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Abstract 

Background:  Gestational age is a useful proxy for assessing developmental maturity, but correct estimation of 
gestational age is difficult using clinical measures. DNA methylation at birth has proven to be an accurate predictor 
of gestational age. Previous predictors of epigenetic gestational age were based on DNA methylation data from the 
Illumina HumanMethylation 27 K or 450 K array, which have subsequently been replaced by the Illumina Methylatio-
nEPIC 850 K array (EPIC). Our aims here were to build an epigenetic gestational age clock specific for the EPIC array 
and to evaluate its precision and accuracy using the embryo transfer date of newborns from the largest EPIC-derived 
dataset to date on assisted reproductive technologies (ART).

Methods:  We built an epigenetic gestational age clock using Lasso regression trained on 755 randomly selected 
non-ART newborns from the Norwegian Study of Assisted Reproductive Technologies (START)—a substudy of the 
Norwegian Mother, Father, and Child Cohort Study (MoBa). For the ART-conceived newborns, the START dataset had 
detailed information on the embryo transfer date and the specific ART procedure used for conception. The predicted 
gestational age was compared to clinically estimated gestational age in 200 non-ART and 838 ART newborns using 
MM-type robust regression. The performance of the clock was compared to previously published gestational age 
clocks in an independent replication sample of 148 newborns from the Prediction and Prevention of Preeclampsia 
and Intrauterine Growth Restrictions (PREDO) study—a prospective pregnancy cohort of Finnish women.

Results:  Our new epigenetic gestational age clock showed higher precision and accuracy in predicting gestational 
age than previous gestational age clocks (R2 = 0.724, median absolute deviation (MAD) = 3.14 days). Restricting the 
analysis to CpGs shared between 450 K and EPIC did not reduce the precision of the clock. Furthermore, validating the 
clock on ART newborns with known embryo transfer date confirmed that DNA methylation is an accurate predictor of 
gestational age (R2 = 0.767, MAD = 3.7 days).

Conclusions:  We present the first EPIC-based predictor of gestational age and demonstrate its robustness and preci-
sion in ART and non-ART newborns. As more datasets are being generated on the EPIC platform, this clock will be 
valuable in studies using gestational age to assess neonatal development.
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Background
Accurate determination of gestational age is important 
for assessing fetal development and maturity. This is 
necessary for investigating the impact of prenatal fac-
tors on pregnancy outcomes and any deviation from nor-
mal fetal development [1, 2]. Although gestational age 
at birth exhibits some normal variation, both preterm 
and post-term births are associated with an increased 
risk of adverse perinatal outcomes and health outcomes 
later in life [3–7]. The effects of gestational age at birth 
on health outcomes may be linked to epigenetic patterns 
established in utero or early in the postnatal period [8, 
9]. Changes in these patterns may interfere with critical 
developmental processes [10–12] and trigger phenotypic 
changes that persist throughout life. This may be even 
more pertinent to children conceived by assisted repro-
ductive technologies (ART), because ART procedures 
coincide with the extensive epigenetic reprogramming in 
the early embryo [13, 14].

DNA methylation (DNAm) is the most studied epige-
netic mark in humans. It has, in recent years, been used 
to build gestational age clocks that can predict gesta-
tional age [15–18]. Earlier clocks were built using DNAm 
data from the Illumina HumanMethylation27 (27  K) or 
the Illumina HumanMethylation450 (450  K) BeadChip 
arrays, both of which have subsequently been replaced 
by the Illumina MethylationEPIC BeadChip (EPIC). 
EPIC has nearly twice (865,859 CpGs) as many CpGs as 
450 K, and a stronger focus on regulatory elements [19]. 
Although EPIC includes over 90% of the probes on 450 K 
[19], six to eight of the CpGs included in existing gesta-
tional age clocks are not present on EPIC. This discrep-
ancy may affect the precision of the published clocks 
in predicting gestational age when applied to DNAm 
data generated on EPIC [20]. Therefore, it is essential to 
develop a new gestational age clock that is updated and 
optimized for EPIC. Equally important is to elucidate 
whether the additional CpGs on EPIC enhance gesta-
tional age prediction.

A challenge in developing accurate gestational age 
clocks is the lack of information on the exact gestational 
age of the newborns. The standard approaches for esti-
mating gestational age, based on ultrasound measure-
ments or the last menstrual period (LMP), have thus 
far been used for training and testing epigenetic clocks. 
Ultrasound and LMP are widely used in clinical settings 
and have their individual advantages and limitations. 
While LMP can be informative, it suffers from large 

variability, in part due to varying length of the follicular 
phase. Ultrasound is much more precise but still depends 
on the size of the fetus at the time of ultrasound [1, 21, 
22]. On the other hand, for children conceived by ART, 
the exact time when the embryo is transferred back to 
the uterus is known. Although there may be some differ-
ences in the days before fertilization and embryo transfer, 
and the developmental speed may differ in the in  vitro 
setting, the embryo transfer date (ETD) provides a more 
direct estimate of gestational age [23]. Therefore, DNAm 
data from ART births is particularly advantageous for 
developing and validating gestational age clocks. To our 
knowledge, no gestational age clock has yet been devel-
oped using ETD, although its use has been called for pre-
viously [16].

