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Abstract 

A visible expression of permafrost, rock glaciers are lobate-shaped landforms with a mixture 

of rock, sediment and ice. Due to their ice-content and high resistivity to global warming, they 

can act as important freshwater providers to local regions. In many world regions, suchas the 

Semi-Arid Andes, rock glaciers likely play a crucial role in water supplement of the 

streamflow during dry periods. Nevertheless, these landforms have received significantly less 

attention from the scientific community than clean-ice or debris-covered glaciers. Because of 

their spectral similarity of the surrounding bedrock, rock glaciers are extremely difficult to 

detect automatically and most inventories are still created by manual delineation. However, 

this method is extremely time-consuming and subjective as it is made by a human user. Based 

on previous research on automatic rock glacier mapping, this thesis is presenting a new 

method which uses very-high resolution remote sensing data, convolutional neural networks 

(CNN) and object-based image analysis (OBIA) to automatically detect and map rock 

glaciers. CNNs are artificial neural networks which form a sub-field of deep-learning and are 

based on the automatic identification of reoccurring texture and patterns on images, the same 

way as the human brain functions. OBIA is an established image analysis method that can be 

used to refine results produced by a CNN. This combined method was applied on two 

catchments in the semiarid Andes of Chile: the La Laguna and the Estero Derecho. In order to 

detect more numerous yet smaller landforms, very-high resolution Pleiades (0.5 m) and SPOT 

7 (1.5 m) satellite imagery was used. Two CNN models of three convolutional and two max-

pooling layers were built, trained and tested using a manually corrected reference inventory 

for the La Laguna catchment covered by high-resolution Pleiades imagery. CNN_noCurv used 

spectral bands, elevation and slope information while in the case of CNN_wCurv, planform 

and profile curvature layers were added to the input as well. The results of the heatmap 

produced were then cleaned and refined by using OBIA. The methods were then tested on the 

Estero Derecho catchment to investigate how feasible it is to transfer the method on another 

study area and data from a different sensor. 

Both models produced good results on the Pleiades imagery but CNN_wCurv was found to be 

the better one with a mean total accuracy of 94.58% and producer and user accuracies ranging 

between 63.6 and 80.8%. However, when transferred to SPOT 7 imagery CNN_wCurv failed 

to detect the majority of landforms resulting in a large overestimation. On the other hand, 

CNN_noCurv had an accuracy of 73.15%. It was therefore found that both models are 

transferable and curvature layers can improve the classification on Pleiades imagery but are 



 

ineffective on the lower resolution SPOT data. In addition to transferability, the new methods 

produced higher total and producer accuracies than previous attempts for automatic 

classification. Moreover, new landforms that were not included in the manual reference 

inventory have been discovered which indicates that the technique is able to outclass manual 

delineation as well. Given the challenges of rock glacier mapping, the method produced 

promising results and proved that CNN in combination with OBIA can be an effective tool in 

automatic landform classification. It was also found that other characteristics such as surface 

velocity, terrain roughness and mean slope likely plays an important role in detectability and 

transferability and more research is therefore needed to further improve the technique. This 

thesis demonstrates that CNN and OBIA can be used for efficient creation of rock glacier 

inventories. 
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1. Introduction 

This chapter will give an overview on the background of the research project. It shall explain 

the definition of rock glacier and why monitoring their changes caused by climate change in is 

crucial. An introduction of the methods used in this thesis will also be introduced. 

1.1. Role of mountainous areas in a changing climate 

Mountainous regions cover approximately 25% of continental surfaces and host about 26% of 

world’s population. These regions have very complex geographical characteristics such as 

rapid and systematic climatic changes (precipitation, temperature)  over very short distances, 

enhanced direct runoff and erosion or environmental factors such as different soil types 

(Beniston, 2003).  Because of the rapid changes of elevations in relatively short distances, 

mountain areas are unique regions extremely sensitive to the effects of climate change.  

Global changes in climate may increasingly threaten, or at least alter the capacity of mountain 

ecosystems to provide goods and services for both highland and lowland populations. In most 

mountainous regions, a warmer climate will lead to a reduction in the mass of glaciers, as well 

as snow-pack and permafrost. In the Alps for example, empirical and energy-balance models 

indicate that 30 – 50% of the existing mountain glacier mass could disappear by 2100 if 

global warming scenarios in the range of 2 – 4 °C indeed occur (Haeberli and Beniston, 

1998). With an upward shift of 200 – 300 m in the equilibrium line altitude (ELA, which 

represents the level below which ablation rates exceed accumulation), the reduction in ice 

thickness of temperate glaciers could reach 1 – 2 m per year. As a result, many glaciers in the 

temperate mountain regions of the world would lose most of their mass within decades. As of 

2020, the global annual mass change was -9.82 meter water equivalent (m.w.e.) while the 

total mass change since 1970 was at -248,37 m.w.e. according to the World Glacier 

Monitoring Service (2021). Changes in the climate regimes may have far-reaching 

consequences for freshwater supply in agriculture, tourism and hydro-power. These shifts 

would affect not only mountain populations, but also those living downstream of the 

mountains and who depend on mountain-fed water resources (Beniston, 1999). Mountains are 

the source areas of 50% of the world’s rivers and 40% of the global population lives in the 

watersheds of rivers originating in the planet’s different mountain ranges that provide 

freshwater supply (Beniston, 2003). Having a very long north – south extend, the Andes in 

South America is usually divided into tropical (north of ~20°S), dry (~20° – 35°S) and wet 



 

(south of ~35°S) zones. In the tropical Andes, the monthly maximum contribution of glacial 

meltwater during a normal year is 61% in La Paz, Bolivia and 67% in Huaraz, Peru (Buytaert 

et al., 2016). Having less rainfall and more numerous cryospheric landforms, melt water is 

more significant in the Dry Andes as it makes up a greater proportion of streamflow. In the 

central part of the range, the glacier contribution to the streamflow can reach 67% in many 

basins (Peña and Nazarala, 1987). The awareness about the global importance of mountain 

areas has increased in the last decades. Along with this, the need for a better understanding of 

the functioning of mountain ecosystems and of the global change impacts on these ecosystems 

has been grown (Hofer, 2005).  

1.2.  The semiarid Andes 

This project would focus on a region of  the Central Andes (ca. 20° – 50° S) in Chile where a 

significant part of the country’s population live and where water resources are vulnerable not 

only to climate change but also the expansion of mining and agriculture (Janke et al., 2017). 

The Sub-tropical Andes are characterised by a very dry climate because of their position on 

the eastern flank of the Pacific anticyclone (Clapperton, 1993) and the cold Humboldt current 

(Fiebig-Wittmaack et al., 2012). In the region, interannual climate variability is influenced by 

both the El Niño – Southern Oscillation (ENSO) and moisture levels in the extratropical 

lowlands east of the Andes (Placzek et al., 2009). The annual precipitation is less than 1000 

mm falling mostly during the austral high summer (December – January). South from the 

latitude 30°S, winter (May – August) has a more significant amount of precipitation, coming 

with the northerly penetration of cyclonic depressions from the southwest and southeast 

(Clapperton, 1993). At high altitudes (~4000 m a.s.l.), precipitation ranges from ~200 mm at 

the northern edge to 700-800 mm a
-1

 at the southern end of the semiarid Andes (Schaffer et 

al., 2019). The arid and semiarid environments are often uniquely sensitive to climate change 

(Placzek et al., 2009). In these regions of Chile, the cryosphere is a major concern for local 

population, due to the impact of water resources (Rabatel et al., 2010). These zones of limited 

water resources correspond to areas with the highest population density (including the capital, 

Santiago de Chile), significant agricultural development and extensive mining activity. Water 

supply for these sectors is largely reliant on melt from seasonal snow and ice bodies from the 

Andean Cordillera (Favier et al., 2009, Azócar and Brenning, 2010a, Schaffer et al., 2019). 

For example, the glacier contribution to streamflow has been estimated at ~50% in the Juncal 

River Basin (Rodriguez et al., 2016), ~42 and ~67% for the Yeso River Basin (Ayala et al., 



 

2016) and 2 – 23% for the Huasco Basin (Gascoin et al., 2011). Due to the changing climate, 

a fall of precipitation and desertification can be observed. Therefore, a plan to develop an 

advanced water management policy has been recommended by the Chilean National Water 

Directorate (DGA) to adapt to a warming climate and to enforce the conservation of water 

sources. For this, an extensive study and observation of the hydrological system of every 

potential freshwater source is needed (Schaffer et al., 2019). 

1.3. Rock glaciers and their importance 

Rock glaciers are tongue-like masses of large, angular blocks, finer debris and ice (Allaby, 

2013). They are a mixture of rock, sediment and ice and visible manifestations of cumulative 

deformation of ice-rich creeping mountain permafrost (Schaffer et al., 2019). Most rock 

glaciers are less sensitive to climate change than glaciers due their high concentration of rocks 

and debris in their bodies which provide protection (Janke et al., 2017) and can contain a 

significant amount of ice. The high ice-content can lead to deformation and a creeping motion 

of the rock glacier body. By the degree of this activity of movement, rock glaciers can be 

active or inactive. Inactive rock glaciers can be subdivided into the groups intact (inactive, but 

still containing ice) or relict (all the ice have melted) rock glaciers (Kääb, 2013). Based on 

their origin, Schaffer et al. (2019) distinguishes three classes of rock glaciers based on their 

origins: glaciogenic rock glaciers are formed from debris-covered glaciers, cryogenic rock 

glaciers are formed from the geological processes associated with permafrost and polygenic 

rock glaciers have a combined glaciogenic and cryogenic origin. Apart from these, several 

other definitions and classifications exist, since the origins of rock glaciers has been a subject 

of scientific debates (See Chapter 4). Compared to glaciers, the distribution and hydrological 

significance of rock glaciers have received little attention (Jones et al., 2018a), despite their 

significant role as water stores. 

Because of the dry climate, the semiarid Andes contain only a small number of glaciers but a 

larger number of rock glaciers. It is in fact thought that rock glaciers contain the most 

significant store of fresh water in the semiarid Andes, because they are the predominant 

cryospheric landform (Azócar and Brenning, 2010b, Schaffer et al., 2019). In the case of 

some catchments, the rock glacier contribution to streamflow is estimated at 13 – 30% 

(Schaffer et al., 2019, Robson et al., 2020). This makes rock glaciers extremely important 

factors in the freshwater supply of the 900 000 habitants of the Elqui catchment and local 

industries which can affect many more people in the country. Thus, rock glaciers need to be 



 

preserved and constantly monitored for a successful water resource management. For this 

reason, it is crucial to create and maintain up-to-date and accurate large-scale rock glacier 

inventories. 

1.4. Remote Sensing for rock glaciers detection 

The field measurements of mountainous regions can be extremely costly and logistically 

complicated. By using remote sensing (RS) data (with the inclusion of GIS technologies), it is 

possible to investigate glacial and periglacial areas that can be too time-consuming, dangerous 

or expensive to approach on field. Remote sensing is defined as the acquisition and 

measurement of information about certain properties of phenomena, objects or materials by a 

recording device not in physical contact with the features under surveillance (Khorram et al., 

2012). It is an effective tool for rock glacier monitoring since it provides large coverage and 

repetitive acquisition (Khorram et al., 2012). Before the spread of satellite remote sensing, 

rock glaciers were studied with paper maps or aerial photos. For example, White (1979) 

mapped more than 600 rock glaciers of the San Juan Mountains, Colorado by using air photos 

and topographic maps. Although aerial photos have very-high resolution and allow high-

precision photogrammtery, they have weaknesses as well. Early photographs were available 

only in black-and-white which limited their capabilities. Furthermore, aerial surveys are 

usually performed at irregular intervals with often incomplete spatial coverage. Aerial 

photography is still frequently used for rock glacier monitoring (Kaufmann, 2012), yet, the 

uptake of earth observation (EO) satellites in the latter half of the 20
th

 century opened new 

horizons in the field of RS. EO satellites orbiting around the planet provide global coverage 

on a more systematic basis (Khorram et al., 2012) . Today, a wide range of remote sensing 

data is freely available. Satellite imagery can be downloaded from both national and 

international databases for image processing or spatial analyses. Satellite and aerial images 

are also available on web-map softwares such as Google Earth which provides easy access to 

processed and corrected imagery. Commercial satellites can provide very-high resolution 

imagery although these products can be costly.    

1.5. Rock glacier delineation 

Being near-identical to the surrounding paraglacial terrain, rock glaciers are more difficult to 

detect than clean ice or debris-covered glaciers. Early rock glacier inventories were created by 



 

manual delineation of landforms on aerial photography (Wahrhaftig and Cox, 1959, Outcalt 

and Benedict, 1965, White, 1979). The method is still the most popular way for rock glacier 

inventory creation. It is usually performed on high-resolution aerial or satellite imagery using 

a GIS or other vector based-graphics tools (Jones et al., 2018c, Rangecroft et al., 2014, 

Pandey, 2019, Schmid et al., 2015). Manual methods are however time consuming and 

dependent on the consistency or local knowledge of the interpreter (Gjermundsen et al., 

2011). Some attempts for the use of machine-learning have been made (Janke, 2001, 

Brenning, 2009, Brenning et al., 2012) using surface textures or morphological 

characteristics, although these methods have only been applied on small areas with a 

relatively small number of rock glaciers (Robson et al., 2020). 

1.6. Methods used for this investigation 

Deep learning (DL) is a class of machine-learning algorithms, that has recently become a hot 

topic as a new powerful method for image recognition and classification (Liangpei et al., 

2016). These algorithms attempt to interpret imagery in the same way as a human operator 

would, relying not only on pixel values but reoccurring patterns and textures (Timilsina et al., 

2019, Robson et al., 2020). Convolutional neural networks (CNN) are a group of DL models 

that are broadly used in the scientific community  (Timilsina et al., 2019). CNNs are inspired 

by the brain’s neural networks and have made important breakthroughs in image recognition 

(Zhang et al., 2019). They are a variant of multilayer neural networks, where images are 

handled as multidimensional inputs which are given and transformed over a series of hidden 

layers to reach the output (Sharma et al., 2017).  CNNs rely on large sample datasets to train 

the algorithm to recognise recurring patterns within  the datas and are typically utilised in 

applications where spectral characteristics are not sufficient (Robson et al., 2020). These 

algorithms have seen a massive rise of popularity, although, being a relatively young topic, 

many questions are still unanswered and further research and developments are needed to 

provide more effective and trustworthy methods. The CNNs that are used in classification of 

remote sensing data produce a heatmap with probability values for each pixel belonging to a 

class.  

Object-based image analysis (OBIA) is an image analysis method that creates more or less 

homogenous objects through image segmentation as the basis of classification which allows 

the use of contextual, hierarchical and spatial characteristics of image objects (Robson et al., 

2015, Rastner et al., 2014, Robson et al., 2020). OBIA has been successfully used in many 



 

research projects to detect clean ice and debris-covered glaciers (Robson et al., 2015, Rastner 

et al., 2014, Kraaijenbrink et al., 2016, McNabb et al., 2016, Robson, 2016).  The objective of 

this thesis is to develop a technique in order to automatically detect rock glaciers on different 

areas of the semiarid Andes, using high-resolution optical satellite imagery with the 

combination of CNN and OBIA. The method has been applied by Robson et al. (2020) who 

found that OBIA can be used to refine, reshape or correct results created by a CNN and to 

create meaningful polygons as rock glacier outlines out of a heatmap raster. The two methods 

together formed an effective way to automatically identify rock glaciers with promising 

results. This thesis investigates further possibilities by using higher resolution satellite 

imagery to identify smaller yet more numerous landforms. 

