAFs express FAP and there are several subtypes of CAFs 

which perform multiple roles in the TME. CAFs can enhance tumour progression with 

high expression of CXCL14, an important tumour-growth-promoting factor (168). 

They are also responsible for ECM growth and remodelling, which contributes to 

desmoplasia and stromal stiffness, factors associated with poor prognosis (169-172). 

CAFs promote immune inhibition and angiogenesis. Givel et al. found that CAFs 

increase regulatory T cells’ (Tregs) infiltration of the tumour site, thus exerting a 

tumour suppression effect in the TME (172). They also accelerate recurrence and 

increase platinum resistance (171). On the whole, CAF and EMT contribute to the 

invasive and metastatic abilities of HGSOC and are associated with poor prognosis 

(171, 172).  

(c). Pericytes 

Pericytes are contractile cells lining microvessels and are known to express SMA 

(173). Major functions include regulation of endothelial cell proliferation, 

differentiation and microvascular permeability through paracrine regulators such as 

vasoactive agents and TGF- (173, 174). Pericytes may play a potent pro-

tumorigenic/pro-metastatic role in ovarian cancer progression and are associated with 

highly predictive relapse and mortality (175). 
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(d). Adipocytes and mesothelial cells 

A monolayer of mesothelial cells lining the peritoneum acts as a barrier and maintains 

peritoneal homeostasis, possessing characteristics of both epithelial and mesenchymal 

cells (176). Various factors such as fibronectin, ICAM-1, angiogenic and inflammatory 

mediators secreted into the ovarian TME by mesothelial cells enhance tissue stiffness 

and cellular adhesion (176, 177). The literature says, 86% of reactive mesothelial cells 

express N-cadherin and 93% of mesothelial cells express calretinin (178). On the other 

hand, the omentum is comprised mostly of adipocytes, which can alter lipid 

metabolism, thus increasing the fuel source for the rapid growth of ovarian tumour cells 

(for more details please refer to paragraph 1.2.2). In addition, senescent mesothelial 

cells promote invasion and migration by inducing production of angiogenic factors by 

ovarian tumour cells, whereas adipocytes foster metastasis via cytokine production 

(177, 179). 

3. Immune cell compartment 

(a). Tumour-associated macrophages (TAMs) 

Macrophages residing within the tumours are known as ‘TAMs’ and are the most 

abundant cell population present in tumour tissues (180). They can be divided 

prominently into anti-tumour M1 macrophages (CD86 and TNFα) and pro-tumour M2 

macrophages (CD163, CD204, CD206) (Fig. 7) (181-185). In EOC, TAMs express a 

predominantly M2 phenotype and are actively associated with tumour invasion, 

metastasis, angiogenesis and early recurrence (186-188). Firstly, by producing the 

chemokine CCL22, M2 macrophages can accelerate the immunosuppression of Treg 

cell transport to tumours and inhibit the proliferation of T cells (189). Secondly, they 

express the ligand receptors for PD-1 and CTLA-4 which, upon activation, regulate the 

cell cycle of T cells and inhibit its cytotoxic function (190). They can also inhibit the 

activation of T cells via the depletion of L-arginine (191). Apart from immune 

suppression, M2 macrophages are also involved in tissue repair, angiogenesis and ECM 

remodelling (192-196). They can reconstruct, regulate and degrade ECM and its 

components by secreting MMPs, cathepsins and serine proteases, which might aid 
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cancer cell migration, invasion and metastasis (194). A subtype of M2 macrophages 

which express TIE2, are known as TIE2 macrophages and recruited by CCL3, CCL5, 

CCL8 and TIE2-ligand Ang2: They are considered the most important factor in tumour 

vascularisation, because a deficiency of this phenotype leads to the restriction of the 

angiogenic switch (197, 198). TAMs have high plasticity and the simple dichotomy 

phenotyping of M1/M2 macrophages alone cannot explain the complexity of the TAM 

heterogeneity (199). In addition to inter-tumoral heterogeneity, recent studies have 

detailed the intra-tumoral heterogeneity of TAMs, wherein different microregions 

within the same tumour show varied levels of TAM infiltration, along with differential 

functional status in tumour progression level-dependant manner (200-205). Several 

ovarian studies have revealed that M1/M2 and M2/TAM ratio are positively associated 

with PFS and OS, although the overall TAM density has been shown to have no 

prognostic significance (200, 206, 207). 

(b). Granulocytes 

Neutrophils are a heterogenous group of cells majorly expressing CD66b, CD11b and 

CD16. They are majorly classified into two main functional groups, namely, antitumor 

(N1) and protumor (N2) subtypes (208). Neutrophils have a prime role in the TME, 

towards tumor initiation through alteration of extracellular matrix via secretion of 

certain molecules such as MMP-9 (209). In addition, they exhibit antitumor activity 

either by direct killing of tumor cells or through T-cell recruitment. In a recent EOC 

study, high neutrophil-to-lymphocyte ratio was associated with poor overall survival 

in some group of patients (210).  

Granulocytes encompasses the eosinophils, basophils and neutrophils. The role of 

granulocytes within the ovarian TME is not yet fully understood. Basophils influence 

several cell subsets including fibroblasts, monocytes, macrophages, T and B 

lymphocytes (211). Besides they indirectly effect the tumor growth with the production 

of VEGF-A (212). In general, EOC patients have elevated levels of basophils in their 

ascites compared to their blood level (213). Eosinophils on the other hand, are 

commonly seen in the TME, and are known to be associated with either poor or better 
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prognosis as presented in various cancer types (214). They promote T-cell 

proliferation, DC maturation and furthermore, regulate other granulocyte subsets in 

addition to mast cells (215, 216).   

(c). Dendritic cells 

There are two types of dendritic cells (DCs – CD11c+HLA-DR+). Conventional DCs 

(cDCs – CD1c+ or CD141+) which are involved in presenting antigens to CD4+ and 

CD8+ T cells via MHC II and MHC I respectively, which subsequently initiate series 

of T cell activities. Plasmacytoid DCs (pDCs – CD123+) produce IFNγ upon antigen 

stimulation, in addition to activation of lymphocytes and other myeloid cells (217, 

218). Apart from T cell activation, DCs play a crucial role in the augmentation of 

cytotoxic T cells (CD8+) in the TME. Upon antigen exposure, DCs mature, 

characterised by elevated levels of MHC membrane expression and co-stimulatory 

molecules (CD86, CD80, CD40) (219, 220). Immune modulating molecules in the 

TME such as IL-6, IL-10, and VEGF, tumour-derived soluble mediators and exosomes 

might cause DC dysfunction, leading to inhibition of DC maturation (221-223). 

Immature tolerogenic DCs promote immune tolerance and supress anti-tumour 

immunity via several mechanisms, some of which include low-level production of pro-

inflammatory cytokines and high levels of immune suppressive cytokines. They also 

harbour enzymes which negatively influence T cell effector functions, such as nitric 

oxide synthase (NOS) and IDO, which promote Treg differentiation, tumour 

angiogenesis and metastasis (224-227). Various studies have concluded that DCs are 

highly plastic, contributing to either anti-tumour or pro-tumour effects. They are 

functionally influenced by multiple factors, such as their location and interactions 

within the tumour, the percentage of tumour-to-stroma ratio and the developmental 

stage of the tumour (217, 228-230). 

(d). Myeloid-derived suppressor cells 

Myeloid-derived suppressor cells (MDSCs) co-express myeloid markers GR-1, CD33 

and CD11b and are of three phenotypes: PMN-MDSCs, M-MDSCs and a small group 

of progenitors and precursor cells involved in myeloid colony-forming activity (231, 
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232). Studies have confirmed that MDSCs promote tumour progression via various 

mechanisms, including the inhibition of immune cells (mainly T cells). MDSCs are 

involved in immune suppression via the following mechanisms: (1) acceleration of 

lymphocyte nutrient depletion; (2) disturbance of lymphocyte viability and trafficking; 

(3) promotion of Treg activation and expansion; and (4) stimulation to generate 

oxidative stress (232-237). Apart from immune suppression, MDSCs facilitate 

neovascularisation through hypoxia and activation of the STAT3 pathway, leading to 

secretion of factors which in turn stimulate invasion and metastasis by the production 

of MMPs (238, 239). Though the mechanisms are yet to be clarified, MDSCs exhibit 

differential functions and varied differentiation states based on the cues of its 

surrounding TME.  

(e). Lymphocytes  

Lymphocytes are an important part of the TME, comprising T helper cells (CD3+CD4+) 

– Th1 cells (antitumorigenic) and Th2 cells (protumorigenic), cytotoxic T cells 

(CD3+CD4+CD8+) and regulatory T cells (CD4+CD25+Foxp3+), NK T cells 

(CD3+CD56+ CD1d+) and B cells (CD20+) (240, 241). Upon antigen encounter, naïve 

T cells are activated and differentiate into specific subtypes based on the cytokine 

environment: Cytotoxic T cells produce cell lytic molecules such as granzymes, 

perforin and inflammatory cytokines to destroy pathogen-infected or malignant cells 

(242-244).  

Multiple studies have reported that CD8+ T cell infiltration is linked to increased PFS 

and OS and disease-specific survival, with the location of the TILs within the tumour 

being important for this prognostic effect (245-252). CD103 has now become a definite 

marker for antigen-encountered tissue resident T cells (253). PD-1 and LAG-3 are co-

expressed on exhausted T cells, and there is compelling evidence that these checkpoint 

inhibitors are highly expressed in tissue-resident (CD103+CD8+) cytotoxic T cells, 

making them first targets for anti-PD-1 therapy (254, 255). In contrast, Tregs play a 

crucial role in immune suppression via four mechanisms: (1) secretion of 

immunosuppressive molecules, including VEGF, IL-10, IL-35 and TGF-; (2) Tregs 
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induce apoptosis of effector T cells with secretion of perforin and granzyme B; (3) 

Tregs regulate metabolic disruption through multiple mechanisms; and (4) modulation 

of dendritic cell function and maturation (256, 257). Treg cell infiltration was linked to 

decreased survival and a high death hazard, also supported by our own previous paper, 

highlighting the presence and accumulation of activated regulatory T cells in the 

ovarian TME (258). 

B lymphocytes promote tumour progression by regulating the Th1:Th2 ratio and 

producing protumorigenic cytokines. High expressions of CD20 and CD138 are 

associated with advanced tumour grade in ovarian patients (259). Regulatory B cells, 

known to express CD80 and CD86, contribute to immune suppression via IL-10 

production, which suppresses IFNγ production of cytotoxic T cells (260). On the other 

hand, effector B cells present antigens and promote T-cell responses (261). NK cells 

have multiple functions as they kill targets and trigger inflammation through antigen-

independent pathways (262-264). Although the presence of NK cells alone have 

contrasting prognostic values in EOC, their co-infiltration with cytotoxic CD8+ T cells 

show a strong association with patient survival (253, 265). Jiménez-Sánchez et al 

recently demonstrated increased NK cell infiltration and expansion of T-cells following 

neoadjuvant chemotherapy (266). NKT cells share characteristics of both the innate 

and adaptive arms of the immune system, and are known to express CD161. These cells 

are substantially present in the thymus, liver, spleen and bone marrow, compared to 

peripheral blood (267). NK T cells are unlike common NK cells in that they recognise 

glycolipid antigens and are thus important mediators of antitumour immune responses 

(268).  

Correlation of T lymphocytes and clinical outcomes has long been studied, since Zhang 

et al. identified a positive association between T-cell infiltration and survival rate (269). 

Based on the degree of immune infiltration in tumours, primarily based on CD3 and 

CD8 T cell populations, tumours could be classified in an immune-based context as 

‘hot’ (highly infiltrated), ‘altered – immunosuppressed and excluded’ (intermediate 

infiltration) and ‘cold’ (non-infiltrated) tumours (246, 270). For many tumours, PD-L1 

expression (>1%) is an important parameter for response or indicator of immune 
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checkpoint blockade treatment (271). However, this has not been the case for EOC 

(JAVELIN trial (272) and IMagyn050/GOG 3015 / ENGOT-0V39 trial (273). The 

roles of tumour microsatellite instability have not yet been systematically examined. 

Still the professional communities, illustrated by the number of ongoing studies, 

consider EOC as a potential candidate for checkpoint blockade therapy despite its low 

success rate.  The focus is however changing to combination regimens, including both 

angiogenesis inhibition and / or PARP inhibition (ATENA, Ov-43, FIRST, 

JAVELIN100 PARP and DUO-O).  The biological rational is clear: Anti-angiogenesis 

enhances HR deficiency and makes cells more susceptible to PARP inhibition as well 

as modifying the immunophenotype, while DNA-damaging agents have the potential 

to enhance the response to immunotherapy by promoting neoantigen release, increase 

the tumor mutational burden and enhance PD-L1 expression (274).  

4. Non-cellular components of the ovarian TME 

The extracellular matrix (ECM) is comprised of several biochemically distinct 

components, including proteins, polysaccharides, proteoglycans and glycoproteins 

with different biochemical and physical properties (275). Abnormal changes in the 

composition and amount of ECM significantly alter these properties with malignant 

transformation, potentiating oncogenic effects on several growth factor signalling 

pathways (178, 276). For instance, when collagen deposition increases, there is a 

positive regulation of integrin signalling, thereby promoting cell proliferation and 

survival (277). Low pH and hypoxia naturally associate TME with the Warburg effect, 

whereby tumour cells sustain a high rate of aerobic glycolysis. Downregulation of E-

cadherin and positive regulation of TWIST1 and ß-catenin also facilitates metastatic 

dissemination via basement membrane with access to neovasculature (276, 278). 

Several other molecules have also been identified in EOC stroma, such as MMPs, 

cytokines (the respective roles of which are explained under different cell subtypes 

above), and hyaluronic acid (279-282). Apart from direct remodelling of the ECM, 

inflammation associated with EOC also promotes a desmoplastic stromal response 

(283). There is also significant consensus that endometriosis-associated inflammation 

and fibrosis in the peritoneum and ovaries increase the risk of EOC (284).  
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1.2.2 The uniqueness and plasticity of HGSOC TME 

In addition, to the two main conventional models (stochastic or hierarchical model) 

proposed to explain the intra-tumoral heterogeneity of cell subsets, a third model 

named the plasticity model is conceptualized to present a more flexible understanding 

of the tumoral stem cell niche (285). 

The ovarian cancer stem cell niche 

There is available evidence to support the hypothesis that the stem cell niche of ovarian 

CSCs plays an important role in initiation of the tumour, involving only a few tumour-

initiating cells (CSCs) (123). The presence of a cancer-prone stem cell niche in the 

mesothelium and the oviductal epithelium supports the idea that the fallopian tube 

epithelium could play a vital role in maintaining the cancer stem cell niche (134, 286-

290). So far little is known about the niche in non-metastatic lesions. Though CSCs 

comprise only a very small proportion of primary tumours, they are enriched in 

recurrent tumours and are especially chemoresistant, proving their inherent ability to 

expand even under unfavourable biological conditions (134, 291-293). CSCs are highly 

dynamic, heterogenous and influenced based on the cues of the surrounding pro-

inflammatory ovarian TME (28).  

The interaction of the stem cell niche and surrounding TME is known to be 

bidirectional, as it allows the ovarian CSCs to maintain the stemness of its niche as 

well while also supporting tumour progression by differentiating the CSCs to other cell 

types as needed by the TME (294-298). To mediate the self-renewal of the ovarian 

CSCs, T cells and M2 macrophages secrete IL-17 (299). CAFs influence the self-

renewing capacity of ovarian CSCs through FGF, VEGF and IGF secretion (300-302). 

Other vital cues for tumorigenesis include the production of IL-6 by adipocytes and 

TGF- by mesenchymal stem cells (303). Ovarian CSCs CD133+ induces its own self-

renewal by autocrine activation of IL-23 secretion, whereas CD44+ CSCs induces its 

own differentiation to endothelial cells by CCL5 secretion. Ovarian CSCs initiates 

differentiation of monocytes to M2 macrophages and initiates tumorigenesis by 
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secreting CCL5 (CD133+) and extracellular vesicles (EVs) (304, 305). The role of 

microRNAs and EVs in gene regulation and cell communication between ovarian CSC 

niche and tumour stroma from ongoing studies ensures its important role in the self-

renewal of ovarian CSCs (123). 

Organoid technology has already been explored as a promising platform for modelling 

tumorigenesis (306-308). Controlled growth conditions of 3D organoids has greatly 

benefited our understanding of the crosstalk between a stem cell niche and its factors 

in regulating stem cell lineage selection and differentiation (309). Eradication of CSCs 

is increasingly seen to be a potential therapeutic avenue for improving survival rates in 

EOC patients. Even though CSCs are currently being identified and isolated with 

several phenotypic markers, their functional and phenotypic heterogeneity needs 

further dissection to understand their complexity the at intra-tumour level and to 

eradicate them effectively (310).  

Ovarian TME plasticity with disease progression 

As Stephan Paget proposed in his ‘seed and soil hypothesis’, the primary tumour and 

the metastatic pattern of spread is not random; rather, it is an interplay between the 

‘seed’ (specific cancer cells) and the ‘soil’ (particular organ microenvironments) (127). 

Therefore, the crosstalk between the cancer cells and the surrounding TME forms the 

primary tumour; the dynamic interaction of the stromal cells with the tumour cells 

within the orchestrated TME via paracrine signalling networks has the ability to 

promote progression of not only the primary tumour but also the metastasis (28, 129, 

294-298). 

In general, cancer TME is in many ways consistent with TME formed during normal 

wound-healing processes but resemble wounds which fail to heal, creating a state of 

chronic inflammation without any self-limitations or regulations. A similar chronic 

inflammatory microenvironment is created in ovarian cancer during the ovulation 

process by repeated secretion of ROS, chemokines, growth factors and cytokines by 

the ovaries and recruited immune cells (Fig. 8) (14). The cellular and non-cellular 

components of the inflammatory TME, along with the prevailing cancer stem cell 
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niche, potentiates the initiation of EOC from a minor fraction of tumour-initiating 

CSCs featuring characteristics of both epithelial and mesenchymal stem cells (123, 

310). During tumour initiation, the critical epithelial marker Pax2 (paired box 2) is 

repressed in oviductal cells, followed by SCOUTs and finally STIC formation (detailed 

pathogenesis presented in Section 1.1.2). This whole process is orchestrated by EMT 

(311-314).  

