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Abstract

This thesis characterises and quantifies the two-dimensional mesoscale ionospheric flows
surrounding a long-lasting auroral arc in the polar cap during a five-hour interval on
14-15 December 2014. The polar cap arc was observed around 80° magnetic latitude in
the northern hemisphere dusk-sector. The interplanetary magnetic field (IMF) under-
went multiple turnings during the event, but was dominated by positive By and Bz
components. It allows for investigations of the ionospheric convection during variable
solar wind.

A regional model of the F-region ionospheric convection surrounding the arc is
developed through assimilation of densely distributed plasma drift observations from
ground-based SuperDARN radars and DMSP spacecraft. No external solar wind or
geomagnetic conditions are required as inputs. The model reproduces high altitude
ionospheric convection in two dimensions and on small spatial scales of 100 km. The
resulting mesoscale convection pattern often showed turbulent and structured flows,
with up to four adjacent channels of flow in alternating zonal directions. The meso-
scale flows frequently deviated from the global average convection patterns typically
presented in textbooks.

The regional model was compared to optical data and particle measurements. A
channel of anti-sunward flow was consistently located on the edge of the polar cap arc.
Towards the end of the observation period, a channel of reversed flow was identified at
15-19 magnetic local time. Although this is far from magnetic noon, the reversed flow
channel resembles characteristics that are similar to events that have been reported in
the literature for the cusp region. It opens up the intriguing question of whether all
such events are generated on the dayside, or if some of the reversed flow events can
map to the magnetospheric flanks or further into the nightside.

An abrupt northward IMF turning during the observation period allowed the iono-
spheric response to be quantified. From the time evolution of the mesoscale flow pat-
terns produced by the regional model, the ionospheric response time was estimated. It
took 15 2 minutes from the IMF turning northward near the bow shock before reconfig-
uration became visible in the convection in the polar ionosphere. Another 13 2 minutes
pass before the northward IMF reconfiguration is complete and a lobe cell is fully de-
veloped.

These results are a contribution to the investigation of convection in the dark iono-
sphere. Our new modelling technique offers better spatial resolution than empirical
statistical models, without their inherent ambiguities of solar wind input.
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Chapter 1

Introduction

Background and motivation

A fundamental feature of Earth's interaction with space is ionospheric convection, i.e.
large-scale circulation in the upper polar atmosphere. The ionosphere is the portion of
the upper atmosphere that is populated by low-density ionised gasses called a plasma.
The ionospheric convection is commonly seen on a large scakbQ0 km), where it

is observed as laminar ows in circulation patterns that show strong dependence on
external solar wind driving. On the other hand, observations of convection on mesoscale
( 30 500 km; Gabrielse et al, 2018) often reveal highly structured and turbulent
ionospheric ows. The detailed characteristics, physical generation mechanisms, and
overall implications of mesoscale convection events remain to be resolved.

Meso and small-scale processes are important for the deposition of energy and mo-
mentum from the polar ionosphere. Enhanced ows may cause localised heating through
collisions between the ionised and neutral constituents. Increased upwelling of the
heated gas leads to increased drag for spacecraft in low Earth polar orbiskr et al.,
2004). lonospheric convection also plays a major role in the transport and structuring
of ionospheric plasma. Flow shears associated with mesoscale convection have been re-
lated to structuring and production of irregularities in ionospheric plasma (e.gOksavik
et al.,, 2011). Plasma irregularities can disrupt radio signals used for communication
and navigation, including Global navigation satellite system (GNSS) signals. Therefore,
understanding the characteristics and behaviour of mesoscale convection is a key step
in developing robust space weather applications. By studying mesoscale convection, we
also gain deeper insight into the physical mechanisms driving the large-scale processes.

A wide range of auroral forms have been linked to mesoscale ionospheric convection
(e.g. Moen et al, 2008;Lyons et al, 2016), including polar cap auroral arcs. His-
torically, a large void of ground-based observations from within the central polar cap
has constrained the quanti cation of polar cap arcs primarily to space-based imaging,
which has often lead to erroneous conclusions of the origin and behaviour of these arcs
(Hosokawa et al.2020).