  



 

2. Study Area 

The study area is located in semiarid Andes of Chile – approximately between the latitudes 

30°S and 30.5°S – around 120 km east to La Serena, near the Argentine border (Figure 1). 

Two different catchments were chosen for this study: The La Laguna (also known as Tapado) 

catchment and the Estero Derecho catchment. Both of them include a large number of rock 

glaciers and have been in focus of previous research. 



 

 

Figure 1: Location of the two study areas in the Chilean Andes.



 

 

2.1. Primary Study Zone 

The primary study area is the La Laguna catchment, where the Tapado glacier and the glacial 

foreland (debris-covered glaciers, rock glaciers and moraines) form together the Tapado 

glacial complex (Figure 3). The region has a semiarid and cold climate. At the elevation of 

~3000 m a.s.l., it has a mean precipitation of 167 mm per year measured between 1970 and 

2009 and a mean annual air temperature (MAAT) of 8 °C recorded between 1974 and 2011. 

The MAAT has been reported to be rising by 0.17 °C per decade between 1974 and 2011 

(Monnier et al., 2014a, Robson et al., 2020). 

The Tapado glacier (located at 30.1°S,  69.9°W, 4500 – 5535 m a.s.l.) flowing on the side of  

the mountain Cerro Tapado is one of the few glaciers in the region (Sinclair and MacDonell, 

2016). The mountain is mainly made of dacitic and rhyolitic materials from upper Paleozoic–

Lower Trias (so-called Pastos Blancos Formation) and upper Oligocene–Lower Miocene (so-

called Doña Ana Formation) periods (Monnier et al., 2014b). The area also consists of debris-

covered glacier sections as well as 105 rock glaciers according to the DGA inventory. Some 

of the significant rock glaciers are the Tapado Rock Glacier, the Las Tolas (Figure 2), the 

Empalme and the Llano de las Liebres (Schaffer et al., 2019). Due to its complexity, these 

landform assemblages are hard to identify from surface observation (Monnier et al., 2014a). 

The area has been in the focus of research with particular emphasis on the hydrological 

functioning of the landforms within the catchment. When it comes to ice content of rock 

glaciers in the semiarid Andes, the values of 50% (Brenning, 2005, Azócar and Brenning, 

2010b) and 60% (Schrott, 1996) have been assumed. Indirect geophysical measurements at 

two specific rock glaciers have been done: Monnier and Kinnard (2015) estimates an average 

ice content of 66% for the rock glacier Llano de las Liebres and Milana and Güel (2008) 

approximated an average ice content of 33.5% in another rock glacier adjacent to the Cerro 

Tapado (Milana and Güell, 2008, Schaffer et al., 2019).  

It is assumed that the Tapado catchment actively supplies water to the lower semiarid areas of 

the Elqui river basin by contributing between 4 and 13% of the annual streamflow (Pourrier et 

al., 2014, Robson et al., 2020).  By using a combination of the minimal glacier discharge data 

available and published discharge values measured at rock glaciers outside of the semiarid 

Andes, Schaffer et al. (2019) estimated the rock glacier contribution to the streamflow. They 

found that rock glaciers likely contributed 140, 300 and 930 L s
-1

 for a minimum, likely 



 

maximum and extreme maximum scenario respectively, which indicates 9 – 20 % of the 

streamflow (Schaffer et al., 2019).  

 

Figure 2: The Las Tolas rock glacier (Photograph: Benjamin Aubrey Robson). 

  



 

 

 

Figure 3: The La Laguna catchment with rock glaciers shown in red. Background image is an orthorectified 
Pleiades mosaic (highlighted) from 2020 combined with ESRI satellite map. 

  



 

 

2.2. Secondary Study Zone 

The secondary study area is located at the headwaters of the Elqui River in the Coquimbo 

Region within a reserve called Estero Derecho (Figure 4), where precipitation is increasing 

with the elevation reaching ~ 160 mm a
-1

 at 2900 m a.s.l in the Estero Derecho valley (de 

Pasquale et al., 2020). The specific study zone is a ~697 km
2
 area within the Estero Derecho 

reserve at an average altitude of ~4000 m a.s.l. south west from the La Laguna catchment. 

The area does not contain glaciers, only a large number of rock glaciers. The most prominent 

ones are locally known as the El Jote, which is a inactive rock glacier and the El Ternero 

which is an active rock glacier, the largest one within Estero Derecho (de Pasquale et al., 

2020). The only in-situ measurement in Estero Derecho was carried out on these two glaciers: 

de Pasquale et al. (2020) presented results of electrical resistivity and refraction seismic 

tomography profiles and proposed a diagnostic model representation for the differentiation 

between active and inactive rock glaciers. A map of the secondary study zone is shown in 

Figure 3. 



 

 

Figure 4: The Estero Derecho catchment with rock glaciers shown in red. Background image is an 
orthorectified Pleiades and SPOT mosaic (highlighted) and from 2020 combined with ESRI satellite map.



 

3. Objectives 

The thesis will focus on two different study areas located in the semiarid Andes in Chile and 

investigate the possibilities of using remote sensing and machine learning to map the glacial 

and periglacial landforms. The investigation is focusing on the following main and sub-

research questions: 

What machine learning/deep learning methods and parameters provide the best results 

for landform detection in the primary study area? 

a. How transferable the newly developed method is to another periglacial 

catchment? 

b. How well the newly developed method works with data from a different 

sensor? 

  



 

4. Background 

This chapter discusses the theoretical background of the thesis starting with a detailed 

description of rock glaciers followed by optical satellite remote sensing and rock glacier 

mapping methods with reviews of relevant, published papers about previous research. 

4.1. Rock glaciers 

Besides the one used in the Introduction chapter, several other rock glacier definitions exist 

due to the disagreement on the content of the term (Berthling, 2011). Rangecroft et al. (2015) 

define them as glacier-shaped cryospheric landforms, a mixture of angular rock debris with a 

core of ice or ice-cemented fine class, usually with a distinct ridge and furrow surface pattern. 

Jones et al. (2018) describe rock glaciers as cryoshperic landforms that are formed by gravity-

driven creep of accumulations of rock debris supersaturated within ice while others like 

Barsch (1996), Haeberli et al. (2006) or Robson et al. (2020) define them as landforms of 

unconsolidated, ice-rich material that are visible manifestations of permafrost. Formerly, rock 

glaciers were often thought to be a form of debris-covered glaciers. Since then, a number of 

fundamental differences have been established (Kääb, 2013). While debris-covered glaciers 

are composed almost exclusively of snow and ice (Schaffer et al., 2019) with a thin and 

discontinuous debris cover (Monnier and Kinnard, 2017), rock glaciers form rather a mix of 

debris with a core of ice (Rangecroft et al., 2015) with a several-metre-thick ice-free debris 

layer that thaws every summer (Monnier and Kinnard, 2017). Rock glaciers occur in most 

cold mountains on Earth. These include the Andes, the Rocky Mountains, the European Alps, 

the Pyrenees, the Caucasus region, the Central Asian mountain ranges, the Siberian mountain 

ranges, the Himalayas, the New Zealand Alps, Greenland, Antarctica, and the Arctic and 

Antarctic Islands (Barsch, 1996, Kääb, 2013). Based on recent space imagery, it can also be 

assumed that rock glacier-like features are located on the surface of Mars (Kääb, 2013). 

4.1.1. Rock glaciers origins 

The disagreements on the definition of rock glaciers reflect a long-standing academic debate 

about the origin of rock glaciers (Barsch, 1996, Berthling, 2011, Jones et al., 2019). Some 

researchers assume that the internal ice of the rock glaciers is of periglacial/permafrost origin 

(Barsch, 1996, Haeberli et al., 2006, Berthling, 2011, Jones et al., 2019), while others claim 

that it can also be originated from glaciers and that rock glaciers represent a continuum with 



 

respect to mixing of ice and debris from variable sources (Whalley and Martin, 1992, Whalley 

and Azizi, 2003, Jones et al., 2019). Berthling (2011) called these two positions permafrost 

creep school and continuum school. He examined their debate and came to a conclusion that 

since rock glaciers are “visible expression of cumulative deformation by long-term creep of 

ice/debris mixtures under permafrost conditions”, they would neither belong entirely to 

glacial or periglacial realm and it should be rather regarded as a cryo-conditioned landform 

(Berthling, 2011). Monnier and Kinnard (2015) suggested that rock glaciers can have 

periglacial, glacial and also mixed origins. They distinguished three different possibilities of 

glacier – rock glacier interactions that can result in rock glaciers: 

1. The readvance(s) and superimposition/embedding of glaciers or debris-covered 

glaciers onto/into rock glaciers, with related geomorphological and thermal 

consequences (defined by the permafrost school) 

2. The continuous derivation of a rock glacier from a debris-covered glacier by evolution 

of the surface morphology (see above) together with the conservation and creep of a 

massive and continuous core of glacier ice (defined by the continuum school) 

3. The transformation of a debris-covered glacier into a rock glacier not only by the 

evolution of the surface morphology but also by the evolution of the inner structure, 

i.e. the transformation of the debris-covered continuous ice body into a perennially 

frozen ice – rock mixture by addition from the surface of debris and periglacial ice and 

fragmenting of the initial glacier ice core (Monnier and Kinnard, 2017).  

Similarly, Schaffer et al. (2019) distinguishes three classes of rock glaciers based on their 

origins: glaciogenic rock glaciers are formed from debris-covered glaciers, cryogenic rock 

glaciers are formed from the geological processes associated with permafrost and polygenic 

rock glaciers have a combined glaciogenic and cryogenic origin (Schaffer et al., 2019). 

4.1.2. Characteristics of rock glaciers 

A fundamental characteristic of rock glaciers is their thermal state. In permafrost conditions, 

the surface layer consisting of debris prevent positive summer temperatures to reach down to 

the ground ice-containing permafrost body and the mixture of debris and ice remains frozen 

over the year, possibly even centuries (Haeberli et al., 2006, Kääb, 2013). Another important 

feature of rock glaciers is their displacement. The nature of the topography together with the 

pressure makes the ice-debris mixture of rock glaciers deform. In general, the movement of 

rock glaciers results a surface speed of centimetres to a few decimetres per year. However, 



 

cases have been reported with surface velocities of several metres per year (Janke et al., 2013, 

Kääb, 2013, Jones et al., 2019).  The surface speed depends on factors such as surface slope, 

composition and internal structure, thickness of ice-rich body or ground temperature (Kääb, 

2013). Based on their kinematics, rock glaciers can be classified as active or inactive (Figure 

5). Active rock glaciers can be characterised by distinctive flow-like morphometric features 

reflecting their visco-plastic properties. Some examples are ridge-and-furrow assemblages, 

steep and sharp crested front, light colour, swollen appearance and lack of vegetation cover 

(Barsch, 1996, Jones et al., 2019). Inactive rock glaciers do not contain enough ice for 

deformation and are therefore immobile. They generally have gentler, darker coloured frontal 

slopes and vegetation cover might also appear (Jones et al., 2018a, Barsch, 1996).  Relict rock 

glaciers are in fact former rock glaciers that no longer contain ice. They generally have 

gentler and rounder slopes and might have extensive vegetation or even ponds on their surface 

(Giardino and Vitek, 1988, Barsch, 1996, Jones et al., 2018a). A fourth type is mentioned in 

some papers called pseudo-relict rock glaciers. It is an intermediate type between relict and 

inactive rock glacier, having locally isolated patches of permafrost (Barsch, 1996, Kellerer-

Pirklbauer et al., 2010, Colucci et al., 2019). 

 

  



 

 

Figure 5: Different types of rock glaciers in the study areas: active rock glaciers with flow-like morphometry, 
furrows and light colour, inactive rock glaciers with gentler slopes and darker colour and relict rock glaciers 
with round slopes and ponds on their surface. The background images are the orthorectified Pleiades and 

SPOT mosaic maps (2020). 



 

4.1.3. Rock glacier water storage and discharge 

While glacier- and snowpack-derived meltwaters are heavily threatened by climate change, 

rock glaciers are climatically more resilient than glaciers as they respond to climate change at 

comparatively longer time scales. Therefore, under escalated climate warming, rock glaciers 

have an increased hydrologyical significance and become a larger component base flow to 

rivers and streams (Jones et al., 2018a). The water volume equivalent (WVEQ) of the world’s 

rock glaciers is estimated to be 83.7 - 16.7 Gt, equivalent to ~68 – 102 trillion litres (Jones et 

al., 2018a, Jones et al., 2019). Figure 6 shows a more detailed distribution of WVEQ of rock 

glaciers around the globe. 

 

Figure 6: Near-global rock glacier WVEQ (Gt) and ratios of rock glacier-to-glacier WVEQ. Rock glacier WVEQs 
(blue circles) are sized proportionately to the whole. Rock glacier WVEQs reflect 50 ± 10% ice content by 

volume (Jones, et al., 2018). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/rock-glacier


 

Only a few studies have investigated the hydrological aspects of rock glacier water discharge. 

This is because of the lack of information on flowpaths and the extreme difficulty of rock 

glacier water discharge measurements with often multiple and/or inaccessible springs. Intact 

rock glacier discharge patterns are characterised by strong seasonal and diurnal variability, 

primarily determined by local weather conditions, the thermal conditions within the active 

layer (AL), and the physical mechanisms that control meltwater flow through the rock glacier 

(Krainer and Mostler, 2002, Krainer et al., 2007). Typically, discharge rates are highest during 

the spring/early summer snowmelt and gradually decline through summer and autumn to low 

or zero flow in the winter months. In addition, rock glacier discharge fluctuates strongly in 

response to rainfall events and periods of colder weather with snowfall (Jones et al., 2019). 

Apart from the study in the La Laguna catchment mentioned in Chapter 3, some other water 

discharge measurements have been carried out for example in the Canadian Rockies, where 

Gardner and Bajewski (1987) measured a water discharge of 90 – 270 L s
-1

 at the rock glacier 

Hilda or in the Alps, where Krainer and Mosler (2002) measured 5 – 310 L s
-1

 for the Gößnitz 

rock glacier in the Hohe Tauern Mountains. In the Central Andes of Argentina, the water 

discharge was measured at 2 – 5 L s
-1

 at the Dos Lenguas rock glacier (Schrott, 1996),  and 

230 – 1000 L s
-1 

at Morenas Coloradas (Trombotto et al., 1997).  

4.1.4. Field surveys on rock glaciers   

Fieldwork allows the geomorphological mapping of rock glaciers with terrestrial survey 

methods such as GPS, triangulation or laser ranging (Kääb and Weber, 2004). For example, 

Brenning et al. (2005) measured rock glacier front slope inclination in the dry Andes with a 

hand held clinometer. Mapping the internal structure of rock glacier bodies is usually more 

complicated. A few investigations used borehole drilling to gain information about the 

stratigraphy. Geophysical techniques can also be used: ground-penetrating radar (GPR) sends 

radar signals into the ground and receivers their reflection from layer boundaries or objects. 

High frequencies are used for high-resolution images of shallow structures while lower 

frequencies are used for deeper structures but with a lower resolution (Monnier et al., 2008). 

