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Abstract

This thesis focuses on two interrelated projects. The first project concerns the study of biel-
liptic surfaces, their Brauer groups and the pullback maps from their Brauer groups to those
of their canonical covers. We prove results classifying injectivity and triviality of these maps.
In order to do this, we provide some results of a very classical flavor: first we give gener-
ators for the torsion of the second integral cohomology of bielliptic surfaces, and secondly
we give structure theorems for the Picard group of the product of two elliptic curves.

The second project revolves around the study of the twisted derived category of bielliptic
surfaces. We expose some of the structure of these derived categories, and prove that an
untwisted bielliptic surface does not admit any twisted Fourier-Mukai partner. This is done
utilizing the results of the first part and the geometry of moduli spaces of sheaves.
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Chapter 1

Introduction

By the celebrated Gabriel-Rosenberg reconstruction theorem ( [Ros98]), a smooth projective
variety X is completely determined up to isomorphism by its abelian category of coherent
sheaves. By looking at chain complexes and inverting quasi-isomorphisms, we can construct
the (bounded) derived category Db(X) of X. Generally accepted as the right framework for
any type of derived functors and the like, this invariant was considered as a rather formal
object initially. It wasn’t until S. Mukai’s original paper [Muk81] and subsequent ones,
where geometrically motivated equivalences were constructed between non-isomorphic va-
rieties, that one began to see the interesting and geometric internal structure of this object.
More specifically, Mukai showed in [Muk81] that the Poincaré bundle over the product of an
abelian variety and its dual, A� Â, gave an equivalence of A with Â on the level of derived
categories. The functor here is given by

FP : Db(Â) ! Db(A)

by the formula
FP(�) = Rp�(P 
L q�(�)),

where p and q are the natural projections from A� Â and P denotes the Poincaré bundle.
This naturally prompted the question and investigation of under which conditions two

varieties would produce an equivalence of their derived categories, and, more generally,
what geometric information the derived category could encode. As is clear from Mukai the
derived category as an invariant is coarser and less rigid than the underlying category of
coherent sheaves, but at the same time it turns out to be a rather reasonable invariant.

As an important and famous example, Bondal and Orlov showed in [BO01] that varieties
with ample or anti-ample canonical bundle are completely determined by the derived cate-
gory. This relies on the fact by Orlov that all equivalences come from geometry in the sense
that they are of the same form as Mukai’s equivalence above. That is, given an equivalence
F : Db(Y) ! Db(X) between varieties X and Y, there is an object P 2 Db(Y � X) such
that F is isomorphic to FP (�) = Rq�(P 
L q�(�)). These are then called Fourier-Mukai
transforms, and X and Y are called Fourier-Mukai partners.

More generally, the dimension of a variety, order of the canonical bundle and nefness of
the canonical bundle are all examples of derived invariants, that is of properties that do not
change under derived equivalence. An idea and a heuristic in the study of derived equiva-
lences is that it allows one to replace a problem about sheaves on one variety with another
problem involving sheaves on a different variety. In some cases an equivalence of derived
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categories is produced, as in the case of surfaces, where we have the following result from
Bridgeland and Maciocia:

Proposition 1.0.1 (Bridgeland-Maciocia). Let X be a smooth projective surface with a
�xed polarization, and let Y be a smooth, �ne, complete, two-dimensional moduli space of
special, stable sheaves on X. Then there is a universal sheaf P on Y�X and the associated
functor FP : Db(Y) ! Db(X) is an equivalence.

Indeed, this result is used to great effect in the complete classification of surfaces in terms
of derived equivalence.

Theorem 1.0.2 (Bridgeland-Maciocia). Let X be a smooth projective surface and Y a
smooth projective variety. If Db(X) ' Db(Y), then X ' Y unless

� X is a K3 or an abelian surface. Then Y is also a K3 or abelian surface, and it is
isomorphic to a moduli space of sheaves on X.

� X is an elliptic surface of Kodaira dimension 1. Then Y is isomorphic to a relative
Jacobian JX(b) of X.

Moreover, the set of such Y's are �nite.

The caveat in examples such as these is that the moduli spaces of sheaves considered are
fine, i.e., there is a universal sheaf on the product that induces the equivalence. Relaxing this
condition brings us, potentially, into the territory of twisted sheaves.

To motivate this, consider a moduli space M of semistable sheaves on a variety X. For
M to fail being fine, it could be the case that some points of M represent more than one semi-
stable sheaf on X. However, even if this is not the case, a universal sheaf may not exist. A
reason for this is that, while universal sheaves exist locally, they fail to glue well along all
of M. Informally, twisted sheaves can be considered as a bunch of local sheaves together
with glueing isomorphism with the defect that they ”don’t quite match up’. And indeed, the
failure of the local universal sheaves glueing properly along all of M makes them into such
sheaves.

Being a little bit more precise (we will study this in more detail in 2.4), suppose we have
a variety X and an element a in the Brauer group of X (roughyl the same as the cohomology
group H2(X,O�

X)), represented by a Čech 2-cocycle on some open (analytic if over C, étale
otherwise) covering fUig. An a-twisted sheaf is then a collection

(fFig, ffijg)

consisting of sheaves Fi on Ui, together with isomorphisms

fij : FjjUi\Uj
! Fi jUi\Uj

satisfying the usual glueing conditions except over the triple intersections, where

fij � fjk � fki = aijk � id .

This condition is what we see as ”failing to glue properly”. Bringing this back to our moduli
space, as observed by Căldăraru in his thesis, there is an analytic or étale open covering
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fUig of M with local universal sheaves Pi over each X � Ui together with isomorphism
fij : PjjUi\Uj

! Pi jUi\Uj
making the collection (fPig, ffijg) into a p�

Ma-twisted sheaf for
an a 2 H2(M,O�

M).
Proceeding in general, one naturally turns these twisted sheaves into an abelian category

Coh(X, a) of a-twisted sheaves. As in the case of usual sheaves, this category completely
determines X up to isomorphism, and one can take construct the (bounded) derived category
Db(X, a) in the same way as before. The question then becomes, what does this category
entail? What does it encode of X?

Less is done and less is known in the case of twisted derived equivalences. Noteworthy
to mention for our purposes is that all twisted equivalences are on the same geometric form
as the untwisted ones due to Canonaco-Stellari, and the analogous classification of surfaces
done byNavas in his thesis [Nav10], where he shows that some of Bridgeland andMaciocia’s
result, along with other general results, carry over to the twisted setting.

Proposition 1.0.3 (Navas). Let X be surface of general type and Y a smooth projective
variety. If Db(X, a) ' Db(Y, b), then X ' Y.

For surfaces of Kodaira dimension 1, denote by M(v) the moduli space of stable sheaves
with Mukai vector v. Then

Proposition 1.0.4 (Navas). Let p : Y ! C be a relatively minimal elliptic surface with
Kodaira dimension 1, and let F : Db(X, a) ! Db(Y) be an equivalence. Then there exists
a Mukai vector v = (0, r f , d) such that gcd(r, d) = 1 and X ' M(v)

For surfaces of Kodaira dimension �¥ there are no twistings possible (as the coho-
mological Brauer group is trivial), so the result remains. Other results carry over more or
less verbatim such as invariance of dimension, order of canonical bundle, a lot of the inter-
nal structure, invariance of canonical rings among other things as demonstrated by Navas.
The case of Enriques surfaces is covered by Addington and Wray in [AW18]. For K3 and
abelian surfaces, much work has been done by Căldăraru, Huybrechts, Stellari et.al, but as
of this writing and this authors knowledge, a complete result such as the one provided by
Bridgeland-Maciocia together with a Twisted Derived Torelli Theorem is not fully settled.
When twisted sheaves get involved, the framework surrounding these investigations typi-
cally change enough to make murkier waters.

Another missing type of surface in this classification are the bielliptic ones. A biellip-
tic surface S occurs as a quotient of the product A � B of elliptic curves by a finite group
G acting on A by translations and on B by automorphisms such that B/G ' P1. In the
Enriques-Kodaira classification they fill up the spot of minimal smooth surfaces with Ko-
daira dimension k(S) = 0, irregularity q(S) = 1 and geometric genus pg(S) = 0. By
Bridgeland-Maciocia, the derived category completely determines S up to isomorphism, and
one could ask if this remains true in the twisted case. This is where we come in in the last
chapter of this thesis, where we conjecture the following.
Conjecture 1.0.5. Complex bielliptic surfaces do not admit non-isomorphic twisted Fourier-
Mukai partners.

The original approach to this problem relied on the lifting property of derived equiv-
alences between varieties that are étale cyclically covered by another variety. Namely,
given varieties X and Y with étale cyclic coverings pX : X̃ ! X and pY : Ỹ ! Y, if
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F : Db(Y, a) ! Db(X, b) is an equivalence, under mild conditions often realized in prac-
tice, there is an equivariant lifting eF : Db(Ỹ,p�

Ya) ! Db(X̃,p�
Xb) fitting in to a commuting

diagram

Db(Ỹ,p�
Ya) Db(X̃,p�

Xb)

Db(Y, a) Db(X, b).

eF
pY� pX�

F

p�
Y p�

X

Since the order of the canonical bundle of a bielliptic surface S is finite, such an étale
cyclic covering of degree equal to this order exists, and is called the canonical cover of S. To
use this lifting property it becomes of interest to understand the induced pullback maps on
Brauer groups: For a bielliptic surface S with canonical cover p : X ! S, the Brauer map
is the induced map pBr : Br(S) ! Br(X). Asking the properties of this map leads us into a
jungle of its own, and is the content of the third chapter this thesis.

1.1 New results

Let us highlight some of the new results obtained in this thesis. The thesis is organized into
three parts. The first part is a short preliminary part, exposing some of the theory of bielliptic
surfaces, canonical covers, Brauer groups, the norm map and twisted sheaves. The second
part involves the study of the aformentioned Brauer map pBr : Br(S) ! Br(X) induced by
the canonical cover p : X ! S. We characterize when this map is injective and when it is
trivial. The first step in studying this map is to understand the Brauer group of S, which is
isomorphic to the torsion of H2(S,Z). Bielliptic surfaces comes with two elliptic fibrations
aS : S ! A/G and g : S ! B/G ' P1, and using the multiple fibers of g, we find the
generators of the torsion subgroup.

Proposition 1.1.1. Let S = A � B/G be a bielliptic surface. Denote by Di the reduced
multiple �bers of g : S ! P1 with the same multiplicity. Then the torsion of H2(S,Z) is
generated by the classes of di�erences Di � Dj for i 6= j.

From here we base our investigation on a result of Beuville (Proposition 2.3.3) which de-
scribes the kernel of the Brauer map as the quotient KerNm/(1� s�)Pic(X), where
Nm: Pic(X) ! Pic(S) is the norm map and s is the induced action on X. It then be-
comes important to understand the action of s� on Pic(X). When X ' A � B, Pic(X) '
Pic(A)� Pic(B)�Hom(B, A), and we show the following structure theorem for the Hom-
part of Pic(X).

Theorem 1.1.2. Let A and B be two isogenous elliptic curves with j(B) = 0 or j(B) = 1728.
Then there exists an isogeny y : B ! A such that

Hom(B, A) = hy,y � lBi.

This is used to give a good description of Neron-Severi group in the end of Section 3.2. Our
investigation then proceeds to study the Brauer map proper, and we split the investigation
into different parts according to the type of S (Table 2.1) and the properties of the elliptic
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curves A and B. Since the notation gets rather involved in some of our results, wewill include
some easier to state results here and refer the reader to Chapter 3 for the full account. First,
considering bielliptic surfaces of type 2 or 3, these admit a degree 2 étale cover p̃ : S̃ ! S
where S̃ is a bielliptic surface of type 1. Then we have

Theorem 1.1.3. (a) If S is of type 2, then p̃Br : Br(S) ! Br(S̃) is trivial.

(b) If S is of type 3, then p̃Br : Br(S) ! Br(S̃) is injective.

As another example, the Brauer map of the general bielliptic surface is injective, as seen in
the following result.

Theorem 1.1.4. Given a bielliptic surface S, let p : X ! S be its canonical cover. If the
two elliptic curves A and B are not isogenous, then the pullback map

pBr : Br(S) ! Br(X)

is injective.

In the third and final part of this thesis we study twisted derived equivalences of bielliptic
surfaces, ending with a short informal discussion of where to proceed from there. Our main
result here is the fact that an untwisted bielliptic surface does not admit any twisted Fourier-
Mukai partner.

Theorem 1.1.5. Let X be a complex bielliptic surface, and let Y be a complex smooth
projective variety, and take two Brauer classes a and b on X and Y respectively, such that
there is an exact equivalence F : Db(X, a) �! Db(Y, b). If either a or b is trivial then
they are both trivial and furthermore X and Y are isomorphic.
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Notation. We are working over the �eld of the complex numbers C. If X is a complex
abelian variety over C, and n 2 Z, then X[n] will denote the subscheme of n-torsion points
of X, while nX : X ! X will stand for the "multiplication by n isogeny". Given x 2 X a
point, then the translation by x will be denoted as tx. In addition, if dimX = 1 � that is, X
is an elliptic curve � then Px will be the line bundle OX(x� p0) ' t��xOX(p0)
OX(�p0)
in Pic0(X), where p0 2 X is the identity element.

For any smooth complex projective variety Y we will denote the identity homomorphism
as 1Y (or simply 1 if there is no chance of confusion), while KY and wY will stand for the
canonical divisor class and the dualizing sheaf on Y, respectively. If D and E are two
linearly equivalent divisors on Y we will write D � E; in addition OY(D) will denote the
line bundle associated to the divisor D.



Chapter 2

Preliminaries

2.1 Bielliptic Surfaces

A complex bielliptic (or hyperelliptic) surface S is a minimal smooth projective surface over
the field of complex numbers with Kodaira dimension k(S) = 0, irregularity q(S) = 1, and
geometric genus pg(S) = 0. By thework of Bagenera–De Franchis (see for example [Bad13,
10.24-10.27]), the canonical bundle wS has order either 2, 3, 4 or 6 in Pic(S), and S occurs
as a finite étale quotient of a product A� B of elliptic curves by a finite group G acting on
A by translations and on B such that B/G ' P1. More precisely we have the following
classification result.

Theorem 2.1.1 (Bagnera�De Franchis [BDF10], [Suw69, Theorem at p. 473], [BM77, p.
37]). A bielliptic surface is of the form S = A� B/G, where A and B are elliptic curves
and G a �nite group of translations of A acting on B by automorphisms. They are divided
into seven types according to G as shown in Table 2.1.

Type G Order of wS in Pic(S) H2(S,Z)tor

1 Z/2Z 2 Z/2Z � Z/2Z

2 Z/2Z � Z/2Z 2 Z/2Z

3 Z/4Z 4 Z/2Z

4 Z/4Z � Z/2Z 4 0
5 Z/3Z 3 Z/3Z

6 Z/3Z � Z/3Z 3 0
7 Z/6Z 6 0

Table 2.1: Types of bielliptic surfaces and torsion of their second cohomology.
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There are natural maps aS : S ! A/G and g : S ! B/G ' P1 which are both elliptic
fibrations. The morphism as is smooth, and coincides with the Albanese morphism of S. On
the other hand, g admits multiple fibers, corresponding to the branch points of the quotient
B ! B/G, with multiplicity equal to that of the associated branch point. The smooth fibers
of aS and g are isomorphic to B and A, respectively. We will denote by a and b the classes
of these fibers in Num(S), H2(S,Z) and H2(S,Q).
It is well known (see for example [Ser90a, p. 529]) that a and b span H2(S,Q) and satisfy
a2 = b2 = 0, ab = jGj. Furthermore, we have the following description of the second
cohomology of S:

Proposition 2.1.2. The decomposition of H2(S,Z) is described according to the type of S
and the multiplicities (m1, . . . ,ms) of the singular �bers of g : S ! P1 as follows:

Type (m1, . . . ,ms) H2(S,Z) H2(S,Z)tor

1 (2, 2, 2, 2) Z[ 12a]� Z[b]� Z/2Z � Z/2Z Z/2Z � Z/2Z

2 (2, 2, 2, 2) Z[ 12a]� Z[ 12b]� Z/2Z Z/2Z

3 (2, 4, 4) Z[ 14a]� Z[b]� Z/2Z Z/2Z

4 (2, 4, 4) Z[ 14a]� Z[ 12b] 0

5 (3, 3, 3) Z[ 13a]� Z[b]� Z/3Z Z/3Z

6 (3, 3, 3) Z[ 13a]� Z[ 13b] 0

7 (2, 3, 6) Z[ 16a]� Z[b] 0

Proof. See [Ser90a, Tables 2 and 3]. The computation of the torsion of H2(S,Z) can be
also found in [Iit70,Ser91,Suw69,Ume75].

Since H2(S,OS) = 0, the first Chern class map c1 : Pic(S) ! H2(S,Z) is surjective, so the
Néron-Severi group NS(S) ' H2(S,Z). Modulo torsion we then get

Num(S) = Z[a0]� Z[b0]

where a0 = 1
ord (wS)

a and b0 =
ord (wS)

jGj b.

2.1.1 Canonical covers

In general, let X be a smooth projective variety and let L 2 Pic(X) such that Ln ' OX. Then
there is a uniquely determined étale cyclic covering (see e.g. [Huy06, §7.3]) p : eX ! X of
degree d such that

p�O eX '
d�1M
i=0

L�i,

p�L ' O eX.
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Moreover, there is a free action of the cyclic group G ' Z/nZ on Y such that X = eX/G
and p is the quotient map. More precisely, if we let A :=

Li=n�1
i=0 Li, then eX is the relative

spectrum Spec(A ) and the action of G ' Z/nZ is given on A by 
L.
For a bielliptic surface S, denote by n the order of its canonical bundle. Then by the above

wS induces an étale cyclic cover pS : X ! S, called the canonical cover of S. From now on,
when there is no confusion, we will omit the subscript S and write simply p : X ! S.

If we let lS := jGj/ ord (wS), we have that G ' Z/nZ � Z/lSZ, and X is the abelian
surface sitting as an intermediate quotient

A� B S ' A� B/G

X

p

where H ' Z/lSZ. The abelian surface X thus comes with homomorphisms of abelian
varieties pA : X ! A/H and pB : X ! B/H with kernels isomorphic to B and A, re-
spectively. Denoting by aX and bX the classes of the fibers A and B in Num(X), we have
aX � bX = lS and the embedding p� : Num(S) ,! Num(X) satisfies

p�a0 = aX,p�b0 =
n

lS
bX. (2.1)

There is a fixed-point-free action of the group Z/nZ on the abelian variety X such that the
quotient is exactly S. We will denote by s 2 Aut(X) a generator of Z/nZ. In what follows
it will be useful to have an explicit description of s when S is of type 1, 2, 3, or 5.

Suppose first that S is of type 1, 3, or 5, so G is cyclic, H is trivial, and X ' A� B. If S
is of type 3, then the j-invariant of B is 1728, and B admits an automorphism w : B ! B of
order 4. If S is of type 5, B has j-invariant 0 and admits an automorphism r of order 3 (see
for example [BM77, p. 37], [Bad13, List 10.27] or [BHPvdV15, p. 199]). With this notation
we have that the automorphism s of A� B inducing the covering p is given by

s(x, y) =

8><>:
(x+ t,�y), if S is of type 1,
(x+ e,w(y)), if S is of type 3,
(x+ h, r(y)), if S is of type 5,

(2.2)

where t, e, and h are points of A of order 2, 4, and 3 respectively. We remark that different
choices for the automorphism r and w - there are two possible choices in each case- will lead
to isomorphic bielliptic surfaces.

If S is otherwise of type 2, then there are points q1 2 A and q2 2 B, both of order two,
such that X is the quotient of A� B by the involution (x, y) 7! (x+ q1, y+ q2). If we denote
by [x, y] the image of (x, y) through the quotient map, we have that

s[x, y] = [x+ t,�y], (2.3)

where t 2 A is a point of order 2, t 6= q1.

2.1.2 Covers of bielliptic surfaces by other bielliptic surfaces

When G is not a cyclic group, or when G is cyclic, but the order of G is not a prime number,
then the bielliptic surface S admits a cyclic cover p̃ : S̃ ! S, where S̃ is another bielliptic
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surface. This construction, together with the statement of Lemma 2.1.3, appears explicitly
in the unpublished work of Nuer [Nue],and is implicit in the work of Suwa [Suw69, p. 475].
The main point that we will need in Section 3.4 is the description of the pull-back map
Num(S) ! Num(S̃).

Lemma 2.1.3. (i) Let S be a bielliptic surface such that ord(wS) is not a prime num-
ber and take d a proper divisor of n. Then there is a bielliptic surface S̃ sitting as an
intermediate étale cover between S and X,

X S̃ S
pS̃

pS

p̃

such that ord (wS̃) =
ord (wS)

d and

p̃�a0 = ã0, p̃�b0 = db̃0,

where ã0, b̃0 are the natural generators of Num (S̃).

(ii) Let S be a bielliptic surface with lS > 1, i.e., with G not cyclic. Then there is a
bielliptic surface S̃ sitting as an intermediate étale cover between S and A� B

A� B S̃ S
pS̃

pS

p̃

such that lS̃ = 1, ord(wS̃) = ord(wS) and

p̃�a0 = lS ã0, p̃�b0 = b̃0,

where ã0, b̃0 are the natural generators of Num (S̃).

Proof. For (i) let ord(wX) = kd and p̃ : S̃ ! S be the cyclic covering of order d associated
to wk

S. Here wk
S̃ = p̃�wk

S ' OS̃, and by looking at the table for bielliptic surfaces we see
that k = 2 or k = 3, hence 6KS̃ = 0 and k(S̃) = 0. Since wS̃ is not trivial, S̃ is an Enriques
or bielliptic surface. It cannot be Enriques, because taking the canonical cover of S̃ we get
the canonical cover X of S by composition, and X is not a K3 surface. In short, if we let
g be a generator of G/H ' Z/nZ, S̃ is the quotient X/hgdi.

For (ii), by the assumption lS > 1, S is of type 2, 4 or 6. For these types, the action
of G on B may be described as

x 7! �x, x 7! x+ 2e with 2e = 0,

x 7! ix, x 7! x+
1+ i
2

,

x 7! e
2pi
3 , x 7! x+

1� e
2pi
3

3
.

