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Abstract

To achieve high profitability from an oil field, optimizing the field development strategy
(e.g., well type, well placement, drilling schedule) before committing to a decision is
critically important. The profitability at a given control setting is predicted by running
a reservoir simulation model, while determining a robust optimal strategy generally
requires many expensive simulations. In this work, we focus on developing practical
and efficient methodologies to solving reservoir optimization problems for which the
actions that can be controlled are discrete and sequential (e.g., drilling sequence of
wells).

The type of optimization problems I address must take into account both geological
uncertainty and the reduction in uncertainty resulting from observations. As the actions
are discrete and sequential, the process can be characterized as sequential decision-
making under uncertainty, where past decisions may affect both the possibility of the
future choices of actions and the possibility of future uncertainty reduction. This thesis
tackles the challenges in sequential optimization by considering three main issues: 1)
optimizing discrete-control variables, 2) dealing with geological uncertainty in robust
optimization, and 3) accounting for future learning when making optimal decisions.

As the first contribution of this work, we develop a practical online-learning method-
ology derived from A* search for solving reservoir optimization problems with discrete
sets of actions. Sequential decision making can be formulated as finding the path with
the maximum reward in a decision tree. To efficiently compute an optimal or near-
optimal path, heuristics from relaxed problems are first used to estimate the maximum
value constrained to past decisions, and then online-learning techniques are applied to
improve the estimation accuracy by learning the errors of the initial approximations ob-
tained from previous decision steps. In this way, an accurate estimate of the maximized
value can be inexpensively obtained, thereby guiding the search toward the optimal so-
lution efficiently. This approach allows for optimization of either a complete strategy
with all available actions taken sequentially or only the first few actions at a reduced
cost by limiting the search depth.

The second contribution is related to robust optimization when an ensemble of
reservoir models is used to characterize geological uncertainty. Instead of computing
the expectation of an objective function using ensemble-based average value, we develop
various bias-correction methods applied to the reservoir mean model to estimate the
expected value efficiently without sacrificing accuracy. The key point of this approach
is that the bias between the objective-function value obtained from the mean model and
the average objective-function value over an ensemble can be corrected by only using
information from distinct controls and model realizations. During the optimization
process, we only require simulations of the mean model to estimate the expected value
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using the bias-corrected mean model. This methodology can significantly improve the
efficiency of robust optimization and allows for fairly general optimization methods.

In the last contribution of this thesis, we address the problem of making optimal
decisions while considering the possibility of learning through future actions, i.e., op-
portunities to improve the optimal strategy resulting from future uncertainty reduction.
To efficiently account for the impact of future information on optimal decisions, we sim-
plify the value of information analysis through key information that would help make
better future decisions and the key actions that would result in obtaining that informa-
tion. In other words, we focus on the use of key observations to reduce the uncertainty
in key reservoir features for optimization problems, rather than using all observations
to reduce all uncertainties. Moreover, by using supervised-learning algorithms, we can
identify the optimal observation subset for key uncertainty reduction automatically and
evaluate the information’s reliability simultaneously. This allows direct computation of
the posterior probability distribution of key uncertainty based on Bayes’ rule, avoiding
the necessity of expensive data assimilation algorithms to update the entire reservoir
model.
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Scientific background





Chapter 1

Introduction

In petroleum field development planning, optimization is crucially important to sub-
stantially improve the profitability of reservoirs (e.g., net present value (NPV), total oil
production). Decisions such as the number of wells, well location, well type, drilling
schedule of wells and well control settings can have a significant impact on the revenues
and costs. However, in general, many time-consuming reservoir simulations are needed
to compute an optimal strategy. Therefore, to obtain an optimal or near-optimal solution
efficiently, optimization methods that are appropriate to the optimization problem are
called for. In this work, we develop robust and efficient methodologies to search for an
optimal sequential solution for reservoir optimization problems with discrete sets of ac-
tions, deal with uncertainty in reservoir characteristics and account for future learning
possibilities through actions. An overall goal of the development of these method-
ologies is to solve sequential field development tasks efficiently while considering the
effects of geological uncertainty and future uncertainty reduction on the optimal strat-
egy (i.e., dynamic sequential decision-making problems under uncertainty). In the first
section of this introductory chapter, we provide the motivation for this research, iden-
tifying problems and objectives. The next section lists the main contributions of this
work. Finally, we outline of the remainder of the thesis.

1.1 Motivation

In the past few decades, a significant amount of work has been done in reservoir-
development planning with a focus on optimization techniques. Various gradient-based
and derivative-free optimization methods have been investigated, but most of the work
has been aimed at optimizing well placement or well control. The optimization of other
factors (e.g., drilling sequence, well type) can also play important roles in increasing the
reservoir’s profitability. However, there are few methods for how to solve optimization
problems efficiently with these discrete-control variables. As field development is
performed over time, uncertainty in reservoir properties can be reduced by considering
past observations before making the next decision to proceed. Accounting for this
sequential nature of the problem, the optimization of complete development strategies
is an observation-based sequential decision-making process under uncertainty, whereby
past decisions will affect future choices of actions and future possibilities of uncertainty
reduction. In this work we aim to develop robust and efficient methods for the following
three optimization problems:
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Optimization with discrete-control variables
Determination of well-drilling schedule is an important element of field development
plan. For some petroleum fields, the profitability could be improved as much as
more than 20% by optimizing the drilling sequence of wells. In theory, the true
optimal solution can be found by evaluating all possible drilling sequences. However,
because the number of possible sequences grows rapidly with the number of wells,
this naïve approach is infeasible when there are more than about six wells that need
to be sequenced. For example, when optimizing the drilling schedule of eight wells,
there would be 40320 (8!) possible combinations of drilling sequences; hence, there
is a need for an efficient and practical method for reservoir optimization problems in
which the actions that can be controlled are discrete and sequential.
In one earlier study, Beckner and Song [9] applied simulated annealing to optimize
both the locations and drilling sequence of wells. This approach can reduce the
probability of ending up trapped in a local minimum (i.e., there are almost certainly
multiple minima for the drilling-order problem), but requiring an infeasible number
of simulations. In recent times, gradient-based optimization with an approximate
gradient (i.e., one computed using an ensemble of control perturbations) [67, 23, 94,
35] has become increasingly popular and provided encouraging results in production
optimization under uncertainty. For discrete-control (not differentiable) variables,
new continuous-control variables, such as the drilling priorities that map to discrete-
drilling sequences [43, 42, 65], have been proposed to determine the optimal drilling
order of wells by the use of approximate-gradient methodologies. Gradient-based
optimization schemes converge to local optimal solutions, however, and the ordering
of wells problem might have a local optimum that is far away from the true optimum.
When a greedy optimizer is used, it is generally unclear if the optimized strategy is
close to the true optimal solution. Although repeating the optimization with different
initial guesses can improve the solution, it requires additional computation effort,
making this approach impractical for large problems.
To avoid the dependency of the solution on the gradient (or approximation gradient)
for optimization, Lamas et al. [63] described two methodologies based on best-first
search and evaluation algorithm, respectively, for drilling-sequence optimization in
deterministic models. In the best-first search algorithm, the optimal drilling order
is computed by ranking the wells based on an approximation of the maximum NPV,
which is obtained by assuming that multiple wells are drilled simultaneously. During
the optimization process, the search extends in a direction determined by the highest
estimated value. A complete optimized strategy can then be obtained efficiently, but
the quality of the solution depends heavily on the estimated optimal NPV. In their test
example of a heavy-oil reservoir model, drilling all remaining wells simultaneously
resulted in an approximate value that was much lower than the actual NPV when all
wells were drilled sequentially. In that case, a better solution might be ignored due
to the underestimated values (i.e., poor estimates will misguide the search direction).
The second methodology was based on a normal NPV distribution generated from a
large number of random drilling schedules, which were used to identify the ordering
of wells with high values. This optimization procedure, however, does not seem to be
efficient enough for application to problems with large numbers of wells or with many
high-values combinations. Hence, one of the main goals in this work is to develop
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more efficient and practical methods to solve general reservoir optimization problems
with discrete sets of actions (i.e., sequential decision-making problems).

Robust optimization under uncertainty
Due to the complexity of subspace and limited observations of the reservoir, reservoir
properties such as porosity, permeability, and fault transmissibilities may be highly
uncertain. In this case, the general goal of reservoir optimization problems is to maxi-
mize the expected value of the objective-function (e.g., expected NPV), namely robust
optimization (RO) under uncertainty. The ensemble-based method has been widely
used as a powerful tool for quantifying geological uncertainty. In general, the ex-
pectation of an objective function is estimated by averaging over all realizations, i.e.,
sample average approximation (SAA). Van Essen et al. [99] have demonstrated that
RO performed with such an approximation of expected NPV is superior to determin-
istic optimization from a single realization. The straightforward computation of the
expected value requires simulations of each individual realization, however. Conse-
quently, RO for which uncertainty is quantified by an ensemble of reservoir models
can be computationally demanding.
To reduce the cost of reservoir simulation-based RO, many researchers have studied
how to accelerate reservoir simulations or reduce the number of simulations needed for
optimization. The former can be achieved by using a simplified model from reduced
order modeling or upscaling model parameters [52, 14, 15, 98, 31], but such a proxy
model is generally less accurate and may result in a suboptimal solution in RO [28].
Alternatively, the number of simulations required in RO can be reduced by using
more efficient methods of optimization. For general RO problems with continuous
variables, ensemble-based optimization [23, 35] can be very efficient because the
gradient of the expected value with respect to control variable settings is computed
using the same ensemble that is used to represent uncertainty in model parameters.
When the control variables to be optimized are discrete, optimization algorithms that
do not rely on using the gradient are generally preferable. Nevertheless, even if the
optimization is improved such that many fewer iterations are needed for obtaining the
maximum, the amount of computation required for RO performed with SAA over a
large ensemble could still be very expensive.
As mentioned previously, the main issue facing RO over an ensemble of model
realizations is that the expected value computed using SAA requires many expensive
simulations; hence, one of the most effective ways to improve the efficiency of RO is
to reduce the cost of evaluating the expected value. In many studies, instead of using
the full ensemble, a subset of ensemble members is employed to represent uncertainty
for RO [54, 89, 77]. However, the representation of uncertainty in reservoir properties
may not be modeled well with only a few realizations. To achieve the optimal
balance between the uncertainty representation and the reduction in the cost of RO,
the subset of model realization must be selected carefully. Barros et al. [7] presented
an automated scenario reduction approach for obtaining an optimal subset of model
realizations that are able to represent the full ensemble. Although the representation
of uncertainty is reduced through model selection, the cost of RO performed over a
subset of ensemble members still increases linearly with the number of representative
realizations and the number of iterations required for optimization. To address this
issue, a fast approach is to directly use the mean reservoir model for the estimation of
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the expected objective-function value [19]. The dependence of an objective function
on the model parameters is generally highly nonlinear, however, so that the mean
model may offer a poor estimate of the expected value and result in loss of the solution
quality. Therefore, in addition to developing efficient optimization methods, we also
need to design a fast and effective approach to estimate the expectation of an objective
function when a number of model realizations characterize uncertainty.

Decision-making accounting for future learning
Geological uncertainty creates challenges in optimization, but the uncertainty can be
reduced through history matching or data assimilation based on past observations.
In traditional closed-loop reservoir management (CLRM)[51, 83, 101, 23], produc-
tion optimization and history matching are combined to improve the profitability of
reservoir development by updating the reservoir model continuously with new obser-
vations and then re-optimizing the production strategy in the updated reservoir model.
In an application of the drilling-order problem, Hanea et al. [42] investigated the im-
pact of history matching well data on creating value (named the value of learning),
after adjusting the drilling schedule for the remaining wells over the current uncer-
tainty assessment. They demonstrated that information obtained at the early decision
stages has a larger potential for improving the optimal strategy. However, as in most
applications of CLRM optimization, the consequences of a current decision on the
future uncertainty state are not taken into account, i.e., the possibility of reducing un-
certainty through future observations is neglected in optimization. To act optimally,
when choosing actions, we should also take into account the opportunities to improve
the optimal strategy resulting from future uncertainty reduction (i.e., future learn-
ing possibilities), rather than solely accounting for the possibility of achieving the
maximum NPV over the current uncertainty state.
Robust optimization that accounts for the possibility of future learning through the
future information from remaining actions is closely related to the concept of the
value of information (VOI) [86, 40, 12]. Barros et al. [5, 6, 8] presented the
procedure for evaluating the VOI obtained from ensemble-based history matching and
reservoir optimization (i.e., an optimal CLRM strategy with traditional production
observations). Hong et al. [50] carefully articulated the concept of VOI from the
perspective of decision analysis and illustrated the general workflow of VOI analysis
using a simple application with saturation information in a 2D waterflooded reservoir
for the design of a polymer flood. Barros et al. [4] used the VOI framework to
optimize bottom-hole pressure controls on wells in a single inverted 5-spot pattern.
Although these studies demonstrated that additional value is created when accounting
for the potential future uncertainty reduction before committing to a decision, the use
of VOI decision tree is impractical for most reservoir optimization problems because
it would be computationally intractable to compute the VOI in a rigorous way that
considers all possible data values that might be obtained from an action. That is,
one must update the reservoir model and re-optimize the strategy for each possible
outcome of the data.
Several approaches have been proposed to estimate the VOI [39, 18, 34, 48, 4] for
problems in which production flow data must be assimilated. However, the work-
flow of the VOI analysis that combines history matching and optimization is still
computationally prohibitive for realistic problems. Torrado et al. [97] formulated
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the sequential drilling problem as a partially observable Markov decision process
(POMDP), and then applied partially observable Monte-Carlo planning (POMCP) to
compute an approximate optimal solution considering the future learning possibilities
through all remaining actions. The optimization procedure in POMCP is similar to
the standard VOI analysis, in which the effects of all possible combinations of future
observations are considered, while only the strategies with potentially high expected
values would be evaluated. In this approach, both the posterior probabilities of un-
certainty and the expected NPV are estimated by sampling deterministic realizations
at given previous observations and control settings. Therefore, there is no need to
update the reservoir model through history matching. Even so, many expensive sim-
ulations were still required to optimize the drilling sequence of wells in the case with
only two possible observations from each well. When all possible future observations
from all remaining actions are taken into account, the computational effort required
in making decisions will increase exponentially with the decision and the observation
spaces. Hence, most applications that have considered future learning have had very
few decision options (e.g., drill or not to drill a well) or few possible data [25, 6, 50].
In a realistic problem, however, each step includes many possible decision alterna-
tives and many possible data that could be obtained from decisions. Therefore, it is
desirable to make the computation of VOI manageable and design a more practical
way to account for the future learning possibilities through actions.

1.2 Main contributions

The overall aim of this dissertation is to develop efficient and robust methods for the
optimization of reservoirs’ profitability through discrete sets of actions, taking into
account the effects of geological uncertainty and future uncertainty reduction, i.e.,
observation-based dynamic sequential decision-making under uncertainty. To achieve
this goal, the following research questions arise based on the above discussion,

• How can an optimal strategy be computed efficiently when the goal (e.g., maximize
NPV) is not a continuous function of the control variables (e.g., drilling order)?

• How can field development be optimized efficiently when an ensemble of model
realizations characterizes the uncertainty?

• How can future learning possibilities be accounted for efficiently through actions
when optimizing field development plan under uncertainty?

Figure 1.1 shows the research problems, the objectives, and the proposed methods
for addressing each of the above research questions. Below we summarize the main
contributions of this work:

Efficient sequential optimization with learned heuristics Paper A presents an op-
timization methodology based on heuristic search and online-learning techniques for
efficiently solving optimization problems with discrete actions. We formulate the se-
quential decision-making problem as finding the best path in a directed tree search,
and use information from previous and future actions to estimate the maximum NPV
constrained to past decisions. To obtain accurate approximations, online-learning
techniques are designed to improve accuracy by learning the observations obtained
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from previous decision steps. In this way, the search direction can be effectively
guided toward the optimal solution. This approach can be used to either optimize a
complete strategy or optimize only the first few actions at a reduced cost by limiting
the search depth.
Fast robust optimization using bias-corrected mean model Paper B describes a fast
and effective approach that requires only simulation of the mean reservoir model with
a bias correction factor for estimating the expectation of the objective function. First
the mean reservoir model provides an initial approximation of the expected value,
which is generally poor compared to SAA. Then information from distinct controls
and model realizations is used to correct the bias between the objective-function value
obtained from the mean model and SAA, obtaining an estimate close to SAA while
requiring many fewer simulations. By using such a bias-corrected mean model to
account for model uncertainty, we can improve the efficiency of RO significantly
without sacrificing the estimation accuracy of the expected value. This approach
allows for the application of fairly general optimization methods.
Improving decisions - efficiently accounting for future learning Paper C proposes
a flexible workflow built on a key-feature-based VOI analysis to make optimal deci-
sions efficiently while considering the future learning possibilities. Instead of taking
into account all possible future observations, we consider only the important informa-
tion from key actions to reduce the uncertainties that have large influences on optimal
decisions, i.e., information that will be most helpful in making better future decisions.
To identify key information efficiently, we built supervised-learning algorithms that
can automatically detect the optimal combination of observations to reduce key un-
certainties and simultaneously estimate the information’s reliability. The posterior
probabilities of key uncertainties then can be computed directly based on Bayes’ rule,
avoiding the need for history matching or data assimilation. This workflow is prac-
tical for sequential decision-making under uncertainty, considering the opportunities
to improve the optimal strategy resulting from future uncertainty reduction

1.3 Thesis outline

The thesis is structured in two parts. Part I introduces the scientific background, and
Part II presents the main scientific contributions in the form of three peer reviewed
papers. The remainder of the thesis is organized as follows:

• Chapter 2 - This chapter gives an introduction to general reservoir optimization
problems and robust sequential decision-making under uncertainty.

• Chapter 3 - In this chapter, we present the development of a learned heuristic search
method for efficiently solving optimization problems with discrete sets of actions.

• Chapter 4 - We describe various bias-corrected methods to estimate accurately and
efficiently the expected objective-function value for RO under uncertainty.

• Chapter 5 - This chapter presents the VOI analysis through key actions and key
information for improving decisions accounting for future learning.

• Chapter 6 - The final chapter summarizes each of the papers in Part II and provides
an outlook for future research.
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Figure 1.1: A summary of research problems, objectives and main contributions of thesis work.
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Chapter 2

Optimization problem

The main focus of this work is on reservoir optimization problems with discrete and se-
quential actions, for example, maximizing the expected NPV by optimizing the drilling
sequence of wells. In this chapter, we first give a brief introduction to reservoir de-
velopment optimization under geological uncertainty, i.e., robust optimization under
uncertainty. We then illustrate sequential decision-making using the example of the
drilling-order problem, and we discuss the optimal strategies obtained from the tradi-
tional CLRM that only considers the current assessment of uncertainty in optimization
and the standard VOI decision analysis considering the effects of all possible future
information, respectively.

2.1 Robust optimization under uncertainty

The general purpose of field development optimization is to identify an optimal strategy
x∗ that maximizes a given objective function J ,

x∗ = argmax J(x), (2.1)

where x is a vector of control inputs (e.g., well rates, well type), and J generally is an
economic measure of oil reservoirs (e.g., NPV, oil recovery factor).

NPV is the most widely used economic objective function. It measures the difference
between discounted cash inflows and outflows over a period of time. Assuming that all
revenues are from oil production, and all costs are caused by water production, water
injection and drilling wells, the NPV for a single model realization at control x can be
computed as

J(x) = NPV(x) =
T∑

k=1

(
qo,k(x) · ro − qw,k(x) · rw − qwi,k(x) · rwi

) ·Δtk

(1 + b)tk/τ
−

Nw∑
n=1

Wn

(1 + b)tn/τ
,

(2.2)
where qo,k, qw,k and qwi,k are the rates of oil production, water production and water
injection at time tk, respectively; ro, rw and rwi are the oil price, water production cost,
and water injection cost, respectively; T is the number of time steps; Δtk is the time
interval in days; b is the discount rate for a certain reference time τ (typically one year);
Nw is the total number of wells to be drilled; Wn denotes the cost of drilling the nth
well; tn is the cumulative time in days up to the open time for each well.

Due to limited observations of the reservoir, the reservoir characterization is in-
complete with considerable uncertainty in properties. Geological uncertainty could
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influence the optimal decisions significantly, so that optimization based on a single
model realization may lead to a suboptimal solution deviating severely from the ac-
tual optimality. To obtain a robust optimal strategy, it is usually necessary to consider
the effect of geological uncertainty in optimization. In general, when taking into ac-
count geological uncertainty, the objective of optimization is to maximize the expected
objective-function value,

x∗ = argmaxE[J(x,m)], (2.3)
where m is the vector of model parameters, and E[J(x,m)] is the expectation of the
objective function J (e.g., expected NPV) at control x over uncertain model parameters
m.

As mentioned previously, an appropriate approach to account for uncertainty is to
use an ensemble of reservoir models that have been sampled from the probability dis-
tribution for model parameters. The expected value can then be estimated by averaging
all objective-function values over the ensemble. However, this approach requires many
expensive simulations and will result in the cost of RO to increase linearly with the
ensemble size and with the number of iterations required for optimization. To deal ef-
ficiently with uncertainty, we developed bias-correction methods applied to the mean
reservoir model to estimate the expected value over an ensemble of model realizations.
The use of bias-corrected mean model allows for RO performing with an approximation
of expected value close to the ensemble average value, while requiring only the simu-
lations of the mean reservoir model during the optimization process. We will elaborate
on the bias-correction methodology later in Chapter 4.

2.2 Robust sequential decision-making

Although geological uncertainty is unavoidable and results in large uncertainty in reser-
voir performance, the uncertainty can be reduced based on the past observations through
history matching or data assimilation. In field development optimization, wells are usu-
ally drilled and completed sequentially in time rather than simultaneously. After drilling
a new well, we can update the uncertainty in reservoir properties by assimilating the ob-
servations that are collected from all drilled wells, including the new well. In traditional
closed-loop field development (CLFD) [88], which is similar to CLRM optimization,
the next production strategy is obtained by performing a re-optimization over the current
assessment of uncertainty. In other words, the optimal decision is typically determined
by maximizing the expected NPV over the current uncertainty state. This approach adds
new observations to reduce geological uncertainty before making the next decision and
thereby potentially improves the production strategy performance.

Figure 2.1 shows the process flow of CLFD, which involves four steps, as follows: 1)
collecting observations after drilling a new well, 2) updating the geological description
with all acquired information, 3) performing optimization in the updated reservoir model
with re-estimated geological uncertainty, and 4) drilling the optimal next well based
on the current uncertainty state. This procedure is repeated until all available wells
have been drilled or until drilling additional wells will not increase the expected NPV
over the reservoir life. In the optimization step, the control variables may include the
number, type, location, control, and drilling schedule of wells. In this section, we will
use the drilling-sequence optimization problem as an example to demonstrate robust
sequential decision-making under uncertainty.
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Figure 2.1: Schematic of closed-loop field development [88]
.

Suppose that we need to determine the optimal drilling schedule of Nw wells. Each
drilled well provides observations that can be used to re-estimate uncertainty before
choosing the next well to be drilled. Figure 2.2 shows the observation-based dynamic
sequential decision process with Nw drilling wells. The set of actions a1, a2, . . . , aNw

represents an ordered sequence of Nw wells drilled at times t0, t1, . . . , tNw−1. The
observations o1, o2, . . . , oNw

denote the data collected from the drilling of each well,
where oj obtained from each past action aj might be a single datum (e.g., types of
facies), a collection of measured values of porosity/permeability, or a sequence of time-
dependent data (e.g., production/injection data of various types over a time interval).
The state s0, s1, . . . , sNw

represents the specific environments at a particular time for
each decision step constrained to the past decisions. We assume that observations from
all drilled wells are immediately available for updating the reservoir model. Hence,
uncertainty in each environmental state sj is re-estimated based on o1, o2, . . . , oj from
all previously j drilled wells, before optimizing the next decision. The objective is to
maximize the expected NPV, which is the sum of rewards R1, R2, · · · , RNw

over the time
periods Δt1,Δt2, · · · ,ΔtNw

.

Figure 2.2: Example of an observation-based dynamic drilling-sequence planning with Nw wells

As shown in Fig. 2.1, the optimal action at each step in the traditional CLRM is
determined based on current geological knowledge, i.e., performing a re-optimization
in the reservoir model updated using all currently available past observations. In that
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case, after completing the drilling of j wells, the optimal next well is the one that will
achieve the maximum expected NPV over the current assessment of uncertainty uj
based on the observations in history hj , i.e.,

a∗j+1 = argmax
aj+1∈Aj+1(hj)

EV∗ (hj , aj+1, uhj

)
, (2.4)

where hj is an observable history consisting of a sequence of past actions (i.e., j drilled
wells) and observation pairs, hj = (a1, o1, . . . , aj , oj); Aj+1(hj) is the current action
space at a given history hj , which consists of the (Nw − j) remaining wells; uj is the
current uncertainty state evaluated based on the past observations o1, o2, . . . , oj from j
drilled wells in history hj; EV∗ (hj , aj+1, uj) is the maximum achievable expected NPV
for complete drilling sequences over the uncertainty state uj constrained to history hj ,
followed by taking aj+1 as the next decision. Note that here aj+1 is the current decision
alternative instead of the previous decision. Thus,EV∗ (hj , aj+1, uj) is evaluated over the
current uncertainty state uj instead of uj+1. To compute the optimal next decision a∗j+1,
we generally need to evaluate the entire optimal sequence because the expected NPV
over the reservoir life-cycle is related to complete sequences with all available actions
taken sequentially. In this work, we developed a general methodology for efficiently
computing a∗j+1 without finding the entire optimal sequence. During the optimization
process, the maximum expected value EV∗ constrained to the past decisions can be
accurately estimated by using the information obtained from both previous and future
actions. The methodology will be elaborated later in Chapter 2.

In an observation-based sequential decision-making process under uncertainty
(Fig. 2.2), the past decisions not only directly affect the maximum achievable expected
NPV but also influence the future observations that can be used to reduce uncertainty.
In other words, the decision we make at the current time will affect the possibilities
of future learning through actions (i.e., the opportunities to improve the optimal strat-
egy resulting from future uncertainty reduction). Therefore, the true optimal action for
each decision step depends on both the past decisions and the consequences on future
uncertainty reduction. To act optimally, we must also account for the effects of future
information before committing to a decision. However, this future learning possibility
is ignored in most applications of CLRM optimization because it would be compu-
tationally intractable to update the reservoir model and re-optimize to account for all
possible outcomes of future observations. Consequently, a∗j+1 that is obtained by solv-
ing Eq.2.4 may lead to a suboptimal solution to the final uncertainty state updated based
on all observations from the complete strategy.

In theory, the optimal decision accounting for the future learning possibilities through
all remaining actions could be computed using the standard decision analytic approach
[36]. In this approach, after sequentially drilling j wells, the optimal choice for the next
well is based on the expected values over all possible observations from all remaining
wells,

a∗
fs

j+1 = argmax
aj+1∈Aj+1(hj)

∑
o∈Oaj+1

p(o|hj , aj+1)Q
∗
Nw−(j+1)(hj+1), (2.5)

where Oaj+1 is the observation space obtained from aj+1; p(o|hj , aj+1) are the
marginal probabilities of distinct observations o from aj+1 following history hj; and
Q∗

Nw−(j+1)(hj+1) is the optimal expected value considering all possible future observa-
tions constrained to history hj+1 including the observations from aj+1. This optimal
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expected value is calculated in a backward induction procedure,

Q∗
Nw−(j+k)(hj+k) = max

∑
aj+k+1∈Aj+k+1(hj+k)

o∈Oaj+k+1

p(o|hj+k, aj+k+1)Q
∗
Nw−(j+k+1)(hj+k+1),

for k = 1, 2, . . . , Nw − (j + 1),

(2.6)

where Q∗
0(hNw

) is the expected NPV over the final uncertainty state updated using all
sequential observations from a complete drilling sequence in history hNw

(i.e., all Nw

wells have been drilled sequentially). This optimization procedure is also known as the
standard VOI decision analysis process with extensive form [100, 78], which is a fully
structured decision tree that considers all possible combinations of the sequences of
remaining actions with distinct observations [50].

Figure 2.3: A fully structured decision tree for determining the order of two remaining wells in consideration of all possible
future observations [104]

Figure 2.3 shows a simple illustration of determining the optimal next well from
two remaining wells Wa, Wb through the backward induction procedure (Eqs. 2.5-2.6).
We assume that Nw -2 wells have been drilled sequentially resulting in history hNw−2,
and each remaining well can provide two possible distinct observations of1 , of2 about
the type of facies. In this case, determining the optimal choice of next well while
considering the effect of all possible future observations, requires information about the
expected NPV from all 8 possible combinations of sequences with distinct observations
and the information about the marginal probabilities of all possible observations from
two remaining wells. Because the number of options is small, the optimal action
a∗

fs

j+1 (i.e., to drill Wa as the next well) can be easily determined using the backward
induction. However, as this decision procedure requires the consideration of all possible
combinations of sequences with distinct observations, the size of the decision tree is
exponential in the number of distinct states related to both the action space and the
observation space obtained from each action. If there are 8 possible remaining wells and
each well provides only two distinct observations, then there would be 8!× 28 ≈ 1× 107

possible combinations of drilling sequences with distinct sequential observations. The
use of such a fully structured decision tree will be computationally intractable even
before accounting for the cost of updating the reservoir model. Consequently, in
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practice, it is only applicable to problems with small numbers of distinct actions and
distinct observations.

Equation 2.5 can also be expressed using Bellman equation [10] and solved within
the optimization framework of POMDP [108, 91, 55]. For small problems, a num-
ber of algorithms (e.g., enumeration, incremental pruning, linear support) have been
proposed to solve POMDP exactly [24, 92, 16]. For large problems, POMDP can be
solved approximately using approaches such as point-based value iteration [72], heuris-
tic search value iteration [90], and Monte-Carlo sampling [96]. However, because the
evaluation of an objective function in reservoir applications require expensive simula-
tion and the number of the states that need to be evaluated in a POMDP usually is large,
the cost of solving POMDP can be prohibitive, especially in cases with many combina-
tions that are likely to generate high expected values. Therefore, computing an optimal
decision while considering the effects of all possible future information (Eq. 2.5) is gen-
erally intractable for reservoir simulation-based problems. In this work, we developed
a key-feature-based VOI analysis obtained by identifying key actions that will provide
important information for improving future decisions and key information that will be
most helpful in exploring key reservoir features of the optimization problem. This ap-
proach does not require an exhaustive history matching and optimization procedure
accounting for all possible outcomes of future observations. It is therefore practical to
obtain an optimal or near-optimal decision efficiently while considering the possibilities
of future learning. We will present this methodology in detail in Chapter 5.



Chapter 3

Sequential planning with online learned
heuristics

Field development planning with discrete actions is a sequential decision-making task
that involves choosing an entire sequence of actions to maximize the reservoir’s prof-
itability. This optimization problem can be cast as a search problem in a directed
graph, i.e., finding the path with the maximum reward from a start node (beginning of
simulation) to a goal node (end of simulation). In Chapter 3, we present an efficient
search method derived from learned heuristics for solving optimization problems with
a discrete set of actions (i.e., sequential decisions-making problems), which allows for
optimizing either a complete strategy or only the first few actions by limiting the search
depth. During the optimization process, an accurate approximation of the maximum
achievable value constrained to past decisions can be inexpensively obtained using only
the information of previous and future actions, thereby guiding the search toward an op-
timal or near-optimal solution efficiently and effectively. Section 3.1 introduces one of
the most important heuristic search algorithms, i.e., A*, which is regarded as the gold
standard for search methods and has been widely applied to solve problems in various
areas. Section 3.2 then describes how to make the heuristic search method efficient and
practical for reservoir applications using online-learning techniques. Finally, Section
3.3 shows the space reduction and restoration techniques for finding an approximate
solution quickly for large problems.

3.1 Heuristic search

Search algorithms can naturally be divided into informed search (also called heuristic
search) and uninformed search (also called blind search). Informed search approaches
(e.g., best-first search, greedy best-first search, A* search) use additional knowledge
about the problem to provide hints about the best solution. By contrast, uninformed
search approaches (e.g., breadth-first search, uniform-cost search, depth-first search)
search blindly toward the goal without using any domain specific knowledge. Hence,
informed search is generally more efficient and acceptable than uninformed search
[82, 68].