In addition to gestational age prediction, gestational 
age clocks can be used to estimate gestational age accel-
eration (GAA), which is defined as the discrepancy 
between gestational age predicted from DNAm data 
and gestational age derived from clinical measurements 
[16, 24]. Investigating GAA is important because of its 
reported association with several measures related to 
birth outcomes, such as the cerebroplacental ratio (a 
robust indicator of prenatal stress [25]), higher mater-
nal body mass index, and larger birth size [26]. Although 
children conceived by ART have a higher risk of sponta-
neous preterm birth [27] and other adverse perinatal out-
comes [28–30], only one small study has explored GAA 
in ART children [31].

To address these knowledge gaps, we developed a new 
gestational age clock based on EPIC-derived DNAm 
data from newborns in the Norwegian Study of Assisted 
Reproductive Technologies (START), which is a sub-
study within the Norwegian Mother, Father and Child 
Cohort Study (MoBa) [32]. We validated this clock in 
test sets of ART and non-ART newborns in START, and 
also in an external dataset from the Finnish Prediction 
and Prevention of Preeclampsia and Intrauterine Growth 
Restriction (PREDO) study [33], which was used as a rep-
lication cohort. We also used the new EPIC-based clock 
to explore differences in GAA between ART and non-
ART newborns.

Results
The EPIC gestational age clock
Table 1 and Fig. 1 provide overviews of the datasets used 
in this study. We fit a least absolute shrinkage and selec-
tion operator (Lasso) regression on DNAm data from 755 
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non-ART newborns in START. 176 CpGs were selected 
for being predictive of gestational age. Individual CpG 
sites and their corresponding coefficients are provided in 
Additional file 4.

We validated the resulting predictor, referred to as 
“EPIC GA clock” hereafter, in a test set of 200 non-ART 
newborns from START. The EPIC GA clock showed an 
R2 of 0.713 and a median absolute deviation (MAD) of 
3.59 days (Fig. 2, Table 2).

Comparison with previously published gestational age 
clocks in an external replication cohort (PREDO)
Using an external dataset of EPIC-derived DNAm data 
on 148 non-ART newborns from the PREDO study 
[33], we compared the performance of our EPIC GA 
clock with two published epigenetic gestational age 
clocks that were built on DNAm data from the previ-
ous methylation arrays: the Bohlin clock [15], based on 
450  K, and the Knight clock [16], based on 27  K and 

Table 1  Characteristics of the datasets used to evaluate the EPIC GA clock

GA gestational age, US ultrasound, ETD embryo transfer date

Dataset N GA range (US, days) Median GA (US, 
days)

GA range (ETD, days) Median GA (ETD, 
days)

Sex ratio 
(% male)

START non-ART​

 Training set 755 216–299 281.1 – – 49

 Test set 200 228–300 281.3 – – 46

START ART​

 Total 838 218–301 280.4 214–302 280.4 53

 Training set 674 228–300 280.3 227–302 280.3 53

 Test set 164 218–301 280.8 214–298 280.8 54

PREDO non-ART​

 Test set 148 227–296 278.9 – – 51

Train

START
Newborns
(n = 1793)

non-ART
(n = 955)

ART
(n = 838)

Training set
(n = 755)

Test set
(n = 200)

PREDO
(n = 148)

EPIC GA clock
176 CpGs selected

TestTest

Bohlin clock

Knight clockTest
Test

450K/EPIC overlap clock
173 CpGs selected

ETD-based clock
156 CpGs selected

Training set
(n = 674)

Train

Test

Test

Test set
(n = 164)

Test

Fig. 1  Analysis flow. START newborns were grouped into ART and non-ART, and each group was randomly assigned to a training and test set. 
The non-ART training set was used to develop the EPIC GA clock and the 450 K/EPIC overlap clock. The ART training set was used to develop the 
ETD-based clock. All three clocks were tested in the non-ART test set. The EPIC GA clock, the Bohlin clock, and the Knight clock were also tested in 
the PREDO test set. The datasets are marked in green, and the clocks are marked in blue. START-derived datasets and clocks are marked with solid 
lines. External datasets and clocks are marked with dashed lines
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450 K. Eight CpGs in the Bohlin clock and six CpGs in 
the Knight clock were absent from the PREDO dataset 
and were thus excluded from the analysis. Compared 
to the Bohlin and Knight clocks, our EPIC GA clock 
showed higher precision and accuracy in predicting 
gestational age (Fig.  3, Table  3). The difference in R2 
between the Bohlin clock and the EPIC GA clock was 
-0.062 (95% confidence interval (CI): −0.117, −0.014), 
and the difference in MAD was 3.27  days (95% CI: 
1.87, 3.92). The corresponding statistics for the Knight 
clock versus our EPIC GA clock were -0.247 (95% CI: 
−0.342, −0.161) for R2 and 1.13  days (95% CI: 0.196, 
2.40) for MAD.