Fractions give information about rock glacier depth and internal composition. Monnier and 

Kinnard (2015a) conducted a GPR investigation on the surface of the Llano las Liebres rock 

glacier (located in the primary study area) and by recalculating the signal velocities and using 

fraction units, they gave a complete picture of a potential composition. Electrical resistivity 

tomography (ERT) measures the electrical resistivity of subsurface materials. By hammering 

https://www-sciencedirect-com.pva.uib.no/topics/earth-and-planetary-sciences/meltwater


 

steel electrodes into the ground on every 2 metres and measuring resistivity with a 

georesistivimeter, Boaga et al. (2020) could make an estimation of the ratio of frozen ground 

in the Schafberg rock glacier in the Swiss Alps. The results were validated by temperature 

measurements. Guillemot et al. (2020) used seismic monitoring and checked the seasonal 

wave velocity changes in subsurface layers of different water content. Boreholes can also be 

used for study the mechanical processes: Arenson et al. (2002) took core samples and then 

installed temperature and deformation measurement tools to study the influence of internal 

structure and temperature on deformation. Other methods for deformation measurements, 

such as steel tapes or strain wires are also used (Kääb et al., 2003). If meltwater springs are 

accessible,  water discharge can be measured with gauging stations and electrical conductivity 

sensors with salt dilution method, while water samples are taken for geochemical inspections 

(Krainer and Mostler, 2002, Krainer et al., 2007). Recently, an extensive study was carried 

out by Halla et al. (2021) in attempt to quantify ice content and water storage changes of an 

active rock glacier in the Dry Andes of Argentina by combining field measurements (ERT, 

and seismics) with remote sensing.  

4.2. Optical satellite remote sensing 

Remote sensing can be an effective solution for mapping mountainous areas that can be too 

time-consuming, dangerous or expensive to approach on field. Remote sensing is defined as 

the acquisition and measurement of information about certain properties of phenomena, 

objects or materials by a recording device not in physical contact with the features under 

surveillance (Khorram et al., 2012). It is an effective tool for rock glacier monitoring since it 

provides large coverage and repetitive acquisition (Khorram et al., 2012). Different types of 

active and passive satellite sensors exist. In this thesis, optical satellite RS will be in the main 

focus as the data used for the project were derived with that method.  Before the availability 

of satellite images, aerial photos were used. Although they are still popular for rock glacier 

monitoring (Kääb et al., 1997, Kaufmann et al., 2018), the appearance of earth observation 

(EO) satellites in the latter half of the 20
th

 century opened new horizons in the field of RS. EO 

satellites orbiting around the planet provide global coverage on a more regular basis (Khorram 

et al., 2012). Optical satellite sensors are passive RS systems that detect the solar radiation 

reflected from the surface. Most optical sensors produce multispectral images. 

 



 

These sensors detect radiation in several 

wavelength bands of the electromagnetic 

range. The bands are typically the visible 

(red, green and blue) and infrared portions 

of the spectrum. Having information from 

different bands can be useful since 

different landcover types have a different 

reflectivity in each band (this is usually 

illustrated as reflectance curves, see Figure 

7). It allows creating false colour 

composite images that allow visualising 

reflectance in wavelengths that are invisible 

for human eyes (Figure 7). These show that 

different landforms and landcover types 

have different reflectance on each band. Using different band ratios can be used to generate 

new data that show the statistical and mathematical relationship between the spectral bands 

(Schuckman and Dutton, 2018). In this way, band indices for different landcover types (NDVI 

for vegetation, NDSI for snow, NDWI for water, etc.) and other band ratios can be generated 

(Table 1) to highlight landforms. Some of them have proven to be useful for rock glacier 

classifications (Brenning, 2009, Kofler et al., 2020, Robson et al., 2020). 

Some satellites also produce panchromatic images that have a single band with information 

about the total light energy in the visible spectrum. It can collect higher amount of radiation 

per pixel and therefore is able to detect changes in smaller spatial extent. Thus, it has larger 

spatial resolution than the multispectral images (Mahyari and Yazdi, 2011).  

 

 

 

 

 

 

Figure 7: Reflectance curves of different types of ice 
within the visible and the infrared region (modified 

from Hall and Martinec, 1985). 



 

Table 1: Popular indices used in landform classification. 

Index acronym Index name Band formula 

NDVI Normalised Difference 

Vegetation Index 

(NIR-Red) / (NIR+Red) 

NDWI Normalised Difference Water 

Index 

(Green – NIR) / (Green + -NIR) 

MNDWI Modified Normalised Difference 

Water Index 

(Green – SWIR) / (Green + SWIR) 

NDSI Normalised Difference Snow 

Index  

(Green – NIR) / (Green + NIR) 

SAVI Soil Adjusted Vegetation Index ((NIR – Red) / (NIR + Red + 0.5)) * 1.5 

LWM Land and Water Mask (SWIR/Green + 0.001) * 100 

 

The possibility of different band compositions and ratios together with very high spatial 

resolution make optical RS extremely useful for remote sensing investigations. Its 

disadvantages include dependency on weather conditions, day, other environmental effects 

such as water column depth or clarity (Hedley et al., 2012) and the susceptibility to physical 

damage (McGrath and Ni Scanaill, 2013). Moreover, imagery with sub-metric spatial 

resolution can cost several hundred Euros depending on area size and sensor type.  

Figure 8: False colour composite variations of Sentinel-2 images of the Blåmannsisen glacier, Norway 
(Andreassen et al., 2021). 

 

 

 

 

 



 

4.3. Digital Elevation Models 

Digital elevation models (DEM) are 3D representations of the terrain. Freely available DEMs 

with large coverage are available. One of the most popular free DEM sets is the Shuttle Radar 

Topography Mission (SRTM) with a nearly global coverage and a spatial resolution of 1 

arcsecond (30 m). Although SRTM is often the best DEM to find for a certain area, it should 

be noted that these products are from 2000 and therefore can be outdated. The 30 m spatial 

resolution of SRTM DEMs might also be insufficient to detect the morphology of smaller 

landforms. National DEMs created on a state level are generally more accurate and have a 

higher resolution. They exist for example in North America (Fereshtehpour and Karamouz, 

2018), Europe (Wiederkehr and Möri, 2013) or Africa (Athmania and Achour, 2014). Freely 

available regional DEMs such as the ArcticDEM (Barr et al., 2018) or the High Mountain 

Asia DEM (Liu et al., 2019) also exist. Unfortunately, such national DEM dataset does not 

exist for the Chilean Andes.  

The lack of suitable DEMs makes rock glacier investigations more difficult since elevation 

and topographic data are crucial for rock glacier mapping since the classification is usually 

based on geomorphometrical criteria. These include features like shape, slope steepness or 

surface topography (furrow and ridges) or relation to hillside (Villarroel et al., 2018b, Jones et 

al., 2019). Furthermore, by comparing two DEMs of the same area from different times, it is 

possible to detect changes in topography that indicate motion of active rock glaciers and 

allows the calculation of surface velocity. The lack of available national datasets often makes 

researchers create their own, project-specific DEMs. DEMs can be generated with different 

methods such as laser scanning (Triglav-Čekada et al., 2016), radar interferometry (InSAR) 

(Liu et al., 2013, Necsoiu et al., 2016, Villarroel et al., 2018a) or photogrammetry. 

4.3.1. DEMs from photogrammetry 

DEMs can be generated from optical imagery by using stereo-photogrammtery. This includes 

both aerial photos and optical satellite imagery. Photogrammetric determination of digital 

terrain models and their subsequent comparison is an effective a well-established technique to 

exactly define terrain surfaces or even their temporal changes (Kääb et al., 1997). The concept 

of photogrammetry is that by having at least two overlapping images of the same object taken 

from different positions, it is possible to retrieve 3D information or elevation. It uses the 

apparent displacement of an object viewed from different locations, a phenomenon called 



 

stereoscopic parallax (Haldar, 2018). The absolute parallax is the distance between the 

principal point and the object on the image, it can be measured and by using geometric and 

parallax equations, the height of objects can be calculated: 

 

Figure 9: Simple example of stereo photgrammetry. The goal is to retrieve the height of the object (Hassani, 
2018). 

On the example by Hassani (2018) shown in Figure 9, H is the flying altitude, ho is the height 

of the detected object, x and x’ are the parallax of the object base on each image and d and d’ 

are the displacement of the object base and object top. It can be seen that 

ℎ𝑜

𝐻
=  

(𝑑 + 𝑑′)

 𝑥 + 𝑥′ + (𝑑 + 𝑑′)
 

x+x’ can be defined as the absolute stereoscopic parallax and replaced with P, while d+d’ is 

the parallax difference and can be replaced with ∆P. Therefore, 

ℎ𝑜

𝐻
=  

∆𝑃

𝑃 + ∆𝑃
 

 

 

 



 

Thus, the height of the object is 

𝒉𝟎 = 𝑯
∆𝑷

𝑷 + ∆𝑷
 

, where H is the flying altitude, P is the absolute parallax and dP is the parallax difference 

between the top and the bottom of the object (Hassani, 2018). With today’s computer 

technology, several tools have been developed to automatically extract DEMs from 

stereoscopic pairs (Gong and Fritsch, 2016, Shean et al., 2016). The general process of DEM 

generation consists of preprocessing the images (noise removal), matching corresponding 

points on them, triangulating (transforming image coordinates to ground coordinates) and 

geometrically modelling the satellite camera and the ground coordinate system (Wei and 

Bartels, 2012).  

Both aerial and satellite photogrammetry have been used to generate DEMs for rock glacier 

monitoring. For example, Kääb et al. (1997) used aerial photogrammetry for the monitoring 

of the Ruben rock glacier in the Swiss alps . Monnier and Kinnard (2017) used DEMs from 

both aerial photos and GeoEye satellite image pairs to monitor the evolution of glacier – rock 

glacier transitional landforms in the Chilean Andes from 1955 to 2014. Bolch et al. (2019) 

used the technique as well on Pleiades and SPOT imagery to study the evolution and the ice 

content of ice – debris complexes in the Tien Shan region in Central Asia. Robson et al. 

(2020) used a Pleiades tri-stereo to extract a DEM for their automatic rock glacier detection. 

Photogrammetry has been recently used by Kääb et al. (2021) to create DEMs for rock glacier 

change monitoring in Tien Shan since the 50’s.  

4.4. Measuring surface velocity 

With remote sensing data, it is also possible to detect the terrain’s changes in time. 

Information on surface displacements and velocity can be useful to detect deforming 

landforms such as active rock glaciers.  

4.4.1. Feature tracking 

One solution is to examine the displacement of a landform by comparing multiple images 

taken at different times and tracking features between successive images. Feature tracking 

mostly use a computer-based normalized cross correlation algorithm that matches features on 



 

the surface by giving an estimate of the similarity of image intensity values (Monnier and 

Kinnard, 2017, Debella-Gilo and Kääb, 2011). When performing feature tracking, it is crucial 

to choose an adequate search radius and a matching window that are used to identify features. 

The time interval between the images is also extremely important as the displacement should 

be significant enough to be measured while the feature needs to be still identifiable (Berthier 

et al., 2005). The method was used on rock glaciers by Monnier and Kinnard (2017), who 

investigated glacier-to-rock glacier evolution on both historical aerial photos and satellite 

images. Eriksen et al. (2018) tracked features to measure the acceleration of the Ádjent rock 

glacier, Norway on aerial photos and Blöthe et al. (2020) applied the technique on RapidEye 

satellite imagery to obtain surface velocity fields of active rock glaciers in the Argentine 

Andes. 

4.4.2. Radar interferometry 

Another method is Synthetic Aperture Radar Interferometry (InSAR), also known as 

Differential InSAR (DInSAR).  In contrast to optical remote sensing, radar is an active remote 

sensing system as it sends microwave signals to the surface and receives the backscattered 

echo. The advantage of SAR remote sensing is that it is independent from weather conditions 

and sunlight. InSAR uses the phase difference of two radar images covering approximately 

the same area acquired at different times from slightly different positions. It can be performed 

when the correlation degree, known as coherence, between the images is sufficiently high. 

The phase difference is related to the surface – sensor distance (thus the elevation of the area) 

and it is possible to detect changes and deformations of the topography during the time 

interval of the two images (Liu et al., 2013). In order to exploit the surface displacement, the 

effects caused by the topography should be removed. When performing InSAR, an 

interferogram is created where phase values are mapped in the range π to –π. To get actual 

values, a process called phase unwrapping should be performed (Villarroel et al., 2018a). 

Since the displacement and the phase difference is proportional to the wavelength of the radar 

signal, surface velocity can be calculated. InSAR is a popular method for monitoring 

mountainous areas (Strozzi et al., 2020) including rock glaciers.  For instance, Liu et al. 

(2013) described the kinematic state of 59 active rock glaciers in Sierra Neva, California 

while Strozzi et al. (2020) used InSAR  to compute velocity time series of multiple active 

rock glaciers in the Alps, Greenland and the Andes. 



 

4.5. Delineating rock glaciers on remote sensing data 

Remote sensing techniques have quickly become essential tools for large scale mapping and 

classification of both artificial and natural objects. Different methods have been used to detect 

and delineate glaciers (Fang et al., 2015, Robson et al., 2015) and debris-covered glaciers 

(Robson et al., 2015, Lippl et al., 2018, Sahu and Gupta, 2018) using automated or semi-

automated methods. However, these methods proved to be insufficient for rock glacier 

identification. 

4.5.1. Challenges of rock glacier mapping 

The special characteristics of rock glaciers require considerable efforts for their mapping 

process (Marcer, 2020). Because of their spectral similarity to the surrounding paraglacial 

bedrock where they originate from, rock glaciers are more difficult to detect on remote 

sensing data than glaciers or debris-covered glaciers. Moreover, the deformation of rock 

glaciers is often too low to maintain radar coherence and to use SAR for detection (Robson et 

al., 2020). Velocity rates from InSAR and feature tracking only allows the identification of 

fast deforming rock glaciers but not inactive ones. Therefore, most rock glacier inventories 

are made by using high-resolution optical imagery  (Perucca and Esper Angillieri, 2011, 

Schmid et al., 2015, Barcaza et al., 2017, Jones et al., 2018b, Robson et al., 2020) since it 

allows large-scale geomorphological surveys (Jones et al., 2018a).   

4.5.2. Manual delineation 

Due to the previously mentioned challenges of rock glacier detection, automatic mapping 

methods are difficult to develop. Early rock glacier inventories were made manually. 

Wahrhaftig and Cox (1959) detected rock glaciers in the Alaska Range on air photos and 

recorded extensive rates of rock glacier movements by measuring the distance between the 

headwall and the boulders. Another example is Outcalt and Benedict (1965), who used 

manual delineation on vertical aerial photographs to examine the possible origins of rock 

glaciers of in the Colorado Front Range. Manual interpretation relies on identifying surface 

features indicative of rock glaciers such as ridges, furrow and steep frontal slopes (Jones et 

al., 2018c, Robson et al., 2020). The technique is still a fundamental method for rock glacier 

mapping (Scotti et al., 2013, Rangecroft et al., 2014, Jones et al., 2018c). The work most often 

takes place within a workspace of a GIS tool like QGIS or ESRI ArcGIS (Zeze and Liu, 

2018), but other programs can be used as well. Tanarro et al. (2018) used the CAD software 



 

Microstation to map debris-covered glaciers and rock glaciers, while Rangecroft et al. (2014), 

Jones et al. (2018) and Pandey (2019) used the freely available Google Earth Pro that 

provides high-resolution, usually cloud-free, orthorectified satellite and aerial imagery free of 

charge in contrary to costly commercial satellite imagery. It should be noted that the use of 

Google Earth impedes automation of workflows and analysis is restricted to the manual 

creation of polygons within the software (Robson et al., 2020). Non-optical data has also been 

used: for example, Villaroel et al. (2018) manually identified active rock glaciers of the Dry 

Andes on interferograms generated from Senitnel-1 images. The main advantage of manual 

delineation is that a human operator with good field knowledge is able to produce very 

accurate rock glacier inventories, although it makes the method inherently subjective (Jones et 

al., 2019). Further, the technique demands a significant amount of time and manpower and 

can be slow and tedious especially with large study areas. 