 

Figure 8. Changes within the TME upon tumour progression (image adapted 

from Hanahan & Weinberg (89)) 

Generally speaking, cellular plasticity is the ability of cells to differentiate into a new 

cell phenotype with other identical characteristics. ‘Cadherin switching’ induces the 

epithelial cells to undergo EMT, lose E-cadherin-mediated cell-cell interactions and 

upregulate other cadherins, such as N-cadherin and P-cadherin (19, 315, 316). These 

cells then gain a more invasive phenotype resembling fibroblasts and proliferate (Fig. 

8) (89). The EMT switch allows these tumour cells to survive under crowded hypoxic 

conditions and to interact with neighbouring stromal cells through mesenchymal 

signalling. Induction of matrix metalloproteinase (MMP) -9 cleaves the ectodomain of 

E-cadherin, which loosens the cell-cell adhesion and allows the cells to shed as 

spheroids or single cells into ascites (22, 23, 317). Proteolytic activity also plays an 

important role in the initial detachment of the spheroids from the ovarian surface. 

Secretion of VEGF by EOC cells increases vascular permeability and promotes ascites 

formation. Malignant ascitic fluid is rich in CSCs, extracellular vesicles, tumour-
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promoting soluble factors, cancer-associated immune cells such as T-cells and TAMs, 

CAFs, myeloid cells and activating mesothelial cells, creating a tumour-promoting 

microenvironment (317). As mentioned above in Section 1.1.2, ascites is considered a 

prerequisite for the characteristic ovarian transcoelomic dissemination of primary 

tumour cells or cell aggregates to the omentum and peritoneum (318).  

Before homing to the peritoneum and omentum, the disseminated tumour cells or cell 

clusters interact primarily is with the mesothelial cells covering the basement 

membrane. The core of the spheroids maintains a mesenchymal phenotype, expressing 

Sip1, a well-known regulator of E-cadherin and MMP-2. E-cadherin loss leads to 

transcriptional up-regulation of 51-integrin, receptor of fibronectin, facilitating the 

adhesion of these cell aggregates to the secondary site. MMP-2 potentiates the fast 

disaggregation of spheroids on adhesion to mesothelial surface layer (319, 320). The 

binding of tumour cells is not only coordinated by integrins but also by CD44 (321-

324). The omentum, the large fat pad covering the bowel and abdominal cavities, is the 

preferred site of metastasis in ovarian cancer and represents a central player in creating 

a unique suitable metastatic niche in the intraperitoneal cavity (325). Successful 

colonisation of the micro- and macro-metastatic tumour requires the shedding of 

mesenchymal properties (partially/completely) via MET (Fig. 8) (326-329). Apart 

from the characteristic transcoelomic spread, tumour cells preferentially home to 

‘milky spots’ in the omentum through haematogenous dissemination, prior to spreading 

into the ‘non-milky spot’ areas of the omentum and peritoneal cavity. These milky 

spots are often highly vascularised regions with aggregates of immune cells and are 

major reservoirs of intraperitoneal macrophages (330-334).  

The omentum harbours a variety of stromal cells, including fibroblasts, myeloid cells, 

adipocytes and macrophages, which, when malignant tumour cells start to grow, are 

converted into distinct cancer-associated stromal cells by cancer-derived mediators 

(294, 335). Ovarian cancer cells polarise TAMs into M2 phenotype, which are involved 

in the establishment of inflammatory and immunosuppressive TME (336, 337). 

Omental adipocytes produce chemokines and cytokines such as IL-6, IL-8, MCP-1 and 

adiponectin, which promotes tumour growth and omental metastases (186). They also 
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activate p38 and STAT3 pathways in order to create an ideal TME for sustained ovarian 

cancer cell growth (338). Normal cells rely on the tricarboxylic acid (TCA) cycle and 

oxidative phosphorylation (OXPHOS) as their major sources of energy. In contrast, 

tumour cells go on a glycolytic switch due to the Warburg effect, which is mainly 

promoted by oncogenes, to meet their enhanced energy requirements. Tumour cells 

adapt to lipid, amino acid, fatty acid (FA) and cholesterol metabolism to create 

macromolecules biosynthesis for anabolic processes. TME-induced metabolic 

reprogramming also results in increased OXPHOS with elevated glutamate and fatty 

acid production (121, 339-341).  

1.2.3 HGSOC TME heterogeneity at the multiscale level and its 

clinical impact  

Over the years many researchers have tried to characterise and understand the 

heterogeneity of HGSOC TME (see Section 1.3). Apart from various cell subtypes, 

cellular states and interactions, HGSOC is, as already mentioned, characterised by 

overwhelming inter- and intra-tumour molecular and phenotypic heterogeneity, which 

are governed by the presence of genetic instability (Section 1.1.2), a cancer stem cell 

niche and the cellular plasticity of the different cell types within the TME (explained 

in Sections 1.2.1–2) (28, 123, 129). 

Landmark publications exemplifying the ovarian intertumor heterogeneity (between 

patients) include the TCGA study, which identified four prominent molecular tumour 

subtypes (immunoreactive, proliferative, differentiated and mesenchymal) based on 

promotor methylation, and concluded that the mesenchymal molecular subtype was 

associated with the worst OS and the immunoreactive subtype was positively 

associated with OS (25). Similar findings have been presented based on unsupervised 

hierarchically clustered gene expression data by Tothill et al. in 2008 (33). However, 

as mentioned below in Section 1.3.2, Geistlinger et al. recently concluded that the 

notion of individual subtypes does not realistically project the genomic complexity and 

heterogeneity observed in HGSOC, highlighting its ambiguity not just in bulk tumours 

but even at the cellular level. Instead, they specify that most HGSOC tumours are 
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polyclonal, where a single tumour consists of a heterogenous group of distinct cancer 

genotypes arising from varied subclones. They also proposed a model based on their 

observations where the differentiated and proliferative subtypes are placed at opposite 

ends of the tumour development timeline. Subtype-associated DNA alterations tend to 

occur subclonally, merely attributing the higher ploidy and subclonality of the 

proliferative subtype tumours rather than supporting the existence of subclones with 

several well-defined subtypes (122).  

The tumor milieu communicates important cues that induces inherent plasticity to the 

neighbouring cells which gives them the ability to differentiate in a tumour progression 

level-dependent manner. This feature, coupled with unstable genetic status, creates the 

overwhelming intratumoural heterogeneity and creates also a therapeutic challenge 

(28). For example, recent studies have shed light on the intratumor heterogeneity and 

the infiltrated T cell interactions (Section 1.2.1). One study, highlighted the presence 

of simultaneous tumour progression and metastases regression comprising T cell 

infiltration with oligoclonal expansion of certain subtypes (2). Tumours with high 

tumour heterogeneity increases the probability of selection of subclones which could 

escape the immune system known as immune cell exclusion. In addition, some cells 

within a tumour might display metastatic potential by acquiring additional mutations, 

evolving independently from the primary clone and adapting to the surrounding 

environment. This demonstrates that a single biopsy might not be representative of the 

entire tumour and that metastasis may harbour mutations which are not present in the 

initial tumour, and vice versa (2, 266). Therefore, better understanding of inter- and 

intra-tumoral phenotypic heterogeneity, along with the driving forces of TME 

heterogeneity accounting for such variations, are critical aims from basic and clinical 

perspectives. We hope the focus of this thesis will at least in part fulfil the aim of 

unravelling the complex heterogeneity of HGSOC to a new level of detail. 

1.2.4 Targeting the ovarian TME 

The anti-angiogenic agent bevacizumab is the only drug which targets the ovarian TME 

and has been approved in Europe for EOC (79, 83, 84, 92). Several ovarian TME-
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targeting drugs are currently being tested in early phase trials as well as in randomised 

phase II and III studies (129). We can categorise these drugs into different major 

therapy groups, such as anti-angiogenesis therapy (342, 343), immunotherapy 

(adoptive cell transfer, or ACT), chimeric antigen receptor (CARs) cells, oncolytic 

virotherapies (OVs), DC-based vaccines (344), co-stimulatory mAbs (such as anti-

CD137) (345), checkpoint inhibitors mAbs (anti-PDL1 and IDO inhibitors) (346-348) 

and CAF targeted therapy (349-351). Together with PARP inhibitors (57, 85, 88, 103) 

and drugs which target DNA repair and DNA damage responses (DDR) (352), TME-

targeting drugs will be part of the backbone of future personalized therapy for EOC. 

This means that drugs which target hallmarks such as tumour-promoting inflammation, 

avoidance of immune destruction and invasion and metastasis formation (see Section 

1.1.5 and Fig. 5) will be introduced.  

1.3 Advancement of TME characterisation tools with 

emphasis on EOC 

Given the better understanding of the complex composition of the ovarian cancer TME 

(see Section 1.2) achieved in recent years, it has become evident that the study of EOC 

tumours must encompass the dynamic interactions between the constituents of the 

TME to capture more aspects for successful clinical management of the disease (89). 

The study of HGSOC is even more complicated given the overwhelming tumour 

heterogeneity which can occur at different levels, intratumorally, between tumour 

lesions and across patients (intertumoral), along with the inherent plasticity of the 

cancer cells themselves (28). Characterisation techniques such as 

immunohistochemical staining, flow cytometry, ‘-omic’ techniques (genomics, 

proteomics, transcriptomics), and the newly emerging tools for single-cell profiling, 

such as single-cell RNA sequencing (scRNA-seq), mass cytometry by time-of-flight 

(CyTOF) and imaging mass cytometry, are playing a critical role in resolving the 

above-mentioned complexity, identifying predictive biomarkers and the selection of 

patients for successful individualised treatment of HGSOC.  
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1.3.1 Advances in single-cell protein measurements 

For decades flow cytometry has been the preferred method of analysing high-

throughput protein expression in single cells in ovarian cancer: Fluorescent dyes are 

used and the fluorescence emission is registered by photomultiplier tubes. This 

technique has thus been paramount in characterising cell phenotypes, revealing certain 

subsets which were not explored previously, detecting DNA and RNA content, cell 

cycle stage, activation of cellular pathways and even isolation of functionally distinct 

cell subsets to characterise of tumours (353). 

Numerous flow cytometric ovarian studies have been carried out in the past decades, 

ranging from simple to complex multi-colour flow cytometric panels. Lee et al. 

developed a simple flow cytometric assay which used staining for γH2AX and MRE11 

as surrogate markers in PBMCs to predict the therapy response in ovarian patients for 

PARPi (354). In another study conducted by our own group, we utilised a complex 

multi-colour flow cytometry panel, demonstrating an accumulation of Tregs, CD4+ and 

CD8+ T cells in ascitic fluid from ovarian patients (258). 

Although in general most studies use up to 10 parameters, recent developments in 

spectral flow cytometry have enabled simultaneous detection of up to 32 channels in 

one experiment with the ability to measure the full spectra of every cell which are not 

mixed by the autofluorescence spectrum or the reference spectra of the fluorescent dyes 

(355). However, designing multiparameter flow cytometry panels is a challenging and 

laborious task due to the broad emission spectra of the fluorescent dyes. In addition, 

the number of markers which could be simultaneously assayed was initially limited to 

around 14 markers, with most studies so far focusing on in-depth analysis of specific 

cellular lineages instead of a broader system-wide approach. 

Nevertheless, with the advent of mass cytometry (CyTOF) in 2009, the limitation of 

spectral overlap was overcome by the introduction of metal-isotope-conjugated 

antibodies to detect antigens. The metal isotopes attached to each cell are distinctive 

by mass and are quantified by a quadrupole time-of-flight spectrometer. Theoretically, 

up to 100 parameters per cell can be ideally measured, but current chemical methods 
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limit its use up to 40–50 parameters per cell at one given time (153). Based on the scope 

of question and intent in study analysis specific computational tools could be selected. 

Aim of the study dictates parameters measured such as abundance, expression levels, 

cellular identity and population structure (356). Current single-cell computational tools 

available for extensive mass cytometry data analysis include: (1) unsupervised 

clustering-based algorithms such as Phenograph (357), SPADE (358) and FlowSOM 

(359); (2) non-linear dimensionality reduction-based algorithms such as t-SNE (360); 

and (3) the recently improved hierarchical approach of the t-SNE dimensionality-

reduction-based technique called HSNE (361). Uniform manifold approximation and 

projection (UMAP) is the most recent single cell analysis-based dimensionality 

reduction tool introduced (362). 

Mass cytometry has expanded the limit of single cell data measurement in an individual 

experiment, making it highly suitable for system-wide analysis at single cell resolution, 

such as investigating cellular phenotypes in cancer microenvironments. Several studies 

have applied mass cytometry in phenotyping immune cell profiles and monitoring their 

changes upon treatment in peripheral blood and different tissue types from patients 

with renal cancer (363), breast cancer (364), lung cancer (365-367), glioma (368, 369), 

melanoma (370-374), liver cancer (375, 376), myeloma (377-380) and colorectal 

cancer (381-383), among others. Since the advent of mass cytometry, only few studies 

on ovarian cancer have been published. Gonzalez et al. included a mass cytometry 

panel of 41 antibodies, of which four antibodies were used to manually gate viable 

tumour cells (excluding stromal, immune and blood vessel cells), while the rest of the 

panel was dedicated to interrogate HGSOC tumour biology (384). In the other study, 

Toker et al. used a 35-marker panel with an exclusive focus on the different subsets of 

T cells in the ovarian TME (385). Another recent study, was from Kverneland and 

team, demonstrating the benefit of adoptive cell therapy combined with immune 

checkpoints in ovarian carcinoma (386). The most recent study, by Casado and 

colleagues, presented an CyTOF analysis workflow named “Cyto” for interactive 

analysis of large-scale cytometry data. They demonstrated reliable delineation of 

immune and tumor subpopulations within the two evaluated datasets, which included 

a HGSOC dataset as well (387).  
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To date, most mass cytometry studies have focused primarily on surface and 

intracellular cellular markers, but the technology can also be utilised to evaluate cell 

signalling processes by analysing protein phosphorylation (388). The number of 

potential cell phenotypes also increases exponentially with the rise in the number of 

antibodies being simultaneously measured, resulting from the combination of different 

markers used, making multidimensional analysis a key possibility in this technique. It 

thus renders visible the phenotypic heterogeneity of the tumours and optimises 

therapeutic targeting of selective patient groups in clinical settings. For example, in a 

recent study on dysproteinaemia patients, a 33-marker CyTOF panel was used to 

characterise the tumour immune microenvironment (TiME) at diagnosis and after 

standard frontline therapies. They identified novel subsets unique to the TiME which 

may play a role in tumour immune escape and immunosurveillance (389). Another 

study, this one focused on the breast tumour microenvironment, revealed important 

implications for characterising tumour-infiltrating immune cells (390). However, the 

data analysis of complex mass cytometry datasets remains challenging, as traditional 

flow cytometry manual gating strategies are not sufficient to capture the phenotypic 

differences; more importantly, finding clinically relevant findings in such system-wide 

analysis datasets is not easy and needs further interdisciplinary expertise in making 

meaningful interpretations. 

1.3.2 The ‘-omic’ techniques 

Next-generation sequencing (NGS) of DNA and RNA allows for the reconstruction of 

‘average’ genomes and ‘average’ transcriptomes, which can then be resolved using 

bioinformatic algorithms to determine the composition of tumour microenvironments 

or to perform clonal evolution analysis. NGS findings have revolutionised cancer 

biology studies by generating high-throughput data, as the individual DNA and RNA 

molecules are represented here as sequencing reads, thus allowing the retention of 

information about phenotypes, genotypes, sub-clonal alterations and cellular states 

(391-393).  
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Recent major findings obtained using ‘-omics’ approaches (transcriptomics, 

proteomics and genomics) have unravelled the complexity and heterogeneity of 

ovarian tumours (for more details on tumour heterogeneity, see Section 1.2.4), as 

illustrated in Figure 9 (2, 394-397). The illustration lists important cues for exploring 

treatment targets and designing novel biomarkers, as well as correlations between 

therapeutic regimens and ovarian TME profiles, revealing implications for precise 

patient selection (121, 398-404). 

 

Figure 9. Recent molecular findings of the ovarian TME from the ‘-omics’ 

techniques (image adapted from Yang et al. (129)) 

Traditionally, molecular profiling has relied on analysis of bulk cell populations, but 

single-cell DNA- and RNA-sequencing have recently emerged as powerful tools for a 

more unbiased and systematic characterisation of cells in ovarian tumours. One good 

example is the recent publication by Geistlinger et al., who discussed the ambiguity of 

the discrete subtype classification observed in the landmark TCGA study (122). To 
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date, most high-throughput studies have focused on DNA, RNA and protein 

expression, but a number of recent studies focused on the epigenetic regulation of gene 

expression at the single-cell level, using developing techniques such as ATAC-seq 

(405), bisulphite sequencing (406), ChIC-sequencing (407) and chromosome 

conformation capture (3C) (408). Although such detailed genetic decomposition of 

tumours enables the rationalisation of targeted cancer therapies, there are drawbacks to 

single-cell sequencing methods, including non-uniform coverage and artefacts 

introduced during genomic amplification, all of which contribute to a high rate of false 

positive and false negative findings (409). The throughput is also limited by available 

sequencing depth, protocol complexity and cost, which can together affect the analysis 

pipeline downstream and thus the inference of cellular interactions. 

1.3.3 Spatial profiling of patient TMEs: The Future?  

Immunohistochemical staining (IHC) is the conventional method used to evaluate the 

morphology of ovarian tissues and localise specific antigens using light microscopy. 

IHC is a valuable tool for characterising, identifying and visualising ovarian cancer 

biological processes, and it is thus useful in ovarian tumour biology research and 

clinical diagnostics (410-416). Zhang et al. produced an important IHC study in ovarian 

cancer in 2003: They identified as already mentioned a positive association between 

the infiltration and presence of CD3+/CD8+ tumour-infiltrating lymphocytes (TILs) and 

improved clinical outcomes (269).  