Viewing G via its action on B as above, we can take G̃ to be the subgroup of G generated
by �1, i or e

2pi
3 , respectively. Then by [GH11, p. 589], S̃ := A� B/G̃ is a bielliptic surface

of type 1, 3 or 5, respectively, and the map pS : A� B ! S factors as required.
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In what follows we will need a more explicit construction of S̃, when S is either of type
2 or 3.
Example 2.1.4. (a) Suppose that S is a bielliptic surface of type 3. Then the canonical
bundle has order 4. In addition the canonical cover X of S is a product of elliptic curves,
that is X ' A� B. Using the notation of (2.2), we obtain S̃ from A� B by taking the
quotient with respect to the involution (x, y) 7! (x+ 2e,�y). Thus we have that S̃ is a
bielliptic surface of type 1. The map p̃ : S̃ ! S is an étale double cover with associated
involution s̃. Hence, given s 2 S̃, we can see it as an equivalence class [x, y] of a point
(x, y) 2 A� B. Then we have an explicit expression for s̃:

s̃(s) = [x+ e,w(y)]. (2.4)

(b) Suppose that S is a bielliptic surface of type 2, so the group G is isomorphic to
the product Z/2Z � Z/2Z. Then we obtain S̃ from A� B by taking the quotient with
respect to (x, y) 7! (x + t,�y), where we are using the notation of (2.3). Thus, as in
2.1.4, S̃ is a bielliptic surface of type 1 and each s 2 S̃ can be written as an equivalence
class [x, y] of a point (x, y) 2 A� B. If we denote again by s̃ the involution induced by
the cover p̃ : S̃ ! S, we have the following:

s̃(s) = [x+ q1, y+ q2]. (2.5)

2.2 Brauer Groups

In this section we define and introduce the Brauer group, a central player to come. To begin,
let X be a scheme. Then the cohomological Brauer group Br0(X) is defined as the torsion
part of the étale cohomology group H2

et(X,O�
X). The exact sequence of sheaves

0 ! Z/nZ ! O�
X

�n�! O�
X ! 0

which yields the long exact cohomology sequence

Pic(X) �n�! Pic(X)
c1�! H2(X,Z/nZ) ! Br0(X) �n�! Br0(X) ! 0

gives that the n-torsion part Br0(X)n of Br0(X) fits into

0 ! Pic(X)
 Z/nZ ! H2(X,Z/nZ) ! Br0(X)n ! 0.

Taking the direct limit over all n gives the sequence

0 ! Pic(X)
 Q/Z ! H2(X,Q/Z) ! Br0(X)tor ! 0.

By [Gro66, 1.4]Br0(X) is torsionwhenX is a smooth scheme, and using thatH2(X,Q/Z)
and Pic(X) are the same in the analytic and the étale topology, we see from the above se-
quence that for complex varieties Br0(X) is isomorphic to the torsion of H2(X,O�

X) in the
analytic topology. In addition, when X is quasi-compact and separated, by a theorem of
Gabber (see, for example, [dJ]) for more details) the cohomological Brauer group of X is
canonically isomorphic to the Brauer group Br(X) of Morita-equivalence classes of Azu-
maya algebras on X. For what it concerns the present thesis, we will only be concerned with
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smooth complex projective varieties, therefore all these three groups will be isomorphic and
will be denoted simply by Br(X). Furthermore we will only speak of the Brauer group of X,
without any additional connotation.

Here are some examples of interpreting and calculating the cohomological Brauer group:

Example 2.2.1. From the exponential sequence we get the long exact sequence in cohomol-
ogy

! H2(X,Z) ! H2(X,OX) ! H2(X,O�
X) ! H3(X,Z) ! .

If H3(X,Z) is torsion free, for example if X is a K3 surface or an abelian variety, then an
element a 2 Br(X) goes to 0 in H3(X,Z), hence comes from a class in H2(X,OX). This
allows us to consider a class in Br(X) as a class in H2(X,O�

X) for which a certain positive
integer multiple lands in H2(X,Z).

Example 2.2.2. For a smooth complex projective curve X, one has Br(X) = 0 from the
exponential sequence above since H2(X,OX) = H3(X,Z) = 0.

Example 2.2.3. Let X be an Enriques surface, so that X is minimal with Kodaira dimension
0 and pa = pg = 0 with 2K = 0. Any such X can be realized as the quotient of a K3-surface
X̃ by a �xed point free involution, so we have a degree 2 unbranched covering X̃ ! X.
Since X̃ is simply connected, the fundamental group p1(X) of X is Z/2Z. Hence we
have that H1(X,Z) = Z/2Z, which coincides by Poincaré duality with H3(X,Z). Using
the long exact sequence in cohomology induced by the exponential sequence, we get from
pg = 0 that H2(X,O�

X) ' H3(X,Z) = Z/2Z, so that Br(X) = Z/2Z.

Example 2.2.4. If X is a surface with H2(X,OX) = 0, e.g., a bielliptic surface, then clearly
Br(X) ' H3(X,Z)tor from the exponential cohomology sequence, which in turn coincides
with the torsion of H2(X,Z). However, it may be nontrivial to calculate this torsion. It
is known for bielliptic surfaces by Proposition 2.1.2 , and depends on the type of bielliptic
surface as can be seen in Table 2.1.

2.3 The norm map and a result of Beuville

In this section we expose the result of Beuville describing the kernel of the Brauer map
in terms of the norm homomorphism in the case of cyclic coverings. The definition and
properties of the norm homomorphism that we will need may or may not be well known to
the reader, so we will state its construction and properties first. To this end, let p : X ! Y
be a finite locally free morphism of projective varieties of degree n. To it we can associate a
group homomorphismNmp : Pic(X) ! Pic(Y) called the norm homomorphism associated
to p. This is constructed as follows. First, one lets B := p�OX, and defines a morphism of
sheaves of multiplicative monoids N : B ! OY: given s a section of B on an open set U,
let ms be the endomorphism of B(U) induced by the multiplication by s; we set N(s) :=
det(ms) 2 OY(U) (see [Gro61, § 6.4, and §6.5] or [Sta19, Lemma 0BD2] ). The restriction
of N to invertible sections induces a morphism of sheaves of groups N : B� ! O�

Y. Now,
given L an invertible sheaf on X, p�L is an invertible B-module and, as such is represented
by a cocycle fuij,Uig for an open cover fUig of Y. Observe that uij 2 B�(Uij). The fact
that N is multiplicative ensures that also the vij := N(uij) satisfies the cocycle condition
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and so uniquely identifies a line bundle Nmp(L) on Y. The map L 7! Nmp(L) is a group
homomorphism by [Gro61, (6.5.2.1)]. In addition [Gro61, (6.5.2.4)] ensures that

Nmp(p
�M) ' M
n, (2.6)

and we also have the following important property:

Proposition 2.3.1. Given two �nite locally free morphisms p1 : X ! Y and p2 : Y ! Z,
then

Nmp2�p1 = Nmp2 �Nmp1

Proof. See [Gro67, Lemma 21.5.7.2].

Suppose now that p : X ! Y is an étale cyclic cover of degree n. Then there is a fixed-
point-free automorphism s : X ! X of order n such that Y ' X/s. In addition we can
write B ' Ln�1

h=0 M

h with M a line bundle of order n in Pic(Y). In this particular setting

the norm homomorphism satisfies some additional useful properties. First, asNmp behaves
well with base change ( [Gro61, Proposition 6.5.8]), it is not difficult to see that

Nmp �(1X � s�) = 0. (2.7)

In additon, as discussed by Beauville in [Bea09], we have that

p�Nmp(L) '
nO

h=0

n� 1(sh)�L (2.8)

In fact, by the definiton of pushforward of divisors ( [Gro67, Definition 21.5.5]), if L '
OX(å ai � Di) with prime divisors on X, then Nmp(L) ' OY(å ai � p�Di). Therefore (2.8)
follows form the fact that for a prime divisor D we have that p�p�D � ån�1

h=0(s
h)�D.

Remark 2.3.2 (Pic0 trick). In what follows it will be important to provide elements in the
kernel of the Norm homomorphism. We will often use the following trick. Let p : X ! Y
be an étale morphism of degree n and suppose that there is a line bundle L on X such
that Nmp(L) 2 Pic0(Y). Then there is an element a 2 Pic0(X) such that Nmp(L
 a) is
trivial. In fact, as abelian varieties are divisible groups, it is possible to �nd b 2 Pic0(Y)
such that b
n ' Nmp(L)�1. Then, by (2.6) we get

Nmp(L
 p�b) ' Nmp(L)
 b
n ' OY.

From now on, if there is no possibility of confusion, wewill omit the subscript when denoting
the norm. That is we will write Nm instead of Nmp.

With the norm homomorphism explained, we can now state Beuville’s result:

Proposition 2.3.3 ( [Bea09, Prop. 4.1]). Let p : X ! S be an étale cyclic covering of smooth
projective varieties. Let s be a generator of the Galois group of p, Nm: Pic(X) ! Pic(S)
be the norm map and pBr : Br(S) ! Br(X) be the pullback. Then we have a canonical
isomorphism

Ker(pBr) ' KerNm/(1� s�)Pic(X).
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2.4 Twisted sheaves

Let X be a smooth projective variety. Using elements of the Brauer group properly inter-
preted as Čech 2-cocycles on an open covering of X, we can define the notion of twisted
sheaves on X and consequently the twisted derived category of X.

De�nition 2.4.1. A twisted variety (X, a) consists of a variety X together with a Brauer
class a 2 Br(X).

Let (X, a) be a twisted variety and represent a 2 Br(X) as a Čech 2-cocycle for an
open analytic cover U = fUigi2I by means of sections aijk 2 G(Ui \ Uj \ Uk,O�

X). A
faijkg-twisted sheaf (or simply a faijkg-sheaf) F for the covering U is a tuple (fFig, ffijg)
where the Fi are OUi-modules and fij : FjjUi\Uj

! Fi jUi\Uj
are isomorphisms subject to the

following conditions:

(i) fii = id.

(ii) fji = f�1
ij .

(iii) fij � fjk � fki = aijk � id on each triple intersection Ui \Uj \Uk.

We say that the faijkg-sheaf F is coherent if all the local sheaves Fi are coherent. The
class of faijkg-twisted sheaves on X together with the obvious notions of homomorphism,
kernel and cokernel yields an abelian category, denoted by Mod(X, faijkg,U ), the category
of faijkg-twisted sheaves on X. Restricting to coherent faijkg-twisted sheaves, we get the
category of coherent faijkg-twisted sheaves on X, denoted Coh(X, faijkg,U ). As seen in
the following two results, different choices of representative or coverings yields equivalent
categories.

Lemma 2.4.2 ( [C�00, Lemma 1.2.3]). Let U 0 = fU0
jgj2J be a re�nement of the covering

U = fUigi2I on which a can be represented. Then there is an equivalence of categories

Mod(X, faijkg,U ) ' Mod(X, faijkg,U 0).

The way to go about this is to construct a natural refinment functor: Since U 0 is a refinement
of U , we have a map l : J ! I such that for each j 2 J, U0

j � Ul(j). If F is a faijkg-sheaf
along the covering U , then the refinment of F to U 0 is given by

(fFl(j)
��
Uj
g, ffl(i)l(j)

��
Ui\Uj

g),

and we get our refinment functor

Mod(X, faijkg,U ) ! Mod(X, faijkg,U 0).

On the other hand, if we fix the covering U and choose another representative fa0ijkg for a,
there exists flij 2 OX(Ui \Uj)

�g such that a0ijk � a�1
ijk = lij �ljk �lki. Sending a faijkg-sheaf

(fFig, ffijg) to the faijkg0-sheaf (fFig, flij � fijg) yields an equivalenceMod(X, faijkg,U ) '
Mod(X, fa0ijkg,U ). Thus we have:
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Lemma 2.4.3 ( [C�00, Lemma 1.2.8]). If faijkg and fa0ijkg represent the same element a 2
Br(X) along the open covering U , the categories Mod(X, faijkg,U ) and Mod(X, fa0ijkg,U )
are equivalent.

Remark 2.4.4. Note that this equivalence is non-canonical, as a di�erent choice of 1-cochains
flijg yields a di�erent equivalence, any two of which di�ers by tensoring with a line bundle
on X.

From these lemmas we can talk about twisted sheaves without specific mention of a Čech
representative, so we shall simply speak of a-twisted sheaves and denote their category by
Mod(X, a) and its coherent subcategory byCoh(X, a), with the understanding that we really
are considering an equivalence class of categories.

Before proceeding, we need to have a quick look at another way to look at these twisted
sheaves in terms of their Azumaya algebra counterpart, as alluded to when we introduced the
cohomological Brauer group of X. An Azumaya algebra on X is an associate, OX-algebra
A such that locally (in the analytic topology for our purposes, but also in the étale topology)
it is isomorphic to the matrix algebra Mn(OX) for some n. In particular, Azumaya algebras
on X are locally free of some constant rank n2. Two such Azumaya algebras are isomor-
phic if they are isomorphic as OX-algebras, hence by the Skolem-Noether theorem which
gives the identification Aut(Mn(C)) ' PGLn(C), isomorphism classes of Azumaya alge-
bras are in bijection with the set H1(X, PGLn). We set the trivial Azumaya algebra of rank
n2 to be the algebra End(E) associated with any locally free sheaf E on X of rank n2. This
gives us an equivalence relation on Azumaya algebras as follows: Two Azumaya algebras
A1 and A2 are Morita-equivalent if there exists locally free sheaves E1 and E2 on X such
that A1 
 End(E1) ' A2 
 End(E2) as Azumaya algebras.

Initially we defined the cohomological Brauer group ofX to be Br0(X) := H2(X,O�
X)tors.

The Brauer group Br(X) of X is defined to be the set of isomorphism classes of Azumaya
algebras on X modulo Morita-equivalence. The relation between the two can be seen by
considering the exact sequence

0 ! O�
X ! GLn ! PGLn ! 0

from which we get the long exact cohomology sequence

H1(X,O�
X) ! H1(X,GLn) ! H1(X, PGLn)

dn�! H2(X,O�
X).

First, the maps dn are always mapping into the torsion of H2(X,O�
X), as can be seen by

an application of the commutative diagram

0 Z/nZ SLn PGLn 0

0 O�
X GLn PGLn 0

.

Hence im(dn) � Br0(X). Noting that the Morita-equivalence amounts to quotienting
out by the image of the map H1(X,GLn) ! H1(X, PGLn), the various maps dn induces
an injection Br(X) ,�! Br0(X). This was conjectured by Grothendieck ( [Gro68]) to be an
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isomorphism, and it is proven to be so for X quasi-compact and separated scheme. As in
this paper we will only be working with smooth projective varieties, the aforementioned
inclusion will indeed be an isomorphism.

To proceed to the twisted sheaves, we have the following which is essentially to rewrite
the above correspondance Br(X) ,�! Br0(X):

Theorem 2.4.5 ( [C�00, Theorem 1.3.5]). Let A be an Azumaya algebra over X, and let
a 2 Br0(X) be the corresponding class. Then there is a locally free a-sheaf E of �nite rank,
not necessarily unique, such that A ' End(E). Conversely, given any a 2 Br0(X) such
that there exists a locally free a-sheaf E of �nite rank, End(E) is an Azumaya algebra
whose class in Br0(X) is a.

Since Br(X) ' Br0(X) via the maps dn, we see that in our case there will always exist such a
locally free twisted sheaf of finite rank. Using this, one has a nice equivalence of categories

Theorem 2.4.6 ( [C�00, Theorem 1.3.7]). Let a 2 Br(X) and pick a locally free a-sheaf E of
�nite rank such that A := End(E) is an Azumaya algebra whose class is a. Let Coh(X,A)
be the category of coherent A-modules, Then the functor F : Coh(X, a) ! Coh(X,A)
de�ned by

F(�) = (�)
OX E_

de�nes an equivalence of categories with inverse G given by

G(�) = (�)
A E .

As an immediate little corollary we shall need later, we have:

Corollary 2.4.7. The order of a divides the rank of any a-sheaf.

As in the case of regular sheaves of modules, we can define tensor products, sheaf-homs,
pushforward and pull-backs, as well as restriction and stalks in these new categories (see

[C0
�
0, Proposition 1.2.10]):

• Let F = (fFig, ffig) be an a-sheaf and G = (fGig, fyig) be an a0-sheaf, where we
have chosen a cover of X that is refined to work for both F and G. We define F
G to
be the aa0-sheaf given by the ’glueing’ of Fi 
 Gi along fi 
 yi.

• We define H om(F,G) as an a�1a0-sheaf by ’glueing’ the H om(Fi,Gi) along the nat-
ural isomorphisms

H om(Fi,Gi)
yi�(�)����! H om(Fi,Gj)

(�)�f�1
i����! H om(Fj,Gj).

For an a-sheaf E we then define the dual E_ to be E_ := H om(E,OX) as usual, which
is an a-sheaf.

• For a morphism f : X ! Y and an a-sheaf F on Y, we get the f �a-sheaf on X by
taking (f f �Fig, f f �fijg) on each f�1(Ui). The pushforward is a bit more subtle, and
it is defined for an f �a-sheaf on X and yields an a-sheaf on Y. The construction is
roughly as follows: Choose an open cover Ui of Y for which a is trivial along Ui for
all i. Then f �a is trivial on f�1(Ui) for all i as well. Let F be an f �a-sheaf on X. Then
we can represent F as (fFig, ffijg) on f�1(Ui), and we take f�F to be (f f�Fig, f f�fijg)
on Ui.
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• For a point x 2 X and an a-sheaf F, we define the stalk Fx at X to be the stalk of Fi on
Ui where Ui is a member of the open cover defining F and x 2 Ui. Choosing another
open Uj yields an isomorphic Fx because of the transition morphisms. We can then
define the support supp(F) of a coherent a-sheaf F to be the (closed) subset of X such
that Fx 6= 0, as usual.

• Given an a-sheaf F on X and U � X an open subset, we define the restriction FjU :=
i�F where i : U ! X is the inclusion. In concrete terms, given an open cover fUig
of X for which a is represented and F is given by (fFig, ffijg), we get that FjU is the
faijkjUijk\Ug-sheaf given by (fFijUi\Ug, ffijjUij\Ug).

Example 2.4.8. Taking a closed point x 2 X and any class a 2 Br(X), the skyscraper
sheaf Ox on x is naturally an a-sheaf on X by means of the injection i : fxg ,! X. This
is because, since we are working over an algebraically closed �eld, Br(fxg) = 0, so Ox
considered on fxg is an i�a = 0 sheaf, so by the pushforward construction above we have
that i�k(x) is an a-sheaf.

Lemma 2.4.9 ( [C�00, Lemma 2.1.1]). The category Mod(X, a) of a-twisted sheaves has
enough injectives for all a 2 Br(X).





Chapter 3

Brauer Maps

3.1 Introduction

In this chapter we present the result of [BFTV19] which were obtained in collaboration with
E. Ferrari and S. Tirabassi.

A morphism of projective varieties f : Z ! Y induces, via pullbacks, a homomorphism
of the corresponding Brauer groups (see 2.2) fBr : Br(Y) ! Br(Z), which we call the Brauer
map induced by f . In [Bea09] Beauville studies this map in the case of a complex Enriques
surface S and that of its K3 canonical cover p : X ! S. More precisely the author of [Bea09]
identifies the locus in the moduli space of Enriques surfaces in which pBr is not injective (and
so trivial). Here we carry out a similar investigation in the case of bielliptic surfaces.

As seen in Section 2.1, the canonical bundle of a bielliptic surface S is a torsion element
in Pic(S), and therefore can be used to define an étale cyclic cover p : X ! S, where X is
an abelian variety. We then obtain a homomorphism between the respective Brauer groups:
pBr : Br(S) ! Br(X). A very natural question is the following.
Question. When is pBr injective? When is it trivial?

As for Enriques surfaces, using the long exact exponential sequence, Poincaré duality
and the universal coefficient theorem, we have a non-canonical isomorphism

Br(S) ' H2(S,Z)tor,

so from the fourth column of Table 2.1, we easily see that this map is trivial when S is of type
4, 6 or 7. Thus we will limit ourselves to surfaces of type 1, 2, 3, and 5. We will find that
the behavior of the Brauer map depends heavily on the geometry of the bielliptic surface S.

Our first step in this investigation is to focus on bielliptic surfaces of type 2 and 3. As
we saw in 2.1.2, they admit a degree 2 étale cover p̃ : S̃ ! S, with S̃ a bielliptic surface of
type 1 (see Examples 2.1.4 a) and 2.1.4 b) for more details). We investigate the properties
of the induced Brauer map p̃Br : Br(S) ! Br(S̃) finding how this behaves differently in the
two cases:

Theorem A. (a) If S is of type 2, then p̃Br : Br(S) ! Br(S̃) is trivial.

(b) If S is of type 3, then p̃Br : Br(S) ! Br(S̃) is injective.

The main tool behind our argument is the result of Beauville in Section 2.3, stating that
the kernel of the Brauer map of a cyclic étale cover X ! X/s is naturally isomorphic to the
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kernel of the norm map Nm : Pic(X) ! Pic(X/s) quotiented by Im(1� s�), where s is
the induced action. We prove that a line bundle on S̃ is in the kernel of the norm map only
if it is numerically trivial. Then we reach our conclusion by carefully computing the norm
map of numerically trivial line bundles. The different behavior of the two type of surfaces is
motivated by the different ”values” taken by the norm map on torsion elements of H2(S̃,Z):
in the type 2 case they are sent to topologically trivial line bundles, while this is not true in
the type 3 case.

Aside from having its own interest, TheoremA, or more precisely some parts of its proof,
will be useful in order to study the Brauer map to the canonical cover for bielliptic surfaces
of type 2.

We then turn our attention to the main focus of this paper, and study the norm map to the
canonical cover of a bielliptic surface. We give necessary and sufficient conditions for it to
be injective, trivial, and, in the case of type 1 surfaces, neither trivial nor injective. This is
done in Theorems 3.5.3, 3.5.9, 3.5.15, 3.5.20, and 3.5.22. Unfortunately the statements are
particularly involved and it is not possible reproduce them here without a lengthy explanation
of the notation used. An illustrative example of our results is the following.

Theorem B. Given a bielliptic surface S, let p : X ! S be its canonical cover. If the two
elliptic curves A and B are not isogenous, then the pullback map

pBr : Br(S) ! Br(X)

is injective.

As an easy corollary one finds that the Brauer map of the general bielliptic surface is
injective. The proof of Theorem B uses the same ideas of the proof of Theorem A. In fact we
can leverage on the fact thatX and S have the same Picard number (as it happened for the case
of a bielliptic cover) to show that line bundles in the kernel of the normmap are topologically
trivial. The result is then obtained by showing that line bundles in Pic0(X) which are also
in the kernel of the norm map are always in Im(1� s�). As a corollary of both Theorem A
and B we find an example of isogeny between two abelian varieties j : X ! Y such that the
corresponding group homomorphism jBr is not injective.

When the two curves A and B are isogenous, we see the first examples of bielliptic sur-
faces with a non injective Brauer map to the canonical cover.

This chapter is organized as follows. In Section 3.2 we give a description of the Neron–
Severi group of a product of elliptic curves, using Section 3.2.1, which is a joint work of the
second author of the main paper with J. Bergström. There a structure theorem for the ho-
momorphism ring of two elliptic curves is given in the case of j-invariant 0 or 1728, which
in turn gives a really useful description of the Picard group of the product of such curves,
fundamental to study the Brauer map of bielliptic surfaces of type 3 and 5. In Section 3.3
we provide explicit generators for H2(S,Z)tor, when S is a bielliptic surface of type 1, 2, 3
or 5. We prove Theorem A in Section 3.4, while we completely describe the norm map to
the canonical cover in Section 3.5. Here we also construct examples of bielliptic surfaces of
every type in which the Brauer map behaves differently.
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3.2 The Neron�Severi of a product of elliptic curves

In this section we aim to describe Num(A� B) when A and B are two elliptic curves. We
will do so by using the identification ofNum(X) ' NS(X)which holds for abelian surfaces.

