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Abstract Poly(ADP-ribose) polymerase (PARP) enzymes initiate (mt)DNA repair mechanisms and

use nicotinamide adenine dinucleotide (NAD+) as energy source. Prolonged PARP activity can drain

cellular NAD+ reserves, leading to de-regulation of important molecular processes. Here, we

provide evidence of a pathophysiological mechanism that connects mtDNA damage to cardiac

dysfunction via reduced NAD+ levels and loss of mitochondrial function and communication. Using

a transgenic model, we demonstrate that high levels of mice cardiomyocyte mtDNA damage cause

a reduction in NAD+ levels due to extreme DNA repair activity, causing impaired activation of

NAD+-dependent SIRT3. In addition, we show that myocardial mtDNA damage in combination with

high dosages of nicotinamideriboside (NR) causes an inhibition of sirtuin activity due to

accumulation of nicotinamide (NAM), in addition to irregular cardiac mitochondrial morphology.

Consequently, high doses of NR should be used with caution, especially when cardiomyopathic

symptoms are caused by mitochondrial dysfunction and instability of mtDNA.

Introduction
Myocardial dysfunction ultimately leading to heart failure (HF) is an increasing health concern world-

wide. Although HF treatment has improved during the past few decades, the mortality and morbid-

ity of this disorder is still high, suggesting that important pathogenic mechanisms are not fully

modified by the current treatment modalities (Marzetti et al., 2013). Mitochondria are critical for

the high energy demand of the heart, and defects in energy metabolism in cardiac mitochondria are

seen in various forms of myocardial dysfunction (Ren et al., 2010). In addition, mitochondria are an

important source of cellular production of reactive oxygen species (ROS). Whereas ROS are involved

in physiological signaling cascades regulating various cellular and organ functions, enhanced produc-

tion may induce oxidative DNA damage that could promote development of cardiomyopathy and
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HF (Fleming et al., 2017). In fact, dysfunction of cardiomyocyte mitochondria is increasingly

believed to be an important feature of progression of various forms of cardiac disease, and mito-

chondrial morphological disorganization and dysfunction have been found in HF patients

(Unno et al., 2009). Mitochondria contain their own genome (mtDNA), and even though it is uncer-

tain how instability of mtDNA affects mitochondrial function during development of myocardial dys-

function, it is vital that mtDNA remains relatively damage-free for proper mitochondrial function as

shown by the evolution of mtDNA specific repair pathways (Gredilla et al., 2010).

DNA damage in the form of apurinic/apyrimidinic (AP) sites increases the risk of single-strand

DNA breaks and is predominantly recognized by poly(ADP-ribose) polymerase (PARP) enzymes that

again initiate repair mechanisms. PARP activity is dependent on nicotinamide adenine dinucleotide

(NAD)+ as a substrate and localizes to the mitochondria as well as the nucleus (Cheng et al., 2013;

Rossi et al., 2009). High PARP activity has been speculated to drain NAD+ reserves

(Karamanlidis et al., 2013). NAD+ is found in all living cells, and serves as a crucial coenzyme for

enzymes that fuel reduction-oxidation reactions, carrying electrons from one metabolic intermediate

to another, and as a substrate for enzymes such as PARPs and sirtuins (Verdin, 2015). SIRT1-5 are

deacetylases that are central in the cellular defense against DNA damage and oxidative stress, by

increasing antioxidant pathways and by facilitating DNA damage repair. Accordingly, sirtuins are

shown to promote longevity and can mitigate many diseases related to aging and cardiovascular dis-

ease such as HF. As a consequence, depletion of the NAD+ pool would cause cellular harm due to

loss of sirtuin activity and a dysregulation of a number of protective pathways (Karamanlidis et al.,

2013). SIRT3 resides in mitochondria where it regulates a number of mitochondrial proteins

(Cheng et al., 2013), and loss of its activity due to suboptimal NAD+ levels leads to de-regulation of

important and varied molecular processes, including antioxidant systems, mtDNA repair, and mito-

chondrial dynamics. Thus, whereas NAD+ is an important co-factor for enzymes related to antioxi-

dant defense and repair mechanisms, increased PARP activity may in itself deplete NAD+ stores.

Agents that could maintain NAD+ levels could therefore be an attractive therapeutic approach in dis-

orders where increased PARP activity and decreased SIRT activity drive impaired mitochondrial func-

tion and increased mtDNA damage and ultimately cellular and tissue failure (Cheng et al., 2013;

Karamanlidis et al., 2013).

A recent study showed that supplementation with the NAD+ precursor nicotinamide mononucleo-

tide (NMN) can partially normalize NAD+/NADH ratios, and thereby restore SIRT3 activity and con-

sequently mitochondrial function in mice with HF (Karamanlidis et al., 2013). Also, studies using

nicotinamide riboside (NR) as a means to boost NAD+ levels have recently shown beneficial effects

for several physiological functions, including cardiac function in mice with dilated cardiomyopathy

(Diguet et al., 2018; Zhang et al., 2016). However, the therapeutic benefit and safety of these com-

pounds are far from clear, and if and how NR supplementation improves cardiac function needs to

be further elucidated.

In this study, we show a direct link between mtDNA damage to loss of mitochondrial function

and communication, with cardiac hypertrophy as a consequence. We used a previously characterized

transgenic mouse model (Lauritzen et al., 2015), where a mutated DNA repair enzyme (termed

mutUNG1) under control of the Tet-on system creates high levels of AP sites specifically in the

mtDNA of cardiomyocytes. We demonstrate that high levels of cardiomyocyte mtDNA damage

cause a reduction in NAD+ levels in heart tissue due to highly active DNA repair, and consequently

mitochondrial dysfunction due to loss of activation of crucial proteins involved in mitochondrial

homeostasis. In addition, we show that treatment with a high dose of NR as a tool to increase NAD+

levels may inhibit rather than increase sirtuin activity due to accumulation of nicotinamide (NAM).

Our findings suggest that NR might have disadvantageous effects on cardiomyocyte mitochondria,

at least in high dosages.

Results

Elevated PARP activity depletes cardiac NAD+ levels and increases
mitochondrial protein acetylation
We utilized a mouse model where high levels of mtDNA damage in the form of AP sites are gener-

ated specifically in cardiomyocytes. These mice develop cardiac hypertrophy and die of HF ~8 weeks
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after mtDNA damage initiation (Lauritzen et al., 2015). AP sites increase the risk of single-strand

DNA breaks, which are recognized by PARP (Caldecott, 2008). PARP initiates DNA repair and uses

NAD+ as a substrate for its activity (Cheng et al., 2013). We hypothesized that strongly increased

PARP activity would deplete NAD+ levels, which again would impair the function of other crucial

NAD+-dependent proteins such as sirtuins. Indeed, we found increased PARP levels in isolated mito-

chondria from heart tissue from mutUNG1-expressing mice compared to wild-type (Wt) littermates

(Figure 1A–B), accompanied by reduced total NAD+ levels in cardiac tissue as assessed by HPLC

(Figure 1C). Sirtuins are also dependent on NAD+ and SIRT3 is the major mitochondrial isoform that

controls the activity of a number of different proteins through deacetylation. Whereas we saw an

increase in SIRT3 protein levels in mitochondrial extracts from mutUNG1 cardiac tissue (Figure 1D–

E), the overall protein acetylation status was increased in mitochondrial extract from mutUNG1

(Figure 1F–G), indicating lower SIRT3 activity. This was also seen in the acetylation status of SOD2

(Figure 1H–I), which is dependent on SIRT3 activity. Impaired SOD2 function could contribute to

weakened antioxidant defenses with enhanced oxidative DNA damage as a potential consequence.