The best-first search method is a generic informed search strategy that uses an
evaluation function f(ns) with problem-specific knowledge to describe the desirability
of expanding a particular state node ns. The basic idea of the best-first search is to
repeatedly expand the most promising node until a goal node is reached. For problems
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that aim to find a high-reward path, the most promising search direction is determined
by the node with the highest evaluation-function value obtained thus far. Two important
variants of best-first search are greedy best-first search [29] and A* search [47]. The
difference between these two search algorithms is that the greedy best-first search (also
called pure heuristic search) completely ignores the reward to get to the current state
node when evaluating the promise of a node, while A* search does not. Although A*
search uses more memory than greedy best-first search, it finds the optimal solution with
optimal efficiency. Because of its effectiveness, optimality and completeness, the A*
algorithm is currently the most popular heuristic search method and many of the current
search algorithms are variants of A* search [73, 74, 62, 93, 59, 20]. These algorithms
have been applied to solve problems in various fields such as routing of telephone
traffic, the alignment of DNA sequences, navigation through a maze, and real-time path
planning in robotics and digital games. In the following, we give a general description
of A* search and describe its search progress and properties with a simple example of
the drilling-sequence planning problem.

3.1.1 A* algorithm
The evaluation function f(ns) in A* search consists of two elements,

f(ns) = g(ns) + h(ns), (3.1)

where g(ns) is the true reward from a start node to node ns, depending only on the past
decisions, h(ns) is the estimated reward from node ns to a goal node. This estimated
value is obtained using a heuristic function h that incorporates additional knowledge
about the problem. When solving maximization problems over a set of actions, f(ns) is
an estimate of f∗(ns) that is the maximum objective-function value of complete paths
constrained to go through the state node ns, and the search terminates when a complete
strategy (i.e., all actions have been performed sequentially) for which the objective-
function value is larger than the evaluation-function values of all visited nodes is found.

Suppose that we need to maximize the NPV of a reservoir model by optimizing the
drilling schedule of wells (i.e., all wells have to be drilled sequentially). Figure 3.1
shows the procedure for using A* search to determine the optimal drilling sequence of
four wells (Nw = 4). The sequence consists of 13 visited nodes, including the start node
S0, which indicates the beginning of the simulation at time t0, and four expanded nodes,
A,C, F,K, which were selected as the most promising search directions based on the
evaluation-function value. Each node represents a specific environment state associated
with past decisions at a particular time. The reward gi along a partial path is the true
contribution to NPV over a certain time period from a given sequence of Ns selected
wells. The heuristic value h is an estimated maximum future reward resulting from
previously drilled wells and all remaining wells over the remaining time period. Then,
the evaluation function value f =

∑Nw

i=1 gi + h is the estimated maximum achievable
NPV of complete drilling sequences constrained to previously drilled wells.

As illustrated in Fig. 3.1, four successor nodes A,B,C,D are generated from the
start node S0, each corresponding to a particular search direction starting with a specific
well. At the first decision stage, the path through node A is the most promising
direction because it has the highest evaluation-function value f(A), which indicates that
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Figure 3.1: Search progress in A* algorithm for optimizing the drilling sequence of four wells. Nodes are labeled with their
f-values and h-values, and paths are labeled with their g-values [102]

a drilling sequence starting with W1 is more likely to generate higher economic value.
Consequently, node A is extended, and its successor nodes E,F,G are evaluated for
choosing the next search direction. However, the evaluation-function values obtained
from all these three successor nodes are lower than f(C). Hence, the search moves to the
path through node C that is selected as the most promising node at the second decision
stage. After evaluating all the successor nodes H, I, J , the search returns to node F
with the currently highest f-value. In this case, the search terminates with an optimal
drilling sequence [W1 → W3 → W2 → W4] along the full path [S0 → A → F → K]
for which the NPV is higher than the estimated maximum NPV of all evaluated paths.
Note that the f-values through nodes K and L with complete drilling sequences are the
actual NPVs rather than estimates. If any visited node has a higher evaluation-function
value, the search will continue to explore other directions until the stopping criterion is
reached.

3.1.2 Behavior of A*
A deeper search generally results in a more accurate evaluation and A* algorithm
enables the search direction to be adjusted in consideration of all investigated paths;
hence, this approach can guide the search toward an optimal solution effectively. For a
sequential decision-making problem with a set of Na actions (i.e., Na! possible action
sequences), it may be necessary to evaluate only Na×(Na+1)

2 nodes to find an optimal
complete strategy using A* search with a strong heuristic function. If the heuristic
function is admissible, namely, h(n) never underestimates the true maximum reward
h∗(n) from the current state node n to a goal state, A* search is guaranteed to find the
true optimal solution.

Suppose the true optimal solution has the maximum objective-function value J∗;
then, all nodes n∗ along the true optimal path would have evaluation-function value
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f(n∗) = g(n∗) + h(n∗) ≥ J∗ based on an admissible heuristic function h(n∗) ≥ h∗(n∗).
During the search process, there must exist at least one visited node n∗, so that a sub-
optimal solution G does not terminate the search since f(G) = J(G) < J∗ < f(n∗).
f(n∗) will guide the search toward the true optimal solution. However, an admissible
heuristic function that results in many nodes along suboptimal solutions with f(n) > J∗
has a severe drawback: the search does not terminate immediately when the true optimal
solution is obtained, and it will continue to expand all visited nodes with f(n) > J∗. In
the worst-case scenario, this approach might lead to an exhaustive search (i.e., evaluating
all Na! × Na possibles state nodes), which is worse than using the most naïve method
to compute the true optimal solution (i.e., evaluating Na all possibles sequences).
Compared to the use of a weak admissible heuristic function, it is preferable to compute
an optimal or near-optimal solution quickly using an effective inadmissible heuristic
function.

As discussed above, the important component of the evaluation function is the heuris-
tic function, which is the main driving force of heuristic search. Heuristic functions
incorporate problem-specific knowledge and are usually different for various problem
domains. There are several ways to derive heuristic functions such as through relaxed
problems with fewer restrictions on actions [106], abstract problems [76], or subprob-
lems [75]. For the drilling-order problem, one possible heuristic function is obtained
by drilling all remaining wells simultaneously at the next step to estimate the maximum
NPV of complete drilling sequences constrained to past decisions [63]. Such a heuris-
tic can be obtained inexpensively but might lead to an exhaustive search due to large
estimated values in some cases. In many applications, it is more important to find an ap-
proximate solution quickly because of time limitations. A weighted evaluation function
f(n) = g(n) + ωh(n) (e.g., weighted A* [73], dynamic weighted A* [74, 33]) that has
a weighting parameter ω on the heuristic function h(n) often performs well in rapidly
finding solutions by giving up the guarantee of optimality. However, an appropriate ω
is difficult to find in terms of both running time and solution quality, and an appropriate
value might not exist for some applications or be extremely challenging to obtain with-
out resorting to trial and error. Strong and admissible heuristic functions are usually
learned from experience within the problem domain and empirical studies are usually
needed. For reservoir optimization problems, the cost of finding an accurate heuristic
function can be prohibitive because the evaluation of heuristic functions requires sim-
ulations. To address this issue, we developed online-learning techniques for heuristic
search , i.e., learned heuristic search, that considers learning the initial heuristic during
the search process to improve the accuracy of the evaluation function.

3.2 Online learning techniques

To efficiently find a solution that is optimal or near optimal, the evaluation function
f(ns) should be close to the true maximum reward f∗(ns), such that the search would
not frequently change direction due to inaccurately estimated values. In this section, we
describe how to efficiently obtain an “adequate” evaluation function when it is difficult
to design a heuristic function h(ns) that is accurate for all state nodes. The main idea
is to improve a crude heuristic using online-learning techniques that aim to adjust the
initial approximation f(ns) toward f∗(ns) by learning the observations obtained from
previous decision steps.
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One possible way to improve the evaluation function is to use the set of estimated
additive errors along all remaining steps, i.e.,

f̂(ns) = f(ns) +

ngoal∑
n=ns

ε̂fn, (3.2)

where f̂(ns) and f(ns) are the improved and the initial evaluation-function values
through node ns, respectively, and ε̂fn is an estimate of the error across a single step,
which can be obtained by observing the initial evaluation-function values f(S0), f(n1),
f(n2), . . ., f(ns) from the expanded nodes along the current optimal path.

Thayer et al. [95] presented a technique with mean single-step error ε̄fns
to compute

the improved f̂(ns) in Eq. 3.2,

f̂(ns) = f(ns) + d(ns)ε̄fns
, (3.3)

where d(ns) is the number of remaining actions at node ns, and the mean additive error
ε̄fns

can be calculated using only the information about the number of selected actions
and the initial evaluation-function values at the start node S0 and the current state node
ns , i.e.,

ε̄f (ns) =
f(ns)− f(S0)

dgoal − d(ns)
, (3.4)

where dgoal denotes the number of all possible actions at the start node S0. Compared
to the use of the initial f(ns), the corrected evaluation-function value f̂(ns) (Eq. 3.3),
which is dependent on the temporal difference learning, often provides better guidance
for search [95].

For reservoir optimization problems, the absolute difference in the initial estimated
maximum NPV at various decision steps is often highly variable, and the additive
single-step error εfn decreases with the addition of more observations when searching
deeper. Consequently, instead of using the additive error, we developed online-learning
techniques associated with the ratio between two neighboring nodes to improve f(ns).
Based on the learning period, we divide the techniques into two classes: single-step
adjustment and multiple-time-period learning. The main difference between them is
that the former directly adjusts f(ns) over the entire production period, while the latter
simultaneously adjusts the contributions to f(ns) over different time periods.

3.2.1 Single-step adjustment

The improved f̂(ns) corrected by using an estimated single-step ratio of the evaluation
function f across all remaining actions can be described as

f̂(ns) = f(ns)

ngoal∏
n=ns

γ̂fn, (3.5)

where γ̂fn is the estimate of the single-step ratio of f(n) along the current optimal path
to the goal node ngoal.

There are two possible ways to obtain γ̂fn, depending on the trend of the observed
ratio γfn1

, γfn2
, . . ., γfns

from past decisions. If the observed ratio is approximately
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constant, the improved f̂(ns) can be computed with an estimate of the mean single-step
ratio γ̄fns

, i.e.,
f̂(ns) = f(ns)γ̄

d(ns)
fns

, (3.6)
where the mean single-step ratio γ̄fns

can be calculated from the observed initial
evaluation-function values f(S0), f(n1), f(n2), . . . , f(ns) along the current optimal path
using the following formula,

γ̄fns
=

∑ns

ni=n1
γfni

dgoal − d(ns)
=

∑ns

ni=n1

f(ni)
f(ni−1)

dgoal − d(ns)
. (3.7)

If the observed ratio γfn through S0, n1, n2, . . . , ns is not stationary, instead of using
a fixed single-step ratio γ̄fns

to improve f(ns), we use a dynamic γfn that considers
the trend of γfn for all remaining steps. Let μ̄ns be the trend indicator of γfn that is
evaluated from the observed ratios γfn1

, γfn2
, . . . , γfns

along the current optimal path,
i.e.,

μ̄ns =

∑ns

ni=n1
μni

dgoal − d(ns)
=

∑ns

ni=n1

γfni

γfni−1

dgoal − d(ns)
. (3.8)

The estimated γ̂fn for each remaining step can then be represented as,

γ̂fn = γfns
μ̄
d(ns)−d(n)
ns . (3.9)

In consideration of the trend of observed γfn (Eq. 3.8), the improved evaluation-function
value f̂(ns) (Eq. 3.5) with a dynamic estimated γ̂fn (Eq. 3.9) can be formulated as

f̂(ns) = f(ns)

ngoal∏
n=ns

γ̂fn = f(ns)

d(ns)∏
i=1

γfns
μ̄ins

= f(ns)γ
d(ns)
fns

μ̄
(d(ns)+1)d(ns)

2
ns . (3.10)

3.2.2 Multiple-time-period learning
Despite abandoning the guarantee of optimality, we strive to improve the accuracy of
f̂(ns) and efficiently compute a solution that is optimal or nearly optimal. A single
learning technique to minimize the error of f̂(ns) at all levels is difficult to design,
especially at the early decision stages with limited past observations. The techniques
presented in the single-step adjustment (Eqs. 3.6 and3.10) are derived from the estimated
ratio γ̂fn associated with the entire production period, which means that all contributions
to f(ns) at node ns over different time periods are adjusted with a fixed γ̂fn. However,
the rewards corresponding to various time periods might have different trends. To
reduce the instability of the observations of γΔt, we can improve f(ns) through a set of
γ̂Δt obtained from different learning periods Δt (i.e., multiple-time-period learning). In
that case, the improved evaluation-function value would be more likely to capture the
characteristics of the changes in the initial estimates along the current optimal path.

Depending on whether the operating strategy is complete, the entire production
period T =

∑Na

i=1Δti through a set of Na discrete actions can simply be divided into two
major learning periods T = ΔtL1 + ΔtL2 , where ΔtL1 is the time period

∑Na−1

i=1 Δti during
which all Na actions are supposed to be performed sequentially, and ΔtL2 corresponds
to the last time period ΔtNa

from the time the last action has been taken to the end
of simulations. In general, past decisions have a considerable impact on the economic
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value of the near future. To potentially reduce the impact on the observations of the
nodes for learning, we could use the first Na-1 time periods with a short-term period
Δtd as the first learning period, i.e., ΔtL1 =

∑Na−1

i=1 Δti + Δtd, where Δtd is the time
period when all actions have already been taken, while the second learning period
ΔtL2 = ΔtNa

−Δtd begins at the time when the last action would be performed for time
Δtd.

Given these two periods, the initial evaluation function f(ns) constrained to pass
node ns can be expressed as

f(ns) = hΔtL1
(ns) + hΔtL2

(ns). (3.11)

where hΔtL1
(ns) is the estimated reward over the time period ΔtL1 =

∑Na−1

i=1 Δti+Δtd and
hΔtL2

(n) is the estimated reward corresponding to the time period ΔtL2 = ΔtNa
−Δtd.

The second period ΔtL2 can be further divided into multiple shorter periods for
learning, i.e., ΔtL2 = ΔtNa

− Δtd = (ΔtL2 ,ΔtL3 ,ΔtL4 , . . . ,ΔtLNL
). We can then describe

f(ns) as

f(ns) = hΔtL1
(ns) +

NL∑
i=2

hΔtLi
(ns), (3.12)

where hΔtLi
(ns) is the estimated reward over each learning ΔtLi , which can be improved

by observing the initial estimated values corresponding to the same time period along
the current optimal path.

Based on the online-learning techniques presented in Eqs. 3.6-3.10, the improved
evaluation-function value obtained via multiple-time-period learning can be computed
by simultaneously adjusting the heuristic values to various time periods,

f̂(ns) = ĥΔtL1
(ns)+

NL∑
i=2

ĥΔtLi
(ns) = hΔtL1

(ns)

ngoal∏
n=ns

γ̂h
ΔtL

1
(n)+

NL∑
i=2

(
hΔtLi

(ns)

ngoal∏
n=ns

γ̂h
ΔtL

i
(n)

)
.

(3.13)
Note that the estimated γ̂h in the above equation is obtained from the estimated re-
wards over the corresponding learning period, differing from the estimated γ̂fn of the
cumulative reward over the entire period.

3.2.3 Multilearned heuristics
In this work, the techniques designed for improving the initial evaluation function
are based on the ratio of the rewards between two neighboring nodes. If more online-
learning mechanisms are available, a useful evaluation-function value is more likely to be
obtained. Suppose that there is a set of online-learning mechanisms, Φ1,Φ2,Φ3, . . . ,ΦL.
Each can be used independently to improve the initial evaluation function f(n). The
best-improved evaluation function f̂Φ(n) after multiple online-learning techniques can
be defined as

f̂Φ(n) = max
(
f̂Φ1

(n), f̂Φ2
(n), f̂Φ3

(n), . . . , f̂ΦL
(n)

)
. (3.14)

Here we choose the maximum estimated value as the best-improved f̂Φ(n) because it is
more likely to overestimate the true maximum reward f∗(n) and guide the search close
to the optimal solution, although this approximation might not be the one with the best
accuracy.



24 Sequential planning with online learned heuristics

Performing heuristic search with multiple online-learning techniques (i.e., multi-
learned heuristic search) is similar to the idea of simultaneously using multiple heuris-
tics to search [17, 49, 80, 84, 2], but the use of online-learning techniques is much more
efficient for simulation-based optimization problems. Although it might be possible to
generate an “adequate” evaluation function in consideration of multiple heuristics, the
cost of optimization increases linearly with the number of heuristics because the eval-
uation of each heuristic requires simulation runs. Moreover, due to the complexity of
optimization problems and the expensive cost of designing an accurate initial heuris-
tic, most of the potential initial heuristics f(n) are probably not “helpful”. In contrast,
online-learning techniques, whose designs are based on available information, can be
used to create a set of latent heuristics, for which only one initial f(n) requires sim-
ulation runs while all the information-available techniques do not. Because the error
in the approximation is reduced after each single online-learning technique, the poten-
tial heuristics f̂Φ1

(n), f̂Φ2
(n), . . . , f̂Φk

(n) are generally more accurate than the multiple
initial heuristics obtained without any learning. Hence, multilearned heuristic search
(MLHS) is preferred over general multiheuristic search for reservoir applications.

3.3 Space reduction and restoration

As shown in Fig.3.1, all successor nodes from each selected direction are evaluated in
the general heuristic search method, i.e., all the remaining actions are considered as the
next possible action. At each decision step, all visited nodes are considered for choosing
the next search direction, i.e., the search allows for changing direction among all visited
paths). This search method can be used to obtain an optimal solution considering
the possibility of achieving high values from the sequences starting with various past
decisions, but the number of remaining actions limits optimization efficiency. In some
cases, there may be a large number of strategies with an objective-function value
very close to the true maximum, resulting in frequent changes in the search direction.
To address these issues, we can accelerate the search progress using space reduction
techniques, which allow computation of a valid solution quickly.

3.3.1 Space reduction
The basic idea of space reduction is to prune unimportant nodes that are likely to generate
low values. Ranking the node importance has theoretical and practical significance in
decision making [70, 13] and has been noted previously in the heuristic search method
[95, 105]. Depending on whether the evaluation of a heuristic is required for pruning
the nodes, search space can be reduced in two ways: prior space reduction and posterior
space reduction.

Prior space reduction

Prior space reduction is achieved by avoiding the evaluation of all successor nodes,
which means that only some of the remaining actions are evaluated at the next possible
action. An appropriate heuristic might be able to provide useful information to identify
the decision alternatives that are more likely to generate high objective-function values
without requiring additional simulations. For example, using a heuristic in which all
remaining wells are drilled simultaneously at the next step, we can also obtain all the
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information needed to compute the production well economic indicator (PWEI) and the
injection well economic indicator (IWEI) of individual wells [37],

PWEI =
T∑

k=1

(
qpo,k · ro − qpw,k · rw

)
·Δtk

(1 + b)tk/365
− W p

n

(1 + b)t
p
n/365

, (3.15)

IWEI =
T∑

j=k

qiwi,k · rwi ·Δtk

(1 + b)tk/365
+

W i
n

(1 + b)t
i
n/365

, (3.16)

where qpo,k, q
p
w,k and qiwi,k are the rates of oil production, water production and water

injection for an individual well. W p
n and W i

n are the costs of drilling a producer and
an injector, respectively. Note that uncertainty in reservoir properties is neglected in
Eqs. 3.15-3.16. Taking into account geological uncertainty, PWEI and IWEI are the
expected values over uncertainty.

In general, the wells with higher PWEI and IWEI starting operating in the early stages
are likely to achieve more profitability of a field. Producers and injectors therefore can
be approximately ranked based on their contribution to the reservoir’s profitability.
The economic indicator is representative of an individual well, however, and might not
accurately rank the possibility of achieving high NPV from complete drilling sequences.
When such an economic indicator is used to prune the search space, a better solution
might be ignored after prior space reduction. To reduce the risk of solution quality loss,
the search space should not be pruned excessively, e.g., at least half of the remaining
actions at each decision step should be considered as the next possible actions.

Posterior space reduction

In contrast to prior space reduction that reduces the number of successor nodes before
evaluation, posterior space reduction limits the number of expanded nodes based on
evaluation-function values, i.e., only the successor nodes with high estimated values are
considered during the search process, but those with low estimated values are pruned.
This approach is an efficient way to control frequent changes in search direction. Because
the search space is pruned by ranking the node based on the evaluation-function value,
which is more accurate than the economic indicator of individual actions for prior
space reduction, posterior space reduction is less likely to miss the optimal solution
or reduce the solution quality. Although posterior space reduction attempts to control
the selected direction along the optimal sequential solution, it will not accelerate the
search progress if the pruned nodes would not have been expanded during MLHS
without space reduction. In contrast, prior space reduction is guaranteed to accelerate
the search process, but it is more likely to lose the solution quality if the search space is
reduced excessively.

3.3.2 Space restoration
To find a solution as quickly as possible, we can perform MLHS with both prior and
posterior space reduction (MLHS-SR); however, this approach may reduce the solution
quality if the space is pruned excessively. The solution could be improved by adding the
removed space back gradually and utilizing MLHS iteratively to continue the search.
Algorithm 1 presents pseudo-code of MLHS with space reduction and restoration



26 Sequential planning with online learned heuristics

(MLHS-SRR), in which MLHS is executed twice. That is, MLHS with space reduction
is first utilized to rapidly find a valid solution, and then MLHS is performed with space
restoration to improve the solution.

Efficiency of MLHS-SRR

MLHS with gradual space restoration is similar to the anytime algorithm [46, 107, 45],
but it outperforms that algorithm in terms of both running time and accuracy of the
estimated value. For the anytime algorithm, a solution is found quickly by sacrificing
the accuracy of the estimated value. Then, the heuristic search is executed iteratively by
improving the accuracy gradually. In contrast, MLHS-SRR is executed without harming
the accuracy of the estimated value, since a solution is rapidly found by pruning the
paths that are likely to generate low values rather than reducing the accuracy of the
estimated value. Although MLHS is performed at least twice in this approach (space
reduction and restoration), it is not necessary to evaluate all of the visited nodes for
each search process. Most have already been evaluated and their evaluation-function
values have been obtained during the first search process with space reduction. Thus,
MLHS with space restoration requires simulations only for the nodes that were not
previously evaluated. Moreover, since a valid solution is already obtained by MLHS-
SR, performing MLHS-SRR is based on the true objective-function value of the current
solution. In other words, only the nodes with evaluation-function values that are higher
than that of the current solution would be considered during the search process. Hence,
MLHS-SRR can find an approximate solution faster than MLHS. When the improved
evaluation function overestimates the maximum objective-function value, MLHS-SRR
is guaranteed to find the same solution as the MLHS without space reduction. The
performance of various heuristic search methods, MLHS, MLHS-SR, and MLHS-SRR
is studied in Paper A via the application of drilling-order problem in a synthetic field
model.

Partial optimization

In addition, solving optimization problems with discrete actions with online learned
heuristics has an advantage in that it allows for optimizing only the first few decisions
at a reduced cost without finding the entire optimal solution. The reservoir model will
almost certainly be updated based on the information from past decisions. The optimal
strategy of the remaining actions obtained from the updated reservoir model generally
differs from the initial optimal strategy. It is, therefore, more important to identify
the first few actions rather than finding an entire optimal sequence for all remaining
actions. The most straightforward approach to optimizing the first few actions is to
terminate the search at a certain depth, namely depth-limited search [32]. For example,
to compute an optimized sequence of the first Ns actions, we can terminate the search
at the first expanded node with Ns+1 selected actions. Note that we prefer to cut off the
search with more selected actions because online learning techniques with the addition
of more observations along a longer path can further improve the approximations and
potentially generate a better solution. In addition, we can also perform depth-limited
search iteratively to find the partial solution faster. The basic idea behind this approach
is to iteratively optimize the next action determined by the first expanded node with more
selected actions (e.g., two more actions) until a solution of Ns + 1 selected actions is
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Algorithm 1 Multilearned heuristic search with space reduction and restoration (MLHS-SRR)
Input: Geological model, Initial heuristic function, A start node n0

Output: Optimal or near-optimal control sequence
1: Ggoal ← 0
2: OPEN ← {n0}
3: CLOSED ← ∅
4: Reduction← True
5: while OPEN �= ∅ or Reduction is False do
6: OPEN ← {n0}”
7: CLOSED ← ∅
8: while OPEN �= ∅ do
9: n ← argmaxn∈OPEN f̂L(n)

10: OPEN ← Remove node n with the highest f̂L(n) from OPEN
11: CLOSED ← Add node n to CLOSED
12: if Reduction is True then
13: Economic indicator← Calculate the economic indicator for each successor node n′ of n
14: Prior space reduction← Prune the successor nodes with lower value of economic indicator
15: successor(n) ← Expand the remaining successor nodes n′ of n after prior space reduction
16: else
17: successor(n) ← Expand all remaining successor nodes n′ of n
18: end if
19: OPEN ← Add successor(n) to OPEN
20: for each n′ ∈ successor(n) do
21: if all actions are taken sequentially at node n′ then
22: f̂L(n

′) ← g(n′)
23: if f̂L(n′) > Ggoal then
24: Ggoal ← g(n′)
25: end if
26: else
27: if n′ has already been evaluated then
28: Obtain f̂L(n′) directly without running additional simulations
29: else
30: Evaluate the initial heuristic function value h(n′) at each time period
31: Evaluate the initial estimated maximum objective-function value f(n′) through node n′

32: Utilize multiple online learning mechanisms to improve f(n) simultaneously
33: f̂L(n

′) ← maxL1≤Li≤Ln f̂Li(n) ← f(n′) ← h(n′) ← n′

34: end if
35: end if
36: if Reduction is True then
37: Posterior space reduction← Prune the nodes n′ with lower f̂L(n′)
38: end if
39: end for
40: Prune all nodes n ∈ OPEN if f̂L(n) < Ggoal

41: end while
42: for each node n along the control sequence of Ggoal do
43: if f̂L(n) < Ggoal then
44: f̂L(n) ← Ggoal

45: end if
46: end for
47: if Reduction is True then
48: Reduction← False
49: else
50: Break
51: end if
52: end while
53: return a sequence of actions with objective-function value← Ggoal
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found. Because only the paths extended from past decisions are considered, this method
can avoid evaluating unnecessary paths along other directions due to underestimated
values. Learned heuristics with accurately estimated values generally will not change
direction frequently, so the optimized sequence of the first few actions obtained by
limiting the search depth is likely to be near the final optimized complete sequence.
In Paper B, we investigated the possibility of optimizing only the first few wells using
learned heuristic search with limited search depth.



Chapter 4

Robust optimization using bias-corrected
mean model

Chapter 3 presented an approach (i.e., learned heuristic search) to solving optimization
problems with discrete-control variables for which the geologic model was not uncertain.
In that case, it is possible to optimize an objective function whose evaluation requires
a single model. As mentioned previously, geological uncertainty frequently results in
large uncertainty in reservoir performance and ought to be taken into account in field
development optimization. This chapter presents the bias-correction methodology to
efficiently account for geological uncertainty in robust optimization. In Section 4.1,
we introduce some possible ways to estimate the expectation of an objective function
under uncertainty. Section 4.2 presents the bias-correction methods applied to the mean
model to efficiently estimate the expected value. The bias-corrected mean model can
be applied to fairly general problems of optimizing the expected value of an objective
function for which the uncertainty is characterized by an ensemble of model realizations.

4.1 Estimation of expected value

A fast way to approximate the expected value of the objective function is to use the
objective-function value based on the expected values of uncertain parameters, i.e.,
J(x, E[m]), which will formulate the robust optimization problem in a deterministic
setting,

x∗ = argmax J(x, E[m]), (4.1)

where x is a vector of control inputs and m ∈ Rm is an m-dimensional vector of
uncertain model parameters.

When nonlinearity in the objective function is not large, an approximation of the
expected value can be obtained from the mean reservoir model m̄,

J(x, E[m]) ≈ J(x, m̄). (4.2)

This approach requires only the simulation runs using the mean model m̄. However,
J(x, m̄) can be a poor estimate of the expectation of an objective function since the
dependence of the objective function J (e.g., NPV) on the model parameters m is
generally highly nonlinear,

J(x, E[m]) �= E[J(x,m)]. (4.3)
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If geological uncertainty has a large variance, the optimal solution obtained from the
mean reservoir model m̄ might not be near the actual optimal result. Hence, uncertainty
should be treated in a better way that allows accurate estimation of the expected value.
In this section, we describe some possible means of computing a good approximation
of the expected value.

4.1.1 Sample average approximation
To account for the uncertainty in the RO procedure, an appropriate approach is to
maximize the expectation of the objective function J over the uncertainty space, i.e.,

x∗ = argmaxE[J(x,m)]. (4.4)

To quantify the uncertainty in reservoir properties, geostatistical methods can be used
to generate an ensemble of equally probable realizations that describes the probability
distribution for model parameters. Then, the expected value of the objective can be
computed by averaging the objective-function values over all geological realizations
[22, 23, 99]

E[J(x,m)] ≈ J̄(x) =
1

Ne

Ne∑
j=1

J(x,mj), (4.5)

where mj is the vector of uncertain model parameters (e.g., permeability, fault multipli-
ers) for realization j and Ne is the number of individual realizations required to capture
the uncertainty in the model parameters.

The average value J̄(x) over a sufficiently large ensemble [58, 56] can provide a good
approximation of the expected objective-function value. Unfortunately, Ne simulations
are required to compute this sample average approximation (SAA) since the control x
has to be applied to every single realization mj to obtain each objective-function value
J(x,mj). Due to the high computational cost of computing J̄(x) over the entire set
of realizations, a subset of the reservoir model is often used to capture the overall un-
certainty of the reservoir to improve the efficiency of RO. A small set of realizations,
however, may not accurately characterize the uncertainty, leading to a suboptimal so-
lution. Therefore, an appropriate subset of geological realizations must be carefully
selected. Moreover, although the efficiency of RO can be significantly improved by re-
ducing the full ensemble of models into a small subset ensemble, RO performed using
the straightforward estimation of the expected value (Eq. 4.5) may still require many
expensive simulations, since the cost of RO increases linearly with both the number of
realizations employed and the number of iterations (i.e., the number of controls that
need to be evaluated) during the optimization process. For example, if an optimiza-
tion requires 500 iterations and 20 representative realizations are selected for use in
RO, a total of 104 simulations will be required in optimization. Thus, a technique that
can efficiently and effectively handle the uncertainty in robust optimization procedure
is preferred.

4.1.2 Taylor series expansion
To generate a good approximation that does not require evaluation of controls applied to
a large number of Monte Carlo samples, one approach is to modify the representation of
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uncertainty using a Taylor series expansion of the objective function [26, 27, 11, 21, 3].
A linear approximation of the objective function is defined as

J lin(x,m) = J(x, m̄) + 〈Jm(x, m̄),m− m̄〉, (4.6)

where Jm is the first derivative of objective function J with respect to uncertain model
parameter m.

Assuming that m is Gaussian distributed, the expectation over m of the linear
approximation to the objective is simply the objective function of mean model m̄,

E[J lin(x,m)] = J(x, m̄). (4.7)

As mentioned previously, J(x, m̄) is generally not an accurate approximation of
E[J(x,m)]. However, the accuracy of the approximation can be improved by including
higher-order terms in the expansion. To second order, the Taylor expansion of the
objective can be described as

Jquad(x,m) = J(x, m̄) + Jm(x, m̄)(m− m̄)

+
1

2
(m− m̄)TJmm(x, m̄)(m− m̄),

(4.8)

where we have neglected higher-order terms in the expansion (e.g., a cubic term); and
Jmm denotes the second derivative of J with respect to m. If m is multivariate Gaussian
distributed with mean m̄ and covariance C, then the expected value of the quadratic
approximation of the objective can be shown [69] to be

E[Jquad(x,m)] = J(x, m̄) +
1

2
tr(C1/2Jmm(x, m̄)C1/2). (4.9)

The key point of this approach is that the ensemble mean model can be used for
optimization instead of performing optimization on the ensemble of realizations. The
first term J(x, m̄) can be obtained inexpensively from the mean model m̄, but computing
Jmm(x, m̄) can be difficult, as it requires the second derivative of the objective function
with respect to the model parameters. Although it might be possible in some cases
to approximate higher-order derivatives, this approach is impractical for most reservoir
applications. Therefore, if we want to use the mean model for RO without sacrificing the
accuracy of the estimated expected objective-function value, we need a more practical
method to improve the approximation of the expected value obtained from the mean
model.

4.1.3 Mean-model bias correction
As discussed above, the ensemble average value J̄(x) can provide a good approximation
of the expected value, but it requires many expensive simulations. Although J(x, m̄)
only needs the evaluation of control x applied to the mean model m̄, the result can be
a poor estimate and misguide the optimization. This approximation can be improved
using Taylor series expansion with higher-order terms; however, the computation of
higher-order derivatives is impractical for most real reservoir applications.

