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Abstract 

 

The thesis is composed of results and knowledge from four papers examining the role 

of imaging after surgical reconstruction of the anterior cruciate ligament of the knee. 

Post-operative imaging is commonly performed to validate ACL graft tunnel 

locations after reconstruction, to examine underlying causes in cases with poor 

outcome or is performed for planning surgery prior to revision of ACL graft.  

Paper I examined the differences in measurements of ACL graft tunnel placements 

between radiographs, CT, and MRI.  In about 50 patients, two radiologists measured 

the tunnel locations in the femur and tibia in all three modalities. We found a 

significant difference between summation images and image slices for the 

measurement of the tibial tunnel measurement, and no differences between femoral 

tunnel measurements. Tibial tunnel placement was about 3% deeper on slice images 

than on summation images. 

In paper II, a radiologist, and an orthopaedic surgeon systematically reviewed 

literature of reported anatomic femoral and tibial locations of native ACL centres in 

>200 femoral measurements and >300 tibial measurements. The results were collated 

to present means, medians, and 5th and 95th percentiles of the tunnel placements in the 

Bernard & Hertel grid and Stäubli & Rauschning ratio. The defined “normal ranges” 

could be used as a reference for future studies. 

Paper III assessed the ability of two different measurement methods to identify 

nonanatomic graft tunnel placements on CT images in patients who returned for 

revision surgery and in patients who had undergone routine post-operative imaging 

with either hamstrings graft or bone-patellar-tendon-bone graft (BPTB). The ability 

of Bernard & Hertel grid and Stäubli & Rauschning ratio in tibia to indicate anatomic 

graft placement were compared with assessment with coronal and sagittal graft 

angles. It showed that graft angle measurements are a poor indicator for anatomic 

placement, especially in patients operated with the antero-medial portal technique or 
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reconstructed with BPTB grafts. Anatomic placement according to graft angles were 

not well correlated to anatomic placements assessed with grid measurements.   

Paper IV assessed the rate and types of knee pathology, including anterolateral 

complex (ALLC) pathology on MRI in ACL reconstructed knees and assessed 

possible gender differences. It showed that graft rupture was the most common 

finding in patients returning for revision surgery and concomitant injuries were less 

prevalent than previously reported. Further, we showed that interobserver variability 

for assessment of ALLC is very high, so for now MRI is not useful for evaluating this 

structure. 

To summarise, the thesis showed that many variations in graft tunnel evaluation exist. 

For graft tunnel placement assessment, CT is by far the most robust modality, be it 

for scientific studies or in clinical practice. The grid method in the femur and ratio in 

the tibia are easiest to implement. Graft angle measurements have no value in 

evaluating tunnel placements. When evaluating soft tissue structures, MRI is reliable 

for well-established structures such as ligaments and menisci, but currently not for 

recently introduced anatomic structures such as ALLC.  
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Introduction 

Anatomy of the anterior cruciate ligament 

The knee joint is composed of bones, articular cartilage, ligaments, menisci, 

synovium, and other supporting soft tissues. Further, many important structures pass 

the knee joint, mostly in the posterior part, including nerves, blood vessels and 

tendons. Two strong long bones, the (distal) femur and (proximal) tibia, articulate 

(with each other).  Two fibrocartilage menisci, the medial and lateral are situated in 

between the bone ends, acting as shock absorbers, and adding to the stability of the 

joint. There are four ligaments of paramount importance to the stability of the knee, 

the medial and lateral collateral ligaments, and centrally the anterior and posterior 

cruciate ligaments. In addition, the tendons from thigh muscles, such as the 

semimembranosus and semitendinosus support the medial posterior corner, the 

popliteus tendons and the biceps tendons support the lateral posterior corner. The 

anterolateral complex, patellar and quadriceps tendons support the anterior knee [92, 

138]. These soft tissue structures, together with the retinaculum  anteriorly which 

extends to the patella on each side, encapsulates the knee joint [Figure 1a/b][138]. 

The motion of the knee joint is mainly flexion and extension (hinge joint), but there is 

also some degree of rotation possible. The anterior cruciate ligament (ACL) provides 

stability to the knee joint in preventing the tibia from anterior translation as well as 

internal rotation [11].  
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Figure1. a. Schematic axial view of structures of the knee joint. b. Schematic coronal 

view of menisci, cruciate and collateral ligaments. 

 

The ACL is one of the strongest ligaments in the body. Even so, modern activities 

such as sports which requires a lot of fast twisting and turning of the knee joint 

(pivoting), has made it vulnerable for tears. The tensile strength is estimated at 1,725 

± 270 N [81]. The ACL attaches to the medial femur and runs obliquely to the 

anterior mid portion of the tibia. It consists of two closely knit fibre bundles, the 

anteromedial and posterolateral bundles. The two bundles shorten and lengthen 

together during flexion and extension, and fold over one another during rotation 

[63,122]. The ACL is intraarticular, but extra-synovial. The lack of blood supply 

hampers healing after injury [81]. 

 

ACL injury 

A major trauma to the knee, often during sports, may cause the ACL to tear, thus 

severely affecting knee function. The mode of trauma is often indirect forces acting to 
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internal and/or external tibial rotation or valgus or varus stress or hyperextension 

[Figure 2].  

 

Figure 2. Modes of trauma which cause ACL injury. a. ACL and MCL is often injured 

in trauma lateral to medial and internal rotation. b. ACL and LCL is often injured 

when trauma is from medial to lateral and external rotation. c. With hyperextension 

of the knee both the ACL and PCL tend to rupture. 

Such a trauma will often render the knee ACL deficient. Depending on the type and 

severity of injury the collateral ligaments, posterior cruciate ligaments, the menisci 

and/or articular cartilage may be injured at the same time. An ACL deficient knee 

leads to anterior translation of the tibia compared to the femur, especially in the 

lateral compartment. ACL deficiency alters the load within the knee, with slight 

anterior subluxation of the tibia in the lateral compartment [94]. The altered load 

during function eventually leads to early onset of osteoarthritis [14,105]. 
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ACL rupture surgery 

As a completely ruptured ACL does not heal on its’ own, ACL surgery was initiated 

to restore the stability (and normal function) of the knee and, secondary, in the long 

term, to possibly avoid early development of osteoarthritis. The surgery evolved from 

the early days of repair (by sutures) or non-anatomical plasties to reconstruction of 

the ACL with various autogenic and allogenic grafts as well as man-made implants of 

different material. Commonly used grafts are autogenic grafts harvested from bone-

patellar tendon-bone (BPTB) or hamstring tendons, either from the ipsilateral or, less 

often, the contralateral knee. The use of allografts from dead donors reduces the 

surgical trauma to the patient, but introduces new problems [25]. Unfortunately, up to 

25% of ACL reconstruction patients experience an unsatisfactory outcome regarding 

post-operative knee function [126]. 

An unsatisfactory result can be categorised according to the symptoms and/or clinical 

findings evoked, e.g., recurrent pain, loss of motion, extensor mechanism dysfunction 

and recurrent knee instability; or analytically, examining the possible underlying 

causes (of failure), such as failure of graft incorporation, too early return to high 

levels of activity, inadequate  rehabilitation, a new trauma or technical (surgical) 

errors including poor graft placement and unaddressed concomitant abnormalities. 

Naturally, the surgeon wishes to keep the failure rates as low as possible. However, 

some causes of failure, for example, lack of graft incorporation depends on intrinsic 

individual patient factors which cannot be foreseen by the surgeon. Proper 

rehabilitation after surgery is mandatory, but the outcome is highly dependent on 

patient compliance. If the patient does not follow given advice, this may affect the 

outcome of ACL reconstruction in a negative way. 

Other causes, such as failure of addressing concomitant lesions and avoiding 

technical surgical errors are factors the surgeon can actively influence. In the acute 

setting, concomitant injuries such as meniscal ruptures may be difficult to diagnose 

clinically. Further, studies show that menisco-capsular separation and posteromedial 
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meniscal ruptures may be missed during arthroscopy using anterior or anterolateral 

portals [9, 21,102]. These need to be recognised and reported by radiologists on initial 

imaging so that the surgeon can address them specifically in the same session as the 

ACL reconstruction.  

For the surgeon, technical considerations include 1) choice of suitable graft, 2) 

correct graft tensioning, as too taut will limit range of motion, especially extension, 

and too loose with cause residual laxity, and 3) correct tunnel placement, as it has to 

provide sufficient stability during knee function without causing impingement of the 

graft within the intercondylar notch [11,52,53]. The aim for the surgeon is to 

reconstruct the ACL as close to the native state as possible. Surgical techniques have 

evolved over the years, currently the aim for the surgeon is called “anatomic” 

reconstruction [25,109]. Whether or not graft placement (and tensioning) was 

adequate is tested clinically by a surgeon and can also be observed by the patient 

when their activity levels increase. Thus, in the early post-operative period, imaging 

is sometimes used to rate surgical success as “good” or “poor” dependant of the 

location of the graft tunnels [6,132].  

With increasing implementation of “anatomic” reconstruction, there was a need for 

defining the location of the native ACL insertions in the femur and tibia. Several 

imaging studies examined the location of the native ACL insertions using different 

modalities to study the locations. Generally, each study reported slightly different 

means for the centre location in the femur and tibia. Therefore, there is no consensus, 

or accepted “normal” range of where exactly the anatomic location of the ACL 

insertions are [4,16,28,36,37,58,7076,77,91,101,104,127,131,134,143].  

The rate of ACL reconstruction has increased steadily in the past few decades 

[3,30,144]. This has caused an increase in (routine) post-operative imaging 

assessment. Routine post-operative imaging is considered useful as an operator-

independent baseline examination [43,67,100]. 
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History of anterior cruciate ligament imaging. 

ACL rupture was first described in the late 1830s and the first report of surgical 

repair was published in 1895 [25,117]. However, the diagnosis in the early days was 

purely clinical and, thus, dependent on the examiner’s experience. Thus, more 

operator-independent or objective, tools were therefore sought after. Depicted on 

radiographs, ACL injury may be associated with femoral impression fractures and 

avulsion fracture of the lateral tibia, called Segond fracture [20]. The earliest article 

cited in PubMed describing radiographs in knee injuries dates from 1952 [84]. The 

first paper on specific ACL rupture diagnosis on imaging were in the mid-1960s 

[72,73].  The described imaging method entailed injection of contrast media in the 

knee joint and indirect depiction of ACL rupture. In the 1970s stress radiographs 

were used to show the translation of femur against the tibia in the lateral compartment 

[31,41,59,60]. In 1981 computer tomography (CT) entered the scene, and imaging 

shifted to better visualisation of the ligament, albeit, still using arthrography [113]. 

The advent of magnetic resonant imaging of ACL in 1985 heralded in a new era of 

direct imaging non-invasive visualisation of the ACL [6].  

MRI was the first non-invasive method to accurately depict the ACL fibres and 

objectively describe any rupture of the structure without the use of intra-articular 

contrast [15,22,79,111,112,135]. Since then, technological advancements in MRI 

have vastly improved the image quality, and thus accuracy of diagnosis on imaging. 

Even so, the gold standard for ACL evaluation, rightly so, still is a clinical 

examination, especially when performed by an experienced examiner, where a full 

knee examination is performed [114,129].  

The first paper describing post-operative radiographs after ACL reconstruction was 

published in 1986 [23]. The paper described assessment of graft tunnel placement on 

front and lateral radiographs, and suggested evaluating the intraosseous tunnels, the 

bone block (of patellar tendon grafts) and bone block donor sites and fixation 

hardware [23]. A rush of papers followed using radiographs, CT and MRI in the late 

1980s and early 1990s [26,54,78,90,108,133]. MRI was primarily used to assess the 

degree of intactness of the graft fibres. By 1997, imaging was increasingly being used 
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as an indicator of successful surgical reconstruction. As the need to standardise and 

compare surgical outcomes evolved, the report from a workshop with orthopaedic 

surgeons from twelve countries, was published a consensus paper by Amis and 

Jakobs in 1998 [11].  

This paper was the start of an era where graft tunnel placement and assessment on 

post-operative imaging could be standardised [11]. The authors advised the use of 

radiographs to assess graft tunnel placement. They also suggested to apply a grid 

method to describe the femoral graft tunnel placement (Bernard & Hertel grid), and a 

ratio (Stäubli & Rauschning ratio) for tibial tunnel placement [16,127]. The tibial 

ratio had been developed on MRI, but this was not problematised in the consensus 

paper, as the paper recommended using radiographs due to easier access. CT was not 

considered in the consensus paper. Further, they recommended that one should use 

surgical navigation terminology of “deep-shallow” and “high-low” instead of 

anatomic (radiological) terminology in order to avoid confusion. The terminology 

derives from the fact that surgery is, in large parts, performed (with the patients’ 

knee) in flexion. Radiographs for ACL graft evaluation invariably are performed in 

extension. The surgical terminology is unambiguous. In addition, the recommended 

measurements are independent of the extent knee flexion [Figure 3 a/b]. 
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Figure 3 a. Note the similar wording of terminology when the knee is extended. b. 

Note that “deep-shallow” and “high-low” and superior/inferior remain the same, 

while the other descriptive terms change in flexion. 

This recommendation from orthopaedic surgeons was consistently referred to and 

used as basis for studies and publications by some scientific groups, while 

radiologists were late to catch on to this [87,94,100,110]. CT was often discarded in 

favour of MRI to assess post-operative graft placement, as MRI was preferred due to 

the lack of radiation [8].  