Importantly, increased damage will increase PARP activity, representing a potential vicious circle in

these mice.

The cardiomyocyte mutUNG1 mouse model is characterized by severely disordered mitochon-

drial morphology (Lauritzen et al., 2015). OPA1 is an important protein involved in organization of

the mitochondrial inner membrane and is also activated by SIRT3. By investigating the acetylation

status of OPA1, we saw an increase in acetylation of immunprecipitated OPA1 in mutUNG1-express-

ing mice compared to Wt littermates in total cardiac tissue. This indicates that a loss of OPA1 activity

and regulation play a part in the observed impaired mitochondrial morphology (Figure 1J–K).

Elevation of NAD+ levels through NR treatment does not mitigate
cardiac hypertrophy in mutUNG1-expressing mice
To test if replenishment of NAD+ levels could reverse the cardiac phenotype in mutUNG1-express-

ing mice, we included NR in their diet (referred to as chow-NR). NR enters the ‘NAD salvage path-

way’ through nicotinamide riboside kinase 1 which metabolizes NR into NMN. NR can thereby be

used as a means to boost NAD+ levels (Braidy et al., 2019). The dose (400 mg/kg chow) was chosen

from the literature and is considered a medium dose (Gariani et al., 2016; Zhang et al., 2016). To

investigate if NR did boost NAD+ levels in the animals, we first measured NAD+ levels using HPLC in

the myocardium. Even though we did reconfirm lower levels of NAD+ in heart tissue in mutUNG1-

expressing mice, we did not see any increase in cardiac NAD+ levels with NR supplementation

(Figure 2A). However, others have noted that it is difficult to achieve increase in NAD+ levels in

heart tissue, possibly due to very high metabolic turnover (Trammell et al., 2016). However, these

authors found NR to increase hepatic NAD+ levels. Indeed, we did detect an increase in NAD+ levels

in the livers of mutUNG1-expressing mice, suggesting that NR treatment does increase cellular

NAD+ in this model (Figure 2B), albeit in a potential tissue-specific manner. Nevertheless, NR sup-

plementation did not lead to any significant changes in the cardiac phenotype of mutUNG1-express-

ing mice (Figure 2C–K). Physical and echocardiographic measurements show cardiac hypertrophy,

with increased mass of both left and right ventricular size in mutUNG1-expressing mice compared to

Wt littermates, but with no significant difference between mutUNG1-expressing mice fed chow with

or without NR supplement. In Wt mice, NR supplementation in chow diet resulted in a tendency

toward poorer cardiac function as compared with chow diet alone with reduced ejection fraction

(Figure 2I, p=0.087) and fractional shortening (Figure 2J, p=0.080), but these differences did not

reach statistical significance.

NR treatment does not alleviate mitochondrial dysfunction in
mutUNG1-expressing mice, but alters morphology in Wt mitochondria
Even though NR supplement failed to improve cardiac function in mutUNG1 mice, we wanted to

investigate if NR could have an effect on the impaired mitochondrial morphology in these mice. For

this, we performed electron microscopy on heart tissue sections from mutUNG1-expressing and Wt

mice with or without NR treatment. In line with the lack of effect on SIRT3 activity, NR treatment did

not seem to alleviate the phenotype of dysfunctional mitochondria in mutUNG1 mice, which display

abnormal organelle shapes and severe damage of internal cristae structures of the mitochondria as
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Figure 1. Elevated PARP activity depletes cardiac NAD+ levels and reduces mitochondrial protein deactylation. (A) Western blot showing PARP levels in

cardiac mitochondrial extract from mutUNG1-expressing mice and wild-type littermates. (B) Quantification of PARP levels in western blot. (C) NAD+

levels from heart tissue from wild-type and mutUNG1-expressing mice measured with HPLC. (D) Western blot of SIRT3 levels in extract of mitochondria

isolated from cardiac tissue from mutUNG1-expressing mice and wild-type littermates. (E) Quantification of SIRT3 levels in western blot. (F) Western

Figure 1 continued on next page
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shown earlier (Lauritzen et al., 2015; Figure 3A). Whereas heart mitochondria from mice without

NR treatment are tethered together with visible contact points, mitochondria in mice fed chow-NR

seemed to have a rounder shape and to be organized in a more solitary fashion with less obvious

contact points with neighboring mitochondria (Figure 3A–B). Figure 3B illustrates cristae structure

of the cardiomyocyte mitochondria. Recent morphological studies have shown that adjacent mito-

chondria can interact through specialized regulated inter-mitochondrial junction (IMJ) sites, where

cristae membranes become organized into coordinated pairs across organelles (Picard et al., 2015).

This was also seen in our Wt mice, and highlighted in panel (ii) in Figure 3B, where there is a clear

alignment of cristae structures of three neighboring mitochondria with visible contact points

between mitochondria (indicated with red arrowheads). This, however, was not as prominent in Wt

animals fed chow-NR, where the mitochondria have a rounder shape without tethering of neighbor-

ing organelles. The IMJs seem to be lost to a large extent, resulting in failing of cristae structures to

align between neighboring mitochondria. As observed earlier (Lauritzen et al., 2015), the cristae

structure in mutUNG1-expressing mice is heavily unorganized and damaged, and NR treatment did

not alleviate this impairment (Figure 3B).

The electron microscope (EM) images were evaluated by a blinded scoring of cristae organization

and mitochondrial shape. Internal cristae structure was found to be less organized and inter-organ-

elle alignment was found to a lesser degree in mutUNG1-expressing mice compared to Wt animals,

and not affected by NR supplement in the diet (Figure 3C–D). Mitochondria were also scored

according to shape, and Wt animals fed NR had significantly more circular mitochondria than mice

on a standard diet (Figure 3E). By measuring the length of electron-dense contact points (here

defined as IMJ) and normalizing to total mitochondrial area, we also saw significantly lower IMJ

length in all groups compared to Wt fed standard chow (Figure 3F). This was particularly surprising

regarding Wt mice on an NR supplement, and we speculate that lower levels of IMJ are caused by

the change of mitochondrial shape with a higher degree of circularity that leads to a loss of organ-

elle tethering and thereby contact points (Figure 3E).

Proteom analyses support structural effects of NR treatment on
mitochondria
Mitofusin 2 (MFN2), dynamin-related protein (DRP1), and peroxisome proliferator-activator receptor

gamma coactivator 1-alpha (PGC-1a) are proteins typically involved in mitochondrial morphogenesis

and biogenesis. We quantified their proteins’ levels in mutUNG1-expressing animals and Wt litter-

mates (with and without chow-NR) in order to see if changes in mitochondrial structure could be

related to changes in their expression levels. However, no significant changes could be detected

(Figure 4—figure supplement 1A–F) and we continued with a broader approach performing MS-LC

proteome analysis. Proteomic analysis of cardiac mitochondrial extract supported structural effects

of NR treatment (Figure 4A–B). We calculated differentially expressed proteins (DEPs) for both

mutUNG1-expressing and Wt mice given NR supplements vs. no supplement, and the DEPs were

included in gene enrichment analyses (Figure 4A). For both Wt and mUNG1-expressing mice, the

top two significantly enriched terms were the citric acid (TCA) cycle and respiratory electron trans-

port (Reactome) followed by mitochondrion organization (gene ontology [GO]) (top five listed in

Figure 4A). These two terms include overlapping proteins as illustrated in concomitant heatmaps,

indicating crosstalk between these processes (Figure 4A). Figure 4B shows a simplified illustration

(modified from Pfanner et al., 2019) including important regulators of the cristae structure,

highlighting selected DEPs. Analysis is based on data presented in Source data 1.