4.5.3. Attempts for automation  

While much effort has been put into automatic mapping and monitoring of glaciers based on 

satellite imagery, rock glaciers and also debris-covered glaciers have received less attention 

and constitute a greater challenge for remote sensing techniques since their debris surface 

does not produce a distinct spectral signal (Brenning, 2009). Early automatic methods 

classified each individual pixel by the value stored in them. Berta (1982) used spectral 

signatures from Landsat Multispectral Scanner (MSS) imagery and performed a maximum 

likelihood classification followed by various enhancement techniques on each band. 

However, she concluded that the techniques employed provided an insufficient method for 

accurate identification of rock glaciers and that Landsat MSS has proven to be ineffective 

(Berta, 1982). Based on Berta’s (1982) findings, Janke (2001) used the thematic bands of 

Landsat Thematic Mapper (TM) imagery, image enhancement and DEM data to establish a 

modelling procedure for rock glacier identification. He used different combinations of 

enhancements and ran an unsupervised classification reaching an overall accuracy of 81.0%. 

The model had significant limitations due to the low resolution of the Landsat TM scenes 

(Janke, 2001).  Brenning (2009) compared eleven different statistical and machine learning 

techniques in a benchmarking exercise for rock glacier detection. He used training points 

derived from SRTM and Landsat data. He found that the penalized linear discriminant 

analysis provided the best result with the detection of 70% of the rock glacier points 

(Brenning, 2009). Linear discriminant analysis is statistical method to separate classes and 



 

determine their boundaries. Brenning et al. (2012) examined four different classification 

methods to detect rock glacier flow structures on IKONOS imagery using Gabor filters that 

are used for feature extraction and texture analysis. It was found that including texture to 

terrain attributes improves the classification accuracy. 



 

Table 2: Overview of past methods of rock glacier mapping. 

Delineation method Advantage Disadvantage Examples 

Manual interpretation on 

topographic maps 

Easy and cheap access to maps 

Topographic and elevation 

information already depicted 

Maps can be outdated or inaccurate 

Time-consuming 

White (1979) 

Manual interpretation on 

aerial photos 

High-resolution images 

Existed before satellites  

(useful for historical investigation) 

Air surveys are sporadic 

Data often difficult to access 

Sometimes only grayscale images 

are available 

Time-consuming 

Wahrhafting and Cox 

(1959) 

Outcalt and Benedict 

(1965) 

Kaufmann et al. (2018) 

Manual interpretation on 

satellite imagery 

High-resolution images 

Global  coverage on regular basis 

Imagery with multiple bands 

Commercial products are costly 

Time-consuming 

Falaschi et al. (2014) 

Monnier and Kinnard 

(2017) 

Kääb et al. (2021) 

Manual interpretation on 

Google Earth 

Very-high resolution, pre-processed 

imagery 

Free of charge 

Data extraction is very limited 

Impedes automation 

Time-consuming 

Rangecroft et al. (2014) 

Schmid et al. (2015) 

Pandey et al.(2019) 

Pixel-based automatic 

classification on satellite 

imagery   

Early attempts for automation 

Significantly faster method 

Difficult to achieve good results 

Spectral values of single pixels are 

insufficient 

Janke et al. (2001) 

Brenning (2009) 

Brenning et al. (2012) 



 

 

4.6. Object-based image analysis 

As the spatial resolution of satellite imagery has increased, the relationship between the 

objects to be classified and the pixel sizes has changed (Figure 10). Around the year 2000, 

GIS and image processing started to grow rapidly through object-based image analysis 

(OBIA) (Blaschke, 2010). OBIA creates near-homogenous objects, which serve as the basis 

of subsequent classification (Drăguţ et al., 2014, Robson et al., 2020). Some research refer to 

OBIA as Geographic object-based image analysis (GEOBIA) (Blaschke et al., 2014).  

4.6.1. Difference between OBIA and pixel-based methods 

Pixel-based image analysis (PBIA) analyses individual image pixels and the values contained 

in them. PBIA classifies pixels based on this information. This can be problematic when the 

spatial resolution of the image is too high or the target object is too complex and has pixels of 

different spectral values (e. g. parts of landforms that are covered with debris, snow, 

vegetation or shadow)(Figure 9). In contrary of PBIA, OBIA create meaningful-image 

objects, extracts their information and assess their characteristics in scale (Blaschke et al., 

2014). It is also capable of classification based not only on spectral values but also spatial 

contextual information such as shape, texture and relationships between the objects (Blaschke, 

2010, Rastner et al., 2014). The importance of contextual information in classification of 

landforms on remote sensing data has been well known in the scientific community for 

decades. Kettig and Landgrebe (1976) found that classifying individual pixels by not only 

their own spectral values but also those of their neighbours as well gives a better overview of 

the context of the scene and produces better results (Kettig and Landgrebe, 1976). As the 

spatial resolution of imagery is improving the role of contextual information is growing 

further. The use of the homogenous objects of OBIA also helps to avoid the salt-and-pepper 

effect cause by noisy pixels. Another main advantage of OBIA lies in its post-processing 

capabilities: it allows correcting reshaping, refining results or deleting false classifications 

(Rastner et al., 2014). 

 

 



 

 

Figure 10: Relationship between objects under consideration and spatial resolution: (a) low resolution: pixels 
significantly larger than objects, sub-pixel techniques needed. (b) medium resolution: pixel and objects sizes 
are of the same order, pixel-by-pixel techniques are appropriate. (c) high resolution: pixels are significantly 
smaller than object, regionalisation of pixels into groups of pixels and finally objects is needed (Blaschke, 

2010). 

 

4.6.2. Multiresolution segmentation 

According to Rastner et al. 

(2014), OBIA usually starts 

with the bottom-up process of 

multiresolution segmentation 

that merges the pixels of the 

image into groups (objects). 

Additional object hierarchical 

levels can also be used to further 

merge image objects (Figure 

11).  

Multiresoltuion segmentation is based on three parameters: scale, shape and compactness. The 

scale parameter influences the size of individual objects and the shape defines the textural 

homogeneity of the resulting image object. Determining the right scale is crucial, since 

different regions are found at different scales of analysis. OBIA is linked with multiscale 

analysis concepts. Both one level representations (OLR) (Lang and Langanke, 2006) and 

multiscale segmentations (MSS) (Burnett and Blaschke, 2003) have been applied for OBIA. 

Both concepts have their advantage: For a high resolution image, for example, at coarse scales 

we can discriminate fields or forest stands, while at finer scales we can discriminate 

individual trees or plants: parameters and thresholds in a typical single-scale segmentation 

Figure 11: Hierarchical network of image objects with a three-level 
multiresoltuion segmentation (edited from Benz et al., 2004). 



 

algorithm must therefore be tuned to the correct scale for analysis. It is, however, often not 

possible to determine the correct scale of analysis in advance because different kinds of 

images require different scales of analysis, and furthermore, in many cases, significant objects 

appear at different scales of analysis of the same image (Blaschke, 2010). The parameter 

compactness optimizes the resulting objects in regard to the overall compactness within the 

shape criterion (Figure 12). Moreover, the input datasets such as the different satellite bands 

can be weighted in the process based on their importance in the segmentation (Robson et al., 

2015). This allows influencing the creation of objects according to size, shape and number.  

 

Figure 12: Results of multiresolution segmentations performed on an orthorectified Pleiades mosaic with 
different scale (top row), shape (middle row) and compactness (bottom row) parameters. 

As Benz et al. (2004) state, to guarantee a definite hierarchy over the spatial shape of all 

objects, object borders must follow object boundaries of the one-step lower level and the 

lower segmentation must be constrained by the border of the one-step higher level. Further, it 



 

is possible to perform segmentation levels with different parameters or data weighting and to 

correct object shapes by regrouping sub-objects (Benz et al., 2004). Its complexity makes 

image segmentation one of the most critical steps within OBIA (Drăguţ et al., 2014, Robson 

et al., 2020). 

4.6.3. Classification methods 

After the segmentation, the image can be classified. The classification can be performed with 

machine learning by using samples to train the algorithm to assign each image object to 

separate classes. Different supervised classification methods exist. One of the simplest 

algorithm is the k-nearest neighbour which determines the class of an object by investigating 

the k closest training samples (Ma et al., 2010). Another example, the random forest 

classification builds multiple decision trees based on randomly bootstrapped training data and 

takes the mode of the results (Sonobe et al., 2014). Support vector machine (SVM) is a widely 

used supervised classification method for classification of remote sensing data. It separates 

classes by creating a hyperplane that maximises the margin between the classes. The 

datapoints closest to the hyperplane are called support vectors (Ji and Gong, 2018). In a 

support vector classification, this hyperplane acts as a border between classes. SVM is the 

method of finding the best border between classes by using kernel functions. These machine-

learning methods are suitable for tasks where the whole image needs to be classified (e. g. 

landcover mapping). 

However, when there is only one target class that needs to be detected, another classification 

method called threshold-based classification can be more appropriate. This technique works 

on a threshold basis, which means the inclusion or exclusion of image objects based on their 

different characteristics. Various object features such as image layer values, area, shape, or 

relation to neighbouring objects can be set as fix thresholds via a trial-and-error basis. Values 

can also be set according to well-established classification procedures from the literature such 

as the band ratio or the combination of slope and thermal information (Rastner et al., 2014). A 

special type of threshold-based classifications is the fuzzy logic classification. Its name refers 

to how the objects are grouped by fuzzy propositional functions. Instead of using sharp 

thresholds, fuzzy logic gives objects values within the range 0 (false/non-member) to 1 

(true/member). This way, fuzzy logic is much better in approximating the real world (Benz et 

al., 2004).  



 

4.6.4. OBIA for glacier and rock glacier detection 

OBIA has become an established method within remote sensing (Blaschke et al., 2014, 

Robson et al., 2020). It has been successfully used in many research studies to detect clean ice 

and debris-covered glaciers (Rastner et al., 2014, Robson et al., 2015, Kraaijenbrink et al., 

2016, McNabb et al., 2016, Robson, 2016). Rastner et al. (2014) compared OBIA and PBIA 

for glacier mapping in Greenland, the Himalayas and Canada using Landsat and ASTER 

datasets. They found that OBIA outperformed PBIA with ~3 % in total and with 12% in the 

processing of debris-covered glaciers (Rastner et al., 2014). Robson et al. (2015) used OBIA 

to automatically map debris-covered glaciers. They concluded that OBIA gives better results 

when synthetic aperture radar (SAR) coherence is added to optical imagery and topography, 

and reached an accuracy of 91% against manually delineated outlines (Robson et al., 2015). 

When it comes to rock glaciers, fewer studies have been conducted on using OBIA for rock 

glacier mapping. Recently however, Robson et al. (2020) found that OBIA is suitable for 

classification correction and refinement for rock glacier detection carried out with a 

convolutional neurl network (see next section). 

4.7. Convolutional Neural Networks 

Convolutional neural networks (CNN) are a branch of deep-learning (DL) methods. They are 

inspired by the brain’s neural networks, where neurons respond to particular features of the 

vision such as differently oriented edges. The concept of DL is to build a network which can 

similarly detect features on an input image. During the training, labelled samples from each 

class are sent through the CNN. The CNN transforms them to an output while learning 

progressively higher-level features (Litjens et al., 2017, Ma et al., 2019). CNNs typically 

consist of three different types of hierarchical structures: convolutional layers, pooling layers 

and fully connected layers (Ma et al., 2019, Robson et al., 2020). The input image is first 

convolved with a moving kernel filter of a fixed size that is looking for a distinct feature, for 

example a straight, horizontal edge. The input image and the feature are compared with a 

pixel value multiplication. A rectified linear unit (ReLU) activation function can be used to 

change all negative values to zero. This operation is repeated with every other feature filter. 

After the feature filters have hovered over every input, the results are stored in feature maps 

(Figure 13). 



 

 

 

Figure 13: Work of a feature detector as it hovers over the input image (modified from Raju and Shanthi, 
2020). 

 

 

Pooling layers reduce the output’s 

dimensions. Again, a fixed sized 

(usually 2x2) kernel is moved 

through the image and picks a 

representative value. The average 

pooling uses the mean value, while 

max pooling picks the highest one 

to represent the pixels under the 

kernel (Yani et al., 2019) (Figure 

14).  Multiple convolutional layers 

can be stacked up together and be 

interspaced by pooling layers 

(Robson et al., 2020).  

The process where the input image is going through convolutions and pooling layers is called 

feature extraction (Phung and Rhee, 2019). The classification starts when the fully connected 

layer converts the filtered outputs into a vector. It compares to the vectors created from the 

training data by value division and determines a probability value for each class (Chatterjee, 

2019) (Figure 15). 

Figure 14: Outputs of a 2x2 average pooling and a 2x2 max 
pooling layer (modified from Yani et al., 2019). 



 

 

Figure 15: A schematic diagram of a basic CNN architecture. A feature detecting kernel is scanning the input 
image and performs the convolution. A pooling layer reduces the dimensions and the fully connected layer 

determines the probability of the input belonging to each class (modified from Phung and Rhee, 2019). 

 

CNNs have made breakthrough in remote sensing image processing due to their ability to 

extract deep features (Li et al., 2020) They are typically used in applications where spectral 

characteristics alone are insufficient (Robson et al., 2020). It has been successfully used in 

many remote sensing investigations to automatically detect natural or artificial objects. As an 

example, Alshehhi et al. (2017) used CNN to extracted roads and buildings for urban 

landcover analysis. Csillik et al. (2018) detected individual citrus trees from high-resolution 

drone imagery, while Mohajerani et al. (2019) applied CNN to automatically map glacier 

calving margins on Landsat 5, 7 and 8 data.  

4.7.1. Challenges of CNN 

Being a relatively new method, CNN classification on RS data has its own difficulties. Early 

CNNs had problems with preserving the spatial reference of the input data and using 

multilayer features to improve the scene classification from different aspects (Erzhu et al., 

2017). Song et al. (2019) have listed the challenges of classification with CNN on remote 

sensing data as follows:  

1. Insufficient training data in RS: training datasets are much less than image datasets in 

the computer vision since the preparation of RS training data are time-consuming. RS 



 

scientists who devote to deep-learning-based research are limited, and less of them pay 

more effort in RS training dataset production.  

2. RS image-specific CNN models: there is a need for studies on CNNs that work with 

data acquired with different sensors.  

3. Time efficiency: The majority of studies focus on classification accuracy and very few 

on CNN’s time efficiency during training.  

4. High-level CNN-based applications in RS image classification: More attention should 

be drawn in higher level CNN-based applications, e.g., high-accuracy extraction of 

semantic information on scenes, extraction of more complex objects, super-resolution 

reconstruction, multi-label remote sensing image retrieval and so on. 

Another potential issue is the phenomenon of under- or over-fitting. If the architecture is too 

simplistic or the training is not extensive enough, the CNN will be under-fitted and will fail to 

adequately recognize objects. On the other hand, if the CNN is too deep and over-

parameterized, over-fitting may occur. Over-fitting makes the model highly biased by the 

training data and its ability to generalize becomes weak (Wang et al., 2018) which may lead 

to misclassifications of inputs that differ too much from the training samples. 