Ahn et al. suggested using graft angles to quantify ACL tunnel placement on MRI in 

a study where the ACL was reconstructed  with the transtibial technique [8].  Thus, a 

new measurement method was introduced. From the year of 2000 and onwards, the 

orthopaedic and radiological communities’ comprehension of imaging evolved in 

somewhat diverging directions. Radiologists focussed mainly on MRI and how to 

best use this modality to answer clinical queries regarding (the quality of) graft fibres, 

and graft placement evaluation indirectly using angle measurements and anatomic 

landmarks [87,94,110,140]. Conversely, orthopaedic surgeons often assessed 

outcome of surgery on imaging by using the grid method and tibial ratio, but were 
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using different radiological modalities: radiographs, CT and MRIs [51,61,86]. As 

new surgical techniques were introduced, studies reported the efficacy of various 

surgical techniques as either “good” or “poor” according to how close to the anatomic 

insertion their tunnel placements were [2,18,33,95,130]. Imaging was used to 

“objectively” assess the anatomic placement. However, as there were so many 

different modalities used, comparing study results and efficacy of surgical techniques 

was very difficult, as each modality has its own strength and weakness. 

 

Imaging modalities, strengths, and weaknesses 

Regarding primary evaluation after trauma, ACL reconstruction, and post-operative 

imaging, there are different groups of queries. After trauma, the main queries are the 

degree of ACL pathology, meniscal ruptures, other collateral ligament and soft tissue, 

and bone pathology, including avulsions [98,141]. The second query is the post-

operative assessment of the reconstruction to serve as a baseline examination for 

future reference and to assess the location of canals and fixation device. The third 

query is to evaluate the knee joint in cases of clinically unsuccessful reconstruction 

and to assess the knee joint prior to a revision of ACL graft. For baseline 

examinations, radiographs are commonly used. Assessment prior to revision is 

complicated. Before planning the revision, the surgeon has a number of queries to 

solve: “Is the graft intact? Are the graft tunnels located in the right place? Are the 

tunnels widened? Hardware or fixation device complications? Are there untreated 

concomitant injuries?”  

Although, graft intactness may be assessed clinically or during arthroscopy, the post-

operative queries about cannot be answered by a single method and requires a multi-

modality approach for overall evaluation and final diagnosis. 

 

Radiographs  

The prime strength of radiographs is the readily availability. They are inexpensive 

and easy to perform and, nowadays expose the patient to relatively little radiation 
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[85]. Preoperatively, they can show avulsed attachments or distinct femoral 

impression after valgus trauma, but soft tissues are not depicted on radiographs, thus 

radiographs only indirectly shows ligament injury through malalignment of tibia and 

femur [Figure 4] [20,98].After ACL reconstruction, radiographs may be used to 

assess tunnel widening and tunnel location [51]. The tunnels are visualised as areas of 

low density in the early phase and with thin lines of sclerosis in the later phase. 

Fixation devices are relatively easy to assess if they are radio opaque. The 

weaknesses of radiographs include the lack of direct assessment of soft tissues. It is 

not possible to directly evaluate the graft, the other knee ligaments, menisci nor the 

articular cartilage. During examination, slight rotation can lead to reduced diagnostic 

accuracy, therefore they are susceptible to examiner variability. Finally, radiographs 

are 2D summation images of bony structures, with a lot of overlapping of anatomy. 

CT - computer tomography 

CT delivers very detailed images of submillimetre thickness, and the data can be used 

to create 3D images of bony structures. This means tunnel locations can be easily 

determined without worrying about overlapping anatomic structures. However, it 

exposes the patient to a slightly higher radiation dose compared to radiographs [99]. 

The tunnels are seen in detail even on early post-operative imaging. The tunnels and 

radio-opaque fixation devices are easily depicted, as is any tunnel widening. The 

images do not depict soft tissues with sufficient detail and thus graft intactness cannot 

be readily assessed. Visualisation of menisci requires injection of contrast into the 

joint, making it an invasive procedure, and thus it has some limitations considering 

assessment prior to ACL graft revision surgery. 

MRI - magnetic resonant imaging 

The main advantage of MRI is being the most superior modality to evaluate soft 

tissue structures. After trauma the ligament rupture can be evaluated directly [Figure 

4]. The ACL graft is visualised as a high signal band in the first 2 years after 

reconstruction, running obliquely in the knee joint, in the front (coronal) plane from 

lateral femur to centre of the tibia and in the lateral (sagittal) plane from the posterior 

femur to the midportion of the tibia. In the later phases it becomes low signal, 
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resembling the native ACL. If cases of graft rupture, this is seen as a defect in the 

(graft) band or, later, as a complete lack of structures in the central part of the knee. 

MRI also shows any bone contusions as well as the status of the other ligaments, the 

menisci, and the articular cartilage. There is a disadvantage due to the artefacts 

created by any inserted metallic fixation devices. Exact depiction of cortex is 

necessary to correctly measure tunnel location.  Further, femoral tunnel location is 

not easy to measure on MRI due to lack of 3D depiction of the condyles [99]. 

 

Figure 4a. Lateral radiograph showing the distinct lateral femoral impression 

associated with valgus trauma and ACL rupture. 4b. Coronal radiograph showing a 

Segond fracture (blue arrow) and fibula head avulsion (red arrow), which have 95% 

and 90% association, respectively, with ACL rupture. 4c. The ACL is thickened (blue 

arrow) with a ruptured part of the ligament lying anteriorly (red arrow). 

Measurement methods         

Early on, post-operative imaging after ACL reconstruction was mostly used to 

evaluate the surgical outcome with regards to the degree of correctness of tunnel 

placement. Soon, several various measurements methods were devised for examiner-

independent measurement to quantify and compare success between varying 

techniques. Tunnel placements were viewed in the frontal and lateral plane. Tibial 

tunnel assessment was relatively straightforward, with ratio measurements in the 

lateral plane, and angle measurements [43,52,127]. The femoral tunnel placement 
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could be assessed according to a clock view in the frontal plane, either at 

approximately 11o’clock for the right knee and 1 o’clock for the left knee. It was also 

considered to be in correct location if located at the intersection of lines from the 

posterior cortex and intercondylar roof (called Blumensaats’ line) in the 

sagittal/lateral plane[7,16,143]. Graft tunnel angles were also measured as an 

indication of correct/incorrect tunnel placement. Finally, graft angles, i.e. the angle of 

the part of the graft in between the tunnels in the knee joint on MRI were used to 

indicate successful reconstruction [8,100].  Studies were done on radiographs, CT and 

MRI, and the results were compared without knowledge about the actual differences 

in measurements or modalities. 

Recent developments and challenges in post-operative ACL imaging 

CT and MRI technology has developed over the years. CT used to be a modality 

deemed to give too much radiation. However, in recent years, the technical 

improvements have reduced the radiation doses for a knee examination to the levels 

of a few days background radiation [99]. 3D CT is gaining in popularity as is depicts 

osseous structures with fine details [1,5,142].  MRI is now able to deliver 3D images 

as well, however the images are not as sharp as on CT [32]. Future developments will 

highly likely be able to create thinner slice images sharp enough to compete with CT 

and render soft tissue structures in greater detail. However, this is yet to reach clinical 

practice.  Ultrasound has no room in evaluation of ACL, due to its’ deep location 

between two large osseous structures. 

Currently, the most challenging issues regarding ACL reconstruction imaging are 

how imaging can keep up with new clinical queries and incorrect usage of modality 

and measurement methods. Since the introduction of direct visualisation of ACL 

fibres, preoperative ACL imaging focussed on diagnosing the ACL rupture and 

concomitant injuries of collateral ligaments, menisci, and bone bruises. In recent 

years there has also been a focus on the anterolateral ligament structure, as a key 

stabilising structure, although this is hotly debated in the orthopaedic community 

[24,27,34,35,45,71,92,124,125].Lack of repair of concomitant injuries is considered 

as a possible cause for failure of the ACL reconstruction. It is a challenge for 
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radiologists to assess even more subtle structures on MRIs. Further, the different 

methods and imaging modalities used to assess post-operative success of surgery 

hampers direct comparison of study results. It is not possible to directly compare 

results from two studies presenting “good tunnel placement” when they are 

performed with different modalities and measurement methods. Some groups used 

grid measurement, others used angles, some used radiographs, others CT and others 

again MRI [5,7,42,72,79]. The abundance of various possibilities caused confusion, 

especially for radiologists, trying to choose measurement methods to apply in their 

reports [36,44,86,94]. There is no orthopaedic consensus on which modality is the 

gold standard. The 1998 Amis and Jakob paper recommends grid measurements. The 

radiological papers referred mainly to measurement angles, and thus the orthopaedic 

and radiological communities were divergent paths. Several questions were yet to be 

answered. 

- How does choice of modality influence measurements?  

- Where are the normal ACL insertions?  

-Which modality is best to answer clinical queries in post-operative imaging and pre-

revision imaging?  

-Which measurement methods are best correlated to clinical practice?  

-What can imaging expect to find on post-operative examinations? 

With these queries in mind, the aims of the thesis are outlined in the following 

section. 
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Aims of thesis: 

1. To compare differences in modalities in assessing femoral and tibial tunnel 

placements (study I). 

2. To determine where the native ACL insertions are (study II). 

3. To compare usefulness of graft angles versus grid measurements in clinical 

practice (study III). 

4. To examine the type of ACL graft findings and extent of concomitant injuries to 

vital structures on MRIs prior to ACL revision (study IV). 
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Methods 

Study design 

Studies I, III and IV were based on retrospective case series of patients who had 

undergone ACL reconstruction and/or ACL graft revision between 2011 and 2018. 

The patients had been routinely examined with pre-operative radiographs and/or post-

operative CT. Some patients had also been examined with MRI either post-

operatively or prior to revision surgery as part of the clinical work-up. The patients 

were not exposed to additional radiological examinations for scientific purposes.   

Study II was a systematic review of literature examining native ACL footprint 

locations.  

All four studies were performed at Radiology department of Haraldsplass Deaconess 

Hospital in Bergen, Norway. 

Inclusion and exclusion criteria         

In study I, patients, who were clinically assessed for possible ACL revision surgery 

were eligible for inclusion. We included patients examined with at least two or more 

modalities post-operatively, radiographs, CT and/or MRI between January 2011 and 

June 2013. Patients with only one type of examination were excluded.  

Study II included papers which examined the location of ACL native footprints in the 

femur according to the Bernard & Hertel grid and in the tibia according to the Stäubli 

& Rauschning ratio. Papers which addressed post-operative imaging or not assessing 

normal footprints were excluded. 

Study III was mainly a CT study. It included patients who either had undergone (A) 

post-operative CT after a primary ACL reconstruction between January 2011 and 

December 2015; or (B) pre-operative CT prior to revision surgery between January 

2011 and December 2017. Patients had undergone reconstruction with either bone-

patellar-tendon or hamstring grafts. Cases of other graft types, such as quadriceps 

were excluded. Knees with multiple ligament reconstructions or known graft ruptures 

were also excluded. 
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Study IV evaluated knee MRI findings in patients prior to ACL graft revision 

between January 2014 and November 2018. Patients with previous reconstructions of 

additional ligaments such as posterior cruciate ligament or medial and lateral 

collateral ligaments were excluded.  

Imaging assessment          

In studies I, II, and III the reference measurement methods applied were the Bernard 

& Hertel grid to assess femoral tunnel placement and the Stäubli & Rauschning ratio 

to assess the tibial tunnel placement. The Bernard & Hertel grid measures the 

placement in two directions, the deep-shallow and the high-low. The measurement is 

performed in the lateral or sagittal view in all three modalities. On radiographs, first 

the intercondylar roof is identified, then the centre of the tunnel centre is identified, 

and placement given as a percentage in the deep-shallow direction only, as the high-

low direction was not easily depicted. On CT, a 3D virtual image was first created 

using software available on the CT machine (AW Server, GE Healthcare, Chicago, 

Illinois, USA). Then, the medial femoral condyle was digitally cut off, and the image 

rotated to show the medial side of the lateral femoral condyle. Both the deep-shallow 

and high-low measurements was performed. 

On MRI the single slice which showed the tunnel opening was chosen and the 

measurement was done only in the deep-shallow direction as the high-low could not 

be done correctly due to the lack of 3D visualisation.  

The Stäubli & Rauschning ratio is only done in one direction (anterior-posterior) and 

is also performed in the lateral or sagittal view. On radiographs, the ratio is done 

directly on the lateral image. On CT and MRI, the midline image with the tunnel 

opening had to be chosen first, before doing the actual measurement.  

For study III, graft angles were assessed in the coronal and sagittal planes. In the 

coronal plane, the slice where most of the graft was visible was chosen, then a 

horizontal line was placed along the tibial plateaus, and the angle between then was 

measured. In the sagittal plane, the slice where most of the graft was visible was 
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chosen, then a horizontal line was placed along the tibial surface and the angle 

between them was measured. 

For study II, a search was performed in PUBMED on November 29th in 2015. The 

Search terms were the following: ‘‘ACL’’ and ‘‘insertion anatomy’’ or ‘‘anatomic 

footprint’’ or ‘‘radiographic landmarks’’ or ‘‘quadrant methods’’ or ‘‘tunnel 

placement’’ or ‘‘cadaveric femoral’’ or ‘‘cadaveric tibial.’’ Papers in a Non-English 

language were excluded. Studies that reported the location of the ACL footprint 

according to the Bernard & Hertel grid in the femur and the Stäubli & Rauschning 

method in the tibia were included. From these the reported means of measurements 

were collated and weighted means, weighted medians, and weighted 5th and 95th 

percentiles were calculated. 