In this work, we develop bias-correction methods that are applied to J(x, m̄) to
efficiently generate an approximation of J̄(x). The main idea is to correct the bias in
J(x, m̄) by estimating a multiplicative correction factor α(x) between J̄(x) and J(x, m̄),

J̄(x) = α(x)J(x, m̄). (4.10)
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J̄(x) is computed by averaging over an ensemble (Eq. 4.5). Consequently, the
correction factor α(xi) of a fixed control xi can be described as

α(xi) =
1

Ne

Ne∑
j=1

J(xi,mj)

J(xi, m̄)
. (4.11)

For control xi applied to each individual model realization mj and the mean model
m̄, we define a partial correction factor β(xi,mj, m̄) between the objective-function
values obtained from mj and m̄,

βij = β(xi,mj, m̄) =
J(xi,mj)

J(xi, m̄)
. (4.12)

Then the correction factor α(xi) at control xi over an ensemble of realizations (Eq. 4.11)
can be written in terms of all relevant partial correction factors,

α(xi) =
1

Ne

Ne∑
j=1

βij . (4.13)

One of the simplest ways to correct the bias in J(x, m̄) is to use an approximation of
ᾱ, which is the mean value of the correction factor. The most straightforward approach
to compute ᾱ is averaging the correction factors α from different controls,

ᾱ ≈ 1

Nx

Nx∑
i=1

α(xi) =
1

NxNe

Nx∑
i=1

Ne∑
j=1

J(xi,mj)

J(xi, m̄)

=
1

NxNe

Nx∑
i=1

Ne∑
j=1

βij ,

(4.14)

where Nx is the number of distinct controls. This approach is infeasible for most
practical optimization problems since it requires Nx × (Ne + 1) evaluations of J(x,m).

Instead of using Eq. 4.14, a Monte Carlo estimate of ᾱ can be obtained at a much
lower cost by sampling control xj uniformly from the space of all possible controls and
sampling reservoir realizations mj from the space of conditional realizations. Then an
estimate of ᾱ can be computed using the following formula,

ᾱ ≈ 1

Nx

Nx∑
j=1

J(xj,mj)

J(xj, m̄)
=

1

Nx

Nx∑
j=1

β(xj,mj, m̄), (4.15)

where β(xj,mj, m̄) is the observed value of β at a random control xj, which requires two
simulations, i.e., applying control xj to a random individual realization mj and applying
control xj to the mean reservoir model m̄. Therefore, in this approximation only 2×Nx

simulations are needed to obtain a set of observations β from Nx distinct controls to
estimate ᾱ, which is much lower than the cost of the straightforward application of
Eq. 4.14.

Although an estimate of ᾱ can be efficiently obtained from a set of observed values
of β (Eq. 4.15), the accuracy of the approximation corrected using ᾱ is limited by the
variability in α. If the variability in α(xi) is small as control xi is varied, then ᾱ can
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provide a useful approximation of α(xi) to adjust J(xi, m̄) toward the average objective-
function value J̄(xi). In the case of large variability, the correct values of α for some
of the controls may be far from ᾱ. Moreover, for optimization algorithms based on
ranking the expected values of decision alternatives, a fixed correction factor applied
to all controls will not improve the optimal solution obtained by directly performing
optimization in the mean model (Eq. 4.1). To ensure the quality in terms of the
approximation of J̄(xi) and the RO strategy, the bias in J(xi, m̄) should be corrected by
an estimate of α(xi) that corresponds to the specific control xi.

4.2 Estimation of correction factor

We developed three possible methods to estimate the correction factor α at different
controls: distance-based localization, regularized localization, and covariance-based
optimal weights. The latter two require additional information about the correction
factor (e.g., variance of α, covariance of β), but the cost of estimating α for various
controls through all these three techniques is the same, i.e., distinct controls are applied
to individual realizations and to the mean reservoir model for obtaining a set of observed
values of β. The key to making these approaches effective is that an appropriate weight
ω(xi,xj) that indicates the importance of each sampled control xj for estimating the
correction factor α(xi) is assigned to the corresponding observation β(xj,mj, m̄).

4.2.1 Distance-based localization
In Eq. 4.15, the estimate of α is computed by averaging all sampled β values. This
approximation is essentially an unweighted estimate, since all observed values of β are
assigned equal weight ω = 1

Nx
regardless of the control that needs to be evaluated. In

general, however, we expect that an estimate will be better if it is based primarily on
information from similar control variables. Thus, we expect that a weighted estimate
with higher weights assigned to similar controls and smaller weights for the dissimilar
controls will be better than an unweighted estimate.

Suppose that Ne distinct controls (i.e., Nx = Ne) are applied to Ne individual re-
alizations and the mean model for generating a set of observations β, such that each
realization will provide one observed value of the partial correction factor β. The
weighted linear estimate α̂l(xi) at control xi is described as

α̂l(xi) =

∑Ne

j=1 ω(xi,xj)β(xj,mj, m̄)∑Ne

j=1 ω(xi,xj)
, (4.16)

where β(xj,mj, m̄) is an observed partial correction factor from a random control xj

applied to an individual realization mj and the mean model m̄. ω(xi,xj) is the weight
of β(xj,mj, m̄). The weights, ω(xi,xj), depend on a measure of similarity, or distance
measure, between controls xi and xj.

With an appropriate distance measure, the sampled controls xj that are similar to
control xi will be located at shorter distances. Because similar controls are expected to
provide more useful information than dissimilar controls, weights are assigned such that
β(xj,mj, m̄) for the controls at shorter distances have higher weights while β(xj,mj, m̄)
for controls at larger distances have smaller weights. Lacking information about the
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correlation of β with the distance between controls, we use the Gaspari-Cohn taper
function [38] to compute distance-dependent weights,

ρ (δ, L) =
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(4.17)

where ρ (δ, L) is the distance-based weight, which varies from 0 and 1; δ is the dis-
tance between controls; L is the taper length, which determines the distance at which
the weighting drops to approximately 0.2, i.e., weight ω(xi,xj) ≈ 0.2 when distance
δ(xi,xj) = L; and 2L is the critical distance, beyond which the weighting is zero, i.e.,
ω(xi,xj) = 0 when δ(xi,xj) > 2L.

Distance measures for sequential actions

The distance measure of controls is specific to the problem of interest. For sequential
planning problems with discrete actions, the control variables have no physical locations,
but they are permutations of sequences of possible actions, in which case an order-based
encoding is appropriate. Hence, we use the permutation encoding [81] of the sequences
to design the distance measures for the controls involved with sequential actions. In this
encoding, each integer value in the vector encodes the relative ordering of the execution
of a specific action. Consider, for example, the drilling-order problem with four possible
wells W1,W2,W3,W4 that need to be drilled sequentially. If the drilling sequences S in
controls xi and xj are Sxi = [W1,W2,W3,W4] and Sxj = [W3,W1,W4,W2], respectively.
Suppose the permutation encoding to the drilling sequence Sxi is described as the vector
Pxi = [1, 2, 3, 4]T . The sequence Sxi is then transformed to the vector Pxj = [2, 4, 1, 3]T

based on the ordering of the drilling of each well. The distance δ(xi,xj) between controls
xi and xj is measured by the distance between the vectors Pxi and Pxj . Note that Pxi

and Pxj vary as the reference control sequence xref defined as Pxref = [1, 2, 3, 4]T varies,
but the distance δ(xi,xj) between Pxi and Pxj is fixed.

Appropriate distance measures for ordering problems include the ‘edit’ distance
[66], which is the minimum number of operations required to transform one sequence
into another sequence, and the ‘swap’ or Jaro-Winkler distance [53], which counts the
minimum number of swaps of two elements required to transform one sequence to
another. Because the computation of swap and edit distances is relatively expensive,
fitness-distance measures are commonly used as surrogates for the permutation distance
[85]. Here, we introduce four of the most widely used distance metrics for measuring
the similarity between sequences: Hamming distance, Manhattan distance, Euclidean
distance and cosine distance.

The Hamming distance [41] is a metric for comparing sequences of equal length. It
measures the similarity between sequences by the number of positions corresponding to
different actions, i.e., number of actions that have different orderings in the sequences.
In terms of the permutation encoded vectors, the Hamming distance δ(xi,xj)h between
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control sequences xi and xj is defined as

δ(xi,xj)h =
Na∑
k=1

uk, uk =

⎧⎨
⎩
1 for Pxi,k �= Pxj,k

0 for Pxi,k = Pxj,k

(4.18)

where Pxi,k and Pxj,k denote the k-th elements in Pxi and Pxj , respectively, which are
the positions of a fixed action (e.g., drilling a specific well Wk ); Na is the number of
all possible actions, which determines the length of the sequences.

The Hamming distance between two sequences is easy (Eq. 4.18) to compute, and
the control sequences with small Hamming distance are highly similar. Among a
set of randomly sampled controls xj, however, very few will have a small Hamming
distance δ(xi,xj)h to a specific control xi. Moreover, a sampled control xj with a large
δ(xi,xj)h may provide useful information for estimating the correction factor α(xi). To
extract more similar control sequences at short distances, the position-based Manhattan
distance, which measures the sum of the absolute differences between positions of
the elements, is preferred over the Hamming distance. The Manhattan distance is the
L1-distance between two vectors defined as

δ(xi,xj)L1
= ‖Pxi −Pxj‖1 =

Na∑
k=1

|Pxi,k − Pxj,k|. (4.19)

In addition to the Manhattan distance (L1 distance metric), the Euclidean and cosine
distances are two standard distance metrics in the vector space. The Euclidean distance
is also known as the L2 norm distance metric,

δ(xi,xj)L2
= ‖Pxi −Pxj‖2 =

√√√√ Na∑
k=1

|Pxi,k − Pxj,k|2, (4.20)

and the cosine distance [87, 61] is a correlation-based distance measure defined as

δ(xi,xj)cos = 1− cos(Pxi ,Pxj)

= 1− Pxi ·Pxj

‖Pxi‖‖Pxj‖

= 1−
∑Na

k=1 Pxi,k · Pxj,k√∑Na

k=1 P
2
xi,k

√∑Na

k=1 P
2
xj,k

.

(4.21)

The choice of an appropriate distance measure to use as a measure of similarity is
problem specific. In explaining the similarity of control sequences, the Manhattan,
Euclidean, and cosine distance metrics are generally superior to the Hamming distance,
which considers only the number of positions at which the corresponding actions are
different. For optimization problems with a fixed set of actions, in which the lengths of
all control sequences are identical, the cosine distance is simply a scaled version of the
Euclidean distance,

‖Pxi −Pxj‖22
2‖Pxi‖22

= 1− cos(Pxi ,Pxj). (4.22)

Consequently, there is no need to consider both the Euclidean and cosine distance
measures. For large applications, the Manhattan distance is preferable to the Euclidean



36 Robust optimization using bias-corrected mean model

distance [1]. For cases with small sets of actions, the performances of the Manhattan
(L1 norm) and Euclidean (L2 norm) distances in measuring the similarity of control
sequences can be similar.

Taper window selection

The distance-based weight (Eq. 4.17) is determined by the taper parameter L and the
distance δ between controls. Hence, the performance of the distance-based localization
for estimating the correction factor (Eq. 4.16) depends not only on the choice of dis-
tance measure, but also on the taper length L, which affects the effective sample size
[57] used for computation of the correction factor. A good distance measure will effec-
tively identify control variables with similar correction factors such that the number of
realizations used for estimation is maximized and the sampling error is reduced.

Suppose thatNe is the number of observed values ofβ; then, a common approximation
of the effective sample size [79, 30] for a weighted estimate of the correction factor
α(xi) at control xi is defined as

neff =

(∑Ne

j=1 ω(xi,xj)
)2

∑Ne

j=1 ω
2(xi,xj)

, (4.23)

where ω(xi,xj) is the weight on the partial correction factor β(xj,mj, m̄) obtained from
a random control xj (Eq. 4.16) and neff is a measure of the equivalent number of equally
weighted samples. If all weights are identical, then the effective sample size is equal to
Ne, and the estimate of the correction factor will be unweighted (Eq. 4.15). If one of
the normalized weights is equal to one and all others are zero, the effective sample size
is 1.

The accuracy of the localized estimate α̂l(xi) is influenced by both the effective
sample size, neff , and the bias resulting from the use of partial correction factors β based
on random control variables with different values of correction factor α. Reducing the
taper length will decrease the bias by including only values from the control variable
with very similar values of the correction factor but will also increase the sampling error
by decreasing the effective sample size. Because the optimal taper length is not known
a priori, we generally apply regularization to reduce the effect of a nonoptimal choice
of taper length.

4.2.2 Regularized localization
As noted above, a smaller taper length will reduce the effective sample size and increase
the sampling error, so that the localized estimate α̂l(xi) obtained with a taper length
that is smaller than the optimal may be far from the actual correction factor α(xi) due
to sampling error resulting from the small number of samples within a small distance
to control xi. Although using a long taper length can avoid this situation, it may result
in an unweighted estimate that is near the average value ᾱ.

One way to avoid inaccurate estimates caused by using small taper parameters is to
improve the estimation accuracy by adding a regularization term based on the average
value and the variance of the correction factor to reduce the sensitivity of the estimates
to the taper length. A regularized estimate αr(xi) is obtained by minimizing objective
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function S with both a local and a global term,

S (αr(xi)) =
neff
σ2β

(
αr(xi)−

∑Ne

j=1 ω(xi,xj)β(xj,mj, m̄)∑Ne

j=1 ω(xi,xj)

)2

+
1

σ2α
(αr(xi)− ᾱ)2 ,

(4.24)

where σ2α and σ2β are the variances of α and β, respectively, and neff is the effective
sample size for the observations of β (Eq. 4.23). The regularized estimate is then
obtained by solving ∇αS = 0,

α̂r(xi) =

(
1 +

σ2β
neffσ2α

)−1(∑Ne

j=1 ω(xi,xj)β(xj,mj, m̄)∑Ne

j=1 ω(xi,xj)
+

σ2β
neffσ2α

ᾱ

)

=

(
1 +

σ2β
neffσ2α

)−1(
α̂l(xi) +

σ2β
neffσ2α

ᾱ

)
.

(4.25)

Note that the regularized objective function is a weighted average of the localized
estimate α̂l(xi) and the mean value of α. When the effective sample size neff is large
compared to the ratio σ2β/σ

2
α, the regularized estimate will be based primarily on the

local samples of β, i.e., α̂r(xi) ≈ α̂l(xi).
By adding a regularization term with an appropriate parameter associated with the

variances σ2α and σ2β and the effective sample size neff , the estimation accuracy resulting
from an inappropriate distance measure or taper length can be improved. Consequently,
compared to the localized estimate α̂l(xi), regularized estimate α̂r is potentially more
accurate than ᾱ for a wider range of taper lengths. When the variance of the correction
factor is known, regularized localization (Eq. 4.25) is preferred over the pure distance-
based localization (Eq. 4.16).

4.2.3 Covariance-based optimal weights
In this work, we define the correction factor α(xi) as the linear combination of partial
correction factors β(xi,mj, m̄) at the corresponding control xi (Eq. 4.13). An estimate
of α(xi) is calculated based on a weighted linear combination of β(xj,mj, m̄) obtained
from a set of random controls (Eq. 4.16). If the covariance of β is known, the optimal
weights assigned to random observations β can be estimated.

Suppose that α(x0) at a fixed control x0 must be estimated. In vector notation, α(x0)
is written as,

α(x0) =
1

N

N∑
j=1

β0j =
1

N
1Tb0, (4.26)

where β0j is the partial correction factor β(x0,mj, m̄) at the fixed control x0 of an
individual realization mj sampled from the probability distribution of model parameters
(Eq. 4.12) and vector b0 denotes an ensemble of β0j obtained at the estimation point
from N individual realizations,

b0 =
[
β01 β02 · · · β0N

]T
.
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The weighted linear estimate of α(x0) is defined as

α̂(x0) =

∑N
j=1 ω(x0,xj)β(xj,mj, m̄)∑N

j=1 ω(x0,xj)
= wTb, (4.27)

where the elements in vector b are the observed values of β from random controls and
realizations,

b =
[
β11 β22 · · · βNN

]T
.

The j-th element in vector b is an observation of β obtained at a random control xj,
i.e., β(xj,mj, m̄). Note that Eq. 4.27 is identical to Eq. 4.16, although the notation is
different.

The optimal weights for estimating α(x0) from a set of random observations β can
be obtained by minimizing the expected variance of the estimate error, constrained to
the unbiasedness condition (i.e., the expected error in the estimate α̂(x0) is 0),

min
w

V ar[α(x0)− α̂(x0)]

s.t. E[α(x0)− α̂(x0)] = 0,
(4.28)

where the variance of the expected error can be expressed as

V ar[α(x0)− α̂(x0)] = E

[(
1

N
1Tb0 −wTb

)2
]
, (4.29)

and an unbiased estimate requires

wT1 = 1. (4.30)

To compute the optimal weights, we define a Lagrangian function according to
Eqs. 4.28-4.30,

S(w, λ) = E

[(
1

N
1Tb0 −wTb

)2
]
− 2λ

(
wT1− 1

)
, (4.31)

which can be minimized to solve for w,

∇w,λS = 0. (4.32)

Straightforward computation shows that

∇λS = 1Tw − 1, (4.33)

and

∇wS = 2 cov(b,b)w − 2

N
cov(b,b0)1− 2λ1 (4.34)

where cov(b,b) is the covariance of the variables β in b and cov(b,b0) is the covariance
between the observed values of β in b and b0.

Then the systems of linear equations for ∇w,λS = 0 can be written in matrix form[
cov(b,b) −1
−1T 0

] [
w
λ

]
=

[
1
N cov(b,b0)1

−1

]
, (4.35)

which we can solve for w. However, information about the covariance of β is required
to obtain cov(b,b) and cov(b,b0) (see Appendices in Paper B).
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Efficiency of RO with bias-correction methods

To summarize, using the bias-corrected mean model to approximate the expected value
requires two function evaluations: one evaluation using the mean reservoir model
m̄ to obtain an initial approximate value, J(x, m̄), and a second evaluation using
information from distinct controls and individual realizations to estimate a multiplicative
bias correction factor α̂(x),

E[J(x,m)] ≈ α̂(x)J(x, m̄). (4.36)

α̂(x) is an estimate of the correction factor between the ensemble average value
J̄(x,m) and the objective-function value from the mean model J(x, m̄) (Eq. 4.10). This
estimate can be obtained using a set of observed partial correction factors β at random
controls applied to individual realizations (Eq. 4.12),

α̂(x) = G(β1, β2, · · · , βNx
,x). (4.37)

where G is a function (e.g., Eqs. 4.16, 4.25 or 4.35) for estimating α̂(x), depending on
the available information of the correction factor (e.g., distance measure, variances of
α and β); Nx is the number of distinct controls applied to obtain the observations β.
For Ne reservoir model realizations, we can sample Ne distinct controls such that each
realization can provide one observed value of β. In this case, the number of observed
values of β is the same as the ensemble size, i.e., Nx = Ne. If the variability in β is
small, we can use a smaller number of observations β to estimate the bias correction
factor, i.e., Nx < Ne.

RO performed using such bias-correction methods has a major advantage over SAA
that is obtained by averaging over an ensemble of reservoir models: only the simulations
of the mean reservoir model are required during the optimization process. The initial
sampling of control and model realizations is used to create an ensemble of partial
correction factors β, which allows for the estimation of the bias correction factor α at
different controls (Eq. 4.37). When evaluating specific controls during the RO phase,
we only require additional simulations of the controls applied to the mean model to
obtain the initial estimates of the expected values. The bias is then corrected by
applying the corresponding correction factor estimated based on the observations of
partial corrections.

Figure 4.1 shows a flowchart for the application of MLHS-SR with the bias-corrected
mean model to solve general reservoir optimization problems with discrete-control
variables (e.g., drilling-order of wells) when uncertainty is characterized by an ensemble
of realizations. To estimate the bias correction factor α for different control sequences,
we first sample Ne distinct controls and apply them to individual model realizations
and the mean model to obtain an ensemble of observations β. The collection of Ne

observed values of β requires 2 × Ne simulations. After the initial ensemble of the
observations is created from distinct controls and model realizations, estimation of the
bias correction factor α for specific controls does not require additional simulations.
Hence, at each iteration, we need to perform only one additional simulation in the mean
model to evaluate the expected value using the bias-correction method, which is much
less effort than that required in SAA. Suppose that the optimization process requires
Niter iterations (i.e., expected values of Niter different controls need to be evaluated to
compute the optimal solution). Then, the total number of simulations required in RO
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with the bias-correction methodology is Ntot = 2Ne + Niter, in which 2Ne simulations
are performed to obtain Ne observed values of β and Niter simulations are performed in
the mean reservoir model to obtain the initial approximations of the expected values of
Niter different controls. If the expected values are evaluated using SAA, the cost in RO
would be Ntot = Ne × Niter, which is much more expensive and will increase linearly
with the ensemble size Ne and the number of iterations Niter.

The use of the bias-corrected mean model allows for the application of fairly general
optimization methods. If the variance and the covariance of the bias correction factor are
unknown, distance-based localization (Eq. 4.16) is the preferred method for estimating
the bias at specific controls. However, an appropriate distance metric to measure the
similarity of controls, which is specific to the problem at hand, is required. For control
variables with a set of discrete actions (e.g., drilling-order problem), the similarity
between control sequences can be measured using the position-based distance (e.g.,
Manhattan distance). In Paper B, we investigated the estimation accuracy of the bias-
correction methodology and the performance of RO with expected values estimated
using different approaches in two applications: flow optimization in a one-dimensional
model and the drilling-order problem in a synthetic field model.
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Figure 4.1: Flowchart of using MLHS-SR with bias-corrected mean model [103]



Chapter 5

Decision-making accounting for future learn-
ing

Thus far, to perform robust optimization efficiently, we have developed online learned
heuristics to search for an optimal sequential solution and bias-correction methods to
address uncertainty in the reservoir characteristics. However, we have not yet considered
the effect of future information in making optimal decisions. As noted in Chapter 2,
the previous and current decisions affect both the possibility of the future choices
of actions and the possibility of future uncertainty reduction. Consequently, when
choosing actions, we should also take into account the opportunities to improve the
optimal strategy resulting from future uncertainty reduction (i.e., the possibility of
future learning through actions), rather than that based solely on the maximization of
expected NPV over the current assessment of uncertainty. In this chapter, we present
a flexible workflow built on the key-feature-based VOI analysis for efficient optimal
decision-making while accounting for the possibility of future learning. The first
section of Chapter 5 describes the optimal strategy obtained while considering future
uncertainty reduction resulting from the current decision step. In Sections 5.2 and 5.3,
we discuss how to make the computation of VOI analysis manageable by identifying key
actions and key observations for optimization problems. The efficiency of the method
results from the focus on the use of key observations to reduce the uncertainties with
large influences on the optimal decisions (i.e., key uncertainties reduction), rather than
using all observations to reduce all uncertainties.

5.1 Planning for future learning

In Section 2.2, we introduced the standard decision analytic approach to computing
the optimal decision a∗

fs

j+1 (Eqs. 2.5-2.6) that considers the effects of all future possi-
ble observations from remaining actions. This method is infeasible for realistic field
development problems, however, since it requires the consideration of all possible com-
binations of the sequences of remaining actions with distinct observations. To obtain
an optimal decision while considering future possibilities for learning through actions,
a more feasible way is to consider the effects of future observations resulting from only
the current decision step instead of all remaining decision stages.

Using the notation in Eqs. 2.4-2.5, after taking a set of j discrete actions, the optimal
next action, that considers the possibility of future learning through the current decision



42 Decision-making accounting for future learning

step, can be expressed as

a∗
fl

j+1 = argmax
aj+1∈Aj+1(hj)

∑
o∈Oaj+1

p(o|hj , aj+1) EV
∗ (hj , aj+1, u

o
j+1

)
, (5.1)

where p(o|hj , aj+1) represents the marginal probability of the observations obtained
from the decision alternative aj+1 and EV∗

(
hj , aj+1, u

o
j+1

)
is the maximum achievable

expected NPV constrained to previous actions in history hj and the current decision
aj+1. This expectation is evaluated over the updated uncertainty state uoj+1, including
the future possible observation o from aj+1. Note that EV∗

(
hj , aj+1, u

o
j+1

)
is different

from the expected valueQ∗
Nw−(j+1)(hj+1) that is computed through a backward induction

procedure while considering all possible future information from all remaining actions.
Although a∗

fl

j+1 (Eq. 5.1) might not be identical to a∗
fs

j+1, which considers the possibil-
ities of future learning through all remaining actions (Eq. 2.5), the cost of computing
a∗

fl

j+1 is much lower than that of computing a∗
fs

j+1. In general, the information obtained
from the later decision stages has a smaller impact on improving the optimal strategy.
We expect that simplifying the fully structured decision tree by considering the effects
of future information resulting from only the current decision step would not incur much
performance loss, i.e., a∗flj+1 is expected to be an approximation solution near the op-
timal decision a∗

fs

j+1. Instead of focusing on solving Eqs. 2.5-2.6 to compute a∗
fs

j+1, we
focus on how to efficiently improve the optimal decision a∗j+1 that is obtained without
considering any future information (Eq. 2.4) to a∗

fl

j+1 that considers the effect of future
information on the optimal strategy.

5.1.1 Simplified VOI analysis

In the terminology of VOI, a∗flj+1 is the optimal decision determined by the expected
value with additional information (EVWI) through one decision point [50],

a∗
fl

j+1 = argmax
aj+1∈Aj+1(hj)

EVWIaj+1 ,

EVWIaj+1 =
∑

o∈Oaj+1

p(o|hj , aj+1) EV
∗ (hj , aj+1, u

o
j+1

)
. (5.2)

while the optimal decision a∗j+1 (Eq. 2.4) ignoring the possibility of future learning is
the one obtained based on the expected value without additional information (EVWOI),

a∗j+1 = argmax
aj+1∈Aj+1(hj)

EVWOIaj+1 , EVWOIaj+1 = EV∗ (hj , aj+1, uj) . (5.3)

Assuming that there is no explicit cost for obtaining information from aj+1 ∈ Aj+1(hj),
a∗

fl

j+1 is then generally a more robust decision than a∗j+1 because the consequences of
the selected action on the future uncertainty state are considered before committing to
a decision.

As a simple illustration, suppose that we need to determine the optimal next well from
two remaining wells Wa and Wb. Each well provides only two possible observations
of facies of1 and of2 . Figures 5.1 and 5.2 show the VOI decision trees for choosing
the optimal next well with and without considering future learning possibilities through
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Figure 5.1: Simplified VOI analysis in consideration of the future information obtained from current decision alternatives
[104]

Figure 5.2: A simple example of the decision tree ignoring future learning possibilities [104]

current decision alternatives. As illustrated in Fig 5.2, drilling Wb as the next well will
achieve the maximum expected NPV over current uncertainties. Taking into account the
possibility of future uncertainty reduction (Fig. 5.1), however, drilling Wa as the next
well turns out to be a more robust decision (EVWIWa

> EVWIWb
). As this illustration

shows, optimization based on only the current assessment of uncertainty might lead
to a sub-optimal solution, while taking into account the effects of future information
before committing to a decision allows improvement in the optimal strategy. Compared
to the use of the standard VOI analysis with extensive form (Fig. 2.3), this simplified
VOI analysis does not require a fully structured decision tree with a backward induction
procedure to make optimal decisions, considering the future learning possibilities.
However, directly solving Eq. 5.2 is still prohibitively expensive if all possible outcomes
of future observations in terms of each decision alternative have to be taken into account
in the VOI analysis.

Suppose that a set of Ne model realizations is used to represent uncertainty in
reservoir properties and that there are Nd possible decision alternatives at the current
stage. Each ensemble member at a given decision is capable of generating a specific set
of simulated observations (e.g., production/injection data over a certain period), which
can be used to update the reservoir model through history matching or data assimilation
before choosing the next action. Taking into account all possible future observations
that can be obtained from each pair of model realization and decision, we have to
update the reservoir model and perform optimization Ne × Nd times to identify the
optimal decision a∗

fl

j+1 with the highest EVWI (Eq. 5.2). This would be computationally
intractable in most reservoir applications for which the costs of history matching and
optimization are large. Therefore, we need to design a more practical way to obtain an
optimal decision that accounts for the possibility of future learning and yet make the
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Figure 5.3: Simplified VOI decision tree with future information only from key action [104]

computation manageable.

5.2 Learning through key action

In Eq. 5.2, the effects of future information from all currently available decision alter-
natives are taken into account before committing to a decision. Consequently, the VOI
analysis requires the evaluation of EVWIaj+1 of each possible action aj+1 ∈ Aj+1(hj).
However, some decisions may result in little information or information that is irrel-
evant to the optimization of the objective, so that the optimal decision obtained with
additional information may not be changed, i.e., the optimal solutions for maximizing
the expected NPV over the uncertainty states uoj+1 and uj are equivalent. In this case,
accounting for the future information from these actions will only increase the cost of
making decisions, without improving the optimal strategy. The ability to account for
the possibility of future learning through key actions is more important for evaluating
decision alternatives than considering all possible decision alternatives.

5.2.1 VOI analysis through key action
In VOI analysis, the optimal decision is obtained by ranking the importance of the
decision alternatives based on EVWI (i.e., assuming no explicit cost for collecting
information). In this case, simplifying the VOI analysis to the decision alternatives with
high expected values allows a reduction in the cost of making optimal decisions without
a loss of solution quality. However, it is infeasible to identify the promising decisions
by comparing the actual expected values of all possible decision alternatives, which
is similar to performing a complete VOI analysis (Eq. 5.2). To address this issue, we
developed a simplified VOI analysis through key actions that would provide valuable
information for exploring key reservoir features of the optimization problem.

Instead of considering the possibilities of future learning through all remaining
actions, we simplify the VOI decision tree to only two decision alternatives, i.e., a∗j+1

and akeyj+1, and only take into account the effect of future information from akeyj+1 (Fig. 5.3).
a∗j+1 is the optimal decision that will achieve the maximum expected NPV over the
current uncertainty state, while akeyj+1 is the key action that would provide important
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information for reducing key uncertainties in the optimization problem. Although
information obtained from akeyj+1 is most likely to improve future decisions, taking akeyj+1

rather than a∗j+1 is not always worthwhile even if the information is obtained without an
explicit cost. In some cases, taking akeyj+1 as the next decision could severely constrain the
maximum achievable value of complete strategies, so that the maximized value may be
much lower than the actual optimality. In this situation, the additional value created by
improving future decisions using information from akeyj+1 may not be able to compensate
for the cost caused by a sub-optimal solution constrained to akeyj+1 chosen as the next
decision.

To determine whether it is preferable to take action akeyj+1 over a∗j+1, we need to
evaluate an implicit net expected value of information (EVOI) obtained from changing
decision a∗j+1 to akey,

EVOIa∗
j+1→akey

j+1
= EVWIakey

j+1
− EV∗(hj , a∗j+1, uj), (5.4)

where EV∗(hj , a∗j+1, uj) is the expected value from the optimal strategy over the current
uncertainty state without any future information (Eq. 5.3), and EVWIakey

j+1
is the expected

value with additional information (Eq. 5.2) from akeyj+1,

EVWIakey
j+1

=
∑

o∈O
a
key
j+1

p(o|hj , akeyj+1)× EV∗(hj , akeyj+1, u
o
j+1), (5.5)

where Oakey
j+1

is the set of all possible distinct observations from akey; p(o|hj , akeyj+1) is the
marginal probability of specific observations from akeyj+1; and EV∗(hj , akeyj+1, u

oi
j+1) is the

expected value from the optimal strategy for uncertainty state uoj+1 updated based on
the information from akeyj+1.

If EVOIa∗
j+1→akey > 0, it is worth taking akey to acquire the information that would

help improve future decisions and vice versa. Note that EVOIa∗
j+1

is associated with
a change in decisions. This expected value is different from the standard definition of
EVOI for akey, which is the difference in the expected values with and without additional
information from akey,

EVOIakey
j+1

= EVWIakey
j+1

− EVWOIakey
j+1

= EVWIakey
j+1

− EV∗(hj , akeyj+1, uj). (5.6)

akey is expected to provide useful information for making better future decisions, so
that EVOIakey

j+1
will be a positive value. However, EVOIa∗

j+1→akey can be negative since
it involves an indirect expected cost of information (ECOI) if taking akey results in a
sub-optimal solution for the current assessment of uncertainty,

ECOIa∗
j+1→akey

j+1
= EV∗(hj , a∗j+1, uj)− EV∗(hj , akeyj+1, uj). (5.7)

where EV∗(hj , akey, uj) is the expected value from the optimal strategy constrained to
akey chosen as the next action without considering information from akey (i.e., uncer-
tainty at state uj is re-estimated only using observations in history hj).

