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Abstract  

A visible expression of permafrost, rock glaciers are lobate-shaped landforms with a mixture 

of rock, sediment and ice. Due to their ice-content and high resistivity to global warming, they 

can act as important freshwater providers to local regions. In many world regions, suchas the 

Semi-Arid Andes, rock glaciers likely play a crucial role in water supplement of the 

streamflow during dry periods. Nevertheless, these landforms have received significantly less 

attention from the scientific community than clean-ice or debris-covered glaciers. Because of 

their spectral similarity of the surrounding bedrock, rock glaciers are extremely difficult to 

detect automatically and most inventories are still created by manual delineation. However, 

this method is extremely time-consuming and subjective as it is made by a human user. Based 

on previous research on automatic rock glacier mapping, this thesis is presenting a new 

method which uses very-high resolution remote sensing data, convolutional neural networks 

(CNN) and object-based image analysis (OBIA) to automatically detect and map rock 

glaciers. CNNs are artificial neural networks which form a sub-field of deep-learning and are 

based on the automatic identification of reoccurring texture and patterns on images, the same 

way as the human brain functions. OBIA is an established image analysis method that can be 

used to refine results produced by a CNN. This combined method was applied on two 

catchments in the semiarid Andes of Chile: the La Laguna and the Estero Derecho. In order to 

detect more numerous yet smaller landforms, very-high resolution Pleiades (0.5 m) and SPOT 

7 (1.5 m) satellite imagery was used. Two CNN models of three convolutional and two max-

pooling layers were built, trained and tested using a manually corrected reference inventory 

for the La Laguna catchment covered by high-resolution Pleiades imagery. CNN_noCurv used 

spectral bands, elevation and slope information while in the case of CNN_wCurv, planform 

and profile curvature layers were added to the input as well. The results of the heatmap 

produced were then cleaned and refined by using OBIA. The methods were then tested on the 

Estero Derecho catchment to investigate how feasible it is to transfer the method on another 

study area and data from a different sensor. 

Both models produced good results on the Pleiades imagery but CNN_wCurv was found to be 

the better one with a mean total accuracy of 94.58% and producer and user accuracies ranging 

between 63.6 and 80.8%. However, when transferred to SPOT 7 imagery CNN_wCurv failed 

to detect the majority of landforms resulting in a large overestimation. On the other hand, 

CNN_noCurv had an accuracy of 73.15%. It was therefore found that both models are 

transferable and curvature layers can improve the classification on Pleiades imagery but are 



 

ineffective on the lower resolution SPOT data. In addition to transferability, the new methods 

produced higher total and producer accuracies than previous attempts for automatic 

classification. Moreover, new landforms that were not included in the manual reference 

inventory have been discovered which indicates that the technique is able to outclass manual 

delineation as well. Given the challenges of rock glacier mapping, the method produced 

promising results and proved that CNN in combination with OBIA can be an effective tool in 

automatic landform classification. It was also found that other characteristics such as surface 

velocity, terrain roughness and mean slope likely plays an important role in detectability and 

transferability and more research is therefore needed to further improve the technique. This 

thesis demonstrates that CNN and OBIA can be used for efficient creation of rock glacier 

inventories. 
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1. Introduction  

This chapter will give an overview on the background of the research project. It shall explain 

the definition of rock glacier and why monitoring their changes caused by climate change in is 

crucial. An introduction of the methods used in this thesis will also be introduced. 

1.1. Role of mountainous areas in a changing climate  

Mountainous regions cover approximately 25% of continental surfaces and host about 26% of 

worldôs population. These regions have very complex geographical characteristics such as 

rapid and systematic climatic changes (precipitation, temperature)  over very short distances, 

enhanced direct runoff and erosion or environmental factors such as different soil types 

(Beniston, 2003).  Because of the rapid changes of elevations in relatively short distances, 

mountain areas are unique regions extremely sensitive to the effects of climate change.  