 

Statistics  

All data was analysed primarily with SPSS Statistics (version 22 to 24, IBM Corp., 

Armonk, NY, USA). In study I the Bland-Altman analysis were done in R 3.0.2. (R 

Core Team, general public license). The plots were created in MATLAB 7.10 

(MathWorks Inc., Asheboro, NC, USA.). Mean, standard deviations, medians and 

ranges were used for descriptive analysis of demographics.  

Intraclass correlation coefficients (ICC) were used to assess inter-observer agreement 

between each modality and between each measurement method [120]. The scale used 

for the ICC interpretation was the following: values below 0.75 poor agreement, 

between 0.75 and 0.90 moderate agreement, and above 0.90 high agreement [64, 

107]. The variations between the modalities were assessed with Bland–Altman plots 

of the means of measurement pairs and were presented with their limits of agreement. 

Missing values were left empty and not estimated.  

In study II, the data from each included study were compiled to produce weighted 

means, weighted medians, and weighted 5th and 95th percentiles were calculated of 

the anatomic femoral and tibial centres. 
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In study III, mean, standard deviations, medians and ranges were used for descriptive 

analysis of tunnel placements in ACL reconstructed knees. Means of previously 

reported graft angles were collated and weighted means were calculated in SPSS. The 

dichotomous variables were assessed with the Pearson chi-squared test. The 

combined assessments of grid in two directions or angles in two planes were 

classified in ordered categories (anatomic, partial anatomic, or nonanatomic), which 

were assessed with the weighted kappa. Continuous variables were assessed with the 

analysis of variance or Kruskal-Wallis test according to an assumed normality of 

data. 

In study IV, chi-squared was performed for simple dichotomous results, Fishers exact 

test for multiple variables, Cohens Kappa was used for agreement in two categories, 

and weighted Kappa for agreement in multiple categories.  

Ethics  

The regional ethics committee reviewed study protocols which was the basis for 

study I and IV in 2014 and decided that the projects did not need to be evaluated by 

the committee (REK 2014/2149) to be undertaken. Study III was evaluated in 2017 

(REK 2017/2434) and informed consent was also waived. 
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Summary of findings 

Paper I. Measurements of tunnel placements after anterior cruciate ligament 

reconstruction — A comparison between CT, radiographs, and MRI. 

 

Aims: to compare measurements of tunnel placements between radiographs, CT, and 

MRI in a clinical setting and to assess if measurements between modalities could be 

used interchangeably, further, to assess the reliability of each modality in order to 

suggest a possible “gold standard” modality. 

Patients: 46 patients were included, 30 females and 16 males, who had undergone 46 

radiographs, 45 CTs, and 30 MRIs.  

Methods: Two experienced radiologists measured tunnel placements in the femur and 

tibia according to the Bernard & Hertel grid and Stäubli & Rauschning ratio. The 

high-low direction was only possible to perform on 3D CT. For each measurement, 

the inter-observer agreement was assessed with intraclass correlation coefficients 

(ICC). Then inter-modality differences were visualised with Bland–Altman plots. In 

addition, radiation data for CT studies were collected. 

Results: the inter-observer agreement for the femoral tunnel in the deep-shallow 

direction was ICC=0.64 on radiographs, ICC=0.86 on CT and ICC=0.75 on MRI. For 

the high-low direction on 3D CT the ICC was 0.84. 

The tibial tunnel inter-observer agreement for radiographs was ICC=0.92, for CT-mip 

ICC=0.91, for CT and MRI ICC=0.87.  

There was no difference between modalities in the femoral tunnel measurements. In 

the tibia, there were differences between radiographs and CT (−3.9%), radiographs-

MRI (−3.6%), CT–CTmip (3.2%) and CTmip–MRI (−3.1%).  

The effective radiation doses varied between 0.025 and 0.045 mSv, mean and median 

was 0.033 mSv. 

Conclusions: CT is the most robust modality, for tunnel measurements according to 

the Bernard & Hertel grid and Stäubli & Rauschning ratio, as complete assessment of 
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all measurements are only possible on CT, as well as it is consistently reliable. There 

are differences in the tibial ratio measurements between summation images 

(radiographs or CT-mips) and single slice images (midsection slice of MRIs or CTs). 

Effective radiation dose from CT was lower than previously reported.  

 

Paper II. The anatomic centres of the femoral and tibial insertions of the 

anterior cruciate ligament a systematic review of imaging and cadaveric studies 

reporting normal centre locations.  

 

Aims: to define the anatomic centres of the femoral and tibial ACL footprints and 

assess the mean, median, and percentiles of normal centres through a systematic 

literature search. 

Included studies: 16 studies on cadaveric specimens or a healthy population which 

had measured the ACL footprints according to the Bernard & Hertel gird in a total of 

218 knees and Stäubli & Rauschning ratio in a total 300 knees were included.  

Methods: A literature search was performed in the PubMed/Medline database in 

November 2015. The search terms for the systematic review were as follows: 

‘‘ACL’’ and ‘‘insertion anatomy’’ or ‘‘anatomic footprint’’ or ‘‘radiographic 

landmarks’’ or ‘‘quadrant methods’’ or ‘‘tunnel placement’’ or ‘‘cadaveric femoral’’ 

or ‘‘cadaveric tibial.’’ Only English-language articles reporting the location of the 

ACL footprint according to the Bernard & Hertel grid in the femur and the Stäubli & 

Rauschning method in the tibia were included. 

Results: The first search result showed 1393 articles. After reviewing the titles, 203 

were examined further. After reading the abstracts, 40 were chosen for reading the 

full text articles, and finally after reading the full texts the final 16 articles were 

selected. A flow chart showing the process is presented below. 
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Data collated from these articles was used to calculate the anatomic location of the 

ACL footprints in the femur and tibia. 

The weighted mean of the femoral insertion centres was 29% in the deep-shallow 

(DS) direction and 35% in the high-low (HL) direction. The weighted median was 

26% for DS and 34% for HL. The weighted 5th and 95th percentiles for DS were 

24% and 37%, respectively, and for HL were 28% and 43%, respectively. The 

weighted mean of the tibial insertion centre in the anterior-posterior direction based 

on measurements in 300 knees was 42%, and the weighted median was 44%; the 5th 

and 95th percentiles were 39% and 46%, respectively. 

Conclusion: There are slight differences between the weighted means and medians in 

the femoral and tibial insertion centres. To avoid falsely excluding acceptable post-

operative tunnel placement by using a “too narrow” window of anatomic footprint 

location based solely on means, we recommend the use of the 5th and 95th 

percentiles when considering postoperative placement to be ‘‘in or out of the 

anatomic range”. 
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Paper III. Computed Tomography Assessment of Anatomic Graft Placement 

After ACL Reconstruction A Comparative Study of Grid and Angle 

Measurements 

 
Aims: To compare the ability of grid measurements and angle measurements to 

identify anatomic versus non-anatomic tunnel placement on CT performed in patients 

undergoing ACL reconstruction. 

Patients: A total of 100 knees undergoing primary reconstruction with a hamstring 

graft (HAM group), 91 undergoing reconstruction with a bone–patellar tendon–bone 

graft (BPTB group), and 117 undergoing revision ACL reconstruction (REV group) 

were included. These patients were examined at the radiology department from 2011 

to 2017. 

Methods: On CT tunnel placement according to Bernard & Hertel and Stäubli & 

Rauschning were assessed in all knees. In the same knees femoral and tibial graft 

angles were measured. Then the tunnel placements were deemed “anatomic” or “non-

anatomic” according to normal ranges previously published.  

Results: The combined Bernard & Hertel and Stäubli & Rauschning grid classified 

10% of the HAM group, 4% of the BPTB group, and 17% of the REV group as non-

anatomic (P < .001). The angle assessment in the coronal and sagittal planes 

classified 37% of the HAM group, 54% of the BPTB group, and 47% of the REV 

group as non-anatomic. The weighted kappa between angle measurements and grid 

measurements was low in all groups (HAM: 0.009; BPTB: 0.065; REV: 0.041). 

Conclusion: The agreement between grid measurements and angle measurements was 

very low. The angle measurements seemed to overestimate nonanatomic tunnel 

placement. Grid measurements were better in identifying mal-positioned grafts.  

 



 

33 

 

Paper IV. ACL graft revision: graft rupture main MR imaging finding prior to 

revision. 

 

Aims: To assess the rate and types of knee pathology on MRI in ACL reconstructed 

knees and to assess the rate of anterolateral capsular structure (ALLC) pathology. We 

hypothesized that MRI would demonstrate a similar rate of ACL graft, meniscal 

and/or chondral pathology, as previously observed in surgical/clinical studies. 

Patients: 171 patients who underwent pre-operative knee MRI and first revision ACL 

surgery between January 2014 and November 2018 were eligible for inclusion in the 

study.  Patients with previous multi-ligamentous surgery were excluded, leaving 119 

patients who were finally included (51 males, 68 females). Average age was 27.5 

years (SD 8.7). 

Methods: MRIs were examined for pathology in graft, ligaments and ligamentous 

structures, menisci and articular cartilage. Inter-rater variability was calculated in 100 

randomly chosen cases. Intra-rater variability was assessed in 50 randomly chosen 

cases, with a minimum 3-month time gap between first and second assessment. 

Results: No MRI pathology was seen in 17% of knees. Complete graft rupture was 

seen in 24%, partial rupture in 22% and intact graft fibres in 54%. MCL was 

abnormal in 6%, LCL in 3%, anterolateral capsule in 28%. The PCL was abnormal in 

8%. Pathology was seen in both menisci in 2%, lateral meniscus 10% and medial 

meniscus 34%. Articular cartilage was normal in 87% and abnormal in 13%. 

The inter-rater agreement for assessing structures was graft = 0.795, menisci = 0.742, 

MCL = 0.712, cartilage = 0.522, LCL = 0.490, PCL = 0.135 and anterolateral capsule 

= 0.100. The intra-rater agreement for assessing structures was graft = 0.701, LCL 

injury = 0.645, PCL = 0.634, menisci = 0.560, MCL = 0.540, anterolateral capsule = 

0.399, cartilage = 0.187. 

Conclusion: MRI demonstrated that graft rupture was the single most common 

abnormal finding. Concomitant pathology was observed on MRI in about two thirds 
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of cases. Inter-observer variability on MRI is acceptable for assessment of graft 

fibres, but not for anterolateral capsule pathology.  
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Discussions 

Methodology 
Study design 

Three studies, paper I, III and IV, are retrospective studies. In studies I and III, the 

aims of the studies were comparisons of measurements or measurement methods. 

Assessment of surgical outcome was not an objective, thus a prospective study with 

clinical correlation would have been of no consequence.  

Each modality yields a specific image or images. Radiographs are 2D images with 

summation of the examined structure. CT images are 2D tomography (or slices) of 

the examined area. The data from CT can further be used to create 3D images. MRI 

are 2D slices of the examined structure which are obtained in 3 planes. Some MRI 

machines are able to deliver data for 3D images, but our studies did not include 3D 

MRI images, as 3D images of MRI cannot be produced in retrospect. 

One could argue that the quality of the image is dependent on the radiographer 

performing the examination, and would be a significant bias, as in a clinical setting 

the examinations were performed by very many different radiographers. However, all 

examinations are performed according to a specified protocol, even in the clinical 

setting in our department, reducing the bias. Further, radiographs and CTs are 

relatively straight forward to perform. MRI is challenging, even with a standardised 

departmental examination protocol, as a poorly performed examination could deliver 

slightly flexed or rotated images, which in turn may affect measurements. We 

anticipated this and chose to use measurement methods that were independent of the 

level of knee flexion.  

The strength of study I was that it is the first study examining and comparing post-

operative tunnel placements in three modalities: radiographs, CT, and MRI. All 

previous studies which compared graft tunnel placements had only compared a 

modality with anatomic measurements or two pairs. We also studied the inter-

observer variability in all measurements, which at times is not performed in smaller 
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studies [26,65]. No measurements were performed in consensus, so the true value of 

examinations is a clinical setting could be evaluated. Certain variability is expected in 

manual measurements, but good correlation (>75-90%) is expected before 

implementing measurements into clinical or radiological practice [64,103]. In the 

future, artificial intelligence software will highly likely relieve radiologists from this 

tedious manual task, while producing repeated measurements with even higher 

accuracy. To date no such software or application has been made available for 

general and/or universal usage in musculoskeletal radiology. 

Paper II was the first study collating anatomic centres of the native ACLs in a high 

number (>200) of knees. Two physicians, one orthopaedic surgeon and one 

radiologist, chose the papers to be included in consensus, which reduced bias, as both 

related fields were covered. This ensured that we did not by mistake exclude papers. 

Several previous studies had undertaken anatomic and imaging studies reporting 

means of the insertion sites. However, when means with standard deviations are 

reported, the outliers affect the results. Thus, the reported means vary considerably. 

Normal ranges in population are usually given as percentiles, and normal is 

considered between 5th and 95th percentiles. As many previously published studies 

were small, medians and percentiles would have been meaningless to present. 

We collated and presented the results as weighted means, and most importantly 

weighted medians, including 5th and 95th percentiles of insertion sites. This was a 

strength of our paper. Further, we specifically chose papers which had used the exact 

same measurement methods. Previous studies had incorrectly mixed tibial 

measurements from Amis and Jakob line and Stäubli & Rauschning ratio. We 

demonstrated the differences between these two methods and included only Stäubli & 

Rauschning measurements. In addition, we were able to use measurements from 

studies reporting measurements from both summation images and single slices, as we 

adjusted the tibial measurements according to our results from Study I. These 

considerations led to robust results which can be used in clinical settings. 