Our first step is to report the results of theAppendix of [BFTV19], written by J. Bergström
and S. Tirabassi, whosemain goal is to give a structure theorem for the homomorphism lattice
of two elliptic curves. We will then, in Subsection 3.2.2 use the isomorphism

Pic(A� B) ' Pic(A)� Pic(B)�Hom(B, A)

in order to pick clever generators for the Neron–Severi group of the product of two elliptic
curves. This in turn will allow an accurate description of the action of the automorphism s

on the Neron–Severi group of the product A� B when S is a bielliptic surface of type 3 or
5.

3.2.1 The homomorphism lattice of two elliptic curves

In this subsection we report the results of the Appendix of [BFTV19]. As said before, the
main goal is to give a structure theorem for the Z-module Hom(B, A) where A and B are
two complex elliptic curves with j(B) = 0, 1728. If B is an elliptic curve with j-invariant 0
or 1728, then B admits an automorphism lB of order 3 or 4 respectively. The main result
is that the group Hom(B, A) can be completely described in terms of lB and an isogeny
y : B ! A. More precisely we have the following statement:

Theorem 3.2.1. Let A and B two isogenous complex elliptic curves with j(B) either 0 or
1728. Then there exists an isogeny y : B ! A such that

Hom(B, A) =< y,y � lB > .

This subsection is organized in three main parts. In the first we outline some classical
results about imaginary quadratic fields and their orders. The second is concerned with com-
plex elliptic curves with complexmultiplication. Theorem 3.2.1 is proven in 3.2.1.3. The key
idea of our argument is to describe Hom(B, A) as a fractional ideal of End(B) homothetic
to End(B). This is done by observing that the class number of End(B) is 1.

3.2.1.1 Preliminaries on orders in imaginary quadratic �elds

An imaginary quadratic field is a subfield K � C of the form Q(
p
�d), with d a positive,

square-free integer. The discriminant of K is the integer dk defined as

dK =

(
�d, if d � 3 mod 4,

�4d, otherwise.

The ring of integers of K, OK is the largest subring of K which is a finitely generated abelian
group. Then we have that OK = Z[d], where

d =

(
1+

p
�d

2 , if d � 3 mod 4,p
�d, otherwise.

(3.1)
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An order in an imaginary quadratic field K is a subringO ofOK which properly contains Z.
It turns out that O ' Z + Z � (nd) for some positive integer n.

Given an orderO in an imaginary quadratic field K, a fractional ideal ofO is a non-zero
finitely generated sub O-module of K. For every fractional ideal M of O there is an a 2 K�

and an ideal a of O such that M = a � a. We will need the following notions.

De�nition 3.2.2. (i) Two fractional O-ideals M and M0 are homothetic if there is a 2 K�

such that M = aM0.

(ii) A fractional O-ideal is invertible if there is a fractional ideal M0 such that M �M0 =
O. The set of invertible O-ideals is denoted by I(O).

(iii) A fractional O-ideal M is principal if it is of the form a � O for some a 2 K�. So
principal ideals are precisely the fractional ideals homothetic to O. The set of principal
O-ideals is denoted by P(O).

Principal ideals are clearly invertible. In general not all fractional ideals are invertible,
but they are so if O = OK (see also [Cox11, Proposition 5.7]). The quotient

Cl(O) := I(O)/P(O)

describes the homothety classes of invertible O-ideals. It is a group with the product and it
is called the ideal class group of O. Its order is finite and is called the class number of O.
WhenO = OK, then the class number ofO is exactly the class number of the field K, which
is a function of the discriminant of K (see [Cox11, Theorem 5.30(ii)]). More generally the
class number of O is a general function of dK and [O : OK].

Example 3.2.3. If K is either Q(i) or Q(
p
�3), then all the fractional ideals of OK are

homothetic to OK. In fact the class number of the �eld K in this case is 1, as it was
computed by Gauss in his book Disquisitiones arithmeticae .

3.2.1.2 Elliptic curves with complex multiplication

The importance of orders in the study of the geometry of elliptic curves is that they describe
the endomorphism rings of a complex elliptic curves:

Theorem 3.2.4. Let A be an elliptic curve over C, then End(A) is either isomorphic to Z

or to an order in an imaginary quadratic �eld.

Proof. See [Sil09, Theorem VI.5.5].

We say that a (complex) elliptic curve has complex multiplication if its endomorphisms
ring is larger thanZ. Observe that in this case End(A)
Q is a quadratic field K and End(A)
is an order in K.

Given a complex elliptic curve A there is a canonical way to identify its endomorphisms
ring with a subring of C. More generally let A and B two elliptic curves, then there are
two lattices LA and LB in C such that A ' C/LA and B ' C/LB. Given a complex
number z such that z � LB � LA, the map Fz : C ! C defined by z 7! z � z descends to
an (algebraic) homomorphism jz : B ! A. It is possible to show (see [Sil09, VI.5.3(d)])
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that any morphism of elliptic curves preserving the origin is obtained in this way, and in
particular we get an isomorphism of abelian groups

Hom(B, A) ' fz 2 C j z � LB � LAg � C. (3.2)

By setting B = A we get a ring isomorphism

End(A) ' O := fz 2 C j z � LA � LAg � C.

The isomorphism z 7! jz is characterized as the unique isomorphism f : O ! End(A)
such that, for any z 2 O and for every invariant form w on A we have that f (z)�w = z � w

( [Sil13, II.1.1]).
Notation 3.2.5. For an elliptic curve with complex multiplication A such that End(A) '
Z + Z � nd, we will denote by lA the isogeny jnd : A ! A and we will say that A has
complex multiplication by lA.

It is clear that, with this identification, End(A) =< 1A,lA > as a Z-module.
Example 3.2.6. (a) Suppose that B is an elliptic curve with j-invariant 0. Then we can
write B ' C/LB, with LB =< 1, e

2pi
3 >. Then End(B)
 Q ' Q(

p
�3) and End(B) '

OK = Z[ 1+
p
�3

2 ]. We have that lB is induced by the multiplication by 1+
p
�3

2 and is an
automorphism of B satisfying l2

B + lB + 1B = 0. This is exactly the automorphism which
in 2.1.1 was denoted by r and which was used to construct bielliptic surfaces of type 5.

(b) Suppose now that the j-invariant of B is 1728. Then we can take LB =< 1, i > and
we have that End(B)
 Q ' Q(i). The endomorphisms ring of B is isomorphic to Z[i]
and the multiplication by i induces an automorphism lB such that l2

B = �1B. This is the
automorphism w of B used to construct bielliptic surfaces of type 3 in 2.1.1.

3.2.1.3 Proof of Theorem 3.2.1

We are now ready to provide a proof for Theorem 3.2.1. Our key point will be the following:

Claim: the Z-module Hom(B, A) is isomorphic to a fractional ideal of OK.

Before proceedingwith showing that this Claim is true, let us see how it implies the statement.
We do this applying Example 3.2.3 and deducing that all fractionalOK-ideals are homothetic
to OK. Therefore there exist a 2 K� such that

M ' a � OK = a� < 1, d >=< a, a � d >,

where d is like in (3.1). But then we have that Hom(B, A) =< ja, ja � lB >, and the
statement is true.

Proof of the Claim. Let LA =< 1, t > a lattice in C such that A ' C/LA, and denote
by K � C the quadratic �eld End(B)
 Q. Then the ring End(B) is exactly the ring of
integers OK. Observe that this is isomorphic to a lattice in C, and that B ' C/OK (See
Example 3.2.6).

By (3.2) we can identify M := Hom(B, A) as a �nitely generated subgroup of C.
Composition on the right with endomorphism of B gives to M a structure of OK-module.
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Let a 6= 0 denote an element of a := Hom(A, B), identifyied with a subgroup of C. Then
clearly a � M � OK. We deduce that M � K is a fractional ideal of OK, and the Claim is
proven.

Remark 3.2.7. (a) For any order O in a quadratic extension of Q a representative of
each homothety class of fractional ideals can be given as I � O0, where O0 � O is an over
order and I is an invertible fractional ideal (see [Mar18]). The over order S can be given a
Z-basis of the form f1, d � f g where f is a positive integer.

For any pair of isogenous complex elliptic curves with complex multiplication we have that
Hom(B, A) is a fractional End(B) ideal. In addition, if we assume that End(B) has class
number 1, we have that B ' C/End(B). In fact, under this assumption [Cox11, Corollary
10.20] yields that, there is just one elliptic curve up to isomorphism with endomorphism
ring End(B).

In conclusion, demanding that End(B) has class number 1 (instead of j(B) being either 0
or 1728) is su�cient for Theorem 3.2.1.3 to hold.

So Theorem 3.2.1.3 will hold for the 13 isomorphism classes of complex elliptic curves B
for which End(B) has discriminant -3, -4,-7, -8, -11, -12, -16, -19, -27, -28, -43, -67, -164
(see [Sil13, Example 11.3.2]).

(b) It is clear from the proof that the role of A and B can be exchanged, so we have
proven a structure theorem for Hom(A, B) when the endomorphism ring of one of the two
curves has class number 1.

Theorem 3.2.1.3 is not constructive, in the sense that it does not provide a way to deter-
mine the isogeny y such that y and y � lB generateHom(B, A). In the next example we see
how generators can be indeed constructed.

Example 3.2.8. Let L be the lattice < 1, 2i >� C, and consider A := C/L. Consider the
2-torsion point t := (0, i) + L of A and let B be the quotient A/ < t >. It is clear that
B has j-invariant 1728. We claim that Hom(B, A) =< j2, j2 � lB >.

We use �rst (3.2) and identify Hom(B, A) with a lattice in C. Given a = (a+ bi) 2
Hom(B, A), we have that both a and a � i must be elements of L. We deduce that both a
and b must be even integers and so Hom(B, A) =< 2, 2 � i >. We conclude by observing
that lB is the automorphism of B induced by multiplication by i.

3.2.2 The structure of the Neron�Severi group of the product of two elliptic
curves

We can now proceed with the discussion of the structure of the Neron–Severi group of the
product of two elliptic curves. Our main goal is to provide generators that behaves well with
the group action defining a bielliptic surface S. In this way we will be able to compute the
norm map Nm : Pic(A � B) ! Pic(S). Let A be an elliptic curve over C with identity
element p0, and L be the lattice such that A ' C/L. Identify A with its dual and consider
PA the normalized Poincaré bundle on A� A:

PA ' OA�A(DA) 
 pr�1OA(�p0) 
 pr�2OA(�p0)
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where DA � A� A is the diagonal divisor and pr1, pr2 are the projections of A� A onto the
first and second factor respectively. Observe that if x is a point in A, then the topologically
trivial line bundle Px is simply PAjA�fxg ' PAjfxg�A.

Given another elliptic curve B, line bundles LA and LB on A and B respectively, and a
morphism j : B ! A, we define a line bundle on the product A� B

L(LA, LB, j) := (1A � j)�PA 
 pr�ALA 
 pr�BLB (3.3)

where prA and prB are the projections onto A and B respectively. Recall the see-saw principle,
stating that to check if two line bundles L and M on A� B are isomorphic, it is enough to
check that the restrictions La ' Ma for all a 2 A, and Lb ' Mb for one b 2 B. Using this
on the case where y : B ! A is another homomorphism, one finds that

(1A � (j + y))�PA ' (1A � j)�PA 
 (1A � y)�PA,

and consequently that if MA and MB are two other line bundles on A and B, then

L(LA 
 MA, LB 
 MB, j + y) ' L(LA, LB, j)
 L(MA,MB,y).

In addition, the universal property of the dual abelian variety ensures that every line bundle
L 2 Pic(A � B) is of the form L(LA, LB, j) for some invertible sheaves LA and LB and a
morphism j. To see this, let LA denote the restriction of L to A� fp0g and LB denote the
restriction of L to fp0g � B. Setting L0 := L
 pr�AL

�1
A 
 pr�BL

�1
B , note that the restriction

of L0 to fp0g � B is trivial, whilst the restrictions of L0 to A � fbg is in Pic0(B) for all
b 2 B. Thus, invoking the universal property of the dual here there is a unique morphism
j̃ : B ! A_ such that

L0 ' (1A � (h�1 � j̃))�PA

where h is the isomorphism h(x) = OA(x� p0) used to identify Awith its dual. Our desired
morphism j is then h�1 � j̃. In all we therefore have an isomorphism

Pic(A� B) ' Pic(A)� Pic(B)�Hom(B, A).

If we quotient by numerically trivial line bundles, we find that

H2(A� B,Z) ' Num(A� B) ' Z � [B]� Z � [A]�Hom(B, A), (3.4)

where [A] and [B] are the classes of the fibers of the two projections. Let us denote by
l(deg(LA), deg(LB), j) the first Chern class of L(LA, LB, j). Then every class inNum(A�
B) can be written as l(m, n, j) for some integers n and m and an isogeny j. In what follows
we will often refer to line bundles (or numerical classes) in Hom(B, A) as elements of the
Hom-part of Pic(A� B) (or of Num(A� B)). For our purposes it will be really important
to pick explicit generators forNum(A� B) to see how the automorphism s acts on H2(A�
B,Z). In order to do that, we need to investigate the Z-module structure on Hom(B, A).

So suppose that there is a nontrivial isogeny j : B ! A. Then we know thatHom(B, A)
has rank 1 if A does not have complex multiplication, and 2 otherwise (more details about
elliptic curves with complex multiplication can be found in Section 3.2.1).

Suppose the first, so that there exists an isogeny y : B ! A such that l(0, 0,y) gen-
erates the Hom-part of H2(A� B,Z). We will call such isogeny a generating isogeny for
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Num(A� B). Observe that, since l(0, 0,y) is necessarily a primitive class, y cannot factor
through any ”multiplication by n” map. That is, we cannot write y = n � y0 for any n. In
particular, for any integer n we have that Kery does not contain B[n] as a subscheme.

Suppose now that A has complex multiplication, and again fix a non trivial isogeny j :
B ! A. Then also B has complex multiplication, andHom(B, A) is a rank 2 free Z-module.
We pick generators y1 and y2, and we have that for any line bundle L on A� B there are
two integers h and k such that

L ' L(MA,MB, h � y1 + k � y2), (3.5)

where MA and MB are element of Pic(A) and Pic(B) respectively. In addition we can write

H2(A� B,Z) = hl(1, 0, 0), l(0, 1, 0), l(0, 0,y1), l(0, 0,y2)i . (3.6)

In the particular cases in which the j-invariant of B is either 0 or 1728, then Theorem 3.2.1
yields a more accurate description. In fact, if we denote by lB : B ! B the automorphism r

or w (see again the Subsection 3.2.1 or Paragraph 2.1.1), we have that there exist an isogeny
y : B ! A such that, in (3.5) and (3.6) we can take y1 = y and y2 = y � lB. So we have
that

H2(A� B,Z) = hl(1, 0, 0), l(0, 1, 0), l(0, 0,y), l(0, 0,y � lB)i . (3.7)

In this case we say that y is again a generating isogeny for H2(A� B,Z). Observe again
the isogenies yi, as well as y, cannot factor through the multiplication by an integer or they
could not generate the whole Hom(B, A).

3.3 Generators for the torsion of the second cohomology for biel-
liptic surfaces

In this section we give explicit generators for the torsion of H2(S,Z) in terms of the re-
duced multiple fibers of the elliptic fibration g : S ! P1. More precisely we will prove the
following statement:

Proposition 3.3.1. Let S = A � B/G be a bielliptic surface. Denote by Di the reduced
multiple �bers of g : S ! P1 with the same multiplicity. Then the torsion of H2(S,Z) is
generated by the classes of di�erences Di � Dj for i 6= j.

The reader who is familiar with the work of Serrano might find similarities between the
above statement and Serrano’s description of the torsion of H2(X,Z)when there is an elliptic
fibration j : X ! C with multiple fibers (cfr. [Ser90b, Corollary 1.5 and Proposition 1.6]).
However in [Ser90b] it is used the additional assumption that h1(X,OX) = h1(C,OC). This
clearly does not hold in our context.

Before proving Proposition 3.3.1 we need two preliminary Lemmas.

Lemma 3.3.2. Let g : S ! P1 be an elliptic pencil with connected �bers. Let D1 and D2
be two reduced multiple �bers. Let m1 and m2 be the corresponding multiplicities. Then,
for all non negative integers n,

D1 � nD2. (3.8)
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Proof. The statement is obvious for n = 0, so one has to check for n > 0. By contradiction,
assume D1 � nD2, and let F be the generic �ber of g. Then

h0(S,OS(F)) = h0(P1, g�OS(F))

= h0(P1,OP1(1)
 g�OS)

= h0(P1,OP1(1)) = 2.

Since h0(S,OS(D1)) � h0(S,OS(m1D1)) = h0(S,OS(F)), it follows that h0(S,OS(D1)) �
2.
The absurd hypothesis is used here: if D1 � nD2, then, since the supports of D1 and
D2 are disjoint, H0(S,OS(D1)) has at least two independent sections, and therefore the
dimension of H0(S,OS(D1)) is 2. Thus, since D2

1 = 0 implies that there are no basepoints
(see for example [Bea96, II.5]), the map is actually a morphism jjD1j : S �! P1. Note
that both D1 and nD2 are �bers of this morphism.

Let now C be the generic �ber of j (which is irreducible by semicontinuity). Since
C � D1 = 0, one gets C � F = 0 for any �ber F of g. This implies that g and jjD1j have the
same generic �ber. So one can write C = F for a �ber F of g. But then

D1 � F � m1D1,

which in turn implies that OS(D1)

(m1�1) ' OS, which is a contradiction.

Lemma 3.3.3. Let S = A� B/G be a bielliptic surface with its �brations f : S ! A/G
and g : S ! P1. Let D1 and D2 be two reduced multiple �bers of g. Then the restriction
of OS(D1 � D2) to the generic �ber of aS is trivial.

Proof. Let F = g�1(p) be a smooth �ber of g. Here p is the orbit G � y of a point y 2 B not
�xed under any element of G. We will choose an embedding of A into S via an isomorphism
j : A ! F such that we get a commutative diagram

A A� B

F S

A/G

j

j

p

i

y aS

where i is just the natural inclusion of the �ber F into S and p is the quotient map. To
this end we let j : A ! F be the isomorphism a 7! G � (x, y) and j be the embedding
a 7! (x, y). Since the multiple �bers Di are images of A� fyig, i = 1, 2, where the yi 2 B
are points �xed under a subgroup of G of order equal to the multiplicity of Di, we have that
p�OS(D1 � D2) = p�OB(y1 � y2) where pB is the projection A� B ! B and y1, y2 2 B
are the points corresponding to D1, D2, respectively. Then

j�i�OS(D1 � D2) ' j�p�OS(D1 � D2)

' j�p�BOB(y1 � y2)

As p � j is the constant map we have that this is clearly trivial. Hence j�i�OS(D1 � D2)
is trivial, and since j is an isomorphism we deduce the statement.
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For the remainder, we identify F and A via the isomorphism j defined in the proof above.
So we get the following commutative triangle.

A S

A/G

i

y aS
(3.9)

Note that y is an isogeny of degree jGj. In particular we have also that the dual isogeny
y� : Pic0(S) ! Pic0(A) has degree jGj (see, for example [BL13, Proposition 2.4.3]).

With these observations we are now ready to start proving Proposition 3.3.1. We first
remark that by the canonical bundle formula for elliptic fibrations (see e.g. [Bad13, Thm.
7.15]) applied to g : S ! P1 we can write

wS ' g�OP1(�2)
OS
�
å
k
(mk � 1)Dk

�
where the Dk are the multiple fibers of g of multiplicity mk. Choosing points p, q on P1

giving rise to the fibers miDi and mjDj we get that

KS � �Di � Dj + å
k 6=i,j

(mk � 1)Dk. (3.10)

Since wS is a nontrivial element in Pic0(S) we conclude that the classes of �Di � Dj and
åk 6=i,j(mk� 1)Dk coincide inH2(S,Z). Moreover, we observe thatKS restricts trivially to A,
so wS yields a nontrivial element inKery�. Note that if Di and Dj have the samemultiplicity
m, the difference Di �Dj induces a (possibly trivial) torsion element in H2(S,Z) of orderm.
We prove Proposition 3.3.1 by showing that a sufficient number of these is nontrivial so to
generate the torsion of H2(S,Z). We proceed by a case by case analysis, studying separately
bielliptic surfaces of type 1, 2, 3, and 5. The key point in the argument is the observation that,
if [Di�Dj] is trivial, then the line bundleOS(Di�Dj) belongs to Pic0(S). In addition, using
Lemma 3.2 and the diagram (3.9), we would have that y�OS(Di � Dj) ' OS, in particular
OS(Di � Dj) 2 Kery�, while Lemma 3.3.3 ensures that OS(Di � Dj) cannot be OS. A
closer study of the structure of Kery� ' Ĝ will bring us to the desired conclusion.

3.3.1 Type 1 bielliptic surfaces

In this case we have that Kery� is the reduced group scheme Z/2Z and the fibration g :
S ! P1 has four multiple fibers all of multiplicity 2. Hence, up to reordering the indices
(3.10) yields

KS � Di � Dj + Dk � Dl. (3.11)

In particular, as the canonical divisor is algebraically equivalent to 0, for distinct indices i,
j, k, and l we have that Dj � Di is algebraically equivalent to Dk � Dl. Thus we get three
classes in H2(S,Z)

[D1 � D2] = fD1 � D2, D3 � D4g,
[D1 � D3] = fD1 � D3, D2 � D4g,
[D1 � D4] = fD1 � D4, D2 � D3g,

(3.12)



3.3 Generators for the torsion of the second cohomology for bielliptic surfaces 29

which a priori are neither distinct nor nontrivial. Since H2(S,Z)tors is isomorphic to the
Klein 4-group, we need to show that they are indeed different classes and are not zero. Note
that, if two classes are equal, since they both are 2-torsion and the third classes is clearly equal
to the sum of the first two, then the remaining class would be trivial. Thus it will be enough
to show that for any two distinct indices the divisor Di � Dj is not algebraically equivalent
to 0. Suppose otherwise that for some indices we have that OS(Di � Dj) 2 Pic0(S), then
(3.11)would imply that alsoOS(Dk �Dl) would be in Pic0(S). The above discussion yields
that both OS(Di � Dj) and OS(Di � Dj) are nontrivial elements of Kery�, which has only
one nontrivial element, wS. Then we can write

wS ' OS(Di � Dj)
OS(Dk � Dl) ' w
2
S ' OS,

which brings a contradiction, and thus we may conclude.

3.3.2 Type 2 bielliptic surfaces

Here H2(S,Z)tors ' Z/2Z, Ker(y�) ' Z/2Z � Z/2Z and like in the previous case there
are four multiple fibers, each of multiplicity 2. As above we get the three classes induced
by D1 � D2, D1 � D3 and D1 � D4, and we want to show that they cannot be all trivial.
Suppose that two of these classes, say [D1 � D2] and [D1 � D3], are trivial in H2(S,Z).
For i = 2, 3 set Li := OS(D1 � Di) and Mi := OS(Di � D4), then the Li’s and the Mi’s
determine nontrivial elements ofKery�, which has only three nonzero elements. We deduce
that some of these must be the same line bundle. The only option which would not contradict
Lemma 3.3.3 would be that Li ' Mj for some i 6= j. But then we would have

wS ' Li 
 Mj ' L
2
i ' OS,

which would be a contradiction. Hence at most one of the three classes can be trivial, and
indeed one is actually trivial because the two nontrivial classes must coincide, implying the
third is trivial.

