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Abstract

This study attempts to find good predictive biomarkers for recurrence
in colon cancer between two data sources of both mRNA and miRNA ex-
pression from frozen tumor samples. In total four datasets, two data
sources and two data types, were examined; mRNA TCGA (n=446),
miRNA TCGA (n=416), mRNA HDS (n=79), and miRNA HDS (n=128).
The intersection of the feature space of both data sources was used in the
analysis such that models trained on one data source could be tested on
the other. A set of wrapper and filter methods were applied to each
dataset separately to perform feature selection, and from each model the
k best number of features was selected, where k is taken from a list of set
numbers between 2 and 250. A randomized grid search was used to opti-
mize four classifiers over their hyperparameter space where an additional
hyperparameter was the feature selection method used. All models were
trained with cross validation and tested on the other data source to de-
termine generalization. Most models failed to generalize to the other data
source, showing clear signs of overfitting. Furthermore, there was next to
no overlap between selected features from one data source to the other,
indicating that the underlying feature distribution was different between
the two sources, which is shown to be the case in a few examples. The
best generalizing models where based on clinical information and second
best was on the combined feature space of mRNA and miRNA data.
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1 State of the Art

Machine learning has seen a spike of interest and development in the last decade.
Increased computational power combined with easier and cheaper data collection
and storage has lead to large datasets being available and a number of differ-
ent approaches developed to solved a wide variety of tasks. One such field of
research is oncology where transcriptome data has become more available and
researches are attempting to find good prognostic indicators for survival and
cancer recurrence, also known as relapse. This study will focus on the second
most prevalent cancer [1], colon cancer, and predicting recurrence. Predicting
recurrence is preferred over overall survival given that colon cancer patients are
in general quite old, the median age being 73 years in Norway, chapter 2.1 [1].
This means that overall survival can sometimes be problematic given patients
die of other causes than the cancer.

The most common prognostic indicators in clinical applications for colon
cancer is the Tumor-Node-Metasasis-stage (TNM-stage), which is used to de-
termine follow-up treatment post surgery [24]. Studies have determined other
relevant clinical parameters that can be used as prognostic indicators. A re-
cent study found a simple prognostic score based on six clinical parameters for
metastasised colon cancer patients [35]. Other studies have implicated DNA
Mismatch Repair (MMR) deficiency, or Microsatellite Instability (MSI), corre-
lation with survival in stage 1 and 2 patients [24]. The only molecular markers
used in clinical cases as of today are MSI-status [24], BRAF [9], and KRAS [10],
where the latter two are only used in metastatic cases.

Prognostic indicators, however, need not be specific clinical variables. Skrede
et al. trained a variant of the MobileNetV2 [44] architecture to predict presence
of a tumor based on images of stained tumor tissue [49] showing statically sig-
nificant results for good prognosis post surgery. Guinney et al. [20] considered
another approach, performing a Markov clustering of six different predictive
models output on messenger RNA (mRNA) data. The study identified four
consensus molecular subtypes of colon cancer, each characterised by specific
gene expression.

However, this study will focus on gene expression signature, messenger RNA
(mRNA) and micro RNA (miRNA), transcriptome data, clinical data, and
briefly infiltration estimates [31]. By using the transcriptome counts we can
indirectly estimate the presence of proteins that promote cancerous behaviour
or suppress anti-cancerous behaviour in cells. A number of different approaches
have been attempted, however, each approach has to deal with three core prob-
lems. 1) the high dimensionality of the data combined with 2) lower sample size,
and 3) class imbalance, about 25% of patients experience. The three problems
combined prove particularly challenging and models are prone to overfitting.
The following two papers dealt with the high dimensionality by performing sin-
gle step l1 weight decay regression models on miRNA data to determine a sixteen
[23] and four [24] miRNA prognostic indicator, respectively. However, a single
weight decay feature selection model is prone to overfitting and selecting biased
features. One approach to solve this selection problem is to explore the feature
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space with many small trained models, as done in [47]. The researches used a
Grasshopper optimization technique to generate small subsets of features that
was trained using an SVM model to perform feature selection. This approach
is a hybrid method that utilizes a methauristic optimization algorithm.

The process is divided into two steps, first selecting a subset of features
based on a number of different feature selectors, then train models on those
feature subsets. The feature selection is done with filter and wrapper methods,
the latter training models with weight decay regularization to select features.
Four classifiers are trained on the subset of selected features on each dataset
and tested on the other data source. The goal is to find a set of genes that
have high predictive power for determining recurrence, and preferably as small
of a set of genes as possible. Smaller subsets of genes lead to less likelihood
of overfitting to additional noisy and unimportant features. Furthermore, with
fewer genes relevant for the model, it would be easier in a clinical setting to use
those genes as a prognostic biomarker, rather than recording gene counts for a
large number of possible genes.

Section 2 details the relevant cellular and cancer biology background, in
addition to detailing machine learning principles and the models used for the
thesis. The methodology, experiments, and datasets will be outlined in section
3. Lastly the results of each of the experiments will be presented in section 4
and possible improvements in section 5.

2 Introduction to Cellular and Cancer Biology
and Machine Learning

The following section will detail general principles of Cellular and Cancer Bi-
ology and Machine Learning that are relevant background information for the
thesis. Section 2.1 will go through the general mechanisms of the Cell Life Cycle,
programmed cell death (Apoptosis), and mRNA and miRNA function in protein
transcription and translation. The information follows closely chapter 6, 7, and
18 of the following course book in biology [3]. Section 2.2 will briefly mention
the hallmarks of cancer, as detailed in [21], and the concept of oncogenes. Sec-
tion 2.3 will go through the general principles of Machine Learning from what
defines a model learning, performance measures, Bias-Varaince tradeoff, and
into methods of mitigating said tradeoff in Cross Validation, Regularization,
and Feature Engineering. Lastly section 2.4 and 2.5 will introduce the relevant
filter methods and classifiers used for this thesis.

2.1 Cellular Biology

Before dwelling into the details of the fundamental mechanisms of cancer, this
thesis will detail some basic principles as part of cellular biology that is pertinent
to both the discussion of said fundamentals, but also relevant to describe what
the datasets for this study. This section will firstly outline the mechanisms of
cell proliferation by detailing the different stages, and control mechanisms, of
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the cell life cycle and also the mechanism of programmed cell death (apoptosis).
Finally a brief explanation of the translation and transcription of proteins and
how both messengerRNA (mRNA) and microRNA (miRNA) are part of that
process.

2.1.1 Cell Life Cycle

Eukaryotic cells, that is cells with an enclosed nucleus, divides into two daughter
cells through a four phase process; Gap 1 (G1), Synthesis (S), Gap 2 (G2), and
Mitosis (M). However, a cell can enter a resting state (quiescence), known as
Gap 0 (G0), temporarily, or permanently, stopping the cycle. The transition
between the four phases are driven by a series of Cyclin Dependant Kinases
proteins (Cdk) that are activated when binding to a cyclin protein. Each Cyclin-
Cdk pair is associated with promoting a transition from one step to another,
for instance the G1S-Cdk promotes the transition from G1 to S.

Within a single phase there are checkpoints that need to be passed before the
cell continues to the next phase. These checkpoints determine if all preparations
has been made for the next phase, and if not halting the transition process.
For instance to pass the G1 checkpoint the cell first checks if there is any DNA
damage. If there is some DNA damage, it actives transcription of Cdk inhibiting
proteins that halt the transition to the S stage.

In the S phase the cell replicates its DNA and preventing replication from
occurring more than once. Due to the structure of the ends of the DNA strands
the whole strand cannot be replicated, hence a small section is lost for each
replication. Because of this problem, the ends of each chromosome has a set of
non encoding genes called Telomeres. The cell has machinery that can detect
when its Telomeres is sufficiently degraded and thus stops replicating, acting as
a limit on the number of cell divisions a cell can undergo. Section 2.2.2 will go
into more detail on the impact of Telomeres in cancer.

2.1.2 Apoptosis

Apoptosis is the process of controlled cell death. Once the apoptosis has started
it is irreversible. The process can be initiated either through intrinsic or extrinsic
pathways, however, in both cases the same underlying mechanisms are triggered.
Enzymes called caspases are activated that dismantle the organelles and proteins
in the cell. The cell changes its cell surface, which attracts the attention of
specialised phagocytic cells that engulf the remains of the cell. This way the
components of the cell does not spill out onto other cells causing an inflammatory
response and parts of the cell can be recycled by the phagocytic cell. The
intrinsic pathways are generally regulated by the Bcl2 family of proteins while
the extrinsic pathways are generally either due to Tumor Necrosis Factors (TNF)
or Fas receptors.

Apoptosis is used as a means to control cell proliferation beyond just con-
trolling cell division. Section 2.2.2 will go into more detail on the impact of
apoptosis in cancer.
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2.1.3 RNA and RNA Transcription

RNA is a single stranded neucleic acid strand molecule that uses the Uracil base
instead of Thymine. Given its single stranded structure it can perform more
roles than simply storing information because it can fold and form structures.
Because of this RNAs can perform a wide variety of di�erent roles like structural,
regulatory, and catalytic roles. The RNA strands are transcribed from sections
of DNA through the process of DNA polymerases.

2.1.4 Messenger RNA (mRNA)

For the purposes of this thesis the main focus is on protein encoding mRNAs.
Those mRNAs are transcribed from DNA as pre-mRNA, then modi�ed and
transported to the cytoplasm for translation into proteins. pre-mRNAs consists
of introns (non encoding regions) and exons (encoding regions) that is modi�ed
prior to translation. The introns are removed and the exons rearranged to form
an mRNA molecule that encodes a speci�c protein. Because the exons can be
rearranged, it means that a single gene can encode di�erent proteins depending
on how those exons are combined. Each mRNA can be translated into proteins
multiple times, depending on the longevity of the mRNA while in the cytoplasm.

2.1.5 Micro RNA (miRNA)

miRNAs are small non-coding RNAs, about 22 nucleotides long, that are pack-
aged with a specialized protein forming a RNA-inducing silencing complex
(RISC), which searches for complementary base pair mRNAs in the cytoplasm
to induce degradation of the mRNA. The RISC does not, however, get degraded,
thus it can search for new mRNAs to silence. This means that miRNA can quite
e�ciently inhibit translation of certain proteins. However, a single miRNA need
not only target a speci�c mRNA. As long as a mRNA contains the matching
sequence a miRNA can block translation from that mRNA.

2.1.6 Estimate of Protein Expression

The mechanisms that govern cell division, apoptosis, and relevant hallmarks
of cancer, as discussed in 2.2.2, are controlled by protein expression. Protein
expression, however, is more di�cult to estimate, hence encoding mRNAs and
miRNAs are used as an estimate of the encoded, or silenced, protein. Note
that the estimate is not a one to one correlation, given that a single mRNA
can encode di�erent proteins depending on how exons are ordered, translate
multiple instance of a single protein depending on its longevity, and a single
miRNA can silence multiple instances of mRNA molecules.

2.2 Cancer Biology

Cancer is fundamentally a tissue based disease where the regulation of cell prolif-
eration and inhibiting factors leading to continued growth and structural dam-
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age to the tissue. This imbalance in regulation comes from several di�erent
biological mechanisms that take place in a cell or part of intercellular processes.
This section will detail some of the important mechanisms that explains how
cancer develops, grows, and spreads, and introduce the speci�c cancer type
relevant for this thesis, namely Colon Cancer.

2.2.1 Oncogenes

Genes that promote cancerous behaviour after being mutated are referred to as
oncognees. An oncogene could for instance promote cell growth or inhibiting
apoptosis. Most oncogenes begin as a proto-oncogene, a gene that could, once
activate, act as an oncogene. It is through the protein encoding of these genes
that the cancerous behaviour is expressed. For instance p53 regulates DNA
damage repair, however, a mutation in the encoding for p53 has been shown to
be signi�cant in di�erent types of cancers.

Proto-oncogenes can become oncogenes with only a small modi�cation in
its original function. There are three primary ways of activation; mutation,
increased expression, and chromosomal translocation. A mutation in the proto-
oncogene could change the structure of the encoded protein causing a loss in
its original regulation. Increased expression could come from interactions with
other proteins or for instance downregulation of certain miRNAs that down-
regulate said protein. Lastly chromosomal translocation involves the speci�c
gene being translocated to a di�erent region and/or merged with another gene,
which could lead to a change in expression. In addition to oncogenes there
are genes coined anti-oncogenes, or tumor suppressor genes, that encode regu-
lation of cell division and survival that promote cancerous behaviour by being
downregulated.

2.2.2 Hallmarks of Cancer

The following paper from 2011 details the current known 6 biological hallmarks
that de�ne cancer in addition to outlining two possible emerging hallmarks and
two enabling mechanisms [21]. The following section will brie
y introduce these
key hallmarks of cancer.