Assessing the impact of CpGs unique to EPIC 
on the prediction of gestational age
Of the 176 CpGs selected in the EPIC GA clock, 89 
were found exclusively on EPIC. To assess whether 
the additional CpGs unique to EPIC affect the predic-
tion parameters R2 and MAD, we built a separate clock 
using the same training set but this time only including 
the 397,473 probes that are present on both 450  K and 
EPIC. We compared the performance of this new “450 K/
EPIC overlap clock” (173 CpGs) to the EPIC GA clock 
(Fig. 4; Table 2) and found no significant difference in R2 
(−0.0001; 95% CI: −0.021, 0.018) or MAD (0.162; 95% 
CI: −0.375, 0.794) (Table 3). In terms of CpG overlap, 81 

Fig. 2  Using the EPIC GA clock to predict gestational age. Panel a shows the scatter plot of predicted gestational age against gestational age 
estimated by ultrasound in the training set (n = 755). Panel b shows the corresponding predicted gestational age in the test set (n = 200). The 
red line indicates a perfect correlation between DNAm-based gestational age and ultrasound-based gestational age. The black line indicates the 
MM-type robust regression of ultrasound-based gestational age on DNAm-based gestational age

Table 2  Results of gestational age prediction in START and PREDO

*See also Table 1 and Fig. 1 for further details on these datasets

GA gestational age, SE standard error, MAD median absolute deviation, ETD embryo transfer date

Dataset*
(count)

GA estimation method Clock R2 SE MAD

START non-ART (n = 200) Ultrasound EPIC GA clock 0.713 5.52 3.59

Ultrasound 450 K/EPIC overlap clock 0.691 5.81 3.75

Ultrasound ETD-based clock 0.668 6.08 4.24

PREDO non-ART (n = 148) Ultrasound EPIC GA clock 0.724 5.08 3.42

Ultrasound Bohlin clock 0.610 6.06 6.69

Ultrasound Knight clock 0.406 6.99 4.55

START ART (n = 838) Ultrasound EPIC GA clock 0.767 5.32 3.80

ETD EPIC GA clock 0.767 5.30 3.70
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Fig. 3  Prediction of gestational age in the PREDO non-ART dataset (n = 148). Panel a shows the scatter plot of predicted gestational age against 
gestational age estimated by ultrasound using the EPIC GA clock. The corresponding predictions using the Bohlin clock and the Knight clock are 
shown in panel b and c, respectively. The red line indicates a perfect correlation between DNAm-based gestational age and ultrasound-based 
gestational age. The black line indicates the MM-type robust regression of ultrasound-based gestational age on DNAm-based gestational age

Table 3  Bootstrapped differences in R2, SE, and MAD between different clocks and GA estimation methods

*See Table 1 and Fig. 1 for further details on these datasets

GA gestational age, SE standard error, MAD median absolute deviation, ETD embryo transfer date

Dataset * (count) Comparison between clocks R2 (95% CI) SE (95% CI) MAD (95% CI)

START​
non-ART (n = 200)

450 K/EPIC overlap – EPIC GA −0.0001 (−0.021, 0.018) 0.001 (−0.142, 0.175) 0.162 (−0.375, 0.794)

ETD-based – EPIC GA 0.048 (−0.041, 0.123) −0.409 (−1.00, 0.335) 0.645 (−0.181, 1.209)

ETD-based – 450 K/EPIC overlap 0.048 (−0.039, 0.119) −0.410 (−1.03, 0.308) 0.483 (−0.409, 0.984)

PREDO
Non-ART (n = 148)

Bohlin – EPIC GA −0.062 (−0.117, −0.014) 0.528 (0.095, 0.994) 3.27 (1.87, 3.92)

Knight – EPIC GA −0.247 (−0.342, −0.161) 1.89 (1.97, 2.69) 1.13 (0.196, 2.40)

Knight – Bohlin −0.185 (−0.273, −0.102) 1.36 (0.698, 1.97) −2.15 (−3.11, −0.382)

Dataset * (count) Comparison between GA estimation methods R2 (95% CI) SE (95% CI) MAD (95% CI)

START​
ART (n = 838)