Paper III compared post-operative graft placements measured with two different 

methods, grids versus angles. This was performed in over 300 knees in three groups, 
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making it one of the largest studies comparing these methods in a clinical setting. The 

grid methods are independent of knee flexion, whereas the graft angles were 

developed to be performed in full extension [8]. However, as it was a retrospective 

study, it was not possible to make sure that all knees were perfectly extended. As 

mentioned before, all our radiological examinations are performed using a 

standardised protocol, and full extension is standard for CT knee. Thus, what may be 

considered a bias against graft angles, was the main point of the study, that 

measurements that are so dependent on knee flexion should not be used to indicate 

anatomic graft reconstruction when applied in a clinical setting.  

A strength of paper IV was that it was an MRI study including over 100 patients. We 

studied the inter-observer variability in 100 examinations and intra-observer 

variability in 50 examinations. We looked at well-known and well-studied structures 

such as ACL grafts and the larger ligaments, and menisci, as well as “new” structures 

such as the anterolateral ligament. The study highlighted the need to thoroughly 

assess new ideas before implementing them into clinical practice. The ALLC, which 

consists of multiple layers of capsular structures, is considered to contain a proper 

ligament, and termed it anterolateral ligament (ALL). ALLC or ALL is a hotly 

debated structure [71,92,124]. There is no doubt that it exists anatomically, but the 

clinical importance in knee function is debated. Further the usefulness of MRI for the 

diagnosis of ALLC/ALL is not yet proven. We know that implementing new 

evidence knowledge into clinical practice takes several years [88].  Indication for 

ALL reconstruction is still unclear [126]. 

To date there are two major groups regarding the ALLC/ALL. Those who believe it 

is important and those who do not. Some authors, including a consensus group has 

recommended the reconstruction of the ALL in primary ACL reconstruction [45,125]. 

Other groups recommend that the ALL should be reconstructed only when there high 

grade rotational instability or for revision surgery [126,136]. Radiologists have 

expressed doubt in the ability of MRI to visualise the ALL and the ability of 

radiologists to identify and correctly report findings [82,106].  
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The diagnoses of just ACL injury or additional ALL injury is mainly clinical and 

based on a surgeons’ clinical examination. MRI, which often is used as a conjunct to 

solidify a diagnosis or finding seems to have little or low value in the diagnosis of 

ALL. Our study showed that the structure is elusive and difficult to assess, even for 

experienced radiologists. We examined MRIs which were performed several months 

after initial surgery. Only a handful of examinations were performed due to a new 

trauma. Chronic ALL injuries may have been missed, this is a drawback of our study, 

especially as a recent study showed that the time between injury and MRI, affects 

MRIs ability to visualise ALL pathology [46]. However, our results were in 

concordance with another recent study which generally low inter-observer reliability 

[106].  

Results           
Differences in modalities         

As long as humans perform measurements, there will be slight variations in the 

results. The variations can be minimised by applying standardised methods.  After the 

introduction of the Bernard & Hertel grid and Stäubli & Rauschning ratio in the 

ESSKA consensus paper in 1998, studies that followed often examined the 

transference of measurements from anatomy to radiology [2,36,74].  Using the 

recommended measurement methods, several studies were published, using varying 

modalities. Most studies had compared anatomic measurements and measurement 

from one modality. There were no significant differences between anatomy and each 

of the modalities. However, one cannot automatically conclude that if there are no 

difference between anatomic and radiographic measurements or no differences 

between anatomic and CT measurements, there must be no difference between 

radiographic and CT measurements, even though “anatomy” is considered the gold 

standard and reliable measurement. 

Radiological modalities cannot be used interchangeably, and if used so, this can be a 

source of unwanted (and unnecessary) variation in measurements. In the radiological 

community this is known and accepted as a fact. Radiographs are a 2D depiction of 

anatomy and, thus, summation images, with overlaying structures which in turn 
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reduces the image details. CT delivers images in three planes and can be used to 

create detailed 3D images of skeletal structures but requires the administration of 

iodine contrast to depict soft tissue structures in greater detail. CT images can also be 

“reconstructed” in varying thickness. It is conventional that newer CT machines base 

their images on 0.5 or 0.625mm thickness, which is the smallest size of a single 

detector which records information. However, images used to review pathology are 

reconstructed with 2mm thickness, as this improves image quality. In addition, CT 

can “reconstruct” images emphasizing different structures, like soft tissues and bone, 

yielding slightly different images [Figure 4a/b]. 

 

Figure 5. a CT images soft tissue image and bone image of the same slice in the same 

knee. Note the slightly blurred bone cortex on soft tissue image (arrows), and the lack 

of soft tissue detail on bone image (image b). 

MRI does not expose patients to radiation. It does not require contrast administration 

for depiction of soft tissues, but cortical structures which are necessary for tunnel 

placement location are difficult to see, and the cortex is usually thicker compared to 

CT. There are also many variations in the way images are created on MRI, with the 

main types being T1 and T2 images (often with suppression of fat) [Figure 5a/b]. 

MRI image slabs are normally 2-3mm thick, and thinner images are normally not 

used in musculoskeletal imaging.   
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Figure 6.a/b Sagittal T1 weighted and T2 weighted images.  

 

We showed that there were significant differences in measurements performed on 

summation images and slabs or slices. We quantified the mean difference in 

measurement between the two types of images and explained how this difference 

occurred.  

                                                                             

Figure7. The difference in tibial tunnel 

placement changed if the centre line 

included the whole of the tibial depth 

(red arrow), as in for instance 

radiographs, or just the mid-section as 

in for instance MRI (black arrow).      
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Hence, we maintain that the first step for improving tunnel placement quantification 

is to not apply measurements from one modality automatically on another modality 

(unless comparative studies exist). 

Defining normal footprints of ACL       

The anatomy of ACL footprint in the femur and tibia is well known and has been 

studied in detail [89,96].  The footprints are recognised as fan like or “ducks’ foot” 

attachment of fibres to the bone. Ligaments attach to the bone through the 

periosteum, so called “indirect” attachment or do not go through the periosteum, so 

called “direct attachment”. The direct attachment is stronger as the periosteum is 

replaced by several layers of tissue (uncalcified fibrocartilage, then calcified 

fibrocartilage) [13,89]. The ACL has both direct and indirect attachments to the 

femur and tibia. In recent years there has been a discussion about which part of the 

ACL is most important to reconstruct, with some stating that the indirect fibres are 

not as important to reconstruct [122]. Further, the drilled tunnel by default is a 

rounded structure while the native ACL footprints are triangular or oval like 

[121,123]. So, a reconstructed ACL cannot exactly replicate a native footprint. 

Anatomic reconstruction aims to place tunnel as close as possible to the native 

location. To achieve this the surgeon drills the tunnel centre at the centre of the native 

ACL footprint.  The orthopaedic community are used to “validating” surgical 

techniques with imaging methods, especially if they were trying to implement 

changes in surgical techniques [17,80,137].  

Many anatomic and imaging studies had measured the ligament centres. Very often 

the results were similar, but sometimes the differences were substantial, up to 17% 

difference in ratios [36,70,91,143]. Thus, if a scientific study which used one 

published paper as a “gold standard” for anatomic placement and validated their 

surgery as successful, could very well be unsuccessful if they had applied a “gold 

standard” from a different paper. Another issue was also the presentation of means 

with or without standard deviations [17,28]. In epidemiology, the use of percentiles is 

common to include most of the variations in the population and classify them as 

“within normal range”.  The anatomic gold standards from previous in literature had 
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not presented the data as percentiles. Our results paved the way for the use of these 

wider ranges in order to not exclude tunnel placements in the lower and higher 

percentiles. The presentation of 5th and 95th percentiles of femoral and tibial tunnel 

insertions was novel in this context.  

 

Differences in measurement methods  

      

From the early 90s onwards, several studies suggested measurement methods for 

post-operative graft tunnel placement assessment on radiographs. Aglietti et al. 

suggested to report the placement of the femoral tunnel as a ratio along the 

Blumensaats’ line and the tibial tunnel as a ratio in the anterior posterior direction [7]. 

Aglietti used the cortical margins in both the femur and tibia as the outer points for 

measurements. For the tibia, the reference line was placed along the tibial plateaus. 

[Figure 8a]. Harner et al. suggested reporting placements as a ratio along the 

Blumensaats line, but using only the intercondylar line as outer points in the femur 

and the only using the midportion of the tibia as reference [Figure8b][48]. The 

Bernard & Hertel grid added the placement in the “high-low” direction and reported 

the femoral tunnel placement as a quadrant, not just a ratio along one direction [Fig 

[Figure 8c][16].     
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Figure 8a-c. The differences between measurement methods:  Aglietti (a), Harner (b) 

and Bernard & Hertel (c). 

Stäubli & Rauschning suggested an anterior-posterior ratio for the tibia, but the 

reference line was at the maximum depth of the tibial condyles, not along the surface 

of the plateaus [127]. Amis and Jakob recommended using the medial tibial plateau  

for the anterior posterior tibial tunnel placement [Figure 9] [11].  

 

 

 

 

 

 

 

Figure 9. Stäubli & Rauschning line (lower line) and Amis and Jakob line (along the 

medial plateau, upper line). 
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The use femoral tunnel placement as “clock face” was also commonly used. The 

“clock face” is supposed to be placed on images where the intercondylar roof serves 

as top point, and the opening of the tunnel is seen. However the location of the 

intercondylar roof can be difficult on slice images even when it is in full extension, so 

that is can be easily placed slightly off centre [figure 10] [38,47,75]. Some use the 

clock face in knee flexion, while other use it when in extension [68]. Although, 

extensively used  this method is no longer recommended [38,47]. 

 

  

Figure 10a. Superimposed clockface on a radiograph performed in full extension. b 

The clock face on a CT coronal view in full extension. The intercondylar roof is not 

seen in the same image as the tunnel opening, making the use of the clock face 

difficult.  

In addition to the measurement of the tunnel openings in femur and tibia, studies also 

suggested using tunnel angle measurements in the coronal plane on radiographs. In 

the femur the tunnel angle was measured with the femoral shaft as the centre line 

[figure 11] [57]. In the tibia the tibial plateaus were the centre line [figure 11][55]. 
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 Figure 11. The tunnel wall is discernible as a thin sclerotic line (blue arrows). The 

tunnel angles are measured along the centre line.  

Since the mid-2000s with increasing availability of MRI, graft angles in the coronal 

and sagittal planes were also used to quantify tunnel placement [Figure 12][8].The 

problem with graft angles is that they were conceived in the era of transtibial 

technique, and the main aim was to avoid too steep graft angle, as the aim was 

“isometric” graft placement. This concept has since fallen out of favour and the aim 

now is “anatomic” reconstruction [66]. However, radiologist still recommend using 

graft angles to indicate tunnel placement [42,140]. 
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Figure 12. Graft seen as dark structure in the centre of the knee joint on sagittal and 

coronal images. Angles are measured along the centre line of the graft. 

 

In the clinical context, the myriad of various measurements methods created a huge 

challenge. However, some methods very quickly fell out of favour due to difficulties 

in clinical application. The Harner method had low reliability, probably due to 

difficulty in deciding where the outer points of the ratio were to be placed. The clock 

method was also abandoned because it was difficult to implement as slight flexion in 

the knee altered the position of the tunnel as well as difficulties of using a clock when 

the femoral notch was “deep” or “elliptical”. Tunnel angles were devised in the 

transtibial reconstruction era [8]. In this period, the aim was to place tunnel so that 

the grafts were isometric. Isometric graft placement was aimed at keeping the ACL 

graft the same length during knee function [12]. This approach was associated with 

issues of over constrained rotational instability and anatomic graft placement replaced 

the concept of isometry [39,109]. Graft angles were useful for evaluating isometric 

graft placement with the transtibial technique [8].  Recent study showed that angles 

are clinically less important than measuring tunnel apertures [128]. In addition, graft 

angles, in both planes,  are susceptible to significant variations due to even slight 

flexion in the knee joint [44]. 
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Therefore, the measurement methods selected to examine our hypothesis in our 

studies were the Bernard & Hertel grid and the Stäubli & Rauschning ratio. These 

two methods are independent of the degree of knee flexion. Further the tibial 

measurement was independent of the slope of the tibial plateaus. This means they are 

easier to implement in clinical practice, as patients often have slightly varied knee 

flexion or even hyperextension while being imaged. For accurate evaluation of the 

femoral tunnel 3D CT images should be used as shown in paper I.  

However, we should bear in mind that this is still not perfect. The overlaying of the 

grid on the exposed lateral femoral condyle is still a 2D grid on a 3D image. The 

depth of the condyle cannot be assessed correctly based on current measuring 

methods. One can correlate the problem to depicting the earth globe on a 2D surface. 

In clinical practice, to date, there are no available automated tools or methods which 

can deliver 100% accurate measurements. This will remain the residual limitation of 

imaging until newer methods are developed. Until then, consensus on which modality 

and measurement methods we chose, will improve comparability of results from 

future studies. 

 

MRI assessment  

      

MRI is considered the gold standard for knee imaging, especially for assessing deep 

lying structures. In the acute setting, radiographs are considered necessary, while 

MRIs are reserved for unclear cases or after major knee trauma [69]. Compared with 

arthroscopy findings the accuracy of MRI in assessing primary ligament injuries is 

high, and the spectrum and rate of MRI findings are well established [29].  MRI 

findings in post-operative patients have not been assessed so far. One small study has 

examined findings after arthroscopy and/or clinical examination [62]. They reported a 

high rate of concomitant injuries, up to 80%. Our findings differed as we reported a 

lower rate of concomitant injuries, about 60%, and higher rate of graft ruptures, 

almost 50%. Considering the controversial anterolateral capsular ligament injuries, 
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we found lower rates of injury compared to previous published rates (44-88%) 

[24,35]. Our study also examined the inter-observer and intra-observer variability, 

putting a spotlight on the issue of accuracy in imaging.  Clinical examination and/or 

arthroscopy are the gold standards for assessing knee pathology. When the clinical 

examination is performed by an experienced clinician the additional usefulness of 

MRI is limited [10].However, MRI does have a small role in imaging knee trauma as 

sensitivity of a physical examination can be moderate for diagnosis of lateral 

meniscus pathology [97]. 