4.7.2. CNN for rock glacier mapping 

Two studies have been conducted on CNN detection of rock glaciers. Marcer (2020) extracted 

points from rock glaciers and stable ground from SPOT 6 optical imagery, and trained a CNN 

with a model architecture of 3 convolutional layers (each with a 3 x 3 kernel) and a max-

pooling layer after the first convolutional layer. The CNN was tested on another area where it 

successfully identified around 60-70% of the rock glaciers, although the heatmap produced 

contained a significant number of false positives (Figure 16/a). Robson et al. (2020) 

performed an analysis using Sentinel-2, Pleiades imagery and topography information. A 

CNN was built and trained with the model architecture 3x3x70, 7x7x40, 3x3x20, 1x1x12, 

3x3x12 with max pooling applied after the third and fifth layers. To fix the false results of the 

CNN heatmap, the results were then further refined with OBIA using multi-level image 

segmentation and threshold-based classification. The classification had a total accuracy of 

72% on Sentinel data and 76.8% on Pleiades (Robson et al., 2020) (Figure 16/b).  



 

 

 

 

 

Figure 16: Rock glacier heatmaps in comparison with manual outlines created by Marcer (2020) [a] and 
Robson et al. (2020) [b].  



 

5. Datasets 

 

The objective was to test the new method not only on different areas but also on different 

sensors. Therefore, for this project work, imagery from different satellites was needed. New 

images from Airbus Defence and Space (Airbus DS) owned satellites were ordered through an 

application at the European Space Agency (ESA): two Pleiades tri-stereos with a resolution of 

0.5 m and a SPOT 7 tri-stereo with a resolution of 1.5 m were obtained. One Pleiades tri-

stereo covers the entire Tapado region, including the La Laguna catchment. The second 

Pleiades tri-stereo covers the southern area of Estero Derecho while the SPOT 7 images cover 

the northern part (Figure 17). As the data were used for a research project, the products were 

provided by ESA free of charge. A freely available SRTM elevation model was also 

downloaded to be used as a reference when collecting ground control points and tiepoints 

during the pre-processing (see chapter 6). An overview of the datasets used is shown in Table 

3.  

 

Figure 17: Coverage of the satellite imagery acquired. 

 



 

Table 3: Datasets used for the investigation. 

Scene ID Date Sensor Resolution (m) Area 

DIM_PHR1B_202003011456539_SEN_4839452101 01/03/2020 Pleiades 0.5 Tapado 

DIM_PHR1B_202003011457165_SEN_4839453101 01/03/2020 Pleiades 0.5 Tapado 

DIM_PHR1B_202003011457376_SEN_4839562101 01/03/2020 Pleiades 0.5 Tapado 

DIM_PHR1A_202001031453393_SEN_4749701101 01/03/2020 Pleiades 0.5 Estero Derecho 

DIM_PHR1A_202001031454241_SEN_4749701101 01/03/2020 Pleiades 0.5 Estero Derecho 

DIM_PHR1A_202001031453300_SEN_4749701101 01/03/2020 Pleiades 0.5 Estero Derecho 

DIM_SPOT7_202003021424185_SEN_4835547101 02/03/2020 SPOT 7 1.5 Estero Derecho 

DIM_SPOT7_202003021424467_SEN_4835548101 02/03/2020 SPOT 7 1.5 Estero Derecho 

DIM_SPOT7_202003021424326_SEN_4835549101 02/03/2020 SPOT 7 1.5 Estero Derecho 

SRTM_S31W071 11-22/02/2000 SRTM 30 30-31°S; 70-71°W 

SRTM_S31W070 11-22/02/2000 SRTM 30 30-31°S; 69-70°W 

 



 

 

6. Methods 

After obtaining all the necessary images, the processing started; the workflow can be divided 

into three main steps: pre-processing, classification and result analysis. For this project, 

multiple different GIS and image processing tools were used for the specific steps. The pre-

processing and the CNN testing were initially run on a 64-bit operating system with an Intel® 

Core
TM

 i5-6300HQ CPU @ 2.30GHz and 8 GB RAM. This was later replaced by a more 

powerful machine, a 64-bit operating system with an Intel® Core
TM

 Processor (Haswell no 

TSX) CPU @ 2.50GHz (16 processors) and 64 GB RAM. A detailed overview of the 

workflow is depicted in Figure 18. 

 



 

 

Figure 18: Chart of the workflow: Training and validation data creation in QGIS (A) Image pre-processing in PCI Geomatica (B), CNN classification (C) and OBIA 
refinement in eCognition (D) followed by an accuracy assessment in ArcGIS (E).



 

 

6.1. Image pre-processing 

The optical tri-stereo images ordered from ESA came with a multispectral and a panchromatic 

image. The first goal was to use the panchromatic scenes to extract elevation information by 

generating an elevation model and then use that to retrieve slope and curvature information. 

The pansharpened spectral bands were used to create high-resolution orthomosaics. To keep 

consistency, every pre-processing step was executed on all products by using the same 

parameters. For pre-processing, the image processing software PCI Geomatica (today known 

as Catalyst) was used.  

6.1.1. DEM extraction 

The panchromatic bands of stereo and tri-stereos were used for DEM extraction with satellite 

photogrammetry. The Geomatica tool OrthoEngine allows DEM extraction from 

panchromatic scenes with collecting ground control points (GCP) and tiepoints (TP). Since 

every set of imageries had a rational polynomial coefficient (RPC) file that allows the 

software to determine the location of the data with high precision, only tiepoints were 

collected. Tiepoints were collected automatically by using a Fast Fourier Phase Matching 

algorithm. To limit the search radius not only in XY but also a vertical Z direction, it is 

possible to enhance the TP collection accuracy by using an existing DEM. For this reason, a 

standard 30 metre SRTM DEM was used which is freely available to download. After 

collecting tiepoints, the XY residuals were checked for each. Points with large residuals were 

inactivated and the model was recomputed until the overall residual was below 0.1 pixels. In 

total, 50 tiepoints were used for the Pleaides tri-stereos and 46 for the SPOT 7 tri-stereo. 

Following this, epipolar images were created for all three images to increase the speed of the 

correlation process and to reduce the possibility of incorrect matches. As a DEM extraction 

technique, the more time-consuming yet more precise Semi-Global Matching (SGM) method 

was applied. SGM has been shown to outperform the Normalised Cross-Correlation method 

and thereby produce cleaner DEMs (Hirschmuller, 2008). The pixel sample interval was set 

for a spatial resolution of 1 metre for the two Pleiades DEMs and 3 metres for the SPOT 

DEM. Lower intervals would cause nearly the same DEM accuracy but with an exponentially 

longer processing time. Since the study areas are almost entirely free of artificial objects and 

vegetation, a surface model was sufficient and did not need further corrections (Figure 19). 



 

Figure 19: 3D view of the Tapado glacial complex using the extracted Pleiades DEM and orthomosaic. 

6.1.2. Slope and Curvature Extraction 

Elevation rasters allow the extraction of additional geomorphometric features. Slope layers 

were extracted from each DEM by using the Geomatica algorithm SLASP (Slope and 

Aspect). SLASP uses elevation values held in a DEM to calculate the corresponding slope and 

aspect angles. The slope algorithm used in this function is pixel-based, meaning that there is 

no second- or third-order polynomial surface fitting process. This also means that the slope 

and aspect maps may uncover some existing artifacts from the elevation channel. The values 

in the slope channel range between 0 and 90 degrees, and are used to describe the angle of 

incline or decline at a given pixel (Geomatica, 2020). The SLAPS algorithm is based on the 

method defined by Corripio (2003).  

 

 

 

 

 

 



 

Planform and profile curvature 

layers were extracted with ESRI 

ArcGIS. Planform curvature relates 

to the convergence and divergence 

of flow across a surface. The profile 

curvature is parallel to the slope and 

indicates the direction of maximum 

slope. It affects the acceleration and 

deceleration of flow across the 

surface. The planform curvature 

(commonly called as plan 

curvature) is perpendicular to the direction of the maximum slope (ESRI, 2016) (Figure 16). 

A subset of the extracted topographic layers is shown in Figure 21.

Figure 20: Profile and plan curvatures (ESRI, 2016). 



 

 

 

Figure 21: DEM with hillshade (A), slope (B), planform (C) and profile curvature (D) layers of the Las Tolas 
rock glacier extracted from a 2020 Pleiades tri-stereo.



 

 

6.1.3. Atmospheric correction 

RS images are often degraded due to atmospheric effects. When the radiation travels to the 

atmosphere, it may be absorbed or scattered by the constituent particles of the atmosphere 

(Tyagi and Bhosle, 2011). Therefore, the radiance detected by the sensor does not consist only 

of the radiance reflected by the ground but also radiance from the atmosphere. Atmospheric 

correction needs to be applied to remove radiances from other sources and extract the 

reflectance of the surface. These effects on satellite images depend on several factors such as 

area location, acquisition date/time, weather conditions or sensor type. For a transferable pre-

processing method for images from different date and satellites, atmospheric correction was 

necessary for the project. Several methods for ground reflectance estimation exist (Bilal et al., 

2019). In this project, the tool ATCOR (Atmospheric and Topographic Correction) described 

by Richter & Schläpfer (2005) was used to perform atmospheric correction. Embedded in 

Geomatica, ATCOR extracts information such as solar zenith, azimuth, calibration coefficient 

or ban-channel combination from the metadata of the images to reduce the atmospheric and 

illumination effects like haze. ATCOR provides several workflows for atmospheric 

corrections: The Top of the Atmosphere (TOA) Reflectance workflow is the most basic one of 

them. The workflow converts pixel values to physical reflectance, as measured above the 

atmosphere. It normalizes images based on radiance values and image acquisition times, using 

only the required image information. The Haze Removal workflow allows calculating water 

and clouding masks for the input scene, and removing haze from images before performing 

atmospheric correction, thematic classification, or creating a mosaic. The ATCOR Ground 

Reflectance workflow allows calculating the reflectance values at ground level to remove 

atmospheric effects in satellite imagery, preparing the images for analysis under different 

atmospheric conditions. The workflow generates a reflectance image at ground level, 

corrected from atmospheric (aerosol type and water vapour) and terrain effects (Geomatica, 

2013). 

 

 

 

 



 

 

6.1.4. Orthomosaic generation 

Since the multispectral bands had a lower resolution than the panchromatic bands, they were 

first pansharpened in order to create the most detailed orthomosaic. The multispectral and the 

panchromatic images were fused to obtain an image with a spectral resolution of the former 

and a spatial resolution of the latter. This was followed by orthoimage generation and 

mosaicking. During the mosaic preparation, a cutline was automatically generated and colour 

balancing was applied. The final orthomosaic was used to get high-resolution spectral 

information for the image classification. 

6.2. Layer preparation 

After creating/processing all satellite derived information, the layers were prepared for the 

classification. 

6.2.1. Ground truth data 

For training and testing the classification, an ESRI shapefile of manually delineated landforms 

were used as reference. The ground truth data was based on a glacier/rock glacier inventory 

by Nicole Schaffer and Shelley MacDonell (2020) from CEAZA. It was originally used by 

Robson et al. (2020) for their rock glacier detection and was corrected after several over and 

underestimates of rock glacier size and missing polygons were noticed (Robson et al., 2020). 

The attribute table included landform classifications made by the DGA and CEAZA. The 

shapefile was imported to QGIS where 30% of the polygons were randomly extracted as 

validation polygons. The remaining 70% was declared as training polygons. This was 

followed by a random sample point generation within the training polygons. Approximately 

6000 points were generated: ca. 500 within the rock glacier outlines and ca. 150 for clean-ice. 

The largest proportion of the area was stable ground; therefore the remaining points were 

assigned to the stable ground category. The new la_laguna_training_points.shp was then 

exported. For the Estero Derecho region, a new landform inventory was provided by CEAZA. 

The outlines were primarily made by Eduardo Yañez under the supervision of Nicole Schaffer 

and Shelley MacDonell and it is based on Digital Globe, SPOT and GeoEye imagery from 

2006-2014 along with Google Earth Pro. The inventory was cut to the area of interest (AOI) 



 

of the two zones and exported as estero_pleiades.shp for the area covered by the Pleiades data 

and estero_spot.shp for the area of SPOT imagery. A field cnn_class was created in each 

shapefiles to store the classes to use in the CNN classification: rock_glacier, clean_ice or 

stable_ground. 

6.2.2. Rescaling 

When using CNN in eCognition, the algorithm generates a probability heatmap for each class 

ranging from 0 to 1 (Robson et al., 2020). This requires every input layers to have values 

normalized between these two numbers. Furthermore, the CNN tool in eCognition needs 

every layer bands to have a bit depth of 32. Therefore, before importing them to eCognition, 

every image bands were transformed in Geomatica with the SCALE tool. The output value 

range was set to 0 to 1 and the bit depth to 32-real. The bands were then loaded into the 

eCognition project. 

6.3. Deep-learning 

Once every data file was prepared, the deep-learning stage in eCognition Developer could 

start. The classification workflow was mostly based on previous papers on CNN in 

eCognition (Csillik et al., 2018, Timilsina et al., 2019, Robson et al., 2020) as well as the 

official CNN tool manual by Trimble. The first classification included the multispectral, 

elevation and slope layers. For the second one, curvature layers were added to compare the 

final results and find out if curvature can make an improvement. For the simplicity, these two 

classification methods were respectively named CNN_noCurv and CNN_wCurv 

classifications. A project file in was created with the rescaled image layers imported along 

with the la_laguna_training_points.shp shapefile.  

6.3.1. Create classes 

A buffer of 10 metres was added to every training point, creating circular regions. A 

chessboard segmentation was then performed with an object size of 100,000 to create small 

groups of pixels as objects. The objects that were overlapping with the buffer zones of the 

training points were assigned to the class defined in the cnn_class field of training point 

shapefiles (rock glacier, clean ice or stable ground). This way, the targets become larger then 

a single pixel which allows having more samples available to train the CNN. 



 

6.3.2. Create labelled sample patches 

Labelled sample patches were created for all three classes with a size of 30x30 pixels. In total, 

20,000 labelled patches were collected. 5000 samples were generated for rock glaciers. Since 

the largest proportion of the images was comprised of stable ground, a greater number 

(13,000) of samples was created for stable ground. Being much easier to detect due to its 

spectral features, only 2000 samples were collected for clean ice. The samples were stored in 

TIFF format. 

6.3.3. Build and test CNN 

The experiment of finding the best CNN model used a trial and error basis. To save time, four 

small test areas with prominent rock glaciers were defined. If the CNN gave good results on 

all of the subsets, it was tested on the whole area. The model that proved to be the most 

accurate one had the architecture 3x3x20, 5x5x10, 3x3x70 with max pooling applied to the 

first and third layer (Figure 22). The model was trained on the sample data with a learning 

rate 0.0015. A 13x13 Gaussian smoothing was applied to the results and the heatmaps for all 

three classes were saved as three bands of a single TIFF file (Figure 23). 

 

Figure 22: Diagram of the CNN architecture that proved to be the most effective for rock glacier detection. 

  



 

 

 

Figure 23: Manually corrected rock glacier outlines on the Pleiades orthomosaic (A – C) and on the CNN 
heatmap (a – c).  



 

 

6.4. OBIA  

To refine the results, a new project was opened in eCognition. This time, the unscaled image 

layers were used in order to use original values instead of numbers between 0 and 1. This is 

especially useful when defining slope or elevation thresholds. In total, 4 different levels of 

multiresolution segmentation were performed with classification steps on the first and fourth 

(Table 4). The first level had a scale of 110 with shape and compactness parameters of 0.7 and 

0.5. This level was used to first classify clean ice, identify rock glacier hotspots with high 

heatmap values and delete false positives. By using trial-and-error, the scale and shape values 

were gradually increased while the compactness was decreased. The final level had a scale of 

500 with 0.8 for shape and 0.2 for compactness. All segmentation levels used a weight of 1 

for the spectral layers and 2 for slope (Table 4). 

Table 4: Parameters of multiresolution segmentations. 