Global changes in climate may increasingly threaten, or at least alter the capacity of mountain 

ecosystems to provide goods and services for both highland and lowland populations. In most 

mountainous regions, a warmer climate will lead to a reduction in the mass of glaciers, as well 

as snow-pack and permafrost. In the Alps for example, empirical and energy-balance models 

indicate that 30 ï 50% of the existing mountain glacier mass could disappear by 2100 if 

global warming scenarios in the range of 2 ï 4 ÁC indeed occur (Haeberli and Beniston, 

1998). With an upward shift of 200 ï 300 m in the equilibrium line altitude (ELA, which 

represents the level below which ablation rates exceed accumulation), the reduction in ice 

thickness of temperate glaciers could reach 1 ï 2 m per year. As a result, many glaciers in the 

temperate mountain regions of the world would lose most of their mass within decades. As of 

2020, the global annual mass change was -9.82 meter water equivalent (m.w.e.) while the 

total mass change since 1970 was at -248,37 m.w.e. according to the World Glacier 

Monitoring Service (2021). Changes in the climate regimes may have far-reaching 

consequences for freshwater supply in agriculture, tourism and hydro-power. These shifts 

would affect not only mountain populations, but also those living downstream of the 

mountains and who depend on mountain-fed water resources (Beniston, 1999). Mountains are 

the source areas of 50% of the worldôs rivers and 40% of the global population lives in the 

watersheds of rivers originating in the planetôs different mountain ranges that provide 

freshwater supply (Beniston, 2003). Having a very long north ï south extend, the Andes in 

South America is usually divided into tropical (north of ~20ÁS), dry (~20Á ï 35ÁS) and wet 



 

(south of ~35ÁS) zones. In the tropical Andes, the monthly maximum contribution of glacial 

meltwater during a normal year is 61% in La Paz, Bolivia and 67% in Huaraz, Peru (Buytaert 

et al., 2016). Having less rainfall and more numerous cryospheric landforms, melt water is 

more significant in the Dry Andes as it makes up a greater proportion of streamflow. In the 

central part of the range, the glacier contribution to the streamflow can reach 67% in many 

basins (Pe¶a and Nazarala, 1987). The awareness about the global importance of mountain 

areas has increased in the last decades. Along with this, the need for a better understanding of 

the functioning of mountain ecosystems and of the global change impacts on these ecosystems 

has been grown (Hofer, 2005).  

1.2.  The semiarid Andes  

This project would focus on a region of  the Central Andes (ca. 20Á ï 50Á S) in Chile where a 

significant part of the countryôs population live and where water resources are vulnerable not 

only to climate change but also the expansion of mining and agriculture (Janke et al., 2017). 

The Sub-tropical Andes are characterised by a very dry climate because of their position on 

the eastern flank of the Pacific anticyclone (Clapperton, 1993) and the cold Humboldt current 

(Fiebig-Wittmaack et al., 2012). In the region, interannual climate variability is influenced by 

both the El Ni¶o ï Southern Oscillation (ENSO) and moisture levels in the extratropical 

lowlands east of the Andes (Placzek et al., 2009). The annual precipitation is less than 1000 

mm falling mostly during the austral high summer (December ï January). South from the 

latitude 30ÁS, winter (May ï August) has a more significant amount of precipitation, coming 

with the northerly penetration of cyclonic depressions from the southwest and southeast 

(Clapperton, 1993). At high altitudes (~4000 m a.s.l.), precipitation ranges from ~200 mm at 

the northern edge to 700-800 mm a
-1

 at the southern end of the semiarid Andes (Schaffer et 

al., 2019). The arid and semiarid environments are often uniquely sensitive to climate change 

(Placzek et al., 2009). In these regions of Chile, the cryosphere is a major concern for local 

population, due to the impact of water resources (Rabatel et al., 2010). These zones of limited 

water resources correspond to areas with the highest population density (including the capital, 

Santiago de Chile), significant agricultural development and extensive mining activity. Water 

supply for these sectors is largely reliant on melt from seasonal snow and ice bodies from the 

Andean Cordillera (Favier et al., 2009, Az·car and Brenning, 2010a, Schaffer et al., 2019). 