3.3.3 Type 3 bielliptic surfaces

Here H2(S,Z)tors ' Z/2Z and Ker(y�) ' Z/4Z, but now we have two fibers of multi-
plicity 4 and one of multiplicity 2. Denote by E the reduced multiple fiber of multiplicity 2
and byD1, D2 the reducedmultiple fibers of multiplicity 4. By the canonical bundle formula,
we get

KS � E� D1 � D2.

Then in H2(S,Z) we have the following equalities

[E� 2D1] = [D2 � D1], and [E� 2D2] = [D1 � D2].

We need to show that they are not both trivial. Suppose by contradiction they are both zero
in H2(S,Z), then, as before we have that OS(E � 2D1) and OS(E � 2D2) are non trivial
elements of Kery�. Since both these line bundles have order two in Pic(S), and Kery� has
only one element of order 2, we deduce that

OS(E� 2D1) ' OS(E� 2D2).



30 3. Brauer Maps

But then

w
2
S ' OS(E� D1 � D2)


2 ' OS(E� 2D1)
OS(E� 2D2) ' OS(E� 2D1)

2 ' OS

which is impossible because wS is of order 4. Therefore E� 2D1 and E� 2D2 induce the
same nontrivial torsion element of H2(S,Z).

3.3.4 Type 5 bielliptic surfaces

Here H2(S,Z)tors ' Z/3Z, Ker(y�) ' Z/3Z and there are three multiple fibers, each of
multiplicity 3. By the canonical bundle formula, we get

KS � �Di � Dj + 2Dk = (Dk � Di) + (Dk � Dj).

Again, KS is algebraically equivalent to zero, so we get that [Dk � Di] = [Dj � Dk] in
H2(S,Z). Running through the indices we get the two classes

[D1 � D2] = fD1 � D2, D3 � D1, D2 � D3g,
[D1 � D3] = fD1 � D3, D3 � D2, D2 � D1g.

We need to show that they are distinct and both nontrivial. Observe that if they were the
same class then both classes would be trivial, so it is enough to show that they are not the
zero class. Again suppose by contradiction that [Dk � Di] = 0 in H2(S,Z), then we can
write

wS ' OS(D1 � D2)
OS(D1 � D3),

with OS(D1 �D2) and OS(D1 �D3) for nontrivial elements in Ker(y�). Neither OS(D1 �
D2) nor OS(D1 � D3) can be isomorphic to the canonical bundle wS, or we would have
OS(Dk � Di) ' OS, contradicting Lemma 3.3.3. As Kery� has only two nontrivial ele-
ments, we necessarily have

OS(D1 � D2) ' OS(D1 � D3)

and so OS(D2 � D3) ' OS, which contradicts Lemma 3.3.3 again, thus we can conclude.

3.4 The Brauer map to another bielliptic surface

Let S be a bielliptic surface of type 2 or 3. Then by Example 2.1.4 there is a 2:1 cyclic cover
p̃ : S̃ ! S, where S̃ is a bielliptic surface of type 1. As in paragraph 2.1.2 , we will denote
by s̃ the involution induced by p̃. In this section we are concerned with studying the Brauer
map p̃Br : Br(S) ! Br(S̃). Surpisingly we reach two antipodal conclusions, depending on
the type of the bielliptic surface in object.

Recall that, as S̃ is a bielliptic surface of type 1, the elliptic fibration qB : S̃ ! P1 has
four multiple fibers D1, . . . ,D4 of multiplicity 2, corresponding to the four 2-torsion points
of B. We will denote by tij the line bundle OS̃(Di � Dj).
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3.4.1 Bielliptic surfaces of type 2

Suppose that S is of type 2, and note that the involution s̃ acts on the set of the Di’s by
exchanging them pairwise. Up to relabeling we can assume that s̃�D1 � D2 and s̃�D3 � D4.
By (2.8), we therefore have that

p̃�(Nm(t13)) ' t13 
 s̃�t13 ' t13 
 t24 ' wS̃, (3.13)

where the last equality is a consequence of (3.11).Thus, if we denote by g the generator of
Ker p̃�, we get that

Nm(t13) 2 fwS, wS 
 gg � Pic0(S).

Then we can use the Pic0 trick (Remark 2.3.2) and find a b 2 Pic0(S) such that Nm(p̃�b 

t13) is trivial.

Lemma 3.4.1. In the above notation, the line bundle p̃�b 
 t13 does not belong to the
image of 1� s̃�

Before proceeding with the proof, let us note that since S is of type 2, the Brauer group is
isomorphic to Z/2Z, and using Beuville’s result 2.3.3 with the nontrivial element p̃�b
 t13
in the quotient we get immediately the following corollary:

Corollary 3.4.2. If S is of type 2, then the induced map pBr : Br(S) ! Br(S̃) is trivial.

Proof of Lemma 3.4.1. We will show that the class of t13 in H2(S̃,Z) is not in the image
of 1� s̃�. Denote by [tij] the algebraic equivalence class of the line bundle tij. Then, by
Proposition 2.1.2 and (3.12), for every L in Pic(S̃) there are integers n, m, and h, and k
such that

c1(L) =
n
2
� a+m � b+ h � [t13] + k � [t14]

Since s̃ exchanges the Di pairwise, we have that s̃�[t13] = [t24] and s̃�[t14] = [t23]. But
from (3.12) [t24] = [t13] and [t23] = [t14], and clearly s̃ keeps the classes a and b �xed,
hence

(1� s̃�)c1(L) = 0.

But on the other side we have that c1(p̃�b 
 t13) = [t13], which is not trivial, thus
p̃�b 
 t13 cannot possibly lie in the image of (1� s̃�), and the lemma is proved.

3.4.2 Bielliptic surface of type 3

In this paragraph we aim to show the following statement

Theorem 3.4.3. If S is a bielliptic surface of type 3, then the Brauer map p̃Br : Br(S) !
Br(S̃) induced by the cover p̃ : S̃ ! S, where S̃ is bielliptic of type 1, is injective.

We will use 2.3.3 and show that Ker(Nm)/ Im(1� s�) is trivial. There are two main
key steps:

1. We first study the norm map when applied to numerically trivial line bundles;

2. then we prove that all the line bundles L in Ker(Nm) are numerically trivial.
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3.4.2.1 Norm of numerically trivial line bundles

We will use the notation of Example 2.1.4. Observe that we have the following diagram

S̃ S

A/G A/H,

aS̃

p̃

aS
j

(3.14)

Where G ' Z/2Z and H is Z/4Z.

Remark 3.4.4. Note that the bottom arrow, j, is an isogeny of degree 2. As the vertical
arrows are the Albanese maps of S̃ and S respectively, we have that p̃� : Pic0(S) ! Pic0(S̃)
coincides with the isogeny dual to j. In particular it is surjective.

Our first step in the study of the norm homomorphism for numerically trivial line bundles
is to see how it behaves when applied to the generator of the torsion of H2(S̃,Z). In order to
do that, we remark that the automorphism w acts on B[2]with at least one fixed point, the one
corresponding to the identity element of B. Since w has order 4, it cannot act transitively
on the remaining three points on B[2]. Thus the action has at least two fixed points. We
deduce that s̃ acts on the set of the reduced multiple fibers by leaving fixed at least two of
them, let us say D1 and D2. If the action were trivial, then we would have that all the line
bundles tij are invariant under the action of s̃ and as a consequence they would be pullbacks
of line bundles coming from S. We would deduce that all the torsion classes of H2(S̃,Z) are
pullbacks of classes from H2(S,Z), which is impossible. Thus we know that s̃ exchanges
D3 and D4. Then we can prove the following Lemma.

Lemma 3.4.5. Let n and m be two integers. Then the norm of the line bundle t
n
13 
 t
m

14 is
zero if and only if n and m have the same parity. In addition we have that Nm(t
n

13 
 t
m
14 )

is not in Pic0(S) if n and m are not congruent modulo 2.

Proof. Observe �rst of all that, thanks to the above discussion, the line bundle t34 '
t13 
 t14 is invariant with respect to the action of s̃. In particular we can write t34 ' p̃�t

where t is a line bundle on S whose algebraic equivalence class is the only nontrivial class
in H2(S,Z).

Now, if n and m are both even, then t
n
13 
 t
m

14 is the trivial line bundle, and there is
nothing to prove. Otherwise, if n and m are odd, then

Nm(t
n
13 
 t
m

14 ) ' Nm(t34) ' t
2 ' OS.

Conversely suppose that n and m are not congruent modulo 2. Up to exchanging n and m
we can assume that m is even, while n is odd. Then t
n

13 
 t
m
14 ' t13. Again by (2.8) we

get
p̃�Nm(t13) ' t13 
 s̃�t13 ' t34 ' p̃�t.

We deduce that Nm(t13) is either equal to t or to t 
 w
2
S . In any case it is not alge-

braically equivalent to zero and so the statement is proven.

Remark 3.4.6. (a) Observe that t34 is in the image of 1 � s̃�, as we have that t34 '
OS̃(D3)
 s̃�OS̃(�D3).
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(b) We will see in what follows that the di�erent behavior of the norm map applied
to torsion classes is what determines the contrast between the type 2 and type 3 bielliptic
surfaces. In particular, the fact that the norm map of a torsion class is not necessarily
algebraically trivial is what does not allow us to use Remark 2.3.2 in order to provide a
non trivial class in Ker(Nm)/ Im(1� s̃�)

Nowwe turn our attention to the elements of Pic0(S̃)whose norm is trivial. We will show
that they never determine nonzero classes in Ker(Nm)/ Im(1� s̃�).

Lemma 3.4.7. Denote by Nm : Pic(S̃) ! Pic(S) the norm homomorphism. Let L 2
Pic0(S̃), such that Nm(L) = OS. Then the class of L in H1(Z/2Z, Pic(S̃)) is trivial.

Proof. We have to show that such L is in the image of the morphism 1� s̃�. By Remark
3.4.4, we can write L ' p̃�M with M 2 Pic0(S). Then our assumption warrants that

OS ' Nm(L) ' M
2.

We deduce that M is a 2-torsion point in Pic0(S). Now we know that Pic0(S)[2] is a group
scheme isomorphic to Z/2Z � Z/2Z. Let g be the element w
2

S 2 Pic0(S)[2] then we
can �nd b 2 Pic0(S)[2], b nontrivial, such that

Pic0(S)[2] = fOS,g, b,g 
 bg.

In particular, as p̃�g ' OS̃,

Ker(Nm) \ Pic0(S̃) = fOS̃, p̃
�bg. (3.15)

Now we aim at producing a line bundle a 2 Pic0(S̃) \ Im(1� s̃�), a 6' OS̃. Thus we
will have that Pic0(S̃)\ Im(1� s̃�) is a nontrivial subgroup of Ker(Nm)\ Pic0(S̃). From
(3.15) we deduce that

Ker(Nm) \ Pic0(S̃) = Pic0(S̃) \ Im(1� s̃�)

and so the statement.
To this aim let e 2 A0 := A/G the image of the point e 2 A de�ning the involution s̃

(see (2.4)). Denote also by p0 the identity element of A0; observe that by the construction
of bielliptic surfaces e 6= p0. Consider the following line bundle on S̃:

a := a�S̃(OA0(p0)
 t�eOA0(�p0)).

Clearly a is a nontrivial element in Pic0(S̃). In addition by (2.4) we see that

a ' (1� s̃�)a�S̃OA0(p0)

therefore it is in the image of 1� s̃�. Thus we can conclude.

3.4.2.2 Injectivity of the Brauer map

Weare now ready to prove Theorem 3.4.3. Wewill do so by showing the following statement.

Proposition 3.4.8. If L 2 Ker(Nm), then L is numerically trivial.
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Before proceeding with the proof, let us show how this implies Theorem 3.4.3. So let
L be a line bundle in the kernel of the norm map. Then, assuming the proposition, L is
numerically trivial, implying that c1(L) is torsion. In particular we have that

L ' a 
 t
n
13 
 t
m

14

for some positive integers n and m, and for some a 2 Pic0(S̃). Again writing a ' p̃�b for
some b 2 Pic0(S), we have that

Nm(L) ' b2 
Nm(t
n
13 
 t
m

14 ).

Since Nm(L) is trivial, it is in particular algebraically trivial, and so the second part
of Lemma 3.4.5 implies that n and m must have the same parity. The first part of Lemma
3.4.5 then gives that Nm(L) ' Nm(a) ' OS, so a 2 Ker(Nm), which by Lemma 3.4.7
then gives that a 2 Im(1� s̃�). Now, as n and m have the same parity, either t
n

13 
 t
m
14

is trivial or isomorphic to t13 
 t14 ' t34, and consequently L is isomorphic to either a or
a
 t34. By Remark 3.4.6(a) the latter must also be in the image of (1� s̃�), and so Theorem
3.4.3 is proven.

Proof of Proposition 3.4.8. Let L in the kernel of the norm map. Lemmas 2.1.3 and 2.1.3
imply that p̃�Num(S) is a sublattice of index 2 of Num(S̃). In particular L
2 is numer-
ically equivalent to the pullback of a line bundle from S. Thus we can write

L
2 ' p̃�M
 a 
 t
n
13 
 t
m

14

for some positive integers n and m, and for some a 2 Pic0(S̃). Again, by Remark 3.4.4 we
can write a ' p̃�b for some b 2 Pic0(S), and so, up to substituting M with M
 b we
have that

L
2 ' p̃�M
 t
n
13 
 t
m

14 .

If we show that M is numerically trivial we can conclude. Now, since the line bundle
t
n
13 
 t
m

14 is torsion, so is its norm, and because L 2 Ker(Nm), we have that

Nm(L
2) ' M
2 
Nm(t
n
13 
 t
m

14 ) ' OS.

So we see that M is also torsion, and hence it is numerically trivial.

3.5 The Brauer map to the canonical cover

In this section we study the Brauer map pBr : Br(S) ! Br(X) when S is a bielliptic surface
and X is its canonical cover. Then there is an n to 1 étale cyclic cover p : X ! S, where
n denotes the order of the canonical bundle wS. Thus, as in the previous section, we can
use Beauville’s work [Bea09] to study the kernel of the pBr via the norm homomorphism
Nm : Pic(X) ! Pic(S). As in the other cases the Brauer group is trivial, we can assume
that S is of type 1, 2, 3, or 5. Recall that, independently from the case at hand, there are two
elliptic curves A and B such that X is isogenous to A� B. In what follows we will see that
the geometry of the Brauer maps depends much on the geometry of A� B, and in particular
on whether there are isogenies between A and B or not. Throughout this section we will use
the notation established in paragraph 2.1.1.
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3.5.1 The norm of numerically trivial line bundles

Our first step will be proving the following proposition, which will allows us to study the
norm map from - since numerical and algebraic equivalence coincide for abelian varieties,
in particular for X - a strictly numerical point of view.

Proposition 3.5.1. Let L 2 Pic0(X) \Ker(Nm). Then L is in Im(1� s�).

Before going any further we need to describe more precisely our setting and introduce
some notation.

Observe first that, if we let as in 2.1.1 pA : X ! A/H and pB : X ! B/H be the two
elliptic fibrations of the abelian variety X, then Pic0(X) is generated by p�A Pic0(A/H) and
p�B Pic

0(B/H), thus we can write any L 2 Pic0(X) as p�Aa 
 p�Bb, where a 2 Pic0(A/H),
b 2 Pic0(B/H). In this notation we have the following.

Lemma 3.5.2. For every b 2 Pic0(B/H) we have that p�Bb is in the image of 1� s�. In
particular these line bundles are in the kernel of the norm homomorphism.

Proof. We suppose �rst that G is cyclic and so the group H is trivial, and X ' A� B.
We proceed with a case by case analysis.

Type 1 case. Since abelian varieties are divisible groups, there exist g 2 Pic0(B) such
that 2�Bg ' b. Then by (2.2) we have that

(1� s�)p�Bg ' p�B(1� (�1B))�g ' p�B2
�
Bg ' p�Bb,

and the statement is proven in this case.
Type 3 case. In this case the j-invariant of B is 1728 and there is an automorphism w

of B of order 4. Consider the map 1� w : B ! B. Since this is not trivial it is an isogeny,
and in particular (1� w)� : Pic0(B) ! Pic0(B) is surjective. Let g 2 Pic0(B) such that
(1� w)�g ' b, then by (2.2) we have

(1� s�)p�Bg ' p�B(1� w)�g ' p�Bb,

and the statement is proven in this case.
Type 5 case. This case is similar to the previous one in which instead of w we use

the automorphism r. We note that (1� r) : B ! B is non trivial, and so an isogeny. In
particular the dual map (1� r)� : Pic0(B) ! Pic0(B) is surjective and we can �nd g such
that (1� r)�g ' b. Again (2.2) yields:

(1� s�)p�Bg ' p�B(1� r)�g ' p�Bb,

and the statement is proven.
In order to conclude we need to analyze the case of bielliptic surfaces of type 2. Under

this assumption the group H is not trivial but it is cyclic of order 2. Let B0 := B/H and
observe that we have the following diagram

X X

B0 B0,

pB

s

pB
�1B0

So let, as in the type 1 case, g 2 Pic0(B0) such that 2�B0g ' b, then we will have again
that (1� s�)p�Bg ' p�Bb and the proof is concluded.
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Now let L = p�Aa 
 p�Bb 2 Pic0(X) such that Nm(L) ' OS. Lemma 3.5.2 implies that
also p�Aa is in the kernel of the norm homomorphism. In addition we have that the class of
L in H1(G, Pic(A� B)) is just the class of p�Aa. We have a commutative diagram

X X

A/H A/G,

pA

p

aS
j

where the bottom arrow is an isogeny of degree n. In particular we can write p�Aa ' p�M
with M 2 Pic0(S). In addition we have that

OS ' Nm(p�Aa) ' M
n,

thus we have that

p�A
�
Pic0(A/H)

�
\Ker(Nm) = p�

�
Pic0(S)[n]

�
.

It easy to see that the right-hand-side above is a group isomorphic to the cyclic group of order
n. Since Im(1� s�) is a subgroup of the kernel of the norm, if we provide an element of
order n in p�A

�
Pic0(A/H)

�
\ Im(1� s�) we would conclude that

p�A
�
Pic0(A/H)

�
\ Im(1� s�) = p�A

�
Pic0(A/H)

�
\Ker(Nm)

and consequently the statement of Proposition 3.5.1. Let p0 be the identity element of A/H,
using the notation of 2.2 and (2.3) we set

g :=

8>>>><>>>>:
OA(p0)
 t�t(OA(�p0)), if S is of type 1,
OA/H(p0)
 t�t0(OA/H(�p0)), if S is of type 2,
OA(p0)
 t�e(OA(�p0)), if S is of type 3,
OA(p0)
 t�h(OA(�p0)), if S is of type 5;

where t0 is the image of t under the isogeny A ! A/H. Then g is a nontrivial ele-
ment of Pic0(A/H) with the desired property. In addition, by (2.2) (2.3), we have that
p�Ag ' (1� s�)p�AOA(p0), and so we can conclude.

Now we are ready to start our investigation of the Brauer map pBr : Br(S) ! Br(X).
We first put ourselves in the special situation in which there are no nontrivial morphisms
between A and B.

3.5.2 The Brauer map when the two elliptic curves are not isogenous

If there are no isogenies between A and B, the the lattice Num(X) has rank 2 and it is
generated by the classes of the two fibers, aX and bX. In addition, p�Num(S) is a sublattice
of Num(X) of index n. So, let L be in the kernel of the norm map. We have that L
n is
numerically equivalent to the pullback of a line bundle from S. More precisely we can write

L
n ' p�L0 
 p�Aa 
 p�Bb ' p�M
 p�Bb,
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with b 2 Pic0(B/H). Lemma 3.5.2 ensures that p�M is in the kernel of the norm map. In
particular, M is an n-torsion element in Pic(S). We deduce that it is numerically trivial, and
so L was numerically trivial to start with. Now we apply Proposition 3.5.1 and deduce the
following statement.

Theorem 3.5.3. If S := A� B/G is a bielliptic surface such that the elliptic curves A and
B are not isogenous, then the Brauer map to the canonical cover pBr : Br(S) ! Br(X) is
injective.

Before going to the next case, observe that if S is a bielliptic surface of type 2, then we
have the following diagram

B S̃

X S,

j

pS̃

p̃

pS

If A and B are not isogenous Theorem 3.5.3) above implies that the Brauer map induced by
pS is injective. On the other side, the results of this paragraph imply that the Brauer map
induced by pS � j is trivial. Then the Brauer map induced by j cannot be injective and we
have

Corollary 3.5.4. If j : X ! Y is an isogeny of abelian varieties, the map jBr : Br(Y) !
Br(X) is not necessarily injective.

3.5.3 The Brauer map when the two elliptic curves are isogenous

Suppose now that A and B are isogenous. Our first step will be to use the description the Pi-
card group and of the Neron–Severi of A� B that we outlined in 3.2 in order to find the image
of 1� s� and the numerical type of line bundles in the kernel of the Norm homomorphism
when S is a cyclic bielliptic surface.

So let L 2 Pic(A � B). Then there exists line bundles LA and LB and a morphism
j : B ! A such that L ' L(LA, LB, j), where

L(LA, LB, j) = (1A � j)�PA 
 p�ALA 
 p�BLB.

Letting s be the automorphism of A� B inducing S, we may write s = (tx � z) where tx is
the corresponding translation on A, and z is the automorphism of B of order n = ord(wS).
First we show the following lemma.

Lemma 3.5.5. In the notation above, we have that

s�L(LA, LB, j) ' L(t�xLA, z�(LB 
 j�Px), j � z).

Proof. Letting pr2 be the second projection from A� A, by an application of the See-Saw
Principle we �nd that

(tx � 1A)�PA ' PA 
 pr�2 Px .

Using this we get



38 3. Brauer Maps

s�(1� j)�PA = (tx � z)�(1� j)�PA

' (1A � z)�(1A � j)�(tx � 1A)�PA

' (1A � z)�(1A � j)�(PA 
 pr�2 Px)

' (1A � j � z)�PA 
 (1A � j � z)� pr�2 Px

' (1A � j � z)�PA 
 p�B(j � z)�Px ,

where the last passage follows from pr2 �(1A � j � z) = j � z � pB. Moreover, we have
that

s�p�ALA ' p�At
�
xLA and s�p�BLB ' p�Bz�LB,

so by applying s�to each of the three pieces of L(LA, LB, j) and collecting terms we are
done.

Next we find the numerical type of L when L 2 Ker(Nm).

Lemma 3.5.6. Suppose that G is a cyclic group, so that X ' A� B. If L 2 Pic(A� B) is
in the kernel of the norm map, then c1(L) = l(0, 0, j) for some isogeny j : B ! A.