Post-operative ACL imaging has two major aspects; first, early imaging to assess or 

evaluate issues such as graft placement or complications of fixation devices, and 

second, imaging prior to revision. In the radiological community, graft angles are 

commonly assessed on MRI, however we have shown that graft angles are a poor 

indicator of anatomic placement. We have also shown that tunnel placements in the 

femur are not readily assessed on MRI, only tibial tunnel placement is reliably 

assessed on MRI [99]. Fixation devices are usually assessed on radiographs or CT 

due to the artifacts metal generates on MRI [119]. Thus, the usefulness of MRI in the 

early post-operative phase or as a baseline examination is not substantiated.  

Clinical evaluation after ACL reconstruction can be challenging. The patient may 

present with loss of motion in the knee joint and differentiating between the various 

underlying causes can be difficult. Several causes, such as inadequate rehabilitation, 

capsulitis, non-anatomic graft placement or focal arthrofibrosis (Cyclops lesions), 

presence of unaddressed concomitant lesions,  to mention a few, have been reported 

as contributing factors [40,126]. Further, after a new trauma or due to non-anatomic 

graft placement,  a total rupture, partial rupture or just elongation of the graft may 

occur [56,115]. In recent years, the importance of unaddressed meniscal ruptures and 

possible effect of the rupture of anterolateral structures are also considered important 

to evaluate on post-operative MRIs [19,125]. However, surprisingly, we found that 

graft rupture was a frequent finding.   In the setting of partial graft injury, MRI is 

crucial, as it can show partial rupture of graft fibres, which would be difficult to 
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assess clinically as the intact part of the graft will still yield support to the knee joint 

during examination.   

MRI assessment is, unfortunately, not straightforward. MRI criteria for graft 

ligamentisation and graft impingement are well known and established. Saupe et al. 

showed that the graft may have high signal up to 2-4 years after reconstruction [116]. 

As ligamentisation can take years, care should be taken to avoid over-diagnosing 

early post-operative changes in the graft as partial graft rupture. Howell et al. 

reported MRI criteria for graft impingement in 1991, and impingement is still 

considered important today [54,118].  Graft impingement on MRI can be seen as 

slight “bowing” or s-shaped graft when the knee joint is extended. The graft seems 

like it is elongated on MRI in the sagittal view. This is a criterium which is based on 

the radiologists’ subjective evaluation. The assessment of ACL graft rupture is easier 

because the fibres are either ruptured or they are not. This variation in diagnosis was 

reflected in the difference in inter-observer reliability, which was significantly lower 

in graft impingement. Herein lies the one major challenge in MRI assessment. 

Radiologists are very effective in measuring accurately, as we presented in our first 

study. The inter-observer reliability was as high as 0.96 [83].  However, when it 

comes to evaluation without measurements, as is very common in radiology, the 

reliability can be very low.  

This difficult topic in imaging is rarely addressed, and when it is addressed, it can 

simply deflate all faith in imaging. The few studies that assessed inter-observer 

variability on imaging in more than 100 radiologists have shown that the variation is 

substantial and also can lead to varied treatment and follow-up [93,139]. This, 

understated aspect has to be considered when discussing the low rate of inter-

observer reliability of the subtle structure ALLC (or ALL). The structure is hotly 

debated [24,27,34,35,45,125].  As previously reported by Porrino et al. and Marshall 

et al., we showed that the diagnosis of ALL has very low reliability.  

Is the low reliability of reporting radiologists an underlying cause for this on-going 

debate? One can expect that the ALL structure is, highly likely, still incorrectly 

assessed on MRI in the clinical setting. This may lead to underdiagnosis and under-
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repair. The radiologists lack of experience or knowledge may be the cause. We saw 

that even when the radiologists were especially searching for this pathology, it was 

not easy to evaluate. It might explain why the clinical studies reporting correlation of 

concomitant ALL injury to surgical outcome after ACL reconstruction often have 

opposing results.  

 “Established” knowledge is reliably reported. We found that MRI is useful in 

assessing graft, as inter-rater and intra-rater variability was acceptable for graft 

evaluation. “New” structures such as ALL will probably take decades to reach the 

same accuracy as ACL (both native and graft) imaging has. It has been reported that 

new information needs on average 17 years to be implemented [88]. Orthopaedic 

surgeons, but also radiologists, need to be aware of the delay in implementing new 

knowledge into imaging. 
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Conclusions 
 

- Many various measurement methods for evaluation of graft tunnel placements 

exist. 

- The methods which are independent of knee flexion, such as grid 

measurements according to Bernard & Hertel and tibial ratio according to 

Stäubli & Rauschning, should be used. 

- CT is currently the most robust modality for measuring graft tunnel 

placements. 

- Femoral graft tunnel placed between 24%-37% in the deep-shallow direction 

and 28%-43% in the high-low direction can be considered “anatomic”. 

- Tibial graft tunnel placed between 39% - 47% in the anterior-posterior 

direction in the midline of a CT or MR image can be considered “anatomic”. 

- Graft angle measurements are useless in the evaluation of tunnel placements. 

They do not correlate to anatomic graft tunnel placements and should no 

longer be used. 

- MRI is reliable for well-established structures such as ligaments and menisci, 

but currently not for newer anatomic structures such as ALLC.  
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Future perspectives 

 
Imaging has had, currently has, and will continue to play an important part in ACL 

reconstruction. As surgical techniques continue to develop, imaging will be used to 

evaluate efficacy of the surgery.   

We have shown that mixing modalities and measurement methods causes confusion. 

In recent years, more studies are using CT and the recommended grid and ratios, 

though a minority still use inferior modalities and out of date methods. Other groups 

have started their research in exploring new technology. High-end MRI machines are 

now able to create sharper 3D MR images. As this technology develops, MRI may be 

able to replace 3D CT, which would be a great step forward, if this could give us 

comparable depiction of tunnel placements, with the added depiction of soft tissue, 

and removal of the radiation dose to the patient. The question is probably not if, but 

when?  

We recommend discontinuation of measurements of graft angles and clock face to 

evaluate tunnel placements. However, these concepts are very strongly ingrained in 

the radiological community and literature. A greater effort must be made to 

disseminate this knowledge and educate radiologists and surgeons alike. Radiologists 

have to actively seek knowledge in related fields, as we only see what we know. 

Orthopaedic surgeons can aid this push in knowledge by actively collaborating with 

their radiological colleagues.  

We have shown that it is difficult for radiologists to confidently recognise new 

structures on MRI, especially when the anatomy and pathology is subtle. This means 

that the role of MRI in ALLC may never transpire, and it may forever remain an 

elusive structure on imaging.  On the other hand, MRI technology is forever 

improving and new possibilities such as diffusion tensor imaging may open an 

entirely new field in musculoskeletal imaging. It is important to not dismiss new 

knowledge and possibilities, and to keep an open, but critical and forever inquisitive 

mind. 
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The physicist Max Planck wrote in 1948 in his “Scientific autobiography”:  

“Eine neue wissenschaftliche Wahrheit pflegt sich nicht in der Weise durchzusetzen, 

daß ihre Gegner überzeugt werden und sich als belehrt erklären, sondern vielmehr 

dadurch, daß ihre Gegner allmählich aussterben und daß die heranwachsende 

Generation von vornherein mit der Wahrheit vertraut gemacht ist.” 

(From Wissenschaftliche Selbstbiographie, Johann Ambrosius Barth Verlag, Leipzig, 

1948, S.22) 

 

Translated into English it rendered: A new scientific truth does not triumph by 

convincing its opponents and making them see the light, but rather because its 

opponents eventually die, and a new generation grows up that is familiar with it. 

 

(From Scientific autobiography, and other papers: with a memorial address on Max 

Planck. Philosophical Library, 1949, pg. 25, Planck, M., Laue, M. von, & Gaynor, F.) 
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Background:A non-anatomic placement of the femoral and tibial tunnels may affect outcome in anterior cruciate
ligament (ACL) reconstructions. Tunnel placements are validatedwith varying imagingmodalities.We compared
measurements of tunnel placements between radiographs, computed tomography (CT) andmagnetic resonance
imaging (MRI) in a clinical setting, assessed the reliability and aimed to decide on a possible “gold standard”.
Methods: All patients who had undergone at least two of three modalities, radiographs, MRI and CT, after ACL
reconstruction between January 2011 and June 2013were included. Two radiologistsmeasured tunnel placements
according to a standardized protocol. Interobserver agreementwas assessedwith intraclass correlation coefficients
(ICC), the intermodality differences with Bland–Atman plots. Radiation data for CT studies were collected.
Results: Forty-six CTs, 45 radiographs and 30 MRIs were reviewed. Femoral inter-observer agreement for radio-
graphs was ICC = 0.64, for CT ICC = 0.86 and for MRI ICC = 0.75. Tibial inter-observer agreement for radiographs
was ICC=0.92, for CT-mip ICC=0.91, for CT andMRI ICC=0.87.No intermodality differences between the femoral
measurements were observed. In the tibia, there were differences between radiographs and CT (−3.9%),
radiographs-MRI (−3.6%), CT–CTmip (3.2%) andCTmip–MRI (−3.1%). The effective radiation doses varied between
0.025 and 0.045 mSv, mean and median was 0.033 mSv.
Conclusion: There were differences in the tibial measurements between summation and single slice images. Only
3D–CT depicted the femoral tunnel in both directions. CT was consistently reliable in both femoral and tibial
measurements. Effective radiationdose fromCTwas lower thanpreviously reported. CT can safely be used in routine
clinical practice to evaluate tunnel placements after ACL reconstruction.
Level of evidence: Level III — study of diagnostic test without a universally applied “gold standard”.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Anterior cruciate ligament (ACL) reconstruction is a commonly
performed procedure and the results are generally good. However,
poor or unsatisfactory outcome sometimes occur and may be related
to the surgical technique, inadequate rehabilitation or a recurrent
trauma [1,2]. Knowledge and recognition of common early and late
complications improve the clinical outcome [1]. There is still some
debate aboutwhich surgical technique is superior in the long term, as out-
comes seem to be similar [3]. The outcome after surgical reconstruction is

commonly evaluated by a physical examination as well as by using
clinical scoring systems [4]. Since the publication of the proceedings of
an European workshop on ACL reconstruction in 1998 which indicated
“optimal”positions of the ACL placements in the femur and tibia, cadaver
studies have examined the anatomic footprint of the ACL [5–10]. In re-
cent years non-anatomic tunnel placement is recognized as an important
cause for failed surgery [2]. Evaluation of the “anatomic” placements of
the tunnels necessitates the use of imaging studies. Post-operative
imaging has increased in popularity [11–21].

The accuracy of imaging to depict tunnel placements has been vali-
dated for radiographs, CT andMRIs in cadaver studies [22,23]. As neither
the orthopedic nor radiological community has agreed on a gold stan-
dard for imaging tunnel placements post-operatively, tunnel place-
ments have been evaluated with varying modalities in clinical practice
as well as in scientific studies [21,22,24]. The variations in modalities
and the type of measurement methods used make comparison of
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different studies difficult. In addition, one study indicates a difference in
visibility andmeasurements (of tunnel width) betweenmodalities [25].
The difference in reported femoral tunnel placements between studies
has been as high as 15% [12]. Some of the differences are undoubtedly
due to varying surgical techniques [26], but some of the differences
may be due to systematic variations between modalities. Knowledge
about how the modalities compare with each other in clinical practice
is still scarce. The objective of our study was to comparemeasurements
of tunnel placements between radiographs, CT andMRI in a clinical set-
ting and to assess if measurements between modalities can be used in-
terchangeably. A further objective was to assess the reliability of the
methods by evaluating the inter-observer agreement and to suggest a
possible “gold standard”.

2. Material and methods

All patients clinically assessed for potential ACL revision surgery
between January 2011 and July 2013 who had undergone at least two
of the following threemodalities: CT,MRI and radiographs, were includ-
ed. Patients who had only undergone one modality were excluded. The
study was presented to the regional ethics committee. As all imaging
examinations had been requested as part of the regular treatment
plan in a clinical setting, patient informed consent was waived. All
images were retrieved from our picture archiving system (IMPAX,
Mortsel, Belgium). The radiographs and MRIs were performed on
various 1.5 T systems, the CTswere all performed on a 64-slicemachine,
technical parameters tube voltage 100 kV, tube current 80 mA, slice
thickness of 0.6 mm.

2.1. Method for measurements

Two qualified musculoskeletal radiologists (radiology experience
12 years and N25 years) assessed the tunnel placements, blinded to
each other's findings, according to the following methods:

(1) The placement of femoral tunnelwasmeasured in the Bernard and
Hertel grid indicating both the deep–shallow and high–low
measurements on volume rendered 3D-CT [27]. On MRI and
radiographs, only the deep–shallow measurements could be
assessed as the high–low centers of the femoral tunnel could not
be confidently measured on neither radiographs nor MRIs (Fig. 1).

(2) The tibial tunnel placement was measured using the method first
described by Stäubli and Rauschning, and popularized by Amis
and Jakob (the Amis and Jakob line) [23,28] (Fig. 2). For CT there
was a further measurement on a minimal intensity projection im-
ages (CTmip) (Fig. 2d).