High-resolution observations have in recent years become increasingly available in
the central polar cap through expansion of radar networks such as the Super Dual
Auroral Radar Network (SuperDARN; Nishitani et al., 2019) and the deployment of
incoherent scatter radars, ground-based imagers, and a eet of new spacecraft in low
polar orbits. As a result, the spatio-temporal data coverage in some regions of the high-
latitude ionosphere now allows for detailed multi-instrument regional investigations that
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were impossible just a few years ago.

Simultaneously, there is an increasing need for computational tools to process and
analyse these huge and complex data sets. A renewed initiative for the development
of regional modelling techniques using data assimilation has emerged (&mm et al.,
2010;Laundal et al, 2021). Regional analysis is currently a key topic of interest in the
Dynamics of the Asymmetric Geospace (DAG) group at the Birkeland Centre for Space
Science (BCSS), with multiple projects focusing on regional analysis of various processes
in the ionosphere. The current thesis is a key contribution within that framework.

Earlier studies of mesoscale convection have most commonly been focusing on areas
and topics close to magnetic noon or magnetic midnight in the ionosphere (e@ab-
rielse et al, 2018). The current thesis focuses on some characteristics of mesoscale
convection in the central polar cap during a period of good data coverage from multiple
instrumentations both on the ground and in space.

Thesis objectives

The main objective of this thesis is to characterise and quantify the two-dimensional
mesoscale ionospheric ows surrounding auroral arcs in the high latitude central po-
lar cap. It includes a regional multi-instrument event study, with the following sub-
objectives:

Develop a technique for assimilative regional modelling of ionospheric convection for
the high-latitude central polar cap. This model should resolve mesoscale convection
features.

Place observed mesoscale convection features into a global context.

Determine and quantify the relationship between mesoscale convection and polar
auroral arcs.

Characterise how the mesoscale convection responds to variations in the external
solar wind driver.

Determine the response and recon guration time of the mesoscale convection during
a northward turning of the interplanetary magnetic eld.

Methodology

The research questions will be addressed through literature review, multi-instrument
analysis, and assimilative modelling. Data from northern hemisphere ground-based
radars and imagers will be combined with space-based observations to obtain a com-
prehensive picture of the convection in the local region surrounding a long-lived polar
cap auroral arc on 14-15 December 2014 at 21:00-02:00 UT. Simultaneous solar wind
observations will also be presented, and the Spherical Elementary Current Systems
(SECS; Amm, 1997) technique will be utilised to obtain a regional model of the iono-
spheric convection.

Outline

The thesis is structured in the following way. Chapter 2 gives an introduction to some
key concepts in space physics and presents an overview of the current understanding of



ionospheric convection at the mesoscale and auroral features in the polar cap. Chapter 3
describes the instrumentation that was used to collect the observational data, and
Chapter 4 details the principles and method of the modelling technique. Chapter 5
presents the ndings of this thesis. Chapter 6 is a discussion, followed by the conclusions
in Chapter 7. Some suggestions for future work are outlined in Chapter 8. Appendix A
presents some relevant coordinate frames.
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Chapter 2

Theory

This chapter introduces the three main regions in the coupled solar wind-magnetosphere-
ionosphere system (Sections 2.1, 2.2 and 2.3). The connection between these regions
is explained with a focus on how the solar wind interacts with the magnetosphere-
ionosphere system (Sections 2.4 and 2.5) leading to the ionospheric signatures studied
in this thesis; ionospheric convection and auroras (Sections 2.6 and 2.7). The chapter
ends with a summary of the current knowledge of ionospheric convection in relation to
auroral forms (Section 2.8).

2.1 The Sun and the solar wind

The Sun in uences the magnetosphere-ionosphere system through the solar wind and
radiation. The solar plasma is continuously owing out from the outer layer of the Sun's
atmosphere, the corona, populating the interplanetary space with charged particles.
This near radial out ow of particles is the solar wind. The solar wind plasma is a gas of
negatively charged electrons and positively charged ions - mainly protons*(}{ but also
about 4% alpha particles (H&") and trace amounts of heavier ionsWurz, 2005). The
number of ions and electrons are the same and the net charge of the solar wind is zero.
Within the plasma, the high conductivity keeps the charge fairly uniformly distributed
and the solar wind plasma is said to be quasi-neutral (on spatial scales larger than
10 meters, which is the Debye length in the solar windfonks and Langmuir, 1929;
Thorne and Blandford, 2017).