ETD – ultrasound 0.015 (−0.003, 0.033) −0.284 (−0.544, −0.037) −0.102 (−0.465, 0.174)

Fig. 4  Prediction of gestational age using the EPIC GA, 450 K/EPIC, and ETD-based clocks. Scatter plots of predicted gestational age using (a) the 
EPIC GA clock, (b) the 450 K/EPIC overlap clock, and (c) the ETD-based clock against gestational age estimated by ultrasound in a test set (n = 200) 
of non-ART newborns from START. The red line indicates a perfect correlation between DNAm-based gestational age and ultrasound-based 
gestational age. The black line indicates the MM-type robust regression of ultrasound-based gestational age on DNAm-based gestational age
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CpGs in the 450 K/EPIC overlap clock were also present 
in the EPIC GA clock.

Using the embryo transfer date (ETD) to predict gestational 
age
A great advantage of the ART dataset is that the ETD is 
known for the ART-conceived children. We thus devel-
oped a gestational age clock using the ETD of ART-con-
ceived children to investigate whether it was possible to 
achieve a better predictor of gestational age. Six hundred 
and seventy-four ART newborns from START (Table  1, 
Fig.  1) were used to train the ETD-based clock. Addi-
tional file  1: Figure S1 shows the performance of the 
ETD-based clock for ultrasound- and ETD-estimated 
gestational age in the START ART training and test set, 
respectively. When compared to the EPIC GA clock in 
the non-ART test set from START, the ETD-based clock 
showed a similar performance, with an R2 difference of 
0.048 (95% CI: −0.041, 0.123) and a difference in MAD 
of 0.645 (95% CI: −0.181, 1.209) (Fig.  4; Table  3). The 
ETD-based GA clock contained 155 CpGs, and only 19 of 
them were in common with those of the EPIC GA clock.

Application of the EPIC GA clock to ART children
To assess the performance of the EPIC GA clock in ART-
children, we applied the EPIC GA clock to the cord-blood 
DNAm data of 838 newborns conceived by ART (Table 1, 
Fig. 1). We compared predicted gestational age to gesta-
tional age estimated by ultrasound measurements and by 
ETD, respectively (Fig.  5). Gestational age estimated by 
ultrasound measurement and ETD was predicted with 

similar precision (R2 difference of 0.015 (95% CI: −0.003, 
0.033); Fig. 5, Table 3) and accuracy (MAD difference of 
−0.102 (95% CI: −0.465, 0.174)).

Gestational age acceleration in ART children
To assess whether GAA is associated with ART, we first 
regressed gestational age predicted by the EPIC GA clock 
on gestational age estimated by ultrasound in 200 non-
ART and 838 ART newborns from START. GAA was 
calculated using the residuals from this regression. Next, 
we analyzed the relationship between GAA and ART by 
performing a logistic regression of ART on GAA. We 
found no significant difference in GAA between the ART 
(n = 838) and non-ART (n = 200) newborns (p = 0.388, 
Fig. 6).

Aside from ETD, another major advantage of the 
START dataset is that the specific ART procedure used 
for conception was known, i.e., whether in vitro fertiliza-
tion (IVF) was used alone or together with intracytoplas-
mic injection of sperm (ICSI), and whether the embryo 
was transferred fresh or after being frozen. We found no 
significant difference in GAA between newborns con-
ceived by IVF alone (n = 470) and those conceived by IVF 
in combination with ICSI (n = 338) (p = 0.976, Additional 
file  2: Figure S2). Furthermore, there was no significant 
difference between fresh (n = 693) and frozen (n = 115) 
embryo transfer (p = 0.274, Additional file 3: Figure S3).

Gene‑enrichment analysis
To explore the biological significance of the 176 
CpGs selected in our EPIC GA clock, we performed 

Fig. 5  Prediction of gestational age estimated by ultrasound and embryo transfer date (ETD). Scatter plots of predicted gestational age using 
the EPIC GA clock against gestational age estimated by a ultrasound and b ETD in a dataset of ART-born children (n = 838) in START. The red line 
indicates a perfect correlation between DNAm-based gestational age and a ultrasound-based or b ETD-based gestational age. The black line shows 
the regression of a ultrasound-based or b ETD-based gestational age on DNAm-based gestational age



Page 7 of 13Haftorn et al. Clin Epigenet           (2021) 13:82 	

gene-enrichment analyses of the genes annotated for the 
selected CpGs. Using the annotation data provided in 
Illumina’s Infinium MethylationEPIC v1.0 B4 Manifest 
file, we identified 154 unique gene names annotated for 
the 176 selected CpGs. A list of the 176 CpGs and their 
annotated genes is provided in Additional file  4. The 
software WebGestalt [34] was used to perform gene-
enrichment analyses of the 154 genes [35]. WebGestalt 
identified 78 categories as being significantly enriched 
at a false discovery rate (FDR) < 0.01. The category with 
the highest enrichment ratio was “regulation of plate-
let-derived growth factor receptor signaling pathway,” 
containing LRP1, HIP1R, HGS, and SRC (enrichment 
ratio = 37; FDR = 0.003). Several of the significant hits 
were related to abnormal morphology of the eye, ear, 
nose, and other developmental categories, e.g., “plasma 
membrane-bounded cell projection organization” and 
“negative regulation of cellular biosynthetic process.” The 
complete output of the WebGestalt analyses is provided 
in Additional file 5.