Proof. We can write c1(L) = l(d1, d2, j) for two integers d1 and d2 and an isogeny j.
Since L 2 Ker(Nm),

0 = c1(p�Nm(L)) = c1(L) + s�c1(L) + . . .+ (sn�1)�c1(L).

Clearly s� does not change the degrees d1 and d2, and since the line bundle Px is alge-
braically trivial, the lemma above implies that s�c1(L) = l(d1, d2, j � z). Since z is the
automorphism �1B, w or r, we have 1+ z + . . .+ zn�1 = 0 and so

0 = c1(L) + s�c1(L) + . . .+ (sn�1)�c1(L)

= l(nd1, nd2, j � (1+ z + . . .+ zn�1))

= l(nd1, nd2, 0)

which gives d1 = d2 = 0.

We now turn our attention to the Brauer map in general and we study it by performing a
case by case analysis on the different type of bielliptic surfaces.

3.5.3.1 Bielliptic surfaces of type 1

In this paragraph we study the Brauer map to the canonical cover of bielliptic surfaces of
type 1. If B does not have complex multiplication, we fix, once and for all, a generating
isogeny y : B ! A. Otherwise we fix two generators yi : B ! A, i = 1, 2. Our first
step is to describe (1� s�)Pic(A � B). For the calculations ahead, keep in mind that the
automorphism on B is �1B and that the torsion point on A is t, which is of order 2.

Lemma 3.5.7. Let S be a bielliptic surface of type 1, and consider L 2 (1� s�)Pic(A� B),
then there exist three integers m, h and k, and a line bundle b 2 Pic0(B) such that

L '
(
L(P
n

t , b, 2h � y) if B does not have complex multiplication;
L(P
n

t , b, 2h � y1 + 2k � y2) if B has complex multiplication.
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Proof. We do the complex multiplication case, the other is similar. Let M 2 Pic(A� B).
As before, M ' L(MA,MB, h � y1 + k � y2). We can write MA ' OA(n � p0) 
 a and
MB ' OB(m � q0)
 g for p0, q0 the identity elements of A, B, respectively, integers n and
m and some topologically trivial line bundles a and g. With this notation Lemma 3.5.5
gives

s�M ' L
�
t�tOA(n � p0)
 a,OB(m � q0)
 g�1 
 (�h � y1 � k � y2)

�Pt,�h � y1 � k � y2

�
.

Observe that as g ranges in all Pic0(B) also b := g
2 
 (h � y1 + k � y2)
�Pt ranges in the

whole Pic0(B). In addition we have that

(1� s�)M ' L
�
P
n

t , b, 2h � y1 + 2k � y2
�

Remark 3.5.8. It is not di�cult to check that, for any two integers h and k

L(0, 0, 2h � y1 + 2k � y2) = L(0, 0, h � y1 + k � y2)
 s�L(0, 0, h � y1 + k � y2)
�1,

and so it is in Im(1� s�).

We are now ready to prove one of the main statements of this section:

Theorem 3.5.9. Suppose that S is a bielliptic surface of type 1 whose canonical cover is
A� B with A and B isogenous elliptic curves. Then the Brauer map to the canonical cover
of S is not injective if, and only if, one of the following mutually exclusive conditions is
satis�ed:

1. the elliptic curve B (and so A) does not have complex multiplication and y�Pt is
trivial;

2. the elliptic curve B (and so A) has complex multiplication and we have that at least
one of the following line bundles is trivial

L1 := y�
1Pt, L2 := y�

2Pt, L3 := (y1 + y2)
�Pt (3.16)

Proof. We deal with the complex multiplication case that is slightly more involved. The
argument for the other case is very similar.

Before explaining the details of our reasoning we would like to give, for the reader
convenience, a quick outline of the proof. The key observation is that the assumption on
the line bundles (3.16) are equivalent to the norm of one of the following invertible sheaves

M1 := (1� y1)
�PA, M2 := (1� y2)

�PA, M3 := (1� (y1 + y2))
�PA (3.17)

being topologically trivial. Therefore, if the assumptions are veri�ed, we can use the Pic0

trick (Remark 2.3.2) to provide an element in the kernel of the norm map. Such an element
will give by construction a nontrivial class in KerNm/ Im(1� s�). Conversely, if neither
of the line bundles is trivial, then an element in the kernel of the norm map will be forced
to be numerically equivalent to (1� 2 � j)�PA for some isogeny j 2 Hom(B, A). Then we
will apply Lemma 3.5.7 and see that such a line bundle lies in Im(1� s�), so no element
of Pic(A� B) yields a nontrivial class in KerNm/ Im(1� s�).
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Now, for the complete argument, observe �rst that by (2.8) and Lemma 3.5.5 , for every
a in Pic0(A) and every isogeny j : B ! A,

p�Nm((1� j)�PA 
 p�Aa) ' p�Nm((1� j)�PA)
 p�Nm(p�Aa)

' p�Nm((1� j)�PA)
 p�Aa
2

' p�Bj�Pt 
 p�Aa
2

(3.18)

Suppose �rst that one of the three line bundles in (3.16) is trivial. To �x the ideas we can
assume that y�

1Pt is trivial, the argument is identical in the other cases. Then by (3.18) we
have thatNm((1�y1)

�PA) is in the kernel of p�, and so it is in Pic0(S). We can therefore
apply the Pic0 trick and �nd g 2 Pic0(S) such that the norm of (1� y1)

�PA 
 p�g is
trivial. But by Lemma 3.5.7 we have that (1 � y1)

�PA 
 p�g is not in the image of
1� s� and so it de�nes a non trivial class in KerNm/ Im(1� s�), and one direction of
the statement is proven.

Conversely suppose that there is a line bundle L on X which identi�es a non trivial
class in KerNm/ Im(1� s�). By Lemma 3.5.6

L ' (1� h � y1 + k � y2)
�PA 
 p�Aa 
 p�Bb,

for two integers h and k, and two topologically trivial line bundles a and b. Not that h and
k cannot be both even, for otherwise Lemma Remark 3.5.8 yield that [L] = [p�Aa 
 p�Bb] 2
KerNm/ Im(1� s�) which, by Proposition 3.5.1, implies that [L] = 0 . Thus we can
assume that one between h and k is odd. Then by Lemma 3.5.2 and Lemma 3.5.7 we have
that

L ' (1� yi)
�PA 
 p�Aa 
 M, or L ' (1� y1 + y2)

�PA 
 p�Aa 
 M,

with M in Im(1� s�). From (3.18) we get that p�Bj�Pt 
 p�Aa
 ' OX, where j is equal
to y1, y2 or y1 + y2. But then p�Bj�Pt (and p�a


2
) is trivial, and consequently one of the

line bundles in (3.16) is trivial and the statement is proved.

Example 3.5.10. (a) Suppose that A ' B. If A does not have complex multiplication,
then we can take y = �1A. In particular we have that y�Pt is never trivial and the Brauer
map is injective.

(b) Suppose again that A ' B and that the j-invariant of A is 1728. Then End(A) '
Z[i] and the multiplication by i induces an automorphism w of A of order 4, and we can
take 1A and w as generators of End(A). Suppose that Pt is a �xed pointy of the dual
automorphism w�. Then (1A + w)�Pt is zero and the Brauer map is not injective.

In order to complete our description of the Brauer map for type 1 bielliptic surfaces we
need to give necessary and sufficient conditions for it to be trivial. To this aim we want
to provide two distinct non-zero classes in KerNm/ Im(1� s�). We can assume that the
Brauer map is already non-injective, and so the condition of Theorem 3.5.9 are satisfied.
Suppose first that B does not have complex multiplication. And consider L in the kernel of

yFor example we can identify A with its dual and w� with w and take t = ( 12 ,
1
2 ) + L, where L =<

1, i > A ' C/L.
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the normmap, yielding a non trivial class inKerNm/ Im(1� s�). Then, as before, we have
that

L ' (1� h � y)�PA 
 p�Aa 
 p�Bb.

Again by Lemma 3.5.7 we can assume that h is odd, and in KerNm/ Im(1� s�) the class
of L and that of (1� y)�PA 
 p�Aa are the same. Since y�Pt is trivial, (3.18) implies that
(1� y)�PA 
 p�Ag is in the kernel of the norm map for some g 2 Pic0(A). SoNm(p�A(a 

g�1)) ' OS and by Proposition 3.5.1 p�A(a 
 g�1) lies in the image of (1� s�). We deduce
that, in KerNm/ Im(1� s�),

[L] = [(1� y)�PA 
 p�Ag] = [(1� y)�PA 
 p�Ad]

for every d 2 Pic0(A) such that (1� y)�PA 
 p�Ad is in the kernel of the norm homomor-
phism. In particular there is only one non-trivial element in KerpBr.

Thus we can assume that B has complex multiplication and that, as before, we have fixed
y1 and y2 a system of generators for Hom(A, B). Take L in the kernel of the norm map
defining a non-trivial element in KerNm/ Im(1� s�). By shaving off potential even parts
we can write L ' Mi 
 p�Aa 
 M with M in the image of (1� s�) and Mi one of the line
bundles appearing in (3.17). Suppose that only one of the linde bundles in 3.16, say L1, is
trivial. Then reasoning as in the previous case the class of L inKerNm/ Im(1� s�) is equal
to the class of M1 
 p�Ag for every g 2 Pic0(A) such that Nm(M1 
 p�Ag) is trivial. Thus,
there is just one non-zero class and the Brauer map is again non trivial. Finally suppose that
two (and so all) line bundles in (3.16) are trivial. We have that both M1 and M2 are in the
kernel of the norm map. In addition

M1 
 M�1
2 ' (1� (y1 � y2))

�PA,

which by Lemma 3.5.7 is not in the image of (1 � s�). Therefore we deduce that they
determine two different classes inKerNm/ Im(1� s�), and hence the Brauer map is trivial.
We have thus proven the following statement.

Theorem 3.5.11. The Brauer map to the canonical cover of a type 1 bielliptic surface is triv-
ial if, and only if, the elliptic curves A and B are isogenous, B has complex multiplication,
and all the line bundles in (3.16) are trivial.

Example 3.5.12. (a) If A ' B then the Brauer map is never trivial. Suppose otherwise
that there are y1 and y2 generators of End(A) such that both y�

1Pt and y�
2Pt are zero.

Then we can write 1A = h �y1+ k �y2 and we would get that Pt ' 1�APt is trivial, reaching
an obvious contradiction.

(b) Let now A ' C/Z[2i] and let t the point (0, i) + Z[2i]. The elliptic curve B :=
A/ < t > has j-invariant 1728 and Hom(B, A) is generated by the isogenies y1 := j2
and y2 := j2 � lB, where j2 : B ! A denotes the isogeny induced by multiplication by 2
(see Example 3.2.8 in the Subsection 3.2.1). Observe that

j�
2(Pt) ' j�

2(OA(t � p0) ' OA(j2(t)� j(p0)) ' OB

Thus we have that y�
1Pt ' y�

2Pt ' OB and the Brauer map is trivial.
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3.5.3.2 Bielliptic surfaces of type 3

Let now S be a bielliptic surface of type 3. Then the canonical cover of S is isomorphic to
A� B with j(B) = 1728 and multiplication by i induces and automorphism w of B of order
4, w. By the discussion in 3.2, it is possible to find a generating isogeny y such that

Num(X) = hl(1, 0, 0), l(0, 1, 0) l(0, 0,y), l(0, 0,y � w)i ,

We fix, once and for all, such a y and prove the following Lemma, which yields a precise
description of (1� s�)Pic(X).

Lemma 3.5.13. Let j : B ! A and isogeny. Then there are two integers h and k such that
j = h � y + k � y � w. Then the line bundle (1� j)�PA 2 Im(1� s�) if and only if h+k
is even.

Proof. Let T : Hom(B, A) ! Hom(B, A) the linear operator obtained by composing on
the right with (1B � w). Then an isogeny j as in the statement is in the image of T if, and
only if, h+ k is even. To see this, suppose there is a g such that h �y+ k �y �w = g � (1B�
w) and compose with (1B+w) on both sides. For the other direction, since h+ k is even, so
is h� k, and we can divide by 2 on both sides of the equation j � (1B+w) � (1B�w) = 2 � j

to �nd g = j�(1B+w)
2 . Now, using that for any g 2 Hom(B, A)

(1� s�)(1� g)�PA ' (1� g � (1B � w))�PA 
 p�B(g � (1B � w)�Pe

and that elements of the form p�Bb with b 2 Pic0(B) are in the image of (1 � s�) by
Lemma 3.5.2, we get the statement.

Remark 3.5.14. Observe that this Lemma implies easily that the quotientHom(B, A)/ Im(1�
s�), where we are identifying Hom(B, A) with the corresponding subgroup of Num(A�
B), is cyclic generated by the coset (1A � y)�PA + Im(1� s�).

Now we are ready to start studying the kernel for the Brauer map pBr : Br(S) ! Br(X).
Our main result is the following

Theorem 3.5.15. Let S is a bielliptic surface of type 3 with canonical cover A� B such that
A and B are isogenous. Then the Brauer map to the canonical cover is identically zero if,
and only if, (1B + w)�y�P2e is trivial

Proof. For any isogeny j : B ! A, a 2 Pic0(A) and b 2 Pic0(B), using that the norm of
p�Bb is trivial by Lemma 3.5.2, we have that

p�Nm((1� j)�PA 
 p�Aa 
 p�Bb) ' (1� j)�PA 
 p�Aa

(1� j � w)�PA 
 p�Bw�j�Pe 
 p�Aa

(1��j)�PA 
 p�B(�1B)�j�P2e 
 p�Aa

(1��j � w)�PA 
 p�B(�w)�j�P3e 
 p�Aa


' p�Aa
4 
 p�B(1B + w)�j�P2e.
(3.19)

Suppose that (1B + w)�y�P2e ' OB. Since P2e is a two torsion point, this is equivalent
to asking that (1B � w)�y�P2e is also trivial. Then (3.19) implies that the norms of
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(1� y)�PA and of (1� y � w)�PA lie in Pic0(S). Then using the Pic0-trick (Remark
2.3.2) and Lemma 3.5.13 we can �nd a non zero class in KerNm/ Im(1� s�), and the
Brauer map is trivial.

Conversely, let L be a line bundle de�ning a nontrivial class in KerNm/ Im(1� s�).
Then as we did in the case of type 1 surfaces, we can write

L ' (1� h � y + k � y � w)�PA 
 p�Aa 
 p�Bb

with a and b in Pic0(A) and Pic0(B). Lemma 2.1.3 implies that the integer h+ k is odd or
we would have that p�Aa is in the kernel of the norm map, and consequently, by Proposition
3.5.1, L 2 Im(1� s�) . Thus we can write

L ' M
 M0

where M0 is in the image of 1 � s�, and M is numerically equivalent to (1 � y)�PA
(this is a consequence of Lemma 3.5.13 and Remark 3.5.14). We deduce that M is in the
kernel of the norm map. But then (3.19) implies that (1+ w)�y�P2e is trivial, proving the
statement.

Example 3.5.16. Suppose that A ' B, so we can take y = 1A. If P2e is a �xed point of w,
then we have that PA yields a nontrivial element in KerNm/ Im(1� s�). Conversely, if
P2e is not a �xed point of w we will have that the Brauer map is injective.

3.5.3.3 Bielliptic surfaces of type 5

Let S be a bielliptic surface of type 5. We will solve this case in a similar fashion as for
bielliptic surfaces of type 3. In the type-5 case, the canonical cover is isomorphic to an
abelian surface A� B with j(B) = 0. As already seen, B admits an automorphism r of order
3 such that r2 + r + 1 = 0. Again, thanks to Theorem 3.5.3 we need to study only the case
in which A and B are isogenous. Also in this case, by the results of 3.2, there is generating
isogeny y : B ! A such that

Num(X) = hl(1, 0, 0), l(0, 1, 0) l(0, 0,y), l(0, 0,y � r)i .

With this notation, we prove a statement analogous to Lemma 3.5.13:

Lemma 3.5.17. Let j : B ! A and isogeny. Then there are two integers h and k such
that j = h � y + k � y � r. If h+ k is not divisible by 3, then (1� j)�PA /2 Im(1� s�).
Conversely if 3 divides h+ k, then (1� j)�PA
 p�Bb 2 Im(1� s�), for every b 2 Pic0(B).

Proof. The argument is completely analogous to the proof of Lemma 3.5.13, after observing
that, if T : Hom(B, A) ! Hom(B, A) is the operator de�ned by pre composing with
1B � r, then the image of T are exactly the homomorphism h � y + k � y � r such that 3
divides k+ h.

Remark 3.5.18. This Lemma implies easily that the quotient of the Hom-part of Num(A�
B) by the action of 1�s� is isomorphic to Z/3Z with elements (1A�y)�PA+ Im(1�s�)
and (1A � y + y � r)�PA + Im(1� s�) = (1A � 2 � y)�PA + Im(1� s�).

We will also need the following statement:
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Lemma 3.5.19. Let B an elliptic curve with j-invariant 0 and b an element Pic0(B). Con-
sider the following line bundles

P1 := (2 � r + 1B)�b, , Pr := (2 � r + 1B)�r�b, and P1+r := (2 � r + 1B)�(1B + r)�b.

If one of them is trivial then they are all trivial.

Proof. Observe �rst that (2 � r + 1B)�r�b ' r�(2 � r + 1B)�b. Since r is an automorphism
the triviality of Pr is equivalent to the triviality of P1. In addition as P1+r ' P1 
 Pr we
have that if P1 and Pr are both trivial, then also P1+r is trivial. It remains to show that
if P1+r ' OB, then also P1 and Pr are trivial. We not that P1+r ' OB if, and only if,
r�P1+r ' OB. On the other side we have

r�P1+r ' r�(2 � r + 1B)�(1B + r)�b ' r�(r � 1B)�b ' (�2 � r � 1B)�b ' P�1
1 .

We conclude that the triviality of P1+r is equivalent to the triviality of P1 as required by
the statement.

Now we are ready to prove the main result of this paragraph:

Theorem 3.5.20. Let S be an bielliptic surface of type 5 such that the two elliptic curves
A and B are isogenous. Let y be a generating isogeny, then we have that the Brauer map
pBr : Br(S) ! Br(A� B) is trivial if, and only if, the line bundle (2 � r + 1B)�y�Ph ' OB.

Proof. The argument is really similar to what happens for type 3 bielliptic surfaces. We
�rst note that, for any isogeny j : B ! A, and every a and b in Pic0(A) and Pic0(B)
respectively, we have that

p�Nm((1� j)�PA 
 p�Aa 
 p�Bb) ' p�Aa
3 
 p�B(2 � r + 1B)�j�Ph. (3.20)

Suppose �rst that (2 � r + 1B)�y�Ph is trivial. Then (3.20) ensures that the norm of
M1 := (1� y)�PA is topologically trivial. By Lemma 3.5.17 we know that no line bundle
numerically equivalent to M1 is in the image of 1� s�. Thus we use the Remark 2.3.2 to
provide an element in KerNm inducing a non trivial class in KerNm/ Im(1� s�).

Conversely, assume that L is a line bundle in KerNm whose class in KerNm/ Im(1�
s�) is not trivial. As before we can write

L ' (1� h � y + k � y � r)�PA 
 p�Aa 
 p�Bb.

We apply Lemma 3.5.17 and write L ' M 
 M0 with M0 2 Im(1� s�) and M a line
bundle numerically equivalent to one of the following

M1 := (2 � r + 1B)�y�Ph, and M1+r := (2 � r + 1B)�(1+ r)�y�Ph. (3.21)

Clearly M is in the kernel of the norm map, which, by (3.20) implies that one among the
following is trivial:

P1 := (2 � r + 1B)�y�Ph, and P1+r := (2 � r + 1B)�(1B + r)�y�Ph.

We conclude by applying Lemma 3.5.19 and deducing that P1 ' OB.

Example 3.5.21. Suppose that A ' B. Note that the isogeny j := (2 � r + 1B) : B !
has degree 3, and its kernel is contained in B[3] which has order 9. If h is in the kernel of
j then the bielliptic surface obtained by the action of s(x, y) = (x+ h, r(y)) has trivial
Brauer map. Otherwise the Brauer map is injective.
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3.5.3.4 Bielliptic surfaces of type 2

We kept last the bielliptic surfaces of type two since for them we need an ad hoc argument.
Let therefore S be a bielliptic surface of type 2 and denote by X its canonical cover. Then
X ' A � B/ < t(q1,q2) > for two elliptic curves A and B and q1 and q2 points of order 2
in A and B respectively. Let us fix generators for Hom(B, A): if B does not have complex
multiplication then Hom(B, A) =< y > with y : B ! A an isogeny; otherwise there are
two isogenies y1,y2 : B ! A such that Hom(B, A) =< y1,y2 > . Our goal is to prove the
following statement.

Theorem 3.5.22. In the above notation the Brauer map pBr : Br(S) ! Br(X) is not
injective if, and only if, one of the following conditions is satis�ed:

1. the elliptic curve B does not have complex multiplication and either y(q2) is not the
identity element of A or y�Pq1 is not trivial.

2. the elliptic curve B has complex multiplication and not all of the following elements
are the identity element in the elliptic curve they belong to�

y1(q2), y2(q2), y�
1Pq1 ,y

�
2Pq1 , (y1 + y2)(q2), (y1 + y2)

�(Pq1)
	

Before proceeding with the proof we need to set up some notation. Recall that we have
the following diagram

A� B S̃

X S,

f

pS̃

p̃

pS

where S̃ is a bielliptic surface of type 1. We have that S ' X/s, S̃ ' A� B/s̃ and X '
A� B/S, where S denotes the translation t(q1,q2). We are going to deal just with the case in
which B hax complex multiplication. The proof in the other case will be identical, provided
that one drops one of the two generators. We first observe the following fact:

Lemma 3.5.23. In the notation above suppose that B has complex multiplication and let
Li be the line bundle (1� yi)

�PA, for i = 1, 2. Then the conditions of Theorem 3.5.22
are satis�ed if, and only if, for every g 2 Pic0(A� B) one of the following line bundles is
not S-invariant:

L1 
 g, L2 
 g, L1 
 L2 
 g. (3.22)

Proof. By see-saw, it is easy to see that

S�[(1� yi)
�PA 
 g] ' (1� yi)

�PA 
 g 
 p�APyi(q2)

 p�By�

i Pq1 ,

S�[(1� (y1 + y2))
�PA 
 g] ' (1� (y1 + y2))

�PA 
 g


 p�APy1+y2(q2) 
 p�B(y1 + y2)
�Pq1 ;

the statement follows directly.

Proof of the su�ciency of the conditions of the Theorem 3.5.22. Suppose that the condi-
tions of the statement are satis�ed. Then, by Lemma 3.5.23, one of the line bundles (3.22)
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is not S-invariant. Suppose �rst that L1 
 g is not S-invariant for every topologically
trivial g. Thus we have that l(0, 0,y1) is not in f�Num(X). We deduce that

2 � y1 /2 (1� s̃)�f�Num(X). (3.23)

Otherwise we would have

2 � y1 = (1� s̃)�f�j

= (1� s̃)�(h � y1 + k � y2)

= 2h � y1 + 2k � y2.