For example, the glacier contribution to streamflow has been estimated at ~50% in the Juncal 

River Basin (Rodriguez et al., 2016), ~42 and ~67% for the Yeso River Basin (Ayala et al., 



 

2016) and 2 ï 23% for the Huasco Basin (Gascoin et al., 2011). Due to the changing climate, 

a fall of precipitation and desertification can be observed. Therefore, a plan to develop an 

advanced water management policy has been recommended by the Chilean National Water 

Directorate (DGA) to adapt to a warming climate and to enforce the conservation of water 

sources. For this, an extensive study and observation of the hydrological system of every 

potential freshwater source is needed (Schaffer et al., 2019). 

1.3. Rock glaciers  and their importance  

Rock glaciers are tongue-like masses of large, angular blocks, finer debris and ice (Allaby, 

2013). They are a mixture of rock, sediment and ice and visible manifestations of cumulative 

deformation of ice-rich creeping mountain permafrost (Schaffer et al., 2019). Most rock 

glaciers are less sensitive to climate change than glaciers due their high concentration of rocks 

and debris in their bodies which provide protection (Janke et al., 2017) and can contain a 

significant amount of ice. The high ice-content can lead to deformation and a creeping motion 

of the rock glacier body. By the degree of this activity of movement, rock glaciers can be 

active or inactive. Inactive rock glaciers can be subdivided into the groups intact (inactive, but 

still containing ice) or relict (all the ice have melted) rock glaciers (Kªªb, 2013). Based on 

their origin, Schaffer et al. (2019) distinguishes three classes of rock glaciers based on their 

origins: glaciogenic rock glaciers are formed from debris-covered glaciers, cryogenic rock 

glaciers are formed from the geological processes associated with permafrost and polygenic 

rock glaciers have a combined glaciogenic and cryogenic origin. Apart from these, several 

other definitions and classifications exist, since the origins of rock glaciers has been a subject 

of scientific debates (See Chapter 4). Compared to glaciers, the distribution and hydrological 

significance of rock glaciers have received little attention (Jones et al., 2018a), despite their 

significant role as water stores. 

Because of the dry climate, the semiarid Andes contain only a small number of glaciers but a 

larger number of rock glaciers. It is in fact thought that rock glaciers contain the most 

significant store of fresh water in the semiarid Andes, because they are the predominant 

cryospheric landform (Az·car and Brenning, 2010b, Schaffer et al., 2019). In the case of 

some catchments, the rock glacier contribution to streamflow is estimated at 13 ï 30% 

(Schaffer et al., 2019, Robson et al., 2020). This makes rock glaciers extremely important 

factors in the freshwater supply of the 900 000 habitants of the Elqui catchment and local 

industries which can affect many more people in the country. Thus, rock glaciers need to be 



 

preserved and constantly monitored for a successful water resource management. For this 

reason, it is crucial to create and maintain up-to-date and accurate large-scale rock glacier 

inventories. 

1.4. Remote Sensing for rock glaciers  detection  

The field measurements of mountainous regions can be extremely costly and logistically 

complicated. By using remote sensing (RS) data (with the inclusion of GIS technologies), it is 

possible to investigate glacial and periglacial areas that can be too time-consuming, dangerous 

or expensive to approach on field. Remote sensing is defined as the acquisition and 

measurement of information about certain properties of phenomena, objects or materials by a 

recording device not in physical contact with the features under surveillance (Khorram et al., 