EVOIa∗
j+1→akey

j+1
from changing the decision a∗j+1 to akeyj+1 (Eq. 5.4) can be rewritten as

EVOIa∗
j+1→akey

j+1
=
(
EVWI(akeyj+1)− EV∗(hj , akeyj+1, uj)

)
−
(
EV∗(hj , a∗j+1, uj)− EV∗(hj , akeyj+1, uj)

)
,

(5.8)
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Thus, EVOIa∗
j+1→akey

j+1
(Eq. 5.8) is actually an implicit net EVOIakey

j+1
(Eq. 5.6) accounting

for the hidden cost ECOIa∗
j+1→akey

j+1
(Eq. 5.7),

EVOIa∗
j+1→akey

j+1
= EVOIakey

j+1
− ECOIa∗

j+1→akey
j+1

. (5.9)

If akeyj+1 is identical to a∗j+1, there is no hidden cost, i.e., ECOIakey
j+1→akey

j+1
= 0. In general,

the key action akeyj+1 may not be the initial decision a∗j+1 obtained from the optimal
strategy for current assessment of uncertainty, especially when the decision space is
large. Due to the hidden cost, we need to assess EVOIa∗

j+1→akey
j+1

before committing to a
decision.

5.2.2 Key action identification

To improve the optimal decision a∗j+1 by accounting for future learning, akeyj+1 is the
decision alternative identified from the current action space aj+1 ∈ Aj+1(hj) that is
expected to result in a highEVOIa∗

j+1→akey
j+1

. As shown in Eq. 5.4, the key action is also the
decision alternative with a highEVWIaj+1 . Hence, performing the VOI analysis with key
actions is similar to a simplified VOI analysis with the promising decision alternatives
that are likely to result in high EVWI. If akeyj+1 has the maximum EVOIa∗

j+1→akey
j+1

, the
key action akeyj+1 would be identical to the optimal decision a∗

fl

j+1 obtained accounting for
the possibilities of future learning through all remaining actions (Eq. 5.2). In that case,
simplifying the VOI decision tree to akeyj+1 would not incur a performance loss compared
to directly solving Eq. 5.2.

As mentioned previously, it would be computationally intractable to identify the
promising decision alternatives by comparing the actual EVWIaj+1 of all possible deci-
sions aj+1 ∈ Aj+1(hj). However, it is possible to identify key actions without computing
the actualEVOIa∗

j+1→akey
j+1

of all remaining actions. According to Eq. 5.9, akeyj+1 with a high
EVOIa∗

j+1→akey
j+1

is the decision alternative that is expected to result in a large EVOIakey
j+1

but a small ECOIa∗
j+1→akey

j+1
. The standard EVOIakey

j+1
(Eq. 5.6) depends on whether akeyj+1

is able to provide useful information for making better future decisions. If taking akeyj+1

as the next action results in obtaining important information to reduce uncertainty in
the key reservoir features for optimization problems, EVOIakey

j+1
is expected to be a high

value due to the potentially significant improvement in the optimal strategy. The hidden
cost ECOIa∗

j+1→akey
j+1

depends on whether the optimal strategies constrained to akeyj+1 can
achieve a high expected NPV for the current assessment of uncertainty. This indirect
cost of information caused by taking akeyj+1 that appears to be a sub-optimal solution can
be evaluated when computing the optimal decision a∗j+1 over the current uncertainty
state, and without incurring additional costs when a∗j+1 is obtained using learned heuris-
tic search, which allows for the estimation of the maximum achievable value constrained
to specific past decisions without finding the actual optimal solution. Therefore, by con-
sidering the possibility of obtaining valuable information for reducing key uncertainties
and the possibility of achieving high expected NPV for the current uncertainty state,
we can efficiently identify the akeyj+1 that is likely to result in a high EVOIa∗

j+1→akey
j+1

, i.e.,
decision alternative aj+1 ∈ Aj+1(hj) with a high EVWIaj+1 .
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In the simplified VOI analysis (Fig. 5.3) based on EVOIa∗
j+1→akey

j+1
, the effect of future

information from the initial optimal decision a∗j+1 is not taken into account for efficient
optimal decision-making. In some cases, a∗j+1 may also be able to provide important
observations for reducing key uncertainties. To obtain a more robust decision, we can
take into account the possibilities of future learning through both akeyj+1 and a∗j+1,

â∗
fl

j+1 = arg max
a∈[a∗

j+1,a
key
j+1]

EVWIa = arg max
a∈[a∗

j+1,a
key
j+1]

∑
o∈Oa

p(o|hj , a)× EV∗(hj , a, uoj+1).

(5.10)
However, this approach will increase the computational cost of making a decision, since
the evaluation of EVWI for each action requires re-optimization and re-estimation of
uncertainties multiple times to account for various outcomes of observations.

5.3 Learning through key information

Although the number of decision alternatives that need to be evaluated in the VOI
analysis is reduced by identifying the key action that will provide important informa-
tion for making better future decisions, directly solving Eq. 5.4 is likely to be im-
practical when all distinct observations are accounted for, i.e., updating the reservoir
model and performing re-optimization Ne times to obtain the maximum expected val-
ues EV∗(hj , akeyj+1, u

o
j+1) from all posterior ensembles for the computation of EVWIakey

j+1
.

In this section, we discuss how to make the computation manageable by identifying key
information for improving future decisions, i.e., observations that are most helpful in
exploring key reservoir features for optimization problems.

5.3.1 VOI analysis through key information
As described previously, the additional value with information is achieved by the reduc-
tion in uncertainties that affect the optimal decisions. Instead of using all observations
to reduce all uncertainties, we can approximately compute EVWIakey

j+1
by using key ob-

servations to reduce key uncertainties of the optimization problem. We expect that such
an approximation can be used to indicate the importance of akeyj+1 and would not incur
a performance loss in the VOI framework. The VOI analysis is performed by ranking
the importance of decision alternatives based on the expected values, while EVWIakey

j+1

deals with the information content of hypothetical data. When actual observations are
obtained from an action that has been executed, an actual history match is performed
with all observations to update the entire reservoir model.

The action akeyj+1 generally could provide a large number of individual observations
from different information sources. The reduction in key uncertainties from some obser-
vations might be very small. The computational penalty of including these nonessential
observations in updating the reservoir model, however, can be large. To efficiently
account for the effect of future information on the optimal strategy, we use the key ob-
servations to reduce key uncertainties in the optimization problem, rather than using all
observations to reduce all uncertainties. Thus, there is no need for full history match-
ing to update the entire reservoir model. To ensure that the computation of EVWIakey

j+1

is manageable, first, we divide the entire observation space Rn
b associated with the key

observation subset into a limited number of disjoint subspaces (e.g., Rn
b = Ωb

1 ∪ Ωb
2 and
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Ωb
1 ∩Ωb

2 = ∅). Second, we update the reservoir model for each subspace instead of each
possible outcome of future observations that might be obtained from akeyj+1.

Suppose that observations located in the same subspace have almost the same pre-
diction precision to reduce key uncertainties. The posterior probability distributions of
key uncertainties conditioned on observations in the same subspace would be similar.
In this case, there is no need to compute Ne posterior ensembles considering all distinct
sets of observations from individual realizations. EVWIakey

j+1
could be efficiently evalu-

ated by performing the optimization process only in a few posterior ensembles obtained
based on the observation subspaces Ωb

k,

EVWIakey
j+1

=

NΩb∑
k=1

p(ob ∈ Ωb
k|hj , akeyj+1)× EV∗(hj , akeyj+1, u

Ωb
k

j+1), (5.11)

where NΩb is the number of observation subspaces, which is much smaller than the
ensemble size (NΩb � Ne), and uΩ

b
k

j+1 is the updated uncertainty state for observed
values ob ∈ Ωb

k.
To ensure the usefulness of key observations and their subspaces in reducing key

uncertainties, the entire key observation space is divided such that each subspace Ωb
k

has a high probability P (Ωb
k|Θm

k ) for indicating a specific subregion Θm
k of key uncer-

tainties, while the probability P (Ωb
k|Θm

i ) for key uncertainties located in other subre-
gions Θm

i is low. Suppose that distribution of key uncertainties is divided into NΩb

disjoint subregions Θm = [Θm
1 ,Θm

2 , . . . ,Θm
NΩb

]. The best observation space division
Ωb = [Ωb

1,Ω
b
2, . . . ,Ω

b
NΩb

] can be described as

Ωb = argmax
Ωb

NΩb∑
k=1

⎡
⎢⎢⎣P (Ωb

k|Θm
k )−

NΩb∑
i=1
i �=k

P (Ωb
k|Θm

i )

⎤
⎥⎥⎦ . (5.12)

The division ofΘm can then be optimized based on the performance of the corresponding
Ωb,

Θm = argmax
Θm

NΩb∑
k=1

P (Ωb
k|Θm

k ), (5.13)

which is a simplification of Eq. 5.12 since
∑NΩb

k=1 P (Ωb
k|Θm

i ) = 1 at a given key uncer-
tainties subregion Θm

i . If key uncertainties have a limited number of categories, we can
set each category to one specific subregion Θm

i .
When the prior probability P (Θm

i ) of each subregion Θm
i and the information’s

reliability P (Ωb
k|Θm

i ) are known, the posterior probability P (Θm
i |Ωb

k) can be computed
using Bayes’ theorem,

P (Θm
i |Ωb

k) =
P (Ωb

k|Θm
i )× P (Θm

i )∑NΩb

i=1 P (Ωb
k|Θm

i )× P (Θm
i )

, (5.14)

where
∑NΩb

i=1 P (Ωb
k|Θm

i )×P (Θm
i ) is the marginal probability of observing ob ∈ Ωb

k in the
prior ensemble.
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5.3.2 Key information identification
To efficiently identify the key observations and the best space division, we can build
supervised-learning models that are able to capture the mapping between observations
(inputs) and key uncertainties (outputs). This technique enables automatic detection of
the optimal combination of observations and evaluation of the reliability of information
P (Ωb

k|Θm
k ) for each subspace. Hence, the posterior probability of key uncertainties can

be computed directly based on Bayes’ theorem (Eq. 5.14), avoiding the necessity of
expensive data assimilation algorithms to update the reservoir model.

The use of supervised-learning algorithms requires a dataset that includes all possi-
ble observations and the corresponding distribution of key uncertainties, which can be
obtained from individual realizations applied with the key action. This original dataset
may contain hundreds to thousands of observations. Directly applying the learning al-
gorithms to such a large number of input variables would make the model complex and
may lead to overfitting due to the curse of dimensionality. Moreover, the original dataset
may contain a large amount of nonessential observations for reducing key uncertainties.
To avoid these issues, first, we can apply filter methods [64] to quickly remove redun-
dant and irrelevant observations by ranking their importance based on some relevance
measures (e.g., mRMR [71], ROC [44]), obtaining a subset of observations that are po-
tentially useful for the reduction in key uncertainties. Second, the wrapper methods
[60] involved in supervised-learning models can be applied to identify the best combi-
nation of observations that yields the optimal results for learning algorithms, i.e., key
observation subset with high prediction accuracy for exploring key reservoir features.

Figure 5.4 shows the process of selecting key observations from the original dataset
using filter and wrapper methods with an inductive learning model, noting that the input
variables (observations) are referred as “features” in supervised-learning algorithms.
To avoid overfitting in learning models, we split the original dataset into a training set
to build the models and a test set to evaluate the learning models’ performance. For
the cases with limited data samples, resampling methods (e.g., cross-validation) can be
applied to generate multiple training and test sets. If necessary, various learning models
can be built simultaneously to identify the combination of observations with the best
performance. This approach does not incur additional costs since all models are built
on the same original dataset.

Robust decision-making through key-feature-based VOI analysis

Figure 5.5 shows an example of VOI analysis performed through the key action (Eq. 5.4)
and key information (Eq. 5.11) that are identified based on the key reservoir features
for the optimization problems. In this case, the effects of important future observations
from akeyj+1 on the reduction in key uncertainties are considered before committing to a
decision, while the entire key observation space is divided into four disjoint subspaces
(i.e., NΩb = 4). It is then only necessary to update the reservoir model and perform
re-optimization four times for the evaluation of EVWIakey

j+1
. We refer to such a simplified

VOI decision tree as key-feature-based VOI analysis.
Suppose that key observations and best space division are obtained using supervised-

learning algorithms and that the learning models are built using the dataset obtained
from a set of Nsl individual realizations, i.e., the cost of updating the reservoir model
for all observation subspaces is Nsl simulations. Considering the cost for obtaining the
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Figure 5.4: Key observation identification process based on filter and wrapper methods [104]

Figure 5.5: Key-feature-based VOI analysis conducted by identifying key uncertainties for optimization problems and key
observations to reduce key uncertainties [104]
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maximum valueEV∗ constrained to past decisions, onlyNsl+Nopt×(N b
Ω+1) simulations

are required to perform the key-feature-based VOI analysis, where Nopt is the cost of
a single robust optimization. This VOI framework requires many fewer simulations
than those required to directly solve Eq. 5.1 with an exhaustive history matching and
optimization procedure, which requires Nd ×Ne × (Nhm +Nopt) simulations to obtain
the optimal decision accounting for all possible values of data that can be obtained from
remaining actions, where Nhm is the cost of history matching and Nd is the number
of possible decision alternatives. Although simplifying the VOI analysis through key
action and key information might not result in the same optimal solution as the complete
VOI analysis, it is a practical way to compute a near-optimal decision in consideration
of the future possibilities for learning through actions. In Paper C, we investigated the
performance of the key-feature-based VOI analysis applied with supervised-learning
algorithms by an application of the drilling-order problem in a synthetic model, for
which the drilling sequence of wells is an important contributor to the reservoir’s
profitability and for which the optimal solution changes significantly with key reservoir
features.

The methodology can be extended to general sequential decision-making problems
under uncertainty in consideration of the effect of future information. Figure 5.6 il-
lustrates the workflow built on the key-feature-based VOI analysis to make optimal
decisions efficiently while accounting for the possibilities for future learning through
actions. By identifying key uncertainties for the optimization problems, we can iden-
tify the decisions that would provide the most useful information for improving future
decisions. As mentioned previously, the information is obtained at the cost of making a
decision to proceed, so that there is an indirect cost of information when taking action
leads to a sub-optimal solution. Hence, to identify the key information-gathering ac-
tions with potentially small hidden cost of information caused by sub-optimal solutions,
we need to consider both the possibility of obtaining valuable information for reducing
key uncertainties and the possibility of achieving high expected value over the current
uncertainty state. To avoid the cost of formal history matching, we use key observations
to reduce key uncertainties, rather than using all observations to reduce all uncertainties.
The key observations can be efficiently identified using supervised-learning algorithms,
which allows automatic detection of the optimal observation subset for reducing key
uncertainties and the estimation of the information’s reliability of each observation sub-
space. Then, the posterior probability distortions of key uncertainties can be computed
directly using Bayes’ rule instead of using expensive data assimilation algorithms.

In this workflow, we only take into account the effect of future information from the
key action. To determine whether it is worth taking the key action to acquire useful
information for improving future decisions, we need to assess an implicit net EVOI
associated with changing the initial optimal action over the current uncertainty state to
the key action (Eq. 5.4). In some cases, the initial optimal decision may also be able
to provide useful information for reducing key uncertainties, i.e, a possible key action.
To obtain a robust decision, it may be necessary to consider the possibility of future
learning through both the initial optimal action and alternative key actions identified
from the remaining decision alternatives. The optimal action obtained from the VOI
analysis is then the one with the highest EVWI (Eq. 5.10).
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Figure 5.6: Decision-making accounting for the future learning possibilities through key action and key information for
optimization problems [104]



Chapter 6

Summary of papers and outlook

In the previous chapters, we introduced new methodologies to address three main issues
in field development optimization, which have been discussed in Sections 1.1 and 1.2.
Our solution methods included learned heuristic search, bias-correction of predictions
from the mean model, and key-feature-based VOI analysis for robust decision-making
accounting for future learning. Combining these methods, we can efficiently solve
sequential field development tasks while considering both the effect of geological un-
certainty and the opportunity to improve the optimal strategy resulting from future
uncertainty reduction. In last Chapter 6, we provide a brief summary of the articles
included in Part II, and present the deficiencies and potential improvements for further
research.

6.1 Summary of the papers

Paper A

Title: Efficient Optimization of Well-Drilling Sequence with Learned Heuristics
Authors: Lingya Wang and Dean S. Oliver
Journal: SPE Journal (Published)
DOI: 10.2118/195640-PA

Paper A presented a non-parametric online learning methodology for efficiently
searching for an optimal or near-optimal sequential solution. We described the op-
timization problem with a discrete set of actions as finding the best path in a direct
tree search and investigated the performance of various heuristic search methods via
an application of the drilling-order problem for fixed well locations and deterministic
geology. A crude heuristic in which all remaining wells are assumed to be drilled simul-
taneously at the next step is used to initially estimate the maximum NPV constrained
to previous wells. Results show that directly using this approximation in the A* algo-
rithm will lead to an exhaustive search caused by a large estimated value, although it
is guaranteed to find the true optimal solution when the actual maximum NPV is al-
ways overestimated. By adding a small weighting parameter (ω < 1) to the heuristic
value, a sub-optimal solution can be found quickly. However, experiments of weighted
A* search show that an appropriate weighing parameter that can speed up the search
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progress without sacrificing the estimation accuracy or the solution quality might not
exist for some applications.

In contrast, the online learning techniques designed based on the observation from
previous decision steps have proved to be effective in improving the accuracy of the
estimated value and accelerating the search process, thereby efficiently obtaining a
solution with high value. Moreover, the use of space reduction techniques allows to
find a solution with the same quality faster. For the case with 8 wells, which has 40320
(8!) possible drilling schedules, it was only necessary to perform 22 simulations to
obtain an optimized drilling sequence in a deterministic setting. The average error
in the estimated values is reduced from 5.57% to 0.19% after using online-learning
mechanisms. The obtained solution is then very likely to have a high NPV and be near
the true optimal solution.

Paper B

Title: Fast Robust Optimization Using Bias Correction Applied to the Mean
Model

Authors: Lingya Wang and Dean S. Oliver
Journal: Computational Geosciences (Published)
DOI: 10.1007/s10596-020-10017-y

In Paper B, the effect of geological uncertainty is taken into account for computing
a robust optimal solution, with a goal to maximizing the expectation of an objective
function. Instead of using sample averaging to approximate the expected value, which
requires many expensive simulations, we developed bias-correction methods applied
to the mean model. The key point of this approach is that information from distinct
controls and model realizations can be used to correct the bias in the value obtained from
the mean model, so that only simulations of the mean model are required during the
optimization process. The effectiveness of the bias-corrected mean model is illustrated
by two applications: flow optimization in a one-dimensional model and the drilling-
order problem in a synthetic field model.

The problem in the first example is small enough that we can evaluate the Taylor
series approximation of the expected value with a higher-order term. The results show
that there is clearly a large bias in both linear and quadratic Taylor approximations,
while the bias-correction approach gives better results, and the improvement is more
apparent at a larger ensemble size. The second example extends the study from Paper
A by considering geological uncertainty in the drilling-order problem. The estimation
error of the expected NPV from the mean model is reduced from -9% to 0.56% after
using the bias-correction methods. In the case with an ensemble of 100 realizations,
learned heuristic search applied with the bias-corrected mean model requires only 246
simulations to compute the RO drilling sequence of 8 wells. Optimization results
from both examples show that the RO solutions obtained using the bias-corrected mean
model and the sample average approximation are of similar quality and are superior
to the deterministic solutions for individual realizations and the mean reservoir model
(i.e., linear Taylor approximation).
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Paper C

Title: Improving Sequential Decisions – Efficiently Accounting for Future Learn-
ing

Authors: Lingya Wang and Dean S. Oliver
Journal: Journal of Petroleum Science and Engineering (Published)
DOI: 10.1016/j.petrol.2021.108770

Using the techniques presented in Papers A and B, we establish a framework for
efficient optimal decision-making over the current assessment of uncertainty. To act
optimally, we should also take into account the effect of future information before
committing to a decision, i.e., the opportunity to improve the optimal strategy resulting
from future uncertainty reduction. In Paper C, we developed a key-feature-based VOI
analysis to efficiently account for the possibility of future learning through actions.
This approach is a simplified VOI analysis obtained by identifying key actions and key
observations for the optimization problem, i.e., focusing on the use of important future
information to reduce the uncertainties with large influences on the optimal decisions,
rather than using all observations to reduce all uncertainties.

The methodology is illustrated by the application of the drilling-order problem in a
synthetic field model, for which the drilling sequence of wells is an important con-
tributor to the reservoir’s profitability and for which the optimal solution changes
significantly with key reservoir features. The key observations are identified using
supervised-learning algorithms, which allow automatic detection of the optimal obser-
vation combination and direct computation of the posterior probability distributions of
key uncertainties based on Bayes’ rule, so that there is no need for full history match-
ing to update the entire reservoir model. Results show that accounting for the future
learning through the key information obtained from key actions can efficiently improve
the expected outcome of an optimal strategy. Taking the key action to acquire useful
information for reducing key uncertainties is not always worthwhile, however, even if
there is no explicit cost in obtaining that information. The cause of that is there may be
a large indirect cost of information when taking the key action leads to a sub-optimal
solution. Thus, it is necessary to consider both the possibility of key uncertainty reduc-
tion and the possibility of high expected NPV to determine whether it is worth taking
the key action earlier in sequence to improve future decisions.

6.2 Outlook

The methodologies presented in this work can be extended to general sequential field
development tasks, although they are illustrated by the application of drilling-sequence
optimization problem. A few aspects require further consideration or research to ensure
the methods are effective and efficient:

Learned heuristic search This approach is efficient for solving optimization problems
with discrete actions. It can be used either to optimize a complete control sequence
or only the first few actions at a reduced cost by limiting the search depth. The key
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to making this method efficient is developing online learning mechanisms that can
be used to improve a crude heuristic. The techniques presented in Section 3.2 work
well when the initial evaluation-function value has an exponential trend and the ratio
changes at a stationary rate. Thus, they might not be suitable for other reservoir
applications or heuristics that have distinct properties. Since past observations are
obtained sequentially, it might generally be more useful to build a distinct dynamic
sequential model based on observed data to improve the evaluation function. For large
optimization problems, we might need to design a practical space-reduction approach
to find a valid solution quickly.

Bias-corrected mean model The major advantage of using the bias-corrected mean
model for RO is that it requires only simulations in the mean model to obtain initial
estimates of expected value, for which the bias can be corrected using the informa-
tion from distinct controls and model realizations. To ensure the effectiveness of
distance-based localization for bias correction, we need to design appropriate distance
measures for the identification of sets of similar controls. When the actions that can
be controlled are discrete and sequential, we can use a position-based distance met-
ric (e.g., Manhattan distance) to measure the similarity between control sequences.
The bias-corrected methods can be modified for use in multiple objective optimiza-
tions under uncertainty (e.g., standard deviation, percentiles, expected value). For
example, it would be possible to compute an estimate of the variance of the objective-
function value, by squaring the value of the objective function from the mean model
and multiplying it by the variance of partial corrections.

Key-feature-based VOI analysis By properly accounting for the possibility of future
uncertainty reduction, improvement of the optimal strategy could be achieved. A
simplified VOI analysis, which considers only the important future information from
key actions to improve future decisions, can be applied to consider future learning
possibilities efficiently when making optimal decisions. The key point is to effectively
identify key actions and key information associated with key uncertainties in the
optimization problem. For small problems, key actions can be identified by estimating
the reliability of information for reducing key uncertainties and the hidden cost of
obtaining information from key actions. For large problems, it may be necessary to
explore more generalized and efficient approaches for identifying key actions. Our
method considers the effect of future information resulting from only the current
decision step. If the key information can only be obtained by taking at least two
actions, we can extend the VOI analysis by considering the possibility of future
learning through the following two decision steps. This approach, however, will
increase the computational cost of making optimal decisions and the hidden cost of
obtaining key information caused by sub-optimal solutions, which will be constrained
to more past decisions.
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Abstract

Ensemble methods are remarkably powerful for quantifying geological uncertainty.
However, the use of the ensemble of reservoir models for robust optimization (RO) can
be computationally demanding. The straightforward computation of the expected net
present value (NPV) requires many expensive simulations. To reduce the computational
burden without sacrificing accuracy, we present a fast and effective approach that
requires only simulation of the mean reservoir model with a bias correction factor.
Information from distinct controls and model realizations can be used to estimate bias
for different controls. The effectiveness of various bias-correction methods and a linear
or quadratic approximation is illustrated by two applications: flow optimization in a one-
dimensional model and the drilling-order problem in a synthetic field model. The results
show that the approximation of the expected NPV from the mean model is significantly
improved by estimating the bias correction factor, and that RO with mean model bias
correction is superior to both RO performed using a Taylor series representation of
uncertainty and deterministic optimization from a single realization. Use of the bias-
corrected mean model to account for model uncertainty allows the application of fairly
general optimization methods. In this paper, we apply a nonparametric online learning
methodology (learned heuristic search) for efficiently computing an optimal or near-
optimal robust drilling sequence on the REEK Field example. This methodology can
be used either to optimize a complete drilling sequence or to optimize only the first few
wells at a reduced cost by limiting the search depths.

Keywords: Robust optimization; Bias correction; Geological uncertainty; Ensemble-
based methods; Drilling sequence optimization; Sequential-decision making

Introduction

In the development of a hydrocarbon field, optimization is an important process that can
substantially improve the profitability through reduction in production and development
costs or by increasing or accelerating the production of hydrocarbons. The increase in
profitability of a field for a given change in controls is predicted using a reservoir simu-
lation model, in which the geological uncertainties such as porosity, permeability, and
fault transmissibility have critical effects on production forecasts. Ensemble methods
are remarkably powerful for quantifying the geological uncertainty. Van Essen et.al [39]
demonstrated that robust optimization (RO) performed using the expectation of NPV
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by averaging over an ensemble of reservoir models outperforms the nominal optimiza-
tion (NO) from a single realization. However, the straightforward computation of the
expected value requires many expensive simulations for each control variable setting.

Many approaches have been proposed to reduce the cost of simulation-based RO.
These methods can be mainly classified into two categories: accelerating the reser-
voir model simulations and reducing the number of simulations required to obtain the
maximum. A simplified model such as one obtained from reduced-order modeling and
upscaling model parameters [21, 4, 5, 38, 13] is a computationally inexpensive sub-
stitute for full reservoir simulation. However, such a proxy model is generally less
accurate due to the challenges posed by the high nonlinearity in the reservoir model;
consequently, RO performed in a simplified model is likely to yield a suboptimal solu-
tion [11]. Techniques for reducing the number of simulations needed for optimization
of the expected value of an objective function can be further classified into two main
categories: improving the optimization algorithms for certain problems and reducing
the cost of evaluating the expected value.

Ensemble-based optimization [8, 15] is an efficient gradient-based approach for fairly
general RO problems with continuous variables. The cost of evaluating the gradient of
the expected value of the objective function is reduced by using the same ensemble to
represent the reservoir model uncertainty and to compute the gradient of the expectation
of the objective function with respect to control variable settings. One downside to a
gradient-based approach is that it is easily possible to get stuck in a local minimum (or
maximum). For optimization problems with discrete control variables, Wang and Dean
[40] proposed a nonparametric online learning methodology with heuristic controls to
efficiently solve sequential decision-making problems. This approach can reduce the
number of iterations required during the optimization process. Nevertheless, the amount
of computation required for RO performed using sample average approximation (SAA)
over a large ensemble could still be expensive since the cost increases linearly with the
number of realizations required to represent the uncertainty in model properties.

There are several possible ways to compute the expected value at a lower cost than
SAA. One is to reduce the representation of uncertainty through model selection, in
which a subset of the ensemble members are used for optimization [23, 37, 32]. A small
subset of model realizations may not span the uncertainties accurately, leading to a sub-
optimal solution. To address this issue, Barros et al. [2] proposed an automated scenario
reduction approach for selecting a subset that contains an optimal number of realizations
that are able to capture the range of the uncertainties of the full ensemble. A much faster
approach is to evaluate the objective function in the mean reservoir model. Chen et al.
[6] obtained relatively good results by using the ensemble mean model updated from the
ensemble Kalman filter (EnKF) data assimilation for production optimization. Their
optimized design increased the expected NPV compared to the reference case, but was
not as good as the optimized results obtained using SAA. One major drawback to direct
use of the mean model is the large bias in predicted reservoir behavior that may result
from the use of a model with reduced heterogeneity, in which case the mean model may
offer a poor estimate of the expected NPV. To improve this approximation, one possible
approach is to modify the representation of uncertainty using a Taylor series expansion
of the objective function [9, 10, 3, 1, 7]. The first term of Taylor expansion can be
inexpensively obtained using the mean of reservoir model realizations. To accurately
estimate the expected value, the Taylor series expansion generally includes higher-order
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terms (e.g., a quadratic or cubic term). The computation of higher-order derivatives is
impractical for most real reservoir applications, however.

Instead of using higher-order terms to improve the estimation accuracy, we develop
a fast and efficient approach to correcting the bias in the NPV obtained from the
mean reservoir model by estimating a multiplicative bias correction factor based on
the information from distinct controls and individual model realizations. To accurately
estimate the expected NPV, we apply distance-based localization to estimate the bias for
specific controls, considering the similarity between samples and control variables in
terms of the bias correction factor. To avoid poor estimates caused by sampling error due
to small sample sizes, a regularization term based on the average value and the variance
of the bias correction factor is used to reduce the sensitivity of the estimates to the taper
length, thereby allowing more accurate estimates to be generated for a wider range of
taper lengths. The initial sampling of control and model realizations is used to create
an ensemble of partial corrections factors. During the RO phase, when it is necessary
to estimate the expected value of NPV for a control, we only require simulation of the
control applied to the mean model. The bias correction factor is estimated from partial
bias correction factors on similar controls. Hence, after creation of the initial ensemble,
RO performed using bias-correction methods requires only one additional simulation of
the mean reservoir model at each iteration, which is much less than the effort required
in SAA. This bias-correction methodology can be applied to fairly general problems
of optimizing the expected value of an objective function. But an appropriate distance
metric to measure the similarity of controls in terms of the bias correction factor is
required, which is specific to the problem at hand.

The performance of various bias-correction methods and a linear or quadratic ap-
proximation is investigated in two applications. The objective in the first example is
to locate an injection well such that flow rate for a fixed pressure in a one-dimensional
model is minimized; this problem is small enough that we can evaluate both linear and
quadratic Taylor approximations of the objective function. The second example is to
maximize the expected NPV in a synthetic field model by optimizing the drilling se-
quence of wells at fixed locations. Here we use well-position based distance to measure
the similarity of drilling sequences for the bias correction factor. We formulate the
sequential drilling optimization problem as one of finding a path with the maximum re-
ward in a decision tree, and apply learned heuristic search [40] with mean model bias
correction (MMBC) to compute the RO drilling sequence under geological uncertainty
and to optimize only the first few wells at a reduced cost by limiting the search depths.

This paper is organized as follows. Section 2 describes the bias-correction methods
for estimating the expected NPV and the learned heuristic search method for optimizing
either a complete drilling sequence or only the first few wells. Sections 3 and 4 describe
two numerical case studies (i.e., flow optimization in a one-dimensional model and
drilling-order problem in a synthetic model). The conclusions are presented in Section
5.

Methodology
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Estimation of expected value
Correction factor

In this work, we use maximization of the NPV as the objective for an optimal reservoir
management problem. Because reservoir characterization is always incomplete, the
optimization problem is based on a reservoir model with uncertainty in parameter
values. An appropriate approach to account for the uncertainty is to use the expected
NPV over an ensemble of reservoir models that have been sampled from the probability
distribution for model parameters. The expected value of the objective can be written
as

E[f(x,m)] ≈ f̄(x) =
1

Ne

Ne∑
j=1

f(x,mj), (1)

where x is a vector of control inputs; m ∈ Rm is an m-dimensional vector of uncertain
model parameters; j is the index of individual realizations; and Ne indicates the number
of reservoir models.

This ensemble-based average value can provide a good approximation of the expected
NPV if the ensemble of model realizations is sufficiently large [26, 24]. RO performed
using such straightforward estimation of the expected NPV, however, requires many
expensive simulations when the ensemble size Ne or the number of iterations needed for
the optimization process is large. Instead of computing the expectation of the objective
function by using SAA, one could consider optimizing the expectation for a linear or
quadratic approximation of the objective function [9, 10, 3, 1]. To second order, the
Taylor expansion of the objective function is

fquad(x,m) = f(x, m̄) + fm(x, m̄)(m− m̄)

+
1

2
(m− m̄)Tfmm(x, m̄)(m− m̄),

(2)

where we have neglected higher-order terms in the expansion. fm and fmm are first and
second derivatives of f with respect to uncertain model parameter m, respectively.