A tumor requires obtaining su�cient signals to promote, and continue, cell
division, spreading, and to evade apoptosis. The hallmarks of cancer revolve
around these two fundamental principles. Firstly, as detailed in section 2.1.1,
cells cannot divide forever as their telomere genetic code gets shortened for ev-
ery DNA sythesis the cell goes through. Additionally, the protein telomerases
can prolong the period for which a cell can continue to divide without shrinking
its telomeres. This replicative immortality is a core hallmark of cancer and con-
sidered a necessary condition for cancer development. Without this feature, a
cell would either go into senescene, and stop replicating, or undergo apoptosis.
It has been shown that shortening the telomeres in mice have a direct correla-
tion to reducing the risk of cancer development and that the lack of telomerases
may prevent neoplastic development past a microscopic state. However, the
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telomerases protein does not only function as a means of providing replicative
immortality, as it has been shown to have an impact on enhancing cell prolifer-
ation, resisting apoptosis, DNA damage repair system, and RNA polymerases
function for transcription of RNA.

However, the immortalized cells still need to stimulate proliferation and
evade growth suppressing functions. Both can occur via an intrinsic pathway
or get extrinsic pathway from other cells, for instance the supportive stromal
cells. Growth suppressor factors are part of the cell life cycle control system
outlined in section 2.1.1, namely the cyclin-Cdks, where the upregulation of
speci�c cycline-Cdks have a direct impact on the progression through the cell
phases for cell division. For instance, the protein p53 suppress the continuation
to the S phase when there is a su�cient amount of DNA damage in the cell,
and in extreme cases inducing apoptosis provided the damage is not repairable.
p53 can also react to other stress and abnormalities in the cell function. On
the other hand retinoblastoma (RB) is a external growth suppressors that also
impacts cell proliferation, activating senescene, or inducing apoptosis. Studies
have shown that the growth suppressing functions have a degree of redundancy,
as Rb negative and p53 negative mice, that is mice without the presence of the
gene encoding the relevant protein, developed normally, however, experiencing
abnormal developments later in life.

To sustain this continued growth, the tumor needs nutrients and energy. To
facilitate the continued expansion, the process of angiogenesis, development of
new blood vessels, have been shown to be of vital importance. An inducer of
angiogenesis is vascular endothelial growth factor-A (VEGF-A) that encode the
development of new blood vessels and the homeostatic survival of endothelial
cells. However, the produced vessels by angiogenesis are abnormal, usually
containing convoluted and excessive branching, distorted and enlarged vessels,
erratic 
ow, and leakiness. Studies on mice have shown that upregulation of
angiogenesis inhibitors impair tumor growth, while a downregulation increases
growth of both planted and naturally developed tumors.

In addition to angiogenesis to sustain continued growth, cancer cells repro-
gram their metabolism to support further growth. Ordinarily glycolysis is used
in anaerobic metabolism, however, cancer cells use glycolysis despite working
under aerobic conditions, leading to a state of "aerobic glycolysis". This change
in metabolism leads to a drastic reduction in e�ciency of ATP production, that
the cell o�sets partly by upregulation of glucose transporters, however, the gly-
colysis servers other purposes as well. It is hypothesised that the glycolytic
is diverted to biosythetic processes that generate nucleotides and amino acids,
facilitating more DNA synthesis.

Beyond growing, cancer tumors need to resists induced cell death. Sec-
tion 2.1.2 introduce the general principles of apoptosis, which is induced either
through intrinsic (Bcl-2 family of proteins) or extrinsic pathways (Fas ligand/re-
cepters or TNF). Protein p53 is a tumor suppressor gene that is associated with
DNA damage that halts transition from G1 to S stage of cell divison, but it can
also induce apoptosis if there is too much DNA damage to repair. Limiting the
presence of p53 is the most common strategy to resist induced apoptosis. It has

9



also been shown that the intrinsic pathway is more widely implicated in halting
carcinogenic development over the extrinsic pathway.

Lastly tumors can spread to other tissue either through invasion of nearby
tissue or metastasis to spread to distant tissue through the circulatory or lym-
phic system. A key component for invasion or metastasis is "colonization", the
process in which a microscopic tumor can grow within the new environment to
a macroscopic tumor. Provided there is no facilitating growth factors, or other
microenvironments, that cancer cells require to pass beyond microscopic tumor,
they may revert to a noninvasive state. That is the metastasis have been able
to "physically disseminate", however, unable to "adapt" to the foreign environ-
ment. Alternatively the microscopic tumor could be dormant and erupt later
after the primary tumor has been dealt with. However, in the early stages of the
invasion-metastasis cascade, a multistep process detailing invasion and metas-
tasis progress, proteins or supporting cells can have an impact on the process of
in�ltrating new tissue. For instance E-cadherin, a cell to cell adhesion molecule,
that creates a cell sheet of quiescence cells limiting invasion and metastasis. It
has been show that downregulation and mutational inactivation of E-cadherin is
present in human cancers. On the opposite end stromal cells, through secreting
CCL5, can stimulate invasive behavior. Similarly a buildup of in
ammatory
cells near its boundary of a tumor can produce the necessary enzymes for inva-
sion, such that the cancer cells need not produce the activating proteins of the
ephithelial-mesenchymal transition (EMT) program, a regulatory program that
is casually important for invasion and metastasis and resisting apoptosis.

Of the key hallmarks mentioned above, the paper [21] notes two enabling
hallmarks that facilitate the expression of those mentioned. The �rst being a
change in metabolism to support further growth. Ordinarily glycolysis is used in
anaerobic metabolism, however, cancer cells use glycolysis despite working under
aerobic conditions, leading to a state of "aerobic glycolysis". This change in
metabolism leads to a drastic reduction in e�ciency of ATP production, that the
cell o�sets partly by upregulation of glucose transporters, however, the glycolysis
servers other purposes as well. It is hypothesised that the glycolytic is diverted
to biosythetic processes that generate nucleotides and amino acids, facilitating
more DNA synthesis. Secondly is genome instability and mutations that directly
impact the underlying regulatory mechanisms/pathways and proteins for each
of the hallmarks. During the process of tumorigenesis cancer cells often increase
the rates of mutations, one of the most common ways by downregulating p53.
Additionally, the mutations can compromise the cell control system that leads
to apoptosis or senescence.

2.2.3 Colon Cancer

Colon cancer (CC), or colorectal cancer, is a cancer developed in either the colon
or rectum that ranks as the second most prevalent cancer among women and
third among men, the median age being 73 in Norway, chapter 2.1 [1]. There are
many risk factors, among which are age, dietary, and obesity, with a about 15-
30% being hereditary having some major hereditary component [17]. Despite
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comprising of a small portion of the total patient population, the heraditary
cases are studied to understand the underlying mechanism better. Of note is
the mutation in the Adenomatour Polyposis Coli (APC) tumor suppressor gene
is a contributing factor in Familial Adenomatous Polyposis (FAP), a subtype
of colon cancer that develops at a young age [17]. Others gene mutations like
KRAS [10], BRAF [9], PIK3CA [38], and TP53 [17], the gene that governs the
p53 protein, have also been shown to be relevant biomakers for colon cancer.
Together APC, KRAS, BRAF, and TP53 account for nearly 70% of all colon
cancer cases [2].

A key prognostic factor of colon cancer is the Tumor, Node, and Metastasis
Staging (TNM-Stage). The staging consists of four main stages dependant on
the independent Tumor, Node, and Metastasis stage. Principally TNM stage
1 is de�ned by small and local tumors. Stage 2 de�ned by not having spread
to lymph nodes. Stage 3 is de�ned by spread to lymph nodes. And stage 4 is
de�ned by metastasis.

The tumor stage di�erentiates between how many speci�c layers of tissue
has been penetrated by the tumor, ranging from growing through the inner
lining, muscle, outer lining, and further into a di�erent organ. The node stage
di�erentiate how many lymph nodes the cancer has spread to. Lastly the metas-
tasis stage di�erentiate if the tumor has spread to a distant organ or not. As
mentioned above, any metastasis means that the TNM-stage is stage 4. A more
detailed explanation of the TNM-staging can be found in [13].

Standard treatment for colon cancer is surgery to remove the primary tu-
mor. Most patients are cured by the surgery, however, some develop recurrence.
Adjuvant chemotheraphy is a possible followup treatment aimed at eradicating
micrometastases, chapter 9.6 [1]. In Norway stage 3 patients are treated with
adjuvant chemotherapy, however, only speci�c high risk stage 2 patients get the
same treatment. The type of chemotheraphy is a combination of 
uorouracil
(5-FU), folinat (FLV-regimen) and oxaliplatin (FLOX), however, 5-FU based
chemotherapy is not used for MSI-H patients. Research has shown that MSI-H
patients have no e�ect on those patients [45, 46].

2.3 Machine Learning

The topic of Machine Learning is dedicated to problem solving by replicat-
ing/simulating the process of "learning" based on observations, data, and/or
predetermined knowledge. Learning, in this context, is the process of remem-
bering information, adapting the information to solve a problem, and general-
izing that knowledge to an unseen circumstance. Humans are capable of doing
this process all the time. Find a picture and description of important charac-
teristics of an animal, and a person might be able to recognize the animal if
they encounter it later. Alternatively, people learn how to distinguish people
they know from others they do not. For a computer, on the other hand, �nding
a way to replicate this process can be quite di�cult given that one has to de-
�ne how to modify and adapt to new knowledge. Many di�erent methods have
been proposed to simulate this process of learning based on data, ranging from
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something as simple as �nding the line of best �t, linear regression, for a given
number of sample points, to complex convolution neural networks performing
image segmentation. Some models are iterative, learning by repetition on the
data, while others not. Additionally, a number of di�erent training schemes
are used in conjunction with di�erent methods, leading to a large possibility of
available options.

This following subsection will detail a number of key concept related to ma-
chine learning. Firstly the basics of handling datasets and then the concept of
di�erent types of machine learning. Next the key concept of Over�tting/Under-
�tting and its relation to the Bias-Variance Tradeo� will be explained. Given
the importance of reducing bias and variance, the two following sections will
detail two possible ways of achieving that, namely Regularization and Cross-
Validation, respectively. Section 2.3.6 outlines a method to search over a large
hyperparameter space for methods that have hyperparameters that impact the
models performance. Lastly, quite pertinent to the dataset that is used in this
thesis, the concept of Curse of Dimensionality and Feature Engineering is intro-
duced in section 2.3.7 and 2.3.8, respectively.

2.3.1 Process of Learning

The process of learning from data mentioned above consists of a number of key
elements, and may be summarised as follows; "A computer program is said to
learn from experience E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by P, improves with
experience E", chapter 5 [18]. The experience E, is a set of data samplesx i

consisting of a k features x i = ( x i; 1; :::; x i;j ). The exact shape of the feature
space need not be, as outlined above, a single vector. For instance. an image
has a three dimensional feature space consisting of a pixel width, pixel height,
and color depth. Alternatively, a single sample could be the string of a sentence
instead of a dedicated feature space, however, in language based models, a
preprocessing step includes converting a sentence to a set of features. For the
purpose of this thesis the feature space will be considered as a one dimensional
space ofk features. In cases where a feature is categorical, the feature will be
converted to a set of binary features through a one hot encoding, thus each
feature will be treated as a real number.

The data that is used is generally split into three components, the training,
test, and validation sets, respectively. Each dataset serves a speci�c role in the
learning process. Firstly, the machine has to learn from something, and this is
the training set. To know that a model has learned something, and can apply it
to unknown samples, we use a test set, checking the strength of the generaliza-
tion of the model. However, a simple split between training and testing need be
su�cient for all use cases, hence the introduction of the validation set. Consider
a model like K-Nearest-Neighbours that has a parameterk, the number of clos-
est points to a point x i is used to determine the classi�cation ofx i . The model
output can drastically change depending on what value ofk is selected, hence
a validation set will be used to determine the most optimal selection ofk. It is
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important to note that the validation set is separate from the test set, as the
validation set's primary role is to determine the relative performance of di�erent
choices for a model or iterative steps as a model trains. For instance for a neural
network, after each epoch, it validates the current trained model on a validation
set to determine how well it has generalized so far. A common approach for
validating during training, or for selecting di�erent parameter choices, will be
detailed in section 2.3.5.

The task T can vary wildly. Broadly speaking it can be categorised into
Supervised, Unsupervised, and Semi Supervised/Reinforcement learning. For
supervised learning each data sample has an associated target valueyi such
that each element in X is of the form (x i ; yi ). The target/response/class deter-
mine the associated class or value of a speci�c sample, and the learning process
aims to learn to predict the target of new data samples. In the case of a categor-
ical target the problem is classi�cation, while for continuous variables it would
be a regression problem. Other types of problems, like image segmentation
have a di�erent response, however, for the purpose of this thesis, classi�cation
and regression is the important sub-tasks for supervised learning. Unsupervised
learning, on the other hand, has no target, hence the models aim to learn some
underlying structure in the data. For instance, clustering of data samples that
are similar or learning some lower dimensional representation of the data. Meth-
ods of dimension reduction will be mentioned in more details in section 2.3.8.
Semi-supervised learning is a hybrid approach between supervised and unsuper-
vised learning. In cases where recording data samples is cheap, but recording
targets is expensive, models can be trained on a smaller set of labeled data in a
supervised way, then trained on a larger unlabeled dataset in an unsupervised
way. Alternatively a model could consist of multiple smaller models that act in
conjunction to learn on unlabeled data in a teacher-tutor relationship or only
know that its prediction is wrong, but not what the correct prediction is, usu-
ally referred to as learning by critic. Given the nature of the problem for this
thesis, only supervised learning will be discussed, with some minor mentions of
unsupervised learning as a means to visualize data in lower dimensions.