Figure 1 continued

blot of protein acetylation levels in cardiac mitochondrial extract from mutUNG1-expressing mice and wild-type littermates. (G) Quantification of

protein acetylation levels in western blot. (H) Western blot of SOD2 and acetylated SOD2 levels in cardiac mitochondrial extract from mutUNG1-

expressing mice and wild-type littermates. (I) Quantification of relative acetylated SOD2 protein levels in western blot. (J) Western blot acetylated

protein levels of samples of immunoprecipitated OPA1 from total extract (200 mg protein) of cardiac tissue from mutUNG1-expressing mice and wild-

type littermates. (K) Quantification of relative acetylated OPA1 protein levels in western blot. Data is presented as mean ± SE. *p<0.05, **p<0.01 vs. Wt

chow. Abbreviations: Wt = Wild-type mice, mU1 = mutUNG1-expressing mice, PARP = poly(ADP-ribose) polymerase, CII = mitochondrial complex II,

SIRT3 = sirtuin 3, AcK = acetylated lysine, SOD2 = superoxide dismutase 2, PDH = pyruvate dehydrogenase, OPA1 = optic atrophy

1, and NAD+ = nicotinamide adenine dinucleotide. Raw data are presented in Source data 1.
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Figure 2. Elevation of nicotinamide adenine dinucleotide (NAD+) levels through nicotinamide riboside (NR) treatment does not mitigate cardiac

hypertrophy in mutUNG1-expressing mice. NAD+ levels in heart tissue (A) and liver tissue (B) from wild-type and mutUNG1-expressing mice fed chow

with or without NR, measured by HPLC. Weight of (C) heart, (D) left ventricle, and (E) right ventricle of wild-type and mutUNG1-expressing mice fed

chow with or without NR. Echocardiographic measurement of (F) interventricular septum thickness at end-diastole, (G) left ventricular posterior wall

Figure 2 continued on next page
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We were also interested if NR treatment might alleviate the observed reduction in mtDNA copy

number seen in mutUNG1-expressing mice (Lauritzen et al., 2015) but this was not the case (Fig-

ure 4—figure supplement 2). Additionally, earlier studies have shown a reduction in mitochondrial

respiration in mutUNG1-expressing mice (Lauritzen et al., 2015), but analysis by high-resolution

Figure 2 continued

thickness, (H) left ventricular internal dimension at end-diastole, (I) ejection fraction, (J) fractional shortening, and (J) relative wall thickness at end-

diastole in wild-type and mutUNG1-expressing mice fed chow with or without NR. (C-H) Normalized against tibia length. Data is presented as mean ±

SE. *p<0.05, **p<0.01, ***p<0.001 vs. Wt chow (for C-J, N = Wt; 15, Wt-NR; 17, mU1; 8, mU1-NR; 11). Raw data are presented in Source data 2.
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Figure 3. Nicotinamde riboside (NR) treatment does not alleviate mitochondrial dysfunction in mutUNG1-expressing mice, but does alter mitochondrial

morphology in wild-type mitochondria. (A and B) Electron microscope images of wild-type and mutUNG1-expressing mice fed chow with and without

NR. (B, ii) Detail of panel from (B) with an Illustration of aligned cristae (yellow) in three neighboring mitochondria (orange, green, and pink) in wild-type

cardiac tissue. Electron-dense inter-mitochondrial junctions (IMJs) labeled with red arrowheads. The images are representative of five mice of each

genotype and treatment. Scalebar = 1 mM. Analysis by scoring of (C) cristae organization, (D) cristae inter-organelle alignment, and (E) mitochondrial

shape/circularity. (F) Quantification of relative IMJ length. Raw data are presented in Source data 2.
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Figure 4. Proteom analyses support structural effects of nicotinamde riboside (NR) treatment on mitochondria. (A) Proteomic analysis of cardiac
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respirometry after NR supplementation did not show increased respiration up to Wt levels (Fig-

ure 4—figure supplement 3).

Finally, the proteomic analysis was also used to verify the purity of the mitochondrial extract.

From the 812 proteins, 28 were not linked to a GO term and excluded. From the 784 proteins left,

40 proteins could from their GO terms be connected to nucleus. Among these 40 proteins, 23 pro-

teins did also have a GO term linking them to mitochondria, leaving 17 proteins connected to

nucleus. Most of these could be further linked to the nuclear envelope. As mitochondria interact

with other organelles, one could expect some contamination of non-mitochondria proteins in these

extracts. However, as the level of nuclear proteins was very low (2.2%), and mainly linked to the

nuclear membrane, we considered the purity of this extract to be satisfactory. Nuclear proteins

detected in this analysis are shown in Supplementary file 1.

NR treatment does not increase mitochondrial protein deacetylation in
cardiac tissue, but causes accumulation of NM
We next examined the effect of NR supplementation on the acetylation status of mitochondrial pro-

teins as an indicator of SIRT3 activity in cardiac tissue from mutUNG1-expressing mice. Whereas the

acetylation was high in mutUNG1-expressing mice compared to Wt littermates, NR supplementation

had no effect on the acetylation status (Figure 5A–B). To investigate if the NR dose was too low to

have any effect on SIRT3 activity, we fed the animals with a higher NR dose (1000 mg/chow). This

gave a small, non-significant increase in NAD+ levels (Figure 5—figure supplement 1). To our sur-

prise, a high dose of NR caused an even higher overall mitochondrial protein acetylation than the

lower dose, at least in heart tissue of the mutUNG1-expressing mice (Figure 5C–D). However, this

was not seen in liver tissue (Figure 5—figure supplement 2A–B). During deacetylation, sirtuins

release NAM from their substrate NAD+, and it has been shown that this can inhibit sirtuin activity as

a negative feedback mechanism (Avalos et al., 2005). We therefore next measured NAM levels

using HPLC and notably, there was a significant increase in NAM levels in cardiac tissue of

mutUNG1-expressing mice, but not in Wt littermates fed chow-NR (Figure 5E). In liver tissue, NR-

chow induced an increase in NAM levels in both genotypes, illustrating the complexity of NAD+

metabolism and tissue differences in turnover (Figure 5F). No regulation of cardiac gene expression

was found for NAMPT and NMAT1-3 (Figure 5—figure supplement 3A–D), indicating that accumu-

lation of NAM is not caused by alterations in gene expression of components involved the salvage

pathway in this context. Thus, it is possible that higher NR doses lead to an accumulation of NAM,

and that this may result in inhibition rather than enhancement of SIRT3 activity, with an increase in

the overall mitochondrial protein acetylation as a consequence.

Finally, we investigated the acetyl CoA levels in mutUNG1-expressing mice and Wt littermates on

a chow-NR diet, but found no significant difference (Figure 5—figure supplement 4), indicating

that acetylation of CoA is not implicated in the differences between the genotypes or in the effect

of NR in these mice.