If m is distributed as multivariate Gaussian with mean m̄ and covariance C, then the
expected value of the quadratic approximation of the objective can be shown [31] to be

E[fquad(x,m)] = f(x, m̄) +
1

2
tr(C1/2fmm(x, m̄)C1/2). (3)

A possible advantage of this approach to approximating the expected value of the
objective function is that optimization of the expectation does not require evaluation of
controls applied to a large number of Monte Carlo samples [1]. Computing f(x, m̄) in
Eq. 3 will be easy as it only requires the mean of the realizations. Computing fmm(x, m̄)
is more difficult as it requires the second derivative of the objective function with respect
to model parameters. Although it might be possible in some cases to approximate the
second derivative, computing second derivatives will be impractical for most reservoir
applications. The linear approximation seems more likely to be feasible in practice,

f lin(x,m) = f(x, m̄) + 〈fm(x, m̄),m− m̄〉. (4)
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Assuming that m is distributed as Gaussian, the expectation over m of the linear
approximation to the objective is simply a function of m̄ and x,

E[f lin(x,m)] = f(x, m̄). (5)

The key point of this is that the mean of the ensemble can be used for the optimization,
instead of performing the optimization on the ensemble of realizations.

Such an approach has a major advantage over SAA in that it significantly reduces the
number of simulations required for evaluating the expected value. However, since the
NPV is generally not a linear function of the uncertain model parameters m, NPV from
the mean model is generally not the same as the expected value over uncertainty space,
f (x,E[m]) �= E[f(x,m)]. If we want to use the mean model for optimization problems
without sacrificing the accuracy of the estimated expected NPV, we need a method for
improving the approximation of expected NPV from the mean model.

In this paper, we compute a multiplicative correction factor between the ensemble
average of values f̄(xi) and the value obtained from the mean model f(xi, m̄) at a fixed
control xi,

f̄(xi) = α(xi)f(xi, m̄), (6)
where α(xi) is the correction factor for a fixed control xi. Instead of directly computing
the ensemble average of values of the objective function, we develop an approximation
of expected value f̄(x) by estimating the correction factor α(xi) of control xi. If it
were feasible to compute the value of the NPV at control xi for all samples of model
parameters, then α(xi) could be computed in the following way,

α(xi) =
1

Ne

Ne∑
j=1

f(xi,mj)

f(xi, m̄)
, (7)

where f(xi,mj) is the economic value at control xi of an individual realization mj .
For each individual model realizationmj and control xi, we define a partial correction

factor β(xi,mj , m̄),

βij = β(xi,mj , m̄) =
f(xi,mj)

f(xi, m̄)
. (8)

The correction factor α(xi) at control xi of all ensemble realizations (Eq. 7) can be
written in terms of the partial correction factors,

α(xi) =
1

Ne

Ne∑
j=1

βij . (9)

We also define the mean value of the correction factor α(xi),

ᾱ ≈ 1

Nx

Nx∑
i=1

α(xi) =
1

NxNe

Nx∑
i=1

Ne∑
j=1

f(xi,mj)

f(xi, m̄)

=
1

NxNe

Nx∑
i=1

Ne∑
j=1

βij ,

(10)

where Nx is the number of relevant controls. Straightforward application of Eq. 10
requires Nx × (Ne + 1) evaluations of f(x,m) to compute the average correction factor
ᾱ from Nx different controls on an ensemble of Ne model realizations.
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A Monte Carlo estimate of ᾱ can be obtained at a much lower cost by sampling
control xj uniformly from the space of all possible controls, and sampling reservoir
realizations mk from the space of conditional realizations. Then ᾱ can be estimated
using the following formula,

ᾱ ≈ 1

Nx

Nx∑
j=1

f(xj ,mj)

f(xj , m̄)
=

1

Nx

Nx∑
j=1

β(xj ,mj , m̄), (11)

where β(xj ,mj , m̄) is the observed value at control xj , which requires two simulations,
i.e., apply control xj to a random individual realization mj and apply control xj to the
mean reservoir model m̄. Therefore, it would require 2×Nx simulations to obtain a set
of observations β from Nx distinct controls.

For Ne reservoir model realizations, we can sample Ne distinct controls to obtain
observations of β so that each realization will provide one observed value of β. In that
case, the number of observed values of β is the same as the ensemble size (i.e., Nx = Ne).
In some cases, more observations might be needed to obtain a good approximate of ᾱ
(e.g., obtain two observations of β from each realization (i.e, Nx = 2Ne) or use a larger
ensemble size). If the value of β is similar for most realizations, we can use information
from a subset of the ensemble members and a smaller number of distinct controls (i.e.,
Nx < Ne ) to estimate the bias.

Although an estimate of ᾱ can be efficiently obtained from the observed values of
β, the accuracy of an estimate of the expected NPV obtained using ᾱ for correction is
limited by the variability in α. Use of the bias correction factor obtained by averaging
samples of β (Eq. 11) will result in the same correction factor being used for all controls,
even though the correct values of α for some of the controls may be far from ᾱ. In such
a case, the accuracy level of the estimates from different controls is limited by the actual
ᾱ value. Nevertheless, if the variability in α(xi) is small as control xi is varied, then it is
possible that ᾱ can provide a useful approximation to α(xi) for estimation of the value
of f̄(xi) from the value of f(xi, m̄).

Distance-based localization

In general, however, we expect that an estimate of the correction factor will be better
if it is primarily based on information from similar control variables. Thus, we expect
that a weighted estimate will be better than an unweighted estimate. In our work, we
use weighted linear estimation. Suppose that Ne distinct controls are applied to Ne

individual realizations and the mean model for generating a set of observations β. The
weighted linear estimate α̂(xi) at control xi is defined as

α̂(xi) =

∑Ne

j=1 ω(xi, xj)β(xj ,mj , m̄)∑Ne

j=1 ω(xi, xj)
, (12)

where β(xj ,mj , m̄) is the observed correction factor at a random control xj applied
to an individual realization mj and the mean model m̄, and ω(xi, xj) is the weight for
β(xj ,mj , m̄). The weights, ω(xi, xj), should depend on a measure of similarity, or
distance measure, between controls xi and xj .

With an appropriate measure of distance between control sequences, weights are
assigned such that β(xj ,mj , m̄) at shorter distances will have higher weights while
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partial correction factors for controls that are more dissimilar will have smaller weights.
Lacking information about the correlation of β with distance between control sequences,
we use the Gaspari-Cohn taper function [17] to compute distance-dependent weights,

ρ (δ, L) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(13)

where ρ (δ, L) is the distance-based weight and varies from 0 and 1; δ is the distance
between controls; L is the taper length determining the distance at which the weighting
drops to approximately 0.2, and 2L is the critical distance, beyond which the weighting
is zero.

For the drilling-order problem, the control variables x have no physical locations
but are permutations of sequences of possible actions, in which case an order-based
encoding is appropriate. We have chosen to use the permutation encoding [34] of
the drilling sequence. In this encoding, each integer value in the vector encodes the
relative ordering of the drilling of a specific well. Consider, for example, two possible
control sequences xi and xj in which four wells are drilled, i.e., Sxi = [W1,W2,W3,W4]
and Sxj = [W3,W1,W4,W2]. The permutation encodings for these two sequences are
Pxi = [1, 2, 3, 4]T and Pxj = [2, 4, 1, 3]T , respectively.

Distance between two control sequences is then measured by the distance between
the vectors Pxi and Pxj . Appropriate distance measures for ordering problems include
the ‘edit’ distance [30], which is the minimum number of operations required to trans-
form one sequence to another sequence, and the ‘swap’ or Jaro-Winkler distance [22],
which counts the minimum number of swaps of two elements required to transform one
sequence to another. Because computation of swap and edit distances are relatively
expensive, it is common to use fitness-distance measures as surrogates for the permuta-
tion distances [35]. The Hamming distance [18] between two sequences of equal length
is the number of positions at which the corresponding actions are different, i.e., the
number of wells that have different positions in the drilling sequence. The Manhattan
distance (also known as the ‘position-based distance’) measures the sum of the abso-
lute differences between positions of the elements. In terms of the permutation encoded
vectors, the Manhattan distance is

δ(xi, xj)L1
= ‖Pxi −Pxj‖1 =

Nw∑
k=1

|Pxi,k − Pxj ,k|, (14)

where the k-th elements in Pxi and Pxj are Pxi,k and Pxj ,k, respectively, which are the
positions of a fixed well Wk. Nw is the number of wells.

In addition to the Hamming and Manhattan distance measures for permutation en-
codings, we initially considered the use of two standard distance metrics on vector
spaces. The Euclidean distance is defined as

δ(xi, xj)L2
= ‖Pxi −Pxj‖2 =

√√√√Nw∑
k=1

|Pxi,k − Pxj ,k|2 (15)
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and the cosine distance [36, 27] is a correlation-based distance measure defined as
δ(xi, xj)cos = 1− cos(Pxi ,Pxj)

= 1− Pxi ·Pxj

‖Pxi‖‖Pxj‖

= 1−
∑Nw

k=1 Pxi,k · Pxj ,k√∑Nw

k=1 P
2
xi,k

√∑Nw

k=1 P
2
xj ,k

.

(16)

When the lengths of all sequences are identical, as they are when the sequences are
all perturbations of a base sequence, then the cosine distance is simply a scaled version
of the Euclidean distance,

‖Pxi −Pxj‖22
2‖Pxi‖22

= 1− cos(Pxi ,Pxj) (17)

consequently, there is no need to consider both the Euclidean and cosine distance
measures.

The choice of an appropriate distance measure to use as a measure of similarity is
problem specific. In the application section, we show that the Manhattan, Euclidean,
and cosine distance metrics are all very similar when applied to the well ordering
problem. They are all superior to the Hamming distance in explaining similarity of
drilling-order sequences in terms of the bias correction factor.

Taper window selection

The performance of localization for estimation of correction factor depends not only
on the choice of distance measure, but also on the taper parameter L which affects the
weights and the effective sample size [25] used for computation of correction factor. A
good distance measure will effectively identify control variables with similar correction
factors so that the number of realizations used for estimation is maximized and sampling
error is reduced.

Suppose that Ne is the number of observed values of β, then

neff =

(∑Ne

j=1 ωj

)2
∑Ne

j=1 ω
2
j

, (18)

is a common approximation of the effective sample size [33, 12]. In this equation, ωj

is the weight on the jth partial correction factor. If all weights are identical, then the
effective sample size is equal to Ne, while if one of the normalized weights is equal
to one and all others are zero, the effective sample size is 1. neff is a measure of the
equivalent number of equally weighted samples. The weights are determined by the
distance between the estimation location and the jth drilling sequence.

The accuracy of the estimate of the correction factor for control variable sequence,
xi, is influenced both by the effective sample size, neff , and the bias resulting from the
use of partial correction factors based on random control variables with different values
of α. Reducing the taper length will decrease the bias by only including values from
control variable sequences with very similar values of the correction factor, but will
also increase the sampling error by decreasing the effective sample size. Because the
optimal taper length is not known a priori, we generally apply regularization to reduce
the effect of a non-optimal choice of taper length.
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Regularization

The major disadvantage of pure distance-based localization is that use of a taper length
that is smaller than optimal one may result in an estimate of α that is far from the correct
value due to sampling error resulting from the small number of samples within a small
distance of the estimation point. Instead of using a long taper length to avoid such a
situation, it is generally possible to improve the accuracy of estimated α value by adding
a regularization term based on the average value and the variance of correction factor
to reduce the sensitivity of the estimate to taper length while still generating accurate
estimates.

A regularized estimate of α(xi) is obtained by minimizing an objective function with
both a local and a global term,

S (αr(xi)) =
neff
σ2β

(
αr(xi)−

∑Ne

j=1 ω(xi, xj)β(xj ,mj , m̄)∑Ne

j=1 ω(xi, xj)

)2

+
1

σ2α
(αr(xi)− ᾱ)2 .

(19)

In Eq. 19, σ2α is an estimate of the variance of α over the domain of interest, σ2β is the
variance of β, and neff is the effective sample size for the observations of β (Eq. 18).
The regularized estimate, α̂r(xi), is obtained by solving ∇αS = 0, obtaining,

α̂r(xi) =

(
1 +

σ2β
neffσ2α

)−1(∑Ne

j=1 ω(xi, xj)β(xj ,mj , m̄)∑Ne

j=1 ω(xi, xj)
+

σ2β
neffσ2α

ᾱ

)

=

(
1 +

σ2β
neffσ2α

)−1(
α̂loc(xi) +

σ2β
neffσ2α

ᾱ

)
.

(20)

Note that the regularized objective function is a weighted average of the localized
estimate α̂loc(xi) from Eq. 12 and the mean value of α. When the effective sample size
is large compared to the ratio σ2β/σ

2
α, the regularized estimate will be based primarily

on the local samples of β.
Estimation with regularized localization has a major advantage over an approach that

relies only on localized estimation: by improving the accuracy of the estimated values
that are obtained with an inappropriate distance measure or taper length, regularized
estimate α̂r is potentially more accurate than ᾱ for a wider range of taper lengths. When
the variance of α is unknown, it might be difficult to select the optimal value, but as
shown in experiments, results are not strongly sensitive to the exact choice.

Optimal weights

Here we show how the optimal weights can be estimated if the covariance of partial
correction factors is known. In that case, an estimate of α at a fixed control x0 is
calculated based on a linear combination of observations βij with weights wi. In vector
notation, the estimate is written as

α̂(x0) =

∑N
j=1 ω(x0, xj)β(xj ,mj , m̄)∑N

j=1 ω(x0, xj)
= wTb, (21)
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where elements in vector b are the observed values of βjk from random controls and
realizations. The collection of observations will be denoted by the vector b, i.e.

b =
[
β11 β22 · · · βNN

]T
.

Although the notation is different, Eq. 21 is identical to Eq. 12.
The quantity α(x0), that is to be estimated, is defined to be the linear combination of

β0j at the estimation location,

α(x0) =
1

N
1Tb0, (22)

where the j-th element of b0 is β0j at a fixed control x0 of an individual realization mj

that is sampled from the probability distribution for model parameters, i.e.,

b0 =
[
β01 β02 · · · β0N

]T
.

Imposing the constraint wT1 = 1 provides an unbiased estimate for which the ex-
pected error is 0. The optimal weights for estimating α(xi) from a set of random
observations β are obtained by minimizing the expected variance of the estimate, con-
strained to the unbiasedness condition. For estimation of α(x0), the variance of the
expected error is

Sw(w) = E

[(
1

N
1Tb0 −wTb

)2
]

(23)

To minimize the variance in estimation error, subject to the constraint that wT1 = 1, we
define a Lagrangian function

S(w, λ) = Sw(w)− 2λ
(
wT1− 1

)
,

where λ is the Lagrangian parameter and Sw(w) is the variance of the estimator error
(Eq. 23). The optimal weights are then obtained by solving for w that minimizes
S(w, λ),

∇w,λS = 0.

Straightforward computation shows that

∇wS = 2 cov(b,b)w − 2

N
cov(b,b0)1− 2λ1 (24)

and
∇λS = 1Tw − 1. (25)

Then the weights w can be found from the following systems of linear equations for
∇w,λS = 0, which can be written in matrix form[

cov(b,b) −1
−1T 0

] [
w
λ

]
=

[
1
N cov(b,b0)1

−1

]
, (26)

where cov(b,b) denotes the covariance of the variables β in b, and each element in
cov(b,b0) is the covariance function between the corresponding observed values of β
in b and b0.
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Learned heuristic search
Heuristic function

Heuristic search [20] is an efficient approach for solving sequential decision-making
problems by repeatedly expanding the partial path with the largest estimated value until
a complete path for which the true objective-function value is higher than the estimated
values of all evaluated partial paths is found. The estimated value of a partial path
could be obtained using an evaluation function f(ns), which estimates the value of
objective-function for the optimal complete path constrained to the previous actions.
This estimated objective-function value consists of two elements,

f(ns) = g(ns) + h(ns), (27)

where g(ns) is the true reward from the initial state to a specific state ns through a set of
selected actions, and h(ns) is a heuristic function that estimates the maximum reward
from current state ns to a goal state.

For drilling-order problem, the objective of robust optimization is maximization
of expected NPV over uncertainty by optimizing the drilling sequence of wells. The
expected NPV computed using mean model bias correction (MMBC) can be mathe-
matically represented as

J = α(xi)

{
T∑

j=1

(
qm̄o,jro − qm̄w,jrw − qm̄wi,jrwi

)
Δtj

(1 + b)tj/τ

−
Nw∑
n=1

Wn

(1 + b)tn/τ

}
,

(28)

where qm̄o,j , qm̄w,j and qm̄wi,j denote the rates of produced oil, produced water and injected
water, respectively, from the mean model in m3/day; ro, rw, and rwi are the oil price,
water production cost and water injection cost, respectively; T represents the number of
time steps; tj is the cumulative time in days up to time step j; Δtj is the time interval
in days; b is the discount rate for a certain reference time τ (365 days); Nw is the
total number of drilling wells; Wn denotes the cost of drilling the nth well; tn is the
cumulative time in days up to the open time for each well; α(xi) is the bias correction
factor for the corresponding control xi.

The cost of finding a strong and admissible heuristic for drilling-problem can be
prohibitive since the evaluation of heuristic function requires simulations. In this paper,
we use a heuristic function in which all remaining wells are drilled simultaneously at the
next step [40, 28], as this estimate can be obtained inexpensively and generally provides
an overestimate of the NPV. Such a heuristic is guaranteed to find the true optimal
drilling order. However, it might lead to an exhaustive search due to large estimated
values.

Online learning techniques

To efficiently find a solution that is optimal or near optimal, the evaluation function f(n)
in Eq. 27 should be close to the true maximum value f∗(n). It is difficult to design a
heuristic function that is accurate in all situations, but a crude heuristic function can be
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improved by online-learning techniques, i.e., estimate the error of the initial approximate
value by learning the observations from previous decision steps. From a set of available
online-learning mechanisms Φ1,Φ2,Φ3, . . . ,Φn, the best-improved evaluation function
f̂Φ(n) with multiple online-learning techniques is defines as

f̂Φ(n) = max
(
f̂Φ1

(n), f̂Φ2
(n), f̂Φ3

(n), . . . , f̂Φn
(n)

)
, (29)

which might not be the most accurate value, but it is more likely to overestimate the
actual maximum value and guide the heuristic search close to the optimal solution.

Wang and Dean [40] have proposed two possible online-learning techniques (i.e,
single-step adjustment and multiple-time-periods learning) for improving the initial
approximate values obtained from heuristic sequences (i.e., all the remaining wells are
drilled simultaneously and opened at the next time step) by estimating a set of forecast
errors of f(n) and h(n) for the remaining decision steps.

The single-step adjustment is defined as

f̂(ns) = f(ns)

ngoal∏
n=ns

γ̂fn = f(ns)

d(ns)∏
i=1

γfns
μ̄ins

= f(ns)γ
d(ns)
fns

μ̄
(d(ns)+1)d(ns)

2
ns ,

(30)

where d(ns) is the number of remaining actions at ns, and γ̂fn is the forecast error of
f(n) in future decision step n, which is estimated by using the ratio γfns

associated with
f(ns) and f(ns−1) and the mean single-step ratio μ̄ns of γfn1

, γfn2
, . . . , γfns

along the
current optimal path.

Multiple-time-periods learning is calculated by correcting the heuristic values of
various time periods simultaneously

f̂(ns) = hΔtΦ1
(ns)

ngoal∏
n=ns

γ̂h
ΔtΦ

1
(n) +

NL∑
i=2

(
hΔtΦi

(ns)

ngoal∏
n=ns

γ̂h
ΔtΦ

i
(n)

)
. (31)

Note that estimated value hΔtΦ1
(ns) of the first learning period ΔtΦ1 contains both true

contribution to the expected NPV at time periods ts =
∑Ns

i=1Δti from Ns sequentially
drilled wells and heuristic values at a certain time period ΔtΦ1 − ts when all wells are
open.

To summarize, multi-learned heuristic search with space reduction (MLHS-SR)
based on the economic indicator [16] and improved evaluation function f̂Φ(n) (Eq. 29)
can be used to find a solution to an optimization problem faster without losing quality
[40]. Figure 1 shows the flowchart of using MLHS-SR with the bias-corrected mean
model for the drilling-order optimization problem under geological uncertainty. To
estimate the bias correction factor α for different drilling sequences, we first sample
Nx distinct controls and apply them to individual model realizations to obtain the
initial observations of β. This step requires 2 × Nx simulations. Both bias-correction
methods (i.e., improve the estimates of expected NPV) based on the observations from
distinct controls and model realizations, and online learning techniques (i.e., improve the
estimates of maximum expected NPV) based on the observations from previous drilling
steps do not require any simulations. Hence, we only need to perform one additional
simulation in the mean model at each iteration for evaluating the expected NPV of
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one specific control. The use of bias correction applied to the mean model allows the
application of fairly general optimization methods. During the optimization process, it
requires only simulations in the mean model for obtaining initial estimates of expected
NPV. For an ensemble with Ne realizations, we assume that the information from Ne

distinct controls is used to estimate the bias correction factor, and the optimization
process requires Niter iterations (i.e., Niter different controls have to be evaluated to
obtain the optimal solution). Then, the total number of simulations required in RO
is Ntot = 2Ne + Niter, in which 2Ne simulations are performed to obtain Ne observed
values of β and Niter simulations are performed in the mean reservoir model to obtain
the initial approximations of expected NP for Niter different controls. If Niter different
controls were to be evaluated using SAA, the cost in RO would be Ntot = Ne × Niter,
which is much more expensive and will increase linearly with the ensemble size Ne and
the number of iterations Niter.
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Figure 1: Flowchart of using MLHS-SR with mean model bias correction

Depth-limited search

The reservoir model will almost certainly be updated based on information obtained
from drilling the first few wells. After model updating, the optimal order of the
remaining wells will differ from the initial estimate of optimal order. It is therefore
more important to correctly identify the first few wells to be drilled rather than provide
an entire drilling sequence. One advantage of using learned heuristic search for the
drilling-order problem is that a partial solution of the first wells can be obtained at a
reduced cost by cutting off the search at a specified depth.

The most straightforward approach to partial sequence optimization is through the
depth-limited search (DLS) [14], in which the learned heuristic search is terminated at
a certain depth. To find the solution of the first Ns wells, we prefer to terminate the
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search at the first-visited best partial path with Ns + 1 selected wells, because online
learning techniques with more observations along a longer path can further improve the
approximations and potentially generate a better solution. Note that the last well along
the first selected partial path of Ns + 1 wells might not be the optimal well because the
search might change direction after evaluating its extended paths.

A faster approach to finding the partial solution is to use iterative depth-limited search
(IDLS). It works by iteratively optimizing the next well based on the first selected partial
path with two more wells until a solution of Ns + 1 selected wells is found. Because
only the partial paths extended from previous decisions are considered, this approach
can avoid evaluating unnecessary paths along other directions caused by underestimated
values. Learned heuristic search with accurately estimated values generally will not
change direction frequently, so that the optimized sequence of the first few wells with a
limited depth is likely to be near the final optimized drilling sequence.

Case study 1: flow optimization in one-dimensional model

The purpose of this simple example is to thoroughly investigate methods of efficient
optimization on a flow problem for which the dependence of the objective function on
the model parameters is highly nonlinear. The problem is chosen to be small enough that
we can evaluate both linear and quadratic Taylor series approximations of the objective
function, and can evaluate the correct optimal solution.

The objective in this example is to locate an injection well, operating at fixed pressure
in a one-dimensional flow domain with uncertain permeability, such that the total flow
rate out of the reservoir through fixed pressure boundaries is minimized. The reservoir
is discretized with 150 grid cells (i.e., 150 possible injector locations), each of length
Δx, and cross-sectional area A. The permeability ki is distributed as log-gaussian.
Pressures at both ends of the grid are fixed at 0. An injector is located at the interface
between cells i = iw − 1 and i = iw, where the pressure is fixed at P = Pw. Instead of
permeability, we use the log-permeability θi as a parameter in the problem, ki = exp(θi).

(a) True log-permeability field and best approximation after observations (b) Samples of the log-permeability distribution after conditioning.

Figure 2: Light blue curve shows the true θ that generated observations. Blue squares show observations of θ with noise
added. Correlation range of prior distribution for log-permeability is 26.

In this notation, the total flow rate is the sum of the flow to the left and flow to the
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right:

q(iw, θ) =
APw

μΔx

(
iw−1∑
i=0

exp(−θi)

)−1

+
APw

μΔx

(
Nx∑
i=iw

exp(−θi)

)−1

(32)

where all variables are in consistent units. Because the permeability is uncertain, we
minimize the expected value of flow rate q, by adjusting the location of the injection
well, iw. To avoid a problem in which the optimal injector location is at the center of
the reservoir because of symmetry, we modify the prior probability for θ by assuming
observations of θ at four locations (x = 10, 30, 50, 70). The mean of the posteriori
distribution for θ is shown as the orange curve in Fig. 2a, along with the true log-
permeability (blue). Ten realizations of the log-permeability field from the posteriori
distribution are shown in Fig. 2b.

Figure 3: The expected value of the total injection rate, E[q(x, θ], computed using the sample average approximation, and
two levels of Taylor series approximation.

The most straightforward approach to approximating the expected value of the ob-
jective function is through the use of SAA or averaging of Monte Carlo samples from
the posterior distribution for θ. We use SAA with 400 samples for each control loca-
tion as a benchmark for other methods. Hence the SAA method uses 150× 400 function
evaluations to generate the expected value of q(iw, θ) for optimization.

Taylor series expansions of the objective function provide much less expensive ap-
proximations of the expected value of q(iw, θ). For the linear approximation, the expected
value of q(iw, θ) is approximated using the mean of the log-permeability field (Eq. 5).
The quadratic approximation is considerably more expensive as it requires computation
of the second derivative of the objective function with respect to well location. For this
1D steady flow problem, that is still a manageable computation. Figure 3 compares the
linear and quadratic Taylor series approximations of the expected value of flow rate to
the sample average approximation. Although there is clearly a large bias in the values
from both the linear and quadratic approximations, the shapes are quite similar to the
SAA, and the location of the minimum for each curve is also approximately the same.
For this particular problem (minimizing total flow rate), a uniform bias does not affect
the optimization result.

To correct the nonuniform bias in α, we use a regularized localization approach
(Eq. 20) in which higher weights are given to samples that are closer to the control
variable for which the bias correction is being estimated. In this optimization problem,
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(a) 400 random samples of β (b) Sample average approximation of α for each injector location.

Figure 4: Variability of the partial bias correction β and the bias correction factor α for the 1D flow problem.

the actual distance between well locations is an appropriate measure of similarity. The
variability of values of β is quite large (Fig. 4a) because the rate is strongly affected by
the occurrence of low permeability values between the injector and the boundary. The
variability in α is much smaller than the variability in β (Fig. 4b). Unfortunately, while
the variability in β can be estimated from samples, the variability in α will generally be
unknown. Because it is computed by averaging over samples of β, however, we should
expect it to generally be smaller than the variability in β, so that the ratio σ2α/σ

2
β which

appears in Eq. 20 will generally be substantially smaller than 1.
In Figure 5 we compare the optimal well locations obtained using three different

methods. In the SAA approach, we use Ne samples of the permeability field for each
well location between 35 and 115 to compute an approximation of the expected value of
flow rate. In the linear approximation, we simply compute the flow rate using the mean
of the log-permeability field, and for the bias-correction approach, we used regularized
localization with γ = neffσ2

α/σ
2
β

and a taper length of 20 to obtain a bias-correction to the
linear approximation of expected value of flow rate. Each experiment was repeated 100
times to reduce the effect of sampling error. For both ensemble sizes, the bias-correction
approach give better results than the linear approximation, although the difference is
more apparent at larger ensemble size because the spread in the results is reduced in
that case.

Figure 5: Optimized well locations for three different methods and two ensemble sizes.

The most important criterion for judging success of the methodology is the ability
to actually minimize the flow rate. Figure 6 compares the distribution of total flow
rates obtained from the optimal well locations applied to the truth case for each of the
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methods. The test was repeated 100 times so there are 100 different truth cases and 100
“optimal” locations for each method. Note that the bias-correction method is now clearly
superior to the linear approximation, even in this example in which the optimization
depends only on relative differences in the value of the objective function. Optimization
of the well location based on single realizations from the posterior distribution for model
parameters gives very poor results (Fig. 6b).

(a) Injection rates on 400 “true” permeability fields for three robust
optimization methods.

(b) Injection rates for three robust optimization methods and a non-
robust method.

Figure 6: Values of the objective function from optimization of well location in the 1D flow problem. (Small values are better.)

Case study 2: drilling-order problem in synthetic model

Reservoir model
In this example, we design a set of experiments to study the bias properties of the
drilling-order problem applied to the synthetic REEK Field model [40, 19, 29], and
the performances of various methods for estimating the bias for both complete and
heuristic sequences by using the information from distinct controls and individual
realizations. The objective of the robust optimization problem is maximization of the
10-year expected NPV with respect to the drilling schedule of wells. Learned heuristic
search applied to the mean model with bias correction is used to optimize the drilling
sequence under geological uncertainty. To illustrate the quality of the robust optimal
solution, we compute both optimal solution based on SAA and deterministic solutions
of individual realizations. Moreover, we also investigate the possibility of optimizing
the first few wells by using learned heuristic search with limited search depths.

The REEK model is a three-phase black-oil reservoir model with 40 × 64 × 14 grid
cells, of which 34,770 are active cells. An ensemble of 100 geologically consistent
model realizations is used to empirically represent uncertainty in the porosity field,
permeability field, and fault transmissibility multipliers. Table 1 shows the reservoir
properties and control variables in REEK field. For the test problem, we assume that
eight vertical fully penetrating wells (5 producers and 3 injectors) with fixed locations
need to be drilled sequentially, and the first well is drilled at the beginning of simulation.
The assumed drilling period is six months for all wells and wells begin operating
immediately after drilling. Figure 7 shows the well locations and initial oil saturation
of one randomly chosen model realization. The injectors are positioned around the
oil-water contact and controlled by a maximum injection rate of 10,000 m3/day and a
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maximum BHP of 320 bars. The producers are distributed throughout the oil-containing
area and controlled by a maximum production rate of 6,000 m3/day and a minimum
BHP of 250 bars.

Field REEK model
Number of grid blocks 40× 64× 14
Number of active cells 34770
Permeability (md) 0 to 3500 (average 733)
Porosity 0 to 0.45 (average 0.159)
Fault transmissibility multiplier 0 to 1 (average 0.105)
Number of geological realizations 100
Number of wells (all vertical wells) 8 (5 producers and 3 injectors)
Number of all possible drilling sequences 8! = 40320
Maximum production rate (m3/day) 6000
Minimum BHP of producers (bars) 250
Maximum injection rate (m3/day) 10000
Maximum BHP of injectors (bars) 320

Table 1: Reservoir properties and control variables in REEK model

Figure 7: Well locations and initial oil saturation in one realization of the REEK model ensemble

Estimation of correction factor
Properties of α and β

We randomly select 5 different complete drilling sequences and apply them to the entire
ensemble of realizations and the reservoir mean model to obtain the actual values of
the multiplicative bias correction factor α (Eq. 7) and their partial correction factor
β of individual realizations (Eq. 8). Figure 8 shows the observed values in α and
β from 5 random complete drilling sequences. Symbols that are in the same color
indicate the partial correction factor β(xi,mj , m̄) at a fixed drilling sequence xi applied
to different reservoir models and the mean model. The x-axis displays the index j of
a single reservoir model mj . We observe that β(xi,mj , m̄) at a fixed control changes
significantly with geological uncertainty, but β(xi,mj , m̄) at a fixed reservoir model
changes slightly with different controls. The horizontal dashed lines represent the bias
correction factors αi for the 5 drilling sequences, computed by averaging over samples
of β. The variability in αi for these 5 drilling sequences is very small and the mean for
each is close to 1.1.

To obtain more statistically reliable results, we sample 560 different drilling se-
quences for studying the bias properties. For 5 producers and 3 injectors, there are 56
possible combinations of drilling sequences based on the types of wells (e.g., [P, P, P, P,
W, P, W, W], [P, P, W, P, P, P, W, W]). We randomly select 10 distinct drilling sequences
from each combination and compute their actual values of α and β. Figure 9 shows
the distributions of α and β values obtained from these 560 random complete drilling
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Figure 8: Comparison of bias correction factor α and partial correction factor β of 5 different complete drilling sequences

sequences. α has a value near 1.108 for most of the drilling sequences (Fig. 9a), indi-
cating that SAA of NPV is almost 10% higher than the NPV computed using the mean
model. To accurately estimate the expected NPV, it is necessary to correct the bias in
the initial approximation that is obtained in the reservoir mean model. Out of the 560
drilling sequences, only 22 (approximately 4%) sequences have α values lower than
1.09, whereas β changes between 0.6 and 1.5 with a larger variability (Fig. 9b). Inter-
estingly, almost all of the drilling sequences with atypical bias correction factor α are
from two extreme drilling sequences, i.e., either all producers or all injectors are drilled
first. The results of these two combinations are plotted in yellow. This finding was
unexpected and suggests that to more accurately estimate the bias for general drilling
sequences, we should avoid sampling controls from these two extreme combinations
since they seem to provide less useful information and vice versa.