All tunnel placement measurements were recorded as percentages.
The measurements were performed in the IMPAX.

2.2. Radiation data collection

The radiation doses from radiographic examinations could not be
retrieved from the system. CT radiation doses in each casewere collected
from IMPAX and recorded as dose length products (DLP) in milliGray
centimeter (mGycm). The effective dose (ED) was calculated using the
correlation coefficient for CT knee in adults: 0.0004, using the recom-
mended formula ED = DLP × 0.0004 [29].

2.3. Statistical analysis

The inter-observer agreement of each modality and of each mea-
surement method was calculated as intraclass correlation coefficients
(ICC) [30]. The scale used for the ICC interpretation was: values below
0.75 poor agreement, between 0.75 and 0.90 moderate agreement,
and above 0.90 high agreement [31].

The variations between the modalities were assessed with Bland–
Altman plots of the means of measurement pairs, and given with their
limits of agreement. Missing values were left empty and not estimated.
All computationswere done in SPSS 22 (IBM, New York, USA) or R 3.0.2.
(R Core team, general public license). The plotswere created inMATLAB
7.10 (MathWorks Inc., Asheboro, NC, USA.).

3. Results

Thirty of the included patients had undergone all three modalities, another 15
patients had undergone CT and radiographs, and one patient had undergone only CT
and MRI. Thus, a total of 46 patients were included; 30 females and 16 males, median
age of 23.5 years and mean age of 27 years (range 17–52 years).

Fig. 1. Themethod for measurement of the femoral tunnel placement. a) 3DCT image, tunnel placement in the deep–shallow and high–low directions indicatedwith a box/grid. b) Deep–
shallow measurements on a lateral radiograph. c) Deep–shallow measurements on a sagittal MRI. d = deep, s = shallow, h = high, l = low.
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3.1. Inter-observer agreement

3.1.1. Femoral tunnel
The agreement was poor for the deep–shallowmeasurements on radiographs (ICC=

0.64). The agreement formeasurements onMRI (ICC=0.75) and 3D-CT (ICC=0.86)was
moderate. The additional inter-observer measurement of the femoral tunnel in the
high–low directions on 3D-CT yielded also moderate agreement (ICC = 0.84) (Table 1).

3.1.2. Tibial tunnel
The agreement of the tibial tunnel measurements was high for radiographs

(ICC = 0.92) and CT-mip (ICC = 0.91), and moderate for CT (ICC = 0.87) and MRI
(ICC = 0.87) (Table 1).

The 95% confidence intervals of the ICCs of the femoral and tibial measurements are
presented in Table 1.

3.2. Inter-modality measurements

3.2.1. Femoral tunnel
The means of the tunnel placement measurements in the three modalities were: ra-

diographs 32.1 (SD 6.4%), 3D-CT 33.4 (SD 7.4%) and MRI 30.6 (SD 7%). The Bland–Altman
plots for the measurement pairs radiographs–CT, radiographs–MRI and CT–MRI are pre-
sented in Fig. 3. There were negligible differences between the pairs radiographs–3D–CT
(mean difference 1.47), radiographs–MRI (mean difference −0.32) and 3D–CT–MRI
(mean difference 2.27), and a broad range in the limits of agreement.

3.2.2. Tibial tunnel
The means of the tibial tunnel placement were; radiographs 43.9 (SD 6.7%), CT 47.8

(SD 7.3%), CTmip 44.6 (SD 6.7%) andMRI 48.3 (SD 6.7%). The Bland–Altman plots for tibial

tunnel are presented in Figs. 4 and 5. Here the differences between themeasurement pairs
were larger than in the femur; radiographs-CT (−3.92%), radiographs–MRI (−3.63%),
CT–CTmip (3.24%) and CTmip–MRI (−3.14%). The differences between the remaining
pairs were notably smaller; radiographs–CTmip (−0.76%) and CT–MRI (0.13%). These re-
mainingmeasurements were alsomore clustered andwith narrower limits of agreement.

3.3. Radiation dose

The CT radiation doses varied from DLP 63 to 112 mGycm. The average and median
were 83.4 mGycm and 83.7 mGycm respectively. The ED varied from 0.025 to
0.045 mSv. The average and median ED were both 0.033 mSv.

4. Discussion

4.1. Femoral tunnel

In the femoral tunnel, the agreements for the measurements were
moderate for MRI and CT, with CT as the most reliable. Agreement of
the measurements on radiographs was poor in our study. This is in
accordancewith previous studies [24,32]. The poor agreement on radio-
graphs is foremostly explained by the often barely discernible tunnel
center on post-operative radiographs (Fig. 1b). Further, it may be diffi-
cult to choose the correct depth of the femoral condyles if the images
are performed in a slight rotation. The barely moderate agreement for
MRI is caused by the difficulty in visualization of the cortical border, as
the overlying cartilage is depicted on MRI (Fig. 1c). On 3D–CT the
round or oval opening is clearly seen on the lateral condyle wall and
the cortical border is clearly depicted (Fig. 1a). 3D-CT is also the only
image modality and image type which can depict the femoral tunnel
placement in both the deep–shallow and high–low directions. The
differences between the modalities were small and not statistically
significant. However Bland–Altman plots are based on the means of
the two raters. Thus, some of the differences may be diminished, and
small variations between the modalities may be obscured.

4.2. Tibial tunnel

Regarding the tibial tunnel, the agreements in the measurements
were high on radiographs and CTmip, and moderate on CT and MRI.
The center of the tunnel is easily visualized on all modalities. The ante-
rior and posterior borders of the tibia, on radiographs, MRI and all CT

Fig. 2.Measurement of the tibial tunnel placementmeasured as a ratio of the tibial depth in the anterior–posterior directions. a) Ona lateral radiograph. b)Ona CT-mid-sagittal slice image.
c) On a mid-sagittal MRI. d) On a CT-mid-sagittal image.

Table 1
The ICCs of the inter-observer agreement given with their 95% confidence interval.

ICCa 95% CIb

Femoral tunnel (deep–shallow measurements)
Radiographs 0.64 0.2 to 0.8 Poor
3DCT 0.86 0.67 to 0.93 Moderate
MRI 0.75 0.49 to 0.88 Moderate

Femoral tunnel (high–low measurements)
3DCT 0.84 0.70 to 0.91 Moderate

Tibial tunnel (anterior–posterior measurements)
Radiographs 0.92 0.86 to 0.96 High
CT 0.87 0.75 to 0.93 Moderate
CTmip 0.91 0.82 to 0.95 High
MRI 0.87 0.56 to 0.95 Moderate

a Intraclass correlation coefficient, agreement.
b Confidence interval.
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image types, are clearly depicted, although rotation may influence the
measurements on radiographs (Fig. 2a, b and d) [32]. In clinical practice
on CT and MRI the reader has to scroll through the examination and
subjectively decide on which image the center of the tunnel is. The
images are normally two to three millimeters thick, and if the readers
choose different images, the measurements may be influenced by the
difference in the chosen center. In addition the cortical border is blurry
on MRIs (Fig. 2c). Radiographs and CTmips are single (summation)
images, while CTs and MRIs represent slices. On the slice images the
inter-condylar notch marks the posterior border of the measurement,
whereas in summation images the condyles are the posterior border

(Fig. 6). The intermodality differences seen between the tibial measure-
ment pairs radiographs–MRI, radiographs-CT and CT–CTmip are due to
these inherent properties of the modalities, image type and anatomy.

4.3. Clinical significance of results

The clinical significance of differences in measurements of tunnel
placements is still undetermined. However, acceptable ranges of
placements for the femoral tunnel and tibial tunnel have been defined
[23,27]. Thus, deviations from the recommended 43% in tibia may be
considered as inadequate tibial tunnel placement.We noted a systematic

Fig. 3. Bland–Altman plots for intermodality measurements of the femoral tunnel placement in the deep–shallow directions. Slight differences were seen between the first two pairs, but
no difference between radiographs and MRI. a) Radiographs–3DCT. b) 3DCT–MRI. c) Radiographs–MRI.

Fig. 4. Bland–Altman plots of the intermodality measurements of the tibial tunnel in the anterior–posterior directions. The differences were significant between these modalities. a) CT–
CTmip. b) CTmip–MRI. c) Radiographs–CT. d) Radiographs–MRI.
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intramodality difference in our series. In 44 out of 46 measurements be-
tween CT and CTmip, the measurements on single slice CT were slightly
larger (approximately 3%) than the measurements on CTmip images.
This trendwas also observed in the other inter-modality pairs, the single
slice measurements yielded larger measurements than the measure-
ments on summation images. This is due to the anatomy of the tibial
plateau, and should be considered when comparing measurements, see
also Section 4.2 above.

Similar findings have been observed in previous studies, but as the
types of measurements andmodalities used varied, a direct comparison
is difficult. Hoser et al. indicated that the femoral tunnel placement was
a “trend deeper” on CT images compared with radiographs, but used a
different method for measurement and did not quantify the difference
[21]. Jenny et al. observed mean differences of three percent in the
femoral tunnels and of six percent in the tibial placements between
CT and radiographs, but their measurements were based on the
identification of inserted metal pins in cadavers [22]. Meuffels et al.
compared tunnel positions on radiographs, CT images and 3DCT images,
but assessed only the reliability of the modalities and not the tunnel
placement measurements [24].

4.4. The radiation dose

CT as routine post-operative imaging after ACL reconstruction is
often not recommended, with higher radiation mentioned as the main
argument against using CT [24,33]. Previous studies have shown that
by adjusting the technical parameters of CT machines for extremity
imaging it is possible to reduce the effective radiation dose to the knee
to the same level as three views of radiographs in adults [34]. Another
study reported an average ED for knee radiographs of 0.005 mSv and a
chest radiograph of 0.1 mSv [35]. In our series the average radiation
dose was much lower than previously reported. We found that a CT
knee leads to less radiation exposure than a standard chest radiograph,
and equaled about six knee radiographs.

4.5. Strengths and limitations

To the best of our knowledge, this is the first study comparing tunnel
placementmeasurements in clinical practice in both the femur and tibia
in three modalities: CT, radiographs and MRI. We also used the mea-
surement methods recommended by Amis and Jakob following an in-
ternational scientific workshop on ACL reconstruction [28]. However,
the smaller number of MRI examinations compared with radiographs
and CTs may have influenced the statistics as some measurement
pairs were left empty. Further, the lack of an established gold standard
for tunnel placement assessments complicated the statistical analysis.

In conclusion, the main finding in the current study is that due to
the difference in the tibial measurements between summation and
single slice images, the tibial tunnel measurements cannot be used
interchangeably between image types and modalities. Only 3DCT can
depict the femoral tunnel in both directions. CT showed consistent sta-
ble inter-observer reliability in both femoral and tibial measurements.
With recommended use of dose modulating techniques, it is possible
to reduce radiation doses to the same level as chest radiographs. We
therefore suggest the use of CT as the “gold standard” for evaluating
tunnel placements after ACL reconstruction in routine clinical practice
as well as in clinical studies.
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Computed Tomography Assessment
of Anatomic Graft Placement
After ACL Reconstruction

A Comparative Study of Grid and Angle Measurements
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Investigation performed at Haraldsplass Deaconess Hospital, Bergen, Norway

Background: The anatomic placement of anterior cruciate ligament (ACL) grafts is often assessed with postoperative imaging. In
clinical practice, graft angles are measured to indicate anatomic placement on magnetic resonance imaging, whereas grid
measurements are performed on computed tomography (CT). Recently, a study indicated that graft angle measurements could
also be assessed on CT. No consensus has yet been reached on which measurement method is best suited to assess anatomic
graft placement.

Purpose: To compare the ability of grid measurements and angle measurements to identify anatomic versus nonanatomic tunnel
placement on CT performed in patients undergoing ACL reconstruction.

Study Design: Case series; Level of evidence, 4.

Methods: A total of 100 knees undergoing primary reconstruction with a hamstring graft (HAM group), 91 undergoing recon-
struction with a bone–patellar tendon–bone graft (BPTB group), and 117 undergoing revision ACL reconstruction (REV group) were
assessed with CT. Grid measurements of the femoral and tibial tunnels and angle measurements of grafts were performed. Graft
placement, rated as anatomic or nonanatomic, was assessed with both methods. Pearson chi-square, analysis of variance,
Kruskal-Wallis, and weighted kappa tests were performed as appropriate.

Results: The grid assessment classified 10% of the HAM group, 4% of the BPTB group, and 17% of the REV group as nonan-
atomic (P< .001). The angle assessment classified 37% of the HAM group, 54% of the BPTB group, and 47% of the REV group as
nonanatomic. The weighted kappa between angle measurements and grid measurements was low in all groups (HAM: 0.009;
BPTB: 0.065; REV: 0.041).

Conclusion: The agreement between grid measurements and angle measurements was very low. The angle measurements
seemed to overestimate nonanatomic tunnel placement. Grid measurements were better in identifying malpositioned grafts.