Increasing doses of NR progressively inhibit deacetylation and PARP
cleavage
Our findings so far suggest that increasing doses of NR could have non-beneficial effects on cardiac

mitochondria. To further investigate this issue, we utilized a stably transfected cell line where

mutUNG1 is expressed and under control of the Tet-on system (Lauritzen et al., 2010). As seen in

heart tissue, the cells expressed PARP in mitochondria with a significantly higher level in mutUNG1-

Figure 4 continued

(B) A simplified illustration modified from Pfanner et al., 2019 including important regulators of the cristae structure. The selection of DEPs is based on

the gene enrichment analysis. Analysis is based on data presented in Source data 1.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Protein levels of mitofusin 2 (MFN2), dynamin-related protein (DRP1), and peroxisome proliferator-activator receptor gamma
coactivator 1-alpha (PGC-1a) in mutUNG1-expressing mice and wild-type littermates.

Figure supplement 2. mtDNA copy numbers.

Figure supplement 3. Mitochondrial respiration.
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Figure 5. Nicotinamde riboside (NR) treatment does not counteract mitochondrial protein acetylation in cardiomyocytes but causes accumulation of

nicotinamide. (A) Western blot of protein acetylation levels in cardiac mitochondrial extract from mutUNG1-expressing mice and wild-type littermates

fed chow with or without medium dose of NR. (B) Quantification of protein acetylation levels in western blot. (C) Western blot of protein acetylation

levels in cardiac mitochondrial extract from mutUNG1-expressing mice and wild-type littermates fed chow with or without high dose of NR. (D)

Quantification of protein acetylation levels in western blot. Nicotinamide (NAM) levels in heart tissue (E) and liver tissue (F) from wild-type and

mutUNG1-expressing mice fed chow with or without NR, measured with HPLC. Data is presented as mean ± SE. *p<0.05, **p<0.01 vs. Wt chow.
#p<0.05 vs. mutUNG1 chow. Raw data are presented in Source data 2.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Nicotinamide adenine dinucleotide (NAD+) levels.

Figure supplement 2. Protein acetylation levels.

Figure supplement 3. Gene expression levels Nampt and Nmat 1–3.

Figure supplement 4. Acetyl CoA levels.
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expressing cells (Figure 6A–B). Interestingly, the highest levels of PARP were in mutUNG1-express-

ing cells treated with NR (Figure 6B). By measuring PARylation as readout of PARP activity, we did

see an increased activity in mutUNG1-expressing cells that could be silenced by the PARP inhibitor

Olaparib (Figure 6C–D). PARP activity did not increase when supplementing NR (Figure 6C–D). As

in cardiac mitochondria, we measured relative protein acetylation and observed that increasing

doses of NR progressively inhibited deacetylation in cells, and to a higher degree in mutUNG1-

expressing cells (Figure 6E–F). PARP inhibition reduced the acetylation levels to some degree, in

line with these enzymes utilizing the same pool of NAD+ (Figure 6G–H). SIRT3 silencing RNA

(SiRNA) did reduce SIRT3 levels by more than 50% (Figure 6I–J). Accordingly, acetylation levels

were increased following SIRT3 siRNA treatment, demonstrating SIRT3 does influence acetylation

levels when high levels of NR are introduced (Figure 6K–L). All together, these results indicate stron-

ger sirtuin inhibition with higher NR doses, in line with the observed inhibition in mouse cardiomyo-

cyte mitochondria (Figure 5C).

Discussion
Mitochondrial dysfunction has been suggested to play an important role in the progression of myo-

cardial dysfunction, but the mechanisms for this ‘cardiotoxic’ effect are still not clear. Herein, we

show that an increase in PARP activity in response to increased mtDNA damage depleted NAD+ lev-

els in mutUNG1 mice. These interactions resulted in decreased mitochondrial deacetylation, most

likely due to impaired SIRT3 activity, which promoted further mitochondrial dysfunction, potentially

representing a pathogenic loop in the progression of cardiac remodeling in these mice. While NR

has been suggested to restore NAD+ levels and thereby improve mitochondrial function and SIRT3

activity, we show that NR, particularly at high doses, had the opposite effects in cardiac tissue poten-

tially secondary to enhanced NAM levels that would inhibit SIRT3 activity. Moreover, detailed studies

of the mitochondria show that NR promoted disorganization of mitochondrial structures, involving

impaired activation of OPA1, a key regulator of mitochondrial inner membrane structure. Our find-

ings show the importance of PARP, NAD+, and SIRT3 as well as their complex interactions in the

development of mitochondrial dysfunction during deterioration of myocardial function. These data

also suggest that the use of NR in rescuing these cardiac events should be reevaluated, in particular

at higher dosages (Figure 7).

We wanted to investigate the correlation between loss of mtDNA integrity, mitochondrial dys-

function and cardiomyopathy, and utilized a previously characterized mouse model where mtDNA

damage in the form of AP sites is induced specifically in cardiomyocytes in adult animals

(Lauritzen et al., 2015). AP sites increase the risk of single-strand breaks, which are recognized by

PARP that initiates NAD+ consuming repair of this lesion (Caldecott, 2008; Vida et al., 2017). We

therefore hypothesized that loss of NAD+ could be a driving force in the fatal phenotype in this

model. Interestingly, PARP (over)activation has been shown to contribute to HF induced by the anti-

cancer anthracycline drug, doxorubicin (Pacher et al., 2002), and in vitro and in vivo studies with

PARP inhibitors diminished this cytotoxic effect (Ali et al., 2011; Damiani et al., 2018). However,

we found that NR supplementation with the intention to increase NAD+ levels failed to improve the

cardiac protein deacetylation status and phenotype in the mutUNG1 mice. In fact, a higher dosage

of NR even worsened the cardiac deacetylation status in these mice. Importantly, NR caused a

marked increase in NAM in both cardiac and liver tissue, and this compound has been shown to

inhibit sirtuin activity (Avalos et al., 2005). It is therefore likely that NAM-mediated inhibition of sir-

tuin activity in the myocardium during NR supplementation results in impaired rather than improved

cardiac protein deacetylation and function. An earlier study showed that even though the nuclear

and cytoplasmic NAD+ levels were reduced after genotoxic stress, the mitochondrial NAD+ pool

remained unchanged (Yang et al., 2007). We however speculate that specific mtDNA damage like

AP sites (with concomitant PARP activation) will affect the mitochondrial NAD+ levels as well.

Depletion of the cellular and mitochondrial NAD+ pool can cause inhibition of important NAD+-

dependent proteins, especially the sirtuins. This seems to be the situation in our model, where there

is a reduction of NAD+ levels in cardiac tissue of mutUNG1 expressing mice and a loss of mitochon-

drial deacetylation. Even though there seems to be elevated protein levels of SIRT3 in these mice,

this might be a cellular compensatory strategy due to reduced deacetylation activity, even though

the regulation of mitochondrial proteins through acetylation seems to be complex (Fisher-
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Figure 6. Increasing doses of nicotinamde riboside (NR) progressively inhibit deacetylation and poly(ADP-ribose) polymerase (PARP) cleavage. (A)

Western blot of PARP levels in extract from cells with (mU1) and without (wt) expression of mutUNG1 grown in vitro with or without NR. (B)

Quantification of PARP levels in western blot. (C) Western blot of poly:mono-ADP ribose/PARylation levels in cells with (mU1) and without (wt)

expression of mutUNG1, treated with PARP inhibitor and/or NR. (D) Quantification of PARylation in western blot. (E) Western blot of protein acetylation

Figure 6 continued on next page

Lauritzen et al. eLife 2021;10:e59828. DOI: https://doi.org/10.7554/eLife.59828 12 of 23

Research article Biochemistry and Chemical Biology

https://doi.org/10.7554/eLife.59828


Wellman et al., 2019). In addition, SIRT3 transcription is stimulated by ROS, and the increased levels

of SIRT3 might be a reflection of elevated ROS production in mutUNG1-expressing mice

(Lauritzen et al., 2015). Since SIRT3 regulates the activity of a number of molecular processes,

including the antioxidant function of SOD2, a loss of SOD2 activation, as shown in mitochondrial

extract from mutUNG1-expressing cardiac tissue, would lead to a further increase in mtDNA dam-

age and ROS production, causing a negative spiral that would be detrimental to the cell

(Chen et al., 2011). Additionally, SIRT3 controls OPA1 activity through deacetylation, and is thereby

an important part in the regulation of mitochondrial structure and function (Samant et al., 2014).