(a) Distribution of bias correction factor α (b) Distribution of partial correction factor β

Figure 9: Comparison of the distributions of α and β of 560 different complete general drilling sequences

Figure 10 compares the distributions of variance in β at a fixed reservoir model and
a fixed control after eliminating two extreme combinations (i.e., [P, P, P, P, P, W, W, W]
and [W, W, W, P, P, P, P, P]). As previously observed in Fig. 8, the variability of β among
different drilling sequences at a fixed reservoir model is smaller than the variability of
β among different reservoir models at a fixed drilling sequence. The average value of
α can be estimated by averaging all observed values in β from distinct controls. In
this example, the variance in α is only 0.000058 for general drilling sequences. The
estimates of expected NPV with a bias correction factor ᾱ could be accurate for most of
the drilling sequences, but this will not always be the case in other problems. For the
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case of large variability in α, we should consider the similarity between the samples and
control variables for estimating the bias for specific controls. In this case, the variability
in β is much larger than the variability in α for general complete drilling sequences, and
the ratio σ2β/σ

2
α is almost 267. For a small number of samples, local estimates α̂loc based

on β (Eq. 12) might be away from the actual bias correction factor. The error of local
estimates caused by sampling error due to small sample size could be as large as 40%.
Hence, it is critical for this problem to use a taper length with a relatively large effective
sample size for pure distance-based localization or apply regularized localization to
avoid generating estimates that are far away from ᾱ.

Figure 10: Distribution of variance in β at a fixed model or a fixed control

To measure the similarity of drilling sequences for the bias correction factor, we
investigate the use of four different distance metrics (i.e., the Manhattan, Euclidean,
cosine, and Hamming distances). Figure 11a shows the empirical variograms of α for
these four distance metrics. We observe that all four variograms show an approximately
linear increase with distance over most of their ranges. Overall, each of these four
distance metrics can measure the similarity of drilling sequences for expected NPV. For
the purpose of identifying similar drilling sequences, a measure of distance is better
than another if it correlates better over larger numbers of samples.

Figure 11b shows the cumulative fraction of drilling sequences within an upper
bound on the variogram of α. Among a set of random controls, very few of them
will have small Hamming distances. We note that, compared with the other three
distance metrics, the Hamming distance yields fewer similar drilling sequences at a
fixed threshold variance of α. In other words, when a fixed fraction of samples is
considered for local estimation, drilling sequences extracted by the Hamming distance
will potentially have more significant variability in α. By contrast, the Manhattan,
Euclidean and cosine distance metrics have similar behaviors and all perform better than
the Hamming distance for local estimation based on the observations from randomly
selected drilling sequences. In our subsequent experiments, we use the Manhattan
distance to measure the distance between two drilling sequences for estimating α values
for specific controls.

Accuracy of estimates of α

In this experiment, we compare various methods for estimating the bias correction
factor α of different drilling sequences. We first sample a number (Nx) of distinct
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(a) Empirical variogram of the bias correction factor α as obtained us-
ing different distance metrics

(b) Cumulative fraction of sequences within a certain upper bound on
the variogram of α

Figure 11: Performance comparison of four distance metrics applied in the drilling-order problem

general drilling sequences to obtain a set of observations of β, which requires 2 × Nx

simulations. To evaluate the quality of each of the three approaches (i.e., average bias
correction factor, pure-distance localization and regularized localization), we use each
method to estimate α for 540 different drilling sequences. Estimation of α for various
drilling sequences using these approaches does not require additional samples of β, but
to estimate the expected NPV of a specific drilling sequence, we need to perform one
additional simulation using the mean model to obtain the initial approximate value of
expected NPV. In other words, the amount of computation required for computing the
expected NPV of 540 sequences by using the information from 100 distinct controls
and individual realizations is 2× 100 + 540 = 740 simulations, which is much less than
the cost for SAA (54,000 simulations). In this experiment, we use the accuracy of the
estimated α as a criterion for judging the quality of the expected NPV based on the
reservoir mean model with bias correction.

Figure 12 shows RMSE of the estimates of the 540 values of α based on a set of 100
observed values in β. The black horizontal line indicates the result from a fixed estimated
α obtained by averaging samples of β (Eq. 11). Pure distance-based localization and
regularized localization are applied with different taper lengths between 1 to 200 (for
reference, the maximum Manhattan distance between complete sequences with eight
wells is 32). We observe that purely local estimates α̂loc are potentially more accurate
than the estimates computed by averaging over samples of β when a taper length of
L > 26 is used. In this case, the effective sample size is relatively large (neff > 80),
and the best value of the taper length in this test is approximately 34. When the taper
length extends over 170, all samples are assigned high weights and the performance
is close to the approximation of ᾱ. On the contrary, the quality of local estimates is
very sensitive to the taper length because of sampling error when the taper length is
small (e.g., neff ≈ 10 at L = 15). The error of estimated values resulting from the small
number of samples is significant.

Since our estimate of optimal weighting in regularized estimation of α depends on the
value of σ2α, which we are unlikely to know accurately, we investigated the sensitivity of
results to variation in the magnitude of the weighting term. Three different levels of the
ratio of the variance of α and β (i.e., λ = 0.1 · σ2β/σ2αneff , σ2β/σ2αneff , and 10 · σ2β/σ2αneff)
were evaluated. For λ = 10 · σ2β/σ2αneff , the regularized estimates α̂r are close to ᾱ

and the RMSE is similar. For λ = 0.1 · σ2β/σ2αneff , the effect of regularization is small;
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consequently, the estimates at a small taper length are inaccurate due to sampling errors.
However, the results show that λ = σ2β/σ

2
αneff reduces the sensitivity of the estimates to

the taper length, while still generating more accurate values even for cases with a small
number of samples. As a result, the corresponding regularized estimates are potentially
more accurate for a wider range of taper lengths.

Figure 12: Comparison of the RMSEs of estimates of α obtained using different approaches based on 100 observed values of
β

To reduce the influence of sampling error on the conclusions, we repeat each exper-
iment 100 times, each time using a fresh sample of controls to obtain observations of
β. For every single test, we apply three different sample sizes (Nx = 100, 200, and 400)
to investigate the effect of the sample size on the accuracy of the estimated α and the
best value of the taper length for distance-based localization. Figure 13 shows the RM-
SEs of α estimates obtained using different approaches with the three different sample
sizes after repeating each test 100 times. In general, the estimates are improved by us-
ing more samples. The improvement, however, is small for estimates obtained without
localization (horizontal dashed lines) as the estimate of the mean for β is already quite
accurate for Nx = 200.

Distance-based localization offers a further increase in accuracy, and the improve-
ment is more significant with a larger sample size. In this example, we observe that the
RMSE of the local estimates at the optimal taper length is close to that of the estimates
computed from the optimal weights based on the covariance of the partial correction
factors (Eq. 26). For the drilling-order problem, the well-position based distance distri-
bution obtained from a fixed set of random controls changes slightly when the control
variable for estimating the bias correction factor is varied. In such a case, the distri-
butions of elements in covariance matrix cov(b,b0) (Eq. 42) in terms of the distance
is stable. The variance of the correction factor increases almost linearly with distance,
making the optimal weight based on the covariance of partial correction factors de-
creases with the distance of the samples. As a result, the optimal weights would be
close to the local weights at the optimal taper length for the drilling-order problem.

As observed previously, regularization with λ = σ2β/σ
2
αneff appears to always produce

more accurate estimates of α than those obtained by averaging of all values of β. When
the taper length is greater than a certain threshold, it seems that pure distance-based
localization slightly outperforms regularized localization. The reason for this is that
local estimates are potentially more accurate than ᾱ with large effective sample sizes;
however, the regularization term reduces the effect of localization and results in estimates
that are closer to ᾱ. Both the variance of α and the best value of the taper length are
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generally unknown. Therefore, instead of using regularized localization based on an
uncertain value of σ2α/σ2β, for this problem we use pure distance-based localization with
a relatively large effective sample size to estimate α values for different controls.

Figure 13: RMSEs of estimates of α with three different sample sizes

We investigated the effect of taper length on the error in the estimate of bias correction
factor, α, for three different sample sizes. For each sample size, we repeated the
experiment 100 times to obtain reliable estimates. The results show that the optimal
taper length for local estimates of α decreases as the sample size increases (Fig. 13). As
the optimal taper length is also subject to sampling error, we investigated the variability.
Figure 14 compares the frequency distributions of the optimal taper lengths for each
ensemble size. When only 100 samples are used to estimate α, the best value of taper
length is shown to be highly sensitive to the initial samples (histogram in blue). In
approximately 1/3 of the cases, the optimal taper length is larger than 200, which means
that the average value of all β will provide a better estimate than a purely distance
based weighting with a small taper length. For some controls, the actual α values
might be very close to ᾱ, such that more samples will be required for local estimation
to provide any further improvement in accuracy. When Nx is increased from 100 to
400, the optimal taper length is less variable, varying between 25 and 30 in most cases
(histogram in green). It seems that for cases with sample sizes larger than the ratio
σ2β/σ

2
α, the best value of the taper length is likely to lie near a point where the value of

σ2β/σ
2
αneff is approximately 1. In that case, the variability in the local estimates will be

Figure 14: Distribution of the optimal taper length for the pure distance-based localization
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(a) Distribution of the bias correction factor α (b) Distribution of the partial correction factor β

(c) Distributions of the variance of β for a fixed model and a fixed heuris-
tic sequence

Figure 15: Distributions of α, β, and σ2
β of heuristic drilling sequences

close to the variability in the actual α values. When the variance of α is unknown, it
might be difficult to select the best value of the taper length. However the results show
that the local estimates are not highly sensitive to the taper length when the effective
sample size is relatively large, in which case local estimates are still more accurate than
estimates obtained using the average value of β.

Correction factors for heuristic sequences

During the heuristic search process, a set of heuristic sequences with different numbers
of selected wells is used in combination with online learning techniques to estimate
the maximum value among the possible complete drilling sequences constrained by
previous wells. Hence, we need to compute the expected NPVs of some specific
heuristic sequences to optimize either an entire drilling sequence or only the first few
wells when applying a learned heuristic search. In this experiment, we study the bias
properties of heuristic sequences and the possibility of using mean model bias correction
to accurately estimate their expected NPVs.

Figures 15a and 15b show the distributions of α and β from 550 random heuristic
sequences, 400 of which have fewer than four selected wells (i.e., all possible heuristic
sequences with Ns ≤ 3 are considered). The histogram in orange represents the bias
from the heuristic sequences in which either all producers or all injectors are drilled
sequentially first. Figure 15c compares the distributions of the variance of β for a fixed
reservoir model and a fixed heuristic sequence after the elimination of controls from
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those two extreme combinations. Relative to the observations for complete drilling
sequences, the bias for heuristic sequences has some similar properties: (1) the ᾱ for
heuristic sequences is close to that for complete sequences, but the variability in α is
smaller; (2) heuristic sequences in which either all producers or all injectors are drilled
first have atypical and relatively smaller values of α; (3) β values for heuristic and
complete sequences have similar distributions, and the variability in β is much larger
than the variability in α; and (4) the variance of β among different heuristic sequences
for a fixed model is much smaller than that among different realizations for a fixed
heuristic sequence. We observe that the variance of α for heuristic sequences is only
0.0000168. In this case, the expected NPV that is estimated from the mean model with
ᾱ will have a high level of accuracy. Distance-based localization might require a large
number of samples to improve the estimates, and even then, the improvement will be
small.

Figure 16 shows the empirical variogram of α for heuristic sequences based on the
Manhattan distance. The number of selected wells constrains the distance between
heuristic sequences. For eight wells, the maximum Manhattan distance between heuris-
tic sequences with fewer than four selected wells is only 12. For the sequences in which
at least half of the wells are drilled simultaneously (Ns ≤ 4), while the variance of α in-
creases with distance, the correlation of α is still strong even for the sequences with the
largest distance. For Ns ≤ 5 and Ns ≤ 6, however, the variance of α decreases beyond a
certain distance. The main reason for this is that heuristic sequences with a significant
gap in Ns generally have a large distance, but they might also have similar values of α.
If we sample heuristic sequences with a large Ns (i.e., in which most of the wells are
drilled sequentially) to estimate the bias for sequences with a small Ns (i.e., in which
most of the wells are drilled simultaneously), distance-based localization might not sig-
nificantly improve the estimates even with a large number of samples, since most of
the samples will be at long distances, but may still have similar α values. Therefore,
to ensure the effectiveness of distance-based localization, we should use samples with
a small gap in Ns to estimate the bias for specific heuristic sequences with Ns selected
wells.

Figure 16: Empirical variogram of α for heuristic sequences based on the Manhattan distance

Figure 17 shows the RMSEs of the estimated α values for heuristic sequences with
different numbers of selected wells obtained by using the information of distinct heuristic
controls. As in the previous section, to reduce the sampling error, we repeat each
experiment 100 times. As expected, the results show that the average value of β is a
good approximation of α for most heuristic sequences due to the small variability in
α. The error in the estimates can be only slightly reduced from 0.0034 to 0.0032 by
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Figure 17: RMSEs of estimates of α for heuristic sequences obtained using different approaches

increasing the sample size from 100 to 400, but at the cost of 600 additional simulations.
In this case, it is not necessary to use a larger sample size to improve the estimates.
The estimated α based on 100 observed values of β is already very close to the actual
α values, although this might not always be the case in other problems. The effect
of distance-based localization is small even if we use Nx = 400, which means that
more samples would be needed for distance-based localization to improve the estimates
further. As observed in the case of complete drilling sequences, the regularized estimates
obtained from heuristic sequences also prove that a regularization term based on ᾱ with
a parameter of σ2β/σ2αneff reduces the sensitivity of the estimates to the taper length, such
that the estimates are potentially more accurate for a wider range of taper lengths. The
results for both complete and heuristic sequences illustrate the effectiveness of using
MMBC to estimate the expected NPV. Although the effect of localization on improving
the estimates is relatively small in this example, this might not always be the case
in other problems. For cases with considerable variability in α, the improvement in
accuracy achieved by using distance-based localization with an appropriate taper length
or regularized localization will be more significant.

Robust optimization under geological uncertainty
Optimization of complete sequences

In this experiment, we apply learned heuristic search with MMBC to compute the
RO drilling sequence under geological uncertainty. A set of 100 random heuristic
drilling sequences with different numbers of selected wells is used to generate 100
observations of the partial correction factor β. This requires 200 simulations, as the
NPV must be computed for the drilling sequence run using the mean model, and for a
model realization. Because the variance of α is unknown, we apply pure distance-based
localization to estimate the bias for different drilling sequences. To avoid inaccuracy in
the local estimates caused by sampling error due to a small sample size, we choose a taper
length near 50, which is large enough to ensure that the effective sample size is relatively
large. To evaluate the effectiveness of the various approaches, we compute the “gold
standard” RO strategy based on SAA and the NO strategies of individual realizations.
The performance of RO/NO optimal strategies is investigated by comparing their NPV
distributions in the entire ensemble of 100 realizations with that of 560 random complete
drilling sequences.
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Figure 18 shows MLHS-SR search strategy applied to the mean model with bias
correction. To speed up the search process while maintaining the highest possible
solution quality after space reduction, we consider at least half of the remaining wells
with high economic indicator values as the next possible actions (i.e., prior space
reduction) and preserve three partial paths with the highest estimated expected NPVs
for the remaining search process (i.e., posterior space reduction). For nodes marked in
orange, the paths through them have the highest estimated expected NPV for complete
sequences and have been expanded in the most promising directions. For each selected
direction, only the partial paths go through blue nodes (or orange nodes if the paths have
been extended), and black nodes are evaluated after prior space reduction. However, the
paths with black nodes are pruned in the process of posterior space reduction due to their
lower estimated values and will not be considered during the search process. In this case,
the search evaluates 46 paths through 13 decision steps to optimize an entire drilling
sequence: [OP_3, WI_1, WI_2, OP_1, OP_4, WI_3, OP_2, OP_5]. Considering the
cost of obtaining the partial correction factor β (200 simulations), only 246 simulations
are required to compute the RO drilling sequence for eight wells. For comparison, when
MLHS-SR is used with SAA, it is necessary to perform more than 3,000 simulations
to obtain a solution with the same quality. By more extensively reducing the search
space, we can find the same solution faster (235 simulations). However, excessive space
reduction (e.g., searching along only one direction) will lead to a drilling sequence with
a less-than-optimal value (-0.71%). Because a large fraction of the cost is a result of
estimation of the bias correction factor, the cost reduction achieved by evaluating fewer
controls might not be very significant, especially for small fields with large ensemble
sizes. In such cases, it is not advisable to prune the space significantly to reduce the
cost, because the computational cost might be reduced only slightly while yielding a
solution with a suboptimal value.

The percentage presented near each node in Fig. 18 represents the error of the
estimated expected NPV of each partial path (i.e., heuristic sequences) compared with
SAA. The average error of the estimated expected NPV from the mean model is reduced
from -9.20% to 0.21% by estimation of the bias correction factor. The maximum error
on the estimated expected NPV is only 0.54%. In this example, by using the information
from only 100 samples of the drilling sequence and individual model realizations, the
expected NPVs of different drilling sequences can be accurately estimated. The optimal
drilling order from the learned heuristic search is computed by repeatedly expanding the
search in the directions with the highest estimated values. Because the bias correction
factor for the drilling-order problem in the REEK Field is relatively stable, adding such
a multiplicative factor does not significantly change the initial ranking of the heuristic
sequences in the mean model. Hence, we observe that MLHS-SR performed directly
in the mean model (i.e., linear approximation) finds the same solution obtained using
the bias-corrected mean model. However, for the cases with considerable variability in
α, a learned heuristic search with MMBC can potentially find a better drilling sequence
than that obtained using the linear approximation.

Figure 19 shows the error on the maximum expected NPV of the complete drilling
sequence along the optimal path that is estimated by using heuristic sequences with
MMBC and online learning techniques. We first remove the bias in the initial ap-
proximations of the expected NPV obtained from the mean model by estimating a bias
correction factor α (green curve → blue curve), and we then correct the estimates of



145

Figure 18: Search strategy of MLHS-SR

the maximum expected NPV obtained from heuristic sequences through online learn-
ing mechanisms (blue curve → orange curve). We notice that the initial estimates of the
maximum expected NPV from heuristic sequences (blue curve) always overestimate the
actual maximum value for the complete sequence and show an exponentially decaying
trend with an increasing decay factor throughout the search process. However, the ac-
curacy of the estimated maximum expected NPV is significantly improved by learning
the errors on approximate values obtained from previous drilling steps (orange curve).
In this case, the average error along the optimal path is only 0.22%. With such accu-
rate estimates, the final optimized sequence is very likely to have a high expected NPV
and to be near the true optimal sequence. When MLHS is applied without any space
reduction, the average NPV of the optimized sequence is 0.60% lower than that of the
solution obtained with space reduction. The main reason for this is that some estimated
values underestimate the actual maximum value (e.g., the error for the partial path with
three selected wells is -1.03%), meaning that if the expected NPV of the current solu-
tion is higher than all of these underestimated values, the search will terminate with the
current solution. In this experiment, an appreciable amount of space reduction (e.g., at
least half of the remaining wells are considered as the next possible action) is shown to
effectively prune paths that are less likely to correspond to the optimal drilling order,
leading to a better solution with a lower cost.

Figure 20 compares the NPV distributions for RO/NO sequences and a set of 560
random drilling sequences. The results show that the average NPV is significantly
increased by optimizing the drilling sequence with a learned heuristic search. RO
sequence has a higher average NPV than either the NO solutions or the set of random
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Figure 19: Error of estimates of maximum NPV along the optimal path

Average NPV (E09 USD) Simulations % change
Robust Optimization 8.15 246 Ref
Nominal Optimization 7.66 to 8.15 22 to 49 -6.04% to 0
Random Sequences 6.04 to 8.12 - -25.86% to -0.36%

Table 2: Comparison of robust and nominal optimization results

drilling sequences, being as much as 25.86% higher than the average NPVs of some of
the random drilling sequences. Table 2 summarizes the optimization results for each
of the approaches. At the cost of approximately 200 additional simulations, the RO
strategy obtained from the mean model with bias correction is shown to be significantly
better than the deterministic solutions for individual realizations. We observe many of
the NO strategies have similar NPV distributions over a set of 100 realizations. It seems
that in the REEK model, the optimal drilling sequence does not vary significantly with
the geological uncertainty.

(a) Average NPVs of RO/NO solutions and random drilling sequences (b) PDFs based on a set of 100 realizations of RO/NO optimal solu-
tions and random drilling sequences

Figure 20: Results obtained through learned heuristic search strategies compared with random drilling sequences

Although the geological properties vary significantly from realization to realization,
the optimized deterministic well sequences for 100 model realizations have common
characteristics. In particular, the optimized sequence for each single realization always
starts with one producer and one injector, in that order. For 92 of the 100 individual
realizations, the last well drilled in the optimal sequence is a producer. In most cases,
Producer OP_3, and Injector WI_1 are drilled first, and Producer OP_5 is the last well
drilled. In the REEK Field case, with five producers and three injectors, the optimal
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wells for these three drilling positions appear to be nearly independent of the geological
properties. As a result, the RO solution is likely to be near several deterministic optimal
solutions for this field. It is clear that this will not always be the case for other fields.

Partial optimization

Wang and Dean [40] have shown that learned heuristic search is a viable means of
solving the sequential drilling-order problem for complete sequences. In many cases,
however, only the first few wells in the drilling sequence may be needed. As shown
in Fig. 18, the optimal partial path will not always extend in only one direction during
the search. In such cases, it is not guaranteed that the first few wells can always be
optimized along the final optimal complete sequence by limiting the depth of the search
path. In this experiment, we investigate the possibility of optimizing the first few wells
without finding the entire optimal sequence by performing learned heuristic search with
a limited depth (i.e., a depth-limited search and an iterative depth-limited search).

(a) Depth-limited search strategy of the first two wells (b) Depth-limited search strategy of the first three wells

Figure 21: Optimization of the first two and three wells using MLHS-SR with DLS

Figure 21 shows the search strategies for the first two and three wells using MLHS-SR
with depth-limited search (DLS). To optimize the first few wells, we terminate the search
with the first selected partial path that includes one additional well. Figure 21a shows
that the first optimal partial path with three selected wells is [OP_3, WI_1, OP_2], which
indicates that the optimized sequence of the first two wells is [OP_3, WI_1]. The path
through Producer OP_3 and Injector WI_1 has been previously expanded as the most
promising direction in the second decision step; however, the search changes direction
after the evaluation of the extended partial paths due to their underestimated values.
Seven additional decision steps are required to guide the search back to the path along
the final optimized complete sequence. In this case, if the search were to be stopped
immediately with the first selected partial path with two wells (i.e.,[OP_3, WI_1] ), then
the same solution for the first two wells could be obtained faster (i.e., 26 simulations
would be eliminated). However, this will not always be the case for other search depths.
Figure 21b shows that although the first expanded direction with three selected wells
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is [OP_3, WI_1, OP_2], the path with four wells [OP_3, WI_1, WI_2, OP_1] provides
a better solution for the first three wells (i.e., [OP_3, WI_1, WI_2]) since with more
observations from longer paths, online learning mechanisms can improve the estimated
values and guide the search closer to the true optimal solution. A total of 234 and 240
simulations are required to optimize the first two and three wells, respectively, under
geological uncertainty, of which 34 and 40 simulations, respectively, are performed
during the search process.

(a) IDLS strategy for the first two wells (b) IDLS strategy for the first three wells

Figure 22: Optimization of the first two and three wells using MLHS-SR with IDLS

Figure 22 shows the search strategies for the first two and three wells using MLHS-
SR with iterative depth-limited search (IDLS). In each decision step, we consider only
the paths extended from the previous decisions and optimize the next well based on
the first selected partial path with two more wells. We optimize the first well based on
the first-visited best partial path with two selected wells (i.e., [OP_3, WI_1]), then we
compute the second well based on the paths starting with OP_3. In contrast to the search
strategies obtained using DLS, as shown in Fig. 21, the paths starting with Injector
WI_1 and Producer OP_4 are pruned, thus avoiding 14 simulations. Figure 23 shows
the numbers of simulations needed to optimize the first few wells by using MLHS-SR
with DLS and IDLS. The results for this example show that both methods can be used to
optimize the first few wells along the final optimized complete sequence by controlling
the search depth, but IDLS finds a solution faster by eliminating some unnecessary node
evaluations caused by underestimated values.

The performance of DLS and IDLS depends on the online learning techniques
applied. When the estimated values are sufficiently accurate such that the search
process will expand the path in only one direction, both DLS and IDLS can optimize
the first few wells along the final optimal complete drilling sequence at the same cost.
However, the estimated values are generally less accurate earlier in the search process
due to the lack of previous sequential observations, meaning that the search might later
change direction. Compared with DLS, IDLS is more likely to optimize the first few
wells faster without any loss of the solution quality since paths with low NPV generally
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will not continue to be extended when appropriate online learning mechanisms are used.
In this case, because only 246 simulations are needed to optimize an entire sequence
for eight wells via MLHS-SR, the cost reduction achieved by optimizing only the first
few wells is not very significant. For larger fields, however, MLHS-SR with IDLS can
be used to efficiently optimize only the first few wells in the sequence.

Figure 23: Comparison of the costs of optimizing the first few wells using MLHS-SR with DLS and IDLS

Conclusions

In this paper, we presented a methodology for robust optimization of the expected value
of an expensive-to-compute objective function for which the uncertainty is character-
ized by an ensemble of model realizations. A straightforward approach using sample
averaging to approximate the expected value is prohibitively expensive in most real
reservoir applications. In our approach, we compute a multiplicative bias correction
to the value of the objective function computed from the first term of the Taylor series
expansion. Computation of the bias correction requires two function evaluations for
each random sample of the control variables: one evaluation using the mean reservoir
model and a second evaluation using a random model realization. Our results show that
the information from distinct controls and individual realizations can be used to accu-
rately estimate the bias in the approximation of expected NPV obtained from the mean
model and that robust optimization can be performed with good approximations of the
expected NPV while requiring many fewer simulation runs than SAA. Based on our
experiments, we arrive at the following conclusions:

• Approximations of the expected NPV obtained using the mean reservoir model are
generally poor compared with estimates obtained using SAA, but approximations
from the mean model can be significantly improved by estimating a multiplica-
tive bias correction factor, which is estimated by simulating a modest number of
randomly selected controls on both reservoir realizations and the mean reservoir
model.

• Distance-based localization can improve the estimated values of the correction
factor. The performance of this approach the estimation of the bias-correction
factor depends on the distance measure and the taper length, both of which must
be estimated.

• Regularized localization with an appropriate parameter based on the variance of
the bias correction factor reduces the sensitivity of the estimates to the taper length;
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consequently, regularized estimates are accurate for a wider range of taper lengths.
When the variance of the bias correction factor is known, regularized localization
is the preferred method.

• The RO solutions obtained using MMBC and SAA are of similar quality and are
both superior to the deterministic solutions for individual realizations and the mean
reservoir model (i.e., linear approximation).

• A learned heuristic search can be performed either to optimize complete drilling
sequences or to optimize only the first few wells in the sequence at a reduced cost
by limiting the search depth. Compared with DLS approach, a solution of the same
quality can be found faster by performing an IDLS with effective online learning
techniques.

The major advantage of using mean model bias correction is that we only need
to perform simulation using the mean model to obtain an initial approximate value
of expected NPV, for which the bias will be corrected by a multiplicative correction
factor estimated based on the observations of partial corrections from similar controls.
Although the methodology was applied to the problem of determining optimal drilling
order, the methodology is fairly general and does not require that the objective function
be general or that the control variables be continuous. The effect of localization of the
estimate could be significant in the case of large variability in the bias correction factor,
especially when the ensemble size is large such that more observations from distinct
controls and individual realizations could be used for bias estimation. However, to
ensure the effectiveness of distance-based localization for bias correction, we need to
design appropriate distance measures for identification of sets of similar controls. For
the drilling-order problem, a distance metric based on the well position can effectively
measure the similarity between drilling sequences. In this work, we presented a method
for efficiently estimating the expected value of an objective function by applying a
multiplicative bias correction to the value obtained from the mean model. It would
not be difficult to modify the bias-correction method for use in multiple objective
optimizations under uncertainty (e.g., standard deviation, percentiles, expected value).
For example, it would be possible to compute an estimate of the variance of the objective-
function value, by squaring the value of the objective function from the mean model
and multiplying it by the variance of partial corrections, which can also be estimated by
using information from distinct controls and individual model realizations.
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f∗ actual expected objective function value of optimal control

f∗ maximum net present value of optimal control

α bias correction factor

α bias correction factor

ᾱ average value of bias correction factor

ε̄ mean observed single-step error of estimated value

m̄ expected value of model parameter

m̄ expected value of model parameter

γ̄ mean observed single-step ratio of estimated value

μ̄ mean observed single-step ratio of variability in estimated value

μ̄ns mean single-step ratio of variability in estimated value

β partial correction factor for individual realizations

β partial correction factor

Δt time interval

Δt time interval

Δx length interval

δ distance between controls

γ single-step ratio of estimated value

γ single-step ratio of estimated value

α̂loc local estimate

α̂r regularized estimate

γ̂ forecast error of initial evaluation function value

f̂ learned evaluation function

f̂ learned evaluation function

ĥ learned heuristic function
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γ̂ estimated single-step ratio of estimated value

μ̂ estimated single-step ratio of variability in estimated value

λ regularization parameter/Lagrangian parameter (depending on context)

b0 vector of β at a fixed control x0
b vector of β from random controls and realizations

P vector of drilling sequence

w weight vector of β

ECOIa∗→akey hidden cost of information caused by sub-optimal solutions constrained to
decision akey

EVOI expected value of information

EVOIa∗→akey expected value of information changing decision a∗ to akey

EVWI expected value with information

EVWOI expected value without information

μ single-step ratio of variability in estimated value

μ viscosity of fluid

ω weight

Ωb key observation subspace

ρ distance-based weight

σ2α variance of bias correction factor α

σ2β variance of partial correction factor β

θ permeability

Θm subregion of key uncertainty

ε single-step error of estimated value

A cross-sectional area

A decision space

a decision alternative

a∗ optimal decision over the current assessment of uncertainty

a∗
fl optimal decision considering future information from current decision stage

a∗
fs optimal decision considering future information from all remaining decision

stages

a
key decision alternative providing important information for key uncertainty reduc-

tion
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b discount rate

b discount rate

C covariance of model parameter

d number of remaining actions

d number of remaining actions

E expected value of objective function

EV ∗ maximum expected value over current uncertainty state

f evaluation function/estimated maximum net present value

f objective function/evaluation function (depending on context)

fm first derivatives of objective function with respect to model parameter

fmm second derivatives of objective function with respect to model parameter

g actual economic value from previous actions

g economic value from previous actions

h heuristic function/estimated maximum future value

h heuristic function/estimated maximum future value

h history of past decisions and observations

h∗ maximum future value

IWEI injector economic index

J objective function

k log-permeability

L taper length

m model parameter

m model parameter

neff effective sample size

ns environment state at decision stage

ns environment state at decision stage

NΩb Number of observation subspaces

Ne Ensemble size

Ne total number of model realizations

Nr number of selected wells

Ns number of remaining wells
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Ns number of selected wells

Nw total number of wells

Nw total number of wells

Nx total number of random controls

NPV net present value

NPV net present value

O observation space

o observation obtained from specific decision

ob best observation subset for key uncertainty reduction

P pressure

P (Ωb | Θm) probability of observing ob ∈ Ωb at key uncertainty subregion Θm

P (Θm | Ωb) posterior probability of key uncertainty subregion Θm with observation
ob ∈ Ωb

P (Θm) prior probability of key uncertainty subregion Θm

P (o | h, a) probability of observing o from decision a following history h

PWEI producer economic index

q production/injection rate

q production/injection rate

Q∗ maximum expected value over all possible future observations from all remaining
actions

r reward/cost

r reward/cost

T total number of time steps

T total number of time steps

t time

t time

u uncertainty state

W cost of drilling well

W cost of drilling well

x control variable

x control variable

ΔtΦ learning time period
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ΔtL learning time period

Φ learning technique index

fn evaluation function at a specific state

fn evaluation function at a specific state

hn heuristic function at a specific state

hn heuristic function at a specific state

i control index/learning period index/cell index (depending on context)

i key uncertainty subregion index

j decision stage index/model realization index (depending on context)

j model realization index/time step index(depending on context)

j time step index

k key observation subspace index

k well index

L learning technique index

o oil

o oil

s decision stage

s decision stage

w water/well (depending on context)

w water/well(depending on context)

wi water injection

wi water injection

cos Cosine distance

L1 Manhattan distance

L2 Euclidean distance

eff effective sample size

m̄ reservoir mean model

Φ learning

i injection

i injection

L learning
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p production

p production

b best observation subset

lin linear approximation

m model parameter

o observation

quad quadratic approximation
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Appendix 1

To go from the second line to the third line in (24), recall that

E[bbT ] = cov(b,b) + E[b]E[bT ] (33)

Assuming stationarity, this simplifies to

E[bbT ] = cov(b,b) + ᾱ211T (34)

Similarly
E[bbT

0 ] = cov(b,b0) + ᾱ211T (35)
The unbiasedness condition gives that

ᾱ211Tw =
1

N
ᾱ211T1. (36)

Appendix 2

The covariance function C is related to the variance and the semivariogram,

C(h) = σ2 − γ(h), (37)

where σ2 is the variance, h is the distance between two observations, and γ(h) is the
semivariogram at distance h.