Discussion
We present the first EPIC-based predictor of gestational 
age and demonstrate its robustness and precision in ART 
versus non-ART newborns. This study benefited greatly 
from having the largest ART dataset to date, with detailed 
information on ETD and the specific procedure used for 
conception. Our EPIC GA clock, trained on the START 
dataset, outperformed previous cord blood-based 

gestational age clocks when compared in an independent 
Finnish test set (PREDO).

Previous DNAm-based clocks were developed using 
the now outdated 27 K and 450 K. EPIC has almost twice 
as many CpGs as 450 K, and while 27 K and 450 K mostly 
cover areas around genes and CpG-islands, some of the 
additional probes on EPIC target distal regulatory ele-
ments and intergenic regions [36]. We, therefore, hypoth-
esized that the additional CpGs unique to EPIC might 
have enhanced the performance of the EPIC GA clock. 
However, when we developed a separate clock featur-
ing only those probes that are shared between 450 K and 
EPIC, we observed a similar performance to the EPIC 
GA clock, indicating that the additional CpGs on EPIC 
did not significantly enhance the prediction of gestational 
age. This observation is consistent with recent findings 
on age prediction by Lee et  al. [37]. Another plausible 
explanation for the superior performance of our EPIC 
GA clock might be related to the fact that eight CpGs 
in the Bohlin clock and six CpGs in the Knight clock 
are absent from the EPIC array. This discrepancy might 
have reduced the prediction accuracy of the earlier clocks 
when applied to EPIC data.

A substantial advantage of the START dataset is its 
large sample size combined with detailed information on 
ETD for the ART-conceived newborns and the specific 
ART procedures used for conception. Using ETD pro-
vides a more direct estimate of gestational age than esti-
mates based on ultrasound measurement or LMP [23]. 
We thus checked whether a clock trained on gestational 

Fig. 6  Gestational age and gestational age acceleration (GAA) in ART and non-ART children. Panel a shows predicted gestational age using 
the EPIC GA clock against gestational age estimated by ultrasound in ART (n = 838, highlighted in black) and non-ART (n = 200, highlighted in 
red) newborns from START. Panel b shows GAA represented by the regressions of EPIC GA clock-predicted gestational age on ultrasound-based 
gestational age in the ART and non-ART newborns
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age estimated by ETD would lead to a further improve-
ment in gestational age prediction. The results showed 
that the two clocks had similar performance, despite the 
low overlap in CpGs and genes. This suggests that using 
ETD-based gestational age estimates for training does 
not significantly enhance prediction compared to clocks 
trained on ultrasound-based estimates, further highlight-
ing the precision of the EPIC GA clock.

A higher risk of spontaneous preterm birth and other 
adverse perinatal outcomes has been reported among 
ART-conceived children [28–30]. Given that the timing 
of ART procedures coincides with the extensive epige-
netic remodeling in the gametes and early embryo, and, 
further that epigenetic alterations have been reported 
in ART embryos and children [38–40], we investigated 
whether the epigenetic gestational age of ART newborns 
differed significantly from that of non-ART newborns. 
When we applied the EPIC GA clock to ART newborns, 
the precision of the gestational age prediction remained 
similar to that of the non-ART newborns, indicating that 
the clock is also well suited for predicting gestational age 
in ART newborns. Furthermore, the EPIC GA clock pre-
dicted both ETD-based and ultrasound-based gestational 
age equally well, again underscoring the precision of the 
clock. Finally, we found no significant differences in GAA 
between ART and non-ART newborns.

ART is a collective term used to describe different pro-
cedures and categories that may have different impacts 
on fetal DNAm. It is therefore particularly important 
to investigate whether gestational age prediction dif-
fers according to the specific ART procedure used. 
For instance, embryos may be transferred to the uterus 
when they are fresh or after being frozen, and IVF may 
or may not involve ICSI. A previous study [31] examin-
ing GAA in ICSI newborns compared to non-ART new-
borns did not find any significant difference between the 
two groups. However, the authors detected a significant 
decrease in DNAm-predicted gestational age at birth 
among the ICSI newborns. To verify these findings in our 
dataset, we conducted another set of analyses to explore 
differences between IVF, ICSI, and non-ART newborns, 
as well as between fresh, frozen, and non-ART-con-
ceived newborns. We found no significant differences in 
DNAm-predicted GA or GAA between any of the groups 
(Additional file 2: Figure S2 and Additional file 3: Figure 
S3), further strengthening the hypothesis that GAA is not 
associated with ART.