2012). It is an effective tool for rock glacier monitoring since it provides large coverage and 

repetitive acquisition (Khorram et al., 2012). Before the spread of satellite remote sensing, 

rock glaciers were studied with paper maps or aerial photos. For example, White (1979) 

mapped more than 600 rock glaciers of the San Juan Mountains, Colorado by using air photos 

and topographic maps. Although aerial photos have very-high resolution and allow high-

precision photogrammtery, they have weaknesses as well. Early photographs were available 

only in black-and-white which limited their capabilities. Furthermore, aerial surveys are 

usually performed at irregular intervals with often incomplete spatial coverage. Aerial 

photography is still frequently used for rock glacier monitoring (Kaufmann, 2012), yet, the 

uptake of earth observation (EO) satellites in the latter half of the 20
th
 century opened new 

horizons in the field of RS. EO satellites orbiting around the planet provide global coverage 

on a more systematic basis (Khorram et al., 2012) . Today, a wide range of remote sensing 

data is freely available. Satellite imagery can be downloaded from both national and 

international databases for image processing or spatial analyses. Satellite and aerial images 

are also available on web-map softwares such as Google Earth which provides easy access to 

processed and corrected imagery. Commercial satellites can provide very-high resolution 

imagery although these products can be costly.    

1.5. Rock glacier delineation  

Being near-identical to the surrounding paraglacial terrain, rock glaciers are more difficult to 

detect than clean ice or debris-covered glaciers. Early rock glacier inventories were created by 



 

manual delineation of landforms on aerial photography (Wahrhaftig and Cox, 1959, Outcalt 

and Benedict, 1965, White, 1979). The method is still the most popular way for rock glacier 

inventory creation. It is usually performed on high-resolution aerial or satellite imagery using 

a GIS or other vector based-graphics tools (Jones et al., 2018c, Rangecroft et al., 2014, 

Pandey, 2019, Schmid et al., 2015). Manual methods are however time consuming and 

dependent on the consistency or local knowledge of the interpreter (Gjermundsen et al., 

2011). Some attempts for the use of machine-learning have been made (Janke, 2001, 

Brenning, 2009, Brenning et al., 2012) using surface textures or morphological 

characteristics, although these methods have only been applied on small areas with a 

relatively small number of rock glaciers (Robson et al., 2020). 

1.6. Methods used for this investigation  

Deep learning (DL) is a class of machine-learning algorithms, that has recently become a hot 

topic as a new powerful method for image recognition and classification (Liangpei et al., 

2016). These algorithms attempt to interpret imagery in the same way as a human operator 

would, relying not only on pixel values but reoccurring patterns and textures (Timilsina et al., 

2019, Robson et al., 2020). Convolutional neural networks (CNN) are a group of DL models 

that are broadly used in the scientific community  (Timilsina et al., 2019). CNNs are inspired 

by the brainôs neural networks and have made important breakthroughs in image recognition 

(Zhang et al., 2019). They are a variant of multilayer neural networks, where images are 

handled as multidimensional inputs which are given and transformed over a series of hidden 

layers to reach the output (Sharma et al., 2017).  CNNs rely on large sample datasets to train 

the algorithm to recognise recurring patterns within  the datas and are typically utilised in 

applications where spectral characteristics are not sufficient (Robson et al., 2020). These 

algorithms have seen a massive rise of popularity, although, being a relatively young topic, 

many questions are still unanswered and further research and developments are needed to 

provide more effective and trustworthy methods. The CNNs that are used in classification of 

remote sensing data produce a heatmap with probability values for each pixel belonging to a 

class.  

Object-based image analysis (OBIA) is an image analysis method that creates more or less 

homogenous objects through image segmentation as the basis of classification which allows 

the use of contextual, hierarchical and spatial characteristics of image objects (Robson et al., 

2015, Rastner et al., 2014, Robson et al., 2020). OBIA has been successfully used in many 



 

research projects to detect clean ice and debris-covered glaciers (Robson et al., 2015, Rastner 

et al., 2014, Kraaijenbrink et al., 2016, McNabb et al., 2016, Robson, 2016).  The objective of 

this thesis is to develop a technique in order to automatically detect rock glaciers on different 

areas of the semiarid Andes, using high-resolution optical satellite imagery with the 

combination of CNN and OBIA. The method has been applied by Robson et al. (2020) who 

found that OBIA can be used to refine, reshape or correct results created by a CNN and to 

create meaningful polygons as rock glacier outlines out of a heatmap raster. The two methods 

together formed an effective way to automatically identify rock glaciers with promising 

results. This thesis investigates further possibilities by using higher resolution satellite 

imagery to identify smaller yet more numerous landforms. 