Segmentation Scale Shape Compactness Weights Operation 

Level 1 110 0.7 0.5 
RGB+NIR: 

1 
Slope: 2 

Clean ice classification; 
detection of rock 
glacier “hotspots” 

Level 2 300 0.7 0.5 
RGB+NIR: 

1 
Slope: 2 

- 

Level 3 450 0.8 0.2 
RGB+NIR: 

1 
Slope: 2 

- 

Level 4 500 0.8 0.2 
RGB+NIR: 

1 
Slope: 2 

Rock glacier 
expansion/refinement; 

stable ground 
classification 

 

6.4.1. Classification of clean ice 

The first task after performing the first level of segmentation was to detect areas with clean 

ice and exclude it from further analyses. The spectral characteristics make clean ice suitable to 

be delineated by solely using OBIA (Robson et al., 2015). In this paper however the CNN 

results were used to make sure the model is capable of recognising all classes from the 

training data. First, image objects with a clean ice heatmap value more than 0.02 and a mean 

elevation higher than 4700 m were extracted and assigned to the class Clean ice. The, holes 



 

enclosed by clean ice objects were removed and neighbouring objects were merged. The 

outlines were then exported as shapefiles. 

6.4.2. Identifying rock glacier hotspots 

The next step was to identify the areas where the rock glacier heatmap values were high and 

where the expansion can be started from: 

 Areas where the rock glacier heatmap value was more than 0.5 (50% probability) were 

extracted 

 Then, due to the large number of false positives, a slope threshold was used to remove 

gentler areas 

 The results were merged together 

 Objects that were too small or too large for being rock glaciers were removed  

 Finally, a threshold for slope difference to neighbours was applied 

6.4.3. Expansion and refinement 

Further refinement of the outlines was performed after the fourth level of multiresolution 

segmentation.  

 A threshold using the newly calculated mean heatmap values was applied to remove 

more false positives 

 Then, the remaining outlines were expanded using the neighbouring objects with 

higher heatmap values 

 Objects with a too irregular shape were removed by using the elliptic fit feature 

 Finally, the holes were filled and pixel-based grow (kernel 7x7) then shrink (kernel 

11x11) were applied to refine the outlines 

 The results were exported as shapefiles 

6.4.4.  Application on the other areas 

eCognition allows saving the finished ruleset in a special .dcp format which then can be 

loaded and used within other eCognition workspaces. After finalizing the ruleset, both the 

CNN classification and the OBIA refinement was saved and the methods were repeated on the 



 

2020 Pleiades data and the 2020 SPOT 7 data of Estero Derecho. Since these scenes did not 

contain clean ice, the steps for its classification were skipped.  

6.5. Accuracy assessment 

After creating the outlines for every study site, the accuracy of the classification was 

quantified by comparing the total area percentage classified as rock glacier with the manual 

outlines. Due to its simplicity, this method neglects errors of omission and commission, which 

over large areas can cancel each other out (Robson et al., 2020). Therefore, a confusion matrix 

was generated in ESRI ArcGIS by using 1000 randomly generated points to calculate the user 

accuracy (the percentage of correct classification) and the producer accuracy (the percentage 

of rock glacier areas that were successfully detected by the method). The kappa coefficient 

which indicates how much the accuracy has been influenced by coincidence, was also 

calculated. 

 

  



 

7. Results 

Overall, the three study zones contained 37.59 km
2
 of rock glaciers according to the manual 

reference. The first CNN_noCurv classification that used the spectral bands, elevation and 

slope managed to classify 31.82 km
2 

which means a slight underestimation of 15.4% and a 

total accuracy of 84.6%. When plan and profile curvature layers were included in the 

classification, CNN_wCurv resulted in much more false positives with a total rock glacier area 

of 56.38 km
2
. In this case, an extremely high overestimation of 50.01% can be observed, 

which produced an overall accuracy of 49.99%. CNN_noCurv had relatively satisfying values 

within the confusion matrix with user accuracies ranging between 58.3 and 80.2% giving a 

mean user accuracy of 72.83%. Producer accuracies ranged between 64.0 and 98.4% which 

indicates a mean producer accuracy of 78.4%. With planform and profile curvature layers 

added to the input set, the average user accuracy from the three computed confusion matrix of 

CNN_wCurv was 71.23% while the mean producer accuracy was 76.43% which can be 

considered as good (see the comparison with previous methods in chapter 8). The mean kappa 

coefficient was 0.69 for both CNN_noCurv and CNN_wCurv. The results are summarized in 

Table 5. 

The results were also exported to the cloud-based GIS software ArcGIS Online and are now 

available online as an ESRI ArcGIS webmap on: 

https://www.arcgis.com/home/item.html?id=4afd394ad36542cdadf115196dfbfb35  

 

 

https://www.arcgis.com/home/item.html?id=4afd394ad36542cdadf115196dfbfb35


 

Table 5: Overview of all classification results. 

Sensor Area 

Rock 

glacier 

area 

(km2) 

Classification 

Area 

mapped 

(km2) 

Underestimation 

(%) 

Overestimation 

(%) 

Area 

accuracy 

(%) 

User 

accuracy 

(%) 

Producer 

accuracy 

(%) 

Pleiades 

La Laguna 

catchment 

(validation 

only) 

5.39 

CNN_noCurv 6.82 26.46 - 73.54 90.6 59.2 

CNN_wCurv 5.45 0.15 - 81.59 89.7 81.4 

Pleiades 
La Laguna 

catchment 

(whole area) 

12.01 

CNN_noCurv 8.39 43.16 - 56.82 80.2 72.8 

CNN_wCurv 11.39 5.44 - 94.56 86.7 74.1 

Pleiades 
Estero 

Derecho – 

North 

11.11 

CNN_noCurv 8.88 25.11 - 74.89 80.0 64.0 

CNN_wCurv 11.71 - 5.40 94.60 80.8 63.6 

SPOT 7 
Estero 

Derecho – 

South 

14.47 

CNN_noCurv 14.55 - 26.85 73.15 58.3 98.4 

CNN_wCurv 33.28 - 190.15 0 46.2 91.6 



 

7.1. Pleiades imagery 

The analysis for the La Laguna catchment and the northern side of Estero Derecho was 

performed using Pleiades imagery. These two areas together contain 23.13 km
2
 of rock 

glaciers. The first CNN_noCurv classification mapped 20.28 km
2
 and reached an accuracy of 

85.95%. CNN_wCurv method had a similar result mapping 20.10 km
2
,
 
thus, its accuracy on 

these areas was 84.93%. 

7.1.1. La Laguna catchment 

The first study zone was the La Laguna catchment. It should be mentioned that this was the 

area where the training of the CNN was done and where 30% of the rock glaciers were used 

for validation. The validation polygons had a total area of 5.39 km
2
. In this case, 

CNN_withCurv outperformed CNN_noCurv. While the former mapped 5.47 km
2
 reaching an 

overestimation of 0.15%, the latter detected 6.819 km
2
, indicating and overestimation of 

26.46%. This shows an accuracy of 73.54% for CNN_noCurv and 98.59% for CNN_wCurv. 

To assess the entire classification of the area, a confusion matrix was computed. CNN_noCurv 

had a user accuracy of 80.2% a producer accuracy of 72.8% and a kappa coefficient 0.75. 

CNN_wCurv had better results with a user accuracy of 86.7% and a user accuracy of 74.1%. 

When looking at the whole catchment, both CNN_noCurv and CNN_wCurv managed to map 

the majority of the landforms: 51 out of the total 70 (Figure 24). 



 

 

Figure 24: Comparison of the CNN_noCurv, CNN_wCurv and the manually corrected rock glacier outlines for the La Laguna catchment. The map shows that the presence 
of most rock glaciers was detected by both classifications. Background image is the orthorectified 2020 Pleiades mosaic.



 

 

7.1.2. Estero Derecho 

On the second Pleiades imagery, CNN_wCurv proved to be more accurate again. It was able 

to map 31 rock glaciers out of a total 48, while CNN_noCurv found only 24 (Figure 25).  

While the confusion matrix showed roughly similar values (~80% user accuracy, ~64% 

producer accuracy, 96-97% total classification accuracy), CNN_wCurv mapped 11.71 km
2
 out 

of 11.11 km
2
 reaching an slight overestimation of 5.40% and an accuracy of 94.6%. In 

contrast, CNN_noCurv which detected only 8.88km
2
 that caused an underestimation of 

25.11% and an accuracy of 74.89%. The kappa coefficient was 0.69 for both classifications. 



 

 

Figure 25: Comparison of the CNN_noCurv, CNN_wCurv and the manually corrected rock glacier outlines for southern side of Estero Derecho. Background image is the 
orthorectified 2020 Pleiades mosaic. 



 

 

7.2. SPOT7 imagery 

The northern side of Estero Derecho was covered by lower resolution  SPOT 7 imagery. 

When transferred the method to SPOT data, CNN_noCurv successfully detected 43 out of the 

125 landforms classifying 14.55 km
2
 as rock glacier (Figure 26). Compared to the original 

11.47 km
2
, this represents an overestimation of 26.85% and an accuracy of 73.15%. The user 

accuracy was 70% and the producer accuracy 58.3%. The kappa coefficient was 0.63. On the 

other hand, the values of CNN_wCurv dropped drastically after the transfer to SPOT 7 data. 

Although it was able to detect the presence of 32 features, CNN_wCurv resulted in a large 

number of false positives of a total area of 33.28 km
2
 which is almost three times as large as 

the actual rock glacier area and therefore the total accuracy was 0%. The user accuracy was 

measured at 14.6% while the producer accuracy at 46.2%. 



 

 

Figure 26: Comparison of the CNN_noCurv, CNN_wCurv and the manually corrected rock glacier outlines for northern side of Estero Derecho. As subsets A and B show, 
many rock glaciers could be mapped only by CNN_noCurv while CNN_wCurv proved to be highly inaccurate. Background image is the orthorectified SPOT mosaic.



 

 

7.3. Accuracy of individual rock glaciers 

The accuracy for individual rock glaciers has also been studied. The area of each landform 

was extracted from both the manually corrected inventory and the CNN classifications. 

However, some rock glaciers that were spatially close to each other have been identified as 

one landform by the CNN or have been merged together as a result of the OBIA refinement. 

In these cases, the combined area of the landform assemblages was used as reference. Overall, 

both classifications managed to detect the largest landforms while the lowest accuracies were 

in general those of the smallest rock glaciers.   

7.3.1. Results for CNN_noCurv 

When the curvature layers were not included, the classification mapped 29 rock glaciers or 

groups of rock glaciers larger than 0.05 km
2
 out of a total 32. Using the same area-based 

benchmark, 20 out of 25 landform groups were succesfully detected on the Pleiades imagery 

showing the southern Estero Derecho. On the Pleiades imageries, very small rock glaciers 

were mostly missed by the classification, medium sized (between 0.05 and 1 km
2
) ones were 

mapped rather accurately while very large ones were classified with slight under or 

overestimations. The largest landform mapped was a nearly 4 km
2
 large assemblage which 

includes the Empalme rock glacier. This landfrom was mapped 4.3 km
2
 by CNN_noCurv. 

When it comes to the transfer to the SPOT 7 imagery of northern Estero Derecho, 

CNN_noCurv mapped 20 out of 40 landform groups. 15 of them were those larger than 0.2 

km
2
. Overall, the accuracy of the classification drops when transferred to imagery from 

another sensor, however the largest and most significant rock glaciers were still sucessfully 

mapped. The scatterplot (Figure 27) shows that while smaller landforms were more likely to 

be missed, larger ones were generally detected on all three study areas. 

  



 

 

Figure 27: Scatterplot showing rock glaciers mapped by CNN_noCurv against the manually corrected outlines.



 

 

7.3.2. Results for CNN_wCurv 

When planform and profile curvature layers were added to the investigation, the classification 

produced better results with every 32 rock glacier larger than 0.05 km
2 

being mapped. 

Improvements were observed on the Pleiades image of Estero Derecho as well, where only 4 

medium or large rock glaciers were left unmapped out of a total 25. This shows advancement 

for the Pleiades data, although the scatterplot shows frequent underestimations. On the other 

hand, when the method was transferred to SPOT 7 data, the classification failed to adequately 

distinguish rock glaciers from other non-targets producing very low accuracy values. In total, 

only 13 rock glaciers were mapped. Two of them were smaller than 0.05 km
2
 and 11 were 

medium sized rock glaciers that were mapped out of a total 42. On the scatterplot (Figure 28), 

it is visible that while most rock glaciers on the Pleaides imagery was mapped, CNN_wCurv 

missed a large number of landforms when transferred to SPOT data. 

 



 

 

Figure 28: Scatterplot showing rock glaciers mapped by CNN_wCurv against the manually corrected outlines.



 

7.4. Comparison with velocity rates  

The two classifications were compared to velocity information in order to find out if there is 

any correlation between mapping accuracy and surface velocity rates (Figure 29). Two 

complete velocity rasters were used, both of them generated by Benjamin Aubrey Robson at 

the Department of Geography of the University of Bergen. For the La Laguna catchment, the 

velocity information was extracted by feature tracking using 2012 GeoEye and a 2020 

Pleiades images. Velocity rates of the Estero Derecho region were gained from InSAR on 

Sentinel-1 imagery from 2015 to 2019. Mean surface velocities were calculated and rock 

glaciers faster than 0.1 m a
-1

 were then compared to their accuracy (Figure 30). Both 

CNN_noCurv and CNN_wCurv showed weak correlation between mapping accuracy and 

surface velocity. The accuracy of rock glaciers between 0.1 and 0.5 vary greatly between 0% 

and 98.7%. Rock glaciers faster than 0.5 m a
-1

 were mapped with more confidence. When 

comparing the two classifications, the scatterplots show that the correlations are low in both 

cases: 0.364 for CNN_noCurv and 0.345 for CNN_wCurv. In addition, it is also visible that 

CNN_wCurv had generally higher accuracies for active rock glaciers. 

 

Figure 29: Classification outlines with surface velocity rates. 



 

  

 

Figure 30: Scatterplots showing the relationship between rock glacier surface velocity and mapping accuracy 
of detected rock glaciers. 

7.5. Comparison with other geomorphometric characteristics 

In order to investigate connection between accuracy and other geomorphometric 

characteristics, the accuracies were compared with the slope, and mean roughness of rock 

glaciers. The comparison was performed the same way as with the velocity rates: 

geomorphometric information was extracted and then the mean values for each 

landforms/landform groups were compared to the mapping accuracy. 



 

7.5.1. Slope 

When looking at the slope values of the mapped landforms, it is visible that gentler rock 

glaciers were detected more successfully (Figure 31). The results also show that every rock 

glacier steeper than 30° was missed by the classifications not only on the SPOT data but also 

on the two Pleiades images. On the other hand, landforms gentler than 15° have been mapped 

with a mean accuracy of 56.8% by CNN_noCurv and 62.9% by CNN_wCurv. Again, the 

correlation between accuracy and mean slope proved to be weak: 0.127 for CNN_noCurv and 

only 0.111 in the case of CNN_wCurv. However, when the results of the transfer to SPOT 

data are excluded, the correlation for CNN_wCurv becomes 0.379. Therefore, it can be 

concluded that slope possibly had an influence in the classification of Pleiades imagery. 

 

Figure 31: Relationship between classification accuracy and slope of detected rock glaciers. 



 

7.5.2. Terrain roughness 

The tool Geospatial Data Abstraction Library (GDAL) was used to extract information about 

the terrain irregularity. It is calculated by the largest inter-cell difference of a pixel and its 

surroundings. Then, the mean terrain roughness for each rock glacier was extracted. The 

scatter plots indicate a relationship between surface roughness and mapping accuracy (Figure 

32). Of rock glaciers with a roughness value larger than 0.1, CNN_noCurv detected 12%. 