Keywords: anterior cruciate ligament; tunnel position; grid measurement; graft angles

Anterior cruciate ligament (ACL) reconstruction has
evolved constantly since it was implemented in clinical
practice more than 3 decades ago.8 There have been many
shifts in surgical trends, with the current focus mainly
on anatomic reconstruction.29 Intraoperative and postoper-
ative imaging is often used to assist and assess graft
placement.13,32,44 Various imaging modalities and mea-
surement methods are used to improve the reproducible
assessment of postoperative graft placement.31,41,47 There
is no consensus on which modality to use in clinical

practice. The matter is further complicated by the fact that
different measurement methods are used on the various
radiological modalities for the assessment of femoral graft
placement.10,24,34 The Bernard andHertel grid is commonly
used on radiographs and 3-dimensional computed tomogra-
phy (3D-CT), with accurate measurements of graft place-
ment in the high-low direction only possible on 3D-CT.31

There is less controversy regarding tibial graft placement,
as measurements are performed in a similar manner in all
modalities.4,31,42 The angle measurements of graft inclina-
tion or obliquity are mostly performed on magnetic reso-
nance imaging (MRI).3,4,27,38,46

Studies have examined the normal anatomic locations of
ACL insertions, which are used to judge postoperative
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placement as either “in” or “out” of the anatomic
range.1,9,11,19,25,34,35 Several studies have also examined
the normal angles of the native ACL.3,5,36 In clinical prac-
tice, it is common to perform MRI before primary surgery
and revision to assess the soft tissues to detect/identify con-
comitant meniscal injuries and other ligament injuries.
However, some also suggest the use of CT and 3D-CT to aid
surgery planning before revision.15,37 In the clinical set-
ting, it is not common to measure graft angles on CT or
grids on MRI, and the methods are not used interchange-
ably. Recent studies show that there is little difference
between angle measurements performed on MRI and CT
and grid measurements performed on CT and 3D-MRI.10,14

However, it is not known if both methods are equally adept
in identifying the nonanatomic placement of grafts.

The purpose of this study was to compare the angle and
grid measurements of identifying anatomic versus nonan-
atomic tunnel placement on CT performed in patients
undergoing ACL reconstruction. We hypothesized that the
rate of nonanatomic placement would be higher in patients
undergoing revision surgery compared with primary ACL
reconstruction and aimed to assess the ability of the mea-
surement methods to follow this hypothesis.

METHODS

The study was approved by a regional ethics board, and
informed consent was waived. From January 2011 to the
end of December 2017, all patients who were evaluated for
revision ACL reconstruction and who underwent preoper-
ative CT at a single institution were initially included ret-
rospectively. Revision surgery was planned in patients who
had an unsatisfactory function in the knee joint; examples
of underlying causes were nonanatomic placement of graft
tunnels, impingement due to grafts that were too long, or
stretching of grafts during a new injury. Potential patients
were identified through a manual search in our PACS sys-
tem. From January 2011 to December 2015, we also
included 100 postoperative CT scans obtained after pri-
mary reconstruction with either a hamstring graft or
bone–patellar tendon–bone (BPTB) graft consecutively as
separate groups. Postoperative CT was performed within 1
to 3 days after ACL reconstruction with the knee in full
extension. Exclusion criteria were cases with multiple lig-
ament reconstructions, known graft ruptures, or cases with
previous revision. Graft ruptures were excluded, as graft

angle measurements were not possible to perform without
visible fibers on CT.

In all cases, sex, age, and knee laterality were recorded.
In addition, the type of surgical technique (anteromedial
portal or transtibial) and type of graft used (hamstring or
BPTB) were recorded. In the revision group, months since
primary ACL reconstruction were also recorded. All CT
examinations were performed in our institution on either
a 64- or 512-detector CT machine (GE Healthcare). All
images were acquired at a tube voltage of 100 kV and tube
current of 80 mA with a 0.625-mm slice thickness and
reconstructed in 3 planes in soft kernel and bone algo-
rithms with 2 mm–thick slabs.

In all cases, measurements of femoral tunnel placement
were performed according to Bernard and Hertel, tibial
tunnel placement was assessed according to Stäubli and
Rauschning,42 and ACL graft angles were measured in the
coronal and sagittal planes. All measurements were per-
formed and recorded by an experienced radiologist (>15
years; A.P.P.) (Figure 1). Normal ranges for the grid mea-
surements were defined according to the literature: femoral
deep-shallow, 24% to 37%; femoral high-low, 28% to 43%;
and tibial anterior-posterior, 39% to 46%.33

The normal ranges for ACL coronal and sagittal angles
were calculated from weighted means from the literature,
as presented in Table 1.3,4,36 The normal coronal angle
ranged from 66� to 74�, and the normal sagittal angle ran-
ged from 47� to 59�. Graft placement in the coronal and
sagittal planes was dichotomously recorded as “in” or “out”
of the anatomic range. Within the revision group, the
abovementioned analyses were also performed comparing
the anteromedial portal and transtibial surgical approach.

Statistical Analysis

Dichotomous variables were assessed with the Pearson
chi-square test. The combined assessments of grid in 2
directions or angles in 2 planes were classified in ordered
categories (anatomic, partial anatomic, or nonanatomic),
which were assessed with the weighted kappa. Continuous
variables were assessed with the analysis of variance or
Kruskal-Wallis test according to an assumed normality of
data.48 P < .05 was considered significant, but the Bonfer-
roni adjustment was used for multiple comparisons (P ¼
.05, .017, or .08). All statistical analyses were performed
with SPSS (v 25.0; IBM).
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RESULTS

All of the primary ACL reconstructions were performed
with the anteromedial portal approach. Within the study
period, 137 patients were reviewed for revision surgery, of
whom 6 were excluded from our study because of a rup-
tured graft and 14 were excluded because of multiple revi-
sions. The final total of included revisions was 117 cases
(REV group). Within the study period for primary ACL
reconstruction, 100 cases of reconstruction with a ham-
string graft (HAM group) and 91 cases of reconstruction
with a BPTB graft (BPTB group) met the inclusion
criteria.

There were statistically significant differences in the dis-
tribution of sexes between the 3 groups, with more female
patients in the REV group (62%) compared with the HAM
(45%; P¼ .01) and BPTB (44%; P¼ .008) groups. There was
no difference between laterality and age between groups
(Table 2).

Grid Assessment

In both the pairwise comparisons of grid measurements
and in the rates of anatomic versus nonanatomic place-
ment, there were significant differences in the femoral
deep-shallow measurement between the HAM and BPTB

groups and between the HAM and REV groups (P< .001 for
both), in which the mean graft placement in the REV group
was shallower than in the HAM and BPTB groups (31% vs
24% and 28%, respectively). The nonanatomic rate in the
HAM group was significantly worse than in the BPTB and
REV groups (P � .002 for both) (55% vs 20% and 34%,
respectively). In the femoral high-low direction, for both the
measurement and the rate of anatomic placement, there
were significant differences between the HAM and REV
groups and between the BPTB and REV groups (P < .001
for all). A significant difference was seen in the tibial mea-
surement between the HAM and REV groups but not in the
comparison of the rate of tibial nonanatomic versus ana-
tomic placement. The rate of anatomic placement according

TABLE 1
Normal Ranges of Coronal and Sagittal Graft Angles

No. of
Patients

Coronal
Angle, deg

Sagittal
Angle, deg

Ahn et al3 (2007) 50 65.9 58.7
Ayerza et al5 (2003) 30 – 51.0
Reid et al36 (2017) 188 74.3 46.9
Weighted mean (5th-95th

percentile) 72.5 (66-74) 49.5 (47-59)

TABLE 2
Demographics of Study Groupsa

Primary
HAM

(n ¼ 100)

Primary
BPTB
(n ¼ 91)

REV
(n ¼ 117)b P Value

Age, y .037 (K-W)
Mean ± SD 29 ± 10 26 ± 10 29 ± 9
Median (range) 28 (14-54) 23 (14-53) 26 (15-55)

Sex, n (%) .009c (w2)
Female 45 (45) 40 (44) 73 (62)
Male 55 (55) 51 (56) 44 (38)

Laterality, n (%) .588 (w2)
Right 53 (53) 42 (46) 61 (52)
Left 47 (47) 49 (54) 56 (48)

aBolded P values indicate a statistically significant difference
between groups (P < .05). BPTB, bone–patellar tendon–bone;
HAM, hamstring; K-W, Kruskal-Wallis; REV, revision anterior
cruciate ligament reconstruction.

bMonths to revision surgery: mean ± SD, 50 ± 40; median
(range), 36 (9-228).

cPairwise (overall P < .017): HAM-BPTB: P ¼ .88, HAM-REV:
P ¼ .01, BPTB-REV: P ¼ .008.

Figure 1. (A) Femoral tunnel measurement according to Bernard and Hertel, as depicted on 3-dimensional computed tomography
(CT) after reconstruction with a hamstring graft. The graft tunnel center is 27% in the femoral deep-shallow direction and 35% in the
femoral high-low direction (anatomic placement). (B) Tibial tunnel measurement according to Stäubli and Rauschning.42 The graft
tunnel center is 46% in the tibial anterior-posterior direction (anatomic placement). (C) Coronal angle measurement on CT (example
of reconstruction with a bone–patellar tendon–bone graft), measured at 80� (nonanatomic placement). (D) Sagittal angle measure-
ment, measured at 60� (nonanatomic placement).
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to the combined grid assessment (anatomic, partial ana-
tomic, and nonanatomic) differed significantly between the
BPTB and REV groups but not between the HAM and
BPTB groups or between the HAM and REV groups (Table
3 and Figure 2A).

Angle Assessment

The coronal angle measurement differed significantly
between the HAM and BPTB groups (P< .001) and between
the BPTB and REV groups (P ¼ .010), while the rate of

TABLE 3
Results of Grid Measurementsa

Primary HAM (n ¼ 100)b Primary BPTB (n ¼ 91) REV (n ¼ 117) P Value

Femoral deep-shallow, % <.001c (K-W)
Mean ± SD 24 ± 7 28 ± 5 31 ± 8
Median (range) 24 (7-49) 28 (18-47) 30 (11-56)
Graft placement, n (%) <.001d (w2)

Nonanatomic 55 (55) 18 (20) 40 (34)
Anatomic 45 (45) 73 (80) 77 (66)

Femoral high-low, % <.001e (K-W)
Mean ± SD 28 ± 9 30 ± 7 20 ± 14
Median (range) 29 (0-43) 30 (18-49) 20 (1-65)
Graft placement, n (%) <.001f (w2)

Nonanatomic 45 (45) 36 (40) 84 (72)
Anatomic 55 (55) 55 (60) 33 (28)

Tibial, % .010g (ANOVA)
Mean ± SD 46 ± 6 47 ± 4 49 ± 8
Median (range) 46 (34-61) 48 (35-60) 48 (24-69)
Graft placement, n (%) .138 (w2)

Nonanatomic 57 (58) 53 (58) 81 (69)
Anatomic 42 (42) 38 (42) 36 (31)

Combined grid assessment, n (%) <.001h (w2)
Nonanatomic 10 (10) 4 (4) 20 (17)
Partial anatomic 79 (80) 67 (74) 89 (76)
Anatomic 10 (10) 20 (22) 8 (7)

aBolded P values indicate a statistically significant difference between groups (P < .05). ANOVA, analysis of variance; BPTB, bone–
patellar tendon–bone; HAM, hamstring; K-W, Kruskal-Wallis; REV, revision anterior cruciate ligament reconstruction.

bn ¼ 99 for tibial and combined grid assessment.
cPairwise (overall P < .017): HAM-BPTB: P < .001, HAM-REV: P < .001, BPTB-REV: P ¼ .11.
dPairwise (overall P < .008): HAM-BPTB: P < .001, HAM-REV: P ¼ .002, BPTB-REV: P ¼ .22.
ePairwise (overall P < .017): HAM-BPTB: P ¼ .413, HAM-REV: P < .001, BPTB-REV: P < .001.
fPairwise (overall P < .008): HAM-BPTB: P ¼ .447, HAM-REV: P < .001, BPTB-REV: P < .001.
gPairwise (overall P < .017): HAM-BPTB: P ¼ .620, HAM-REV: P ¼ .008, BPTB-REV: P ¼ .301.
hPairwise (overall P < .005): HAM-BPTB: P < .09, HAM-REV: P ¼ .412, BPTB-REV: P < .001.

Figure 2. (A) Distribution of femoral and tibial tunnel placement between the 3 study groups. Differences in the mean (B) coronal
angle and (C) sagittal angle between the 3 study groups. Blue line ¼ hamstring; red line ¼ bone–patellar tendon–bone; yellow line ¼
revision anterior cruciate ligament reconstruction.
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anatomic versus nonanatomic placement differed between
theHAMandBPTBgroups (P¼ .001) and between theHAM
and REV groups (P< .001). The sagittal angle measurement
did not differ between the 3 groups, but the rate of anatomic
placement differed significantly between the BPTB and REV
groups. The combined angle assessment (anatomic, partial
anatomic, and nonanatomic) did not differ significantly
between groups (Table 4 and Figure 2, B and C).

Agreement Between Measurement Methods

The overall agreement, assessed with the weighted kappa,
between the grid and angle measurements to identify ana-
tomic, partial anatomic, or nonanatomic was low. The pair-
wise agreement between groups was also low (Table 5).