  



 

2. Study Area 

The study area is located in semiarid Andes of Chile ï approximately between the latitudes 

30ÁS and 30.5ÁS ï around 120 km east to La Serena, near the Argentine border (Figure 1). 

Two different catchments were chosen for this study: The La Laguna (also known as Tapado) 

catchment and the Estero Derecho catchment. Both of them include a large number of rock 

glaciers and have been in focus of previous research. 



 

 

Figure 1: Location of the two study areas in the Chilean Andes.



 

 

2.1. Primary Study Zone  

The primary study area is the La Laguna catchment, where the Tapado glacier and the glacial 

foreland (debris-covered glaciers, rock glaciers and moraines) form together the Tapado 

glacial complex (Figure 3). The region has a semiarid and cold climate. At the elevation of 

~3000 m a.s.l., it has a mean precipitation of 167 mm per year measured between 1970 and 

2009 and a mean annual air temperature (MAAT) of 8 ÁC recorded between 1974 and 2011. 

The MAAT has been reported to be rising by 0.17 ÁC per decade between 1974 and 2011 

(Monnier et al., 2014a, Robson et al., 2020). 

The Tapado glacier (located at 30.1ÁS,  69.9ÁW, 4500 ï 5535 m a.s.l.) flowing on the side of  

the mountain Cerro Tapado is one of the few glaciers in the region (Sinclair and MacDonell, 

2016). The mountain is mainly made of dacitic and rhyolitic materials from upper Paleozoicï

Lower Trias (so-called Pastos Blancos Formation) and upper OligoceneïLower Miocene (so-

called Do¶a Ana Formation) periods (Monnier et al., 2014b). The area also consists of debris-

covered glacier sections as well as 105 rock glaciers according to the DGA inventory. Some 

of the significant rock glaciers are the Tapado Rock Glacier, the Las Tolas (Figure 2), the 

Empalme and the Llano de las Liebres (Schaffer et al., 2019). Due to its complexity, these 

landform assemblages are hard to identify from surface observation (Monnier et al., 2014a). 

The area has been in the focus of research with particular emphasis on the hydrological 

functioning of the landforms within the catchment. When it comes to ice content of rock 

glaciers in the semiarid Andes, the values of 50% (Brenning, 2005, Az·car and Brenning, 

2010b) and 60% (Schrott, 1996) have been assumed. Indirect geophysical measurements at 

two specific rock glaciers have been done: Monnier and Kinnard (2015) estimates an average 

ice content of 66% for the rock glacier Llano de las Liebres and Milana and G¿el (2008) 

approximated an average ice content of 33.5% in another rock glacier adjacent to the Cerro 

Tapado (Milana and G¿ell, 2008, Schaffer et al., 2019).  

It is assumed that the Tapado catchment actively supplies water to the lower semiarid areas of 

the Elqui river basin by contributing between 4 and 13% of the annual streamflow (Pourrier et 

al., 2014, Robson et al., 2020).  By using a combination of the minimal glacier discharge data 

available and published discharge values measured at rock glaciers outside of the semiarid 

Andes, Schaffer et al. (2019) estimated the rock glacier contribution to the streamflow. They 

found that rock glaciers likely contributed 140, 300 and 930 L s
-1

 for a minimum, likely 



 

maximum and extreme maximum scenario respectively, which indicates 9 ï 20 % of the 

streamflow (Schaffer et al., 2019).  

 

Figure 2: The Las Tolas rock glacier (Photograph: Benjamin Aubrey Robson). 

  



 

 

 

Figure 3: The La Laguna catchment with rock glaciers shown in red. Background image is an orthorectified 
Pleiades mosaic (highlighted) from 2020 combined with ESRI satellite map. 

  