Given its weak performance on the SPOT data, this value for CNN_wCurv is only 4%. 

Landforms mapped with higher accuracies had generally lower roughness level. For example, 

CNN_wCurv successfully identified every landform with a roughness lower than 0.5 with an 

average accuracy of 72.1%. The correlation between terrain roughness and classification 

accuracy was 0.140 for CNN_noCurv and 0.288 for CNN_wCurv. 

 

Figure 32: Relationship between classification accuracy and roughness of detected rock glaciers. 

 



 

7.5.3. Aspect and compactness 

Accuracies were also compared with aspect and roundness. The compactness of the reference 

outlines were computed by using the Polsby – Popper test. Originally studying 

gerrymandering, Polsby and Popper (1991) introduced a score that describes the compactness 

of a shape with using its area and perimeter: 

𝑃𝑃 =
4𝜋𝐴

𝑃2
 

,where PP is the Polsby – Popper score, A is the area and P is the perimeter. This way, the 

compactness of a circle equals 1 while more irregular shapes have lower values (Polsby and 

Popper, 1991). However, the results did not show any relationship. Landforms of different 

aspect and compactness were mapped with a wide range of accuracy by both classifications. 

The scatterplots can be found in Appendices 1 – 2. 

  



 

8. Discussion 

The main objective of the thesis was to develop an automated method for rock glacier 

mapping using deep-learning and OBIA that can be equally applied to another study area and 

data from a different sensor. In this chapter, the results and effectiveness of the newly 

developed classification methods will be discussed with a particular focus on their 

transferability. A comparison with previous rock glacier mapping techniques and suggestions 

for future developments will also be given.   

8.1. Transferability of the method 

The sub-research questions of this thesis focus on how transferable the newly developed 

methods are. After training and testing the classifications CNN_noCurv and CNN_wCruv on 

Pleiades imagery of the La Laguna catchment, both were transferred to a different periglacial 

zone. The second test was conducted on a different study area, the southern part of Estero 

Derecho by still using Pleiades imagery. Lastly, the third classification was performed with 

both the study area and the sensor being different from what the CNN was trained on: a SPOT 

7 tri-stereo was used that covered the northern part of Estero Derecho. The new inputs from 

SPOT 7 imagery had only a 1.5 m spatial resolution in contrast to the Pleiades that has 0.5 m. 

Overall, the presented method proved to be transferable between different areas and imagery 

although the accuracy dropped when curvature data was included. It was found that 

geomorphometric factors such as curvature, slope or surface roughness and differences in 

sensor specifications played an important role in the transfer and affected its successfulness. 

The first CNN_noCurv method used only spectral bands, elevation and slope information.  It 

performed well on the Pleiades images: The mean total accuracy was 65.85%. The user 

accuracy was significantly high, an average of 80.1% with over 80% in both areas. The 

producer accuracy was 72.8% on the La Laguna catchment and 64% for Estero Derecho, 

indicating a mean accuracy of 56.8%. When transferred to SPOT 7 data, the user accuracy 

dropped to 58.3% while the producer accuracy rose to 98.4% (Figure 37). It still managed to 

map a significant part mostly of the larger rock glaciers. During the second part of the rock 

glacier mapping, the method was repeated with planform and profile curvature layers included 

in the dataset (CNN_wCurv) to see how they would affect the classification. It was found that 

curvature helps rock glacier mapping when used on the same sensor data as the CNN was 

trained on. Apart from a marginally lower producer accuracy for Estero Derecho, 



 

CNN_wCurv managed to outperform CNN_noCurv in every kind of accuracies. However, 

when transferred to SPOT 7 imagery, the accuracy of CNN_wCurv dropped drastically 

misclassifying different large areas as rock glaciers and by producing an enormous 

overestimation. On the other hand, several real rock glaciers were missed and therefore the 

classification has been considered unsuccessful. 



 

 

Figure 33: Changes of accruacy rates during the transfers of the classifcations. 



 

8.1.1. Role of curvature data 

This inconsistency may have different reasons. One can be the difference between spatial 

resolution of SPOT 7 and Pleiades and the characteristics of curvature. The layer the CNN 

was trained on had a 0.5 m resolution and therefore was a very detailed dataset. Curvature can 

vary in space greatly. This is especially true on rock glacier surfaces where ridges, furrows, 

slopes or even lakes can alternate and a high resolution curvature layer is able to show these 

small changes. When compared to Pleiades, SPOT 7 imagery has a much lower resolution and 

its curvature layers looks coarser when visualised (Figure 38). The CNN was trained on 30 x 

30 pixels large sample patches which would be an area of 60 x 60 m for Pleiades but only 

45x45 m in the case of SPOT 7. Another reason can be the complexity of the CNN model. As 

Wang et al. (2018) described, a too deep and overly parameterised CNN can cause overfitting. 

It is therefore possible that by using more layers, the CNN became too biased by the training 

data, failed to generalize and work adequately on data from a different sensor.  

 

Figure 34: Curvature layers extracted from a furrow on the Las Tolas rock glacier (A) with 0.5 (B) and 1.5 (C) 
metres spatial resolution). 

 

As a conclusion, adding curvature layers did improve the classification, but only when applied 

on data from the same sensor that the CNN was trained with. Working only with elevation 

and slope layers had lower accuracies on the Pleiades imagery but the method was well 

transferable to SPOT 7 imagery and did manage to map the larger, more significant rock 

glaciers.   



 

8.1.2. Difference of terrain roughness 

Closely related to surface curvature, terrain roughness also show significant differences 

between Pleiades and SPOT data. The comparison of accuracy and terrain roughness 

presented in chapter 7 showed that rock glaciers on the SPOT image had a significantly higher 

roughness value. During an investigation of their role, the roughness layers of Pleaides were 

first resampled to make sure the devation is not caused by the spatial resolution difference. 

While the rock glaciers of the two Pleiades images had an average value of 0.556 m, the mean 

roughness of the landforms on the SPOT data was 1.531 m (Figure 39). In addition, it was 

found that the average size of rock glacier on the SPOT image was half of those on the 

Pleiades data. As pointed out in the previous chapter, these factors have likely played a role in 

the classification and the different values on the SPOT probably caused further complications 

in the transfer. 

 



 

 

Figure 35: Differences of surface roughness during the transfer between Pleiades and SPOT 7 imagery. When 
visualized, it is visible that roughness values are generally higher ont the SPOT imagery (A) than on the 

Pleiades data (B).  

 

 

 



 

8.1.3. Difference in sensor specifications 

Although its influence is likely marginal, it should be noted that the multispectral bands of 

Pleiades and SPOT lie on different wavelength regions (Table 6). Therefore, a point with a 

given reflectance might have different pixel values on a Pleiades and on a SPOT image. This 

slight difference in spectral signatures further aggravates the transfer between different 

sensors. 

Table 6: Sensor specifications of Pleiades and SPOT satellites (earth.esa.int). 

Spectral bands Pleiades SPOT 

Panchromatic 470 – 830 nm 450 – 750 nm 

BLUE 450 – 530 nm 450 – 520 nm  

GREEN 520 – 590 nm 530 – 600 nm 

RED 620 – 700 nm 625 – 690 nm 

Near-Infrared 775 – 915 nm 760 – 890 nm 

 

8.2. Detection of new rock glaciers 

In addition of the transferability, a major advantage of the method was found during visual 

inspection of the allegedly false positives in the results. After checking the satellite imagery, it 

was found that many of these polygons were in fact small individual rock glaciers that were 

not included in the inventory used for training and validation purposes. These landforms were 

generally 0.1 – 0.2 km
2
 in size and had characteristics similar of rock glaciers. Some 

landforms were found to have a distinct lobate shape with flow-like morphometry, steep 

frontal slopes with ridges and furrows on the surface or gentler, rounder slopes and lighter 

shades (Figure 36 – 37). In total, seven landforms that are possibly rock glaciers were found 

by the CNN over all three study zones. The velocity rates did not show any motion in these 

areas, which assumes that these landforms are inactive. Creating a complete and up-to-date 

rock glacier inventory for the semiarid Andes can be challenging (Schaffer et al., 2019), 

especially for the region of Estero Derecho which is less well studied than other areas (de 

Pasquale et al., 2020, Valois et al., 2020). It is therefore possible that the CNN classification 

managed to map inactive rock glaciers that were missed by the manual delineation and were 

not included in the reference inventory. In this case, it was shown that the automatic method 

is capable of outclassing even manual correction which indicates a major improvement. 



 

9.  

Figure 36: Examples of rock glaciers detected by the CNN but not included in the manual reference depicted on the 2020 SPOT orthomosaic (I.), the CNN heatmap 
(II.) and on Google Earth Pro(© 2021 Maxar Technologies) with their distinct front highlighted manually. 



 

10.  

Figure 37: Examples of rock glaciers detected by the CNN but not included in the manual reference depicted on the 2020 SPOT orthomosaic (I.), the CNN heatmap 
(II.) and on Google Earth Pro (© 2021 Maxar Technologies) with their distinct front highlighted manually.



 

8.3. Inaccuracies in the classification 

Despite their promising results, the classifications still contain errors in the form of false 

positives or false negatives. After all tests and accuracy assessments were done, the results 

were inspected together with the satellite imagery to find potential reasons of the inaccuracies. 

With the exclusion of CNN_wCurv’s performance on the SPOT 7 imagery, the results of the 

accuracy assessments show the classifications’ user accuracy were high, while the producer’s 

accuracy remained generally lower. This indicates that while most of the area what the 

method identified as rock glacier was mapped correctly, there were a lot of rock glacier areas 

that were not detected. The number of false positives was mainly smaller than the one of false 

negatives. Apart from the polygons that were found to be rock glaciers not included in the 

reference inventory, false positives occurred when the CNN misclassified talus slopes, fluvial 

deposits or other rock glacier-like features with ridges, furrows (Figure 38). In certain cases, 

the false positives consisted of the bedrock surrounding actual rock glaciers. As stated in the 

literature on rock glacier mapping, the misclassifications of these areas is a common 

phenomenon and the differentiation between rock glaciers and their surroundings pose as one 

the main challenges of rock glacier detection.  

 

Figure 38: Lobate shaped feature (A), talus slopes (B) and fluvial deposits (C) wrongly classified as rock 
glaciers. Background images are the 2020 SPOT and Pleiades orthmosaics. 

The classifications have also underestimated or missed certain landforms. The main reason of 

undetected rock glaciers is the settings of the OBIA refinement. As mentioned in Chapter 6, 

an area threshold was partially applied after the last multiresolution segmentation, with a large 

number of landforms smaller than 0.1 km
2
 being removed. This allowed to clean the dataset 



 

from a large number of false positives but also removed a significant proportion of smaller 

rock glacier outlines as well. Overall, the reference dataset contained 86 landforms smaller 

than 0.1 km
2
 representing 34.12% of the whole inventory. The scatter plots showing the 

relationship between mapping accuracy and landform area (Figure 27 – 28) show that both 

classifications detected less than 20% of all landforms of those smaller than 0.1 km
2
 (13.08% 

for CNN_noCurv and 18.46 % for CNN_wCurv) and the OBIA cleaning of these small 

outlines is likely to have a major role in these low accuracies. 

8.3.1. Missing frontal slopes 

Trends in underestimation of larger rock glacier were spotted as well. Generally, the CNN 

classifications had a tendency not to include the steep frontal slopes of the landforms. The 

visualisation of the outlines together with the satellite imagery showed that both CNN_noCurv 

and CNN_wCurv had a tendency to map only ridges and furrows on the upper plateau of rock 

glaciers but not the steep slope at their front (Figure 39). On the contrary, the manually 

corrected outlines included these slopes which often represented a very large proportion of the 

entire polygon area (Figure 31). Since this dataset was used as ground truth in the accuracy 

assessment, the results showed significant underestimations. Different factors could have led 

to this phenomenon. The most likely reason is the spectral and morphological difference 

between the undetected parts and the rest of the rock glacier body. The missed slopes were 

usually very long and much steeper. In the La Laguna catchment for example, in the case of 

the better performing CNN_wCurv, the average steepness of the detected rock glacier areas 

was 18.6° while the mean slope of the missed parts was 27.2° indicating that the method 

tended to miss the steepest parts (i. e. frontal slopes). Further, differences of colour on the 

multispectral imagery can be observed as well. These characteristics make these large frontal 

slopes more similar to ordinary talus slopes or hill sides and could have created confusion in 

the CNN. It is also probable that while the majority of the training patches were collected 

from the rock glacier plateaus, only a small number of samples was generated on the frontal 

slopes and the training data was insufficient to recognise these areas as rock glaciers.  

 



 

 

 

Figure 39: Comparison of manually corrected and the automatically generated outlines. The figure shows 
that the morphometric and spectral difference led the classifications not to include the frontal slopes in the 

outlines. 

 



 

8.4. Effects of data artefacts 

In addition to the problems listed above, the errors and artefacts of the input data should also 

be mentioned. Errors while performing satellite photogrammetry can occur when the software 

failed to match image points and the correlation remains zero in an area. This could lead to 

false values in the DEM that will influence the extraction of other geomorphometric 

information (Figure 40).  

 

Figure 40: Error from image matching affecting the DEM (A),  the slope layer (B) and the final CNN heatmap 
(C). 

Oversaturated pixels on a certain spectral bands can also occur. Single event upsets are caused 

by energetic particles that produces electrical signal in the sensor and are extremely common 

in the South Atlantic Anomaly. These artefacts manifest as small, discoloured patches on true 

colour images since it usually affects only one spectral band and is able to lead to false values 

in the final heatmap (Figure 41). Despite the relatively low occurrence of these errors, poor 

data quality is able to affect the effectiveness of the classification. Therefore in more serious 

cases, manual correction needs to be considered. 



 

 

Figure 41: Examples of single event upsets on the blue band of the 2020 Pleiades orthomosaic (A-C) that 
influenced the final CNN heatmap. 

 

8.5. Comparison with other rock glacier mapping methods 

In order to get a better overview of the advantages of the method presented, this section will 

give a comparison with other methods that have been applied for rock glacier mapping. 

8.5.1. Comparison with manual methods 

Rock glacier inventories are generally made manually. It is however difficult to compare 

automated methods to the manual techniques as in the absence of reference data, studies using 

manual delineation do not provide accuracy assessments (Robson et al., 2020). However, the 

investigation of allegedly false positives showed that CNN and OBIA-based automatic 

classification can be a useful addition for rock glacier mapping not only because it is able to 

reduce the time span but also for its possible ability to detect rock glaciers that human eyes 

might miss. Many manually created rock glacier inventories (Liu et al., 2013, Villarroel et al., 



 

2018a) are based on surface velocity derived from InSAR data. This CNN classification did 

not use velocity layer as input, although the results were compared to velocity rates to find 

correlation. The comparison showed that the method is suitable to map both active and 

inactive rock glaciers. Therefore, it has an advantage over InSAR-based methods that are 

unable to detect inactive and relict rock glaciers that can still be important due to their 

freshwater storage. Further, velocity measurement from InSAR or feature tracking is 

dependent on perpendicular and temporal baselines and is therefore more difficult to calculate 

over smaller areas, while methods using CNN and OBIA do not have this limitation (Robson 

et al., 2020). 

The use of Google Earth imagery or other freely available satellite products (e.g. Sentinel-2, 

Landsat) is common for rock glacier mapping (Jones et al., 2018c, Pandey, 2019, Rangecroft 

et al., 2014). In this thesis however, data for commercial satellites was used. These images 

have much higher spatial resolution than free satellite images which is likely to improve 

automatic classification. Furthermore, these products allow data extraction such as DEM 

generation and automated classifications, unlike imagery from Google Earth. Finally, it is 

now possible to order SPOT 7 and Pleiades imagery through ESA for scientific research for 

free, although the size of AOI is limited.  