The lack of activity and control of OPA1 could cause dysfunction of overall mitochondrial homeosta-

sis in cardiac tissue, and illustrates the importance of functional SIRT3 levels in cardiomyocytes. Inter-

estingly, it was recently shown that adjacent cardiomyocyte mitochondria exhibit sites of membrane

contact and inter-organelle alignment of cristae structures, suggesting a means of intracellular com-

munication (Picard et al., 2015). Owing to the central role of OPA1 in maintaining inner mitochon-

drial structure, reduced OPA1 activity due to loss of acetylation could therefore cause severe cardiac

impairment by inducing mitochondrial dysfunction, which is exemplified in the mutUNG1-expressing

mice. In the present study, we confirm our previous data on a disorganized mitochondrial structure

in the mutUNG1 myocardium, and we now show that this disorganization most likely involves (de)

acetylated OPA1. Our findings underscore the role of intact mitochondrial organization for mito-

chondrial function and point to a possible mechanism for the harmful effect of cardiac mitochondria

in mutUNG1-expressing mice.

NR has recently become a popular tool for boosting NAD+ levels, and has been reported to have

anti-aging properties and suggested as a treatment for patients suffering from brain disorders

including Alzheimer’s disease (Gong et al., 2013). However, in our study, NR does not seem to have

overall positive effects. On the contrary, NR supplementation induced a failing of cristae structures

to align between neighboring mitochondria and the IMJ sites seemed to be lost. The metabolic

dynamics are tightly connected to mitochondrial structure (Picard et al., 2015), and F1Fi-ATP syn-

thase, the mitochondrial contact site and cristae organizing system (MICOS), and OPA1 are three

membrane-shaping components exhibiting crucial roles in cristae biology. NR supplementation

induced metabolic changes as shown by altered protein levels for proteins involved in FA (fatty acid)

metabolism, TCA cycle, and OXPHOS (oxidative phosphorylation), including components of F1Fi-

ATP synthase. Further, Mic60, -19, and -26 of the MICOS complex were all upregulated. Upregula-

tion of these proteins could be a compensatory mechanism initiated by the metabolic stress. Inter-

estingly, a recent published article found increased levels of Mic60 when knocking out OPA1

(Stephan et al., 2020). Intriguingly, these mitochondria lacking OPA1 had a similar appearance to

NR-treated Wt mitochondria, with a circular shape and less ordered cristae structure. Additionally,

also in line with fragmented mitochondrial structure, proteomic analysis showed that both

mutUNG1-expressing and Wt mice treated with NR had increased levels of mitochondrial fission one

protein (FIS1), an important regulator of mitochondrial fission (Samant et al., 2014).

The consequence of this might be more severe in cardiac than in neuronal tissue, since mitochon-

dria behave and communicate in a completely different manner in the two tissues. Whereas in neu-

rons the mitochondria move quite dynamically in the cell (Tang et al., 2019), cardiac mitochondria

are much more fixed in the cell within the myofibril fiber lattice (Picard et al., 2015). This means that

the contact points between the mitochondria, where inter-organelle communication takes place, are

particularly important in cardiac tissue. If NR thereby causes the cardiac mitochondria to change

shape in such way that they lose this inter-organelle communication, this could prove harmful for the

heart. Based on our data, one should therefore use NR with care clinically, and it is important to

obtain more information about the correct dose that should be used. More importantly, if the

Figure 6 continued

levels in total extract in cells with (mU1) and without (wt) expression of mutUNG1, and increasing concentrations of NR. (F) Quantification of protein

acetylation levels in western blot. (G) Western blot of acetylation levels in cells with (mU1) and without (wt) expression of mutUNG1, treated with PARP

inhibitor and/or NR. (H) Quantification of acetylation in western blot. (I) Western blot of SIRT3 levels in cells with (mU1) and without (wt) expression of

mutUNG1, transfected with SIRT3 silencing RNA (siRNA) and scrambled control. (J) Quantification of SIRT3 levels in western blot. (K) Western blot of

acetylation levels in cells with (mU1) and without (wt) expression of mutUNG1, transfected with SIRT3 siRNA and scrambled control and NR treatment.

(L) Quantification of acetylation in Western blot. Abbreviations: Az=AZD2461/Olaparib, Sc = Scrambled. Raw data are presented in Source data 2.
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Figure 7. Illustration of the concept behind effect of loss of nicotinamide adenine dinucleotide (NAD+) due to

overactive (mt). DNA damage repair and consequences of nicotinamide (NAM) accumulation in cardiac tissue.
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patient is believed to have cardiomyopathies caused by mitochondrial dysregulation and mtDNA

irregularities, for example, by using anthracycline regiments (Lebrecht and Walker, 2007), extra

care of NR supplementation should be considered.

The present study has some limitations. Not all findings were statistically significant, and these

data must be interpreted with caution. Association does not necessarily mean any causal relationship

and additional experimental studies are needed to fully support our conclusion. Moreover, the rele-

vance of these studies to human pathology is still uncertain.

In conclusion, high levels of mtDNA damage can cause a drop in NAD+ levels through increased

PARP activity, which ultimately causes a breakdown of function and communication in cardiac mito-

chondria. Treatment with NAD+ precursors such as NR might not get the desired effect of re-estab-

lishing the activity of NAD+-dependent proteins due to irregularities in the NAD+ metabolism, which

can cause negative feedback mechanisms, including high levels of the sirtuin inhibitor NAM. This

may lead to disturbances in mitochondrial and cellular pathways including a disorganization of mito-

chondrial structure. Our data suggest that the use of NR in cardiac disorders should be examined

more closely, in particular at higher dosages.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Genetic reagent
(Mus musculus)

mutUNG1 PMID:26055793 Dr Knut H Lauritzen
(Oslo University
Hospital)

Cell line
(Homo sapiens)

HeLA/ mutUNG1 PMID:20065039 Cat:631183
RRID:CVCL_V353

Stable transfected;
HeLa Tet-On
3 G Cell Line

Chemical
compound,
drug

Nicotinamide Riboside Chloride (Nigagen) ChromaDex Cat:ASB-00014315–15

Chemical
compound,
drug

AZD2461/ Olaparib Merck Cat:SML1858 25 mM

Transfected
construct
(human)

siRNA to SIRT3
(ID:S23766)

Thermo Fisher Scientific Cat:4392420 Transfected
construct (human)

Transfected
construct
(human)

siRNA, Negative control Thermo Fisher Scientific Cat:AM4635

Antibody PARP (Rabbit
polyclonal)

Cell Signaling Cat:9542
RRID:AB_2160739

WB (1:1000)