Most single-cell technologies, such as flow cytometry and mass cytometry, require 

tissue dissociation in order to measure single cells; however, these dissociation 

techniques, both mechanical and enzymatic, might cause loss of certain cell surface 

markers. Furthermore, the cellular dissociation of the sample degrades the spatial 

resolution of the sample, so traditional IHC- and immunofluorescence-based methods 

are powerful techniques for obtaining spatial information for the biological samples of 

interest. However, in immunohistochemistry, a limited number of markers which can 

be captured on a slide simultaneously is considered to be an important limitation (417).  
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Recent technological advancements, such as imaging mass cytometry (IMC) (418) and 

multiplexed ion beam imaging by time-of-flight (MIBI-TOF) (419) have greatly 

influenced and expanded the number of markers which could be used on a slide at a 

given time. Both imaging approaches use the traditional IHC workflow, but they also 

use metal-isotope-conjugated antibodies, which can be detected through a time-of-

flight mass spectrometer. Both IMC and MIBI-TOF allow for the characterisation of 

inter- and intratumoural phenotypic heterogeneity, with spatial resolution at the single-

cell level. IMC is now being applied in the study of tumour microenvironment and its 

heterogeneity in several types of cancer, such as pancreatic cancer (420), breast cancer 

(421, 422) and colorectal cancer (423). Several computational tools have been 

developed to analyse the spatially resolved multiplexed tissue arrangements, including 

ImaCytE (424) and HistoCAT (425). These tools apply cell segmentation masks to 

extract single-cell data from images using a combination of two computer programs, 

CellProfiler (426) and Ilastik (427). The extracted single-cell data is further used to 

assess spatial localisation and cellular interactions with dimensionality reduction tools 

such as t-SNE. 

IMC is a relatively new technique, and we have only been able to identify a few 

abstracts, including the ones presented recently at the SGO 2021 meeting, and one 

paper that focused on EOC profiling using IMC (3, 428). More recently, a modified 

version of our ovarian mass cytometry panel presented in Paper I has been transferred 

to the HyperionTM Imaging System for ovarian tissue section analysis (unpublished 

results). IMC can be applied to both snap-frozen and FFPE samples, which are 

conventional methods of tissue storage in clinical repositories. Currently IMC enables 

simultaneous imaging of up to 40 proteins with a subcellular resolution of 1μm. 

Nevertheless, such high-throughput imaging entails the limitation of a relatively long 

imaging time of 2 h per field of 1mm2 (429). Though IMC resolves certain issues that 

we encounter with single cell suspension samples however, it raises new challenges in 

visualising 40 markers simultaneously, and prior knowledge is needed regarding which 

cell phenotypes could be present and what their physical relationships could be. 
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The practice of integrating multiple datasets of individual tissue ranging from single-

cell decomposition to spatial resolution (367, 382, 383) is growing, which leads us to 

expect that in the coming years such integrative approaches will improve insights into 

how the various components of the TME interact in tissues. 
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2. Aims of the study 

2.1 Background 

Over the last three decades, the survival parameters and quality of life for patients with 

HGSOC have improved; however, the five-year survival rate is still low. The severity 

is due to the high frequency of late-stage diagnoses, the development of 

chemoresistance, and tumour evasion of host immune responses (50, 55, 430, 431). 

HGSOC is characterized by a unique intra-abdominal milieu consisting of both the 

primary tumour, peritoneal implants, omental metastasis, and ascitic fluid, which 

greatly influences the therapy response rate (119, 432). In line with other cancers, there 

has been an exponential growth of molecular characteristic HGSOC data recently, and 

the identification of HRD and replication stress in tumour cells have resulted in the 

inclusion of PARP inhibitors as consolidation therapy in first line treatment (3). This 

is believed, as mentioned, to result in improved overall survival. Further progress will 

necessitate reassessment, and hence a roadmap for research priorities has been outlined 

(4). Over the last years, it has also become increasingly clear that, in addition to the 

features of neoplastic cells, the composition of the heterogenous HGSOC TME is 

important for biology, prognosis, and treatment selection. Further progress in treatment 

responses and outcome parameters will necessitate a better understanding of the 

biological complexity within the TME. Multiparametric mass cytometry analysis 

allows for the simultaneous detection of more than 40 parameters and is highly suitable 

for such a system-wide analysis (153). 

2.2 General aim 

Cytometry by time-of-flight (CyTOF) multiplexed imaging, an advanced single-cell 

proteomics methodology, enables the multi-dimensional phenotypic categorization of 

single cells and the characterization of the TME composition. The main aim of this 

PhD project is to develop novel HGSOC mass cytometry panels and, with the 

application of emerging bioinformatic tools, to excavate the TME and detail its inter-
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compartmentalized reciprocity with the aim of identifying biomarker signatures for the 

biomarker-driven selection of patients to improve therapy response and survival rates. 

2.3 Specific objectives 

1. To develop a HGSOC mass cytometry panel for in-depth characterisation and to 

evaluate the influence of tumour dissociation methods on the single-cell profiling 

results (Paper I) 

2. To create a HGSOC mass cytometry panel for immunophenotyping the TiME 

landscape to classify immune cell populations, identify clinically relevant cell 

subsets, and better understand the underlying biological complexity (Paper II) 

3. To characterize the HGSOC TME with increased depth by integrating the two mass 

cytometry panels established using the computational panel merging algorithm, 

CyTOFmerge (Paper III) 
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3. Materials and methodological considerations 

3.1 Materials 

3.1.1 Peripheral blood mononuclear cells 

Blood samples from healthy donors at the Blood Bank, Department of Immunology 

and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway, were 

used. Peripheral blood mononuclear cells were isolated from aliquots before being 

cryopreserved and stored for further use (Papers I-III). 

1.1.1  Ovarian tumour samples 

HGSOC tumour samples collected during primary cytoreductive surgery following 

written consent were analysed. All samples were part of the Bergen Gynaecologic 

Cancer Biobank (GYNCAN), Department of Obstetrics and Gynaecology, Haukeland 

University Hospital (HUS), Bergen, Norway (Papers I-III). Clinicopathological 

information (age, disease stage at diagnosis, surgical outcome, and survival parameters 

such as PFS and OS) for each patient was gathered. In Paper I, we included four 

patients. In Papers II and III, the same ten tumour samples from chemo-naïve HGSOC 

patients were analysed. 

3.1.3 Ovarian cancer cell lines 

The human ovarian serous adenocarcinoma cell lines OV-90 (American Type Culture 

Collection (ATCC), ATCC CRL-11732) and Caov-3 (ATCC HTB-75) were used in 

Paper I for the optimization of the pan-tumour mass cytometry panel. In Papers II-

III, OV-90 cells were utilized as control samples. Both cell lines, the OV-90 cells 

(RPMI 1640) and Caov-3 cells (DMEM), were cultured and maintained per the 

manufacturer’s instructions with the respective medium supplemented with 10% foetal 

calf serum (FCS), 2 mM L-glutamine, and penicillin 100 IU/ml. 
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3.1.4 CD34+ stem cells 

The CD34+ stem cells were isolated from umbilical cord blood samples collected from 

presumed healthy singleton pregnancies delivered by caesarean section as part of the 

Research Biobank for Blood Diseases, HUS, Bergen, Norway, via a standardized 

process described elsewhere (433). The umbilical blood samples were collected in 

ACD-A tubes. Lymphoprep TM density gradient centrifugation followed by CD34+ 

magnetic associated cell sorting (MACS) were the procedures used. 

3.1.5 Ethical Approval 

The biobanks (GYNCAN, Reference ID 2014/1907; the Blood Donor Biobank, 

Reference ID: 2212/2247; and the Research Biobank for Blood Diseases, Reference ID 

2015/1759) as well as the different projects presented in Papers I-III (Reference ID: 

2017/623) have been approved by the regional ethical committee.  

3.2 Methodological considerations 

3.2.1 Tumour tissue processing 

All the clinical tumour samples (Papers I-III) used were immediately processed to 

obtain single-cell suspensions via different dissociation methods. Resected tumour 

pieces collected during cytoreductive surgery procedures, cut into small uniform cubes, 

and dissociated with conventional mechanical dissociation along with five different 

enzymatic dissociation methods. Prior to enzymatic treatment, tissue pieces were 

washed with HBSS or PBS and transferred into the respective pre-warmed enzyme 

mixtures (Table 4 and Figure 12 below; also presented in Paper I). All the reactions 

were conducted with constant shaking at 37 C. The cells were then strained through a 

cell strainer, checked for cell viability, centrifuged, and cryopreserved in freezing 

media. The protocol used are commonly used for the dissociation of solid tumours 

(434, 435).  
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Figure 12. Tumour dissociation  

As we were initially unsure about which of the disaggregation techniques would 

optimally preserve both the viability as well as the phenotypic characteristics of the 

single cell suspensions produced, we compared the dissociation methods (as presented 

in Paper I and discussed in paragraph 5.1.1) 

Table 4. Tumour dissociation conditions (modified from Paper I (435)) 

Dissociation   

Conditions  

Primary Enzyme  Incubation  

time 

Secondary 

enzyme 

Incubation 

time 

Coll  Collagenase II + CaCl2 2 hours   
 

Coll+Try Collagenase II + CaCl2 2 hours TrypLE 5 minutes 

Mil 1hr Miltenyi  1 hour 
  

Mil 2hr    Miltenyi 2 hours 
  

Coll+Dis 

Mech 

Collagenase II + CaCl2 

Mechanical – no enzyme 

1 hour 

- 

Dispase 

- 

30 minutes 

- 

 

3.2.2 Stimulation of PBMC 

Peripheral blood mononuclear cells (PBMCs) were isolated from the blood samples of 

healthy donors via density gradient centrifugation with Lymphoprep® in Papers I-III.  

To enhance the identification of the optimal dilution of certain antibody markers— 

including markers expressed in activated immune cells only—all markers for immune 

cells and immune checkpoints were titrated concomitantly on unstimulated and 



 66 

stimulated PBMCs. The PBMCs were stimulated with 2.5g/ml phytohemagglutinin 

(PHA) for a period of 48 hours at 37 C in a humidified atmosphere with 5% CO2 and 

used as control samples when the different mass cytometry panels were established 

(Papers I and II).  

3.2.3 Mass cytometry  

 

Figure 13. Overview of CyTOF workflow (adapted from Bendall et al. (436)) 

Cytometry by time-of-flight (CyTOF) is an efficient method that utilizes stable isotopes 

tagged with monoclonal antibodies as reporters and can detect multiple parameters per 

cell at one given time (Figure 13). Cells coupled with antibody-isotope conjugates are 

sprayed as single-cell droplets into an inductively coupled argon plasma, in which each 

cell is vaporized and ionized into its atomic constituents. These resulting ionic clouds 

are then sampled by a time-of-flight mass spectrometer, and the corresponding signal 

from each cell’s constituent ions are quantified by the detector. CyTOF is capable of 

in-depth phenotypic profiling, enabling a global depiction of the constituent cells of the 

TME. 

Panel development 

The design of CyTOF panels involves a step-by-step optimization process, starting 

with the panel design and ending with determining the optimal antibody concentrations 

and panel validation (Figure 14).  
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Figure 14. Mass cytometry panel development 

During this thesis work, two mass cytometry panels for analysing cells in suspension 

were established (Papers I and II), and the workflow just presented was used. To our 

surprise, there is only a limited number of published studies focusing on the actual 

panel development process (437-439), although the quantity of publications using 

CyTOF as a tool for phenotypic single cell profiling is increasing considerably for a 

range of dissociated solid cancers (363, 364, 367, 369, 371, 381). This is the case for 

both custom-made and commercially available panels.  

Panel design 

The first panel, later called the pan-tumour panel, should outlines the tumour, stromal, 

and immune cell subsets that constitute the HGSOC TME (Paper I), while the second 

panel, called the pan-immune panel, was generated with the intention to 

immunophenotype the TiME of HGSOC (Paper II). To select the appropriate targets 

and corresponding antibodies, we used a semi-structured process: 

• A literature review to identify potential phenotyping and functional targets of 

interest 

• The selection of the most appropriate and multipurpose markers to minimize the 

number of markers in the panel. Definitions of the marker types are explained 

below: 

o Appropriate: Definitive markers of cell subsets and/or functional states that 

have a proven and longstanding history of being used to identify a certain 

cell population or cytotoxic state, as well as markers necessary for the 

identification of a defined cell population. 

o Versatile: Markers that can identify multiple subsets of cells and effectively 

bring down the number of markers that have to be included in the panel. 
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• Literature review to determine the expression level of the different markers. 

o This information was a key determinant in the panel design and the 

positioning of the markers within the panel (either to the ‘high-sensitivity’ 

or ‘lower-sensitivity’ part of the mass spectrum) to ensure that the markers 

could still be detected with sufficient sensitivity. 

Table 5. An overview of the CyTOF panel markers (as presented in Paper III) 

 Pan-tumour panel Pan-immune panel 

Tag Human mAb Clone Human mAb Clone 

89Y CD45 HI30 CD45 Hi30 

141Pr EpCAM/CD326 9C4 EpCAM/CD326 9C4 

142Nd CD133* 5-E3 (5E3)  CD303* 201A 

143Nd CD117  104-D2 CD117 104-D2 

144 

Nd     
CD33* WM53 

145Nd CD4 RPAT4 CD4 RPAT4 

146Nd CD8a RPAT8 CD8a RPAT8 

147Sm CD20 2H7 CD20 2H7 

148Nd CD34 581 CD16 3G8 

149Sm TAG72* 0.N.561 CD25 2A3 

150Nd LAG-3/CD223 11C3C65    

151Eu CD103 
BER-

ACT8 
CD123 6H6 

152Sm CD44* BJ18 CD95/Fas DX2 

153Eu CD47* CC2C6 CD7 EH12-2H7 

154Sm TIM-3 F38-2E2 CD163 GHI/61 

155Gd PD1/CD279 EH12. 2H7 PD-1/CD279 2H7 

156Gd PDGFRß/CD140b 18A2 CD86 IT2.2 

158Gd FOLR1* 548908 CD335* BAB281 

159Tb PD-L1/CD274 29E.2A3 CCR7 Go43H7 

160Gd CD14 M5E2 CD14 M5E2 

161Dy CTLA-4/CD152 14D3 CTLA-4 14D3 

162Dy Foxp3 259D/C7 CD11c Bu15 

163Dy CD56 NCAM16.2 CD56 NCAM16.2 

164Dy CD45RO UCHL1 CD45RO UCHL1 

165Ho OX40/CD134* 

Ber-

ACT35 

(ACT35) 

CD127 A019D5 

166Er CD24 ML5 CD34 581 

167Er CD25* 2A3 CD27 O323 

168Er IFN  B27    
169Tm CD19 HIB19 CD19 HIB19 

170Er CD3 UCHT1 CD3 UCHT1 

171Yb AXL* 
MM0098-

2N33 
CD62L* DREG-56 
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172Yb CD73* AD2 CD73* AD2 

173 

Yb    
CD141 1A4 

174Yb HLA-DR L243 HLA-DR L243 

175Lu aSMA* 1A4    
176Yb FAPalpha* F11-24 CD1c* L161 

209Bi CD11b  ICRF44 CD47 CC2C6 
 

*in-house self-conjugated; out of the 17 overlapping markers, highlighted (in grey) are the 15 overlapping 

markers between both panels with the same metal tags, excluding CD25 and CD47, which have different metal 

tags in the separate panels.  

In parallel, the composition of the antibody panels was designed with the use of the 

Maxpar® panel designer from Fluidigm (Papers I and II). The panel designer is an 

interactive web-based application that aids in optimizing the panel performance with 

an algorithm that selects the optimal metal tag for each target with minimal signal 

overlap. The use of the panel designer is discussed in more detail in paragraph 5.1.1 

For the pan-tumour panel, we ended up with a group of 35 human monoclonal 

antibodies, identifying tumour cells and distinguishing major stromal cells, including 

pericytes, endothelial cells, and fibroblasts in addition to common infiltrating immune 

cells (Paper I) (Table 5). The 34 pan-immune panel, was designed to characterise 

subsets of T cells, DCs, B cells, NK cells, myeloid-derived cells, and macrophages that 

comprise the HGSOC TiME (Paper II) (Table 5). Both panel markers included surface 

lineage markers (immune, stromal, and tumour—including tumour stem-like cells) and 

intracellular functional markers (foxp3 and IFN) (Papers I and II) (Figure 14).  

Custom-conjugation 

Most of the antibodies from both panels were Maxpar® metal-conjugated antibodies; 

however, since our panel design involved some customization, some in-house 

conjugations were necessary. Both the readymade Maxpar® metal-conjugated 

antibodies and in-house conjugated antibodies were purchased from Fluidigm, 

BioLegend, or Abcam (Papers I-III) for use. Out of the 69 panel antibodies (Table 5), 

17 were custom-conjugated (11 mAb from the pan-tumour panel and 7 mAb from the 

pan-immune panel) according to the manufacturer’s protocol.   
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Titration of antibodies 

In addition to securing the optimal functioning of the reagent, antibody titration is also 

required to identify the concentration that best separates the positive and negative cell 

subsets from the background. Since a very high titer might diminish the signal-to-noise 

ratio due to unspecific binding, titrations are also important and may impact the success 

of the antibody panel. In mass cytometry, the titration of heavy metal-labelled 

antibodies is the key to determine optimal staining dilutions, reduce non-specific 

binding, and validate any contaminations in the corresponding channels (isotopic 

impurity, M+16, and M+/-1). In our study, the immune antibodies in both panels were 

titrated first on healthy and stimulated PBMCs, whereas the tumour and stromal 

antibodies were first titrated on a mixture of ovarian cancer cell lines (Papers I-III) 

followed by titration on an ovarian patient sample mix in order to determine the 

optimized antibody titer values.  

Panel validation 

Panel validation is an important step after the titration of the panel antibodies, and 

running a whole panel test on the actual study samples of interest is essential. In most 

cases, antibodies are initially titrated on control samples that best represent the final 

patient sample types of interest, as actual patient samples can be considered too rare 

and precious for control titration runs. In our study, following the titration of antibodies 

on appropriate control samples, a final panel validation step was carried out. In this 

step, the whole panel was validated on a mixture of primary ovarian patient samples 

(Paper I-III). 

3.2.4 Sample preparation 

It is crucial to follow a clean sample preparation pipeline, starting from the clinical 

sample collection until the data acquisition and analysis. All samples used in the mass 

cytometry experiments were prepared carefully under specific conditions (Paper I-

III). 
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Cisplatin binds non-specifically to intracellular DNA and stains viable cells; in 

addition, it enters the disrupted cell membrane of dead cells more easily than that of 

live cells. Cryopreserved samples were thawed, stained with Cell-ID Cisplatin to assess 

cell viability, fixated using Stable-Lyse and Stable-Store, and subjected to pre-

permeabilization barcoding with palladium isotopes as per the manufacturer’s 

instructions. To increase the efficiency and decrease the technical variability, sample 

barcoding of the samples is a useful strategy. Exceptionally, for the merged dataset 

analysis (Paper III), two separate sets (2 = 1x pan-tumour panel + 1x pan-immune 

panel) of equal portions of the barcoded sample mixture pool were prepared. Barcoded 

samples (Papers I-III) were incubated with a FcR blocking reagent, which was 

followed by antibody staining with predetermined specific panel antibody dilutions; 

then, they were finally resuspended in a nucleic acid Ir-Intercalator. All samples 

underwent intermediate washing steps when necessary until they were diluted in Cell 

Acquisition Solution (CAS) before running on the Helios machine as per the standard 

protocol (Fluidigm, CA) (Papers I-III). 