Although DNAm is strongly associated with gestational 
age, the mechanisms underlying this association are not 
well understood. A closer inspection of the specific CpGs 
selected for gestational age prediction and the overlap 
between different clocks may provide some answers. Of 
the 176 CpGs selected by the EPIC GA clock, only 11 

were in common with the CpGs in the Bohlin clock, and 
none overlapped with the CpGs in the Knight clock. This 
could partly be explained by the 89 EPIC-specific CpGs. 
The lack of overlap in CpGs across different clocks has 
also been observed in age prediction models [41]. Our 
analyses showed little overlap between the EPIC GA 
clock and the ETD-based clock, even though both were 
trained on EPIC data. As Lasso regression and elastic net 
regression may select CpGs that are not associated with 
the outcome per se [42], dataset-specific CpGs could 
end up being included in the model. Furthermore, Lasso 
selects one CpG for each group of correlated (or neigh-
boring) CpGs, whereas elastic net regression selects sev-
eral CpGs, leading to a so-called “grouping effect” [43], 
which could lead to less overlap in CpGs between predic-
tion models.

Unraveling the biological mechanisms underlying the 
gestational age clocks requires identifying the genes 
associated with the clock-specific CpGs and examin-
ing how they are related to gestational age. Our results 
revealed several genes in common across the different 
clocks. For example, 13 genes were shared between the 
EPIC GA clock and the Bohlin clock, while 15 genes were 
shared between the EPIC GA clock and the ETD-based 
clock. Some of the CpGs and genes in the EPIC GA clock 
appear to be stably associated with gestational age. For 
example, CpGs linked to Nuclear Receptor Corepressor 
2 (NCOR2) and Insulin-Like Growth Factor 2 MRNA-
binding protein 1 (IGF2BP1) were selected in both the 
EPIC GA clock and the Bohlin clock, and both of these 
genes have previously been identified in other studies of 
gestational age [44–47]. NCOR2 is involved in vitamin A 
metabolism and lung function [48], and IGF2BP1 plays 
an important role in embryogenesis and carcinogenesis 
[49]. The EPIC GA clock also identified CpGs related 
to Corticotropin-Releasing Factor-Binding Protein 
(CRHBP), consistent with previous studies of gestational 
age [8, 50]. CRHBP levels rise throughout pregnancy but 
drop markedly when approaching term [51]. Further-
more, Mastorakos and Ilias [52] showed that CRHBP 
might prevent aberrant pituitary-adrenal stimulation 
in pregnancy. In addition to the genes mentioned here, 
several other genes linked to the CpGs in our clock have 
previously been implicated in gestational age, including 
Muscleblind Like Splicing Regulator 1 (MBNL1), CD82 
molecule (CD82), Integrin Subunit Beta 2 (ITGB2), and 
Rap Guanine Nucleotide Exchange Factor 3 (RAPGEF3) 
[47, 50]. Additional studies are needed to elucidate their 
roles in gestational age.

For a clock to be useful, it needs to be generalizable 
to other cohorts and populations. As with the Boh-
lin clock, our EPIC GA clock was trained on data from 
a relatively homogeneous cohort in terms of ethnicity, 
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socioeconomic status, and age [32, 53]. Our clock per-
formed equally well in the independent Finnish PREDO 
cohort. However, while the use of a homogeneous train-
ing set may enhance the prediction model [42, 54], it can 
also result in a cohort-specific clock that is less generaliz-
able to other populations.

Exploring associations between specific neonatal out-
comes and DNAm-based gestational age is still in its 
nascent stages [26, 55], and there are many unanswered 
questions regarding neonatal development. The devel-
opment of an EPIC-specific gestational age clock may 
offer additional insights into gestational age and neona-
tal development. As the 450 K array has been discontin-
ued, we anticipate that future research on DNAm-based 
GA clocks will migrate to the more updated EPIC array. 
Research on GA-related topics and DNAm utilizing the 
450  K array are expected to continue for some time, as 
many 450  K-based datasets are still in circulation and 
some are being used in consortia-led efforts. The clocks 
presented here may facilitate further research on DNAm-
based clocks for both 450 K and EPIC-based arrays.