The performance measure, P, will be explored in more detail in the following
section.

2.3.2 Performance Measure P

A measure P is necessary to determine if a model has learned. The measure
used depend on the type of task being evaluated, but is generally a dissimilarity
measure.

For regression models the Mean Square Error (MSE) is normally used, chap-
ter 2.2 [25], which is simply

P n
i =1 (yi � f̂ (x i ))2 for some model functionf̂ esti-

mating an underlying true distribution f . However, the choice of MSE is not
arbitrary. To see this consider the principle of maximum likelihood. For an
arbitrary probability distribution P(X j� ) the maximum likelihood is the choice
of � such that � ML = arg max � P(X j� ). For certain probability distributions
P(X j� ) it can be more useful to consider the log likelihood, i.e. instead maximize
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� ML = � log
�
P(X j� )

�
.

Now consider the case of a linear regression model. Let̂f (x; � ) be the re-
gression model where� is the set of learned polynomial coe�cients including a
bias term. Given that the goal of the model is to predict a responsey based on
f , instead the correct formulation is the maximum likelihood of the conditional
probability distribution arg max � `(� ) = arg max � P(Y jX ; �; b). Assume that
the noise of the data is Gaussian with mean zero, i.e. each sample responsey is
of the form y = f (x) + � for � N (0; � 2). Given a linear case the log likelihood
of the conditional distribution can be expressed as follows;

`` (X; � ) =
nX

i =1

logN (yi � � T x i j 0; � 2 );

= � m log � �
m
2

log(2� ) �
1

2� 2

nX

i =1

(yi � � T x i )2 ;

= � const �
1

2� 2

nX

i =1

(yi � � T x i )2 ; (1)

where the last term is equivalent to the sum of squared di�erence between the
target and the predicted target, see chapter 5.5 [18]. The maximum likelihood
solution to a regression problem could be solved analytically from (1), however,
more complex models would be more di�cult, or impossible, to solve analyt-
ically. Additionally, it is entirely possible that the noise in the data is not
Gaussian, hence the log likelihood would be di�erent.

The maximum likelihood approach comes naturally if we consider the Kullback-
Leibler divergence;

DKL (p jj q) = Hp(q) � H (p);

= Ex p [logp(x) � logq(x)]; (2)

of two distributions q and p, with x sampled from q, chapter 5.5 [18]. Hp(q)
is the cross entropy betweenp and q and H (p) the entropy of p. If p is the
underlying data generating distribution and q is the model distribution, then
minimization of the KL-divergence is the same as maximizing the log likelihood
given that;

arg min
�

DKL (pdata jj pmodel ) = arg min
�

Ex p data

�
logpdata (x) � logpmodel (x)

�
;

= arg min
�

Ex p data [logpmodel (x)];

= arg min
�

log
nY

i =1

pmodel (x i );

= arg min
�

`` (X ; � ):

Thus using maximum likelihood estimate for a model distribution is an at-
tempt at making the model distribution and the data distribution as similar
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as possible. This approach would be ideal if we could have access to the data
generating distribution, however, that is the distribution pmodel is attempting to
estimate. Instead we will only be able to make the model distribution as close
to the distribution of the available data as possible, however, it still remains a
good approximation. Many machine learning methods will use KL-divergence
indirectly due to other cost functions, or directly.

One approach to classi�cation is to perform regression and base the pre-
dicted response based on̂f (x) = w T x. A simple rule could be to classify all
samples above 0 as class 1 and all samples below 0 as class 0 in a binary classi-
�cation problem, however, this hard classi�cation boundary might not be ideal
given the uncertainty near the boundary. This is the principle approach for
the Support Vector Machine algorithm which will be explained in section 2.5.1.
Alternatively the regression response could be transformed via a function such
that the decision boundary becomes smooth. A standard function for this kind
of problem is the sigmoid function � (x) = 1

1+exp ( � x ) . With this function the

probability of a sample being classi�ed as class 1 isP(y = 1 j x) = � (w T x),
chapter 4.3 [25]. It can be shown that the maximum likelihood estimate for the
weights w is the binary cross entropy, that is;

`` (X; � ) = log
nY

i =1

P(yi = 1 j x i )y i (1 � P(yi = 1 j x i ))1� y i ;

=
nX

i =1

yi log � (w T x i ) + ( 1 � y i ) log
�
1 � � (w T x i )

�
; (3)

which is the binary cross entropy of a Bernoulli distribution.
However, the performance measure P need not be directly linked to the un-

derlying cost function that de�nes the optimal learning procedure. For instance
accuracy is a simple measure of how many samples are predicted correctly. Sim-
ply it is the expectation of the function I (yi ; ŷi ) that has a value 1 whenyi = ŷi

and zero otherwise. Or in simpler terms, the number of correctly predicted
samples divided by the total number of samples. Models that have a higher
prediction accuracy perform better at classi�cation in theory, however, the ac-
curacy measure might be misleading. To see why, consider a dataset with a class
imbalance where 90% of the samples are of class 1 while the remaining 10% are
of class 0. In this case a model that always predicts all samples to be 1 would
get a 90% accuracy score, yet it has clearly not learned anything meaningful in
separating the two classes. An alternative approach to measuring accuracy is
the balanced accuracy [7] measure de�ned as;

Balanced Accuracy =
1
2

�
TP

TP + FN
+

TN
TN + FP

�
; (4)

for a binary classi�cation problem where TP, FN, TN, and FP are related to
the concept of a confusion matrix, seen in table 1. This performance measure
penalizes models that get good accuracy based on the class imbalance, giving
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Prediction: False Prediction: True
Label: False True Negative False Positive
Label: True False Negative True Positive

Table 1: The columns are the predicted class and the rows are the true labelsy.
Each cell records the number of samples with the ordered pair of labels (y; ŷ).
Each cell in this example of two classes have a name. True Negative (TN) is the
number of samples that are correctly predicted as false. True Positive (TP) is
the number of samples that is correctly predicted as true. Both False Negatives
(FN) and False Positives (FP) are the cases where the prediction is di�erent
from the true label.

them a balanced accuracy of 50% in a binary classi�cation problem, or speci�-
cally 1

c where c is the number of classes. The strength of a models performance
is how far it deviates from the baseline of 50%, which will be discussed in section
4.

However, in the class imbalance case above, we could instead measure how
much it predicts class 0 as 1 and class 1 as 0. This can be shown in a confusion
matrix [16]. A confusion matrix is an C � C matrix for number of classesC,
where each row is the true class and each column is the predicted class. Each
cell is the number of occurrences of the pair (yi = ca ; ŷi = cb) for some classes
ca and cb. The accuracy measure mentioned above is simply the diagonal sum
divided by the total number of samples when viewed as a confusion matrix.

Consider a two class problem confusion matrix shown in table 1. One way
to include the rate of incorrect predictions in a scoring metric is using a Re-
ceiver Operating Characteristic (ROC) curve [16]. An ROC curve plots the
False Positive Rate (FPR) against the True Positive Rate (TPR), calculated by
FPR = F P

T N + F P and TPR = T P
F N + T P . Note that inherent in the computation

of the TPR and FPR, the algorithm adjusts the threshold of the probability of
a true sample. For instance, in the logistic regression example a probability of
P(yi = 1 j x) > 0:5 is classi�ed as 1, however, this does not have to be the op-
timal choice of a threshold for a given model. In this way, the ROC curve �nds
the most optimal threshold, and from that threshold, computes the TPR and
FPR. The �nal curve should be above the diagonal curve from (0; 0) to (1; 1),
also called the line of chance, with a better model being closer to the top left
corner. Models that fall below the line of chance need not be worthless, consid-
ering such models are simply predicting true samples as false and false samples
as true. Switching the prediction output will yield a model that is above the
line of chance. A measure of a ROC curve is the Area Under the Curve, which
is simply the integral of the ROC curve [16]. Thus the worst possible AUC is
0:5, given that all curves with AUC less than 0:5 can be switched to above 0:5
with the trick mentioned above.

For the purpose of this thesis, the imbalanced accuracy measure and AUC
will be used as performance measures.
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2.3.3 Bias-Variance Tradeo�

Consider a simple regression problem where the variabley is dependent onx
via an unknown functional relationship y = f (x) + � where � some noise with
mean 0 and variance� 2. Without loss of generality the mean of the noise can
be assumed to be 0, for if it was not, it could be considered as a constant term
in the function f . As described in section 2.3.2 the normal loss function for
regression is MSE. Consider the expected error of any given pointx outside the
training set for some function f̂ trained on D, that is ED [(y � f̂ (x; D ))2]. This
decomposes into three terms called the bias, variance, and irreducible error,
three key concepts when analysing a models performance. The derivation of the
exact relationship is detailed below.

For the purpose of notation, the expectation outlined below will be assumed
to be over the domain D of the training set unless speci�ed otherwise. the
functions f (x; D ) and f̂ (x; D ) will be abbreviated as f and f̂ to simplify the
notation. Thus by the de�nition of expectation we can write;

E[(y � f̂ )2] = E[(f + � � f̂ + E[f̂ ] � E[f̂ ])2]:

Expand and apply linearity

= E[(f � E[f̂ ])2] + E[� 2] + 2E[� (f � E[f̂ ])] + E[(E[f̂ ] � f̂ )2]

+ 2E[� (E[f̂ ] � f̂ )] + 2 E[(f � E[f̂ ])(E[f̂ ] � f̂ )];

Given that f and E[f̂ ] are deterministic, that is they are independent of the do-
main of expectation D , the expectation of a product is the product of expecta-
tions. Additionally, since � is independent of all other variables, its expectation
can be multiplied out by the product rule, that is if X and Y are indepen-
dent random variables, then E[XY ] = E[X ]E[Y ]. Hence the above expression
simpli�es to;

=( f � E[f̂ ])2 + E[� 2] + 2E[� ]E[(f � E[f̂ ])] + ( E[f̂ ] � f̂ )2

+ 2E[� ]E[(E[f̂ ] � f̂ )] + 2( f � E[f̂ ])E[(E[f̂ ] � f̂ )];

furthermore, given that � has a mean of zero, its expectation is by de�nition
zero, cancelling out the epsilon expectation terms. The last term cancels given
that by linearity, E[E[f̂ ] � f̂ ] = E[E[f̂ ]] � E[f̂ ], which is simply zero given that
the expectation of an expectation is the expectation, i.e.E[E[f̂ ]] = E[f̂ ]. Thus,

=( f � E[f̂ ])2 + E[� 2] + ( E[f̂ ] � f̂ )2;

=Bias[ f̂ ] + Var[ � ] + Var[ f̂ ]; (5)

which is the outcome outlined above. The simpli�cation from the last line comes
from the de�nition of variance, which by simple expansion and application of
linearity shows that, Var[ X ] = E[X 2] � (E[X ])2 for some random variableX .
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Similarly for the � term, since E[� ] = 0, then Var[ � ] = E[� 2] � (E[� ])2 = E[� 2].
This relationship between the variance and bias of the model to the error is key
to understanding how to create a model of best �t for a given dataset. The
variance of the error, however, is the underlying error that comes from some
unknown in
uence on the variable y. For instance, it could be due to a number
of missing variables that would adequately explain the relationship, or simply
that the underlying mechanism has some inherent unpredictability. Regardless
of its source, it serves as a lower boundary for the mean square error on any
dataset, thus the loss of the cost function will never get to zero.

The variance represents the error related to the subsampling of data that
is done for the training set D compared to the true distribution. Thus smaller
datasets tend to su�er heavily from variance and increases the dataset size re-
duces the impact of variance. The bias is the error from the inherent assumption
built into the model for the function f̂ . More complicated models tend to re-
duce bias while simple models increase the bias. For instance a model like linear
regression has a low complexity, thus high bias, from the limited number of dis-
tributions it can �t. On the other hand polynomial regression will have a higher
degree of complexity and infer less bias.