Since the observation β is obtained from random controls of individual realizations,
we need to model the covariance function of β with two terms, i.e., variability in β at a
fixed model realization and variability in β at a fixed control variable,

Cβ = Cβ(hx) + Cβ(hm), (38)
where Cβ(hx) is the covariance function for β at fixed model realization; hx is distance
between observations; Cβ(hm) is the covariance function for β at fixed control variable;
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hm is the distance of realizations corresponding to the observed controls, i.e., hm = 0
if observed values are from the same realization, hm = 1 if observed values are from
different realizations.

Cβ(hx) can be obtained from the average variogram of β of all ensemble realizations,

Cβ(hx) =
1

N

N∑
j=1

σ2β(mj)− 1

N

N∑
j=1

γ(hx,mj), (39)

where σ2β(mj) and γ(hx,mj) are the variance and variogram of β at a fixed realization
mj , respectively.

For fixed control variable, the values of βij and βij′ will be correlated for model
realizations mj and mj′ at a small distance. Here, we assume that the model realizations
are far enough apart such that the observed values of β from different realizations
are independent. Then the covariance function for β for fixed control variable can be
described as

Cβ(hm) =

{
1
Nx

∑Nx

k=1 σ
2
β(xk) if hm = 0

0 if hm = 1,
(40)

where σ2β(xk) is the variance of observed β from different realizations at a fixed control
xk.

cov(bbT ) =

⎡
⎢⎢⎢⎣

cov(β11, β11) cov(β11, β22) · · · cov(β11, βNN )
cov(β22, β11) cov(β22, β22) cov(β22, βNN )

...
. . .

...
cov(βNN , β11) cov(βNN , β22) · · · cov(βNN , βNN )

⎤
⎥⎥⎥⎦ (41)

cov(bbT
0 ) =

⎡
⎢⎢⎢⎣

cov(β11, β01) cov(β11, β02) · · · cov(β11, β0N )
cov(β22, β01) cov(β22, β02) cov(β22, β0N )

...
. . .

...
cov(βNN , β01) cov(βNN , β02) · · · cov(βNN , β0N )

⎤
⎥⎥⎥⎦ (42)
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Abstract

In sequential field development planning, past decisions not only directly affect the
maximum achievable expected NPV but also influence the future information that can
be used to reduce geological uncertainty. To act optimally, when choosing actions, we
must also take into account the opportunities to improve the optimal strategy by reducing
future uncertainty. In most applications, however, the effect of future information on
the optimal decisions is ignored because it would be computationally intractable to
update the reservoir model and re-optimize to account for all possible outcomes of
future observations. To efficiently make optimal decisions while considering future
possibilities for learning through actions, we developed a flexible workflow built on the
key-feature-based value of information (VOI) analysis, which is obtained by identifying
key reservoir features for optimization problems and key observations for improving
future decisions. Instead of considering future information from all remaining actions,
we only consider the important information from key actions to reduce the uncertainty
with the largest influence on the optimal strategy – that which would be most helpful in
improving future decisions. The efficiency of the method results from the focus on the
use of key observations to reduce key uncertainty, rather than using all observations to
reduce all uncertainties.

In this work, we built supervised-learning algorithms to identify the optimal combi-
nation of observations for reducing key uncertainty and simultaneously to estimate the
information’s reliability. This allows automatic detection of key observations and direct
computation of the posterior probability distribution of key uncertainty based on Bayes’
rule, avoiding the need for full history matching to re-estimate the uncertainty. More-
over, the entire key observation space is divided into a limited number of disjointed
subspaces, such that observations located in the same subspace have almost the same
prediction precision for key uncertainty reduction. It is then only necessary to update
the reservoir model for each subspace instead of for all distinct sets of observations. Our
methods are illustrated by the application of the drilling-order problem in a synthetic
field model, for which the drilling sequence of wells is an important contributor to the
reservoir’s profitability and for which the optimal solution changes significantly with
key reservoir features. Results show that using such a simplified VOI analysis based
on key actions and key observations can efficiently improve the expected outcome of
an optimal strategy with very little performance loss. Although the key actions provide
important information for key uncertainty reduction, taking key action rather than the
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initial optimal decision for the current uncertainty state is not always worthwhile even
if the information is obtained without explicit cost. Since there may be an indirect cost
of information caused by taking an action that appears to be sub-optimal based on past
information, it is necessary to consider both the possibility of key uncertainty reduction
and the possibility of high expected NPV to determine whether it is worth taking the
action to improve future decisions.

Keywords: Dynamic sequential-decision making; Value-of-information analysis;
Future learning possibility; Key uncertainty reduction; Supervised learning; Robust
optimization;

Introduction

Almost all published reservoir management or field development optimization studies
have as a goal, the generation of a sequence of actions that is optimal for the current
level of knowledge. There is an implicit assumption that the sequence that is delivered
should be adhered to, whatever the results of the drilling or the control settings. These
strategies, would in fact be optimal if there was no opportunity to later make revisions.
In reality, one would, of course, modify the drilling schedule or the operation of wells as
soon as one obtained new information that revealed a different picture of the reservoir.

How should we account for the possibility of learning from actions when optimizing
field development for expected net present value (NPV)? To account for future learning
requires computation of the value of information (VOI), as it may be advantageous to
“pay” for information by making a decision that appears to be sub-optimal for the current
assessment of uncertainty in reservoir characterization. If the value of the information
obtained by taking an action is greater than the loss of expected NPV, then it is beneficial
to take the action.

Unfortunately, while the need to account for the sequential nature of the field devel-
opment problem is well known, it has generally been ignored in reservoir optimization
[17, 24, 29, 7]. The key challenge is that in order to rigorously compute the value of
information one must consider all possible values of data that might be obtained from
an action then solve a history matching problem with uncertainty assessment for each
possible outcome of the data [2, 4, 16, 1]. Then optimization must be performed to
determine what action should be taken and a value assigned to all possible outcomes.
Although several approaches have been proposed to estimate the value of information
[11, 6, 9, 15, 1] for problems in which production flow data must be assimilated, the
cost of the combined history matching and optimization is prohibitive for realistic prob-
lems. Hence most applications that have considered future learning have had very few
decision options (for example drill or not to drill a well) or to problems in which the
data assimilation is extremely easy and there are few possible data. Even in those cases
however the optimization applications or the data simulation were relatively simple
[8, 3, 16].

The problem of robust optimization, taking into account the possibility of uncertainty
reduction through the acquisition of data, is closely related to the concept of value of
information [25, 12, 5]. The application to closed-loop reservoir management (CLRM)
is of particular interest. Barros et al. [4] compute the value of information obtained from
an optimal CLRM strategy with traditional production observations. The information
is then used to re-estimate uncertainty and re-optimize the controls. They showed that it
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was possible to compute the value of CLRM in a rigorous, but highly expensive, way, but
they did not use the value of information to modify the optimal controls. In an application
to the optimization of drilling order, Hanea et al. [13] also investigated the value of
information but, like Barros et al. [4], did not use the value of information to improve
the expected outcome of optimization. Torrado et al. [27] applied partially observable
Monte-Carlo planning algorithm to optimize the drilling schedule considering future
uncertainty reduction based on observations through an entire drilling sequence. Their
approach is similar to VOI analysis while potentially evaluating only the strategies with
high expected values, and the posterior probabilities of uncertainty are estimated by
sampling deterministic realizations at given previous observations instead of through a
history matching process. Even so, in the case with only two possible observations from
each well, many expensive simulations were still needed to compute the optimal solution,
since drilling sequences with all distinct sequential observations had to be evaluated and
the number of possible combinations was large. A more general application, in which
the value of future information was used to optimize bottom-hole pressure controls on
wells in a single inverted 5-spot pattern, has been described by Barros et al. [1]. The
procedure was shown to increase the expected value of the field although, as in other
applications, the computational cost appears to make the method impractical without
substantial modification.

In this paper, we consider a realistic problem in which there are many possible deci-
sions at each step, and many possible data, which are determined by the decisions, and
but we make the computation manageable by identifying key information that would
help in making optimal decisions and key actions that would result in obtaining that
information. Through VOI analysis, we aim to obtain a more robust decision consid-
ering the opportunities to improve optimal strategy resulting from future uncertainty
reduction. Not all decision alternatives, however, may be able to provide information
for making better future decisions. Instead of considering the effects of future infor-
mation from all possible decisions, an efficient and effective way to account for the
possibility of future learning is only taking into account the important information from
key actions for characterizing key reservoir features for optimization problems. In this
way, a standard VOI analysis with extensive form can be simplified with very little per-
formance loss based on key uncertainty with the largest influence on optimal strategy
and key observations for improving future decisions. Moreover, the entire key observa-
tion space can be divided into a limited number of disjoint subspaces, i.e., observations
located in the same subspace have almost the same prediction precision for key uncer-
tainty reduction. In that case, it is only necessary to update the reservoir model for
each observation subspace instead of for all distinct sets of observations. Using such a
simplified key-feature-based VOI analysis, it is possible to make optimal decisions ef-
ficiently considering future learning possibilities. The performance of this approach is
illustrated by the application of the drilling-order problem in a synthetic field model.
When evaluating the optimal sequence, we neglect the possibility of learning at later
times because that information at late time will generally have smaller effect on the
optimization of the first few steps in the sequence.

By identifying key uncertainty for the optimization problems, we can identify key
actions that would provide the most valuable future information for improving optimal
decisions. To efficiently identify key observations, we build supervised-learning al-
gorithms that are able to capture the mapping between observations and key reservoir
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features to automatically detect the optimal combination of observations and simultane-
ously evaluate the information’s reliability for each observation subspace. This allows
the direct computation of posterior probability of key uncertainty using Bayes’ rule,
avoiding the need for full history matching to re-estimate the uncertainty. Note that here
we are dealing with information content of hypothetical data – data that might be ob-
tained after drilling a well. The actual data that is obtained will be different because the
rates schedule will be different, and the wells may be controlled by tubing head pressure
(THP) instead of bottom-hole pressure (BHP), etc. When the actual data are obtained,
it is feasible to perform an actual history match and update the model, because only one
set of data needs to be history matched in that case.

Hong et al. [16] carefully articulated the concept of VOI from the perspective of
decision analysis, and demonstrated the value of obtaining saturation information in a
2D waterflooded reservoir for design of a polymer flood. They conclude, however, that
VOI analysis plays no role for water, oil, and gas production rate data and well BHP
data “because the data have already been or will definitely be gathered.” In contrast, our
interest is in focused on the value of information that can be obtained from production
data, as the actions that we take in the field control the type of information that is
obtained and the timing of the acquisition. Although the information obtained from
production data may be obtained without explicit cost, it may have a hidden cost if
obtaining it requires one to operate a field sub-optimally for the current uncertainty. An
obvious case is the running of a pressure shut-in test to obtain an estimate of reservoir
pressure or wellbore skin. If the well is already equipped with a downhole gauge, the
cost of the information is largely due to deferred production and the information content
from the data is not due only to the fact that pressures are recorded, but also to the fact
that the control setting has been altered. In our drilling sequence problem, the timing
of information acquisition is at the control of the operator and the “cost” is the loss of
expected NPV incurred by drilling the wells in a sub-optimal sequence. To determine
whether it is worth taking key action earlier in sequence to obtain the information for
improving future decisions, we must evaluate the net expected value of information
with this indirect cost that is associated with changing optimal decisions for current
uncertainty state to key action.

This paper is organized as follows. Section 2 introduces the robust decision-making
problem under uncertainty and the technologies we use for solving this problem, in-
cluding key-feature-based VOI analysis for considering future learning possibilities,
the supervised-learning algorithm for identifying key observations, the learned heuris-
tic search method for optimizing sequence of discrete actions [30] and bias-correction
methods for estimating the expected NPV [31]. Section 3 presents the numerical re-
sults of the drilling-order problem in a synthetic model. In this section, we investigate
the effects of various geological features on the optimal drilling sequence, the reliabil-
ity of the key observations identified using supervised learning models with regard to
key uncertainty reduction, and VOI analysis performances through key actions with dif-
ferent initial probabilities of key uncertainty. Finally, the conclusions of this study are
provided in Section 4.

Methodology
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Robust decision making under uncertainty
The general purpose of robust field development optimization is to identify an optimal
strategy that maximizes the expectation of an objective function (e.g., expected NPV) in
an uncertain reservoir model. Geological uncertainty frequently results in large uncer-
tainty in reservoir performance, but that uncertainty can be reduced using observations
obtained from past decisions through history matching or data assimilation. In tra-
ditional CLRM, the model is updated and uncertainty is re-estimated based on past
observations before making the next decision and the optimal decision for each deci-
sion stage is obtained by performing a re-optimization in the currently updated reservoir
model. In other words, the optimal decision is typically determined by maximizing the
expected NPV over the current assessment of uncertainty. The decision we make at the
current time will also influence the possibility of obtaining information that might re-
duce the reservoir uncertainty and improve the optimized strategy. Therefore, the true
optimal action for each decision step depends on both the past decisions and the con-
sequences on future uncertainty reduction. In this section, we use the drilling-order
problem (i.e., maximize the expected NPV by optimizing the drilling sequence of wells)
as an example to demonstrate the optimal decisions obtained with different concerns.

Figure 1: Example of an observation-based dynamic drilling-sequence planning with Nw wells

Suppose that we need to optimize the drilling schedule of Nw wells and each drilled
well results in observations that can be used to re-estimate uncertainty before choosing
the next well to be drilled. Hence, after drilling each new well, the reservoir model is
updated based on previously obtained observations, before optimizing the next decision.
Figure 1 shows an example path generated by an ordered sequence of Nw drilling actions
with sequential observations from all wells. The set of actions a1, a2, . . . , aNw

represents
the sequence of Nw wells drilled at time t0, t1, . . . , tNw−1. The sequence o1, o2, . . . , oNw

denotes the observations obtained from the drilling of each well. We have assumed that
these observations are immediately available for updating the reservoir model. The state
s0, s1, . . . , sNw

denotes the specific environments at each decision step constrained to the
past decisions and corresponding observations. Uncertainty at each environment state
sj is re-estimated based on the observations o1, o2, . . . , oj from the previously j drilled
wells. The expected NPV is the cumulative reward consisting of the sum of rewards
R1, R2, · · · , RNw

over the time periods Δt1,Δt2, · · · ,ΔtNw
. As illustrated in Fig. 1, the
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previous and the current decisions affect both the possibility of the future choices of
actions and the possibility of future observations. Therefore, the robust optimal decision
at each decision step should be determined by considering the possibility of achieving
high expected NPV, and the opportunity to improve the optimal strategy based on the
future uncertainty state, namely, the future learning possibilities.

Optimization ignoring future learning possibilities

In most applications of CLRM optimization, to reduce the complexity of the sequential
decision problem under uncertainty, the effect of future uncertainty reduction on the
optimal strategy is ignored when making decisions. In other words, the optimal action
for each decision step is computed by performing a re-optimization in the updated
reservoir model based on the current assessment of uncertainty, without considering
the consequence of this decision on the future uncertainty state [17, e.g.,]. In that case,
after completing the drilling of j wells, the next best action a∗j+1 is drilling the well that
leads to the maximum expected NPV of complete drilling sequences over the current
uncertainty state uj based on the observations in history hj , i.e.,

a∗j+1 = argmax
aj+1∈Aj+1(hj)

EV∗ (hj , aj+1, uj) , (1)

where hj is an observable history consisting of a sequence of selected actions (i.e.,
j drilled wells) and observation pairs, hj = (a1, o1, . . . , aj , oj), where observation oj
obtained from each past action aj might be a single datum (e.g., types of facies) or a
collection of data (e.g., production data of various types over a time interval); Aj+1(hj)
is the current action space at a given history hj , which consists of the (Nw−j) remaining
wells; uj is the current assessment of uncertainty based on the past observations from
j drilled wells in history hj; EV∗ (hj , aj+1, uj) is the maximum expected NPV for
complete drilling sequences over the uncertainty state uj constrained to history hj
followed by taking aj+1 as the next decision. Note that in this approach any possible
future information from the remaining Nw − j actions is not considered, including the
observation oj+1 from the current decision alternatives, aj+1. Thus, the EV∗ in Eq. 1 is
evaluated over the uncertainty state uj instead of uj+1. To compute the optimal decision
a∗j+1, learned heuristic search [30] is an efficient approach, which allows for optimizing
either only the first few decisions or a complete strategy. The key advantage of this
approach is that an approximation of the maximum expected value EV∗ constrained
to the past decisions can be accurately estimated without finding the entire optimal
strategy.

Fully structured robust decision making

As discussed in the previous section, when selecting an action that will increase the
expected NPV, we should also take into account the possibility of future uncertainty
reduction, rather than basing our decision solely on the maximization of expected NPV
over current uncertainty. The optimal choice of the next well after sequentially drilling
j wells should therefore be based on the expected value over all possible observations
from all remaining wells (assuming no explicit cost for collecting information from each
drilled well),

a∗
fs

j+1 = argmax
aj+1∈Aj+1(hj)

∑
o∈Oaj+1

p(o|hj , aj+1)Q
∗
Nw−(j+1)(hj+1), (2)
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where Oaj+1 is the observation space obtained from aj+1; p(o|hj , aj+1) are the marginal
probabilities of distinct observations; and Q∗

Nw−j(hj+1) is the optimal expected value
considering all possible future observations constrained to history hj+1 including the
observation from aj+1. The optimal expected value can be calculated in a backward
induction procedure, i.e.,

Q∗
Nw−(j+k)(hj+k) = max

∑
aj+k+1∈Aj+k+1(hj+k)

o∈Oaj+k+1

p(o|hj+k, aj+k+1)Q
∗
Nw−(j+k+1)(hj+k+1),

for k = 1, 2, . . . , Nw − (j + 1),

(3)

where Q∗
0(hNw

) is the expected NPV over the final uncertainty state updated using
all sequential observations from a complete drilling sequence in history hNw

. Using
backward induction to solve the optimization problem in Eq. 2 is also known as the
standard VOI decision analysis process with extensive form [28, 22]. This approach is a
fully structured decision tree that considers all possible combinations of the sequences
of remaining actions with distinct sequential observations [16].

As a simple illustration, suppose that Nw -2 wells have been drilled sequentially re-
sulting in history hNw−2 and the optimal next well is chosen from the two remaining
wells Wa, Wb. Each well can provide two possible distinct observations of1 , of2 about
the type of facies. Figure 2 shows a simple example of determining the optimal next
well from Wa and Wb through the backward induction procedure. In this case, deter-
mining the optimal action considering the future information from the two remaining
wells, requires consideration of 8 possible combinations of sequences with distinct ob-
servations. Because the number of options is small, the optimal action a∗

fs

j+1 based on
the expected values over all possible future observations (Eqs. 2-3), is easily determined
to drill Wa as the next well. However, as this optimization requires information about
the expected NPV from all possible combinations of sequences with observations and
about the marginal probabilities of all possible observations from remaining actions,
the size of the decision tree is exponential in the number of distinct states related to both
the action space and the observation space obtained from each action. Consequently,
if there were 8 possible remaining wells while each well provides only two distinct ob-
servations, then there would be 8! × 28 ≈ 1 × 107 possible combinations of drilling
sequences with distinct sequential observations. The use of such a fully structured de-
cision tree will be computationally intractable even before taking into account the cost
of updating the reservoir model.

Although it is possible to approximately solve Eq. 2 by formulating the problem as
a partially observable Markov decision process (POMDP) [32, 26], the cost of solving
a POMDP can be prohibitive for reservoir applications [27], since the evaluations
of the expected values require many expensive simulations and the number of the
states that need to be evaluated in a POMDP can be large, especially when many
various combinations are likely to generate high expected values. Hence, computing the
optimal decision a∗

fs

j+1 that considers all possible future observations is only applicable to
reservoir simulation-based problems with small numbers of distinct actions and distinct
observations in practice.
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Figure 2: A fully structured decision tree for determining the order of two remaining wells in consideration of all possible
future observations

Accounting for future learning through the current decision

Instead of using a fully structured decision tree, a more feasible way to obtain an optimal
decision that considers the future learning possibilities is to take into account the effects
of future observations resulting from only the current decision step,

a∗
fl

j+1 = argmax
aj+1∈Aj+1(hj)

∑
o∈Oaj+1

p(o|hj , aj+1) EV
∗ (hj , aj+1, u

o
j+1

)
, (4)

where EV∗
(
hj , aj+1, u

o
j+1

)
is the maximum achievable expected NPV constrained to

the previous actions in history hj and the current decision alternative aj+1. This
expectation is evaluated over the uncertainty state uoj+1 updated based on the future
possible observation o from aj+1. Note that EV∗

(
hj , aj+1, u

o
j+1

)
is different from the

expected value Q∗
Nw−(j+1)(hj+1) in Eq. 2 which accounted for future information from

all remaining decisions.
In the terminology of VOI, a∗flj+1 (Eq. 4) is the optimal decision based on the expected

value with additional information (EVWI) through one decision point [16],

a∗
fl

j+1 = argmax
aj+1∈Aj+1(hj)

EVWIaj+1 , EVWIaj+1 =
∑

o∈Oaj+1

p(o|hj , aj+1) EV
∗ (hj , aj+1, u

o
j+1

)
,

(5)
while a∗j+1 (Eq. 1), that ignores the effects of all possible future observations, is the
optimal decision determined by the expected value without additional information
(EVWOI),

a∗j+1 = argmax
aj+1∈Aj+1(hj)

EVWOIaj+1 , EVWOIaj+1 = EV∗ (hj , aj+1, uj) . (6)

We assume that there is no cost for acquiring information from aj+1 ∈ Aj+1(hj). Because
a∗

fl

j+1 is obtained considering the possibility of future learning before committing to a
decision, a∗flj+1 generally is a more robust decision than a∗j+1, which ignores the effect of
all future information.

Figures 3 and 4 show the VOI decision trees from the example of two remaining wells
with and without considering the effect of future observations from current decision
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Figure 3: VOI analysis considering the future information obtained from current decision alternatives

Figure 4: A simple example of the decision tree ignoring the future learning possibilities

alternatives. As illustrated in Fig 4, the optimal choice for the next well that ignores
the future learning possibilities is Wb, which is obtained by maximizing the expected
NPV over the current assessment of uncertainty (Eq. 6). When the effect of future
possible observations is considered (Fig. 3), the optimal next well is Wa, which has a
higher EVWI and is a more robust decision. For a large problem with many decision
alternatives, although the optimal decision a∗

fl

j+1 that is obtained from a simplified VOI
decision tree might not be identical to a∗

fs

j+1 that is obtained from a standard VOI analysis
with extensive form, the cost of computing a∗

fl

j+1 is much lower than that in a∗
fs

j+1. In
general, the information obtained from the later decision stages has a smaller impact
on improving the optimal strategy. We expect that simplifying the VOI analysis by
only considering the information from the current decision step would not incur much
performance loss, i.e., a∗flj+1 is expected to be an approximation solution close to the
optimal decision a∗

fs

j+1. In this work, we focus on how to efficiently improve the optimal
decision a∗j+1 to a∗

fl

j+1.
Although a∗

fl

j+1 does not require a fully structured decision tree, directly solving
Eq. 5 is still prohibitive in most reservoir applications for which the costs of history
matching and optimization are large. If there are Nd decision alternatives and No

distinct observations from each decision, it would be necessary to update the reservoir
model and perform the optimization Nd ×No times to obtain the optimal decision a∗

fl

j+1.
Hence, it is desirable to make the computation manageable and design a more practical
way to compute the optimal decision a∗

fl

j+1 in consideration of the possibilities of future
learning.

In general, we might expect that gained information will reduce the uncertainty,
thereby leading to better future decisions. Some decisions, however, may result in little



173

information or information that is irrelevant to the optimization of the objective. In that
case, accounting for the possibility of future uncertainty reduction will only increase
the cost of making decisions, while the optimal decision may not be changed (i.e., the
optimal strategies for maximizing the expected NPV over uncertainty state uoj+1 and uj
are the same). Hence, because the computational cost of considering many possible
observations is high, it is more important to account for the future information that is
most likely to improve decisions than to consider as much information as possible from
remaining actions. In this work, we use a simplified VOI decision analysis to efficiently
account for the possibility of future learning when choosing actions, in which only the
key information that would have a large influence on the optimal decisions is taken into
account.

Planning for future learning
Learning through key action

Due to limited observations of the reservoir, the properties of the subsurface (e.g.,
porosity, permeability, fluid contact locations, fault transmissibilities) may be highly
uncertain. Uncertainty in some properties may have little effect on the optimal decisions
and information on those nonessential properties would not be beneficial for optimally
managing the reservoir, even if the uncertainties could be reduced significantly. Hence,
when evaluating the desirability of performing an action to learn about the reservoir,
we can focus our attention on obtaining information from a few key actions that can be
used to reduce key uncertainty that have large impact on optimal decisions. Then, the
optimal decision can be made based on the trade-off between the key action that would
provide the most important information to reduce key uncertainty and the action that
would achieve the maximum expected value over current uncertainties.

Figure 5 shows a feasible workflow that efficiently accounts for the possibility of
future learning of key information through key actions that would be most helpful for
improving future decisions. By identifying key uncertainty for the optimization prob-
lem, we can identify the key information-gathering action that would provide the most
important observations for reducing key uncertainty, potentially leading to better future
decisions. The key action could provide a large number of observations from various
available information sources. To avoid the cost of formal history matching, we select
observations for which the connection to uncertainty reduction in key reservoir features
is straightforward. In this work, we build supervised-learning models to identify the
optimal combination of observations for key uncertainty reduction and simultaneously
evaluate the reliability of information. Then, the probability of key uncertainty with
the given observations can be computed directly using Bayes’ rule instead of using data
assimilation algorithms, which typically require many expensive simulations to obtain
estimates of the posterior probability distribution. Hence, the workflow is applicable
for reducing key uncertainty for optimization problem without the requirement of an
expensive history matching process to update the reservoir model.

Although information obtained from a key action is most likely to improve future
decisions, taking a key action to acquire important future observations is not necessarily
worthwhile, even if these observations may be obtained without an explicit cost. In
some cases, the optimal strategy obtained without acquiring future information (i.e., the
optimal strategy for current assessment of uncertainty) may have a higher expected value
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than that of the optimal strategy considering the possibility of future learning through
key action (i.e., the optimal strategy with additional information from key action). The
cause of this situation is that there is a hidden cost when taking the key action would
lead to a sub-optimal solution, so that value gained by using additional information from
key action may not be able to compensate for this hidden cost. To determine whether
it is worth taking the key action, we need to assess an implicit net expected value of
information associated with a change in decisions (i.e., change action obtained from the
optimal strategy for the current assessment of uncertainties to key action), which is the
difference between the expected value with future information from key action and the
expected value without any future information.

Figure 5: Decision making while considering future learning through key action and key information

Value-of-information analysis through key action

Instead of computing the actual EVWIaj+1 for all possible decision alternatives aj+1 ∈
Aj+1(hj) (Eq. 5) to obtain an optimal decision that considers future learning possibilities,
we simplify the VOI decision tree to only two decision alternatives, i.e., a∗j+1 and akeyj+1,

Figure 6: Simplified VOI decision tree with future information only from key action
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by considering only future information from the key action (Fig. 6). a∗j+1 is the decision
obtained from the optimal strategy for the current assessment of uncertainties (Eq. 1),
while akeyj+1 is the key action that would provide important information for improving
future decisions. In other words, akeyj+1 is the decision alternative from the current action
space Aj+1(hj) that is expected to result in a high net EVOI associated with changing
decision a∗j+1 to akeyj+1 defined as,

EVOIa∗
j+1→akey

j+1
= EVWIakey

j+1
− EV∗(hj , a∗j+1, uj), (7)

where EV∗(hj , a∗j+1, uj) is the expected value from the optimal strategy for current
uncertainty without any future information (Eq. 1 and Eq. 6) and EVWIakey

j+1
is the ex-

pected value with additional information from akeyj+1. The expected value with additional
information is computed as

EVWIakey
j+1

=
∑

o∈O
a
key
j+1

p(o|hj , akeyj+1)× EV∗(hj , akeyj+1, u
o
j+1), (8)

where p(o|hj , akeyj+1) is the marginal probability of a specific observation; Oakey
j+1

is set of
all possible distinct observations from akeyj+1 and EV∗(hj , akeyj+1, s

oi
j+1) is the expected value

from the optimal strategy for uncertainty state uoj+1 updated with additional observation
from akeyj+1.

As shown in Eq. 7, performing the VOI analysis through akeyj+1 is similar to a simplified
VOI analysis with the decision alternative aj+1 ∈ Aj+1(hj) that has a high EVWIaj+1 . If
akeyj+1 has the maximum EVOIa∗

j+1→akey
j+1

, akeyj+1 would be identical to the optimal decision
a∗

fl

j+1 from Eq. 5. In that case, simplifying the VOI decision tree to akeyj+1 would not
incur performance loss compared to directly solving Eq. 5. The main advantage of
using EVOIa∗

j+1→akey
j+1

instead of EVWIaj+1 is that akeyj+1 with a high EVOIa∗
j+1→akey

j+1
can be

identified without comparing the actual EVOIa∗
j+1→akey

j+1
of all possible decisions.

The EVOIa∗
j+1→akey

j+1
from changing decision a∗j+1 to akeyj+1 (Eq. 7) can be rewritten as

EVOIa∗
j+1→akey

j+1
=
(
EVWIakey

j+1
− EV∗(hj , akeyj+1, uj)

)
−
(
EV∗(hj , a∗j+1, uj)− EV∗(hj , akeyj+1, uj)

)
,

(9)

where the first group of terms is the standard definition of EVOI for akeyj+1, i.e./ it is the
difference in the expected values with and without additional information from akeyj+1,

EVOIakey
j+1

= EVWIakey
j+1

− EVWOIakey
j+1

= EVWIakey
j+1

− EV∗(hj , akeyj+1, uj). (10)

The second group of terms in Eq. 9 is the expected cost of information (ECOI), or the
hidden cost, caused by a sub-optimal solution constrained to akeyj+1 chosen as the next
decision using the current assessment of uncertainty,

ECOIa∗
j+1→akey

j+1
= EV∗(hj , a∗j+1, uj)− EV∗(hj , akeyj+1, uj). (11)

Thus, EVOIa∗
j+1→akey

j+1
actually is an implicit net EVOIakey

j+1
accounting for the hidden cost

ECOIa∗
j+1→akey

j+1
,

EVOIa∗
j+1→akey

j+1
= EVOIakey

j+1
− ECOIa∗

j+1→akey
j+1

. (12)
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If akeyj+1 is identical to a∗j+1, there is no hidden cost, i.e., ECOIakey
j+1→akey

j+1
= 0. In general,

however, akeyj+1 will not be the same as the optimal decision a∗j+1 for the current uncertainty
state, especially when the decision space is large.

According to Eq. 12, akeyj+1 is the decision alternative that is expected to result a
large EVOIakey

j+1
but a small ECOIa∗

j+1→akey
j+1

. The standard EVOIakey
j+1

(Eq. 10) depends on
whether akeyj+1 is able to provide useful information for making better future decisions, i.e.,
important information for key uncertainty reduction. The hidden cost ECOIa∗

j+1→akey
j+1

depends on whether the optimal strategies constrained to akeyj+1 can achieve a high ex-
pected NPV over current uncertainty state, which is possible to be evaluated when
computing the optimal decision a∗j+1 that ignores the effects of future possible obser-
vations. Therefore, by considering the possibility of obtaining valuable information for
reducing key uncertainty and the possibility of achieving a high expected NPV for cur-
rent assessment of uncertainty, we can identify the akeyj+1 that is likely to result in a high
EVOIa∗

j+1→akey
j+1

; that is the decision alternative aj+1 ∈ Aj+1(hj) with a high EVWIaj+1 .
To judge whether it is preferable to take action akeyj+1 over a∗j+1, we need to assess

EVOIa∗
j+1→akey

j+1
before committing to a decision, noting that EVOIa∗

j+1→akey
j+1

may be
negative value to the hidden cost. If EVOIa∗

j+1→akey
j+1

> 0, the value gained by using
the information from akeyj+1 can compensate for the hidden cost caused by a sub-optimal
solution, i.e., EVOIakey

j+1
> ECOIa∗

j+1→akey
j+1

. It is then worth taking akeyj+1 to acquire the
information that will help in improving future decisions.