Conclusions
The new EPIC GA clock presented here predicted gesta-
tional age precisely in both ART and non-ART newborns 
and outperformed previous cord blood-based gestational 
age clocks when validated in an independent test set. The 
increased performance was not due to the higher cov-
erage of CpGs on the EPIC array. Furthermore, the use 
of ETD-estimated gestational age for training did not 
improve the precision of gestational age prediction sig-
nificantly compared with clocks trained on ultrasound-
estimated gestational age. This is reassuring, as most 
datasets on newborns only have ultrasound- or LMP-
based measures of gestational age. Finally, we did not find 
any significant association between GAA and ART. With 
a growing number of epigenetic datasets currently being 
generated on the EPIC platform, we expect our EPIC GA 
clock to become increasingly valuable in assessing devel-
opmental maturity in studies of neonatal development 
and disease.

Methods
Study population
MoBa is an ongoing, population-based pregnancy cohort 
study conducted by the Norwegian Institute of Public 
Health (NIPH). Totally, 114,500 children, 95,200 moth-
ers, and 75,200 fathers were recruited from all over Nor-
way from 1999 through 2008 [32]. The MoBa mothers 
consented to participation in 41% of the pregnancies. 
Extensive details on the MoBa cohort have been provided 
elsewhere [32, 56]. START is a substudy of MoBa and 

consists of 1,995 newborns and their parents. Blood sam-
ples from the newborns were obtained from the umbili-
cal cord at birth [56].

PREDO is a prospective pregnancy cohort of Finnish 
women who gave birth to a singleton live child between 
2006 and 2010 [33]. The cohort comprises 1079 pregnant 
women; 969 of these had one or more known risk fac-
tors for preeclampsia and intrauterine growth restriction, 
whereas the rest had no such risk factors. The women 
were enrolled in the study when they arrived for their 
first ultrasound screening at 12–14 gestational weeks 
in 10 study hospitals in Southern and Eastern Finland. 
Blood samples were obtained from the cord blood of 998 
newborns [57]. To validate the gestational age clocks, we 
used cord blood-based DNAm data from 148 newborns 
(Fig. 1).

DNAm profiling and quality control
Cord blood samples taken by a midwife immediately after 
birth were frozen [56]. Five hundred nanograms of DNA 
extracted from the cord blood of START newborns were 
shipped to LIFE & BRAIN GmbH in Bonn, Germany, 
for measurement of DNAm on the Illumina Methylatio-
nEPIC array (Illumina, San Diego, USA). The raw iDAT 
files were imported and processed in four batches using 
the R-package RnBeads [58]. 44,210 cross-hybridizing 
probes [59] and approximately 10,000 probes with a high 
detection p-value (above 0.01) were removed. 16,117 
probes with the last three bases overlapping with a sin-
gle-nucleotide polymorphism (SNP) were also excluded. 
The remaining DNAm signal was processed using BMIQ 
[60] to normalize the type I and type II probe chemis-
tries. Control probes output from RnBeads were visu-
ally inspected for all samples, and those with low overall 
signals were removed. The Greedycut option [58] was 
used to remove outliers with markedly different DNAm 
signals than the rest of the samples. This resulted in the 
removal of 58 samples in total. For consistency, CpG 
sites removed from one batch, due to poor quality and 
detection p-value, were also removed from subsequent 
batches. After quality control, 770,586 autosomal CpGs 
and 1945 samples remained in the final dataset. 1793 
subjects for whom we had information on ultrasound-
based gestational age were used to develop and validate 
the gestational age clocks in this study.

For the PREDO samples, DNA was extracted accord-
ing to standard procedures. Methylation analyses were 
performed at the Max Planck Institute of Psychiatry in 
Munich, Germany. DNA samples were bisulfite-con-
verted using the EZ-96 DNA Methylation kit (Zymo 
Research, Irvine, CA) and assayed on the Illumina Infin-
ium MethylationEPIC array (Illumina, San Diego, USA). 
Three samples were excluded for being outliers based 
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on their median intensity values. Another three samples 
showing discordant phenotypic and estimated sex were 
excluded. A further three samples were contaminated 
with maternal DNA and were also removed [61]. Meth-
ylation beta-values were normalized using the funnorm 
function [62] in the R-package minfi [63]. Three samples 
showed density artifacts after normalization and were 
removed from further analysis. We excluded probes 
on the sex chromosomes, probes containing SNPs, and 
cross-hybridizing probes according to previously pub-
lished criteria [59, 64, 65]. Furthermore, CpGs with a 
detection p-value > 0.01 in at least 25% of the samples 
were also excluded. Finally, one duplicate sample was 
removed after quality control. The final dataset contained 
812,987 CpGs and 148 samples. After normalization, no 
significant batch effects were identified.