Therefore h = 1, k = 0 and f�j = y1, contradicting our previous conclusion. Now
consider the line bundle L := Nmf((1� y1)

�PA). We want to show that there is b 2
Pic0(X) such that NmpS(L 
 b) is trivial. We use the functoriality of the norm map
(Proposition 2.3.1) and we obtain that

NmpS(L) ' Nmp̃ �NmpS̃
((1� y1)

�PA).

Observe that by (3.18) we have that p�
S̃NmpS̃

((1�y1)
�PA) is numerically trivial. There-

fore we have that NmpS̃
((1� y1)

�PA) is itself numerically trivial. This implies that

Nmp̃ �NmpS̃
((1� y)�PA) 2 Pic0(S).

In fact if we have that NmpS̃
((1� y1)

�PA) := a 2 Pic0(S̃) then we write a ' p̃�g and
we have that

NmpS(L) ' Nmp̃ �NmpS̃
((1� y1)

�PA) ' g
2.

On the other side if NmpS̃
((1� y1)

�PA) := T a numerically trivial but not algebraically
trivial line bundle, then as in (3.13) we have that Nmp̃(T) is topologically trivial. Thus,
as before, we obtain b such that NmpS(L
 b) ' OS via the Pic0 trick (Remark 2.3.2).

In order to determine the non injectivity of the Brauer map we have to ensure that
L
 b is not in Im(1� s�). Suppose that this were not the case, and consider the following
commutative diagram

A� B A� B

X X,

f

s̃

f

s

Then c1(f�L) 2 (1 � s̃)�f�Num(X). However the properties of the norm (see (2.8))
ensures that c1(f�L) = l(0, 0, 2 �y1), thus we would have that l(0, 0, 2 �y1) 2 f�Num(X),
contradicting (3.23).

If L2 
 g is not S-invariant for every g 2 Pic0(A� B), then we proceed as before by
exchanging the role of y1 and y2. Thus, it remain only to see what happen if L1
 L2
 g is
not S-invariant for every g. In this case we will have that l(0, 0,y1 + y2) /2 f�Num(A�
B), and so either l(0, 0,y1) or l(0, 0,y2) are not in the image of f�. Without loss of
generality we can assume the �rst. Then we will still have (3.23) and we can repeat the
above argument.
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In order to complete the proof of Theorem 3.5.22we need to show that if all (1�y1)
�PA,

(1�y2)
�PA, and (1� (y1+y2))

�PA are S-invariant then the Brauer map toX is injective.
Observe that, under this assumptions, we can write

(1� y1)
�PA ' f�L1, (1� y2)

�PA ' f�L2, and (1� (y1 + y2))
�PA ' f�L3.

for some line bundles L1, L2, and L3 in Pic(X). Then for a 2 Pic0(X) write f�a ' p�Aa1 

p�Ba2 we have

f�(p�
SNmpS(Li 
 a)) ' f�(Li 
 a 
 s�(Li 
 a)) ' p�Aa
2

1 
 p�B(y
�
1Pt),

f�(p�
SNmpS(L1 
 L2 
 a)) ' f�(L1 
 L2 
 a 
 s�(L1 
 L2 
 a))

' p�Aa
2
1 
 p�B(y

�
1Pt 
 y�

2Pt);

where, in both cases, the last equality is again given by (3.18). Observe that neither the yi’s
nor y1 + y2 can factor through the multiplication by 2 isogeny, or we would have that y1
and y2 cannot generate Hom(B, A). In particular, we cannot have that neither y�

i Pt nor
(y1 + y2)

�Pt can be trivial. We deduce that

f�(p�
SNmpS(Li 
 a)) 6' OA�B,

f�(p�
SNmpS(L1 
 L2 
 a)) 6' OA�B.

In particular we obtained the following lemma:

Lemma 3.5.24. In the above notation, if the conditions of Theorem 3.5.22 are not satis�ed,
then line bundles numerically equivalent to Li or L1 
 L2 are not in the kernel of the norm
map NmpS .

Before going further we need an intermediate step:

Lemma 3.5.25. For any integer n, L
2n
i and (L1 
 L2)
2n are in Im(1� s�)

Proof. Obviously it is enough to show that L
2
i is in the image of (1� s�). To this aim,

we pull Li 
 s�Li back to A� B and apply (3.18). We see that

f�(Li 
 s�(Li)) 2 p�B Pic
0(B) � A� B,

and we deduce that g := Li 
 s�(Li) is a line bundle in p�B Pic
0(B/H). By 3.5.2 we know

that g 2 Im(1� s�). Thus we can write

L
2
i ' g 
 s�Li 
 L�1

i .

Conclusion of the Proof of Theorem 3.5.22. Let M is a line bundle such that NmpS(M) '
OS, we will show that M is in the image of (1� s�). Using (2.8), we know that M
 s�M '
OX. By pulling back via f we get that f�M
 s̃�f�M is again trivial and by the proof of
3.5.6 we see that c1(f�M) = l(0, 0, h � y1 + k � y2) for two integers h and k. Then we can
write

f�M ' (1� h � y1)
�PA 
 (1� k � y2)

�PA 
 g ' f�(L
h
1 
 L
k

2 )
 g,
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for some g in Pic0(A� B). Therefore f�(M
 L
�h
1 
 L
�k

2 ) ' g, and we deduce that
M ' L
h

1 
 L
k
2 
 a for some a 2 Pic0(X). If h and k are both even, then by Lemma 3.5.25

we know that a 2 KerNmpS , and the class of M in KerNmpS / Im(1� s�) is exactly [a].
We apply Proposition 3.5.1 and deduce that [M] = 0.

We will now show that neither one between h and k can be odd. Suppose otherwise
that h and k are not both even. For example, assume that h is odd and k is even, the
proof in the other cases is very similar. Under this hypothesis, Lemma 3.5.25 ensures that
L1 
 a is in the kernel of the norm map. But this contradicts Lemma 3.5.24, and our proof
is complete

Example 3.5.26. (a) Suppose that A ' B, then the isogenies y1 and y2 are indeed iso-
morphisms and thus the Brauer map can never be injective.

(b) Let B be an elliptic curve without complex multiplication and consider q2 a point of
order 2 in B. Let A be the elliptic curve B/ < q2 > and y : B ! A the quotient map.
The dual map y� has degree 2. Let q1 2 A the point such that y�Pq1 is trivial and let t

be another order 2 element of A. All this data identify a bielliptic surface of type 2 whose
Brauer map to the canonical cover is injective.



Chapter 4

Twisted Derived Equivalences

4.1 Introduction

Given a smooth projective variety X over a field k, and an element of the Brauer group of X,
a, one can construct the twisted derived category Db(X, a) (more details on the construction
will be given in 4.2). One of the key questions one may pose is the following:

Question. How much geometry does Db(X, a) encode?

More precisely, given two varieties X and Y and two elements of their respective Brauer
group a and b such that there is an exact equivalence Db(X, a) ' Db(Y, b), what can be said
about the mutual relationship of X and Y?

For example, it is well known that twisted Fourier–Mukai partners (i. e. varieties with
equivalent twisted derived categories) shares the same dimenison, the same Kodaira dimen-
sion, and the same order of the canonical bundle (see [Huy06] for the proofs when the Brauer
classes are both trivial, the properly twisted case is due to Navas [Nav10]). In certain cases,
for example when X is Fano, or oppositely, when X has ample canonical bundle, it is pos-
sible to reconstruct it from its derived category, meaning that an equivalence of the twisted
derived categories as above will imply an isomorphism between X and Y (see [Orl97] when
both Brauer classes are trivial and again [Nav10] for the properly twisted case).

In this chapter we focus on bielliptic surfaces. We conjecture the following:

Conjecture 4.1.1. Complex bielliptic surfaces do not admit non-isomorphic twisted Fourier�
Mukai partners.

This result has been proved by Bridgeland–Maciocia in [BM98a] in the case in which
both the Brauer classes involved are trivial. Our main results is the following

Main Theorem. Let X be a complex bielliptic surface, and let Y be a complex smooth
projective variety, and take two Brauer classes a and b on X and Y respectively, such that
there is an exact equivalence F : Db(X, a) �! Db(Y, b). If either a or b is trivial then
they are both trivial and furthermore X and Y are isomorphic.

The first step of our argument will be showing that twisted Fourier–Mukai partners of
bielliptic surfaces are again bielliptic surfaces. This is a consequence of the fact that twisted
derived euivalences preserve the order of the canonical bundle and the Hochschild cohomol-
ogy ( [Huy06] for the regular case, and [Nav10] for the properly twisted one) - hence in low
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dimension the Betti numbers are also preserved. Then we use a computation by Addington–
Wray ( [AW18]) about the topological Grothendieck group to show that two bielliptic sur-
faces as in the statement must be of different types (cfr. 2.1). Finally, we will use derived
equivalence induced by moduli space of sheaves to show that bielliptic surfaces of different
types cannot be twisted derived equivalent.

It is important to remark that, thanks to the work of Honigs–Lieblich–Tirabassi ( [HLT17]
our main theorem can be directly extended into positive characteristic with mild restrictions:

Corollary. Given a bielliptic surface X over an algebraically closed �eld k of characteristic
greater than 3. If there exists a smooth projective variety Y and a twisted derived equiv-
alence F : Db(X, a) ! Db(Y, b) such that at least one of the Brauer classes involved is
trivial, then both classes are trivial. In addition X and Y are isomorphic.

This chapter consists of three parts. In the first we will outline background material about
twisted derived categories, derived equivalences andmoduli spaces of sheaves. In the second
we will prove our main result. In the last and final part we will think a bit on the difficulties
in the case where both surfaces are twisted.

4.2 Preliminary results and background material

In this section we presents some preliminary material which will be used to formulate and
prove our main result. In particular in 2.4 we will define rigorously twisted sheaves. In 4.2.1

and 4.2.2 we will follow the work of Căldărăru ( [C0
�
0]) to construct the derived categories of

twisted sheaves and to define some useful functor between them. This will allow us to intro-
duce the notion of Fourier–Mukai transform between derived categories of twisted sheaves,
which we do in 4.2.3. In 4.2.4 we see, following the work of Navas ( [Nav10]), Krug–
Sosna ( [KS15]), and Addington-Wray ( [AW18]) how one can lift a (twisted) Fourier–Mukai
functor between the (twisted) derived categories of some varieties to an equivariant Fourier–
Mukai functors of their respective canonical covers. In 4.2.5 we see how a Fourier–Mukai
functor acts at cohomological level. Finally in 4.2.6 we discuss the smoothness of some
moduli spaces of sheaves which will be used to construct specific Fourier–Mukai functor
between some twisted derived categories of bielliptic surfaces.

4.2.1 The Twisted Derived Category

We recall the construction of the derived category in the context of twisted sheaves, in com-
plete analogy to the construction found in e.g. [Huy06] in the untwisted case. Let (X, a) be a
twisted variety and let C(X, a) denote the abelian category of complexes of twisted sheaves
in Coh(X, a), i.e., the objects are complexes

E� := (. . . di�2
��! E i�1 di�1

��! E i di�! E i+1 di+1
��! . . .)

of a-twisted coherent sheaves and the morphisms f � : E� ! F � are given by commuting
diagrams:
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. . . E i�1 E i E i+1 . . .

. . . F i�1 F i F i+1 . . .

di�2

f i�1

di�1

f i

di

f i+1

di+1

di�2 di�1 di di+1

A morphism f � : E� ! F � induces a morphism Hi( f �) : Hi(E�) ! Hi(F �) between
their i-th cohomology sheaves, which for a general complex E� is defined as the sheaf

Hi(E�) :=
ker(di)
im(di�1)

.

To pass from the category C(X, a) of complexes to the derived category D(X, a) the
construction passes through homotopy category K(X, a). The objects in K(X, a) are the
complexes of C(X, a) and its morphisms are equivalence classes of morphisms

MorK(X,a)(E�,F �) := MorC(X,a)(E�,F �)/ �

where f � � g� if they are homotopically equivalent, i.e., if there exists morphisms di : E i !
F i�1 such that f i� gi = di+1 � di+ di�1 � di. Localizing the homotopy category with respect
to the class of quasi-isomorphisms, i.e., morphisms f � : E� ! F � such that the induced map
Hi( f �) is an isomorphism for each i, one gets the twisted derived category D(X, a). There
exists a functor

Q(X,a) : C(X, a) ! D(X, a)

preserving quasi-isomorphisms which is universal with respect to this property, i.e., for any
category D and functor F : C(X, a) ! D preserving quasi-isomorphisms, there is a functor
R : D(X, a) ! D such that F = R �Q(X,a).

For the rest of this thesis we shall be concerned with the subcategoryDb(X, a) ofD(X, a)
consisting of complexes for which all but finitely many sheaves are different from 0, called
the bounded derived category of a-twisted coherent sheaves on X. Similarily we have the
subcategories D+(X, a) and D�(X, a) of complexes bounded below and bounded above,
respectively.

4.2.2 Derived Functors

Derived functors works just as in the untwisted case. If (X, a) and (Y, b) are two twisted va-
rieties and F : Coh(X, a) ! Coh(Y, a) is a left exact functor, the right derived functor of F,
if it exists, is the functor RF : Db(X, a) ! Db(Y, a) uniquely determined up to isomorphism
by the following properties:

(i) RF is right exact as a functor between triangulated categories,

(ii) If Kom(F) is the natural functor extending F on complexes, there exists a morphism
Q(Y,b) �Kom(F) ! RF �Q(X,a),

(iii) if G : Db(X, a) ! D(Y, b) is an exact functor, any morphism Q(Y,b) � Kom(F) !
G �Q(X,a) factorizes through a morphism RF ! G.
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Completely analogues we have the left derived functor LG : Db(X, a) ! Db(Y, b) of a
right exact functor G : Coh(X, a) ! Coh(Y, b).

In the following we will summarize the derived functors and their properties we shall need,

following [C0
�
0]. In short, we get all the usual derived functors that we care about, defined

exactly as their counterparts in the untwisted case, together with their usual properties.

Proposition 4.2.1 ( [C�00, Theorem 2.2.6]). Let X and Y be smooth schemes or analytic
spaces of �nite dimension and f : X ! Y be a proper morphism. If a, a0 2 Br(X) and
b 2 Br(Y), the following derived functors are de�ned:

RH om� : Db(X, a)� Db(X, a0) ! Db(X, a�1 � a0),

�
L � : Db(X, a)� Db(X, a0) ! Db(X, a � a0),

L f � : Db(Y, b) ! Db(X, f �b),

R f� : Db(X, f �b) ! Db(Y, b).

Furthermore, if X is a scheme or a compact analytic space, then

RHom� : Db(X, a)op � Db(X, a) ! Db(Ab)

where Db(X, a)op denotes the opposite category, and Ab is the category of abelian
groups.

Proposition 4.2.2 ( [C�00, Section 2.3]). Let (X, a), (Y, b), (Z,g) be twisted varieties and
f : X ! Y, g : Y ! Z be proper morphisms. Then we have the following:

� R(g� � f�) ' Rg� � R f� as functors from D(X, f �(g�g)) to D(Z,g),

� L( f � � g�) ' L f � � Lg� as functors from D�(Z,g) to D�(X, f �(g�g)),

� RHom�(F,G) ' RG(X,RH om�(F,G)) for F,G 2 Db(X, a),

� R f�RH om�(F,G) ' RH om�(R f�(F),R f�(G)), for F 2 D�(X, f �a), G 2 D�(X, f �a0),

� (Projection Formula) R f�(F)
L G ' R f�(F 
L L f �(G)) for F 2 D�(X, f �a) and
G 2 D�(Y, b),

� RH om�(L f �(F),G) ' RH om�(F,R f�(G)), for F 2 D�(Y, b),G 2 D�(Y, b0),

� L f �(F
L G) ' L f �(F)
L L f �G for F 2 D�(X, a),G 2 D�(X, a0),

� F 
L G ' G 
L F, F 
L (G 
L H) ' (F 
L G) 
L H for F 2 D�(X, a), G 2
D�(X, a0) and H 2 D�(X, a

00
),

� RH om�(F,G)
L H ' RH om�(F,G
L H) for F 2 D�(X, a),G 2 D+(X, a0) and
H 2 D(X, a00),
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� RH om�(F,RH om�(G,H)) ' RH om�(F
LG,H) for F 2 D�(X, a), G 2 D�(X, a0)
and H 2 D+(X, a00),

� RH om�(F,G 
L H) ' RH om�(F 
L H_,G) for F 2 D�(X, a0), G 2 D+(X, a0)
and where for a bounded a-complex H, H_ := RH om(H,OX).

Moreover, we have the Flat Base Change Theorem for the derived category of twisted
sheaves. Namely, if u : Y0 ! Y is a �at morphism in the commutative diagram

X�Y Y0 X

Y0 Y

v

g f

u

there is a functorial isomorphism u�R f�(F) ' Rg�v�(F) for any F 2 Db(X, f �b).

Duality for proper smooth morphisms also holds in this setting.

Theorem 4.2.3 ( [C�00, Theorem 2.4.1]). Let f : X ! Y be a smooth morphism of relative
dimension n between smooth schemes (or if you will, smooth analytic spaces), and let
a 2 Br(Y). De�ne a functor f ! : Db(Y, a) ! Db(X, f �a) by

f !(�) := L f �(�)
 wX/Y[n]

where wX/Y is the n-th exterior power
Vn WX/Y of the sheaf of relative di�erentials. Then

for any G 2 Db(Y, a) there is a natural homomorphism

R f� f !G ! G,

which by Proposition 4.2.8 induces a homomorphism

R f�RH om�(F, f !G) ! RH om�(R f�F,G)

which is an isomorphism for any F 2 Db(X, f �a).

As an immediate corollary of this, under the conditions of the above theorem, we have
that f ! is a right adjoint to R f� as functors between Db(X, f �a) and Db(Y, a).

Thus far we see that the twisted derived category behaves completely analogous to the
regular derived category. Next up we will look at Fourier-Mukai transforms in the twisted
setting and their geometric significance.

4.2.3 Twisted Fourier-Mukai Transforms

Fix two smooth projective varieties X and Y with Brauer classes a 2 Br(X), b 2 Br(Y). Let
p : X�Y ! X and q : X�Y ! Y be the natural projections.

De�nition 4.2.4. A functor F : Db(X, a) ! Db(Y, b) is a Fourier-Mukai functor or of
Fourier-Mukai type if there exists an object P 2 Db(X�Y, a�1 � b) and an isomorphism
of functors F ' FP , where FP is the exact functor de�ned by
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FP (�) := Rq�(P 
L p�(�)).

If F is an equivalence, we say that it is a Fourier-Mukai transform. The object P is
called the kernel of FP . If there exists such an equivalence relating Db(X, a) and Db(Y, b),
we say that they are twisted Fourier-Mukai partners.

Remark 4.2.5. Note that since p is �at we need not take derived pullback. Also, the same
kernel P can be used to de�ne a functor in the opposite direction, so the notation above
might be ambiguous. To be precise, many authors write FX!Y

P to indicate the direction.

In the case of an untwisted derived equivalence F : Db(X) ! Db(Y), Orlov showed
in [Orl03, Orl97] that there is an object P 2 Db(X � Y), unique up to isomorphism, such
that F ' FP . In fact, he showed a more general result, namely that any exact and fully
faithful functor F which admits right and left adjoints is of Fourier-Mukai type. Luckily,
the same holds true in the twisted case, as shown by Cananaco and Stellari in [CS07], where
they also generalize Orlov’s original result:

Theorem 4.2.6. Let (X, a) and (Y, b) be twisted varieties and let F : Db(X, a) ! Db(Y, b)
be an exact functor such that, for any F,G 2 Coh(X, a),

HomDb(X,a)(F(F),F(G)[j]) = 0 i f j < 0.

Then there exists an object P 2 Db(X�Y, a�1� b) such that F ' FP . Moreover, P
is uniquely determined up to isomorphism.

In particular, for any equivalence F : Db(X, a) ! Db(Y, b), we know that it is a Fourier-
Mukai transform with kernel P 2 Db(X � Y, a�1 � b). The geometric significance of this
cannot be overstated, as the existence of such a kernel, just as in the untwisted case, allows
us to extract geometric information from the twisted derived equivalence.

Recall that for a general k-linear category A, where k is a field (which in our case is the
field C of complex numbers), a Serre functor is a k-linear equivalence S : A ! A such that
for any two objects A, B 2 A, there exists an isomorphism

hA,B : Hom(A, B) ��! Hom(B, S(A))_

of k-vector spaces, which is functorial in both A and B.

The functor S(X,a) on the category Db(X, a) defined as

S(X,a)(�) := (�)
 wX[dim(X)]

is then a Serre functor, just like in the untwisted case. Indeed, since the functor S on
Db(X) given by E 7! E 
 wX[dim(X)] is a Serre functor, given F,G 2 Db(X, a), using the
properties of our derived functors and the fact that G_ 
 F is naturally an untwisted sheaf,
we get
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HomDb(X,a)(F, S(X,a)(G)) = HomDb(X,a)(F,G
 wX[dim(X)])

' HomDb(X)(G
_ 
 F,wX[dim(X)])

' HomDb(X)(wX[dim(X)], S(G_ 
 F))_

' HomDb(X)(wX[dim(X)],G_ 
 F
 wX[dim(X)])_

' HomDb(X,a)(G, F)
_.

Taking duals on both sides then gives the required isomorphism.

Having a Serre functor gives a very rich geometric structure on the category also in the
twisted case, and we will see that many of the properties we would expect still holds here and
many of the proofs go through essentially without change. As an example of the geometric
significance of having such a Serre functor, we recall that if A and B are k-linear categories
with finite dimensional Hom’s, endowed with Serre functors SA and SB, respectively, we
have F � SA ' SB � F for any k-linear equivalence F : A ! B by an easy application of
Yoneda’s Lemma. Using this one can show an important geometric fact of twisted derived
equivalences following the proof in [Huy06, Proposition 4.1] mutatis mutandis:

Proposition 4.2.7. Let (X, a), (Y, b) be two twisted smooth projective varieties, and sup-
pose F : Db(X, a) ! Db(Y, b) is an equivalence. Then dim(X) = dim(Y), and ord(wX) =
ord(wY).

This same fact can be shown using the existence and uniqueness of the Fourier-Mukai
kernel P such that F ' FP . Indeed, using Theorem 4.2.9 FP has left and right adjoints
with kernels given by

PL := P_ 
 q�wY[dim(Y)]

and

PR := P_ 
 p�wX[dim(X)],

respectively. Since FP is an equivalence, the adjoints are isomorphic, and by uniqueness of
kernels we have PL ' PR. From this we get

P_ ' P_ 
 (p�wX 
 q�wY[dim(X)� dim(Y)])

and dim(X) = dim(Y) follows. At the same time we get that the kernel P of a Fourier-
Mukai transform FP satisfies P 
 p�wX ' P 
 q�wY, and moreover from the projection
formula that FP (Ox) ' FP (Ox) 
 wY for any x 2 X. In other words, the images of
skyscraper sheaves under a Fourier-Mukai transform are special objects of the derived cate-
gory, i.e., objects F such that F
 wY ' F.