Figure 1: Shows the di�erence in line of best �t for polynomial regression on
the function f (x) = sin(1 :5�x ) + N (0; 0:2) for x 2 [0; 1]

This example can be seen in �gure 1. The �gure shows the true distribution
f (x) = sin(1 :5�x ), the 42 samples from said distribution with an added noise
term of N (0; 0:2), and the polynomial regression. The �gure on the left shows
a �rst degree regression model, right shows a 15th degree regression model, and
the middle shows the degree that minimizes the mean square cross validation
error between 1 and 15. The linear regression model cannot hope to fully capture
the variability in the true distribution given its low model complexity, leading to
a high bias term. The 15th degree regression model su�ers from high variance
and is clearly a poor �t given the right tail end of the regression line. The clearly
poor �t of both the 1st and 15th degree polynomial regressions are examples
of under�tting and over�tting, respectively, chapter 5.2 [18]. The connection
between over�tting/under�tting and model complexity is shown in �gure 2.
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Figure 2: Shows a sample training and test error plotted against model complex-
ity. Models that are the the left of the optimal minimum test error is considered
under�tted, while models to the right of that line is considered over�tted.

2.3.4 Regularization

Models can have a high complexity leading to �tting to the underlying noise
of the data, as described in the section above 2.3.3. One way to remedy this
over�tting is to use a regularization method that constrains the possible model
complexity. Consider a polynomial regression model with degreek using mean
square error as the cost function. Let each coe�cient be� j . This regression
model will then be used to estimate some polynomial function,f , of degree less
than k. In this case the model that is used has too high model complexity and
will over�t to the underlying noise, especially so with few samples. However, if
the model could just zero out speci�c coe�cients, it could express polynomials
of lower degrees without the possibility of having too high model complexity.
One approach could be to force the coe�cients� i as close to zero, thus if a par-
ticular power is not necessary to estimate the underlying polynomial function,
the coe�cient will be set to zero. This is the l2-norm, or in terms of polyno-
mial regression, a ridge regression model, chapter 6.2 [25]. Mathematically, the
problem can be expressed in terms of an optimization problem as follows;

min
�

(
nX

i =1

�
yi � f̂ (x i )

� 2
)

subject to
nX

i =1

� 2
j � s; (6)

which amounts to an addition of a �
P n

j =1 � 2
j term to the cost function. This

means that the model is penalized for having high coe�cient magnitudes, and
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thus irrelevant coe�cients will tend to zero. l2-norm forces coe�cients close
to zero, however, not exactly to zero. In certain situations, like when doing
Feature Engineering, as discussed in section 2.3.8, forcing the algorithm to set
coe�cients equal to zero can be bene�cial. One way to achieve this is using the
l1-norm instead, that is add a �

P n
j =1

�
� � j

�
� term to the cost function. This is

equivalent to the following optimization problem;

min
�

(
nX

i =1

�
yi � f̂ (x i )

� 2
)

subject to
nX

i =1

�
� � j

�
� � s: (7)

In terms of regression, this is called a LASSO regression model, chapter 6.2
[25]. The reason the coe�cients are forced to zero, compared to a Ridge model,
comes from how the restriction of the coe�cient space intersects with the level
sets of the cost function. An example of this is shown in �gure 3 where the
red concentric circles are level sets of a cost function, green circle is the l2-
norm restriction, blue diamond is the l1-norm restriction, and the axis are two
coe�cients � 1 and � 2 for some model with two coe�cients. The intersection
between the level set of a cost function and the restriction function on the
coe�cient space is the solution model. Given this, the shape of a l2-norm has
a higher chance to intersect with the level set away from the axis compared
to an l1-norm. However, one could use a hybrid approach between these two
restrictions, i.e. a linear combination of the two, which leads to what is called
elastic-net regularization, by adding the a � 1

P n
j =1 � 2

j + � 2
P n

j =1

�
� � j

�
� for two

mixing coe�cient � 1; � 2. The visual representation of elastic-net regularization
in two dimensions is a shape between the green circle and blue diamond in �gure
3.

20



� 1

� 2

Figure 3: The �gure shows a simpli�ed picture of the intersection of the level
sets of a cost function, red concentric circles, with l1 (blue) and l2-norm (green)
restriction on the coe�cient space in two dimensions. Each axis represents one
coe�cient, i.e. � 1 and � 2. Each red circle represents a boundary of equal loss,
i.e. a level set of the cost function, and circles are used as a simpli�cation, given
that the level set can be a much more complex boundary. The intersection
between a red circle and either the green or blue shape represents the solution
a model �nds. Take the l2-norm, the second most outer level set intersects with
the green circle, forcing the coe�cients to be small, yet not zero. For l1-norm,
the intersection instead occurs at an axis intercept. In general the intersection
for l1 would occur at the axis intercept, which forces coe�cients to zero.

The three types of regularization mentioned above are examples of weight
decay regularization and can be used for more complicated models than poly-
nomial regression. Support Vector Machine, as is discussed in section 2.5.1, is
one prominent example that is relevant to this thesis, however, it could also be
applied to individual layers of a neural or convolutions neural network, chapter
7.1 [18]. However, regularization is a more general principle than simply weight
decay. Regularization is any modi�cation we make to a learning algorithm that
is intended to reduce its generalization error but not its training error, chapter
5.2 of [18]. With this in mind a number of di�erent methods can be considered
regularization beyond just weight decay. For instance, early stopping of itera-
tive algorithms, i.e. neural networks and stochastic gradient descent classi�er,
parameter sharing, i.e. convolutions network architecture, or bagging/ensemble
methods, one of which will be described in section 2.5.5.

2.3.5 Cross Validation

Consider a speci�c split of data into a training, testing, and validation set.
During training the model will �t to the underlying distribution, or eventually
the noise with enough model complexity, however, a similar problem can be seen
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with the validation set. If the validation set is used to determine the optimal
hyperparameter choices, then it stands to reason that the choice of parameters
is inherently dependent on the selection of the validation set. Since the set is
predetermined randomly before the training process, the model will su�er from
the variability in said selection, when selecting hyperparameters. Additionally,
as detailed in 2.3.3, getting more data reduces the variance, which means that
if there is already little available data, or the validation set is selected to be
su�ciently large, unstable models would su�er from the reduced number of
training samples.

A solution to minimize the impact of the variability from selection of the
validation set is using a training method called cross validation, chapter 5.1
[25]. Consider �gure 4, the entire dataset is split into training and testing in
step A). Then in step B), during training, the dataset is split into �ve equally
large portions and the model is trained �ve separate times. The selection of �ve
is completely arbitrary, and is purely done as an illustrative example. In each
training iteration, the validation data consists of one of the �ve components,
di�erent each time, and the training set is the rest of the samples. Similarly to
how a model can incur variance from the choice of the validation set, each of
the individual models that are trained can as well, however, since �ve models
are trained, we can average their contributions and determine an average score
for a particular model.

Figure 4: In step A) the whole dataset is separated into a test and training
set, and in step B) cross validation is used to train a model. The training set
is separated into k number of folds, in the imagek = 5. Then the model is
trained k times on di�erent combinations of the folds with one fold held out for
validation of said trained model.

A special case of the k-fold cross validation (k-CV) is leave one out (LOO)
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cross validation, chapter 5.1 [25]. For LOO the choice ofk is equal to the
number of training samples, hence the training set consists of alln � 1 samples
and only a single sample is used for validation. The contribution of each model
is combined to get an average performance, similarly to k-CV. LOO has the
consequence of requiring a lot more computation, leading to it being unfeasible
to use.

The two methods have an impact on the variance and bias of a model. In
chapter 5.1 of An Introduction to Statistical Learning [25] it details that k-CV
improve the variance over a simple predetermined split, or more speci�cally
compared to a 50-50 split of the dataset into training and validation. Certainly
in this case, the reduction in training samples have an impact on the inherent
variance of the data that the model learns from. Comparing LOO and k-CV, the
former is close to an unbiased estimate of the whole training set, given that the
training set in each iteration of LOO consists of almost the entire training set, i.e.
n � 1 samples. Comparatively, k-CV contains a smaller proportion of the total
training set for when k < n , leading to a more biased estimation of the total
training set, however, still smaller than the bias inherent in a predetermined
random split. When it comes to variance, they argue that the reduction in
bias from using LOO over k-CV comes at the cost of increased variance. The
increase in variance stems from the high positive correlation between then
trained models given the relatively small change removing one sample will have
on the trained model. Furthermore, the mean of many highly correlated values
have a high correlation, thus an increase in the variance of the model. k-CV
still su�ers from the positive correlation between models, however, to a lesser
extent, thus incurring less variance.

That being said, other researches have a di�erent view on the di�erence
between LOO and k-CV. For instance [53] argues that simply stating that LOO
su�ers from more variance than k-CV is not entirely correct, given that it is
dependent on the context of the use of cross validation. The paper details a
number of experiments done for LOO, k-CV, and k-deletion cross validation,
and shows that the increase in variance for LOO over the other methods occurs
for models like LASSO (l1 weight decay loss for regression model) and SCAD (a
non convex weight decay loss), see [14] for speci�cs of the SCAD loss function.
This is due to the uncertainty incurred from small penalty coe�cients and large
feature space.

For the purpose of this thesis, cross validation will be used to select hyper-
parameters and to select between possible models, see section 3.6 for the speci�c
hyperparameters spaces for the models that was used.

2.3.6 Randomized Grid Search over Hyperparameter Space

For models like KNN and polynomial regression a single hyperparameter needs
to be selected, number of neighbours and degree of the regression, respectively,
to use the algorithms. One approach would be to train a model for each pos-
sible choice within some reasonable set domain and select the best performing,
according to some prede�ned metric, choice. This approach remains simple
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enough when a model only has one possible parameter. However, for models
with considerably more possible options can be quite resource intensive. An al-
ternative approach is to do a randomized grid search over possible combinations
of hyperparameters.

That is for some hyperparameter spaceH = S1 � S2 � ::: � Sk consisting
of sets Si of some number of categorical options or continuous options, each
iteration of the randomized search would select an elementh 2 H where h =
(S1;i 1 ; S2;i 2 ; :::; Sk;i k ) a vector of elements of each of the parameter spacesSi . A
model is trained, through the process of cross validation, and scored according
to a prede�ned metric. The combination of parameters that perform the best
is selected, or alternatively some speci�c parameter options can be eliminated
and a more re�ned search can be performed again.

A randomized grid search allows for more complex hyperparameter spaces
for models to be explored, and estimated, at a reduced computational cost.
Additionally, even if a single model only has a single parameter to determine,
the model could be used in conjunction with other models as a pipeline, leading
to the total hyperparameter space being considerably higher. As detailed in
section 3, the use of feature selectors and dimension reduction methods can
be added, and explored, in a randomized grid search over the hyperparameter
space.

2.3.7 The Curse of Dimensionality

One problem of particular importance to this thesis is high dimensional data,
that is the feature space is larger than the sample space. High dimensional data
posses a number of problems related to machine learning, the �rst of which is
the locally sparse neighbours around each sample. Consider a pointp in some
metric space, then the epsilon neighbourhood of pointp is the set B � (p) such
that B � (p) = f x 2 X j d(p; x) < � g for some metric d where X is the sample
space. Given the space ordinarily used in machine learning is a euclidean space,
the metric will be the euclidean metric d(p; x) = jp� xj unless otherwise stated.
As the dimensionality increases, the volume of the epsilon ball shrinks, past
a certain point. To see this, consider the function of the volume of a unit
hypersphere as the dimensionality increases. This is shown in �gure 5. The
formula for the volume of a hypersphere isVn = 2�

n Vn � 2, thus when n > 2�
the volume decreases, as shown in the �gure. This reduction in volume means
the local neighbourhood gets more and more sparse as points get further and
further apart, given that the volume of space the sphere encompasses decreases.

An alternative way of presenting this problem, courtesy of chapter 5.11 of
[18], is to consider a categorization of each feature into ten unique values. When
the number of features is only one, the total number of samples needed to have
at least one sample of each unique value is quite small. When the dimensionality
increases, the number of samples necessary to fully express all possible combi-
nations increases exponentially with the dimension. In two dimensions there
would need to be at least 100 samples, but in just six dimensions there would
need to be at least one million samples. However, each unique combination
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Figure 5: The �gure shows the volume of a unit n-sphere against the number of
dimensions. As the number of dimensions increases, the volume rises to a peak
and then falls, tending to zero asn �! 1 . Mathematically the volume of a unit
n-sphere isVn = 2�

n Vn � 2 in relation to the volume of an (n-2)-sphere, thus the
volume would decrease whenn > 2� .

need not be relevant, however, without having a su�cient number of samples,
a model would have no knowledge on whether the combinations it does have is
su�cient or not.

The underlying problem is that distance metrics become less useful with
more dimensions. Consider a set of independent and identically distributed data
samplesX = f x1; :::xn g and a random reference pointQ, then as the dimen-
sionality increases, the minimum and maximum distance become indescribable.
More formally;

lim
k �! 1

P
�

DMAX k � (1 + � )DMIN k

�
; (8)

where DMINk = min f dk (x; Q) 8 x 2 X g, DMAX k = max f dk (x; Q) 8 x 2
X g, and epsilon is some arbitrary positive number� > 0, see [4]. This means
that models that rely on a distance metric, or nearest neighbours, break down
in higher dimensions under the assumption of the data being independent and
identically distributed.