Antibody SIRT3 (Rabbit
polyclonal)

Cell Signaling Cat:5490
RRID:AB_10828246

WB (1:1000)

Antibody SDHA (CII)
(Mouse monoclonal)

Abcam Cat:ab14715
RRID:AB_301433

WB (1:5000)

Antibody Acetylated-Lysine (Rabbit
polyclonal)

Cell Signaling Cat:9441
RRID:AB_331805

WB (1:1000)

Antibody SOD2 (acetyl
K68) (Rabbit
monoclonal)

Abcam Cat:ab137037
RRID:AB_2784527

WB (1:1000)

Antibody SOD2 (Rabbit
polyclonal)

Cell Signaling Cat:13194
RRID:AB_2750869

WB (1:1000)

Antibody Poly/Mono-ADP Ribose
(E6F6A) (Rabbit polyclonal)

Cell Signaling Cat:83732
RRID:AB_2749858

WB (1:1000)

Antibody PHD (Rabbit
polyclonal)

Cell Signaling Cat:2784
RRID:AB_2162928

WB (1:1000)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody OPA1 (Rabbit
polyclonal)

Cell Signaling Cat:80471
RRID:AB_2734117

WB (1:1000)

Antibody beta-Actin (Mouse monoclonal) Sigma-Aldrich Cat:A5441 RRID:AB_476744 WB (1:1000)

Antibody MFN2 (Mouse
monoclonal)

Abcam Cat:ab56889
RRID:AB_2142629

WB (1:1000)

Antibody DRP1 (Rabbit
polyclonal)

Cell Signaling Cat:8570
RRID:AB_10950498

WB (1:1000)

Antibody PGC-1a (Rabbit
polyclonal)

Abcam Cat:ab54481 RRID:AB_881987 WB (1:1000)

Antibody Anti-Rabbit
IgG

Cell Signaling Cat: 7074 RRID:AB_2099233 WB: (1:20000)

Antibody Ant-Mouse
IgG

Cell Signaling Cat:7076 RRID:AB_330924 WB: (1:20000)

Sequence-
based reagent

NAMPT_f Merck PCR primers ATCCAGGAGG
CCAAAGAAG

Sequence-
based reagent

NAMPT_r Merck PCR primers ATCGGGAGATG
ACCATCGTA

Sequence-
based reagent

NMNT1_f Merck PCR primers TGCATGCTACA
GGAAAATAC

Sequence-
based reagent

NMNT1_r Merck PCR primers AAGTTCTGCC
ATGATGATTC

Sequence-
based reagent

NMNT2_f Merck PCR primers GGCAGATATGG
AAGTGATTG

Sequence-
based reagent

NMNT2_r Merck PCR primers GGAGTATGGAG
GAGTGATTC

Sequence-
based reagent

NMNT3_f Merck PCR primers CAGCATGAAG
AACCGAATC

Sequence-
based reagent

NMNT3_r Merck PCR primers TGGTACCTTCC
TGTTTGG

Sequence-
based reagent

18 s_f Merck PCR primers CGCGGTTCTAT
TTTGTTGGT

Sequence-
based reagent

18 s_r Merck PCR primers AGTCGGCA
TCGTTTATGGTC

Sequence-
based reagent

mtDNA_f Merck PCR primers CCCAGCTACTAC
CATCATTCAAGT

Sequence-
based reagent

mtDNA_r Merck PCR primers GATGGTTTGGGAG
ATTGGTTGATGT

Sequence-
based reagent

OGG1_f Merck PCR primers ATGAGGACCAA
GCTAGGTGAC

Sequence-
based reagent

OGG1_r Merck PCR primers GCCTCACAATC
AACTTATCCC

Commercial
assay or kit

Pierce BCA Protein Assay Kit Thermo Fisher
Scientific

Cat:23228

Commercial
assay or kit

RNeasy
Mini Kit

Qiagen Cat:74106

Commercial
assay or kit

Acetyl-Coenzyme
A Assay kit

Merck Cat:MAK039

Other RM1+
6000 ppm

Special Diets Services Custom Dox diet

Other TRI Reagent Merck Cat:9424

Other qScript cDNA Supermix Quantbio Cat:95048

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Other PerfeCTa SYBR Green Supermix Quantbio Cat: 95054

Other Sodium succinate dibasic hexahydrate Merck Cat:S2378 10 mM

Other Cytochrome c Merck Cat:C7752 10 mM

Other Halt Protease and Phosphatase Inhibitor Thermo Fisher
Scientific

Cat:1861284

Other M-PER Mammalian protein extraction reagent Thermo Fisher
Scientific

Cat:78505

Other Dynabeads Protein G Thermo Fisher
Scientific

Cat:10003D

Other Oligofectamine Reagent Thermo Fisher
Scientific

Cat:12252–011

Experimental models and treatment
The mutUNG1 mouse model (mU1) was designed and characterized as previously described. Here, a

transgene consisting of a human version of Uracil-DNA glycosylase 1 (Ung1) (HGNC ID:12572) with a

substitution mutation (Tyr147Ala) has been introduced (Lauritzen et al., 2015). Expression of

mutUNG1 was induced by addition of doxycycline to the diet corresponding to 6 mg doxycycline/g

chow (manufactured by Special Diets Services) when the mice were 8 weeks of age. The mice were

sacrificed after 8 weeks of mutUNG1 induction. NR (Niagen from Chromadex) was added to the

diet, either as 400 mg/kg chow (medium dose) or 1000 mg/kg chow (high dose), after 6 weeks of

mutUNG1 induction (with a total of 2 weeks of NR treatment). These numbers were chosen based

on the parameters that a mouse in average weighs 30 g, and eat 3 g chow per day, and published

experiments performed by other groups (Gariani et al., 2016; Zhang et al., 2016). All experiments

had three to five animals per group unless stated otherwise, with several biological repeats. All

experimental procedures were approved by the Section for Comparative Medicine at the University

Hospital of Oslo and by the Norwegian Animal Research Authority, FOTS: 8594 and conducted

according to the laws and regulation on animal welfare in Norway and in the European Union.

The cell model was designed and characterized as previously described. Briefly, HeLa Tet-On 3 G

Cell Line (Clontech/Takara Bio) was stably transfected with the same transgenic element described

for the mice model above. The presence of the transgene was confirmed by sequencing. The cells

were incubated in a sterile environment and routinely checked to ensure negative mycoplasma con-

tamination (Lauritzen et al., 2010). For PARP inhibition, typically 25 mM Olaparib/AZD2461 (Merck)

was used. For SIRT3 knockdown, SIRT3 siRNA (ID: s23766) and negative/scramble control (AM4635)

(Thermo Fisher Scientific) was transfected into a six-well plate with the cells, using Oligofectamine

Reagent (12252–011, Thermo Fisher Scientific) according to the manufacturer’s recommendations

for 48 hr before harvest.