Variables
For the START dataset, information on gestational age, 
sex, and ART status was extracted from the Medical 
Birth Registry of Norway (MBRN). Gestational age at 
birth was estimated by ultrasound measurements in week 
18 of pregnancy. For the ART children, we used the date 
of egg retrieval plus 14 days to obtain a second estimate 
of gestational age. When the date of egg retrieval was not 
known, the date of embryo insertion was used instead, 
minus two days. For embryos that were frozen, we used 
the date of embryo insertion plus 14 days, and the num-
ber of days between egg retrieval and freezing. These 
three estimations of gestational age were combined into a 
variable called embryo transfer date (ETD). IVF and ICSI 
were defined as ART treatments, whereas children con-
ceived by intrauterine insemination were defined as non-
ART births.

For the PREDO dataset, information on gestational 
age and sex was extracted from the Finnish Medical 
Birth Register. Gestational age at birth was estimated by 
ultrasound measurements between 12 and 14  weeks of 
pregnancy.

Gestational age prediction
Figure  1 shows a flowchart of the analyses performed. 
Children conceived without ART (non-ART) were ran-
domly split into two groups: a training set (~ 80%) for 
developing the clock and a test set (~ 20%) for validating 
the clock. We used Lasso regression from the R-package 
glmnet [66] to develop DNAm-based predictors of ges-
tational age. Clinically estimated gestational age was 
regressed on the 770,586 remaining CpGs after quality 
control in the START dataset. For the “450 K/EPIC over-
lap clock,” only the 397,473 CpGs that were in common 
between 450 K and EPIC were used. Missing probes were 
imputed using the median imputation procedure in the 

R-package Hmisc [67]. Tuning parameters α and λ were 
selected after tenfold cross-validation in the training set. 
For the “EPIC GA clock,” Lasso regression selected 176 
CpGs (α = 1, λ = 0.66), while for the 450  K/EPIC over-
lap clock and the “ETD-based clock,” 173 CpGs (α = 1, 
λ = 0.63) and 156 CpGs (α = 1, λ = 0.62) were selected, 
respectively. Individual CpG sites and their correspond-
ing coefficients are provided in Additional file 4.

The above clocks were used to estimate gestational age 
in (i) the START non-ART test set, (ii) the START ART 
newborns, and (iii) the non-ART newborns from PREDO 
(see Fig.  1 for more details). Predicted gestational age 
was regressed on clinically estimated gestational age 
using MM-type robust linear regression [68] from the 
R-package robustbase [69]. The precision of a given pre-
diction model was defined as the proportion of variance 
explained by the model (i.e., by the R2 value). Accuracy, 
on the other hand, was defined as the median absolute 
deviation (MAD) between observed and predicted gesta-
tional age.

Comparison of prediction parameters
To compare the performances of the different clocks and 
GA estimation methods, we calculated the differences in 
R2, SE, and MAD when computed by two different clocks 
or GA methods. To assess the size and significance of the 
differences, we computed bootstrap confidence intervals 
for each difference. Since all three performance measures 
can be calculated from observed and predicted GA val-
ues, each bootstrap sample selected individuals randomly 
and used the observed and predicted GA values already 
calculated for those individuals. The pairs of R2, SE, and 
MAD values were calculated from the same bootstrap 
sample to account for the same dataset being used in 
each comparison. Thus, we did not need to refit the full 
prediction model for each bootstrap sample.

The bootstrapping was performed using the R-package 
boot [70, 71]. 95% confidence intervals of the bootstrap 
differences were standard percentile intervals, reported 
as type “perc” by the boot package. A difference was con-
sidered statistically significant when the corresponding 
confidence intervals did not include the value 0.

Gestational age acceleration analysis
GAA was defined as the residuals from a linear regres-
sion of DNAm gestational age predicted by the EPIC GA 
clock on ultrasound-estimated gestational age [16]. We 
tested for association between GAA and ART by per-
forming a logistic regression of ART on GAA.

Gene‑enrichment analysis
The online functional enrichment software WebGe-
stalt [34] was used to search for enrichment within the 
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annotated genes of the EPIC GA clock. We identified 154 
unique gene names annotated for the 176 CpGs selected 
in the EPIC GA clock using the annotation data from 
Illumina’s Infinium MethylationEPIC v1.0 B4 Manifest 
file. We then performed an overrepresentation analysis 
on the 154 genes using Fisher’s exact test [35], assign-
ing a minimum of five genes per category, and using the 
genome as background. WebGestalt leverages data from 
the following databases for each category: gene ontol-
ogy [72, 73] (Biological Process, Cellular Component, 
Molecular Function), pathway (KEGG [74], Panther [75], 
Reactome [76], WikiPathway [77]), network (Kinase tar-
get, Transcription Factor target, miRNA target), dis-
ease (DisGeNET [78], GLAD4U [79], OMIM [80]), drug 
(DrugBank [81]), phenotype (Human Phenotype Ontol-
ogy [82]), and chromosomal location (Cytogenic Band). 
The Benjamini–Hochberg procedure was applied to the 
p-values, and categories with a false discovery rate below 
0.01 were declared significantly enriched.
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