3.2.5 Data analysis 

The establishment of the high-dimensional analysis platform that CyTOF represents 

has necessitated the development of new data managing strategies and tools (356). 

Although many consider CyTOF an advanced form of flow cytometry, it is important 

to note that many of the analytic tools used to analyse and visualize mass cytometry 

data circumvent traditional bivariate plots, as the number of parameter pairs increases 

exponentially with the number of parameters analysed (356). 

(i). Data cleansing and debarcoding 

To be able to analyse the data generated, it is important to clean the data. Acquired data 

was normalized using EQ™ Four Element Calibration Beads with the Fluidigm 

software (Fluidigm) on the machine. Removal of doublets and debris and the gating 

out of live singlets were performed using standard tools on the Cytobank platform 

(v7.2.0 and v7.3.0, Beckman Coulter, Inc., IN) (Papers I-III). Barcoding samples 

helps in running multiple samples simultaneously without any possible sample bias, 
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which improves the quality of the generated results. In Paper I, barcoded files were 

debarcoded using the Premessa debarcoder GUI package 

(https://github.com/ParkerICI/premessa) in R (version R 3.4.1 GUI 1.70 El Capitan 

build (7375)) with a 20-plex-debarcoding key (Fluidigm), while, in Paper II, the 

debarcoding was performed using the Cytobank platform. 

ii) Time of flight analysis platforms 

Different analytical platforms were used in this project based on the scope of the 

question and intended analysis (356, 440). In Paper I, Arsinh (x/5)-transformed .fcs 

files from Cytobank were clustered in a density-based clustering method called X-shift 

(VorteX, Java version 1.0) (441). X-shift finds the local density maxima of data-points 

(cell event), which becomes the cell cluster centroid in a nearest neighbour graph using 

the weighted K-nearest-neighbour density estimation in a multidimensional marker 

space. The K value is automatically selected from the elbow point, also known as the 

‘switch point’, via under-clustering or over-fragmenting the dataset with a Mahalanobis 

distance less than 2.0 (Paper I). This algorithm has a high degree of user-defined inputs 

from data importation until the clustering of the dataset. 

In Papers II and III, the Astrolabe Cytometry Platform (Astrolabe Diagnostics, Inc., 

NJ) was selected for a fully automated analysis pipeline that included both 

unsupervised clustering and statistics. Acquired single-cell data (Paper II and III) 

after initial data cleaning and debarcoding has been clustered using the FlowSOM R 

package (359) and labelled using the Ek’Balam algorithm (442), as per the analysis 

pipeline. Following the cluster labelling method implementation, differential 

abundance analysis and visualization were done via the automated Astrolabe 

Cytometry Platform (Papers II-III) (443-447). For a more in-depth delineation of the 

immune cells, in Paper III, both panel (pan-tumour and pan-immune) datasets—with 

a total of 17 overlapping markers and 18 unique markers—were imputed together using 

an established merging algorithm called CyTOFmerge in Matlab 2019a (MathWorks) 

(Paper III). As a quality control step, the panel antibody expression pattern was 

plotted on Cytobank as t-Distributed Stochastic Neighbour Embedding (t-SNE) plots, 
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a nonlinear dimensionality reduction algorithm that reduces high-dimensional data 

down to two dimensions for easy visualization (Paper I-III). 

(iii). Visualisation 

In Paper I, to visualize the differences between the differently dissociated tumour 

samples across the patients, flow pie-charts and stacked bar plots (in a XY table format) 

were plotted using the clustering data obtained from X-shift using Prism (6.0c version) 

(GraphPad). In addition, heatmaps were created using the X-shift algorithm to 

effectively visualize patterns within the clustered mass cytometry data across the 

dissociated tumour samples. Median expressions (arcsin-transformed dual counts) of 

functional markers in the panel were investigated using Cox proportional-hazards 

models (Paper I). Histograms were plotted to show and compare the expression 

distribution of each marker per condition and were plotted using Matlab 2019a 

(MathWorks) (Paper I). In Papers II-III following cluster labelling, differential 

abundance analysis and visualization were done through the automated Astrolabe 

Cytometry Platform (Astrolabe Diagnostics, Inc., NJ). In addition, heatmaps and bar 

plots were created using Prism (8.0c version) (GraphPad) to effectively visualize 

patterns within the clustered mass cytometry data across the patient tumour samples 

(Papers II-III). 
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4. Main Results 

4.1 Paper I 

We developed a novel ovarian mass cytometry using a CyTOF panel that enables the 

simultaneous detection of up to 35 parameters detailing the ovarian TME at the single-

cell level. The mass cytometry panel development involved multiple steps, starting 

with the selection of markers from current literature and ending with panel optimization 

along with validation. We were able to successfully delineate and distinguish all the 

major TME cellular phenotypes, including the immune, stromal, and tumour subsets, 

with the established mass cytometry panel. We further used the panel for detailed 

evaluation of the effects of six different ovarian tumour dissociation methods to secure 

the integrity of the cell epitopes from any unwanted technical variabilities caused 

during the dissociation process. From our evaluation, we identified that, while the 

tissue dissociation methods have varied levels of impact on the different antigen 

expression profiles, they still hold the capacity to clearly show the interpatient 

differences present in the individual TME signatures.  

4.2 Paper II 

We delineated the tumour immune microenvironment of ten individual chemo-naïve 

ovarian patients with a newly created 34-marker immune cell-focused panel presenting 

their myeloid and lymphoid cell phenotypes. We identified 28 main immune cell 

populations (consisting of a total 184 cell subsets), including 16 lymphoid and 12 

myeloid cell populations, from the clustering analysis. Our immune profiling revealed 

a high degree of interpatient heterogeneity. The four most frequently found cell clusters 

across the patient samples were conventional dendritic cells (DC), natural killer (NK) 

cells, and unassigned hematopoietic cells. Several DC and monocyte cell subsets 

showed associations with clinical features. 
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4.3 Paper III 

We jointly investigated the immune, stromal, and tumour cell phenotypes of the 

ovarian TME at a greater magnification with the merging of the individual datasets 

(pan-tumour dataset and pan-immune dataset). We identified a high inter-sample cell 

phenotypic heterogeneity and a more in-depth immune delineation in addition to 

tumour and stromal cell phenotypes, including a total of 39 cell clusters (29 immune 

(three myeloid lineage cells), nine tumour (cancer stem-like cells), and one stromal 

(fibroblast subsets) cell clusters). In addition, we identified a novel tumour cell 

metacluster, CD45-CD56-(EpCAM-FOLR1-CD24-), the most frequently found across 

all patients. Furthermore, with the merging of the two datasets, we identified even 

higher clinical associations (from 12 (pan-tumour dataset) to 20 (merged dataset)), with 

most of these observed associations majorly prevailing between infiltrating immune 

cell subsets and survival rates (PFS, OS) (Paper III).  
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5. Discussion of results 

HGSOC is a heterogenous disease often diagnosed at advanced stages with poor 

prognosis (50, 430, 431). Although the development of HGSOC, which involves 

multiple genetic alterations, is becoming well-characterized, the use of reliable 

molecular markers or profiles for diagnostics, prognosis, the tailoring of therapeutic 

strategies, and the prediction of therapeutic responses are only at early stages (448-

450). The unusual tumour milieu facilitates the development of, as mentioned in 

paragraph 1.2, the inter- and intratumour molecular and phenotypic heterogeneity that 

characterise this EOC subtype (2, 119, 432). With the advancement of bioinformatics, 

harnessing evolving tools, such as CyTOF, and incorporating algorithms employing 

machine learning generate a seemingly limitless ability to comprehensively map such 

heterogenous TME (451). CyTOF provides significant possibilities for understanding 

such a complex framework of interplay between cancer cells and their surrounding 

non-tumour neighbouring cells. With a better understanding of the molecular processes 

occurring at the protein level and the identification of the cellular phenotypes involved, 

it is likely that traditional profiling will be challenged and complemented with genomic 

profiling at the single-cell level. Together, the molecular markers or profiles will be 

used to establish more patient-centric stratification strategies for diagnosis, treatment 

selection, and follow-up, with the aim of improving outcome parameters. 

This thesis is based on three subprojects (Papers I-III). The first two projects focused 

on the development and application of panels for the TME profiling of a single-cell 

suspension of HGSOC tumours with CyTOF. The outlines of the two papers differed, 

as Paper I concentrated on pan-tumour profiling, while Paper II emphasised immune 

cell-focused deep phenotyping. We also explored different tools for clustering, 

visualizing, and analysing mass cytometry data: the time-of-flight analysis platform 

Cytobank (Papers I-III), X-shift (Paper I), Astrolabe Cytometry Platform (Papers II 

and III), and MATLAB (Paper III). In Paper I, attention was additionally focused on 

the establishment of a panel on the effects the different dissociation methods used had 

on the cell subset profiling. In Paper II, we further classified immune cell populations 

and identified clinically relevant clusters. In the last subproject, Paper III, the 
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emphasis was on the use of the computational panel merging algorithm, CyTOFmerge, 

for the integration of the mass cytometry data across the panels. In the following 

paragraphs, the results obtained will be discussed in relation to recent publications and 

current knowledge in the field. 

5.1 Profiling of solid tumour tissues with CyTOF 

Cancer Immune Monitoring and Analysis Centres classify mass cytometry as a tier 1 

assay for cell profiling (452). This highlights the advantage of this technique, which 

was originally developed for the profiling of immune cell phenotypes. With the advent 

of CyTOF, several mass cytometry panels have also been developed to examine a wide-

range of dissociated tumours (363, 364, 367, 369, 371, 381).  

5.1.1 Development of CyTOF panels for HGSOC 

 

 

Figure 15. An overview of the CyTOF panel development process 
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Careful planning is needed for designing an experimental approach, as different factors 

and conditions can influence data acquisition, data analysis, and the results generated. 

These include marker selection, panel design, conjugation, the titration of antibodies, 

and panel validation, including appropriate sample fixation and storage (Figure 15). 

Standardizations are of importance to circumvent incorrect interpretations.  

Marker selection  

For the selection of markers, we followed the semi-structured process presented in 

paragraph 3.2.3. The focus of the literature review was to identify potential 

phenotyping and functional targets of interest, understand their expression levels, and 

select the most appropriate of them to minimalize the number of markers in the panel 

(Table 6). This information was a key determinant in the panel design, as the best 

combination of the antibody with an appropriate heavy-metal isotope to achieve the 

best possible signal intensity for detecting targets of interest on the sample is the most 

vital part of the CyTOF panel design (453).  
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Table 6. An overview of the CyTOF panel markers 

 

In Paper I, for the pan-tumour panel, we ended up with a group of 35 human 

monoclonal antibodies, identifying tumour cells and distinguishing major stromal cells 

(including pericytes, endothelial cells, and fibroblasts) in addition to common 

Target Purpose

CD8a Cytotoxic T-cells 

CD4 T-helper cells

CD3 T-cells

CD45RO Activated memory T-cells 

HLA-DR

B cells, activated T-cells, DC, monocyte/macrophages and 

non professional-APC

CD20 B-cells

CD25 T-regulatory cells

CD56 Natural killer cells

CD19 B-cells

CD14 Monocytes, Natural killer cells

CD11b MDSC, monocytes and macrophages 

CD45 Common leukocyte antigen

CD103 Infiltrating T-cells

CD34 Endothelial, stem cell marker

CD47 Inhibits phagocytosis; overexpression in EOC cells (EMT)

Foxp3 T-regulatory cells

IFNgγ Expressed by infiltrating T-cells upon recognition of tumor cells 

PD1,PD-L1, CTLA-4, 

LAG-3,OX40, TIM-3 Immune checkpoint

CD303 Plasmocytoid DC

CD33 Myeloid progenitors, monocytes, DC, mast cells and granulocytes

CD16 NK cells, monocytes, macrophages and neutrophils

CD123 DC, mast cells, basophils, macrophages, 

CD95

T and B cells, neutrophils, monocytes and fibroblasts Activation 

marker

CD7 T-cells, NK cells, haematopoietic cells

CD163 Macrophages, monocytes, 

CD86 B and T cells, astrocytes, DC, monocytes/macrophages

CD335 NK cells

CCR7

affects interactions between T cells and dendritic cells and 

their downstream effect

CD11c Monocytes, macrophages DC, granulocytes and NK cells 

CD127 B and T cells 

CD27 T, B and NK cells

CD62L B cells, Monocytes, granulocytes

CD141 DC (Type 1)

CD1c DC (Type 2)

CD24 Cancer stem cell marker

CD44 Cancer stem cell marker

CD133 Cancer stem cell marker

EpCAM Cancer stem cell marker

FOLR1 Highly expressed in cancers with epithelial origin

CD73 Cancer stem cell marker

CD117 Cancer stem cell marker

TAG72 Tumor progression marker from benign to malignant

PDGFRβ associated with vasculature in Tumor microenvironment

FAPα secreted by Cancer associated Fibroblast (CAF)

αSMA pericytes
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infiltrating immune cells. In Paper II, we selected 34 pan-immune panel antibodies to 

characterise subsets of T cells, DCs, B cells, NK cells, myeloid-derived cells, and 

macrophages that comprise the HGSOC TiME. The panel used by Casado et al. for  

establishing an effective workflow for mass cytometry data is the only panel we 

identified that, similar to our work (Papers I and III), is used for a pan-tumour 

profiling approach (387). Currently, apart from the paper by Gonzalez et al., in which 

the focus was to interrogate the HGSOC tumour biology (384), all other papers 

published (Toker, Kverneland, and Bobisse groups) have developed panels focusing 

on infiltrating the T-lymphocytes of the TME (385, 386, 454). Each of these studies 

interrogated specific compartments of the TME in detail, while our panels provide a 

relatively broader overview of the main populations of either one (immune) or all 

compartments (immune, stromal, and tumour) of the HGSOC TME (Papers I-III). 

Therefore, it is essential, before the panel is set up, to focus on the aim and strategy of 

the project as well as to possess an understanding of the phenotypic and/or functional 

characteristics needed to gain the required biological information. The main aim of 

Paper I was to develop an ovarian TME-based CyTOF panel and use the developed 

panel for the comprehensive characterisation of all different compartments (tumour, 

stromal, and immune) of the ovarian TME along with the evaluation of the tumour 

dissociation effects (435). In an ongoing project, we have experienced that the 

backbone of the pan-tumour panel is robust, which is used when designing project 

specific panels, e.g., in the translational research protocol for the NSGO-OV-

UMB1/ENGOT-OV-30 trial. The aim of Paper II was to develop an in-depth immune 

phenotyping CyTOF panel and immunophenotype the ovarian TiME. However, as also 

mentioned in paragraph 1.3 and in Papers I-III, while both our panels (pan-tumour 

and pan-immune) present a broader overview of the different compartments of the 

TME, there is less resolution over specific subsets, which are some of the limitations 

that can be overcome with the use of more focused panels. For instance, given that the 

role of myeloid cells in the TiME requires a deeper understanding (455), a design that 

focus more on TAM and MDSC can be a useful approach. Later paragraphs will discuss 

what can be gained by the use of merged panels (paragraph 5.2). 
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Panel design 

The value of mass cytometry experiments also depends on the quality of the panel 

composition. The Helios version of mass cytometry is able to detect ion mass tags 

within a range of 75–209 Da, providing 135 channels; however, only around 50 are 

currently in use due to limitations with heavy metal isotope availability (439, 456). The 

first step of panel design involves the classification of markers into primary (highly 

expressed or well-defined backbone markers such as CD45, CD3, CD4, CD19), 

secondary (medium expression markers such as CD44, CD62L), or tertiary (low or 

unknown expression markers such as LAG-3) antigens. In panel design, it is crucial to 

consider all this information in addition to the three sources of crosstalk among 

channels, namely isotopic impurity, abundance sensitivity, and the oxidation of metals 

(also explained in paragraph 3.2.3) (457, 458). Apart from considering these 

conventions, the use of dedicated software for panel design is highly recommended. 

Currently, Fluidigm offers preconfigured screening panels in addition to an online 

panel design tool called Maxpar Panel Designer (https://dvssciences.com). This 

software calculates and predicts signal overlaps based on user inputs, aiding in 

optimized panel design (458).  

Conjugation 

Pre-conjugated, metal-labelled antibodies are commercially available; however, they 

can sometimes be unavailable based on the specific panel design. Hence, this limitation 

demands the custom conjugation of antibodies with heavy metal-labelled isotopes. One 

important consideration in custom conjugation includes selecting the right antibody 

clone; one way to accomplish this would be to use the readily available Maxpar® ready 

antibodies or known clones of antibodies from prior flow cytometry experiments with 

similar sample types of interest (458). A detailed protocol for conjugating antibodies 

with heavy-metal isotopes was published by Han and colleagues (459). Our panels 

required multiple (n = 17) in-house antibody conjugations (Paper I-II), similar to the 

ovarian panel presented by Gonzalez et al., where most of the panel antibodies except 

for two (CD44 and CD45) were in-house conjugated (384).  
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Titration of antibodies 

Each of the current CyTOF panels described (Papers I and II) followed an 

optimization process tailored for mass cytometry (as also explained in paragraph 3.2.3) 

similar to the steps demonstrated in the study by Brodie et al. (438). Following marker 

selection and panel design, the next step was optimal titration of the antibody–metal 

pairs to reduce the amount of non-specific signal spill over (including signal overlap 

due to isotope purity, abundance sensitivity in the M ± 1 channel, and oxide formation 

in the M + 16 channel) between the mass channels. Furthermore, it is recommended 

that the primary antibodies (backbone) of the panel (such as CD45, CD3, CD4, CD19) 

are titrated first, followed by the secondary (medium expression markers) or tertiary 

(low or unknown expression markers) antigens (458). 