Protein extract preparation and western blotting
Mitochondria were isolated from cardiac tissue by the following protocol: Left ventricular cardiac tis-

sue was briefly washed in ice-cold PBS, transferred to 2 mL buffer A1 (250 mM sucrose, 0.5 mM

Na2EDTA, 10 mM Tris, pH 7.4) + 200 mL trypsin (Sigma #T4049), homogenized using a tissue

homogenizer, and incubated on ice for 20 min; 2 mL buffer B1 (buffer A1 + 0.1% bovine serum albu-

min) was added, and the sample was further homogenized by two strokes with a Douncer B and cen-

trifuged at 600 � g at 4˚C for 10 min. The supernatant (containing mitochondria) was transferred to

a new tube and centrifuged at 9800 � g at 4˚C for 10 min. The supernatant was discarded and the

pellet was resuspended in 500 mL buffer B1 and centrifuged at 9600 � g at 4˚C for 10 min. The

supernatant was discarded and the pellet was resuspended in 500 mL buffer B1 and centrifuged at

9200 � g at 4˚C for 10 min. The supernatant was discarded and mitochondrial protein was extracted

with M-PER Mammalian Protein Extraction Reagent (Thermo Fisher Scientific) containing Halt
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Protease and Phosphatase Inhibitor. The purity of the mitochondrial extracts was validated using

proteomic analysis and bioinformatics evaluation.

Total protein was extracted by M-PER Mammalian Protein Extraction Reagent or T-PER Tissue

Protein Extraction Reagent (Thermo Fisher Scientific) containing Halt Protease and Phosphatase

Inhibitor.

Protein concentration was determined by Pierce BCA Protein Assay Kit (Thermo Fisher Scientific).

Immunoprecipitation was performed using Dynabeads Protein G (Thermo Fisher Scientific) according

to the manufacturer’s recommendations.

The protein was separated by SDS-PAGE and transferred to PVDF membrane.

The membranes were developed with Radiance Plus Substrate (Azure Biosystems). The images

were captured by LAS-4000 (Fujifilm) and quantified by Image Studio Lite (version 5.2, Li-Cor, Lin-

coln, NE). All protein quantification blots are normalized against the loading control (CII, PHD,

GAPDH or ACTIN).

HPLC sample preparation and measurement
NAD+ and NAM extraction and subsequent quantitative analysis were performed as previously

described (Yoshino and Imai, 2013). Briefly, tissue sample (typically 50–70 mg) was homogenized in

500 mL HClO4 (0.4 M), incubated on ice for 5 min and precipitated by adding 80 mL KOH (0.2 M)

with shaking for 2 min. The samples were then centrifuged at 3000 � g, 10 min, 4˚C. Supernatant

was filtered using Spin-X centrifuge tube (Costar, filter size 0.22 mM) and the samples were stored in

�80˚C until HPLC measurements. The samples from tissues were subjected to HPLC using a 20 mm

� 3.9 mm Sentry Guard column (Nova-Pak C18 bonded silica) connected to a 150 mm � 4.6 mm

Atlantis T3 silica-based, reversed-phase C18 columns (Waters Corporation). NAD+ and NAM were

detected by UV detector and UV absorbance was monitored at 261 nm. Elution of NAD+ and NAM

from samples was verified and quantified by co-elution with known amounts of NAD+ and NAM

standards (Sigma-Aldrich).

Echocardiography
Examination was performed with the VEVO 2100 system (VisualSonics, Toronto, Canada). Mice were

lightly anesthetized with a mixture of 98.25% O2 and 1.75% isoflurane maintained by mask ventila-

tion and were placed on a heated examination table to maintain body temperature. Standard echo-

cardiography examination, including long and short axis images of the left ventricular (LV) and

atrium, was performed (Finsen et al., 2005). Recorded data were analyzed offline using the Vevo

LAB 3.2 software (VisualSonics). Data were assembled from 8 to 16 animals per group, pooled

results of several biological repeats. Relative LV wall thickness was calculated with the formula:

(2*LVPW:d)/(LVID:d).

Proteomic analysis
Cardiac mitochondria were isolated from 15 tissue samples as explained above, and lysed in M-PER

buffer (Thermo Fisher Scientific) with 0.5% Triton X-100, and aliquoted to 100 mg protein. The pro-

teins were precipitated with TCA/acetone in �20˚C overnight. The precipitated proteins were dis-

solved with 6 M urea in 50 mM ammonium bicarbonate, reduced with DTT, and alkylated with

iodoacetamide. Then, the proteins were in-solution digested by diluting the urea concentration to

1 M followed by digestion with trypsin overnight in 37˚C. The resulting peptides were desalted and

concentrated before mass spectrometry by the STAGE-TIP method using a C18 resin disk (3M

Empore). Each peptide mixture was analyzed by an nEASY-LC coupled to QExactive Plus (Thermo-

Electron, Bremen, Germany) with EASY Spray PepMapRSLC column (C18, 2 mL, 100 Å, 75 mM � 50

cm) using a 60 min LC separation gradient. The resulting MS raw files were submitted to the Max-

Quant software version 1.6.1.0 for protein identification and label-free quantification. Carbamido-

methyl (C) was set as a fixed modification and acetyl (K), carbamyl (N-term), and oxidation (M) were

set as variable modifications. First search peptide tolerance of 20 ppm and main search error of 4.5

ppm were used. Trypsin without proline restriction enzyme option was used, with two allowed mis-

cleavages. The minimal unique+razor peptides number was set to 1, and the allowed FDR was 0.01

(1%) for peptide and protein identification. Label-free quantitation was employed with default set-

tings. The Uniprot database with ‘mouse’ entries (January 2019) was used for the database searches.
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Perseus software version 1.6.1.3 was used for the statistical analysis of the results. Known contami-

nants as provided by MaxQuant and identified in the samples were excluded from further analysis.

Metascape and Pheatmap R package 1.0.12 was used for further data analysis (R: A language and

environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL

https://www.R-project.org/.pheatmap. Pheatmap: Pretty Heatmaps. R package version 1.0.12.

https://CRAN.R-project.org/package=pheatmap).

Electron microscopy
Pieces of heart tissue were immersion fixed in a phosphate buffered solution containing 1% parafor-

maldehyde and 2.5% glutaraldehyde. The samples were then dissected into small rectangular pieces

(~0.5 mm � 0.5 mm � 1 mm) and cryoprotected by immersion in graded concentrations of glycerol

(10%, 20%, and 30%) in 0.1 M phosphate buffer (75 mM Na2HPO4 and 25 mM NaH2PO4, pH 7.4).

The samples were plunged into liquid propane cooled to �170˚C by liquid nitrogen in a Universal

Cryofixation System KF80 (Reichert-Jung). For freeze substitution (Bergersen et al., 2008), the sam-

ples were immersed in a solution of anhydrous methanol and 0.5% uranyl acetate overnight at �90˚

C. The temperature was then raised stepwise in 4˚C increments per hour from �90˚C to �45˚C,

where it was kept for the subsequent steps. The tissue samples were washed several times with

anhydrous methanol to remove residual water and uranyl acetate, and then infiltrated in the embed-

ding resin Lowicryl HM20 stepwise from Lowicryl/methanol 1:2, 1:1, and 2:1 (1 hr each) to pure Low-

icryl (overnight). Polymerization was catalyzed by 360 nm ultraviolet light for 2 days at �45˚C

followed by 1 day at room temperature. Ultrathin sections (70 nm) were cut by a diamond knife on a

Reichert-Jung ultramicrotome and mounted on nickel grids with an adhesive pen (David Sangyo).

The ultrathin sections were contrasted in uranyl acetate (5%) and lead citrate (30%), before they

were observed in a Philips CM100 EM.

Analysis and quantification of EM micrographs
Cristae organization and cristae inter-organelle organization was evaluated based on a scoring sys-

tem where 5 was the highest level of organization and 1 the lowest. For mitochondrial shape/circu-

larity, scoring was also applied but 5 was the highest degree of circularity and 1 the lowest.