Given the nature of the data that is used in this thesis, as described in
section 3.1, properly mitigating the di�culties posed by higher dimensional data
is crucial. The next section will detail a way to mitigate the high dimensionality
in the form of Feature Engineering.
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2.3.8 Feature Engineering

Data that is considered high dimensional, i.e. m > n where m is the number
of features andn the number of samples, su�er from breakdown in the distance
metric and local neighbourhood sparsity. Feature Engineering is one way to
mitigate these problems by reducing the dimensionality of the data fromm to
some lower dimensional space ^m < m , and usually m̂ < n by some function
� : Rm �! Rm 0

. There are two principle ways of reducing the dimensionality,
the �rst is selecting a subset of features that is deemed most relevant for the
given task or possess some important characteristic, or perform a linear, or non-
linear, transformation of the feature space and embed it in a lower dimensional
space. The latter being called dimension reduction or representation learning
and the former being subset selection.

Dimension reduction methods involve some linear or non-linear transforma-
tion of the feature space to a lower dimensional space. A simple example of
such a method is Principle Component Analysis (PCA), chapter 10.2 [25]. PCA
creates a set of orthogonal basis vectors of the covariance matrix for the data
samples. A subset of those basis vectors can be selected to perform dimension
reduction. The selected basis vectors are based on the eigenvalues for those
orthogonal basis vectors. Other more complex methods exists with di�erent
desirable properties. For instance, Universal Manifold Approximation (UMAP)
uses a local distance metric between nearby points to �nd a lower dimensional
embedding [37]. Dimension reduction methods serve an important role in fea-
ture engineering when the features are deemed important, however, if a feature
is simple noise, then the noise will be included in the lower dimensional repre-
sentation. Furthermore, to classify any new samples the whole original feature
space is needed, something that might not be a desirable property. However,
methods such as PCA and UMAP are good visualization tools for high dimen-
sional data in two dimensions.

The form of feature engineering that will be used in this thesis is feature
selection. There are a number of di�erent ways to performing feature selection,
but principally there are two approaches that will be used, �lter methods and
wrapper methods. A �lter method is a simple statistical approach ranks each
feature for its importance. In general, these methods are univariate approaches
for determining relevant features. This means that �lter methods tend to select
variables that are highly correlated. Certain methods have been developed to
counteract such behaviour, like Fast Correlation Based Filter (FCBF), however,
they are outside of the scope of this thesis [51]. The types of �lter methods
used are described in more detail in section 2.4. Wrapper methods consist
of training a classi�er model on the data and using metrics on said model to
determine relevant features, chapter 6.2 [25]. The simplest approach is applying
l1 weight decay to a classi�er and using the variable coe�cients as a measure of
a feature's importance. Other methods, like Random Forest [6], inherently rate
each feature as part of the learning process, hence that can be used instead.
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2.4 Filter Methods

Four types of �lter methods will be used as part of this study, those being
One-way Analysis of Variance (ANOVA), Fisher Score, ReliefF, and Mutual
Information. Each of the methods will brie
y be explained below.

ANOVA computes the F-statistic F = (T SS � RSS )=p
RSS (n � p� 1) where n is the number

of samples,RSS is the sum of residual squares,TSS is the sum of total squares,
and p is the number of relevant features for testing the null hypothesis� 0 =
� 1 = ::: = � p = 0 of a regression model, see [25] chapter3.2. Given that the
analysis is univarate, p = 1. ANOVA does require that the scale of each of the
features are the same, which is guaranteed by the standardization done in the
preprocessing step.

The Fisher score selects features such that distance to other classes is as
large as possible and within class distance is small [19]. Speci�cally the Fisher

score isF (X j ) =
P c

k =1 n k ( � j;k � � j )2

� 2
j

where X j is the feature vector of featurej ,

c is the total number of classes,nk is the number of samples with classk, � j;k is
the mean of the j-th feature vector for samples with classk, and � j is the mean
of feature vector j .

ReliefF is an extension of the Relief algorithm that iteratively updates each
features importance based on the closest within class samples and closest dif-
ferent class samples to the given sample [48]. Speci�cally it selects a random
sampleRi in step i , then �nds the k nearest neighbours with the same classH j

and k nearest with a di�erent class M j , called nearest hits and misses, respec-
tively. The importance of each featureA is updated by the following rule;

Wi +1 (A) = Wi (A) �
1

mk

kX

j =1

di�( A; R i ; H j )

+
1

mk

X

C 6= class (R i )

�
P(C)

1 � P(class(Ri )

kX

j =1

di�( A; R i ; M j )
�

;

where di�( A; I 1; I 2) is a function de�ned on samplesI 1 and I 2 that is 0 if the
values of featureA are equal for the two samples, otherwise it is 1. The algorithm
has an extension to missing values, however, that is not important for this thesis.

Lastly Mutual Information is the Kullback-Liebler divergence between the
join probability distribution of two random varaibles with the product of said
marginalized probability distributions. That is;

I (X; Y ) =
nX

i =1

nX

j =1

p(X i ; Yj ) log
p(X i ; Yj )

p(X i )p(Yj )
;

for discrete variables, or in terms of entropyI (X; Y ) = H (X )+ H (Y)� H (X; Y ).
Further details on mutual information can be found in [29].
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2.5 Classi�cation Models

The following sections will detail di�erent classi�ers are used as either feature
selectors and/or classi�cation, see section 3.

2.5.1 Support Vector Machine

Support Vector Machine (SVM) is a popular supervised learning method that
aims to select a decision hyperplane that separates a binary classi�cation prob-
lem. The hard margin version was introduced in a paper in 1992 [5] and the
soft margin version was presented three years later in [8]. The hard margin
approach consists of selecting a hyperplane such that any samplex i has a class
yi = sign

�
w T x i + b

�
. However, there are many such hyperplanes provided the

data is linearly separable, in the case it is not linearly separable the soft margin
approach needs to be used. SVM speci�cally selects the hyperplane such that
the margin is maximized. The margin is the distance between the hyperplane
and the parallel lines at the closest point of each class. Maximizing the distance
is equivalent to minimizing 1

2 jjw jj2 subject to yi (w T x i + b) � 1 8i = 1 ; :::; n,
also known as the primal formulation of SVM. The data points that lie on, and
inside, the margin boundary are called the support vectors and fully de�ne the
decision boundary.

The above formulation is the hard margin approach, however, given that
data is not linearly separable in general, the following derivation will detail the
soft margin approach. Instead introduce a slack variable� i � 0 for each data
sample that is the amount of miss-classi�cation by the separating hyperplane,
which is equal to 0 in cases where data points are not misclassi�ed. The primal
formulation of SVM is instead;

min
w ;b

1
2

jjw jj2 + C
nX

i =1

� i s.t. yi (w T x i + b) � 1 � � i ; (9)

where C is a hyperparameter that determines the degree to which samples a
penalized for being misclassi�ed. LargeC converges to a hard margin. The
minimization problem can be solved by Lagrangian optimization. Consider a
set of constraint parameters� i such that 0 � � i � C, then the Lagrangian is;

L (w; b; �; � ) =
1
2

jjw jj2 + C
nX

i =1

� i �
nX

i =1

� i
�
yi (w T x i + b) � (1 � � i )

�
; (10)

which solved by di�erentiation to �nd a minimum is;

W (� ) =
nX

i =1

� i �
1
2

nX

i =1

nX

j =1

� i � j yi yj x i x j given
nX

i =1

� i yi = 0 ; (11)

called the dual formulation. The dual formulation can be solved in terms of�
yielding the following weights w =

P n
i =1 � i yi x i .
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The formulation of the model so far is linear. One way to add non linear
approximation to the model is to add a non linear feature functions� : Rm �!
Rm 0

from the feature spacem to some larger feature spacem0. Consider a new
data samplex and some feature function� (x). The weights are de�ned asw =P n

i =1 � i yi � (x i ) and the decision function is de�ned asŷ = sign
�
b+ w T � (x)

�
, the

main computational cost of the non linear transformation � will be computing
the inner product � (x)T � (x). However, with a speci�c choice of � , the inner
product can be de�ned as a function in the original feature space of sizem,
hence forgoing computing in the feature space of sizem0. Any such choice of�
will lead to a kernel function K (x; x 0) = � (x)T � (x0) and the decision function
can be rewritten as ŷ = sign

�
b +

P n
i =1 � i k(x; x i )

�
. The kernels that will be

relevant for this thesis are the Polynomial, Radial Basis Function (RBF), and
Sigmoid kernels, each de�ned below:

Polynomial: K (X; Y ) = ( 
X T Y + r )d;

RBF: K (X; Y ) = exp( � 
 jjX � Y jj2);

Sigmoid: K (X; Y ) = tanh( 
X T Y + r );

for some hyperparameters
 , r , and d.

2.5.2 Logistic Regression

Logistic Regression was brie
y introduced in section 2.3.2. For any given sample
x, logistic regression assigns a probabilityP(y = 1 jx) = � (w T x + b). The
decision boundary is P(y = 1 jx) > 0:5, or simply the decision hyperplane
w T x + b = 0. The optimal choice of weights w is the maximum log likelihood,
see equation 3. The exact method of optimization for logistic varies. For the
purposes of the implementation used in this thesis, liblinear [15] and lbfgs [33]
solvers are used, as detailed in the Sci-kit learn documentation, see software
section 3.2, for logistic regression. The elastic-net logistic regression model is
optimized by stochastic gradient descent instead of liblinear or lbfgs.

2.5.3 Stochastic Gradient Descent With Modi�ed Huber Loss

It is a bit of a misnomer to have Stochastic Gradient Descent (SGD) as a classi-
�er, given that SGD is an optimization algorithm, however, the references to a
SGD classi�er in this thesis is speci�cally SGD used to optimize Modi�ed Huber
loss [52]. Speci�cally the model optimizes the total loss1

n

P n
i =1

�
L (yi ; f (x i ))

�
+

�R (w) where R(w) is the weight decay regularization and L(yi ; f (x i )) is the
modi�ed Huber loss function;

L (yi ; f (x i )) =

(
max(0; 1 � yi f (x i ))2 yi f (x i ) > 1
� 4yi f (x i ) otherwise

(12)

where f (x) = w T x + b. This loss function is less sensitive to outliers than
ordinary least square loss. This is but one of many options for loss functions,
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however, given linear SVM and logistic regression is used as part of the feature
selection to begin with, only modi�ed Huber loss will be used.

The process of optimization of SGD involves iteratively updating the weight
parameters by the gradient of the weights until it reaches a convergence or a
maximum number of iterations. Speci�cally the t-th iteration, the weight update
rule would be;

w t +1 = w i � 

�

�
@

@w
R(w) +

@
@(w)

L(yi ; f (x i ))
�

; (13)

for some learning rate
 . The choice of
 is selected as "optimal" in the Sci-kit
learn package, which equates to
 t = 1

� ( t 0 + t ) at time step t and a heuristic pa-
rameter t0. This is an example of a decaying learning rate, that is the proportion
of change is reduced as learning progresses.

2.5.4 Decision Tree

A Decision Tree is a non-parametric model that can be used for classi�cation or
regression, however, for this thesis I focus on classi�cation. The model consists
of a set of simple decision rules based on features of the data, starting at the
root and ending at leaf nodes. At each node a single feature is selected, based on
an information metric, and a speci�c split is selected to determine the decision
function for its two children nodes. The process of building new nodes continues
until it reaches a speci�ed maximum depth or all samples at a given node consists
of a single class, hence the node will be a leaf node. This means that the tree
representation of a Decision Tree need not be balanced. The type of information
measure used to select a feature is a set parameter, either EntropyH (Z ) =
�

P
c pc + log pc and Gini Index G(Z ) =

P
c pc(1 � pc) for some subsetZ of the

dataset X and proportion of presence, also refereed to as the class probability,
pc for classx.

Note that Decision Trees tend to over�t heavily when the data is high di-
mensional, and its use for feature selection is simply to see the possible features
it would use, more so than an assumption that the model could select very good
predictive features.

2.5.5 Random Forest

Random Forest is an ensemble method that trains many smaller estimators and
combines their predictions to make one �nal prediction for each sample [6]. Each
estimator is a small decision tree estimator that gets a random subset of the
available features to consider, thus reducing the bias the model can have for any
given feature.

Given the nature of Random Forest classi�er, it will naturally select a lot
of relevant features, even when few features are the only relevant ones. This
means that feature selection on the basis of a Random Forest model selects
very many features at relatively similar feature importance. Furthermore, the
feature importance tends to favour features that have many unique values.
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2.5.6 K-Nearest Neighbours

K-Nearest Neighbours (KNN) is a simple classi�cation algorithm that predicts
a classc for a point pi where c is the majority class in the k closest points to
pi based on a given distance metric, chapter 7.2 [36]. KNN is an example of
a non parametric model that can �t unrealistic decision boundaries for a low
number k. In addition to selecting k, the model is also dependent on the choice
of distance metric. For the purposes of this thesis the distance metric will be
Minkowski distance of degrees, either 1, 2, or 3. Minkowski distance is de�ned
as ds(x; y) =

� P
i jx � yjs

� 1=s
. Euclidean is a special case whens = 2.