 

 

Figure 17. Antibody staining on PHA stimulated PBMC 

We first titrated the backbone antibodies and the secondary panel antibodies on a 

mixture of ovarian cancer cell lines and healthy PBMC samples. The tertiary or more 

difficult to validate antigens required some extra steps, e.g., the immune checkpoints 

(LAG-3, TIM3, PD1, PD-L1, OX40, CTLA-4) in the panel needed stimulation of the 

PBMCs to generate a higher antigen expression for the titration of relevant antibodies 

(Figure 17). In addition, finding appropriate positive and negative controls for the 

tumour and stromal antibodies was relatively challenging compared to for the common 

immune antibodies; hence, these tertiary antigens were titrated on a mixture of ovarian 

cancer cell lines and PBMC (stimulated and unstimulated) samples known to express 

or lack the target of interest, thus serving as positive and negative controls. The 
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knowledge gained from the titration of the pan-tumour panel antibodies (Paper I), as 

mentioned above, aided in designing and optimizing the titration of the pan-immune 

panel antibodies (Paper II).  

Fixation  

The stabilization of clinical samples in their natural state of occurrence that closely 

resembles in-vivo conditions is vital and crucial, as small perturbations may affect 

important characteristics of the cells. We fixed our samples using Stable-Lyse and 

Stable-Store solution. Recently, Sakkestad et al. illustrated a comparative overview of 

four different commercially available whole blood preservation kits in terms of 

leukocyte surface marker detectability in blood samples and presented important 

considerations for planning these kinds of experiments (460). Specifically, they 

highlighted that the use of Stable-Lyse and Stable-Store along with the other 

preservation kits (mentioned in the paper) had an influence on the expression of certain 

functional antigens (CXCR3, CCR4, CCR6 and CXCR5). However, since all our 

samples were lysed and fixed with the same preservation kit (Stable-Lyse and Stable-

Store), there was no bias between the samples in our set-up. Moreover, none of the 

above-mentioned markers were part of our panels. 

Panel validation 

Panel validation in terms of running the whole panel on the actual samples of interest 

is essential in following panel titration; as in most cases, the titrations are carried out 

on suitable control samples since clinical samples are limited in availability (458). 

Thorough evaluation of the three major sources of impurities between mass channels 

during the panel validation is important, and, if needed, adjustments of the panel are 

recommended in this step.  
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Figure 18. Panel validation 

 

In our study, following the titration of antibodies on appropriate control samples, a 

final panel validation step was carried out. In this step, the whole panel was validated 

on a mixture of primary ovarian patient samples (Paper I-III). In addition, multiple 

sample preparation protocols were tested to identify one that would allow for the 

optimal detection of all parameters from the panel, similar to the approach followed by 

Brodie et al. (438). 

5.1.2 Sample preparation - the influence of different 

sample dissociation methods  

Each of the developed CyTOF panels are optimized for tumour single-cell suspension 

samples. The primary goal while dissociating tumours is to be preserve cell diversity 

and viability; however, certain variations are technically induced during this process, 

which might obscure biological insights (434). Though no earlier studies have been 

reported on HGSOC, a few similar studies on other cancer types that focus on the 

cellular effects of disaggregation methods have been published. In Paper I, we 

presented a structured comparison of the influence of six commonly used tumour 

dissociation methods on all three compartments of the ovarian TME utilizing the 

ovarian TME-based CyTOF panel (see also Figure 17).  
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Figure 17. Tumour dissociation effects across patients (adapted from 

Anandan et al. (71)) 

From our study, we identified that each of the dissociation techniques influenced the 

TME cell populations differently. Similar results were published by Leelation et al. in 

their study on gliomas, tonsils, and melanomas (434). In addition, we reported the 

effects on certain immune subgroups, as also identified by Poláková et al., who 

compared the dissociation of tonsillar carcinoma tissues (437). Nevertheless, the 

interpatient differences observed within these patients were not outweighed by the 

dissociation effects, as each individual presented a unique combination of TME cell 
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populations, which was consistent across all the disaggregation methods (Paper I). It 

is also worth mentioning that the dissociation methods used affected some phenotypic 

markers in the identification of cell subsets while functional marker expressions 

remained comparable (Paper I). This is worth keeping in mind (as just discussed, 

(paragraph 5.1.1) during the project design.   

5.1.3 Selection of CyTOF data-analytical platforms  

CyTOF generates high throughput data and poses a potential challenge towards the 

efficient interpretation of such high-dimensional data (356, 461). Traditional bivariate 

plots have been cumbersome and inefficient in CyTOF data analysis; therefore, novel 

computational analytical tools are being developed (Figure 18). Currently, multiple 

analytical tools are being introduced, including unsupervised clustering-based 

algorithms, such as Phenograph, SPADE, FlowSOM, X-shift, and non-linear 

dimensionality reduction-based algorithms like t-SNE and HSNE (357-361). 

Nevertheless, new and improved high-dimensional data analytical tools are constantly 

emerging, including fully automated analysis pipelines.   
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Figure 18. CyTOF analytical platforms (adapted from Kimball et al. (356)) 

In all the papers (Papers I-III), after carefully considering various analytical platforms 

(SPADE, X-shift, FlowSOM, Astrolabe Cytometry Platform) and their limitations 

based on the practical application of the dataset on these platforms, we selected those 

that we judged to suit the goals of the studies the best. This was similar to the approach 

suggested by Kimball et al. in their paper from 2017, where they compared the benefits 

and limitations of five different CyTOF analytical platforms (SPADE, viSNE, X-shift, 

Phenograph, and Citrus) on a single dataset (356).  

For the pan-tumour datasets, we applied two approaches for each dataset based on the 

scope of the question and chose the ones that best benefitted the parameters measured 

for the specific study. SPADE and X-shift (435) were explored in Paper I, as the major 

focus here was to demonstrate the panel’s phenotypic potential in cellular identification 

along with the detection of tumour dissociation effects. Arsinh (x/5) transformed data 

analysed with the use of X-shift from Cytobank is a density-based clustering method. 

X-shift was selected due to its ability to quantify both the number of cell clusters and 
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to understand the diverse cell populations within a CyTOF dataset. Apart from the 

required computational background of the user, X-shift is very sensitive to the input 

cell number, and any comparison across experimental conditions must be first 

standardized based on cell numbers (356). When analysing the data set, different 

attempts to visualize the finding were done, e.g., with the use of SPADE (Figure 19), 

but, given that the quantification capacity was limited, we then switched to X-shift. 

In Paper I, we evaluated the influence of six different tumour dissociation methods on 

single cell suspensions, therefore, as mentioned above, we had to carefully ensure that 

we included an equal number of cells from each of the dissociation methods from the 

respective patient samples to enable comparison of the dissociation effects on the single 

cells. In addition, X-shift has the capacity to delineate cell clusters of indeterminate 

phenotypes that are lacking the expression of a definitive lineage marker, which 

enabled us to identify a novel cancer stem-like population (reported in both Paper I 

and Paper III), expressing a range of phenotypic markers, such as CD24, EpCAM, 

CD133, CD34, CD47, CD4, and CD8. Finally, X-shift is not equipped with automated 

statistical analysis, which was a drawback. The FlowSOM and Astrolabe Cytometry 

Platform algorithms were applied on the other pan-tumour dataset (Paper III), as the 

aim here was to attain a comprehensive understanding of the heterogenous HGSOC 

TME landscape and to be able to identify possible clinical associations; hence, 

automatization of the statistical analyses was preferred. As illustrated and explained in 

more detail in Paper III, a higher number of cell clusters was identified with this 

clustering platform algorithm compared to the populations presented in Paper I 

(SPADE and X-shift algorithm). 
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Figure 18. SPADE illustration of the major cell lineages  

(scaled by CD3 expression level) 

Different attempts were made to visualize the data in Paper I. Although the SPADE 

trees were able to provide a good overview of the major cell populations (Figure 19), 

since the actual experiments (Paper I) needed a much greater quantification capacity 

and higher characterisation resolution with actual event counts per cluster for 

evaluating the tumour dissociation effects, X-shift was chosen for the original 

publication (Paper I) (435).  

As the major focus of Papers II-III was to gain a broader overview of the heterogenous 

HGSOC TME landscape and to identify possible clinical associations, Astrolabe 

Cytometry Platform was selected, as it enables both automated statistical analysis and 

data visualization tools. Astrolabe Cytometry Platform is, as mentioned, a recently 
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developed fully automated cloud-based analytics platform. During this work, we 

determined this is a user-friendly platform and does not require advanced 

computational skills to use. Cluster labelling, method implementation, statistical 

analysis, differential abundance analysis, and visualization were done through the 

automated pipeline. Although utilized in several benchmark publications and clinical 

trials, Astrolabe has been primarily used for the immunophenotyping of CyTOF data 

and lacks standardized clustering strategies for tumour or stromal cells (442, 452). 

However, with the inputs from the X-shift analysis from Paper I, we could customize 

the labelling strategies of the analysis pipeline for these tumour and stromal cell 

subsets. Although these issues are important to consider, the ability of the Astrolabe 

Cytometry Platform to more extensively delineate the TME than the X-shift alone 

provided new insights regarding the cellular complexity and phenotypic diversity of 

ovarian TME. 

5.2 The identification of the HGSOC TME constitution by 

mass cytometry 

As noted in paragraph 1.1.6, few molecular biomarkers have been integrated into 

clinical practice for HGSOC. Although the TME is not clearly defined and its plasticity 

in not fully understood, single-cell mass cytometry is a potent technique to reveal 

intratumor heterogeneity for HGSOC if the standardisation of the factors discussed in 

paragraph 5.1 are fulfilled. In addition to the establishment of the two mass cytometry 

panels, one of the main research priorities addressed in this thesis work has been to 

identify valuable phenotypic cell characteristics to profile single cells and recognize 

clinically relevant cell clusters.  

The single-cell profiling performed with the use of the pan-tumour and pan-immune 

panels alone or combined and focusing on the abundance of cellular subsets disclosed 

the heterogenous composition of the cellular components of the HGSOC TME (Papers 

I-III). Heterogeneity is an inherent feature of HGSOC tumours (paragraphs 1.1.2, 1.2.2 

and 1.2.3), has been described at both the genomic and proteomic levels, and is believed 

to contribute to the poor outcome of this patient group (2, 25, 26, 266, 455). This 
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diversity is, for the most part, directed by copy number changes, the stem cell niche, 

and cellular plasticity (462). The interpatient heterogeneity identified through our 

single-cell analysis reveals new levels of phenotypic complexity in the HGSOC TME 

that can be added to the features already known. Intratumour heterogeneity also exists 

(2, 266). Studies including the profiling of multiple segments of the same tumour as 

well as metastases from different regions are therefore needed to provide additional 

insights at both the cellular and molecular levels, which is a result of the selective 

pressure exerted by distinctive cellular interactions within the tumour (402, 463, 464). 

To decode the cellular complexity, the high-dimensional analysis platform X-shift and 

the Astrolabe algorithm were used, as described in paragraph 5.1.3. The cellular 

markers in both panels identified the main cell subsets through a labelling strategy 

applied by the Astrolabe platform (Papers II-III). Although the use of a pan-tumour 

profiling panel has its limitations, we were able to, in line with Casado et al., outline 

all the three main cellular subsets and distinguish the different patients’ profiles in 

Papers I and III. Casado et al. showed that their profiling platform was able to 

recognize alternations in the cell constitution of the TME as the disease progresses 

(387). As illustrated and described in detail in Paper III, the FlowSOM analysis 

according to Astrolabe Cytometry Platform algorithms were able to detect more cell 

populations than when the SPADE and X-shift algorithms were used in Paper I. This 

again illustrates the importance of considering the scope of the question and the 

parameters measured as well as the data output of the study when selecting the analytic 

tools (356).  

The use of more cell subset-dedicated panels has also been suggested to be one solution 

for increasing the depth of the phenotyping. In Paper II, when we used a more immune 

cell-focused panel, a high degree of interpatient heterogenicity was revealed for both 

the myeloid and lymphoid cell phenotypes. The HGSOC TiME is a strong determinant 

of the clinical outcome (465). To date, as mentioned, most studies have focused on the 

role of T cells, while analyses comprehensively describing different TME-

compartments are missing (385, 386, 454). In our study (Paper II), cytotoxic CD8+ T 

cells that are able to attack tumour cells were present in three of 10 samples. The most 
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abundant cell clusters across the patient samples were conventional dendritic cells 

(DC), natural killer (NK) cells, and unassigned hematopoietic cells. In addition, several 

DC and monocyte cell subsets demonstrated associations with clinical features. 

However, the correlations with clinical features must be examined in larger clinical 

cohorts. With the use of the detailed single-cell profiling of the immune scenery within 

numerous lineages, it is our hope to obtain a better understanding of the complexity of 

the HGSOC TiME and, in this way, be able to recognize anti-tumour immune responses 

and develop novel immunotherapeutic strategies that match each patient’s unique 

immune phenotype (see also paragraph 5.1.1).  

Two of the CD56+fibroblast subsets identified are negatively associated with PFS and 

OS, one of which expresses high levels of EpCAM while the other expresses FOLR1, 

while neither express aSMA or CD24. CAFs could exhibit both pro-tumorigenic, as in 

the case of myofibroblasts (αSMA expression), which are involved in wound healing 

and are linked to EOC progression and anti-tumorigenic effects in the TME (466, 467). 

To exemplify their anti-tumorigenic effects, inflammation-associated CAFs (FAPα 

expression) have been illustrated to be associated with immunosuppression in other 

solid tumour types (467). Similarly, Hornburg et al. recently presented specific 

compositions of T-cells and fibroblasts within immune-infiltrated and immune-

excluded tumours (455). This highlights the importance of profiling the tumour, 

stromal, and immune (myeloid and lymphoid) lineage cells to understand both the 

biological complexity as well as the patients’ suitability for immunotherapeutics. 

The power of CyTOF to reveal the full heterogeneity of a biological specimen sample 

is restricted by the number of markers in a panel. When we combined different panels 

with the merging algorithms in Paper III, the complexity was extended due to both the 

increase in the identified cell subsets as well as the quantity and depth of the phenotypic 

characteristics (Table 7).  
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Table 7. An overview of the clinical associations 

 

The eradication of CSCs is increasingly seen as a potential therapeutic avenue for 

improving survival rates in EOC patients. With the use of both panels alone and 

combined, we were able to identify some undescribed cell types CD45-CD56-(EpCAM-

FOLR1-CD24-) and (CD45+HLA-DR+CD11c+CD33+) cells. Both the undefined cell 

types identified (Papers I and III) expressed some common markers (CD24, EpCAM, 

CD133, CD34, CD47). This finding was also in line with the data presented by 

Gonzalez et al. (384). Whether the specific rare cell phenotypes discovered represent 

possible targets for therapeutic intervention and/or disease surveillance must be 

examined further. 

We acknowledged that the correlations between cell clusters with clinical features 

revealed in Paper II and Paper III are exploratory and should be interpreted with care 

mainly given the small-scale cohort size. Nevertheless, these observations might be 

hypothesis-generating. 

The complex composition of the cell populations in the TME represents an important 

challenge to identify molecular makers for prognostication and the selection of therapy 

and has prevented effective cellular stratification. Similar complexity has been 

described for both transcriptional data and copy number abbreviations (4, 26, 30, 455). 

Despite the fact that the different signatures described in paragraph 1.1.2 are correlated 
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with different TME landscapes and clinical outcomes, this knowledge has still not been 

implemented into clinical practice (4, 25). Comprehensive high-dimensional profiling 

has the potential to substitute single-phenotype biomarker strategies and reveal an 

intricate network ready for therapeutic intervention. Nevertheless, the established 

panels (alone or combined) need further validation in a larger cohort presenting with 

more detailed clinical characteristics. Based on T-cell infiltration patterns, tumours are 

classified as immune infiltrated, excluded, or desert, which influences their response 

to cancer immunotherapies (119, 432, 468-470). Still, while different patterns for the 

enrichment of macrophages and fibroblasts have also been described, most studies have 

focused exclusively on the characterization of tumour-infiltrating T cells (385, 386, 

454). Moreover, a systematic single-cell characterization of how other cell types in the 

TME shape the tumour immune phenotype is lacking (455). 
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6. Conclusions 

The comprehensive molecular profiling of HGSOC has resulted in a more 

comprehensive understanding of the HGSOC pathogenesis. Although BRCA mutation 

and HRD testing are being integrated into wider clinical practice, most multi-

dimensional efforts have not yet been able to identify biomarkers or profiles that have 

been translated into clinical strategies and can result in more individualized patient 

care. Through a translational biomedical research approach, this thesis has resulted in 

the generation of CyTOF panels for use alone or combined for the classification of cell 

populations and the identification of clinically relevant clusters as well as better insight 

into the biological intricacy of the HGSOC TME. 

The following conclusions can be drawn: 

1. Two novel ovarian TME-based CyTOF panels were established. They can be used 

for the profiling of all major cellular populations (tumour, stromal, immune) and 

delineate the lymphoid and myeloid cell lineages in detail, respectively (Papers I 

and II). Both panels are optimized for single-cell suspensions. 

2. The use of the CyTOFmerge algorithm resulted in a more in-depth profiling of the 

cells, enabling us to identify both abundant as well as rare cell populations (Paper 

III).  

3. The use of different tissue dissociation methods for generating single-cell 

suspensions influenced the expression of some lineage markers, while the 

manifestation of functional markers did not change (Paper I). However, the 

interpatient disparities were more significant than changes identified when different 

dissociation methods were used. As this represents a potential challenge for data 

acquisition, the results emphasise the importance of the careful planning of 

experimental pipelines.  

4. Although heterogeneity is a well-known feature of HGSOC, the interpatient 

heterogenicity revealed by profiling with both panels alone or combined (Paper I-

III) reveals a new level of complexity for the ovarian TME. This study improves 
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current understanding of the ovarian TME, rendering a broader characterisation of 

the immune, stromal, and tumour cells along with unprecedented depth. 

5. Myeloid cells along with NK cells were the most abundant immune cells identified 

within the ovarian TME from the pan-immune panel (Paper II). 