We will need the following lemma:

Lemma 4.2.8 ( [Nav10, Lemma 1.4.6]). Let p : S ! T be a morphism, and for each t 2 T,
let it : St ,�! S be the inclusion of the �ber p�1(t) in S. Let E be an object of D(S, a)
such that for all t 2 T, Li�t E is a twisted sheaf on St. Then E is a twisted sheaf on S, �at
over T.



56 4. Twisted Derived Equivalences

We will say that an FM-transform F is a sheaf transform if there is an integer p such
that for all closed points y 2 Y, Hi(F(Oy)) = 0 unless i = p. In other words, up to
shift, F(Oy) is an actual twisted sheaf and not a proper complex. Due the lemma above,
an equivalent condition is that the kernel P of F is concentrated in some degree p, and
is flat over Y. A useful consequence of this is a practical way to check if an equivalence
F : Db(X, a) ! Db(Y, b) induces an isomorphism X ' Y. The most rigid version is the
following:

Corollary 4.2.9 ( [Huy06, Corollary 5.23]). Suppose F : Db(X, a) ! Db(Y, b) is an equiv-
alence such that for any closed point x 2 X, there is a closed point f (x) 2 Y with

F(Ox) ' O f (x).

Then f : X ! Y de�nes an isomorphism and F is the composition of f� with the twist
by some line bundle M 2 Pic(Y), i.e.,

F(�) ' (M
 (�)) � f�.

The less rigid version of the above is the situation of single points x0 2 X and y0 2 Y
such that F(Ox0) ' Oy0 . This implies the existence an open neighbourhood U � X and
the existence of a morphism f : U ! Y, with f (x0) = y0, such that F(Ox) ' O f (x) for all
x 2 U. To conclude this and in the process essentially proving the above corollary, we need
some lemmas.

Lemma 4.2.10 ( [Huy06, Lemma 3.29]). Let i : T ,�! X be a closed subscheme. Then for
any F 2 Db(X, a), one has

supp(F) \ T = supp(Li�F)

Lemma 4.2.11. Let F : D(X, a) ! D(Y, b) be an equivalence with kernel P . Let x 2 X
be a closed point. Then we have that F(Ox) ' Li�P , where i : fxg � Y ,! X � Y is
the natural inclusion, and Li�P is considered as a sheaf on Y via the second projection
X�Y ! Y.

Proof. Consider the base change diagram

fxg � Y X�Y

fxg X

i

px p

ix

By de�nition F(Ox) = Rq�(P 
L p�Ox) where p and q are the natural projections
from X�Y. The support of p�Ox is fxg�Y, and i�, i� are exact, so Ri�Li�p�Ox ' i�i�Ox,
and since i�p�Ox ' p�xi�xOx ' Ofxg�Y, we get that p�Ox ' i�i�OX�Y. By the projection
formula we have P 
L p�Ox ' Ri�Li�P . Finally,

F(Ox) = Rq�(P 
 q�Ox) ' Rq�Ri�Li�P ' Rq0�Li
�P

where q0 = q � i is the isomorphism fxg �Y ' Y. Hence F(Ox) ' q0�Li�P , i.e., F(Ox) '
Li�P considered as a sheaf via the second projection q.
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We recall that an object F 2 Db(X, a) is simple if Hom(F, F) ' C.

Lemma 4.2.12 ( [Huy06, Lemma 4.5]). Suppose F 2 Db(X, a) is a simple object with
zero-dimensional support. If Hom(F, F[i]) = 0 for i < 0, then

F ' Ox[m]

for some closed point x 2 X and some integer m.

Proposition 4.2.13. Suppose F : D(X, a) ! D(Y, b) is an equivalence such that there
exists points x0 2 X and y0 2 Y with F(Ox0) ' Oy0 . Then X and Y are birational. In
particular, if X and Y are minimal, they are isomorphic.

Proof. Let P be the kernel of F and consider the support supp(P) of P , de�ned as the
union of the support of all the cohomology sheaves of P . By Lemma 4.2.10 the �ber of
the natural projection supp(P) ! X at x0 2 X is given by supp(P) \ (fx0g � Y) =
supp(Li�P) where i : fx0g � Y ,�! X � Y is the inclusion. Since F(Ox0) ' Li�P by
Lemma 4.2.11, and F(Ox0) ' Oy0 by assumption, we get supp(P) \ (fx0g � Y) =
supp(Oy0), so the �ber above x0 is zero-dimensional. This holds in an open neighbourhood
U � X of x0, so the support of F(Ox) is zero-dimensional for all x 2 U. Since F(Ox)
is a simple sheaf with zero-dimensional support, and Hom(F(Ox),F(Ox)[i]) = 0 for all
i < 0, we must have by Lemma 4.2.12 that F(Ox) ' Ox[mx]. Due to semi-continuity, the
shift mx is constant locally around x0 2 U. In conclusion, there is an open subset U � X
such that for all x 2 U, there is an f (x) 2 Y such that (up to shift) F(Ox) ' O f (x).
By restricting the kernel P to U �Y, Lemma 4.2.8 then implies that P is a twisted sheaf
over U � Y, �at over U, and hence F(Ox) ' P

��
fxg�Y ' O f (x). By taking local sections

of P
��
U�Y we de�ne a morphism U ! Y whose graph coincides with the support of P

over U, and from F(Ox) ' O f (x) we get that this morphism induces f on closed points.
Now following [Huy06, Corollary 5.23], we get a morphism f : U ! Y, hence a rational
map X 99K Y. Because F is an equivalence, this rational map has an inverse, and X is
birational to Y.

Lemma 4.2.14. Let X,Y be smooth projective varieties and F : Db(Y, a) ! Db(X) an
equivalence. Then for any y 2 Y there is an inequality

å
i
Ext1(Fi(Oy),Fi(Oy) � 2,

where Fi(Oy) := Hi(F(Oy) denotes the i-th cohomology sheaf of F(Oy) and Oy is the
skyscraper sheaf at y.

Proof. The second statement is [C�00, Thm. 3.2.1], whilst the �rst statement can be de-
duced just as in [BM01b, Lemma 2.9] by using the spectral sequence

Ep,q
2 =

M
i

Extp(Hi(F(Oy),Hi+q(F(Oy)) ) Hom(F(Oy),F(Oy)[p+ q]).

Corollary 4.2.15. If X and Y are Abelian surfaces, any equivalence F : Db(Y, a) ! Db(X)
is a sheaf transform.
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Proof. On an abelian surface any non-zero sheaf E satis�es Ext1(E, E) � 2. Hence by the
lemma above, for each y 2 Y, there can be only one integer p such that Fp(Oy) 6= 0.

To conclude this section, we briefly consider Hochschild (co)homology under twisted
derived equivalence. For any smooth projective varietyX, let d : X ,�! X�X be the diagonal
embedding. Then one has the bigraded ring

HH(X) :=
M
i,`

Hi,`A(X) with HAi,`(X) := ExtiX�X(d�OX, d�w`
X).

The algebra structure is given by composition in Db(X � X). The Hochschild cohomology
is the subring

HH�(X) :=
M
i

HAi,0(X) '
M

ExtiX�X(d�OX, d�OX),

and the Hochschild homology is

HH�(X) :=
M
i

HAi,1(X) '
M
i

ExtiX�X(d�OX, d�wX).

In [Huy06, Prop. 6.1] it is shown that the canonical ring R(X) =
L

` HA0,`(X), a subring
of HH(X), is invariant under derived equivalence. The proof relies on the existence of a
Serre functor, a Fourier-Mukai kernel and its uniqueness and is a yoga in the formality of
derived equivalences. In the case where (X, a) is a twisted variety, using that d�OX and d�w`

X
naturally can be consideres a a�1 � a-sheaves and the existence and uniquess of a kernel
from Theorem 4.2.6, the proof goes through also in the twisted setting without change, as
demonstrated in [Nav10, Thm. 1.6.15]. Both these isomorphism extends to isomorphisms
on HH(X) which respects the bigrading and multiplicative structure, so we conclude:

Theorem 4.2.16 ( [Huy06, Prop. 6.1], [Nav10, Thm. 1.6.15]). Let (X, a) and (Y, b) be two
twisted smooth projective varietes and suppose Db(X, a) ' Db(Y, b). Then there exists an
isomorphism HH(X) ' HH(Y) that respects the bigrading and multiplicative structure.

4.2.4 Cyclic Coverings and Liftings

Let X be a smooth projective variety and let L 2 Pic(X) such that Ln ' OX. Then there is
a uniquely determined étale cyclic covering (see e.g. [Huy06, §7.3]) p : eX ! X of degree d
such that

p�O eX '
d�1M
i=0

L�i,

p�L ' O eX.
Moreover, there is a free action of the cyclic group G ' Z/nZ on Y such that X = eX/G

and p is the quotient map. More precisely, if we let A :=
Li=n�1

i=0 Li, then eX is the relative
spectrum Spec(A ) and the action of G ' Z/nZ is given on A by 
L.

We want to study the situation where X and Y are two smooth projective varieties, L 2
Pic(X) and M 2 Pic(Y) are n-torsion with associated étale cyclic coverings pL : eX ! X
and pM : eY ! Y together with an equivalence Db(X, a) ' Db(Y, b), to say something about



4.2 Preliminary results and background material 59

under which conditions we can lift the equivalence to the coverings, and conversely when
derived equivalence of the coverings descends to the quotient. In order to do this we need
the notion of when a functor is equivariant above and what it means to lift from below.

De�nition 4.2.17. Let eX and eY be two smooth projective varieties acted upon freely by
the cyclic group G ' Z/nZ. Denote by pX : eX ! X and pY : eY ! Y the quotient maps.
Suppose ea 2 Br( eX) and eb 2 Br(eY) are G-invariant. A functor eF : Db( eX, a) ! Db(eY, b)
is equivariant if there exists m 2 Aut(G) and for all g 2 G an isomorphism of functors

g� � F̃ ' F̃ � m(g)�.

De�nition 4.2.18. In the situation above, let F : Db(X, a) ! Db(Y, b) be a functor. A
functor eF : Db( eX, p�a) ! Db(eY, q � b) is a lift of F if the following diagram commutes:

Db( eX,p�
Xa) Db(eY,p�

Yb)

Db(X, a) Db(Y, b)

F̃

pX � pY �

F

p�
X p�

Y

With these two notions in place, we can state the following:

Theorem 4.2.19. Let X and Y be smooth projective varieties with étale cyclic coverings
pL : eX ! X and pM : eY ! Y associated to n-torsion line bundles L 2 Pic(X) and M 2
Pic(Y). Then

(i) If FP : Db(Y, a) ! Db(X, b) is an equivalence satisfying

p�1L
P ' p�2M
P

in Db(X � Y, a�1 � b), where p1 and p2 are the natural projections from X � Y,
there exists an equivariant lifting F eP : Db( eX,p�

La) ! Db(eY,p�
Mb) of FP .

(ii) If F eP : Db( eX,p�
La) ! Db(eY,p�

Mb) is an equivariant equivalence, F eP is the lift of
an equivalence FP : Db(X, a) ! Db(Y, a).

In particular in the situation with L = wX torsion, we recover Bridgeland and Maciocia’s
original result in [BM98b, Thm. 4.5] on canonical covers. The above theorem is formulated
as in [LP15, Thm. 10], and for the proof in the twisted setting one can follow the proofs
as in [LP15], [BM98b, Thm. 4.5] or Huybrecht’s book [Huy06, Prop. 7.18]. Some more
explanation is given in [AW18, Prop. 2.1] in the twisted setting where the covers are the
canonical ones. Since, though we have not mentioned this, twisted sheaves may be for-
mulated in the language of stacks using Gm-gerbes, the stack inclined reader may find the
approach in [KS15] the most rigourosly and formally satisfying.

4.2.5 Twisted Chern Characters and the Mukai Lattice

LetX be a smooth projective varietywith Brauer class a, and denote byK(X, a) theGrothendieck
group of the category Coh(X, a) of coherent a-sheaves on X. Following [Huy17, Section
2.1], we define a Chern character map

ch : K(X, a) ! H�(X,Q).
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First, represent a by a cocycle fUi, aijkg where an
ijk = 1 and let E be a locally free a-sheaf.

Then E
n is naturally untwisted and we define

ch(E) := n
q

ch(E
n) 2 H�(X,Q).

Note that this makes sense since the rank of a locally free twisted sheaf is always nonzero.
Using that any coherent a-sheaf on a smooth projective variety admits a finite resolution by

locally free a-sheaves ( [C0
�
0, Lemma 2.1.4]), this extends to give a Chern character map

ch(�) : K(X, a) ! H�(X,Q)

that is additive, multiplicative with respect to tensor product and satisfying the Grothendieck-
Riemann-Roch theorem. Consequently, we get a Chern character for every object E 2
Db(X, a) via the map Db(X, a) ! K(X, a), E 7! å(�1)i[Ei]. Using this we define the
Mukai vector of an object E 2 D(X, a) in the usual way as v(E) = ch(E) �

p
td(X). As in

the untwisted case, given an equivalence F : D(Y, a) ! D(X, b) with kernel P , the induced
map j(�) = q�(v(P) � p�(�)) in cohomology induces a commutative diagram

F : Db(Y, a) Db(X, b)

j : H�(Y,Q) H�(X,Q)

v

�

v

�

Here j is an (ungraded) isomorphism of Q-vector spaces.

For objects E, F 2 Db(X, a), we define the Euler characteristic c(E, F) as in the untwisted
case as

c(E, F) = å
i
(�1)i dimC Exti(E, F).

Let v = å vj 2 H�(X,C) and define t(v) = åj(
p
�1)jvj. Then the Mukai pairing on

H�(X,C) is given by
hv,wi =

Z
X
v_ � w,

where the dual v_ is defined by

v_ := t(v) �
p

td(X)
t(

p
td(X))

.

As in the untwisted case, we have the following result relating the Mukai pairing with
the Euler characteristic.

Lemma 4.2.20. For E, F 2 Db(X, a), we have c(E, F) = hv(E), v(F)i.

Proof. It is enough to show this when E is a locally free a-sheaf and F any a-sheaf. Then
c(E, F) = c(X, E_ 
 F), and E_ 
 F is untwisted, so we can apply Hirzebruch-Riemann-
Roch to get

c(X, E_ 
 F) =
Z
X
ch(E_ 
 F) � td(X).
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Using multiplicativity of the twisted Chern character, the following string of equalities
holds:

c(E, F) = c(X, E_ 
 F)

=
Z
X
ch(E_ 
 F) � td(X)

=
Z
X
ch(E_) �

q
td(X) � ch(F) �

q
td(X)

=
Z
X
v(E_) � v(F).

Hence we need to show that v(E_) = v(E)_. Writing out v(E)_, we get v(E)_ =
t(ch(E))

p
td(X), so we are left to show t(ch(E)) = ch(E_).

Let n = ord(a) and choose a cocycle fUi, aijkg where an
ijk = 1 as before . Then

ch(E) = n
p

ch(E
n). Here G := E
n is a usual locally free sheaf, and the Chern classes
ck(G) satis�es ck(G_) = (�1)kck(G), so that in particular t(ch(G)) = ch(G_). Using
then that (E_)
n = (E
n)_, we see that

t(ch(E)) = t(
n
q

ch(E
n))

=
n
q

t(ch(E
n)))

=
n
q

ch((E
n)_)

=
n
q

ch((E_)
n)

= ch(E_).

This concludes that v(E_) = v(E)_ and thus c(E, F) = hv(E),V(F)i.

As in the untwisted case, the induced cohomological transform FH from an FM-transform
F : Db(Y, a) ! Db(X, b) is an isometry with respect to the Mukai pairing:

Lemma 4.2.21. Let j : H�(Y,Q) ! H�(X,Q) be the induced cohomological transform
from an equivalence F : D(Y, a) ! D(X, b). Then j is an isometry with respect to the
Mukai pairing.

Proof. Let p, q be the projections Y � X ! Y and Y � X ! X, respectively, and let
n = dim(X) = dim(Y). For v,w 2 H�(Y,Q) and u 2 H�(Y�X,Q), using the equalities
(v.w)_ = v_.w_, q�(v_) = q�(v)_ and p�(u_) = (�1)np�(u)_, this is proved as usual:
If P is the kernel of F, then F�1 has kernel P_ 
 q�wX[n], and the shift functor [n]
acts on cohomology by multiplication by (�1)n. Hence up to this sign, the cohomological
transforms given by v(P) and v(P_) are inverse to eachother, and one calculates

hv, j(w)iX = hj�1(v),wiY.
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Suppose X is an Abelian or bielliptic surface and consider the Chern character map

ch : K(X) ! H2�(X,Q).

We define the algebraic Mukai lattice H�
alg(X,Z) as the image of this map, which coincides

with Z �Num(X)� Z. To see this, on K(X) we have the Euler pairing

l([E], [F]) := å
i
(�1)i dimExti(E, F),

and on H�
alg(X,Z) we have the non-degenerate Mukai pairing

hv,wi :=
Z
X
v_.w,

where now for v = (v0, v2, v4), v_ = (v0,�v2, v4). As l(OX) = 0, the Todd class of X is
(1, 0, 0), so for v = (r,D, s), w = (r0,D0, s0) we get

hv,wi = rs0 + r0s� D � D0.

Moreover, we have Lemma 4.2.29 that l([E], [F]) = hch(E), ch(F)i. Let Knum(X) be the
numerical Grothendieck group of X, i.e., the quotient K(X)/?l of K(X) by the left radical
of the Euler form. By Serre duality, the Euler form descends to a non-degenerate bilinear
form on Knum(X). Now, a class lies in the radical of the Euler form if and only if it lies in
the radical of the Mukai pairing, and a class lies in the radical of the Mukai pairing if and
only if it has zero Chern character. So ker ch =? l and we have Knum(X) ' im(ch). If we
restrict the image of ch to H2(X,Q) we get Num(X) since the class [OX(D)] of a numeri-
cally trivial divisor D is equivalent to [OX]. Thus H�

alg(X,Z) ' Z �Num(X)� Z.

4.2.6 Moduli Spaces of Sheaves

Moduli spaces of sheaves on a smooth projective variety X has some intimate connections
with the problem of derived equivalences, both in the twisted and non-twisted cases. This
was first explored by Mukai in his seminal work on derived equivalences of abelian varieties
with their dual, where a universal family of sheaves was used as a kernel for a Fourier-Mukai
transform. Later work by Mukai and Orlov extended this to K3 surfaces, where derived
equivalence between K3 surfaces expresses one as the moduli space of (stable) sheaves on
the other. Further work by Bridgeland & Macioca uses the interplay between moduli spaces
of sheaves and derived equivalences to study bielliptic surfaces. We will do the same.

In general, the moduli space of sheaves on a variety will form a stack. To get an actual
scheme, conditions of stability must be introduced on our sheaves. As a quick reminder, let
X be a smooth projective variety with ample divisor H and E a coherent sheaf on X. The
Hilbert polynomial of E is defined as

PE = PH,E(m) := c(E
OX(mH)).

The Hilbert polynomial, as is well known, may be written on the form

PH,E(m) =
dim(E)

å
i=0

ai(E)
mi

i!
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where ai is an integer, for any i 2 f0, . . . , dim(E)g and where the dimension dim(E) of a
coherent sheaf is defined as the dimension of its support. It is said to be of pure of dimension
d if for every subsheaf F of E, d = dim(E) = dim(F). The normalized Hilbert polynomial
of a torsion-free coherent sheaf E with respect to H is defined to be

pE = pH,E(m) =
PH,E(m)

rk(E)
.

De�nition 4.2.22. (Gieseker stability). Fix an ample divisor H. A torsion-free coherent
sheaf E is stable (resp. semistable) if pH,E(m) < pH,F(m) (resp. pH,E(m) � pH,F(m)) for
m >> 0 and all proper subsheaves F � E.

De�nition 4.2.23. (Slope stability). Fix an ample divisor H. The slope of a torsion-free
coherent sheaf E is de�ned as

m(E) =
c1(E) � H
rk(E)

.

A torsion-free sheaf E is m-stable (resp. m-semistable) if m(F) < m(E) (resp. m(F) �
m(E)) for all non-trivial subsheaves F � E with 0 < rk(F) < rk(E).

The following lemma gives the relationship between these various stability notions:

Lemma 4.2.24 ( [HL10, Lemma 1.2.13]). We have the following implications:

E is m � stable =) E is stable =) E is semistable =) E is m � semistable.

Proposition 4.2.25 ( [Pot17, Proposition 3.4.6]). Fix an ample divisor H on X. If E is a
coherent sheaf that is stable with respect to H, then Hom(E, E) ' C, i.e., E is simple.

In [Gie77], Gieseker considers families of semi-stable sheaves and constructs moduli
spaces using Geometric Invariant Theory. Amore modern treatment can be found in [HL10].

Recall that a family of sheaves on X parametrized by S is a coherent OX�S-module E , flat
over S. Two such families F and E parametrized by S are equivalent if there is a line bundle
L on S such that E = F 
 q�L, where q is the projection X � S ! S. For a closed point
s 2 S, we denote by Es the restriction of E to the fibre Xs over s. Now for the moduli functor:
Keeping H fixed as before, letM : Schop ! Sets be the functor that sends a scheme S to the
set of equivalence classes of families E on X parametrized by S, such that for all s 2 S, Es is
semi-stable with respect to H. If f : T ! S is a morphism of schemes, the map (idX � f )�

defines a map M(S) ! M(T).

De�nition 4.2.26. A scheme MH is a coarse moduli space for semi-stable sheaves on X
with respect to H if MH corepresents the functor M, i.e., there exists a morphism of
functors a : M ! hMH , where hMH = Hom(�,MH), such that for any other morphism
of functors b : M ! hY, there is a unique morphism f : MH ! Y such that b = f� � a,
where f� : hMH ! hY is the functor given by composition with f . If MH represents the
functor M, i.e., M ' hMH , then MH is a �ne moduli space.
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To translate this into the language of quasi-universal and universal sheaves, or families,
we notice that if MH is a fine moduli space, the identity morphism id 2 Hom(MH,MH)
corresponds to family E on X � MH, unique up to a twist by a line bundle on MH. This is
the universal family. The quasi-universal family is different, being a family E parametrized
by MH such that if F is a family of sheaves parametrized by S and fF : S ! MH is the
corresponding morphism which maps closed points s 2 S to the sheaf Fs, there is a locally
free sheafW on S of finite rank such that F 
 q�W ' f�

F (E). This family is universal ifW
is a line bundle.

By results due to Gieseker, Maruyama and Simpson, a coarse moduli space always exists:

Theorem 4.2.27 ( [Huy06, Theorem 10.18]). A coarse moduli space MH always exists.
Moreover, MH is a projective variety.

To understand the local structure of the moduli space, i.e., its dimension and smoothness
at a point, we have the following characterization

Theorem 4.2.28 ( [HL10, Theorem 4.5.4 and Corollary 4.5.2]). Let E be a stable sheaf
represented by a point [E] 2 MH . Then the Zariski tangent space to MH at [E] is given
by

T[E]MH ' Ext1(E, E).

If Ext2(E, E) = 0, then MH is smooth at [E].

Specializing to the case of surfaces (smooth and projective), we will be interested in the
moduli space MH(v) of sheaves with a given Chern class v = (r,D, s) 2 Z �NS(X)� Z.
This works, because for a family E parametrized by a connected scheme S, the Chern classes
of Es is constant for all s 2 S. Thus MH(v) is just the union of those components of MH
containing sheaves whose Chern class is v.