The average solar wind speed is about 400 km/s, but it is highly variable depending
on many factors. It can normally range from “slow' speeds of 300 km/s to as high as
800 km/s, with some recorded speeds being almost 1850 kmls ét al., 2016; Skoug
et al., 2004). The Earth orbits the Sun at an average distance of 1 AU 1.5 10° km.
Light from the Sun reaches the Earth in only 8 minutes, while the solar wind will reach
the Earth's magnetosphere in 25 days depending on its speed. The solar wind plasma
is not very dense, with typical densities of 310 particles/cm® (Ma et al., 2020), but this
also varies. The solar wind carries with it a magnetic eld, dubbed the interplanetary
magnetic eld (IMF), which is discussed in section 2.4.

Coronal holes, sunspots and explosive activity on the surface of the Sun, like coronal
mass ejections (CME), a ect solar wind speeds and densities (and the IMF), which in
turn a ects the Earth's magnetosphere-ionosphere system. The occurrence of these
phenomena varies with the 11-year solar cycl&i(et al., 2016).
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2.1.1 Frozen-in magnetic eld

Electric and magnetic elds of the solar wind plasma are often observed in reference
frames in which the plasma is moving with a bulk speed. For example, a reference
frame xed to the Earth or a satellite in orbit. E and B are the electric and magnetic
elds observed from such a reference framg, The electric and magnetic elds observed
in the reference frame that is moving with the plasmaS® can then be written as:

E°=E+v B (2.1)

v E
c?

from transformation between the two reference frames. Relativistic e ects on the elds
are ignored asjvj c, wherec = 3:0 10° m/s is the speed of light. With this
approximation the second term in Equation (2.2) can be neglected, which means that
the magnetic eld is not frame-dependent, and remains the same when observed in the
di erent reference frames:B% = B. This is, however, not true for the electric eld,

as thev B term in Equation (2.1) is of the same order of magnitude a&, and the
electric eld is frame-dependent.

When the space plasmas can be approximated to be collisionless, the only forces
acting on the plasma patrticles are electromagnetic forces (gravitational forces are usu-
ally neglected). If no other forces are acting to stop the plasma particles (charges) from
moving, the plasma has in nite conductivity. Any possible charge-build up occurs on
spatial scales smaller than the Debye length and is quickly cancelled out. Therefore
no large-scale electric elds are present in the plasma reference frant”= 0. From
Equation (2.1) the electric eld observed from reference fram8 can then be written
as:

B°= B +

2.2)

E= v B (2.3)

This also leads to the magnetic eld and the plasma being bound together; the
magnetic eld is said to befrozen-in (Alhen, 1942). The magnetic eld must follow
the movement of the plasma perpendicular to the magnetic eld lines. One can also
consider it as the plasma being stuck to the magnetic eld lines (gyrating around them
due to magnetic forces), not being able to move between the eld lines (di use). The
frozen-in assumption usually holds in the solar wind, the magnetosphere, and even in
the upper ionosphere (see Section 2.3). It does, however, break down in regions where
magnetic reconnection occurs (see Section 2.4) and the lower ionosphere where collisions
occur (see Section 2.6). For further information, sé@aumjohann and Treumann(2012).

2.2 The magnetosphere

The Earth is surrounded by a protective magnetosphere, a region where the geomagnetic
eld has an inuence on charged particles. The inuence of the geomagnetic eld
extends to around 15 Earth radii (R 6371 km) on the Sun-facing side and some
hundred Earth radii on the side facing away from the SunlL@undal and Richmond
2017). The magnetosphere shields the Earth by de ecting most solar particles away.
The geomagnetic eld is a superposition of elds from many sources. The most
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signi cant contribution comes from generation mechanisms in the Earth's outer core,
often referred to as the main eld. The geomagnetic eld is not static, as the “stable’
sources can move around slowly, and external elds can induce currents at Earth that
act as additional time-varying sources of magnetic elds@lsen et al, 2010). Modelling

the total geomagnetic eld is useful not only to separate the di erent sources but also
to investigate space weather events. Making these models is, however, not an easy
task, and various main eld models exist Laundal and Richmond 2017). One of these
magnetic eld models is introduced in Appendix A.