6. Dendritic cells and monocytes might have prognostic relevance in ovarian cancer 

(Paper II). 
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7. Future perspectives 

HGSOC tumours are highly heterogeneous, and, in order to identify more effective 

prognostic and therapeutic biomarkers or profiles, a more comprehensive 

characterization of the TME is urgently required (4). The development of better and 

more reliable tools for deep-tissue profiling is necessary to both understand the 

biological complexity and to guide the future treatment of cancer (471). Mass 

cytometry is a novel proteomic platform for high-dimensional phenotypic and 

functional analysis of single cells (472). It has the potential to intensely portray the 

diverse and intricate TME and stratify patients by combining high-plex information 

with clinical information while forecasting the sensitivity to targeted, personalize 

treatment (451, 458). The comprehensive approach used in this thesis by analysing 

single-cell suspensions of HGSOC tumour tissue can be used to identify heterogenicity, 

phenotypic signatures, and profiles as well as specific cell clusters. The use of single-

cell suspensions, which require streamlined standardization, represents a limitation that 

might be overcome by the introduction of imaging mass cytometry (418). If high-plex 

data can also be fused with mass cytometry information regarding the check-point 

inhibitor profile, the applicability can be increased and result in new biomarker-based 

patient-centric treatment stratification that hopefully will improve the prognosis for 

HGSOC patients. 

As already mentioned, the HGSOC milieu is unique, and profiling the TME in 

terms of all the tumour elements—including the primary tumour, ascites fluid, and 

metastases—will be of importance for better understanding intrapatient heterogenicity 

and clonality as well as the development of therapy resistance (2, 266). Together this 

would provide a complete overview of the individual patient’s TME, a dynamic entity, 

and the crucial orchestrator of ovarian tumour progression (119, 432).  

We are entering a new era of single-cell data generation and other high-throughput 

omics platforms, such as genomic cytometry (e.g., scRNA-seq), are also being 

implemented (455). Combined, they will provide a much greater variability of diverse 

biological entities, with the hope of generating wide-ranging profile atlases and 
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machine learning algorithms (in software) that can also support clinical decision 

making for patients with HGSOC. 
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Simple Summary: High-grade serous ovarian cancer (HGSOC) is the deadliest gynecological malig-
nancy. Despite increasing research on HGSOC, biomarkers for individualized selection of therapy
are scarce. In this study, we develop a multiparametric mass cytometry antibody panel to identify
differences in the cellular composition of the microenvironment of tumor tissues dissociated to
single-cell suspensions. We also investigate how dissociation methods impact results. Application of
our antibody panel to HGSOC tissues showed its ability to identify established main cell subsets and
subpopulations of these cells. Comparisons between dissociation methods revealed differences in
cell fractions for one immune, two stromal, and three tumor cell subpopulations, while functional
marker expression was not affected by the dissociation method. The interpatient disparities identified
in the tumor microenvironment were more significant than those identified between differently
dissociated tissues from one patient, indicating that the panel facilitates the mapping of individual
tumor microenvironments in HGSOC patients.

Abstract: Improved molecular dissection of the tumor microenvironment (TME) holds promise
for treating high-grade serous ovarian cancer (HGSOC), a gynecological malignancy with high
mortality. Reliable disease-related biomarkers are scarce, but single-cell mapping of the TME could
identify patient-specific prognostic differences. To avoid technical variation effects, however, tissue
dissociation effects on single cells must be considered. We present a novel Cytometry by Time-of-
Flight antibody panel for single-cell suspensions to identify individual TME profiles of HGSOC
patients and evaluate the effects of dissociation methods on results. The panel was developed utilizing
cell lines, healthy donor blood, and stem cells and was applied to HGSOC tissues dissociated by six
methods. Data were analyzed using Cytobank and X-shift and illustrated by t-distributed stochastic
neighbor embedding plots, heatmaps, and stacked bar and error plots. The panel distinguishes the
main cellular subsets and subpopulations, enabling characterization of individual TME profiles. The
dissociation method affected some immune (n = 1), stromal (n = 2), and tumor (n = 3) subsets, while
functional marker expressions remained comparable. In conclusion, the panel can identify subsets of
the HGSOC TME and can be used for in-depth profiling. This panel represents a promising profiling
tool for HGSOC when tissue handling is considered.

Cancers 2021, 13, 755. https://doi.org/10.3390/cancers13040755 https://www.mdpi.com/journal/cancers
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1. Introduction

The five-year survival rate is low for high-grade serous ovarian cancer (HGSOC),
the most common epithelial ovarian cancer subtype, and long-term survival rates have
improved only modestly over the last three decades despite increasingly aggressive surgical
and chemotherapeutic approaches [1].

Like other malignant tumors, HGSOC consists not only of aggregates of heterogeneous
populations of cancer cells but also of a variety of stromal and infiltrating immune cells,
extracellular matrix proteins, and secreted molecules, collectively known as the tumor
microenvironment (TME) [2,3]. This complex and dynamic interactive entity contributes to
tumor growth through a reciprocal interplay between cancer and host cells [2,4].

The characterization of the composition, organization, and functionality of the HG-
SOC TME using sensitive tools [5] is fundamental for developing new management strate-
gies and improving survival rates [6]. Traditionally, immunohistochemistry analysis and
large-scale high-throughput omics technologies have been used for HGSOC TME charac-
terization on the single-cell level [7–11]. Some components of the TME have been described
using various methods, such as gene expression analyses of mRNA and microRNA, genetic
mapping of promoter methylation and DNA copy numbers, and immune cell-focused
analysis of the T cell receptor. However, a global depiction of the constituent cells of the
TME is still required [6–10]. Single-cell Cytometry by Time-of-Flight (CyTOF), a relatively
new method for single-cell profiling, utilizes stable isotopes combined with monoclonal
antibodies as reporters. The method enables detailed phenotypic characterization and
simultaneous detection of over 40 parameters per cell at a single-cell level [12]. However,
few studies using this method of single-cell phenotyping of HGSOC tissues have been
published. Those that are available describe novel cellular phenotypes associated with a
specific immunological TME [13–17]. Gonzalez et al. applied a CyTOF panel of 41 antibody
markers to dissociated tumors. Four of the markers were used to identify viable tumor
cells and exclude stromal, immune, and blood vessel cells, and the remaining markers
were used to interrogate HGSOC tumor cell biology [13]. Toker et al. and Kverneland et al.
applied the CyTOF method to dissociated HGSOC tissues, focusing exclusively on the
different T cell subsets of the ovarian cancer TME [14,15], while Casado et al. applied a
new analysis tool combined with a HGSOC mass cytometry panel, which enabled them
to identify different subsets of cells, mainly tumor and immune cells, in dissociated tis-
sues [16]. Currently, except for Casado et al.’s study, the published research has been
largely restricted to comparisons within tumor or immune cell subsets, while a more global
characterization of all major cell subsets of the TME is lacking.

Due to the underlying complexity of data generated through CyTOF analyses, ade-
quate attention to sample preparation is crucial to avoid introducing technically induced
variation that may obscure biological insights. A common goal when preparing single-cell
suspensions from solid tumors is to preserve cell viability and cellular diversity [18]. How-
ever, the extent to which the expression of certain markers is disrupted by the process of
common tissue dissociation methods is incompletely understood. To interpret in-depth
single-cell phenotyping results, it is important to establish a comprehensive understanding
of the effects of sample conditioning. This information should also be included in the
standard protocols for tissue dissociation to avoid unacknowledged methodological bias
introduced by the sample treatment. Systematic comparisons of the cellular effects of tissue
preparation techniques have previously been carried out in CyTOF analyses of gliomas,
melanomas, small cell lung cancer, and tonsil tissues but not in HGSOC [18,19].
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In this study, we present a novel TME-based 35-marker CyTOF panel to identify
patient-specific tumor phenotypes. The CyTOF panel is optimized for single-cell suspen-
sions of HGSOC tissues and delineates the main cell subsets of the TME: tumor cells,
the immune cell subset, and the stromal niche. By applying the CyTOF panel to patient
material, we evaluated the effects of six different tissue dissociation methods on cellular
expression and demonstrated the impact of different techniques on antigen expression
profiles. This is an important consideration when single-cell tumor suspensions are used
to examine the HGSOC TME. However, we demonstrate how interpatient differences in
the TME can be identified independent of the dissociation technique applied to the tissues.
As the panel can be used to identify the main populations of immune, stromal, and tumor
cells in the TME, as well as potential new cellular subsets within specific populations, its
application, and the combination of the results with clinical data could provide insights
into how differences in the TME composition impact clinical outcomes.

2. Results
2.1. Development of a Novel HGSOC TME-Based CyTOF Panel

The development of the CyTOF panel was the foundation for all further analyses.
Based on a literature review, we designed a panel to define the major immune, stromal, and
tumor subsets of the HGSOC TME [20,21] (Table S1). The panel was developed according to
an optimization process, whereby all antibodies were titrated on a mixture of cells to include
positive and negative marker controls (Figure 1, Table S1). A backbone panel containing
immune markers (n = 15) identified either on the cell surface or intracellularly was titrated
on unstimulated healthy peripheral blood mononuclear cells (PBMCs). Then, healthy
PBMCs, both unstimulated and stimulated by the cytokine-producing agents phorbol
12-myristate 13-acetate (PMA), ionomycin, phytohemagglutinin (PHA), and interleukin
2 (IL-2), were used to determine optimized titer values of the cell surface antibodies that
identify immune checkpoints (n = 6). The tumor (n = 11) and stromal (n = 4) markers were
titrated on a mixture of two HGSOC cell lines, two dissociated primary tumor tissues,
CD34+ cells, and unstimulated and stimulated healthy PBMCs (Figure 1, Table S1 and
Figures S2–S6).

As a final step, all markers in the panel were titrated on a mix of four primary patient
samples, as well as on two HGSOC cell lines, one CD34+ cell line, and PBMCs (Figure 1,
Table S1, Supplementary Material 4). After initial gating steps, including Gaussian gat-
ing [22], the X-shift algorithm [23] was applied to the debarcoded CyTOF files. The cellular
expression patterns of the panel markers were identified in the positive and not in the
negative controls, which confirmed the specificity of marker expression. When the antibody
panel was applied to dissociated primary tumor tissues, the resulting data confirmed that
the panel could identify tumor cells and common infiltrating immune cells, such as T cells,
B cells, resident tissue macrophages/monocytes, and natural killer cells. Cells belonging
to the tumor stroma, including pericytes, endothelial cells, and fibroblasts, could also be
distinguished successfully, and the data analyses could identify markers expressed either
on cell subsets (such as stem cells) or activated cells or antibodies that are classified as
immune checkpoint markers.
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Figure 1. Titration of the panel antibodies using Cytobank software. (a,b) Immune checkpoint antibodies were titrated
on both peripheral blood mononuclear cells (PBMCs) stimulated by phorbol 12-myristate 13-acetate (PMA) (25 ng/mL) +
ionomycin (1 µg/mL) and PBMCs stimulated by phytohemagglutinin (PHA) (2.5 µg/mL) + interleukin 2 (IL-2). Heatmaps
show that LAG-3 (a) was only expressed after stimulation by PHA/IL-2 and that PD-1 expression (b) differed with the
dilution in the cells stimulated by PMA/ionomycin, while expression was consistent across all dilutions tested on PHA/IL-
2-stimulated cells. (c) A viSNE plot was generated after pooling all samples from the stromal marker and tumor cell marker
titration experiments, and the different samples were color coded. The results demonstrate a distinct separation of ovarian
cancer cell lines (Caov-3 and OV-90) from the other samples, while the two dissociated tumor samples (HGSOC#19 and
HGSOC#30) and the stem cells (CD34+ cells) show overlapping phenotypes, as well as some cellular similarity with the
healthy donor sample (donor PBMCs). (d) Illustration of the gating strategy of the concatenated .fcs files to visualize
immune staining. Plots display the sample-wise staining pattern in six samples (in the columns) of four selected markers,
two tumor (EpCAM and CD34) and two stromal (PDGFRß and αSMA) antibodies (horizontally) in a dilution series from
1:100 to 1:1600 (vertically). (e) The viSNE plot in (c) color coded according to the specific antibody expression of four
antibodies (horizontally) in the combined samples according to titration levels (vertically), from the most diluted on the top
to the least diluted on the bottom.
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2.2. In-Depth Tissue and Cell Phenotyping of the Major TME Cell Populations

An analysis of the data from three patient samples dissociated by six different methods
resulted in the identification of 28 populations for further analysis. When all data were com-
bined, common infiltrating immune cell subsets were distinguishable, including three T cell
subsets (CD3+ cells), antigen-presenting cells (HLA-DR+ cells), macrophages/monocytes
(CD14+ cells), and granulocytes (CD11b+ cells) (Figure 2). Among the tumor cell clus-
ters identified, two separately clustered categories of cells were observed: tumor cells
expressing EpCAM, FOLR1, or both, with high expression of CD47 and those without high
expression of CD47 (total clusters n = 10). The most abundant stromal populations of the
three tumors included in the experiment were endothelial cells (PDGFRβ+), fibroblasts
(CD56+ cells), and cancer-associated fibroblasts expressing αSMA and FAPα (Figure 2).
A separate hierarchical cluster of immature or stem-like cell populations (n = 4) was iden-
tified, which expressed CD133, CD34, or both, as well as CD24, a marker found on both
immature leukocytes and ovarian cancer cells [24,25].
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Figure 2. Heatmap showing the hierarchical clustering of data based on the identification of the main cellular subsets
(tumor cells, stromal cells, immature or stem cells [CSC], and immune cells; y-axis) by the cellular expression of antibodies
(x-axis). Data were generated from all dissociated samples from three patients and illustrate the 28 most common cell
populations detected in the combined data set.
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Among the stem-like populations, one seems to be previously undetected in ovarian
tumors (the uppermost CSC cluster in Figure 2), where the cells express the stem cell
markers CD133, CD34, CD47 and the lymphocyte markers CD4 and CD8 but not CD3,
in addition to the tumor markers CD24 and EpCAM.

2.3. Phenotypic Differences between the Patient Samples

Data from the tumor tissues of three patients, with each tumor dissociated by six
separate methods, were combined, and the proportions of the main cell subsets were
compared. This showed that the cellular composition varied greatly across tumor tissues
(Figure 3). While patient 1′s tumor showed the presence of several CD45+ cell subsets
regardless of the dissociation method, the tumors of patients 2 and 3 only showed cell
expression of CD14+ leukocytes and HLA-DR positive cells, respectively. For the stromal
cell subsets, all dissociated tissues from patient 1 showed expression of αSMA, while this
marker was only found in tissues from patient 2 that were dissociated by the Miltenyi
cocktail (for either 1 h or 2 h.) and was not found in any of the tissue samples from patient 3.
Regarding the tumor cells, all dissociated tumors from all three patients contained cells
expressing EpCAM and CD47, with and without positive CD56 expression. However,
the EpCAM+ CD47+ CD56+ cell subset showed a method-independent higher number
of these cells (event count) in the tumor of patient 2. The cells with FOLR1 expression
were mainly found in the tumor tissues from patient 3, but the mechanically dissociated
tissue of patient 1 also contained this cell subset. Regarding the fibroblast subsets defined
as CD56+, those coexpressing CD47 were predominantly found in tumor samples from
patients 2 and 3, while the cell subset defined singly by CD56 expression was mainly found
in the mechanically dissociated tissues from all three patients.
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Figure 3. Hierarchically clustered heatmap showing variation in antibody expression (columns) in ovarian tissues from
three patients using six different tissue dissociation methods (rows): collagenase, collagenase, and trypsin, Miltenyi enzyme
mixture for 1 h, Miltenyi enzyme mixture for 2 h, collagenase and dispase, and mechanical dissociation. When the samples
were clustered hierarchically according to antibody expression, the mechanically dissociated (D6) Patient 1 tumor, marked *,
did separate from the rest of the samples and clustered between the samples from Patient 2 and Patient 3. The other samples
cluster according to patient rather than according to dissociation method applied to the tissue.
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2.4. Dissociation Method-Related Differences

In a hierarchical clustering of all samples, marker expression differed somewhat
between disparately treated tissues from the same patient, in accordance with the results
demonstrated in Figure 3. However, all but one mechanically dissociated sample (from
patient 1) clustered according to the patient from whom the sample originated rather than
according to the dissociating enzyme mixture used on the sample.

When the three main cellular subsets—the immune, stromal, and tumor cells—were ex-
amined separately in the combined patient pool, a dissociation method effect was reflected
in the resulting proportions of specific cell clusters that contributed to one main subset, as
illustrated by the stacked heatmaps in Figure 4b,d,f. Mechanically dissociated tissues and
single cells resulting from enzymatic dissociation by collagenase alone demonstrated lower
fractions of immune cluster 7 and stromal cluster 5 compared to cell suspensions generated
by the Miltenyi enzymatic cocktail (Figure 4c,e). For the stromal cluster 6 the opposite effect
was seen as the percentage of cells in this cluster was higher when tissues were treated
enzymatically by collagenase than by the Miltenyi cocktail for 2 h. Cells dissociated using
the mechanical dissociation method differed from those dissociated by most enzymatic
methods in terms of the expression of tumor cell clusters 2 and 4, while the expression
of tumor cell cluster 5 differed significantly between tissues treated enzymatically by col-
lagenase alone and those treated by the Miltenyi cocktail for two hours (Figure 4g). An
overview over the markers defining the cell clusters which were affected discordantly by
different dissociation methods (Figure 4c,e,g) can be found in Table S2.