Proposition 4.2.29 ( [Huy06, Lemma 10.22 and Corollary 10.23]). Let X be a smooth
surface and v = (r,D, s) 2 Z � NS(X) � Z. Suppose that there exists v0 such that
hv, v0i = 1. Then every semi-stable sheaf is stable, there exists an ample class H such that
gcd(r,D � H, s) = 1 and MH(v) is a �ne moduli space.

The relationship between derived equivalences and moduli spaces of sheaves can be il-
lustrated by the following result by Bridgeland, giving sufficient criteria on a moduli space
for the existence of a derived equivalence. First recall that a sheaf E on X is special if
E
 wX ' E.

Proposition 4.2.30 ( [BM01b, Corollary 2.8]). Let X be a smooth projective surface with a
�xed polarization, and let Y be a smooth, �ne, complete, two-dimensional moduli space of
special, stable sheaves on X. Then there is a universal sheaf P on Y�X and the associated
functor FP : Db(Y) ! Db(X) is an equivalence.

Now, some properties of elements v 2 H2�(X,Z) gives nice properties of the moduli
space of (semi-)stable sheaves of class v on X. First the notion of a polarization H being
general with respect to v.
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De�nition 4.2.31. Let v 2 H2�(X,Z). We say that H is general with respect to v (or does
not lie on a wall with respect to v) if for every m-semistable sheaf E with ch(E) = v and
every 0 6= F � E which satis�es m(F) = m(E), then

c1(F)
rk(F)

=
c1(E)
rk(E)

.

De�nition 4.2.32. Let v = (r,D, S) 2 H2�(X,Z) with D 2 NS(X). Then

(i) A class v is primitive if v is undivisible, i.e., if v = dv0 with d 2 Z, then d = �1.
Equivalently, there exists v0 such that hv, v0i = 1.

(ii) A class v is isotropic if v2 = hv, vi = 0.

Proposition 4.2.33 ( [Pot17, Proposition 3.7.2]). Let X be a bielliptic surface and p : eX ! X
the canonical cover. Let v = (r,D, s) with r > 0 and suppose that v = p�(w) for some
w 2 N( eX) and that v is primitive and isotropic. Choose an ample divisor H which is
general with respect to v. Then there exists a two-dimensional, projective, smooth, �ne
moduli space MH(v) of stable, special sheaves on X of class v. Moreover, the universal
sheaf on MH(v)� X induces an autoequivalence F of Db(X) such that the Chern class of
F(Ox) is v for any closed point x 2 X.

Finally, a celebrated result by Atiyah will ensure non-emptiness of the moduli spaces we
will consider later.

Theorem 4.2.34 ( [Huy06, Thm. 12.23]). Let r, d be two coprime integers, and let D be a
mooth elliptic curve. Then

(i) Any simple vector bundle of rank r and degree d on D is stable.

(ii) For any line bundle L 2 Picd(D) there exists a unique stable vector bundle of rank
r and with determinant isomorphic to D.

4.3 Twisted Derived Equivalences of Bielliptic Surfaces

Here we will study the derived equivalence Db(Y, a) ! Db(X) in the situation where X is
a bielliptic surface. This situation was studied by Bridgeland and Maciocia in [BM01a] the
untwisted setting, where they showed the following:

Theorem 4.3.1. Let X be a bielliptic surface. Then the only Fourier-Mukai partner of X is
itself.

In the twisted case we first conclude that also Y must be a bielliptic surface, and in the
case where a is nontrivial that it is of different type than X.

In general, for a smooth projective variety X and a class a 2 Br(X) with image ā 2
H3(X,Z), we let Ki

top(X) denote the topological K-theory of X, and we let Ki
top(X, ā) denote

the twisted topological K-theory of X. For the present purposes, we will not go into details
here about (twisted) topological K-theory, but use the following facts:
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Proposition 4.3.2 ( [Mou19, Cor.1.2], [CS15, Section 6.3]). Let X and Y be smooth projec-
tive varieties with classes a 2 Br(X), b 2 Br(Y) and images ā 2 H3(X,Z), b̄ 2 H3(Y,Z).
Then if Db(X, a) ' Db(Y, b), Ki

top(X, ā) ' Ki
top(Y, b̄).

Proposition 4.3.3 ( [AW18, Prop. 1.1]). If X is any compact complex surface, then

K1
top ' H1(X,Z)� H3(X,Z).

If a 2 Br(X) has image ā 2 H3(X,Z), then

Ki
top(X, ā) ' H1(X,Z)� H3(X,Z)/ā.

Using these two facts, we can show the following:

Lemma 4.3.4. Let X be a bielliptic surface and Y a smooth projective variety such that
there is an equivalence F : Db(Y, a) ! Db(X) with a nontrivial. Then Y is a bielliptic
surface of di�erent type than X.

Proof. As noted earlier, dimension and order of canonical bundle is preserved by any de-
rived equivalence, twisted or untwisted, so Y is a surface with torsion canonical bundle
and is thus minimal. To conclude it is bielliptic, we only need the second Betti num-
ber b2(Y) = 2. This is ensured by the invariance of Hochschild homology in Theorem
4.2.16. Thus Y is bielliptic. For the other statement, by the two results above we have an
isomorphism

H1(Y,Z)� H3(Y,Z)/ā ' H1(X,Z)� H3(X,Z).

Since the torsion of H3(Y,Z) coincides with the torsion of H2(Y,Z), inspecting the
di�erent types of bielliptic surfaces (see Table 2.1) yields that X and Y cannot be of the
same type when a 6= 1. E.g. if Y is of type 1 then H3(Y,Z)tor ' Z/2� Z/2, and so
X cannot be of type 1, but must be of type 2, as the torsions in the above isomorphism
would not coincide.

Remark 4.3.5. In the last lemma, by table 2.1 and the isomorphisms above with the fact
that the order of the canonical bundle is preserved, we have the following possibilites for
the types of X and Y.

(i) Y is of type 1 and X is of type 2.

(ii) Y is of type 3 and X is of type 4.

(iii) Y is of type 5 and X is of type 6.

Also worth to note is that the same argument gives that X and Y must be of the same
type for an equivalence Db(Y, a) ' Db(X, b) where a, b 6= 1.

Next we will need to know something about the properties of the images of skyscraper
points.

Lemma 4.3.6. Let F : Db(Y, a) ! Db(X) be an equivalence with X Abelian or bielliptic,
y 2 Y a closed point, E := F(Oy) and v := ch(E) 2 H�

alg(X,Z). Then v cannot be
primitive in H�

alg(X,Z) unless a = 1.
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Proof. Suppose v is primitive in H�
alg(X,Z). Then there is v0 2 H�

alg(X,Z) such that
hv, v0i = 1. Here v0 = ch(e0) where e0 2 K(X), and because the natural map D(X) !
K(X), F 7! åi(�1)i[Hi(F)], is surjective, v0 = ch(E0) for some E0 2 D(X). Then we have

1 = hv, v0i = hch(E), ch(E0)i = h(0, 0, 1), ch(F�1(E0))i = r(F�1(E)),

and since the rank of any locally free a-twisted sheaf is divisible by the order of a, we must
have a = 1.

Lemma 4.3.7. Let F : Db(Y, a) ! Db(X) be an equivalence between bielliptic surfaces
Y and X. Denote by eF : Db(eY,p�

Ya) ! Db( eX) the lifting of F to the canonical covers
pY : eY ! Y and pX : eX ! X. If p�a = 1, we have Y ' X and a = 1.

Proof. Let G ' Z/nZ, n = ord(wY) = ord(wX). Recall that the lifting eF of F is equiv-
ariant in the sense that there is an automorphism m : G ! G such that eF � g� ' m(g)� � eF
for all g 2 G. This is equivalent to the equivariance of the kernel eP , i.e., (g�m(g))� eP ' eP .
Note that this makes sense, as once we �x a cocycle fUi, aijkg representing a, the cocycle
fp�1

Y (Ui), aijk � pYg representing p�
Ya is equal to the cocycle fg�1p�1

Y (Ui), aijk � pY � gg
representing g�p�

Ya since pY � g = pY, so there is no non-canonical choices being made.

Suppose now that p�
Ya = 1. Then there is a cocycle fUi, aijkg representing a such that

the cocycle fp�1
Y (Ui), aijk � pYg representing p�

Ya satis�es aijk � pY = lijljklki for some
flij 2 OeY(p�1

Y (Uij))
�g (to be more precise, we �x a cocycle fUi, aijkg representing a, and

since p�a = 1, there is a cover fVjg of eY such that b := p�
Ya satis�es bijk = lijljklki, and

we take a re�nment of fpY(Vj)g and fUig). But the cocycle f1gijk also represents p�
Ya on

this cover, and sending a regular sheaf F to (Fi,lij � id), where Fi is the restriction of F to
p�1
Y (Ui), yields an equivalence D(eY) ��! D(eY,p�a). Since the equality (g� m(g))� eP ' eP

holds, it holds in particular for eP represented as a f1ijkg-sheaf, but a f1ijkg-sheaf for the
cover Vi � eX, Vi := p�1

Y (Ui), is nothing but the glueing data (Vi, ePi) for a regular sheaf eP
on eY� eX, and the local equalitities (g� m(g))� ePi ' ePi glue along the gluing of the ePi's
to (g� m(g))� eP ' eP . The induced exact functor D(eY) ! D( eX) is clearly an equivalence,
and it is equivariant since its kernel is. Hence we conclude that this equivalence is the lift
of an equivalence D(Y) ' D(X), implying Y ' X and a = 1 by Lemma 4.3.4.

Recall (see 2.1) that for a bielliptic surface X = A� B/G, the numerical groupNum(X)
is generated by the classes A0 := 1

ord(wX)
A and B0 := 1

lX
B where lX = jGj

ord(wX)
and A, B

denotes the classes of the generic fibers of the projections X ! B and X ! A, respectively.

Lemma 4.3.8 ( [Nue]). Let X = A� B/G be a bielliptic surface with its canonical cover
p : eX ! X. A Mukai vector v = (r, aA0 + bB0, s) 2 H�

alg(X,Z) is primitive if and only if
gcd(r, a, b, s) = 1. For a primitive v, set

`(v) := gcd(r, a,
ord(wX)

lX
b, ord(wX)s).

Then `(v) divides ord(wX) and p�v
`(v) is primitive.
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Proof. If v is primitive there exists a Mukai vector v0 = (r0, a0A0 + b0B0, s0) such that
hv, v0i = 1. Then rs0 + r0s � ab0 � a0b = 1, so there cannot be a common factor of
r, a, b and s. Conversely, if d 6= 1 divides r, a, b and s, we have that v = dv0 and so
hv,wi = dhv0,wi 6= 1 for any Mukai vector w, and consequently v cannot be primitive.
Suppose that v is primitive and that a prime p divides `(v). Then p must divide ord(wX)
lest p divides r, a, b and s, which is absurd. By looking again at Table 2.1, it follows
that `(v) can be written on the form 2i3j with the understanding that i or j vanishes if
2 or 3 does not divide ord(wX), and that ord(wX) can be written as 2k3l with the same
convention of k or l vanishing. We cannot have both i > k and 3 > l, because that would
imply that either 2 or 3 divides gcd(r, a, b, s). Hence `(v) divides ord(wX).

Now we can write r = `(v)r0, a = `(v)a0, ord(wX)
lX

b = `(v)b0, and ord(wX)s = `(v)s0

for some integers r0, a0, b0, c0. Denoting by AX and BX the �bers of the elliptic �brations
of X̃, the �nal claim follows from the fact that p�v cannot be divisible by more than `(v)
and that

p�v =

�
r, aAX + b

ord(wX)

lX
BX, ord(wX)s

�
= `(v)(r0, a0AX + b0BX, s0)

where s0 = a0b0 � c2 so an appropriate c2 may be chosen.

We are now ready to prove the main result of this chapter:

Theorem 4.3.9. Let X be a bielliptic surface and Y a smooth projective variety. If there
exists an equivalence Db(Y, a) ! Db(X), Y ' X and consequently a = 1.

Proof. Let F : Db(Y, a) ! Db(X) be the equivalence. Take a closed point y 2 Y, let
E := F(Oy) and let v be the Mukai vector of E. Then v is isotropic with respect to the
Mukai pairing because v2 = c(E, E) = c(Oy,Oy) = 0. We may write v = dv0 where
v0 is isotropic and primitive in H�

alg(X,Z). Notice that d must divide n := ord(wX),
because ord(a) divides n and so there is a locally free a-twisted sheaf F of rank n on Y,
and n = h(0, 0, 1), ch(F)i = dhv0, ch(F(F))i.

Suppose �rst that that the rank of E is 0 and write v0 = (0, aA0 + bB0, s). From v20 = 0
we get that a = 0 or b = 0, and v0 is of the form (0, r f , s) where f denotes the class of a
general �ber of one of the elliptic �brations, call it p : X ! C. Since v0 is primitive, by
Proposition 4.2.29 there is an ample H such that there exists a �ne moduli space MH(v0)
parametrizing stable sheaves of class v0 on X. Moreover, r and s are coprime and hence by
Theorem 4.2.34 the moduli space is nonempty. The tangent space of MH(v0) at a point
[F] 2 MH(v0), where F is a stable sheaf, is given by T[F]MH(v0) ' Ext1(F, F).

Now, since the moduli space parametrizes stable sheaves with Chern character (0, r f , s),
the sheaves lives on �bers of p. By restricting to the component of MH(v0) that contains
the stable sheaves on smooth �bers we may assume they are special, and because they
are stable they are simple. Then Serre duality reads Ext2(E, E) ' Hom(E, E
 wX)

� =
Hom(E, E)� so the dimension of the tangent space is

dimExt1(E, E) = 2� hch(E), ch(E)i = 2� hv, vi = 2.

The moduli space has a natural elliptic �bration p0 : MH(v0) ! C where p0 maps [F],
a sheaf concentrated on a �ber Xc, to the base point x 2 C. From Theorem 4.2.34 (ii),
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generically the determinant map det : p0�1(c) ! Pics(Xc) identi�es the �bre p0�1(c) with
Pics(Xc) ' Xc. Thus the dimension of MH(v0) is at least 2 and we conclude it is a smooth
projective surface.

Since we have smooth, �ne, complete, two-dimensional moduli space of special, stable
sheaves on X we can apply Proposition 4.2.30 and get that the universal sheaf induces
an equivalence Y : Db(MH(v0)) ! Db(X) mapping (0, 0, 1) to v0 in cohomology. By
Theorem 4.3.1, MH

X (v0) ' X, and so Y gives an autoequivalence of Db(X), which after
composition by F gives an equivalence Db(Y, a) ' Db(X) mapping Oy to a sheaf with
Chern character (0, 0, d). Since the rank and �rst Chern class of this sheaf is 0, it has 0-
dimensional support, and because it is simple we must have d = 1. But then v is primitive,
and Lemma 4.3.6 implies a = 1 and consequently Y ' X by Theorem 4.3.1.

Suppose now that r 6= 0 and that n := ord(wX) is prime. Let p : X̃ ! X be the
canonical cover. We can write p�v0 = `(v0)w with w isotropic and primitive and `(v0) = 1
or `(v0) = n. If `(v0) = n, we have nv0 = p�p�v0 = np�w, so v0 = p�w. Then by
Proposition 4.2.33, we get an autoequivalence Db(X) ' Db(X) mapping (0, 0, 1) to v0 in
cohomology, and we can conclude as above that d = 1, a = 1 and Y ' X.

For `(v0) = 1, denote by F̃ the lifting of F to the canonical covers. From p�v0 = w we
get that n(̃F(0, 0, 1)) = p�v = dw, so w = n

d F̃(0, 0, 1). Since w is primitive, n = d and
w = F̃(0, 0, 1). But then Lemma 4.3.6 implies that p�a = 1, and F̃ becomes an equivariant
equivalence Db(Ỹ) ' Db(X̃) that descends to an equivalence Db(Y) ' Db(X), so Y ' X
again by Theorem 4.3.1 which forces a = 1 by Lemma 4.3.4.

Finally, in the case where n is composite, we can assume that n = 4 by Table 2.1 and
Remark 4.3.5 because the other cases yield a trivial Brauer group for Y. More precisely, Y
is of type 3 and X is of type 4. Let p : Y0 ! Y, q : X0 ! X be the étale cyclic coverings
of degree 2 associated to w2

Y and w2
X, respectively. Then as we have seen, X0 and Y0 are

bielliptic surfaces, and since F is an equivalence, p�1w2
Y 
P ' p�2w2

X 
P where P is the
kernel, so that F lifts to an equivariant transform F̃ : D(Y0, p�a) ! D(X0). But here
ord(wX0) = 2, so we know that p�a = 1 from the previous part. Then by Theorem 3.4.3
a = 1 because the Brauer map is injective in this case, so Y ' X.

4.4 Going from here

The original goal of this thesis was to prove a theorem analogous to 4.3.1, i.e., that twisted
bielliptic surfaces have no non-trivial twisted Fourier-Mukai partners. On that account we
have shown that this is true in the situation where one of the bielliptic surfaces is twisted and
the other is not. So in studying an equivalence Db(Y, a) ' Db(X, b) where Y is a bielliptic
surface, it is safe to assume that a, b 6= 1. In this section we will think a bit informally on
the difficulties in this twisted-twisted case.

In the paper [BM01a] (corrected in [BM19]) of Bridgeland and Maciocia, the technique
of the proof relies on their so-called relative Fourier-Mukai transforms for elliptic surfaces.
Namely, for an elliptic surface p : X ! C, define lp to be the smallest positive integer such
that p has a holomorphic lp-multisection. Equivalently, letting f be the class of a smooth
fiber, we have that
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lp = minf f � D > 0jD 2 Num(X)g.

Now, supposing we have integers a > 0 and b with gcd(alp, b) = 1 we can construct
the relative Jacobian JX(a, b), the moduli space of pure dimension 1 stable sheaves of class
(a, b) supported on smooth fibers of p. So the general point of JX(a, b) correspond to a rank
a, degree b stable vector bundle supported on a smooth fiber of p. Here we actually have
JX(a, b) ' JX(b), and the point is to construct equivalences between the derived category of
X and that of the derived category of JX(b). This is done using the following theorem.

Theorem 4.4.1 ( [BM01a, Thm. 4.1]). Let p : X ! C be an elliptic surface and take an
element �

c a
d b

�
2 SL2(Z)

such that lp divides d and a > 0. Then there exists an equivalence F : Db(JX(b)) !
Db(X) such that for any closed point y 2 JX(b), F(Oy) has Chern character (0, a f , b),
where f is the class of a �bre. Moreover, the functor satis�es�

r(F(E))
d(F(E))

�
=

�
c a
d b

��
r(E)
d(E)

�
for all objects E 2 Db(JX(b)).

For bielliptic surfaces, relative Jacobians with respect to either fibration yields an isomor-
phic surface, so in this case the relative Fourier-Mukai transforms induces autoequivalences
of the derived category.

The original proof of 4.3.1 only works in the case where the Néron-Severi space of the
canonical cover has rank 2, i.e., in the cyclic case, and a corrected proof is provided in
[BM19]. The main technique of the proof remains the same, however, and relies on some
luxuries we do not have in the case of twisted sheaves. This provides some unique difficulties
in proving the theorem.

So suppose we have an equivalence F : Db(Y) ! Db(X). As we have seen F is a sheaf-
transform, so up to a shift we can assume that F takes skyscraper sheaves of points on Y to
sheaves on X of class

v = [F(Oy)] = (r, aA0 + bB0, s) 2 Z �Num(X)� Z.

The idea is to cleverly use the relative Fourier-Mukai transforms to induce autoequiva-
lences of Db(X), that when composed with F, will send Oy to a sheaf of class (0, 0, 1) (or at
the very least to a sheaf with a class such that r = 0). This is the same we did when Y was
twisted but X was not. The first difficulty we met in that case was the issue of v not being
primitive straight away. When Y is not twisted we get primitivity for free, because we have
the structure sheaf OY on Y in that case so that

1 = c(ch(OY), ch(Oy)) = c(ch(F(OY), ch(F(Oy))).

The primitivity of v is used to great effect to get necessary divisibility conditions to apply
Theorem 4.4.1 correctly. In the twisted case, not only do we have that v is not necessarily
primitive a-priori, which we solved when X was untwisted, but v is in general a rational
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class. This makes the whole framework of moduli spaces of sheaves very different, and we
do not have access to the many tools being used for regular sheaves.

However, it is possible to construct moduli spaces of twisted sheaves as Yoshioka does in
[Yos04] by using the equivalence of categories between twisted sheaves and certain sheaves
on an associated Brauer-Severi variety lying above X, or as done by Lieblich in [Lie07] using
the language of Gm-gerbes.

To avoid potential obstacles with moduli spaces of twisted sheaves, if that is indeed the
correct way to go about this, we wanted initially to use the lifting of the equivalence to the
equivariant equivalence on the canonical covers above. Hence we needed to understand the
Brauer map. Indeed, if the pullbacks of the Brauer classes are trivial, one can descend the
equivalence to an equivalence below between the untwisted varieties, and invoke Theorem
4.3.1. The initial hope was that one could classify how triviality of the Brauer map moves in
themoduli space of bielliptics, and use some deformation argument to reduce to the untwisted
case. With the twisted-untwisted result of this chapter, one would need just one pullback to
be trivial, potentially simplifying such an approach. Alas, this dream did not come true.

Another idea was to use the Rouquier isomorphism in [Rou11], Théoréme 4.18, asserting
that an equivalence Db(Y) ! Db(X) gives an isomorphism of algebraic groups

Aut0(Y)� Pic0(Y) ' Aut0(X)� Pic0(X).

As Aut0 fixes a given Brauer class, this isomorphism holds in the twisted setting when-
ever the characteristic of the base fields does not divide the order of a (Tirabassi, private
correspondance). Since X and Y are of the same type, we have Y = AY � B/G and
X = AX � B/G, as the group G is the same and the same lattice L defining B can be
taken. Using that Aut0(Y) ' AY, Aut0(X) ' AX, if one could extract an isomorphism
Aut0(Y) ' Aut0(X) one would get far in producing an isomorphism Y ' X.

These may be naive attempts at something requiring new techniques, but we suspect the
approach to involve moduli spaces because of the heuristic that there is an intimate connec-
tion between derived categories and moduli spaces of sheaves. Twisted sheaves can come

into this picture when introducing non-finemoduli spaces as in [C0
�
0, Prop. 3.3.2]. Given any

flat, projective morphism X/S, a relatively ample sheafO(1) and Hilbert polynomial P, the
relative moduli space M/S of stable sheaves with Hilbert polynomial P on the fibers of X/S
admits a covering (analytic opens over C, étale open otherwise) fX�Uig where there exists
local universal sheaves Pi. Furthermore, there exists an a 2 H2(M,O�

M) (only dependent
on X/S,O(1) and P) together with transition isomorphisms fij making (fUig, ffijg) into an
a-twisted sheaf. So the Brauer group functions as (in general part of) an obstruction group
to the existence of universal sheaves.
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