Despite the variation in the geomagnetic eld, the large-scale features of the mag-
netosphere are generally as depicted in the schematic in Figure 2.1. On the Earth's
surface, magnetised material in the crust, ocean currents, and other local sources make
the magnetic eld a complex, multipole one Qlsen et al, 2010) (not shown in the
schematic). Moving some distance away from the Earth's surface, the geomagnetic
eld is approximately dipolar, as depicted in the gure. The magnetic eld points out
from the southern hemisphere and into the northern hemisphere (black arrow lines),
and the magnetic eld strength, the magnitude, falls o with 1=r® with the distance
r from the Earth's centre. At some distance from the Earth, the e ects of the solar
wind can be seen, as its dynamic pressure distorts the dipolar eld geometry by com-
pressing the dayside eld (on the left) and pulling the nightside eld (on the right) into
a tail-like shape, the magnetotail Ness 1965). A cleft near the magnetic poles, the
cusp, separates the dayside and nightside magnetosphere. The magnetospheric lobes
are located on the tailward side of the cusp on either side of the central part of the
magnetotail.

The magnetosphere is an obstacle to the supersonic solar wind ow, and the solar
wind is decelerated to subsonic speeds at a region upstream of the magnetosphere called
the bow shock (the bold dashed line to the left in Figure 2.1). The bow shock location
varies but is on average situated at 13 Re in the equatorial plane Fair eld , 1971).
The magnetopause (the narrow dashed line in Figure 2.1) is the outer boundary of

Figure 2.1: Schematic of the Earth's magnetosphere. The Sun is to the left in the gure,
with the large arrow indicating the solar wind ow direction. The bold dashed line depicts
the bow shock location upstream of the magnetopause (thin, dashed line). The magnetic
eld lines in the magnetosphere are solid arrow lines indicating their direction (adapted
from Borovsky, 2017).
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the magnetosphere, separating eld lines connected to the Earth from eld lines in the
IMF. The region between the bow shock and the magnetopause, where the deceleration
has altered the plasma properties and IMF con guration, is called the magnetosheath
(Borovsky and Valdivig 2018).

A large number of dierent plasma populations exist within the magnetosphere.
Magnetic elds trap plasma, and di erent magnetospheric regions can be identi ed by
investigating the plasma populations. Measuring properties like temperature, composi-
tion and density of plasma can be used to identify the di erent regions of the magneto-
sphere and reveal information about energy transfer in the solar wind-magnetosphere-
ionosphere (SW-M-I) system.

The major sources of magnetospheric plasma are the ionosphere and the solar wind
(Borovsky and Valdivig 2018). Interaction with the solar wind is also the main driver
of convection and electrical current systems within the magnetosphere (and in the
ionosphere). This is further described in Sections 2.4-2.6.

2.3 The ionosphere

The ionosphere is a weakly ionised region in the Earth's upper atmosphere. Under-
standing the production and loss of plasma in the ionosphere and how it depends on
altitude is crucial for understanding ionospheric dynamics. It is also essential for some
ground-based observational methods as the ionospheric electron density a ects radio
signals (see Section 3.2). The neutral atmosphere and the ionosphere are interconnec-
ted via collisions and chemical reactions. To understand the origin and behaviour of
the ionospheric plasma, one has to understand the neutral atmosphere.

Figure 2.2a shows average pressure and temperature pro les of the neutral atmo-
sphere (from modelsiente and bsz, 2020). The atmospheric pressure pro le (black
line) is decreasing exponentially with altitude. In the lower atmosphere, where the
density is high, the collisions between the neutral gas particles keep them evenly mixed.
Moving upwards, the density and consequently the collisions decrease. The mixing of
species becomes less even, and the number density of heavier gas particles declines with
altitude. This behaviour is shown in Figure 2.2b, where the number density of heavier
species like Ar, Q and N, fall o more rapidly than the lighter species H, He and O
(Cottin et al., 2017).