An investigation of functional markers in each of the 28 identified main cell clusters
according to dissociation method showed no significant differences in the median marker
expression despite a trend toward lower expression in the mechanically dissociated tissues
compared to samples dissociated by other methods (Figure S6). The functional markers
demonstrated expression in cellular subsets similar to that commonly reported in the
literature; T cells and some tumor clusters expressed markers for immune checkpoints,
while tumor-associated fibroblasts (CD47+ CD56+ cells) and some tumor cell subsets
(CD47+ FOLR1+ cells) did not demonstrate any increased expression of functional markers.
Further analysis indicated mutually exclusive PD-1 expression on CD4-positive T cells and
PD-L1 expression on the population of CD14+ monocytes/macrophages.
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Figure 4. Differences in specific cell cluster proportions of the total cell population by dissociation method. (a) The pie chart
displays the proportions of the three different metaclusters—immune cells in red, stromal cells in green, and tumor cells in
blue—in three patients, out of a total of 300%. The graph is based on the pooled results from the six dissociation methods.
The patient-specific fractions of each metacluster are shown in the text boxes. (b,d,f) Stacked bar plots illustrate how the
identified clusters (color coded according to legend in (a)) within the metaclusters are proportioned in the combined patient
samples according to the dissociation method applied for (b) immune cells, (d) stromal cells, and (f) tumor cells. (c,e,g) Error
plots displaying the mean percentage of cells in the combined data from three patient samples with standard deviations.
The specific clusters included in the figure are those where significant differences between dissociation methods were found
by a two-way ANOVA analysis with Tukey’s multiple comparisons test. * p-value less than or equal to 0.05. ** p-value less
than or equal to 0.01. *** p-value less than or equal to 0.001. **** p-value less than or equal to 0.0001.
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3. Discussion

In solid cancers, the TME can promote immunosuppressive mechanisms, tumor vas-
cularization, growth, and metastasis [26–28]. The challenging heterogeneity and dynamic
nature of solid tumors, as well as the inherent chemo-resistance present in many tumors,
appear to be influenced considerably by the cellular composition of, and interactions within
the TME [26–28]. Consequently, a significant number of studies have been conducted to
identify predictive or prognostic markers in the TME of HGSOC using molecular meth-
ods [2,9,29–33]. Published research on the TME often focuses on one main cellular subset,
usually tumor cells or immune cells [4,7,13–16]. However, the impacts of cancer stromal
cells on clinical outcomes are also increasingly being investigated [2,34–36]. A more com-
prehensive mapping of the tissue composition of the TME could help reveal the phenotypic
diversity of tumors [7]. The development of a mass cytometry panel involves a step-by-step
optimization process [37,38]. In the recent past, several mass cytometry panels have been
developed to investigate a range of dissociated cancers [19,37,39–41], but only a few of these
publications have focused on the panel development process [19,37,42]. As all molecular or
analytical techniques entail inherent biases, an awareness of how the techniques contribute
to skewing results can prevent undetected weaknesses, facilitate more precise comparisons,
and improve the reproducibility of experiments. Here, we describe the development of a
CyTOF panel to identify the tumor, stromal, and immune cell subsets found in HGSOC
tissues, as well as potential novel cell subgroups. We also examine how different commonly
used methods for dissociating tumors into single cells in suspension can impact the results
of CyTOF analyses.

Dissociated tissues can be examined by multiparameter flow cytometry with a rela-
tively high cell throughput, but the overlapping emission spectra of the fluorescent dyes
restrict the possibility for simultaneous examination of over 20 antibodies, although new
methods are being developed to circumvent this restriction [43,44]. Histopathologic ex-
amination with immunohistochemistry analyses is another commonly applied method
used both clinically and in research to identify the cellular composition of tumors and
phenotype the cancer based on both morphology and antibody expression. While this
method provides spatial information that will be lost in analyses of disseminated tissues,
an advantage of the CyTOF method over both immunohistochemistry and flow cytometry
is that the cellular expression of over 30 antibodies can be examined simultaneously [45].

Only a few studies using the suspension CyTOF technique on tumor tissues have
been published. In our study, the fcs. file debarcoding process posed a major challenge, as
the data in the generated files represented a mix of cells with vastly varying cell sizes and
iridium content, which is not the case with data generated from experiments focusing on
PBMCs. Gonzalez et al. addressed this issue by writing a debarcoding algorithm to apply
to CyTOF data from HGSOC tumors [13]. For the current study, we manually debarcoded
each of the files separately to achieve a balance between including as many live cells as
possible from each sample and excluding debris. This process was performed using the
debarcoding tool in the Fluidigm software and adapting both the barcode separation and
Mahalanobis distance according to the barcode pattern seen in the files.

Gonzalez et al. developed a panel of 41 antibodies to interrogate the HGSOC tumor
compartment [13], while Toker et al. used a panel focusing on the infiltrating T cell
populations of the TME [14]. Each study interrogated specific compartments of the TME
in detail. By contrast, our panel provides a broader overview of the main populations
of the HGSOC TME. Like the other researchers, we were able to identify potential new
cellular subsets within the specific populations when the panel was used on HGSOC tissues.
Gonzalez et al. identified how tumor resistance to the chemotherapy drug carboplatin
differed in two novel vimentin-positive subpopulations according to the expression of
cMyc and human epididymis secretory protein 4 (HE4) [13]. Similarly, Casado et al. show
how specific, previously undescribed, tumor subsets seem to be associated with the disease
state. These subsets include cells with high expression of MUC1 and CD147, minimal
Ki67 enrichment, and low ERK1-2 signaling, which were found to be present in greater
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numbers in recurrent tumors than in samples from a primary treatment setting [16]. In
the present study, a previously undescribed stem-like cell subset is detected, expressing
the following markers: CD24, EpCAM, CD133, CD34, CD47, CD4, and CD8. As the study
cohort consists of only three patients, further validation of the finding in a larger patient
material is warranted. Furthermore, an exploration of how presence or distribution of this
cell subset associates with specific phenotypic outcomes, such as tumor resection rates or
progression-free intervals could add translationally applicable information.

Application of our panel enables the TME profiles of the individual patient to be dis-
tinguished, and it is hoped that further use of the method on different patient cohorts could
contribute to identifying how differences in TME composition impact clinical outcomes.
The results of this study illustrate a sufficient depth of phenotyping when the developed
CyTOF panel is applied to patient samples. For a more in-depth characterization of particu-
lar cell populations, possible solutions [13,14] include using dedicated panels with a focus
on specific cell subsets, increasing the sample sizes or combining different panels using
panel merging algorithms [6]. Combining the results from tumor analyses with clinical
data from prospectively collected biobanks and implementing the method in clinical trials
could increase its clinical translatability.

Our panel was optimized for single-cell suspensions obtained from primary tumor
samples, and the six dissociation methods were selected to cover the spectrum of regular
dissociation protocols applied to ovarian tumors [13,46]. In our study, we found that the
method of tissue dissociation affected the marker expression of a few subgroups within the
three major cell subsets. Similar effects on immune cells have been identified by Poláková
et al. [19], who compared dissociation of tonsillar carcinoma tissues by two collagenases
combined with Dnase 1. They found that the dissociation method significantly affected the
expression of major lymphocyte markers [19]. Leelatian et al. examined the cellular effects
of tumor dissociation methods on tissues from gliomas, tonsils, and melanomas and found
that disaggregation conditions affected the various cell populations differently [18]. The
observations from these studies and our own indicate that the lack of reproducibility of
results from tissue-focused CyTOF studies may be partly due to the application of different
tissue dissociation methods. Furthermore, our findings demonstrate the need for careful
selection of dissociation method to suit the study hypothesis when planning experiments,
as some markers of interest might be dimly or not expressed if particular dissociations are
used, which may lead to a failure to detect important cell subsets. In particular, the cell
subset-related results from studies applying mechanical dissociation of tissues needs to be
interpreted with caution.

There are several limitations to this study, including a lack of validation of the find-
ings by other methods. By adding more antibody-positive controls to the experiments,
particularly for the stromal markers, and allocating part of the tumor sample for immuno-
histochemistry examination of the fresh frozen tissue it would be feasible to validate the
presence of the cell subsets identified in the dissociated tumor samples. The sample size is
small, which might cause dissociation method-related differences to go undetected. Still,
with these three samples it was possible to detect changes in antigen expression in different
cellular subsets that are important to recognize when future studies applying dissociated
HGSOC tissues are planned.

In our experiment, we examined three patient samples dissociated by six different
methods to ensure that we would be able to detect the different main cell subsets and
investigate the potential impacts of the dissociation methods. The results of this study
demonstrate greater interpatient differences than intrapatient differences and confirm the
acknowledged tumor heterogeneity, as each patient sample displayed a unique combination
of tumor, immune, and stromal cells, regardless of the method used for tumor dissociation.
Several authors have illustrated the challenges of developing reliable diagnostic and
therapy-related methods that can be applied to heterogeneous cancer tissues [13,47–49].
The polyclonality and heterogeneity of HGSOC tumors, which has been established through
single-cell experiments [13,47–49], indicate a need for better profiling tools. Application
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of CyTOF in studies of HGSOC to detect cellular patterns rather than single biomarkers,
potentially in combination with genetic biomarkers and preclinical modeling systems may
provide breakthroughs. The CyTOF methodology has been extended during the last years,
with the introduction of a method that combines CyTOF with imaging to examine single
cells in tissue sections [50]. Thus, the adaptation of CyTOF panels for examination of solid
tissues by this combined method is ongoing. It is our hope that as an increasing number of
studies using imaging mass cytometry are published, concerns regarding the effects of the
tumor dissociation methods on data generation will be eliminated. Studies on the cellular
components of tumors and their impact on clinical outcomes often cannot be reproduced
and differences in methodology, and such tumor dissociation methods could be a factor
contributing to discrepancies in results. Hopefully, in future studies the variability in
antibody expression induced by the dissociation method will be considered during the
planning phase of new experiments.

4. Materials and Methods
4.1. Samples
4.1.1. Patient Sample Collection

We used samples from four patients with primary advanced HGSOC (Stages IIc–IIIc)
admitted to the Department of Obstetrics and Gynecology, Haukeland University Hospital
(HUS), Bergen, Norway. All samples were included in the Bergen Gynecologic Cancer
Biobank (GYNCAN). The tumor samples resected during primary debulking procedures
were obtained from the primary ovarian tumors and placed directly in Dulbecco’s Modified
Eagle’s Medium (DMEM) and transferred to the laboratory for immediate processing.
However, our experiments on dissociation method effects required sufficient tissue for the
application of six separate dissociation methods, which we could only obtain from three of
the four patients. Clinical and histopathological data on these three patients can be found
in the Table S3. Informed consent was obtained from the women before collection of the
tumor samples was initiated.

4.1.2. Ovarian Cancer Cell Lines

The human ovarian serous adenocarcinoma cell lines OV-90 (American Type Culture
Collection [ATCC]®CRL-11732 ™) and Caov-3 (ATCC®HTB-75 ™) were obtained from
ATCC, VA. The OV-90 cells were cultivated in RPMI 1640 medium, and the Caov-3 cells
were cultivated in DMEM medium. Both media were supplemented with 10% heat-
inactivated fetal calf serum (FCS), 2 mM L-glutamine, and penicillin 100 IU/mL (all from
Gibco, Thermo Fisher Scientific, Waltham, MA, USA). Cells were grown in 75 cm2 cell
culture flasks (Costar, MA, USA) at 37 ◦C in a humidified atmosphere with 5% CO2 and
subcultured twice a week. Single-cell suspensions were obtained by washing the cells
twice with phosphate buffered saline (PBS) (1:10 dilution of 10× stock PBS; Dulbecco’s
tablets, Oxoid Limited, Thermo Fisher Scientific, Waltham, MA, USA) before incubation
with trypsin (Gibco, Thermo Fisher Scientific). As a final step, cells were washed one last
time, freezing media (90% FCS and 10% dimethyl sulfoxide (DMSO) (Sigma Aldrich, St.
Louis, MO, USA)) was added, and the cells were cryopreserved.

4.1.3. Stem Cells

The CD34+ stem cells had been collected as part of the Research Biobank for Blood
Diseases (REC ID 2015/1759), HUS, Bergen, Norway, by a standardized process described
elsewhere [51].

4.1.4. Healthy Donor Peripheral Blood Mononuclear Cells (PBMCs)

Peripheral blood from healthy donors was collected at the Blood bank, Department
of Immunology and Transfusion Medicine, HUS, Bergen, Norway. The sampling was
approved by the REC (REC ID 2012/2247). The PBMCs were isolated by density gradient
centrifugation with Lymphoprep (Axis-Shield, Oslo, Norway), cryopreserved in 90% FCS
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and 10% DMSO and frozen in a Mr. Frosty container (Thermo Fisher Scientific) at −80 ◦C
for 24 h before being stored at −150 ◦C.

4.2. Stimulation of PBMCs

To enable identification of the optimal dilution of antibody markers for use in further
experiments, including markers expressed in activated cells only, all markers for immune
cells and immune checkpoints were titrated concomitantly on unstimulated and stimulated
PBMCs. Prior to stimulation, a batch of cryopreserved PBMCs were thawed, slow diluted
(1:12) in RPMI 1640 medium at room temperature, and pelleted at 300 g for 5 min. The cells
(3 × 106 cells/mL) were then resuspended in complete RPMI 1640 medium and incubated
for an hour at 37 ◦C in a humidified atmosphere with 5% CO2, prior to stimulation with
either phorbol 12-myristate 13-acetate (PMA) (25 ng/mL) and ionomycin (1 µg/mL) for
3 or 6 h, or 2.5 µg/mL phytohemagglutinin (PHA, Sigma Aldrich) and 100 IU/mL Human
Interleukin-2 (IL-2) Recombinant Protein (Gibco, Thermo Fischer Scientific) for 48 h under
the same incubation conditions. After stimulation, the cells were fixed using Stable-Lyse
and Stable-Store (Smart Tube Inc., San Carlos, CA, USA) as per the manufacturer’s protocol
(Protocol number: SLSSP1TF-150203).

4.3. Tumor Dissociation Methods

Each tumor piece was divided into cubes (1 mm3) using a sterile scalpel, and the cubes
were randomly assigned to dissociation methods. Tissue pieces were washed with either
Hanks’ Balanced Salt Solution (Thermo Fischer Scientific) or PBS and transferred to 50 mL
Falcon tubes filled with the respective pre-warmed (37 ◦C) enzyme mixtures. Each patient
tumor sample was treated by six different dissociation methods (Table 1): five enzymatic
and one mechanical (Mech). The enzymatic methods were collagenase II + calcium chloride
(CaCl2) (Coll), collagenase + CaCl2 + TrypLE (Coll+Try), Miltenyi for one hour (Mil 1 h),
Miltenyi for two hours (Mil 2 h), and collagenase + CaCl2 + dispase (Coll+Dis). The
enzymatic dissociations were performed (1) by collagenase type II (1 mg/mL, Gibco,
Thermofischer) in combination with CaCl2 (3 mM, Sigma Aldrich) for either two hours
without (Coll), or with (Coll+Try) TrypLE Express Enzyme (1×) added afterwards for
5–10 min with no phenol red (Thermo Fisher Scientific); (2) by collagenase for 1 h with
dispase (50 U/mL, Thermo Fisher Scientific) (Coll+Dis); or (3) by application of the Tumor
Dissociation Kit from Miltenyi Biotech (as per manufacturer’s recommendations) for either
1 h (Mil 1 h) or 2 h (Mil 2 h).

Table 1. The six tumor dissociation methods evaluated using the CyTOF panel.

Dissociations/
Conditions Primary Enzyme Duration Additional

Enzyme Duration

1. Coll Collagenase II + CaCl2 2 h

2. Coll+Try Collagenase II + CaCl2 2 h TrypLE 5 min

3. Mil 1 h Miltenyi 1 h

4. Mil 2 h Miltenyi 2 h

5. Coll+Dis Collagenase II + CaCl2 1 h Dispase 30 min

6. Mech Mechanical. − No enzyme added. - - -
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The tissue samples in the different enzyme mixtures were transferred to a 37 ◦C
incubator with 5% CO2 with continuous shaking at 250 rpm for the respective durations re-
quired for each dissociation method. Conventional mechanical dissociation (Mech, Table 1)
entailed fine mincing of the tissue with sterile glass slides. After tissue dissociation, all cells,
regardless of the dissociation method used, were strained through a 40 µm cell strainer,
checked for cell viability with trypan blue staining, centrifuged (300 g, 5 min, room tem-
perature), and cryopreserved in freezing media (90% FBS [Gibco] with 10% DMSO [Sigma
Aldrich]) in a Mr. Frosty container at −80 ◦C for 24 h before being stored at −150 ◦C.
The viability of cells in the dissociated tissues varied between patient samples and dis-
sociation methods, with the lowest fractions of viable cells after mechanical dissociation
(Table S4).

4.4. The CyTOF Panel

A 35-marker panel was developed with a focus on three components of the HGSOC tu-
mor microenvironment: tumor cells, immune cells, and stromal cells (Figure S1, Supplemen-
tary Material 1, Table S1). The markers included in the panel were selected after a review
of the literature. The associated metal conjugates were chosen based on information found
in the web-based application Maxpar Panel Designer (Fluidigm, Markham, ON, Canada).
Pre-conjugated antibodies (n = 24) were purchased from Fluidigm. For antibodies in the
panel that were unavailable in the pre-conjugated form, in-house conjugation of carrier-
free antibodies (n = 11) to metal-chelated polymers (Maxpar X8 Antibody Labeling Kits,
Fluidigm) was performed according to the manufacturer’s protocol (PRD002 Version 11).
The in-house-conjugated metal-labeled antibodies (Table S1, Supplementary Material 2)
were diluted to 0.5 mg/mL in antibody stabilization solution (CANDOR Bioscience GmbH,
Wangen, Germany) and stored at 4 ◦C.

4.5. Antibody Titration

All markers were initially validated and titrated on the ovarian cell lines OV-90 and
Caov-3 and on the CD34+ cells and unstimulated and stimulated PBMCs (Figure S2,
Figure S3, Supplementary Material 3). Then, the selected dilution of each marker in the
panel was validated on cell suspensions from four human tumor samples (Figure S4,
Supplementary Material 4). The provider, clone, and metal tag of each antibody and
the controls used for titrations are listed in the (Supporting Information Table S1). Next,
the selected dilutions of antibodies were further titrated on two primary tumor tissues
dissociated by collagenase [D1] and Miltenyi 1 h [D3], respectively, as well as on the
biobanked stem-cell-derived CD34+ cells and unstimulated and stimulated PBMCs. As a
final step, all markers in the panel were titrated on primary patient samples (n = 4), each
dissociated by one of the five methods: Coll [D1], Coll+Try [D2], Mil 1hr [D3], Coll+Dis
[D5], or Mech [D6].

To investigate the effects of the dissociation methods, 18 barcoded samples (three
patients with six dissociated samples per patient) and two barcoded controls (OV-90 cells
and unstimulated PBMCs) were resuspended in cell staining buffer (CSB), pooled, pelleted,
and washed twice with CSB at 800 g for 4 min at 4 ◦C.