8.5.2. Comparison with other automatic methods 

The methods applied in this thesis were based on the work Robson et al. (2020) whose 

method was formed on Brenning et al.’s (2012) paper on using textural filters to identify rock 

glaciers. Comparison of the results with previous studies showed that the newly developed 

methods are able to outperform earlier automatic classifications (Table 7). The CNN_OBIA 

method of Robson et al. (2020) was performed on Sentinel-2 images of 10 m resolution and 

Pleiades images resampled to 2 m resolution. In contrast, the method presented in this thesis 

used Pleiades tri-stereos (0.5 m) and SPOT tri-stereo data (1.5 m spatial resolution). The 

classification on Pleiades data proved to be more accurate with a total accuracy of 76.8%, a 

user accuracy of 72.0% and a producer accuracy of 88.4%. Further, the presented method 

could map a larger number of landforms in the La Laguna catchment (51 against 27) with the 

smallest identified rock glacier being only 0.011 km
2
. During the comparison, both 

CNN_noCurv and CNN_wCurv could outperform CNN_OBIA in total accuracy and user 

accuracy. 



 

Table 7: Comparison of the new results to Robson et al.’s (2020) results. 

Classification Accuracy User Accuracy Producer Accuracy 

Robson et al.’s CNN_OBIA 

(Sentinel-2) 
72.0% 65.9% 71.4% 

Robson et al.’s CNN_OBIA 

(Pleiades) 
76.8% 72.0% 88.4% 

CNN_noCurv (SPOT) 73.25% 58.3% 98.4% 

CNN_noCurv (Pleiades) 65,85% 80.1% 68.4% 

CNN_wCurv (Pleiades) 94.58% 83.75% 68.85% 

 

Visual inspection also showed that similarly to CNN_noCurv and CNN_wCurv, the 

CNN_OBIA of Robson et al. (2020) also tended to exclude frontal slopes. On the other hand 

the two new classifications managed to map active rock glaciers that were missed by 

CNN_OBIA (Figure 42).  

 

Figure 42: Examples of rock glaciers missed by Robson et al. (2020) but detected by the new classification. 
Background image is Pleiades orthomosaic from 2020. 

When it comes to other automated rock glacier mapping methods, the new classification 

presented is comparable with both the method of Brenning et al. (2012), which obtained 



 

accuracies between 0.7 and 0.8 with textural filters and Marcer’s CNN, that identified 60-70% 

of total rock glaciers.  

8.6. Overall limitations 

The inaccuracies and their causes already mentioned above in the chapter indicate that the 

method presented is not without limitations. Small rock glaciers are likely to be excluded 

during the OBIA refinement and underestimations or overestimations can still occur with the 

larger landforms. In addition, the CNN relies on the training patches which can be insufficient 

to effectively classify rock glaciers. Therefore, an extensive, reliable and accurate inventory is 

needed as training data. Since the patterns and textures of rock glaciers can be near-identical 

to the surrounding bedrock or similar landforms like debris flows, talus slopes, or other 

deposits, the classification can produce false positives, especially when transferred to different 

imagery or study area, as the case of CNN_wCurv showed. Lastly, neural networks have a 

limitation to be very complicated and difficult to properly parameterise. The model used in 

this thesis collected patches of 30x30 pixels. The training was performed with a learning rate 

of 0.015 that were convolved three times and max-pooled twice. These settings were used 

after using trial and error methods and it is especially difficult to tell which parameters need 

to be refined to achieve better results.  

The method might have other limitations in case further attempts of transfer. Although the 

model which was trained on Pleiades data could work on SPOT 7 imagery, there is a 

possibility that the results would differ when the method is transferred to other satellite data, 

such as Landsat or Sentinel-2 due to their lower resolution. With its 4-level segmentation and 

different rule-based classifications, the OBIA refinement is very complex which may increase 

the risk of inaccurate classification when transferred on other imagery. Despite these 

challenges, the method presented can be helpful in rock glacier inventory creation as a helpful 

additional tool and many possibilities of further improvement. 

8.7. Potential future developments 

So far, the use of deep-learning together with OBIA for rock glacier mapping has been 

covered only by Robson et al. (2020). However, the results presented in this thesis shows that 

this method could be a powerful tool and further research is needed for future development. 



 

8.7.1. Changes of the workflow 

The results presented contained false positives and negatives with under and overestimations. 

The classifications were based on the heatmap generated by the CNN and further studies are 

required to develop a CNN architecture that produces a more accurate heatmap. This will also 

allow the application of a less complex OBIA ruleset for refinement. Further calibrations 

might also lead to a better transferability between different images.  

The current method requires Trimble eCognition that has an embedded CNN tool. However, it 

is possible to perform deep-learning classification using custom scripts. The most popular 

deep-learning libraries are Keras and Tensorflow. By migrating the method to one of these 

open-source tools, it will be possible to use deep-learning image classification without 

obtaining eCognition licenses. Another potential transformation of the method is the 

application of cloud-computing. Cloud Computing is an internet-based architecture which 

creates a computing environment to provide availability, scalability and flexibility of 

computer infrastructures at different level of abstraction (Haris and Khan, 2018). If a cloud-

based service for CNN classification was established in the future, researchers from around 

the world would be allowed to upload data, perform their analyses and share their results 

without meeting strict software requirements or owning a powerful machine. 

8.7.2. Input data 

New datasets can be included to reach a higher accuracy: the curvature tool of QGIS allows 

creating more layers such as normal-contour, flowline or cross-sectional curvatures which 

may help in rock glacier detection. For example, the normal curvature, which measures the 

curvature along a horizontal plane, would help the identification of lobate-shaped landforms. 

Flowline information could be able to identify the flow-like morphology of active rock 

glaciers. The usefulness of different curvature layers has been proven by Ehsani and Malekian 

(2021) who used six different types of curvature derived from SRTM DEM to automatically 

map ridges and valleys. Using the same data with a higher resolution might be suitable for 

rock glaciers as well. Although they have been used for accuracy comparison, roughness 

layers may be a useful addition to the input datasets.  Riley et al. (1999) presented a Terrain 

Ruggedness Index (TRI) to quantify heterogeneity. The Vector Ruggedness Measure (VRM) 

which was first introduced by Hobson (1972) allows the measurement of terrain ruggedness 

as the variation in three-dimensional orientation of grid cells within a neighbourhood. TRI 



 

and VRM give useful information about the surface roughness and can be calculated within 

an implemented tool in ArcGIS or a custom Python script.  

For this thesis, very-high resolution satellite imagery and DEMs were used as input layers. 

However, these datasets can be often unavailable or too costly. Previous studies have shown 

that effective CNN models can be trained with more low resolution but freely available 

satellite data to map different features (de Bem et al., 2020, Krysiak et al., 2020, Robson et 

al., 2020). Therefore, a comparative study could be conducted in the future by performing a 

classification in the same area using only high-resolution commercial satellite data and later 

only freely available imagery. This way, it is possible to find out how essential spatial 

resolution is to automatically detect rock glaciers. Lastly, an experimental investigation can 

also be lead with training data of mixed origins and resolution to find out if it is possible to 

make transferability between different satellite data better. 

8.7.3. Testing on other areas 

The two study areas in this thesis are located in the semiarid Andes which has unique 

geographical characteristics. Due to the climate, the area consists of mostly dry and 

vegetation-free bedrock. This gives remote sensing data acquired of this area special 

attributes. However, rock glaciers can be found in different mountainous areas around the 

world with different features. A popular area for rock glacier studies is the Himalayas (Jones 

et al., 2018a, Jones et al., 2018c). Having most of the highest peaks in the world, this region 

has a more extreme topography (Jones et al., 2018c) and significantly mores glaciers and 

debris-covered glaciers than the semiarid Andes. Several thousands of rock glaciers are 

located in the European mountain ranges and in North America (Jones et al., 2018a). These 

regions are characterised with more precipitation and denser vegetation than the study areas of 

this thesis. The presented method is assumed to be effective in these areas as the difference 

between rock glacier surface and its vegetation-covered surroundings is clearer. Another 

example is the rock glaciers of Greenland and Svalbard with unique arctic environment. The 

freely available Arctic DEM can be of great use to extract geomorphometric characteristics of 

these features. On the other hand, these areas are more difficult to monitor with optical 

satellite sensors due to their high latitude and prolonged polar nights (Myers-Smith et al., 

2020). In conclusion, different factors need to be taken into consideration for the creation rock 

glacier inventories in different environments. As a result, it is recommended to test the 

presented method on rock glaciers from other different periglacial regions and to further 



 

develop it in order to create an automatic rock glacier mapping technique that is equally 

effective in any parts of the world. 

8.7.4. Classification of other landforms 

A CNN suitable for rock glacier detection may be eligible to classify other landforms. 

Spectral and geomorphometric information have been successfully used to map landforms 

such as debris-flows (Chen et al., 2020), slope failures (Ghorbanzadeh et al., 2019), 

thermokarst (Huang et al., 2018) or fluvial landforms (Carbonneau et al., 2020). The ultimate 

goal would be to train the CNN to detect as many landform types as possible is order to create 

fully classified geomorphological maps of periglacial scenes. 

Apart from landform inventory creation, deep-learning has proven to be suitable for mapping 

areas with landslides. Recent studies have shown that neural networks are suitable for the 

detection of high-risk areas (Wang et al., 2019, Prakash et al., 2021).  A potential future 

development could be applied to train the CNN with similar geomorphometric characteristics 

and surface velocities to detect signs of unstable ground. In this way, the method will be 

useful not only for geological studies but also for risk assessment related to geo-hazards. 

8.3.1. Differentiation between active and inactive landforms 

Although both active and inactive rock glaciers can contain enough ice to act as a freshwater 

storage, faster deforming landforms are known to contain more amount of ice and therefore 

have a higher hydrological significance. As a future development, velocity information can be 

added to the input of the CNN and different classes can be used for active and inactive rock 

glaciers. Velocity rates extracted with InSAR or feature tracking can be combined together 

with other geomorphometric information related to landform kinematics and used as training 

data. A method that is able to classify active and inactive rock glaciers separately will be 

useful to set up an inventory based on ice content for freshwater management and strategic 

planning. 

8.3.2. Assumptions for ice-content 

As mentioned in chapter 4, the estimation of ice or water content of rock glaciers is extremely 

challenging because of inaccessibility. Assumptions have been made by some studies by 

using field surveys (Boaga et al., 2020, Guillemot et al., 2020, Halla et al., 2021). However, if 



 

a connection between ice-content and other characteristics such as velocity, topography or 

morphometry is assumed, it may be possible to estimate ice-content by using solely remote 

sensing data. Surface velocity, elevation, slope, roughness, curvature and several other 

information can be derived from satellite imagery and by using these as training data, a CNN 

would be suitable to automatically classify landforms into groups based on assumed ice-

content (e. g. inactivity = low ice-content, low velocity + gentler topography = medium ice-

content, high velocity + flow-like morphometry = high ice-content). Nevertheless, further 

research is needed to investigate the possibility of ice-content estimation with satellite data 

and deep-learning. 

 

Figure 33: Active rock glaciers on the 2020 Pleiades orthomosaic (top) and satellite-derived velocity rates 
(bottom). Connection between geomorphometry (flow-like morphology, light coloured frontal slope, etc.) 

and velocity could be used to estimate ice-content. 

 



 

9. Conclusion 

The investigation showed that CNN together with OBIA is able to automatically detect rock 

glaciers and can be a useful tool when creating inventories. Two classification methods, 

CNN_noCurv and CNN_wCurv were developed and trained on Pleiades data of the first study 

area, the La Laguna catchment. The workflow further developed the method set out by 

Robson et al. (2020). The most suitable convolutional neural network (CNN) architecture was 

chosen on a trial and error basis which resulted in a probability heatmap of rock glaciers. 

Since the heatmap produced still contained false positives and negatives, object-based image 

analysis was performed to refine and reshape rock glacier outlines. The method was then 

applied to another set of Pleiades data showing the southern part of the Estero Derecho 

catchment and afterwards to SPOT 7 imagery that covered the northern side of the region. 

The goal was to investigate the method’s transferability between different areas and sensor 

types. The results were then compared to a manually corrected rock glacier inventory. 

Using only multispectral bands, DEM and slope layers, CNN_noCurv managed to achieve 

good classification accuracies, mapping 6.82 km
2
 of validation rock glaciers out of a total 

5.39 km
2
, reaching a total accuracy of 73.54%. It was successfully loaded and applied on both 

the other Pleiades imagery and the SPOT 7 imagery. On those, it reached similar total 

accuracies, respectively 74.89 % and 73.15 %. Its mean user and producer accuracy was 

72.83% and 78.4%. The method was then repeated with the inclusion of planform and 

curvature layers which were extracted from the DEM. The results showed that CNN_wCurv 

outperformed the first classification when it was applied on Pleiades data with all total 

accuracy rates higher than 94% and similar user and producer accuracies for both areas. On 

the other hand, the classification produced extremely bad results when transferred to SPOT 7 

data. The reason might be differences in spatial resolution between Pleiades and SPOT 7 

imagery and the excessive complexity of the CNN model the uses an eight layer-input. 

User accuracies were in general higher than producer accuracies indicating that while the 

areas classified as rock glaciers were indeed rock glaciers, other rock glacier areas were 

missed by the classifications. A post-classification inspection showed that the majority of 

false negatives were landforms smaller than 0.05 km
2
 or steep frontal slopes of rock glaciers 

that the classifications tended to exclude. False positives were mostly talus slopes, debris 

flows, fluvial deposits, rock avalanches with similar texture and morphology to rock glaciers. 



 

It was also found that the CNN classifications managed to detect small rock glaciers that were 

not included in the manually created reference inventory.   

In conclusion, the method presented in the thesis was found to be suitable to automatically 

detect large numbers of rock glaciers. It is time effective and can be run as a one workflow. 

Besides the high accuracy values comparable with other methods, the results also showed that 

the classification is able to find rock glaciers that have been missed by a human operator and 

therefore could even outperform the manual method. It was also found that the relationship 

between accuracy and mean surface velocity was weak and the methods were able to detect 

not only active but inactive rock glaciers as well. The comparison of CNN_noCurv and 

CNN_wCurv showed that adding curvature layers to the method can significantly improve the 

classification when applied on data that the CNN model was trained on. However, it is 

ineffective with data from another sensor. When using only the multispectral bands, the DEM 

and slope layers, the method produced less accurate results but became well transferable 

between different imageries. Therefore, when working on a smaller scale with imagery from 

one specific sensor, CNN_wCurv will likely be more effective, while when working with data 

of different origins and spatial resolution, it is more advised to use the CNN_noCurv method. 

It is recommended to use CNN as an auxiliary tool in rock glacier mapping and to conduct 

research on how to further develop the workflow to reach a more accurate and transferable 

method. The method should be tested in a wider range of periglacial regions. The thesis 

focused on rock glaciers in two study areas in the semiarid Andes. These environments are 

characterized by dry climate, and lack of vegetation. It is crucial therefore to test the method 

on rock glaciers of different other environments such as the Himalayas, the Rockies or 

Svalbard and Greenland in order to develop a universally useful rock glacier mapping tool. In 

addition, the method can be used to support classification of active and inactive landforms or 

to estimate ice-content of rock glaciers.   
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11. Appendices 

11.3. Scatter plots showing aspect and mapping accuracy  

 

 

  



 

11.4. Scatter plots showing compactness and mapping accuracy  

 

 

 

 

 