In contrast to the pressure and number density pro les, the atmospheric temperature
pro le uctuates with altitude. The pro le shown in Figure 2.2a (blue line) has several
regions of local minima and maxima. The uctuations in temperature are due to
variations in the absorption of sunlight at di erent altitudes, which depends on the
atmosphere's chemical composition. For instance, the number density of ozong) @
essential for where the solar radiation deposits its energy. The neutral atmosphere is
divided into layers based on this temperature pro le Rees 1989).

The ionosphere is the part of the upper atmosphere where we see plasmaq km
altitude; Richmond, 2007). Figure 2.3 shows the ionospheric density for di erent times
of the day and solar activity (typical mid-latitude pro les; Richmond, 2007). The
ionosphere is divided into layers depending on the density of free electrons, mhe
ionospheric layers are traditionally set to the approximate altitude ranges 60 90 km
(D-region), 90 150 km (E-region) and& 150 km (F-region) centred around regions of
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@)

(b)

Figure 2.2: (a) Atmospheric pressure (black) and temperature (blue) pro les based on mod-
els (adapted from Lente and bsz, 2020). (b) The average atmospheric number density of
neutral species in the upper atmosphere (adapted fronCottin et al., 2017).

local maxima in electron density Kelley, 2009).

The primary production mechanism for the ionospheric plasma is solar radiation
that ionises particles in the atmosphere. Earth's rotation around its axis and the
orbit around the Sun a ects which part of the atmosphere is sunlit. In addition, the
intensity of the solar radiation varies with distance from the Sun and solar activity. The
height and density of the ionosphere (and neutral atmosphere) therefore varies diurnally,
seasonally and with the solar cyclelL{u et al., 2011). In Figure 2.3 the dependence on
solar activity is seen in the di erence between the solar minimum (solid) and solar
maximum (dashed) curves. Noon and midnight di erences are indicated, showing no
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Figure 2.3: Typical electron density-altitude pro les for the mid-latitude ionosphere at
September equinox with D, E and F-regions indicated. lonospheric pro les for solar max-
imum and minimum are distinguished by dashed and solid lines, respectively. Noon and
midnight di erences in electron densities are also shown (fromRichmond, 2007).

D-region and a signi cantly lower electron density at low altitudes (E and lower F-
region) when the atmosphere is not sunlit.

The other major production mechanism of ionospheric plasma is particle precipita-
tion. Figure 2.4 shows ionisation rates for di erent production mechanisms at di erent
altitudes. Solar radiation is shown in orange. Particles deposit their energy di er-
ently from photon radiation, and the altitude of maximum energy deposited is highly
dependent on the energy of the precipitating particles. In general, more energetic
particles deposit maximum ionisation at lower altitudes Mironova et al., 2015). The
ionisation due to particle precipitation depends on the solar activity as the solar wind is
a major source of ionising particle precipitation, and magnetospheric responses to solar
activity cause plasma from the magnetosphere to precipitatéS{nnhuber et al, 2012;
Mironova et al., 2015). These contributions are shown in green and pink, respectively.
Cosmic rays are a form of very energetic particle precipitation and is shown in grey.
Cosmic rays mainly create D-region and lower altitude plasma. High energy particles
originating from the Sun (solar protons, blue) also cause ionisation. Solar protons are
very dependent on solar activity Buchvarova et al, 2003;Mironova et al., 2015).

Loss of plasma happens through chemical processes and collisions that lead to the
recombination of ions and electrons. The loss rate is complex and depends on the
physical and chemical properties of the ionosphere and atmosphere. The type of ions
present in the plasma is important for the recombination rate, as dissociative recom-
bination (a loss process for molecular ions) is more rapid than recombination processes
for monoatomic ions. The recombination processes are also dependent on the neutral
densities, as interactions between monoatomic ions and neutrals through charge ex-
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