2.5.7 Gaussian Naive Bayes Classi�er

The Naive Bayes classi�er [41] is built on the relationship between the pos-
terior and likelihood with an assumption of conditional feature independence.
Consider a Bayesian inference problem;

P(� j D ) =
P(D j � )P(� )

P(D)
;

for some model parameters� and data D . The term P(� j D ) is the posterior
probability of parameter � given the input data, P(D j � ) is the likelihood of
the data given the model parameter, andP(� ) is the prior probability of the
model parameters before observing any data. For classi�cation the goal is to
predict classyi based on the data samplesx i; 1; :::; x i;m . Consider a single data
sample labeledE and the predicted class of said data sampley for simplicity.
The features ofE are then x1; :::xd.

The conditional feature independence assumption means that it is assumed
that the features are independent of each given the class;

P(x j j y; x1; :::; x j � 1; x j +1 ; :::; xm ) = P(x j j C);

that is the likelihood can be simpli�ed as the following product via marginal-
ization P(x1; :::; xm j y) =

Q n
j =1 P(x j j y). Given this simpli�cation, the Naive

Bayes classi�er assigns classy to a sample E that has the highest posterior
probability;

ŷ = arg max
y

P(y)
nY

j =1

P(x j j y):

The choice of using the naive assumption leads to poorly calibrated proba-
bilities, however, the predicted class, based on the maximum posterior, is often
correct.

The speci�c type of model used in this thesis is the Gaussian Naive Bayes
classi�er, where it is assumed that the likelihood probability is Gaussian. That
is P(x j y) = N (� y ; � y ) for some mean� y and and standard deviation � y for
classy.
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3 Methodology

3.1 Datasets

The data used for this study comes from two data sources, The Cancer Genome
Atlas (TCGA) dataset for colon adenocarcinoma (COAD) and Haraldsplass
Diakonale Hospital (HDH, or HDS in Norwegian) Colon Cancer (CC), denoted
as TCGA and HDS, respectively. For each data source, this study will use both
the mRNA and miRNA raw count signatures for the relevant cohorts. The four
distinctive datasets will thus be refereed to as TCGA mRNA, TCGA miRNA,
HDS mRNA, and HDS miRNA. In addition to the raw counts there are clinical
parameters for each datasets; age, sex, recurrence, overall survival, mismatch
repair status (MMR), and more, that will be used in conjunction with the raw
counts.

Speci�cally for the TCGA source, there are a number of missing values
pertaining to MMR and microsatellite instability (MSI) status, among others,
leading to a poor comparison between the two. For the purposes of this study,
the MMR status of the HDS cohort will be compared with the MSI status of
the TCGA cohort, given the similar dynamics of the underlying mechanism, and
the fact that the majority of TCGA cohorts have a MSI status. Similarly HDS
de�nes the recurrence for each patient with a cuto� of 5 years, due to the study
limitation, while TCGA has a 12 year study limitation, and de�nes instead the
progression free interval (PFI), which should be comparable to the recurrence
parameter of HDS. All patients that have missing information for critically
important parameters as part of the study will be excluded when relevant, see
further discussion when incorporating analysis on the clinical data.

The exact speci�cations of how the miRNA HDS dataset was recorded can
be found in [24]. The pipeline for mRNA has a similar set of primary proce-
dures. Brie
y summarized, samples of the fresh frozen tumor was extracted
using miRNeasy, Mini Kit, and homogenized with Tissuelyzer. The mixture is
puri�ed by DNase treatment and the RNA concentrations are measured using
NanoDrop and quality by Agilent RNA Bioanalyzer. Until the samples were
used, they were stored at� 80� C.

From those samples, the miRNA sequences was converted to a FASTQ for-
mat and the expressions were read using miRDeep2. The mRNA counts were
read using Illumina TruSeq Stranded Total RNA. The reads were aligned with
the human genome GRCh38.p10 using hisat2 and Gencode transcriptome ref-
erence release 26, which was processed with Samtools and FeatureCounts. The
study focused on protein encoding mRNAs. The HDS study was approved by
the Regional ethics Committee according to the Helsinki Declaration.

The pipeline for collecting TCGA samples is outlined here for miRNA and
here for mRNA. This only outlines the pipeline post FASTQ �le format for read
alignment.
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HDS TCGA
miRNA mRNA miRNA mRNA

Number of Patients 128 79 416 446
Mean Age 72.05 71.91 67.57 67.73

Relapse True 45 (35%) 20 (25%) 106 (25%) 112 (25%)
Relapse False 83 (65%) 59 (75%) 306 (75%) 334 (75%)
TNM Missing - - 11 (3%) 11 (2%)

TNM 1 18 (14%) 2 (2%) 71 (17%) 75 (17%)
TNM 2 54 (42%) 43 (55%) 159 (38%) 177 (40%)
TNM 3 36 (28%) 34 (43%) 114 (27%) 122 (27%)
TNM 4 20 (16%) - 61 (15%) 61 (14%)

Features Pre Filter 2588 19817 2155 20531
Features Post Filter 900 14261 1206 14427
Feature Intersection 768 (85%) 12021 (84%) 768 (64%) 12021 (83%)

Table 2: Table showing the distribution of clinical information for each of the
four datasets and the size of the feature space (gene pool). The patient numbers
are all patients with a tumor sample after having �ltered away patients with
missing Relapse/PFI value. For HDS there are more patients with miRNA than
for mRNA, hence the di�erent in cohort size, while for TCGA it is reversed.
For the purpose of relapse, note that TCGA does not have a relapse parameter,
hence in this table PFI is used synonymously with Relapse. In TCGA there are a
number of features that are missing, and of the cohort used, a small percentage
have no TNM-stage. For the purpose of the analysis these patients will be
included and excluded depending on the speci�ed selected cohort subset. The
last three rows detail the shape of the feature space. The �rst of the three show
how many features are prior to library size �ltering is performed. The second is
the total number of features after said �lter. The last is the intersection of the
feature space between the two data sources. The number is the total number of
features, while the percentage is how many of the features of a data source is in
the intersection.

The distribution of clinical data and feature space for each dataset is shown
in table 2. The HDS dataset have considerably fewer samples than the TCGA
datasets. This means learned models on the HDS dataset have a higher risk of
over�tting if the model complexity remains the same on both sets. The mHDS
dataset have considerably fewer stage 1 and 4 patients than the other datasets,
hence why comparison between mTCGA and mHDS would be more comparable
on just stage 2 and 3 samples, see section 3.3 for details on subset selection for
the experiments. There is also a considerable di�erence in mean age between the
two data sources, 72 in HDS to 67.7 in TCGA. Given that colon cancer patients
are in general old and live for a relatively long time after surgery, the impact of
other factors on a patients help can be relevant for overall survival analysis. The
thesis focuses on the relapse survival, instead of overall survival, but even so, the
relevance of mean age will be discussed in section 4.1. Furthermore, only about
25% of samples have relapse, hence the dataset has a 25� 75 class imbalance,
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although the miHDS dataset does have slightly more relapse samples. The class
imbalance problem will be brie
y touched on in section 3.5.

Lastly, of note, is the di�erence in the total feature space between the
datasets. The pre�ltering, discussed in section 3.4, remove signi�cantly more
features for the miRNA dataset compared to that of the mRNA datasets. This
is even more impactful given that the original feature space is about one tenth
the size. The small feature space in the miRNA intersection between the two
data sources will be brie
y touched on in section 3.3.

3.2 Software

The processing of the raw gene counts was done in R using two packages edgeR
[42] and DEseq2 [34]. The former being used for gene expression �ltering and
the latter for normalization procedure.

All other code was done in Python3 with a number of relevant packages.
Numpy and Pandas were used to organize the data and perform vectorized op-
erations for data handling. Matplotlib and Seaborn were used to generate all
the graph �gures shown in this thesis. Sci-kit learn [39] was used for almost all
machine learning methods used, those being SVM, Random Forest, Gaussian
Naive Bayes, KNN, Decision Tree Classi�er, Logistic Regression, and SGD. Ad-
ditionally, the Mutual Information and one-way ANOVA analysis was performed
using Sci-kit learn functions. ReliefF and Fisher was used from the skfeature
module [32] (note that a separate branch of the module called chapper-skfeature
was used) and the attempts at using the Genetic Algorithm to perform subspace
search, see section 4.8, was based on mealpy [50]. Some models, see section 3.3,
was retrained with a random over sampler. The module used for this oversam-
pling was imbalanced-learn [30]. Lastly, survival analysis was done using the
Lifelines module [11].

3.3 Method Overview

The main problem is �nding a subset of features that can be used to train a
classi�er. The approach of this thesis is to use a number of di�erent feature
selection methods, either wrapper methods training speci�c classi�ers that rank
each feature or �lter methods that �lter away features based on statistical in-
formation about the feature values. For each of the feature selection methods
a set of features will be selected. However, models could �nd di�erent num-
ber of relevant features, and models with more features will in general lead to
higher training and validation score, but could lead to poorer generalization
scores, thus the topk number of features from each selector is chosen and ex-
periments are run on each selection ofk and compared. The choices fork are
[2; 3; 5; 7; 10; 25; 50; 100; 150; 250]. It should be noted that the �gures shown in
section 4 will not show the case for 250 features, given that the trend is apparent
without including 250. Additionally, this means the �gures will be of a 3 � 3
grid of subplots, making them more readable.
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Each of the feature selection methods, with a speci�ed number of featuresk,
is combined into a pool of di�erent feature sets of sizek. This pool of di�erent
feature selection methods is used as a hyperparameter in a randomized grid
search for each of the four classi�cation algorithms that are trained, those being
Support Vector Machine, Random Forest, k-Nearest Neighbours, and Gaussian
Naive Bayes classi�er. This means that there is one randomized grid search
for each combination of k and model of those four mentioned above. This
exact pipeline can be seen in �gure 6. Note that prior to performing feature
selection and/or randomized grid searches, the original counts go through the
normalization procedure that is explained in section 3.4.

The whole pipeline, as outlined in �gure 6, is done for each of the datasets
separately. The models that are trained on one data source is then tested on the
other data source to determine if the model generalizes well. Note that to do
this, the feature space has to be the intersection of the feature space of the two
data sources, hence some features are discarded when performing this analysis.
Furthermore, given the di�erent distribution of TNM-stage for the two data
sources, the comparison between the two data sources is primarily done when
looking at only stage 2 and 3 patients. However, all experiments on mRNA
and/or miRNA data uses the intersection of gene pool between the two data
sources, that way a model can be tested on the other data source. Speci�cally,
the following list details each type of experiment that is done;

� (A) Stage 2 + 3: this experiment is done only on TNM-stage 2 and 3
patients.

� (B) All Stages: this experiment is done with all samples, regardless of
TNM-stage.

� (C) Clinical: this experiment is only done on the clinical information from
the two data sources. Only age, Tumor Stage, Node Stage, Metastasis
Stage, and MMR de�ciency are used. Note also that for purely clinical
study, the data used is the highest sample size dataset from each source,
that means comparing miRNA HDS clinical data to mRNA TCGA data.
However, the nature of what dataset the clinical data is collected from has
no importance.

� (D) Stage 2 + 3 Transcriptiom: this experiment is done only on TNM-
stage 2 and 3 samples where the total gene pool from mRNA and miRNA
was combined prior to feature selection.

� (E) Stage 2 + 3 Transciptome + Clinical Data: this experiment combines
clinical parameters with the mRNA or miRNA data post feature selection
for TNM-stage 2 and 3 samples.

Each experiment is trained on one data source and tested on the other data
source to determine if the model has generalized. However, given a speci�c com-
bination of hyperparameters selected by the randomized grid search, the models
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Figure 6: The �gure shows the pipeline for model selection. Raw counts are nor-
malized, then used in a feature selection scheme. A number of models is trained,
or �lter methods used, to select a number of relevant features. These sets of
features are stored and used as an additional hyperparameter in the randomized
grid search pipeline. The pipeline for the grid search consists of a dimension
reduction step that selects reduces the gene space of the data to that of one ran-
domly selected feature set (for instance it can select the SVM l1 set of features
or ANOVA or some other) and one model with a random selection of hyperpa-
rameters based on the models hyperparameter space. The model is trained and
scored through cross validation, and the best scoring models for each classi�er
is selected. The red lines indicate the iterative process of the randomized grid
search. The line from the clinical data indicates that the transformed normal-
ized counts is concatenated together with clinical parameters, thus the data
used is a combination of genes and clinical information. However, the model
is also trained without the addition of the clinical data, hence why the line is
dotted. Do note that the feature selectors select thek best features, however,
the number k is determined prior to the randomized grid search. This means a
grid search is performed for each combination of classi�er model and number of
genesk, where k is selected from a set of predetermined numbers.

are also trained and validated on its own data source. This gives an overesti-
mate of the validation score of that data source due to the whole dataset being
used to determine parameters for the model. The reason for doing so will be
outlined in section 4. This means that for each experiment (�ve di�erent ones)
all four classi�cation models are optimized in their respective hyperparameter
space for each of the 10 di�erent number of features selected from the di�erent

36



feature selection methods. This leads to a high number of possible models that
have been tested, which will be discussed in detail in section 4.