One to five images were evaluated for each animal, N=5 for each group except Wt where N=4.

IMJ length was quantified using ImageJ, where total measured IMJ length was normalized against

total mitochondrial area. N=5.

All analyzed samples were from area LV tissue with myocardium cut in longitudinal direction. All

samples were analyzed, randomized, and blinded.

qPCR
Total RNA was isolated from mouse hearts, using RNeasy Tissue Mini Kit (Qiagen) in combination

with Trizol Reagent (Sigma-Aldrich, Merck, Darmstadt, Germany) in accordance with the manufac-

turer’s recommendations. cDNA was produced from the isolated RNA using qScript cDNASupermix

(Quantabio). For rt-PCR measurement of mtDNA copy number, total DNA was isolated using Dneasy

Blood and Tissue Kit (Qiagen). rt-PCR reactions were carried out in a 20 mL mixture containing Per-

feCTa SYBR Green Supermix (Quantabio), 100 nM of each primer, and 10 ng cDNA or 5 ng total

DNA. All reactions were done in triplicates. Negative controls with water were performed for each

target. Standard curves with a 5-point 1:10 dilution series, starting with 100 ng, were made for each

target. Default PCR program settings were used. All reactions were run on a Stratagene Mx3005P

(Agilent Technologies) using the default settings recommended by the manufacturer and analyzed

using MxPro software. Data were calculated based on the standard curves (standard curve method),

and target of interest was normalized against the control target gene(S) (18 s for cDNA and OGG1

for mtDNA). Standard curves with R2 values of <0.99 were rejected.

Oxygraph
Mitochondrial complex II-driven respiratory capacity measured in heart homogenates were analyzed

by high-resolution respirometry (Oxygraph-2K; Oroboros). Frozen heart tissue (left ventricle) was

homogenized in 1 mL of MSHE buffer, pelleted at 10,000 � g, washed once, and resuspended in

250 mL of MSHE buffer. Mir05 buffer was supplied with succinate (10 mM). Cytochrome C (10 mM)
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was added when respiration was stabilized. The succinate-/cytochrome C-based respiration was then

set as respiration capacity.

Acetyl CoA levels
Acetyl CoA levels were measured using Acetyl-Coenzyme A Assay kit (Sigma-Aldrich,

Merck, Darmstadt, Germany) according to the manufacturer’s recommendations.

Statistics
All experiments using animals were n=3–5 per group unless stated otherwise, and several biological

repeats were conducted for all experiments. All quantitative data are represented as means ± the

standard error of the mean. Unpaired, two-tailed t-tests were performed unless otherwise stated.

The null hypothesis was rejected at the 0.05 level.
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rust, Conceptualization, Resources, Supervision, Funding acquisition, Validation, Writing - original

draft, Project administration, Writing - review and editing; Arne Yndestad, Conceptualization,

Resources, Supervision, Funding acquisition, Validation, Project administration, Writing - review and

editing

Author ORCIDs

Knut H Lauritzen https://orcid.org/0000-0002-6003-6027

Kuan Yang https://orcid.org/0000-0002-2246-4864

Johanne Egge Rinholm https://orcid.org/0000-0003-3741-850X

Lauritzen et al. eLife 2021;10:e59828. DOI: https://doi.org/10.7554/eLife.59828 20 of 23

Research article Biochemistry and Chemical Biology

https://smart.servier.com/
https://orcid.org/0000-0002-6003-6027
https://orcid.org/0000-0002-2246-4864
https://orcid.org/0000-0003-3741-850X
https://doi.org/10.7554/eLife.59828


Mathias Ziegler https://orcid.org/0000-0001-6961-2396

Bente Halvorsen https://orcid.org/0000-0002-6529-6485

Ethics

Animal experimentation: All experimental procedures involving animals were approved by the Sec-

tion for Comparative Medicine at the University Hospital of Oslo and by the (Norwegian Animal

Research Authority, FOTS: 8594) and conducted according to the laws and regulation on animal wel-

fare in Norway and in the European Union.

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.59828.sa1

Author response https://doi.org/10.7554/eLife.59828.sa2

Additional files

Supplementary files
. Source data 1. Rawdata; protemics.

. Source data 2. Rawdata; all quantifications.

. Source data 3. Rawdata; all supplementary quantifications.

. Source data 4. Raw data; original western blots.

. Supplementary file 1. Table of gene ontology (GO) terms from proteomic analysis.

. Transparent reporting form

Data availability

Datasets associated with this article are provided as source data.

References
Ali M, Kamjoo M, Thomas HD, Kyle S, Pavlovska I, Babur M, Telfer BA, Curtin NJ, Williams KJ. 2011. The clinically
active PARP inhibitor AG014699 ameliorates cardiotoxicity but does not enhance the efficacy of doxorubicin,
despite improving tumor perfusion and radiation response in mice. Molecular Cancer Therapeutics 10:2320–
2329. DOI: https://doi.org/10.1158/1535-7163.MCT-11-0356, PMID: 21926192

Avalos JL, Bever KM, Wolberger C. 2005. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+)
cosubstrate specificity of a Sir2 enzyme. Molecular Cell 17:855–868. DOI: https://doi.org/10.1016/j.molcel.
2005.02.022, PMID: 15780941

Bergersen LH, Storm-Mathisen J, Gundersen V. 2008. Immunogold quantification of amino acids and proteins in
complex subcellular compartments. Nature Protocols 3:144–152. DOI: https://doi.org/10.1038/nprot.2007.525,
PMID: 18193031

Braidy N, Berg J, Clement J, Khorshidi F, Poljak A, Jayasena T, Grant R, Sachdev P. 2019. Role of nicotinamide
Adenine dinucleotide and related precursors as therapeutic targets for Age-Related degenerative diseases:
rationale, biochemistry, pharmacokinetics, and outcomes. Antioxidants & Redox Signaling 30:251–294.
DOI: https://doi.org/10.1089/ars.2017.7269, PMID: 29634344

Caldecott KW. 2008. Single-strand break repair and genetic disease. Nature Reviews Genetics 9:619–631.
DOI: https://doi.org/10.1038/nrg2380, PMID: 18626472

Chen Y, Zhang J, Lin Y, Lei Q, Guan KL, Zhao S, Xiong Y. 2011. Tumour suppressor SIRT3 deacetylates and
activates manganese superoxide dismutase to scavenge ROS. EMBO Reports 12:534–541. DOI: https://doi.
org/10.1038/embor.2011.65, PMID: 21566644

Cheng Y, Ren X, Gowda AS, Shan Y, Zhang L, Yuan YS, Patel R, Wu H, Huber-Keener K, Yang JW, Liu D, Spratt
TE, Yang JM. 2013. Interaction of Sirt3 with OGG1 contributes to repair of mitochondrial DNA and protects
from apoptotic cell death under oxidative stress. Cell Death & Disease 4:e731. DOI: https://doi.org/10.1038/
cddis.2013.254, PMID: 23868064

Damiani RM, Moura DJ, Viau CM, Brito V, Morás AM, Henriques JAP, Saffi J. 2018. Influence of PARP-1
inhibition in the cardiotoxicity of the topoisomerase 2 inhibitors doxorubicin and mitoxantrone. Toxicology in
Vitro 52:203–213. DOI: https://doi.org/10.1016/j.tiv.2018.06.013, PMID: 29913208

Diguet N, Trammell SAJ, Tannous C, Deloux R, Piquereau J, Mougenot N, Gouge A, Gressette M, Manoury B,
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