4.6. Sample Preparation for Mass Cytometry Analysis

All analyzed samples were treated in the following way: Cryopreserved samples from
the single-cell suspensions from the different dissociations and the control cells (OV-90,
Caov-3, and from unstimulated and stimulated PBMCs) were rapidly thawed in a water
bath, diluted (1:10) in their respective culture media, and centrifuged at 300 g for 5 min
at room temperature. To assess cell viability, 5 µM of Cell-IDTM Cisplatin (Fluidigm) was
added to each sample for 60 s, before the effect of the cisplatin was quenched by Maxpar
CSB (Fluidigm) and the cells were fixed according to the Stable-Lyse and Stable-Store
protocol (No: SLSSP1TF-150203). The samples were counted and 1–3 × 106 cells from
each sample were barcoded using the 20-plex metal barcoding kit (Fluidigm) as per the
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Fluidigm user guide (version PN PRD023 B1). All the following steps were conducted at
room temperature. For extracellular staining, samples were incubated with FcR blocking
reagent (Miltenyi Biotec) at 1:10 dilution for 20 min, followed by antibody staining with
50 uL of a mixture containing CSB and 33 antibodies per 50 µL of cell sample (1:1 ratio) for
20 min. Cells were then washed twice at 800 g with CSB before 1 mL of methanol was added
to each sample. The samples were incubated for 15 min, after which cells were washed
twice with CSB and the pellets resuspended with CSB to a total of 50 µL. Then, 50 µL
of the intracellular antibody cocktail containing antibodies against FoxP3 and interferon
gamma was added to each sample to a ratio of 1:1, and the samples were incubated for
30 min. Cells were then washed twice at 500 g with CSB prior to resuspension for 1 h in
1 mL (125 nM/mL) of Cell-ID Intercalator-Ir (Fluidigm). After washing (800 g, 4 min) once
with CSB and once with PBS, samples were diluted to 1 × 106 cells/mL in Maxpar Cell
Acquisition Solution containing 10% of EQ™ Four Element Calibration Beads (all reagents
from Fluidigm) and run sequentially on a Helios mass cytometer (Fluidigm) through a
wide bore injector system (Fluidigm).

4.7. Data Analysis

The .fcs files resulting from the mass cytometry experiments were normalized using
internal bead standards, and the normalization algorithm in the CyTOF software v.6.7
(Fluidigm) was conducted before further analysis.

4.7.1. Initial Gating and Debarcoding

Using analysis tools from the Cytobank platform (v7.2.0 and v7.3.0, Beckman Coulter,
Inc., Indianapolis, IN, USA), initial gating of live singlets was performed using manual
gating according to the four Gaussian parameters: center, width, offset, and residual [22].
Files were debarcoded with a 20-plex-debarcoding key (Fluidigm) using the Premessa de-
barcoder GUI package (https://github.com/ParkerICI/premessa, accessed on 4 December
2018) in R (version R 3.4.1 GUI 1.70 El Capitan build (7375)).

4.7.2. Visualization Methods

T-Distributed Stochastic Neighbor Embedding (tSNE) is a nonlinear dimensionality
reduction algorithm that reduces high-dimensional data down to two dimensions for easy
visualization and rapid exploratory data analysis of any data type [13,52]. To visualize
the expression pattern of the panel markers in two dimensions, tSNE maps were plotted
in Cytobank (Figure 1b,d). The main cell populations were defined by manual gating
according to marker expression and overlaid on the corresponding tSNE plot (Figure 1b).

To further compare the effects of the six dissociation methods on the individual panel
markers (and interpatient differences in the individual markers), live singlet cells were
gated out according to the Gaussian parameters after CATALYST debarcoding of .fcs files.
All live single cells from all files generated from the dissociated patient samples (n = 18)
were then grouped separately according to the dissociation method and patient tissue
used, and histograms displaying x/5 arcsin-transformed median expression of marker
distributions were plotted in MATLAB v.R2019a (The MathWorks Inc., Natick, MA, USA)
(Figure S5).

4.7.3. Clustering

Debarcoded files containing the live single cells were concatenated for the purpose
of unsupervised clustering according to cellular phenotypical resemblances by a density-
based clustering method called X-shift (VorteX, Java version 1.0) [23]. X-shift finds the local
density maxima of each data point (cell event), which becomes the cell cluster centroid in a
nearest neighbor graph, using the weighted K-nearest-neighbor density estimation in a
multidimensional marker space. The K value was automatically selected as 28 from the
elbow point in a number of cell clusters versus K plot, with the software merging clusters
by a Mahalanobis distance of less than 2.0.
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4.7.4. Bar Plots and Pie Charts

To visualize the differences in the percentage of the cell clusters between the tumor
dissociation conditions for the different patients, Prism (6.0c version; GraphPad) was used
to plot stacked bar plots in an XY table format using the clustering data obtained from
X-shift (Figure 4). Prism software was also used to generate pie charts and compare cell
subset fractions according to dissociation method (Figure 4).

4.7.5. Heatmaps and Cox Proportional-Hazards Models

Heatmaps were generated in X-shift to efficiently visualize patterns and relationships
in the high-dimensional mass cytometry data from the differently dissociated tumors.
Using proportional numbers of live single cells from all the quality-controlled files, X-shift
identified 91 cellular subsets. To enable identification of dissociation method effects on
the main cellular subsets and their marker expression, all clusters constituting an average
of <0.5% of the total cell numbers of each sample were excluded from further analyses.
Based on the resulting 34 clusters, a hierarchically clustered heatmap was generated, and
the cellular subsets that deviated only according to HLA-DR expression (n = 6 pairs) were
manually merged. This resulted in 28 clusters on which the analyses were performed.

Arcsin-transformed dual counts of the median expression of functional markers in the
panel were investigated using Cox proportional-hazards models for the cellular populations
according to dissociation method (Figure S6).

5. Conclusions

The TME must be better understood if survival rates are to be improved for HGSOC.
New tools for phenotypic characterization are necessary, especially when information on
all the different components of the TME is needed at a single-cell resolution. This study
describes how a 35-marker CyTOF panel for single-cell suspensions of HGSOC tissues can
be used to define the three main parts of the TME. The study also provides an overview
of the effects of dissociation methods on the cell subsets. The results show that the panel
will be useful for investigating HGSOC tumors. Further, this study demonstrates how the
reproducibility of study outcomes can improve if researchers take appropriate measures
when generating single-cell suspensions. A combinatorial analysis method, such as that
presented here, could replace single phenotype biomarker approaches and make it possible
to identify treatment options in a more refined and personalized way.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-6
694/13/4/755/s1, Figure S1: Overview of ovarian mass cytometry panel development, Figure S2:
Antibody staining on unstimulated and PHA-stimulated PBMCs, Figure S3: Stromal and tumor
panels were titrated on ovarian cancer cell lines and a mixture of the patient samples, Figure S4:
Panel validation on pooled patient data, Figure S5: Histograms illustrating antibody expression
according to three separate patient samples, Figure S6: Cox proportional-hazard models of median
expression of the functional markers. Table S1: Overview of antibodies and metal conjugates (Tags)
included in the HGSOC TME-based mass cytometry by time-of-flight (CyTOF) panel, the positive
and negative controls used for each antibody, and the final antibody dilutions that should be applied
to tissues, Table S2: Antibody-expression of the cell clusters significantly affected by the different
dissociation methods, Table S3: Overview of the patient cohort (n = 3), Table S4: Viability of the cells
in the dissociated tissues. For each patient sample and the six dissociation methods the percentage of
dead cells in the sample is listed. The viability was measured directly after dissociation of the tumor
before freezing.
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Figure S1. Overview of ovarian mass cytometry panel development. 

 

Figure S2. Antibody staining on unstimulated and PHA-stimulated PBMCs. On the left are the markers 

defined as immune checkpoints in this experiment, the associated metal tags, and the final dilutions 

selected for further experiments. On the right are the overlaid histograms for each marker in the relevant 

cell subsets (horizontally) according to dilution (vertically) from the lowest uppermost in the figure to 
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the highest lowermost, alternating between expression demonstrated in unstimulated (Unstim) PBMCs 

and stimulated (Stim) PBMCs. 

 

 

Figure S3. Stromal and tumor panels were titrated on ovarian cancer cell lines and a mixture of the 

patient samples. Since the stromal marker fibroblast activation protein alpha (FAPα; left) demonstrated 

good signals at all dilutions in the patient sample, a lower dilution of 1:800 was selected for this marker. 

The tumor markers folate receptor (FOLR1; center) and epithelial cell adhesion molecule (EpCAM; 

right) showed decreasing marker expression with higher dilutions. Still, as the antibodies were 

expressed at the high dilution (1:1600), this was selected for these markers. 

 

Figure S4. Panel validation on pooled patient data. The antibody panel was applied to a pool of 

dissociated patient tumors (n = 4, each dissociated by a different method) with the antibodies diluted 

according to the results from the previous titration steps. The generated CyTOF data were analyzed in 

Cytobank, and a heatmap was generated. The main cell subsets (vertically) were defined according to 

cellular antibody expression (horizontally). The major immune phenotypes (CD45+ cells) were 

identified, including CD8+cytotoxic T cells, CD4+ T helper cells, CD20+ B cells, and HLA DR+ antigen-

presenting cells. Stromal and tumor cells were also identified. 
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Figure S5. Histograms illustrating antibody expression according to three separate patient samples. 

Marker distribution per patient is displayed for all conditions. Probability density function of each 

marker show distribution differences across patients for all conditions. The x-axis represents marker 

expression values arcsin-transformed using a cofactor of 5. The marker expression range is limited to 

between 0.1 and 6 (ignoring the zero peak for visualization purposes). The y-axis represents the 

probability density, which is the occurrence frequency for different marker expression values. (This is 

enclosed as a separate file due to size.) 

Figure S6. Cox proportional-hazard models of median expression of the functional markers. (This is 

enclosed as a separate file due to size.) 

Table S1: Overview of antibodies and metal conjugates (Tags) included in the HGSOC TME-based mass 

cytometry by time-of-flight (CyTOF) panel, the positive and negative controls used for each antibody, 

and the final antibody dilutions that should be applied to tissues 

Markers  Clone Tag Positive 

control 

Negative 

control 

Dilution 

CD8a RPAT8 146Nd PBMC OV90luc+ and 

CAOV3luc+ 

 1:400 

CD4 RPAT4 145Nd PBMC OV90luc+ and 

CAOV3luc+ 

 1:100 

CD3 UCHT1 170Er PBMC OV90luc+ and 

CAOV3luc+ 

1:6400 

CD45RO UCHL1 164Dy PBMC OV90luc+ and 

CAOV3luc+ 

1:200 

HLA-DR L243 174Yb PBMC OV90luc+ and 

CAOV3luc+ 

1:6400 

CD20 2H7 147Sm PBMC OV90luc+ and 

CAOV3luc+ 

1:50 

CD25 2A3 167Er PBMC OV90luc+ and 

CAOV3luc+ 

1:50 

CD56 NCAM16.2 163Dy PBMC OV90luc+ and 

CAOV3luc+ 

 1:12800 

CD19 HIB19 169Tm PBMC OV90luc+ and 

CAOV3luc+ 

1:200 

CD14 M5E2 160Gd PBMC OV90luc+ and 

CAOV3luc+ 

 1:200 

CD11b  ICRF44 209Bi PBMC OV90luc+ and 

CAOV3luc+ 

 1:400 

CD45 HI30 89Y PBMC OV90luc+ and 

CAOV3luc+ 

 1:1600 

CD103 BER-ACT8 151Eu PBMC OV90luc+ and 

CAOV3luc+ 

 1:200 

CD47* CC2C6 153Eu PBMC OV90luc+ and 

CAOV3luc+ 

 1:12800 

PD1/CD279 EH12. 2H7 155Gd Stimulated 

PBMC 

PBMC  1:100 

PD-L1/CD274 29E.2A3 159Tb Stimulated 

PBMC 

PBMC  1:200 

CTLA-4/CD152 14D3 161Dy Stimulated 

PBMC 

PBMC  1:200 
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TIM-3 F38-2E2 154Sm Stimulated 

PBMC 

PBMC  1:50 

LAG-3/CD223 11C3C65 150Nd Stimulated 

PBMC 

PBMC  1:50 

OX40/CD134* Ber-ACT35 

(ACT35) 

165Ho Stimulated 

PBMC 

PBMC  1:100 

Foxp3 259D/C7 162Dy Stimulated 

PBMC 

PBMC  1:800 

IFNg  B27 168Er OV90luc+ and 

CAOV3luc+ 

PBMC  1:50 

CD34 581 148Nd OV90luc+ and 

CAOV3luc+ 

PBMC  1:3200 

CD73* AD2 172Yb OV90luc+ and 

CAOV3luc+ 

PBMC  1:1600 

CD24 ML5 166Er OV90luc+ and 

CAOV3luc+ 

PBMC  1:200 

CD44* BJ18 152Sm OV90luc+ and 

CAOV3luc+ 

PBMC  1:400 

CD133* 5-E3 (5E3)  142Nd OV90luc+ and 

CAOV3luc+ 

PBMC  1:200 

CD117  104D2 143Nd OV90luc+ and 

CAOV3luc+ 

PBMC  1:50 

EpCAM/CD326 9C4 141Pr OV90luc+ and 

CAOV3luc+ 

PBMC  1:6400 

TAG72* 0.N.561 149Sm OV90luc+ and 

CAOV3luc+ 

PBMC  1:50 

FOLR1* 548908 158Gd OV90luc+ and 

CAOV3luc+ 

PBMC  1:6400 

PDGFRB/CD140b 18A2 156Gd OV90luc+ and 

CAOV3luc+ 

PBMC  1:50 

FAPalpha* F11-24 176Yb OV90luc+ and 

CAOV3luc+ 

PBMC  1:800 

aSMA* 1A4 175Lu OV90luc+ and 

CAOV3luc+ 

PBMC  1:6400 

AXL* MM0098-

2N33 

171Yb OV90luc+ and 

CAOV3luc+ 

PBMC  1:200  

*In-house conjugated antibodies 

 

Table S2 Antibody-expression of the cell clusters significantly affected by the different dissociation 

methods 

Cluster name Antigen expression 

Immune cluster 7 CD45+HLA-DR+CD14+ 

Stromal cluster 5 EpCAM+CD47+PDGFR+FOLR1+CD56+CD24+ 

Stromal cluster 6 EpCAM+CD47+CD56+ 
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Tumor cluster 2 EpCAM+CD47+FOLR1+ 

Tumor cluster 4 EpCAM+CD47+ 

Tumor cluster 5 - Cancer stem cells CD34+ 

 

Table S3 Overview of the patient cohort (n = 3). 

Patient  Age Stage Morphology Chemonaïve 
Progression-free 

survival (days) 
Status 

1 71 IIIc 

High-grade serous 

ovarian 

adenocarcinoma 

No 1516 

Alive 

without 

disease 

2 61 IIc 

High-grade serous 

ovarian 

adenocarcinoma 

Yes 449 
Alive with 

disease 

3 69 IIIc 

High-grade serous 

ovarian 

adenocarcinoma 

Yes 549 

Alive 

without 

disease 

 

Table S4. Viability of the cells in the dissociated tissues. For each patient sample and the six dissociation 

methods the percentage of dead cells in the sample is listed. The viability was measured directly after 

dissociation of the tumor before freezing. 

 

Patient Collagenase Collagenase 

+ trypsin 

Miltenyi 1 

hr 

Miltenyi 2 

hrs 

Dispase Mechanical 

1 5.6 6.56 5.1 5.9 4.5 11.9 

2 15 14 19 16 14 30 

3 3.99 8.1 9.65 24.8 8.56 35.7 

 

Supplementary Material 1. Marker selection and panel design 

A 35-antibody HGSOC panel focusing on cellular components of the tumor microenvironment was 

developed using markers selected on the basis of a literature review and designed with the panel 

designer (Fluidigm, CA). The panel comprised three major categories: tumor, stromal, and immune 

markers. These included 33 surface antibodies and two intercellular antibodies. The 33 selected surface 

markers included general immune lineage markers (n = 15), ovarian stromal, tumor, and stem cell 

markers (n = 12 ), and immune checkpoint antibodies (n = 6). Pre-conjugated antibodies (n = 24) were 

purchased from Fluidigm (Supplementary Table 1). 
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Supplementary Material 2. In-house antibody conjugation to rare metals 

 

Apart from the 24 pre-conjugated antibodies purchased, a total of 11 antibodies were successfully 

conjugated in house. In-house conjugation of carrier-free antibodies (n = 11) to metal-chelated polymers 

(MaxPAR antibody conjugation kit, Fluidigm) was performed according to the manufacturer’s protocol 

(PRD002 Version 11). The in-house conjugated metal-labeled antibodies were diluted to 0.5mg/mL in 

antibody stabilization solution (CANDOR Biosciences, Wangen im Allgäu, Germany) and stored at 4C 

until required. 

Supplementary Material 3. Ex vivo stimulation of peripheral blood mononuclear cells 

Immune checkpoint antibodies were titrated on stimulated peripheral blood mononuclear cells 

(PBMCs). Prior to stimulation, a batch of cryopreserved PBMCs (collected from healthy donors, as 

mentioned above) were thawed, slow diluted (1:12) in RPMI 1640 media at room temperature, and 

pelleted at 300 g for 5 minutes. The cells (3 × 106 cells/mL) were then resuspended in complete RPMI 

1640 medium supplemented with 10% FCS, 2 mM L-glutamine, penicillin 100 IU/mL, and 100U/mL 

Interleukin-2 (IL-2) (Gibco, Thermo Fischer Scientific) and incubated for an hour at 37 C in a humidified 

atmosphere with 5% CO2, prior to stimulation with 2.5 g/mL phytohemagglutinin (PHA, Sigma 

Aldrich) for 48 hours under the same incubation conditions. After stimulation, the cells were fixed using 

Stable-Lyse and Stable-Store (Smart Tube Inc., CA) as per the manufacturer’s protocol (Protocol 

number: SLSSP1TF-150203). Healthy non-stimulated PBMCs used for titrations were fixed following 

the same protocol. 

Supplementary Material 4. Panel titration and validation 

 



 7 

The 35-antibody panel was split into smaller titration panels (immune, stromal/tumor). Two main 

criteria were included in the design of these titration panels, namely, antibodies with the same metal 

tags were excluded, and the corresponding M1 and +16 channels were left open and empty to avoid 

spillovers and oxide interference. 

Initially, a backbone panel with common immune lineage markers was designed, and the rest of the 

panel was built on this. Immune antibodies were titrated on unstimulated PBMCs and PBMCs 

stimulated by either phorbol 12-myristate 13-acetate (PMA) (25 ng/mL) and ionomycin (1ug/mL) for 3 

or 6 hours or 2.5 g/mL phytohemagglutinin (PHA) and 100 IU/ml Human Interleukin-2 (IL-2) 

Recombinant Protein. The immune checkpoint antibodies were titrated successfully when applied to 

unstimulated and stimulated PBMCs (Figure S2). 

Supplementary Material 5. Expression of functional markers 

The median expression of each of the functional markers included in the panel was evaluated using Cox 

proportional-hazard models to investigate whether expression levels within the cell populations 

differed significantly when the six different dissociation methods were applied to the same tissues 

(Supplementary Figure S6). 
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