3.4 Preprocessing of Data

The raw counts of the mRNA and miRNA expression has to be normalized
based on its library size, that is the relative magnitude of each gene for a given
patient. This is done through the DEseq2 package as part of R. However, prior
to this normalization step, genes that have a low count will be �ltered out, given
that there is an uncertainty in the number of counts.

The �ltering used is a function called �lterByExpr in edgeR. Genes are kept
if their count-per-million (CPM) are above a threshold for a proportion of the
samples of the smallest sample group and have above a certain minimum total
count threshold. Speci�cally the minimum count of 70% of the samples must be
10 and the total number counts must be above 15 for all samples. The function
allows for �ltering based on the response target, however, it was decided to
not �lter based on the response, given that it would bias the �ltering on the
response. The principle idea of the �ltering is to instead �lter away genes that
are too lowly expressed to be considered biological and statistically signi�cant.

The normalization process is done via the DNSeq2, see [34], library us-
ing a Variation Stabilizing Transformation (VST). The VST algorithm aims
to �nd a di�erential function h(X ) such that the variance of the �rst degree
Taylor expansion of h is approximately constant. This amounts to integrating
h(y) =

Ry 1p
v(u)

du for expectation u and variancev(u) for some randomly dis-

tributed data. This amounts to transforming the data by h(yi ) = y i + a i
bi

for
some parametersai and bi that can be estimated by maximum likelihood. The
full details are described in [22].

After normalizing via VST, the data is then standardized per feature by sub-
tracting the mean and dividing by the standard deviation. This standardization
is done primarily because it improves the performance of a number of machine
learning models, but also because it allows for easier comparison of relevant co-
e�cients for feature selection. Additionally, it allows for the SVM classi�er to
not stall when using a polynomial kernel function. Given that features with very
little variation prior to this standardization technique can show up has having
more variation post standardization, features that have a low variance should
be �ltered out. This, however, is not an issue given that the output of the VST
algorithm has signi�cant variance for all features, hence a variance �lter would
not remove any features.

3.5 Methods for Feature Selection

Feature selection was performed using the �lter methods described in section
2.4 and wrapper methods using some of the classi�ers described in section 2.5.
The �lter methods was speci�cally used to select features based on its score,
not its associated p-value for the null hypothesis. The latter is not used given
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the p-value adjustments selected very few, if any, features, and the main goal is
to analyse the performance with di�erent number of selected features.

For the wrapper method, the following classi�cation models were used as
feature selectors;

� Linear SVM: the linear SVM model was used to extract features with
both l1 and l2 loss. The set of features will be referred to as SVMl1 and
SVM l2.

� Logistic Regression: the logistic regression model was used to extract
features with l1, l2, and elastic-net loss. The models will be referred to
as Log l1, Log l2, and Log net. Note that the Log net model was trained
using stochastic gradient descent, while l1 was with liblinear and l2 was
with lbfgs solvers.

� Stochastic Gradient Descent with Modi�ed Huber Loss: all of l1, l2, and
elastic-net loss was used to extract features with this model. The model
is referred to as SGDl1, SGD l2, and SGD net, however, the use of SGD
speci�cally means with Modi�ed Huber Loss, given that SGD is simply a
optimization algorithm and not a classi�er.

� Random Forest: Random Forest is a ensemble algorithm consisting of
many small decision trees. The feature selection model is referred to as
Rand.

The selected features were based on the coe�cients of the model for the
given feature, or in the case of Random Forest, the feature importance. There
are di�erent ways of selecting what features are important, however, for this
study I select the features that have the highest absolute feature importance
or coe�cient value. There is some concern with selecting features based on the
magnitude of its coe�cients, given features with di�erent magnitudes would
have di�erent magnitudes for its coe�cients. However, each feature is standard-
ized to have feature mean zero and standard deviation one, hence no di�erence
of scale. Given the nature of Random Forest classi�er, it will naturally select
a lot of relevant features, even when few features are the only relevant ones.
This means that feature selection on the basis of a Random Forest model se-
lects many features at relatively similar feature importance. Furthermore, the
feature importance tends to favour features that have many unique values.

Additionally, models that are used to for feature selection was trained with
random over sampling of the lower represented response. This was primarily
only relevant for the SGD net and Log l2 models as the models initially strug-
gled with a class imbalance.

3.6 Hyperparameter Space for Classi�cation Models

The following four methods are used as classi�ers; soft margin SVM, Random
Forest, KNN, and Gaussian Naive Bayes classi�er. Each of the classi�ers have a
set of hyperparameters that is searched over during the randomized grid search
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with the exception of the Gaussian Naive Bayes classi�er. Below is a list of the
possible hyperparameter spaces for each of the three models with hyperparam-
eters and a brief explained of the impact of said hyperparameter.

For SVM there are a number of hyperparameters that have an impact on
learning. For this thesis, the hyperparameter space is listed below;

� C: the C parameter determine how hard the margin is. Possible options
are 10d for d in [� 5; � 4; � 3; � 2; � 1; 0; 1; 2; 3].

� Kernel: Kernels introduce non linearity to the otherwise linear estima-
tor. Possible options are Polynomial, Radial Basis Function (RBF), and
Sigmoid.

� Degree (only relevant for polynomial kernel): is the degree of the polyno-
mial kernel. Possible options are 2, 3, 4, and 5.

� Gamma: Gamma determine the relative importance of each datapoint
contribution. The possible options are scale 1

m Var( X ) , auto 1
m , and 10d for

d in [� 4; � 3; � 2].

� Class Weight: can either be balanced and none, the former putting weight
on samples according to its class distribution.

The C parameter determines how soft the margin is, a higher value meaning
a more hard margin. The Kernel parameter changes what kernel is used for non-
linear transformation, and the Degree parameter is the degree of non linearity for
a polynomial kernel. The Class Weight parameter determines if the algorithm
compensates for class imbalance or not. Gamma determines the coe�cient
for the kernel function. For instance for RBF kernel it would be k(x; x i ) =
exp(� 
 jj x � x i jj2).

Secondly, the Random Forest model have the following hyperparameters;

� Impurity Measure: can be either Gini Index or Entropy. Used to determine
selected feature and splitting point for said feature in the Decision Tree
estimators.

� Maximum Depth: the maximum cut o� depth of each estimator. The
possible options are none, 1, 2, 5, 8, and 12.

� Number of Estimators: total number of estimators used as part of the
model. Possible options are 2, 5, 10, 25, 50, 100, 250, and 500.

� Class Weight: can either be balanced and none, the former putting weight
on samples according to its class distribution.

The maximum depth parameter determines how shallow each of the estima-
tors are and the number of estimators determine how many such estimators is
used. The impurity measure parameter determines which measure is used to
determine the feature to split, and where to split said feature. Lastly the class
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weight parameter determines if the algorithm compensates for class imbalance
or not.

Lastly, the following hyperparameters are relevant for the KNN model, those
being;

� Number of Nearest Neighbours: the number of nearest points to determine
a classi�cation of a point. The possible options are 1, 2, 5, 7, 10, and 15.

� P: is the power of Minkowski distance, the possible options are 1, 2, and
3.

� Weights: determine the weight each neighbour has when determining a
classi�cation. Possible options are uniform and distance, the former being
equal weight for all neighbours and the latter having the weight be the
inverse of distance to said neighbour.

4 Results

Given the number of experiments conducted and the total number of models
that was trained as part of those experiments, only select subsets of models will
be shown in this section. Section 4.1 will detail the results for Clinical data for
all samples from both TCGA and HDS, and problems related to how models
use certain features. Next section 4.2 and 4.3 will detail the results for Stage 2
+ 3 mRNA and miRNA data and the poor generalization. Possible explanation
of said poor generalization is discussed in section 4.4 in addition to inspection
of speci�c genes class data distributions. Transcriptome and Clinical data will
be brie
y touched on in section 4.6. The details on mRNA and miRNA for all
stages will be presented in section 4.7, and lastly other possible approaches that
was tried and abandoned will be detailed in section 4.8.

The primary goal is to train models on one data source and test it on the
independently sampled other data source to determine if the models generalize
well. Given that there are four possible combinations of training on a data set
and testing it on the other data source

4.1 Clinical Data, Experiment (C)

The clinical variables are MMR status (MSI for TCGA data since there is too
many missing labels for MMR), Age, Tumor stage, Node stage, and Metastasis
stage. The Tumor and Node stage are converted to binary feature vectors via a
OneHotEncoding, leading to a total of eleven features. Figure 7 shows the mean
validation ROC of trained models and the test ROC on the other data source,
the former in dotted lines and the latter in solid lines, for all TNM-stages. Note
that the data used for the �gure was mTCGA (n=446) and miHDS (n=128)
clinical data for all cancer stages.

Of the models presented in �gure 7, only the SVM models are poorly trained,
reaching the baseline balanced accuracy of 50% despite their ROC curve. This
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Figure 7: The �gure shows the mean validation ROC, as a dotted line, and the
test ROC, as a solid line, for both data sources side by side based on Tumor
stage, Node stage, Metastasis stage, Age, and MMR status (experiment (C)).
The training and testing is done on separate data sources. Models trained
on TCGA perform better on HDS than during training on HDS and testing
on TCGA. This is because of its reliance on the Age parameter, which has a
reverse relapse signal in HDS compared to TCGA. Additionally, the TCGA
trained models reach about 70% balanced accuracy, except the SVM model
getting only a 50% balanced accuracy, which is equivalent to only predicting
relapse for all samples. The HDS trained models are between 55 and 66%.

indicates the decision boundary is poorly calibrated and could achieve a better
accuracy if it was tuned better. This is because the ROC curve is based on an
optimal thresholding of probabilities, and given the default probability cuto� of
0:5, the accuracy was markedly lower even if the ROC curve look reasonable.
Furthermore, the model fails to generalize regardless, see section 4.4 on a further
discussion of the di�erences between the data sources. It should also be noted
that all models are poorly trained on TCGA data, indicated by the dotted
ROC curves near the line of chance. Thus, the model has not been able to learn
anything meaningful from the TCGA data, struggling with the class imbalance
problem.

Take for instance the Random Forest classi�er trained on TCGA and tested
on HDS. Despite having really poor validation error it still reaches an AUC
score of 0:83 and a balanced accuracy score of 70%. Figure 8 gives an indication
as to why. The Random Forest algorithm prefers values that have many unique
values (high cardinality), and Age is the only variable with cardinality higher
than 2. As seen in the �gure the Random Forest algorithm has a relatively high
feature importance on age, which would explain why it can generalize well on
HDS. The age feature is standardized, i.e. mean zero and standard deviation
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Figure 8: The table shows the feature importance and coe�cient for each fea-
ture trained on mTCGA and mHDS clinical data for a Random Forest and
LinearSVM classi�er, respectively. mTCGA1 means that the model is trained
without age as a feature, while mTCGA2 means it is trained with age as a
feature. The Random Forest classi�er puts a high importance on age over other
features, which is to be expected given the feature has the highest cardinality
out of the feature space. As a matter of fact, all other features have a cardinality
of 2 given they are binary values. The LinearSVM model does not appear to
put equally high importance on age given its coe�cients.

one, however, the relapse age distribution might be di�erent between the two
data sources. Figure 9 shows that the relapse signal is reversed in HDS from
TCGA, thus supporting the idea that the model is performing better because of
a di�erence in the distribution of the cohorts, rather than it necessarily being the
strength of the given feature. Furthermore, the LinearSVM coe�cients indicate
other parameters are more important than age, supporting the claim that the
Random Forest classi�er selected Age more due to the higher cardinality than
it being a relevant feature. Given that it is only the SVM model that fails of
the four models, it is also possible that Age is a important variable used by
the other two models as well. The important point is Age is the only continues
variable in the clinical data that is used.

Lastly it should be noted that when the analysis is performed only on stage
2 and 3 samples the performance is signi�cantly worse than when using all
samples.
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Figure 9: The �gure shows a boxplot of the relapse distribution of normalized
Age clinical feature for both data sources.

4.2 mRNA Stage 2 + 3, Experiment (A)

Consider the mRNA experiment A, as detailed in section 3, involves the inter-
section of gene pool across the two data sources for only stage 2 and 3 patients.
The ROC curves for each model for di�erent number of selected features trained
on mTCGA and testing on mHDS is shown in �gure 10. The dotted lines are
the mean validation ROC for the trained models on mTCGA and the solid lines
are the test ROC for those models on mHDS. Note that this speci�c experiment
has the highest number of training samples of all four possibilities for experi-
ment A, being 299 samples in mTCGA, but equally the smallest test set of 77
samples in the mHDS dataset.