Comparison of Results Between
Surgical Approaches

Within the REV group, we further examined the differ-
ences between the transtibial and anteromedial portal
approaches. In the femoral deep-shallow measurement
and coronal angle measurement, there were no differ-
ences. In the femoral high-low measurement, tibial mea-
surement, and sagittal angle measurement, there were
significant differences (P > .001, P ¼ .001, and P ¼ .002,
respectively). The rate of anatomic graft placement
according to the combined grid assessment also differed
between the surgical approaches. However, no differences
were observed in the combined angle assessment with
regard to anatomic versus nonanatomic placement (Table
3 and Figure 3). The agreement, assessed with the

TABLE 4
Results of Angle Measurementsa

Primary HAM (n ¼ 100)b Primary BPTB (n ¼ 91)c REV (n ¼ 117) P Value

Coronal angle, deg <.001d (K-W)
Mean ± SD 72 ± 5 76 ± 5 74 ± 7
Median (range) 72 (59-86) 77 (53-86) 75 (51-87)
Graft placement, n (%) <.001e (w2)

Nonanatomic 44 (44) 61 (68) 81 (69)
Anatomic 56 (56) 29 (32) 36 (30)

Sagittal angle, deg .019 (K-W)
Mean ± SD 65 ± 7 63 ± 5 62 ± 8
Median (range) 64 (51-89) 62 (53-74) 63 (27-82)
Graft placement, n (%) .011f (w2)

Nonanatomic 83 (83) 67 (74) 76 (65)
Anatomic 17 (17) 24 (26) 41 (35)

Combined angle assessment, n (%) .137 (w2)
Nonanatomic 37 (37) 49 (54) 55 (47)
Partial anatomic 52 (52) 31 (34) 47 (40)
Anatomic 11 (11) 11 (12) 15 (13)

aBolded P values indicate a statistically significant difference between groups (P < .05). BPTB, bone–patellar tendon–bone; HAM,
hamstring; K-W, Kruskal-Wallis; REV, revision anterior cruciate ligament reconstruction.

bn ¼ 100 for combined angle assessment.
cn ¼ 91 for coronal angle and combined angle assessment.
dPairwise (overall P < .017): HAM-BPTB: P < .001, HAM-REV: P ¼ .061, BPTB-REV: P ¼ .010.
ePairwise (overall P < .008): HAM-BPTB: P ¼ .001, HAM-REV: P < .001, BPTB-REV: P ¼ .823.
fPairwise (overall P < .008): HAM-BPTB: P ¼ .115, HAM-REV: P ¼ .003, BPTB-REV: P ¼ .181.

TABLE 5
Comparison of Grid Versus Angle Measurementsa

Primary HAM (n ¼ 100)b Primary BPTB (n ¼ 91)c REV (n ¼ 117)

Grid vs angle assessment (95% CI)
Overall across groups 0.033 (–0.36 to 0.10)
Weighted kappa within group 0.009 (–0.11 to 0.127) 0.065 (–0.39 to 0.169) 0.041 (–0.74 to 0.156)
Pairwise kappa

HAM-BPTB 0.036 (–0.046 to 0.117)
HAM-REV 0.032 (–0.52 to 0.115)
BPTB-REV 0.046 (–0.035 to 0.128)

aBPTB, bone–patellar tendon–bone; HAM, hamstring; REV, revision anterior cruciate ligament reconstruction.
bn ¼ 99 for combined angle assessment.
cn ¼ 91 for coronal angle and combined angle assessment.
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weighted kappa, between the grid and angle measure-
ments to identify anatomic, partial anatomic, or nonana-
tomic placement was low in both the transtibial and
anteromedial portal approach subgroups (Table 6).

DISCUSSION

The purpose of our study was to compare grid measure-
ments and angle measurements with regard to the ana-
tomic placement of grafts after ACL reconstruction. The
major finding of our study was the lack of agreement
between the 2 measurement methods in identifying ana-
tomic graft placement.

Technical errors, such as nonanatomic graft placement,
are considered a common cause of graft failure, so one
would expect the rate of nonanatomic placement to be
higher in patients with failed ACL grafts.28,30 The litera-
ture suggests that femoral tunnel placement is more
important for a favorable outcome compared with tibial
tunnel placement.6,28 The results of the grid assessment
confirmed this assumption, with no difference between the
3 groups in tibial tunnel placement but a difference in the
overall femoral tunnel placement. Placement in the fem-
oral deep-shallow direction did not differ significantly
between the BPTB and REV groups. This may be
explained by the fact that the tunnel aperture on CT in
the BPTB group may not represent the true center of the
graft, as the bony attachment is a few millimeters thick,
thus slightly influencing the grid measurement (Figure 4).
Surprisingly, the rate of nonanatomic placement in the
femoral deep-shallow direction was highest in the HAM
group. In the femoral high-low direction, the nonanatomic
placement rate was significantly higher in the REV group
compared with the HAM and BPTB groups, as was to be
expected. This finding might indicate that anatomic
placement in the high-low direction in the femur is more
important for outcomes than anatomic placement in the
deep-shallow direction and that the surgical technique
should aim to avoid nonanatomic placement in the high-
low direction.

No difference in the groups was observed in tibial graft
placement. Regarding overall nonanatomic graft place-
ment, the highest rate was observed in the REV group
(17% in REV vs 10% in HAM and 4% in BPTB). Pairwise
comparisons showed no difference between the HAM and
BPTB groups, as was expected. However, there was also no
difference between the HAM and REV groups. This may be
explained by the high rate of nonanatomic placement in the
HAM group in the femoral deep-shallow direction, influenc-
ing the overall anatomic rate in the grid measurements.
There was a significant difference in the combined grid
assessment between the BPTB and REV groups.

Angle measurements for assessing postoperative
graft placement are often recommended in the
literature.12,13,30,47 In the coronal measurements, we found
significant differences between the HAM and BPTB groups
and between the BPTB and REV groups. In general, in the
BPTB group, we observed a steeper (nonanatomic) coronal
angle than in the other groups. The reason for this may
again be the bony attachment of the BPTB graft, which
when placed caudally in the tunnel will cause a more cra-
nial exit for the tendon, causing it to run a steep slope in the
coronal view. There were no differences in the sagittal
angle measurements or in the combined angle assessment
for anatomic placement between groups. The highest rate
of overall nonanatomic placement was seen in the BPTB
group (54% in BPTB vs 37% in HAM and 47% in REV).

The 2 grid and the angle methods yielded significantly
different rates of nonanatomic placement in the same
patients. The explanation for this is a fundamental differ-
ence in measurement methods. The angle measurements
were devised in the era of the transtibial surgical tech-
nique. Technical failure with the transtibial technique was
related to “too high” placement of the femoral tunnel and
was easily assessed on sagittal images, and a too steep graft
angle was introduced as an imaging criterion.3,39,45 How-
ever, it is known that flexion affects the ACL angle in the
sagittal plane. A study showed that the sagittal angle of the
ACL ranges from 45� to 20� with increasing knee joint flex-
ion.16 This factor affects the measurements in a clinical
setting, as even the slightest flexion during CT or MRI will

Figure 3. (A) Distribution of femoral and tibial tunnel placement in revision anterior cruciate ligament reconstruction. Differences in
the mean (B) coronal angle and (C) sagittal angle in the revision group. Green line ¼ anteromedial portal approach; orange line ¼
transtibial approach.
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change the angle of the ACL graft. Furthermore, even if the
angle is correct, the placement may still be faulty if the
graft is placed too anteriorly or too posteriorly.32 The grid
measurements were devised so that the measurements in
the femur and tibia are independent of the degree of knee
flexion. Thus, methodological discrepancies relating to
knee flexion may explain the poor agreement between the
2 measurement methods. CT is the more robust modality if
one chooses to measure graft placement.

Considering revision ACL reconstruction, previous
studies have shown that the anteromedial portal tech-
nique yields higher rates of anatomic placement compared
with the transtibial technique.39,45 The transtibial tech-
nique is known to cause too high placement in the grid

measurements, which was confirmed in our study.17,43 The
combined grid assessment differed significantly between
the surgical techniques (P ¼ .004), with no anatomic cases
in the transtibial technique group. In addition, the sagittal
angle differed between the surgical techniques (P ¼ .002),
while the coronal angle measurements and combined angle
assessment did not differ within the REV group. Thus, the
lack of agreement between the grid and angle measurement
methods was also observed within the REV group.

The clinical usefulness of (1) postoperative CT in primary
reconstruction to improve a surgeon’s learning curve and to
serve as a baseline examination and (2) preoperative CT for
planning revision surgery has been established.20,40,49 MRI
undoubtedly has a role in planning revision surgery for

TABLE 6
Comparison of Transtibial Versus Anteromedial Portal Approach Within REV Groupa

Anteromedial Portal (n ¼ 66) Transtibial (n ¼ 51) P Value

Femoral deep-shallow, % .611 (K-W)
Mean ± SD 31 ± 9 31 ± 7
Median (range) 31 (11 to 56) 30 (20 to 51)
Graft placement, n (%) .864 (w2)

Nonanatomic 23 (35) 17 (33)
Anatomic 43 (65) 34 (67)

Femoral high-low, % >.001 (K-W)
Mean ± SD 24 ± 12 14 ± 15
Median (range) 25 (0 to 45) 12 (–1 to 65)
Graft placement, n (%) .001 (w2)

Nonanatomic 39 (59) 45 (88)
Anatomic 27 (41) 6 (12)

Tibial, % .001 (K-W)
Mean ± SD 46 ± 8 52 ± 7
Median (range) 47 (24 to 61) 52 (38 to 69)
Graft placement, n (%) .021 (w2)

Nonanatomic 40 (60) 41 (80)
Anatomic 26 (40) 10 (20)

Combined grid assessment, n (%) .004 (w2)
Nonanatomic 10 (15) 10 (20)
Partial anatomic 48 (73) 41 (80)
Anatomic 8 (12) 0 (0)

Coronal angle, deg .398 (K-W)
Mean ± SD 73 ± 7 74 ± 6
Median (range) 75 (53 to 87) 75 (52 to 86)
Graft placement, n (%) .082 (w2)

Nonanatomic 50 (75) 31 (61)
Anatomic 16 (25) 20 (39)

Sagittal angle, deg .002 (K-W)
Mean ± SD 60 ± 8 65 ± 8
Median (range) 60 (27 to 73) 65 (49 to 82)
Graft placement, n (%) .022 (w2)

Nonanatomic 37 (56) 39 (76)
Anatomic 29 (44) 12 (34)

Combined angle assessment, n (%) .639 (w2)
Nonanatomic 29 (44) 26 (51)
Partial anatomic 29 (44) 18 (35)
Anatomic 8 (12) 7 (14)

Grid vs angle assessment (95% CI)
Weighted kappa within approach 0.074 (–0.82 to 0.23) –0.006 (–0.86 to 0.163)
Overall across both approaches 0.041 (–0.74 to 0.156)

aBolded P values indicate a statistically significant difference between approaches (P < .05). K-W, Kruskal-Wallis; REV, revision anterior
cruciate ligament reconstruction.
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identifying recurrent ACL graft ruptures and missed con-
comitant lesions in other ligaments, menisci, or articular
cartilage.2,22,37 Ducouret et al10 found that angle measure-
ments did not differ between CT and MRI and suggested
that MRI can be used to replace CT for identifying tunnel
placement. Grasso et al14 performed grid measurements on
CT and MRI; however, the measurements were conducted
on computer-generated models after adding digitized infor-
mation acquired during revision surgery, not on actual CT
or MRI scans. In our view, the clinical usefulness of
angle and grid measurements on MRI has not been suf-
ficiently established to date. No studies have examined
the clinical benefit of angle measurements in recon-
struction using the anteromedial portal technique. Fur-
thermore, our results show that graft angles do not
correlate with grid measurements, and they overesti-
mate nonanatomic placement in ACL reconstruction
with the anteromedial portal technique. Therefore, MRI
currently cannot replace CT to identify anatomic graft
placement in ACL reconstruction.

This study highlights the problems that arise because
of the lack of consensus on which measurement method
to use when assessing ACL graft placement. Several
studies have compared graft placement between the
transtibial and anteromedial portal techniques, but the
studies used several different measurement methods to
assess graft placement.7,21,26,46 This makes a comparison
of surgical results difficult, as we now know that the
reported rate of nonanatomic tunnel placement varies
depending on the method used.

This is the first study comparing grid and angle mea-
surement methods after ACL reconstruction. We have laid
bare the major discrepancy between these methods. As
previous studies have shown low interrater and intrarater
variability in both methods used in our study, we did not
assess interrater variability and do not consider this a
major limitation.18,23 The normal ranges of grid and angle

measurements are based on a relatively high number of
anatomic and imaging cases (>200-300).3,5,33,36 This lim-
its bias in identifying the appropriate cutoff in our study.
As the purpose of our study was to compare 2 methods
used for assessing anatomic tunnel placement on imag-
ing, we did not correlate graft placement with clinical or
functional assessments of graft laxity and cannot deter-
mine whether nonanatomic tunnel placement affects
graft laxity.

CONCLUSION

The agreement between angle and grid measurements to
identify anatomic ACL graft placement was very low.
Compared with grid measurements, angle measurements
tended to overestimate nonanatomic tunnel placement. Grid
measurements were better in identifyingmalpositioned ACL
grafts. Orthopaedic surgeons and radiologists ought to be
aware of the pitfalls of the anglemeasurementmethod when
assessing ACL graft placement on imaging.

REFERENCES

1. Achtnich A, Ranuccio F, Willinger L, et al. High incidence of partially

anatomic tunnel placement in primary single-bundle ACL reconstruc-

tion. Knee Surg Sports Traumatol Arthrosc. 2018;26(2):462-467.

2. Adriani E, Summa P, Di Paola B. Pre-operative planning in anterior

cruciate ligament reconstruction revision surgery. Joints. 2013;1(1):

25-33.

3. Ahn JH, Lee SH, Yoo JC, Ha HC. Measurement of the graft angles for

the anterior cruciate ligament reconstruction with transtibial technique

using postoperative magnetic resonance imaging in comparative

study. Knee Surg Sports Traumatol Arthrosc. 2007;15(11):1293-1300.

4. Amis AA, Jakob RP. Anterior cruciate ligament graft positioning, ten-

sioning and twisting. Knee Surg Sports Traumatol Arthrosc. 1998;

6(suppl 1):S2-S12.
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