The �gure shows, quite naturally so, that the cross validation performance
of the model increases with more features, however, only the SVM model takes
full advantage of all the selected features as the number of features increases,
reaching a near perfect ROC at 150 features, which shows clear signs of over�t-
ting. This can clearly be identi�ed as over�tting given the model has fully �tted
to the underlying training data distribution yet fails to generalize to the other
data source. The poor generalization is not only worse models above the line
of chance, but also models performing well below the line of chance, indicating
that the signal in the test set is di�erent from the training set. A more detailed
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Figure 10: The �gure shows the mean validation ROC on the mTCGA dataset
and the test ROC curves on the mHDS dataset (experiment (A)). Each subplot
contains the ROC curves for models usingk number of selected features from
left to right in ascending order. The dotted lines are the mean validation ROC
curves and the solid lines are the test ROC curves on the mHDS dataset. The
plots show a clear failure to generalize from learning on TCGA to predicting on
HDS. Furthermore, some of the test ROC curves are below the line of chance,
indicating that whatever signal was found was found to be reversed in the HDS
dataset.

look at this observation will be discussed in section 4.4.
Beyond the SVM model, the KNN model stalls in cross validation ROC early

at around seven features. Similarly the Random Forest classi�er also does not
markedly improve above ten features. It is di�cult to discern exactly why the
performance stalls. One possible explentation is that the feature selector used
for that model is poor, however, for 100 features all of SVM, KNN, and GNB
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Figure 11: The �gure shows the mean validation ROC on the mHDS dataset and
the test ROC curves on the mTCGA dataset (experiment (A)). Each subplot
contains the ROC curves for models usingk number of selected features from
left to right in ascending order. The dotted lines are the mean validation ROC
curves and the solid lines are the test ROC curves on the mTCGA dataset.

selected the same feature selector, namely SVMl1. Yet only the KNN model
fails to improve based on that feature selector. It is possible there is an issue
with the number of iterations for the randomized grid search. The GNB model
has no hyperparameters, so instead it simply selects the best feature selector,
while KNN has a three other hyperparameters it searches over. That being said,
given that this is a consistent pattern for multiple number of features, it might
be related to the model rather than the randomized search.

Both Random Forest and KNN struggle to reach above 60% cross validation
balance accuracy as the number of features increase, while the SVM model reach
upwards of 83% at using 50 features and 72% at seven features. The GNB does
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markedly improve its cross validation balanced accuracy to 76% at 50 features
before plateauing. All models, however, fail to reach above 50% test balanced
accuracy score baring a couple of outliers reaching at most 60%.

A similar pattern can be seen on mHDS trained data tested on mTCGA,
which can be seen in �gure 12. The main di�erence being that the models
general �t better to the training data distribution, however, this is not surprising
given the much smaller sample size.

4.3 miRNA Stage 2 + 3, Experiment (A)

A similar pattern can be seen on the miHDS trained models tested on miTCGA
in �gure 12. The distinction being that the models have better validation with
fewer features than in �gure 10, yet the poor generalization still persists. Note
that the validation ROCs markedly become worse as more features are added,
especially from 50 to 100 to 150 features. It is possible that the 25 feature model
found a really good combination in the randomized grid search compared to that
of 50, 100, and 150, or it could be equally likely that the additional features
are noise not improving the model. The di�erence in training sample size is not
signi�cant, the miTCGA dataset consisting of 273 samples, hence that should
not be a driving factor in the di�erent cross validation ROCs compared to that
of the mRNA study.

In summary, the models generalize poorly from TCGA to HDS and HDS
to TCGA for all combinations of datasets, or in some cases generalize to the
reverse relapse signal. A more detailed look at the di�erence in data distribution
can be seen in section 4.4.

4.4 Di�erence Between Data Sources

The failure to generalize from TCGA to HDS or HDS to TCGA is interesting to
note. One possible explanation is that the underlying distribution of the data or
the labels are di�erent between the two data sources. Consider �rstly �gure 13.
The �gure shows the Kaplan-Meier survival plot [28] for each data source for
both overall survival (OS) and relapse. There is a de�nite discrepancy between
the two data sources for both survival and relapse. Consider �rstly relapse, as
that is the response parameter for the analysis. There is signi�cantly better
relapse survival for stage 2 for the HDS dataset compared to TCGA and the
relapse survival for stage 3 is worse for HDS compared to TCGA. The relapse
survival for all stages are not that relevant given that the HDS source does not
have any stage 4 patients, hence TCGA stage 4 survival will always be worse.
Next consider the overall survival. Here HDS patients have a higher overall
survival for both stage 2 and 3 compared to that of TCGA.

If there is any possible miss labelling of TNM stages such that samples that
should be stage 1 or 4 are classi�ed as stage 2 or 3, respectively, this should
change the underlying signal given the assumption that cancer acts di�erently
for di�erent stages and that is detectable with a set of biomarkers. However,
it seems unlikely that there is a mixup between stage 3 and 4, given the clear

46



Figure 12: The �gure shows the mean validation ROC on the miHDS dataset
and the test ROC curves on the miTCGA dataset (experiment (A)). Each sub-
plot contains the ROC curves for models usingk number of selected features
from left to right in ascending order. The dotted lines are the mean valida-
tion ROC curves and the solid lines are the test ROC curves on the miTCGA
dataset. The plots show a clear failure to generalize from learning on HDS
to predicting on TCGA. Furthermore, some of the test ROC curves are below
the line of chance, indicating that whatever signal was found was found to be
reversed in the TCGA dataset.

cut de�nition of stage 4 by metastasis. Another possibility is that the patients
in the TCGA study happened to have poorer survival conditions post surgery,
however, this is slightly confusing given that TCGA patients are on average 4.5
years younger than HDS patients, and increased age should have a correlation
with other causes for death beyond the cancer itself. The relapse survival could
be impacted by the possible post surgery treatment patients were given, how-
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Figure 13: The �gure shows the Kaplan-Meier [28] plots for both overall survival
and relapse free interval for each data source. The subplot structure is setup
such that it compares TCGA with HDS from left to right and data sets and
relapse/survival downwards. The HDS study was limited to �ve years, while
TCGA was limited to twelve, hence the di�erence in the charts. Note that only
ten years are plotted for readability. TCGA has better relapse survival than
HDS for stage 3, however, worse for both stage 2 and stage 1. The di�erence
in all stages comes from the inclusion of stage 4 in the TCGA data which pulls
the relapse survival down. On the other hand the overall survival for HDS is
signi�cantly better than TCGA for stage 2 and 3. It should be noted that the
HDS dataset has very few samples and most patients die of old age rather than
of the cancer, hence the di�erence in overall survival.
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ever, that would imply whatever treatment the patients in the HDS dataset got
compared to that of TCGA, the outcome was worse in terms of relapse and
better in terms of survival. The standard procedure is to give chemotherapy to
stage 3 patients for those part of the HDS cohort, however, that should in theory
improve the relapse survival, not decrease it, compared to TCGA. That being
said, the exact reasoning for this discrepancy is beyond the scope of this thesis,
however, the di�erence could explain some of the poor generalization shown
in section 4.2 and 4.3. Lastly, it is entirely possible that the true distribution
of survival lies somewhere in-between the two cases shown above and that the
small sample size leads to a high variance from the true data distribution, or
one would converge to the other with increases sample size.

miRNA mRNA
# Selected Genes (k) Intersection Union Intersection Union

2 0 32 0 27
3 1 40 0 41
5 3 63 0 77
7 4 87 0 112
10 6 114 0 157
25 26 241 3 352
50 77 384 9 637
100 189 587 26 1153
150 330 680 58 1654
250 572 755 158 2542

Table 3: The table shows the intersection and union of genes over all
possible feature selector of sizek for both data sources for a given data
type (mRNA and miRNA). Formally the intersection is inter k (mRNA) =�
�f[ F

i =1 Geneski (mTCGA) g \ f[ F
i =1 Geneski (mHDS)g

�
� where Geneski (mTCGA) is

the speci�c selected gene names for gene selection methodi that selects k num-
ber of genes. The union columns are de�ned similarly with a\ instead of [
between the two sources.

Another consideration is if there are features that are found in feature se-
lection on both data sources. Table 3 shows the number of genes in the in-
tersection and union of gene pool from the two data sources over all possi-
ble feature selector methods. Formally the intersection is interk (mRNA) =�
�f[ F

i =1 Geneski (mTCGA) g \ f[ F
i =1 Geneski (mHDS)g

�
� where Geneski (mTCGA) is

the speci�c selected gene names for gene selection methodi that selectsk number
of genes. The total number of di�erent selection methods is detailed in section
3. This table does not account for how relevant a given feature is, only that at
least one of the given models deems the feature important. The consequence
of such a lax constraint is that features that have a considerable importance
for both data sources are valued equally as features that are just tangentially
relevant for a single feature selector. However, this the lax criteria is on purpose
to see if there exists any overlap at all, no matter how insigni�cant.
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Figure 14: The �gure shows a table of the presence of a given gene in feature
selectors for ak equal to 3, 5, and 7. The presence column indicate the pro-
portion of feature selectors that selected said feature and the presence other is
the proportion of feature selectors that selected said feature in the other data
source. Speci�cally, take the top table, TREML2 has a presence of 0.857 in
mTCGA and 0 in mHDS. Similarily RAD17 has a 0.571 presence in mHDS and
0 presence in mTCGA. For each dataset the genes are sorted by their presence.
Only the k + 1 top features are shown. The tables show that the presence of
mRNA genes is not replicated in the other data source, while for miRNA genes
there is some moderate presence in the other data source.

The table clearly shows that there is virtually zero overlap for mRNA and
some overlap for miRNA. The overlap for miRNA quite likely comes from the
fact that there are ten times fewer features in the miRNA dataset compared to
the mRNA datasets. The lack of overlap helps explain why the models generalize
poorly, since the genes found in one data source do not hold predictive power
in the other source.
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Instead of looking at just the size of the intersection of genes, consider �gure
14 that shows a list of the topk +1 number of genes ranking by what percentage
of feature selectors the given feature is selected in. The �gure shows feature
selectors of size three, �ve, and seven.

Figure 15: The �gure shows the boxplot distribution for relapse and no relapse
for each mTCGA and mHDS for a select number of features. The blue plots
are for mTCGA and orange for mHDS. The box represents the middle 50% of
the data and the line through it the median. The whiskers represent the outlier
boundary and the outliers are indicated as data points. The �rst row of �gures
show the distribution for the three genes that have the highest presence in the
mTCGA feature selectors for 3< k < 25. Similarity the second row are genes
that are prominent in the mHDS feature selectors. The range of 3< k < 25
was selected because that is roughly the range of desirable number of features
for a model. A higher k would also median that genes that have a very weak
signal that many models could pick up would be part of the list.

Another possible approach to identifying the poor generalization is to look
at the data distribution of each class for both data sources for features that are
selected to perform well, see �gure 15. This can be shown as a boxplot, i.e. a
box showing the 25-75 percentile and the whiskers showing the boundary for
outliers, < 5 percentile or > 95 percentile, side by side. Note that the class
data distribution is shown, instead of the feature distribution, since what is
important is how the data is distributed for each class comparatively instead of
the total data distribution, which is, given the standardization step, mean 0 and
standard deviation 1. If a feature has the same predictive signal across both data

51




	State of the Art
	Introduction to Cellular and Cancer Biology and Machine Learning
	Cellular Biology
	Cell Life Cycle
	Apoptosis
	RNA and RNA Transcription
	Messenger RNA (mRNA)
	Micro RNA (miRNA)
	Estimate of Protein Expression

	Cancer Biology
	Oncogenes
	Hallmarks of Cancer
	Colon Cancer

	Machine Learning
	Process of Learning
	Performance Measure P
	Bias-Variance Tradeoff
	Regularization
	Cross Validation
	Randomized Grid Search over Hyperparameter Space
	The Curse of Dimensionality
	Feature Engineering

	Filter Methods
	Classification Models
	Support Vector Machine
	Logistic Regression
	Stochastic Gradient Descent With Modified Huber Loss
	Decision Tree
	Random Forest
	K-Nearest Neighbours
	Gaussian Naive Bayes Classifier


	Methodology
	Datasets
	Software
	Method Overview
	Preprocessing of Data
	Methods for Feature Selection
	Hyperparameter Space for Classification Models

	Results
	Clinical Data, Experiment (C)
	mRNA Stage 2 + 3, Experiment (A)
	miRNA Stage 2 + 3, Experiment (A)
	Difference Between Data Sources
	mRNA + miRNA for Stage 2 + 3, Experiment (D)
	mRNA or miRNA Combined with Clinical Data, Experiment (E)
	Transcriptome Data All Stages, Experiment (B)
	Other Attempted Methods and Experiments

	Concluding Remarks and Future Work