The simplified VOI analysis based on EVOIa∗
j+1→akey

j+1
does not take in account the

future learning possibilities through a∗j+1 (Fig. 6). In some cases, a∗j+1 may also be able
to provide important future information for reducing key uncertainty. To obtain a more
robust decision, we can take into account the possibilities of future learning through
both akeyj+1 and a∗j+1,

â∗
fl

j+1 = arg max
a∈[a∗

j+1,a
key
j+1]

EVWIa = arg max
a∈[a∗

j+1,a
key
j+1]

∑
o∈Oa

p(o|hj , a)× EV∗(hj , a, uoj+1). (13)

However, this approach will increase the computational cost of making a decision since
the evaluation of EVWI for each action is based on the maximum expected values,
EV∗(hj , a, uoj+1), corresponding to various observations. This requires re-optimization
multiple times to obtain all expected values. Consequently, directly solving Eq. 7 or
Eq. 13 is likely to be impractical when all distinct observations are accounted for,
although the number of decision alternatives in VOI analysis is reduced by identifying
akeyj+1. To the computation of EVWI manageable, we will present a methodology in the
following section for efficiently estimating EVWI by using key observations to reduce
key uncertainty, rather than using all observations to reduce all uncertainties.

Key observation selection

In ensemble-based methods, a set of Ne model realizations is used to represent the
uncertainties in reservoir properties. To reduce the effects of sampling error, Ne is
typically chosen to be on the order of 100. Each model realization is capable of
generating a specific set of simulated observations obtained by taking action akeyj+1, e.g.,
production data over a certain period, in which case there would be Ne distinct sets of
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observations – one set from each ensemble member. If each set of observations is used
in the estimation of EVWIakey , the computational cost will be high since both history
matching and optimization have to be performed Ne times to obtain the maximum
expected values from all posterior ensembles. Hence, it is generally infeasible to
consider all Ne distinct realizations of future outcomes in standard VOI analysis with
history matching for making a decision, especially when the observation space or
decision space is large. Moreover, when all observations obtained from akeyj+1 are used
to simultaneously re-estimate uncertainty, the largest decrease in uncertainty may be in
properties that are irrelevant to current decisions. All data will, of course, be used to
update model uncertainty after an action has been taken.

As mentioned previously, the additional value with information is achieved by the
reduction in uncertainty of model parameters that will affect the optimal decisions,
rather than all reductions in uncertainties in model parameters. Instead of using all
observations to reduce all uncertainties, we can approximately compute EVWIakey by
reducing key uncertainties of the optimization problem based on key observations that
are most helpful in exploring key reservoir properties. Such an approximation of
EVWIakey

j+1
can be used to indicate the importance of akeyj+1. Because VOI analysis is

performed by ranking the importance of decision alternatives based on the expected
values and EVWIakey

j+1
deals with the information content of hypothetical data, we expect

(without proof) that using the EVWIakey
j+1

computed based on key information would
not incur performance loss in VOI analysis and the optimization framework. When
the actual observations are obtained from an action that has been executed, an actual
history match will be performed with all observations to update various uncertainties
in reservoir properties.

Performing the action akeyj+1 can provide a large number of observations, but the
reduction in key uncertainties from some observations may be very small. Accounting
for all information in the VOI, including those nonessential observations, will increase
the computational effort associated with updating the reservoir model. Hence, we would
like to use a reduced set of important observations to update key uncertainties, i.e., key
information is defined to be a subset of observations that are most helpful in reducing key
uncertainties. Instead of updating key uncertainties for each possible outcome of key
observations obtained from an individual realization, we divide the entire observation
space Rn

b associated with the best subset, B, into a limited number of disjoint subspaces
(e.g., Rn

b = Ωb
1 ∪ Ωb

2 and Ωb
1 ∩ Ωb

2 = ∅). Suppose that observations located in the same
subspace have almost the same prediction precision to reduce uncertainties, then the
posterior probability distributions of uncertainties conditioned on observations in the
same subspace would be similar. In that case, there is no need to compute Ne posterior
ensembles considering all distinct sets of observations from individual realizations.
EVWIakey

j+1
could be efficiently evaluated by performing the optimization process only in

a few posterior ensembles associated with the observation subspaces Ωb
k,

EVWIakey
j+1

=

NΩb∑
k=1

p(ob ∈ Ωb
k|hj , akeyj+1)× EV∗(hj , akeyj+1, u

Ωb
k

j+1), (14)

where NΩb is the number of observation subspaces, which is much smaller than the
ensemble size (NΩb � Ne); uΩ

b
k

j+1 is the updated uncertainty state for observed values
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ob ∈ Ωb
k. Figure 7 shows an example of VOI analysis considering only the important

future observations through key action for key uncertainty reduction, while the entire key
observation space is divided into four disjoint subspaces. We refer to such a simplified
VOI decision tree as key-feature-based VOI analysis. It is performed only through the
key action and the key information that have been identified for exploring reservoir
features with large influences on the optimal decisions.

To ensure the usefulness of key observations and their subspaces in reducing key
uncertainties, the entire key observation space is divided such that each subspace Ωb

k
will have high a probability P (Ωb

k|Θm
k ) for indicating a specific key uncertainties sub-

region Θm
k , while the probability P (Ωb

k|Θm
i ) for key uncertainties located in other sub-

regions Θm
i is low. Suppose that distribution of key uncertainties is divided into NΩb

disjoint subregions Θm = [Θm
1 ,Θm

2 , . . . ,Θm
NΩb

]. The best observation space division
Ωb = [Ωb

1,Ω
b
2, . . . ,Ω

b
NΩb

] can then be described as

Ωb = argmax
Ωb

NΩb∑
k=1

⎡
⎢⎢⎣P (Ωb

k|Θm
k )−

NΩb∑
i=1
i �=k

P (Ωb
k|Θm

i )

⎤
⎥⎥⎦ . (15)

For key uncertainties with categorical variables, each category can be set as one specific
subregion Θm

i . For continuous variables, instead of randomly dividing the distribution
of key uncertainties into a limited number of subregions, the division of Θm can be
optimized based on the performance of the corresponding Ωb,

Θm = argmax
Θm

NΩb∑
k=1

P (Ωb
k|Θm

k ), (16)

which is a simplification of Eq. 15 since
∑NΩb

k=1 P (Ωb
k|Θm

i ) = 1 for a specific key uncer-
tainties subregion Θm

i .
Based on the prior probability P (Θm

i ) of each subregion Θm
i and the information’s

reliability P (Ωb
k|Θm

i ), the posterior probability P (Θm
i |Ωb

k) can be computed using Bayes’
rule,

P (Θm
i |Ωb

k) =
P (Ωb

k|Θm
i )× P (Θm

i )∑NΩb

i=1 P (Ωb
k|Θm

i )× P (Θm
i )

, (17)

where
∑NΩb

i=1 P (Ωb
k|Θm

i )×P (Θm
i ) is the marginal probability of observing ob ∈ Ωb

k in the
prior ensemble.

Approximations applied to solve Eq. 15 would affect the performance of key uncer-
tainty reduction. To ensure the effectiveness of using Ωb to reduce key uncertainties, an
appropriate approach that can effectively identify the observation subspacesΩb with high
information’s reliability

∑NΩb

k=1 P (Ωb
k|Θm

k ) is required. In this work, we apply multiple
supervised-learning algorithms to identify the optimal observation subset and the cor-
responding best space division Ωb. Meanwhile, the reliability of information P (Ωb

k|Θm
k )

for each subspace can also be estimated when evaluating the learning algorithm’s per-
formance with the optimal observation subset. Then, the posterior probability of key
uncertainties can be computed using Bayes’ theorem (Eq. 17). Consequently, there is
no need to use data assimilation algorithms that update every model parameter for VOI
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Figure 7: Key-feature-based VOI analysis obtained by identifying key uncertainties for optimization problems and key
observations for reducing key uncertainty

Figure 8: Key feature selection process based on filter and wrapper methods

analysis in our workflow. Building supervised-learning models to identify key obser-
vations requires a dataset (also called the original dataset) that includes all possible
observations and the corresponding distribution of key uncertainties. This dataset can
be obtained by collecting relevant information from a number of individual realizations
applied with key action.

Figure 8 shows the process of selecting key observations from the original dataset by
using filter and wrapper methods with an inductive learning model that is able to capture
the mapping between the inputs (i.e., observations from key action) and the outputs
(i.e., key uncertainty). The original dataset may contain hundreds to thousands of
observations, which are known as features in learning models. Note that in supervised-
learning algorithms, the observations acquired from key action are input variables and
are called “features”, while the values of key reservoir properties are output variables.
A large number of features would make the model more complex and may lead to
overfitting due to the curse of dimensionality. To avoid these issues, we first apply
filter methods [19] to quickly remove redundant and irrelevant features by ranking the
features using some relevance measure, regardless of learning algorithms, obtaining a
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subset of features. The selected feature subset after filtering is generally not the optimal
feature subset for key uncertainty reduction. Thus, a wrapper method [18] involved
in supervised-learning models is used to select the best combination of features that
gives the optimal results for learning algorithms, i.e., a feature subset that leads to
high prediction accuracy. To avoid overfitting in learning models, we split the original
dataset into separate training and test subsets and use resampling methods (e.g., cross-
validation) to evaluate learning models’ performance with limited data samples. The
prediction accuracy (i.e., reliability of information) is estimated from the test error
associated with specific learning models.

Suppose thatNsl individual realizations are applied to generate the dataset for building
supervised-learning models. The cost of updating the key uncertainty for all observation
subspaces will be Nsl simulations. Using multiple supervised-learning algorithms will
not increase the simulation cost since the learning models are built using the same
samples. If Nopt simulations are required for a single robust optimization, it will require
Nsl + Nopt × (N b

Ω + 1) simulations to perform the VOI analysis through key action
(Eq. 7) and key information (Eq. 14), which is much lower than the cost of solving
Eq. 4 with an exhaustive history matching and optimization procedure that requires
Nd×Ne× (Nhm+Nopt), where Nd is the number of decision alternatives and Nhm is the
cost of history matching. Even accounting for future learning possibilities through all
Nd decision alternatives, performing VOI analysis through key information still requires
many fewer simulations than directly solving Eq. 4. In that case, the cost of VOI analysis
through key information is N ′

sl+Ns×N b
Ω×Nopt, in which N ′

sl simulations are performed
to investigate the reliability of information from all Nd possible decision alternatives,
and Ns is the number of decisions that are identified with reliable information for key
uncertainty reduction and small hidden cost caused by sub-optimal solutions, which is
generally smaller than Nd.

In this paper, the performance of key-feature-based VOI analysis (Fig. 7) applied with
supervised-learning algorithms (Fig. 8) is illustrated by an application of the drilling-
order problem in a synthetic model (REEK field). The key uncertainty that has the
largest influence on the optimal drilling sequence is whether one fault is completely
sealing or not, for which the output variable in learning models is a category. In that
case, there is no need to optimize the division of key uncertainty since each subregion
Θm

i corresponds to a specific category. We first use the Minimum Redundancy Maxi-
mum Relevance (mRMR) method [21, 10, 23] to eliminate some less important features,
then further reduce the number of features by using the area under the receiver oper-
ating characteristic (ROC) curve [14], which measures the classification performance
at various thresholds. These two steps are independent of any learning algorithms. To
obtain the optimal combination of observations, we investigate four different classifi-
cation models (i.e., k-Nearest Neighbor, Logistic Regression, Support Vector Machine,
and Random Forest). We then use the best-performing learning algorithm to identify
the best observation subset and evaluate each subspace’s prediction accuracy based on
the test dataset.

Robust optimization of well drilling schedule
In order to perform the optimization efficiently, we require two additional technologies
to deal with the search for an optimal sequential solution, and to deal with uncertainty
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in the reservoir characteristics. Learned heuristic search is an effective and efficient
search method for solving the optimization problems with discrete actions [30]. This
approach allows for optimizing only the first few actions by limiting the search depth so
that the optimal well for each decision step could be obtained at a reduced cost without
finding the entire optimal drilling sequence [31]. The key point of this method is that
an accurate approximation of the maximum achievable expected NPV constrained to
previous wells, i.e., EV∗(hj , aj+1, uj) in Eq. 1, can be evaluated by first using a crude
heuristic function to estimate the maximized value. The accuracy of the heuristic is
then improved by learning the errors of the initial approximate values obtained from
previous decision steps. In this way the search direction can be guided toward the
optimal solution quickly and effectively. In this paper, we apply two different online-
learning techniques (i.e., single-step adjustment and multiple-time-periods learning) to
improve the initial imprecise heuristic values, which can be inexpensively obtained by
assuming that all remaining wells are drilled simultaneously at the next step and then
put on production immediately after completing the drilling of wells.

The second technology is the application of bias-correction methods to the estimate
of NPV obtained from the mean reservoir model to efficiently compute a good approx-
imation of the expected NPV over an ensemble of reservoir model realizations [31].
Although the mean model m̄ generally provides a poor estimate of the expected value
when the objective function J(x,m) at control x is nonlinear in the uncertain model
parameter m, this approximation can be significantly improved by estimating a mul-
tiplicative bias correction factor α(x). The estimation only requires information from
individual simulations with distinct controls and model realizations, i.e.,

E[J(x,m)] ≈ α̂(x)J(x, m̄), α̂(x) = G(β1, β2, · · · , βn, x), (18)

where α̂(x) is the estimate of bias correction factor between the ensemble average value
and the value obtained from the mean model, i.e., α̂(x) ≈

∑Ne
j=1 J(x,mi)

NeJ(x,m̄) . G is an estimating
function for α(x) based on a set of observations β obtained by applying n randomly
sampled controls to individual realizations and the mean reservoir model, where βj is
the partial correction factor at a random control xj of a random individual realization
mj , i.e., βj = J(xj ,mj)

J(xj ,m̄) . When estimating α(x), high weights would be assigned to the
observed values of β from similar controls because they are expected to provide more
useful information. Using such a bias-correction method, robust optimization requires
additional simulations only from the mean model during the optimization process, in
which case the robust optimal solution could be obtained at a much lower cost compared
to using the ensemble average of simulation results to estimate the expected value.

There are three different ways to estimate α(x): distance-based localization, regu-
larized localization, and optimal weights based on the covariance of correction factors.
In this work, we estimate the expected NPV by applying distance-based localization to
correct the bias in J(x, m̄) since the other two methods require additional information
such as the variance of the bias correction factor, which is generally unknown. To effi-
ciently identify similar drilling sequences, a well-position based distance metric is used
to measure the similarity of drilling sequences in terms of the bias correction factor.

Results and Discussion
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Figure 9: Well and fault locations in the REEK Field and initial oil saturation in one realization

Reservoir model
REEK Field is a three-phase black-oil reservoir model with specified locations for eight
vertical wells (five producers and three injectors) that need to be drilled sequentially
(Fig. 9). It consists of 40 × 64 × 14 grid cells, of which 34,770 are active. The
maximum rates of production and injection wells are 6,000 m3/day and 10,000 m3/day,
respectively. The minimum BHP of the producers is 250 bar, while the BHP of
the injectors cannot exceed 320 bar. The porosity field, permeability field, and fault
transmissibility multipliers are all uncertain. Recent studies have used this model for
optimizing the drilling order of wells, in which the control variables are discrete[31,
30, 13, 20]. However, these studies do not consider the possibilities of future learning
through action in the optimization process, i.e., the optimal well for each decision
step is based on the current assessment of uncertainty (Eq. 1). To obtain a more robust
optimal solution, we will apply a simplified VOI decision analysis based on key reservoir
features and key observations (Fig. 7). This method will enable us to make the optimal
decision more efficiently while considering the future reduction of key uncertainty in
the drilling-order problem.

In the original REEK model, the drilling schedule of wells is an important contributor
to the reservoir profitability, i.e., the expected NPV of the optimized drilling sequence
could be as much as 25 % higher than random drilling schedules. However, the
deterministic optimal drilling sequence does not change significantly with the geological
uncertainty [31]. To increase the effect of geological properties on the drilling-order
problem, we modified the original REEK Field by extending fault F5 (Fig. 10) so that the
reservoir model could be separated into two compartments, and we assume this extended
fault F5 would either be non-sealing or sealing in individual model realizations. When
fault F5 is completely sealing, the injector WI_1 will be totally isolated from all the
other wells, and there is no benefit from drilling WI_1. In that case, the optimal drilling
sequence of the remaining wells may change significantly. Table 1 shows the economic
parameters used for computing NPV (10 years), the reservoir properties, and control
variables in this modified REEK Field. In this work, we have used the same values for
economic parameters as in Hanea et al. [13], which investigated the impact of history
matching well data on creating value after re-optimizing the drilling schedule of wells
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Figure 10: Modified REEK model with extended fault F5 near Injector WI_1

Field REEK model
Start time 1/12/1999
Time period of NPV (years) 10
Discount factor 0.08
Produced-oil price (USD/m3) 60
Water-separation cost (USD/m3) 5
Water-injection cost (USD/m3) 1
Drilling cost of each well (USD) 1 million
Number of grid blocks 40× 64× 14 (34,770 active cells)
Number of faults 6 (fault F5 is extended)
Number of wells (all vertical wells) 8 (5 producers and 3 injectors)
Drilling period of wells(months) 6
Maximum production rate (m3/day) 6000
Minimum BHP of producers (bars) 250
Maximum injection rate (m3/day) 10000
Maximum BHP of injectors (bars) 320
Number of geological realizations 100
Permeability (md) 0 to 3500 (average 733)
Porosity 0 to 0.45 (average 0.159)
Fault transmissibility multiplier of other faults 0 to 1 (average 0.105)
Fault transmissibility multiplier of fault F5 0 (sealing) or > 0 (non-sealing)

Table 1: Economic parameters for NPV and reservoir properties in modified REEK model
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in the REEK model. Although the oil price has consequently been set to a low value, it
does not affect the conclusions from our experiment results.

To obtain useful information for improving optimal decisions, we first identify the
key uncertainty of the drilling-order problem in this modified REEK Field, i.e., illus-
trating whether a non-sealing/ sealing fault F5 has the largest influence on the optimal
drilling sequence. Then, we identify the key action that would provide the most im-
portant observations for reducing the key uncertainty. To compute a robust, optimal,
and complete solution, we could apply the workflow that accounts for future learning
possibilities through key actions (Fig. 5) at each decision step before drilling a new
well. Since information obtained at the early stage is most effective for improving the
future decisions and thereby increasing the expected NPV after re-estimating the geo-
logical uncertainty[13], we simplify the drilling-order problem in our application and
neglect the possibilities of future learning at later stages when evaluating the optimal
complete drilling sequence, i.e., only identify the key action for the first decision step
and update the reservoir model based on the key observations from that action before
drilling the second well. In this paper, we did not reduce the key uncertainty through
a history matching process, although that would naturally occur after production data
is obtained. Instead, we updated the reservoir model directly using Bayes’ rule be-
cause the reliability of information collected for the reduction of key uncertainties can
be evaluated simultaneously when identifying the best observation subset using a su-
pervised learning model. Because the VOI assessment depends both on the accuracy of
information and the prior probabilities, we will study the performances of VOI analysis
through key action for the drilling-order problem with different initial probabilities of
key uncertainty.

Key uncertainty for drilling-order problem
To identify the key uncertainty of the drilling-order problem, we performed a simple
Monte Carlo experiment in which all variables were perturbed simultaneously, and then
optimized for each realization for studying the sensitivity of the optimal solution to
different geological features. In this work, we use the Manhattan distance, i.e., the
sum of the absolute differences between positions of wells in the drilling sequence, to
measure the similarity between optimal drilling sequences [31]. Figure 11a compares
the distributions of Manhattan distance between deterministic optimal drilling sequences
of individual realizations in two cases, one in which fault F5 is always non-sealing
(histogram in yellow) and another in which fault F5 alternates between being non-
sealing and sealing (histogram in blue). To obtain reliable results, we repeated the
experiment 100 times for each case. The optimal drilling sequence clearly varies more
significantly when fault F5 is changed from non-sealing to sealing. For the individual
realizations with various porosity fields, permeability fields, and fault transmissibility
multipliers while fault F5 is always non-sealing, the average Manhattan distance between
the deterministic solutions was substantially smaller than when F5 is not always non-
sealing, and the optimal well order for some positions in the drilling sequence were
almost independent of the geological uncertainty. In this modified REEK model, it
seems that whether fault F5 is completely sealing or not has a relatively larger influence
than other geological features on the optimal drilling sequence.

In some cases, optimal solutions with a large Manhattan distance might have similar
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(a) Distribution of Manhattan distance between the optimal drilling
sequences from individual realizations

(b) Distribution of the relative changed in NPV in the reference
model with different solutions

Figure 11: Variability in the optimal drilling sequences and variability in the NPV in the reference model with different
optimized drilling sequences

economic values, for example, if only the optimal wells for the later decision stages are
changed or their positions are swapped. Hence, we also investigated the variability in
NPV obtained in a fixed reference model applied with different deterministic optimal
solutions to further illustrate the importance of the sealing properties of fault F5 as a
key feature for the drilling-order problem (Figure 11b). The results show that the NPV
changes by less than 2% in most cases when various deterministic drilling sequence
solutions for a non-sealing fault F5 are applied to a fixed reference model (histogram
in green), even if the deterministic optimized drilling sequence might vary with a
Manhattan distance larger than 22 in several cases. In cases with solutions obtained
respectively from individual realizations with a non-sealing (i.e., reference model) and
a sealing fault F5 (histogram in red), the relative change in NPV could be as much as
10% in the reference model. Thus, in terms of either a change in optimal decisions or
a potential improvement in NPV, we observed that the key uncertainty for the drilling-
order problem in this modified REEK field is whether F5 is completely sealing or not.
To improve future decisions by using additional information, the acquired information
should be able to provide useful observations for exploring this key reservoir feature.

Identifying key action and collecting information
In this paper, to reduce key uncertainties in the drilling-order problem, we use infor-
mation from production and pressure data that can be obtained from standard oil-field
monitoring. In the modified REEK Field (Fig. 10), Producers OP_3, OP_4, OP_5 and
WI_1 are located near fault F5. We expect that, compared to the other wells, observa-
tions from these wells may be potentially more useful for predicting whether fault F5
is completely sealing or not. In this case, although OP_5 is close to fault F5, an ex-
amination of the information from OP_5 showed that it was less reliable as a source of
information than what could be obtained from OP_3 or OP_4. When WI_1 or OP_5 is
drilled as the first well, the hidden cost of information caused by sub-optimal solutions
(i.e., it can be estimated when computing the optimal solution over the current uncer-
tainty state) is larger than that from OP_3 and OP_4. Therefore, based on the possibility
of obtaining valuable information for key uncertainty reduction and the possibility of
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achieving high expected NPV, only OP_3 and OP_4 are considered as possible key
actions for the first decision step.

Figure 12 shows the oil production rate and BHP in the first 6 months (i.e., the
assumed drilling period for each well) obtained from 100 individual realizations with
a non-sealing and sealing fault F5, where OP_3 and OP_4 are drilled as the first well,
respectively. In almost all cases, production is first constrained to a maximum rate
of 6,000 m3/day and then decreased to hold the producer at a minimum BHP of 250
bar. When fault F5 is sealing, the production rate (red curves in Fig 12a and 12c)
decreases more rapidly than when the fault F5 is non-sealing while maintaining the
pressure at 250 bar, and the pressure (magenta curves in Fig 12b and 12d) drops faster
while maintaining a production rate of 6,000 m3/day. It seems that both OP_3 and OP_4
can potentially provide useful information for reducing the uncertainty about whether
fault F5 is non-sealing or sealing, which would influence the rates of decline in both
production and pressure.

(a) Oil production rate from OP_3 drilled as the first well (b) Pressure from OP_3 drilled as the first well

(c) Oil production rate from OP_4 drilled as the first well (d) Pressure from OP_4 drilled as the first well

Figure 12: Oil production rate and pressure in first 6 months obtained from individual realizations with non-sealing or sealing
fault F5 when OP_3 and OP_4 are drilled as the first well respectively

Figure 13 shows the derivative of production rate when the producer is held at the
minimum BHP of 250 bar and the pressure derivative when the producer is controlled
by the maximum rate 6,000 m3/day. Note that in Fig. 13a and 13c the derivative of
the production rate is shown with time starting from the first day when BHP =250 bar,
while the x-axis in Fig. 13b and 13d for the pressure derivative displays the time starting
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(a) Derivative of oil production rate from OP_3 drilled as the first well (b) Normalized pressure derivative from OP_3 drilled as the first well

(c) Derivative of oil production rate from OP_4 drilled as the first well (d) Normalized pressure derivative from OP_4 drilled as the first well

Figure 13: Derivative of production rate and pressure derivative obtained from individual realizations with non-sealing or
sealing fault F5 when OP_3 and OP_4 are drilled as the first well respectively
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from the first day of production. Here we use the normalized logarithmic derivative of
pressure to compute the pressure derivative, i.e., t dp

dt

−b0
, where −b0 is the initial value of

logarithmic pressure derivative at the beginning of production. Compared to the results
obtained from the production rate and pressure (Fig. 12), it seems that the separation
between model realizations with a non-sealing and sealing fault F5 is better when
using the derivative information, especially with regard to observations of the pressure
derivative when OP_3 is drilled as the first well (Fig. 13b). Note that computation of the
normalized pressure derivative requires evaluation of 4 pressure values, so it may not be
surprising that it is more informative for identifying potential barriers than a pressure
measurement. Although we may intuitively find a good observation (e.g., pressure
derivative at day 10) for predicting whether F5 is non-sealing or sealing in this example,
that might not be the case in other situations. The information obtained from a key
action could contain hundreds or thousands of observations. Manual identification of
the important observations from such a large dataset is laborious and time-consuming.
Moreover, to obtain highly reliable information for key uncertainty reduction, we usually
need to combine multiple observations. Therefore, it is necessary to apply a practical
method for the automatic defection of key observations.

In this work, we build supervise-learning models that are able to capture the mapping
between the inputs (observations) and the outputs (non-sealing/sealing fault F5) to select
the best observation subset with high prediction accuracy. Because the best subset
might contain observations from different sources, we consider all information related
to production rate, pressure, and their derivatives in the process of identifying key
observations. In our application, it takes only a few minutes to identify the optimal
combination of observations from the original information dataset with more than 700
observations using supervised-learning algorithms.

Selecting the best observation subset
In the six-month period after drilling the first well a large amount of production and
pressure data are recorded. Some of the data are apparently unaffected by whether
fault F5 is non-sealing or sealing (e.g., BHP of OP_3 is 250 bar in the last 2 months
production before drilling the next well). To identify the important observations from
such a large original dataset, we first use the mRMR feature selection method to
remove irrelevant and redundant observations and obtain a small observation subset
that may provide useful information. This is followed by a ROC curve analysis to
further reduce the size of the subset, leaving only the observations with relatively
good classification performance. In this way, the dimension of the observation dataset
can be reduced quickly without incurring the loss of important information. Finally, a
supervised-learning model can be applied with a small observation subset (i.e., few input
variables) containing most of the useful information needed to efficiently identify the
optimal combination of observations with highly reliable information for key uncertainty
reduction. Although we did not consider the effect of observation error in the following
analysis, the only change required in methodology would be to add random noise to the
modeled observations.

Figures 14a and 14b show the ROC curves of 20 best observations obtained from
the production/pressure data when OP_3 and OP_4 are drilled as the first well, respec-
tively. In these figures the true positive rate (TPR, y-axis) is plotted against the false
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(a) ROC curves of the best 20 observations from OP_3 (b) ROC curves of the best 20 observations from OP_4

Figure 14: Comparison of the receiver operating characteristic (ROC) plots for the 20 top-ranked observations when OP_3
and OP_4 are drilled as the first well respectively

positive rate (FPR, x-axis) at various thresholds. The TPR represents the proportion of
positive samples (i.e., individual realizations with a non-sealing fault F5) that are cor-
rectly identified, while the FPR is the proportion of negatives samples (i.e., individual
realizations with a sealing fault F5) that are incorrectly identified as positive cases. The
classification performance of a single observation is quantified by using the area under
the ROC curve (AUC), which measures the entire two-dimensional area underneath the
ROC curve from (0,0) to (1,1). A large AUC score indicates that the single observation
has a good ability to distinguish between different classes. All of the 20 best obser-
vations are from r′ or p′, and this shows that information obtained from pressure and
rate derivatives (Fig.13) provides more useful observations for predicting whether or
not fault F5 is sealing than directly using production rates or pressure (Fig.12). Of the
20 top-ranked observations, most are associated with the pressure derivative, however,
observations from the production rate derivative have higher AUC scores. In this case,
it seems that p′ provides more observations with useful information, while observations
from r′ provide better predictive performance in distinguishing between realizations
with a non-sealing or sealing fault F5. If we use only the pressure data for reducing key
uncertainty, the drilling of OP_3 as the first well would yield more important observa-
tions than the drilling of OP_4; seven observations of p′ from OP_3 have AUC scores
larger than 0.8, while only one observation of p′ with an AUC > 0.8 emerges from OP_4.
If only considering the information from rate data, drilling OP_4 as the first well would
provide more key observations with higher AUC scores than those from OP_3.

Figure 15 shows the distributions of observed values obtained from individual real-
izations at the best single observation r′b and p′b (largest AUC score) identified from the
derivatives of production rate and pressure, respectively. The red vertical lines repre-
sent the best cutting point that maximizes the difference between the TPR and FPR. The
probabilities of the individual realizations with observed values located in each region
determined by the optimal threshold are summarized in Tab. 2. When OP_4 is drilled
as the first well, the prediction accuracy reaches as high as 90% based on r′b, but the ac-
curacy rate based on p′ is less than 75%. When OP_3 is drilled as the first well, r′b also
provides information with a higher reliability than that of p′b, but using p′b to identify
the models with a non-sealing fault F5 would be more effective, i.e., 94 of 100 indi-
vidual realizations with a non-sealing F5 have p′b < δp′b . In this example, although it is
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(a) Distribution of r′b from OP_3 (b) Distribution of p′b from OP_3

(c) Distribution of r′b from OP_4 (d) Distribution of p′b from OP_4

Figure 15: Distributions of the observed values of r′b and p′b obtained from individual model realizations with non-sealing or
sealing fault F5

possible to reduce key uncertainty using only a single observation, this might not al-
ways be the case in other problems. In most applications, it is generally necessary to
use multiple observations to obtain reliable information and thereby reduce key uncer-
tainty. A quick, simple way is the direct use of a combination of the observations with
high AUC scores. However, when the classification performances of these observations
are similar, the prediction accuracy will most likely not improve.

By using supervised-learning algorithms, we can efficiently identify the optimal
observation subset with high prediction accuracy. We should expect that a good obser-
vation subset consists of observations with useful information (e.g., AUC > 0.5). Based
on the 20 top-ranked observations identified through the ROC curve analysis, we ap-
ply supervised-learning algorithms to identify the best combination of observations for
predicting whether F5 is non-sealing or sealing. To avoid overfitting of the learning
models, the original observation dataset obtained from 200 samples (100 individual re-
alizations with non-sealing and sealing fault F5 respectively) is split into a training set
(80%) and a test set (20%). The learning model is built based on the training set while
the performance of the model is evaluated in the test set. To acquire a more statistically
reliable estimate of performance, we use k-fold cross-validation resampling method to
evaluate the learning model on the limited dataset.
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Best single observation Information from OP_3 Information from OP_4
P (r′b < δr′b |F5non−sealing) 0.89 0.90
P (r′b ≥ δr′b |F5sealing) 0.80 0.87
P (p′b < δp′

b
|F5non−sealing) 0.94 0.76

P (p′b ≥ δp′
b
|F5sealing) 0.74 0.72

Table 2: Probabilities of the individual realizations with the observed values located in each region determined by the optimal
threshold of the best single observation r′b or p′b

(a) K-nearest Neighbors (KNN) (b) Logistic Regression (LR)

(c) Support Vector Machine (SVM) (d) Random Forest (RF)

Figure 16: Performances of four supervised-learning models for predicting whether F5 is sealing or not using the optimal
observation subset based on information from OP_3
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Figure 16 shows the performances of four classification models applied to predict
whether or not fault F5 is sealing using optimized observation subsets with different size
based on the information from OP_3. The performance score on the y-axis represents
the prediction accuracy measured in the test set. The light blue area indicates the stan-
dard deviation of prediction accuracy estimated through 5-fold cross validation. Results
show that the Random Forest model (Fig. 16d), which is an ensemble machine learn-
ing algorithm based on bootstrap aggregation(bagging), performed better than the other
three supervised-learning algorithms (i.e., k-Nearest Neighbors, Logistic Regression,
Support Vector Machine). Compared with the case involving only one single obser-
vation, prediction accuracy improves using an optimized combination of two or three
observations. However, when using more than three observations, the performance of
the learning model does not improve with the addition of new observations; rather, as
the number of input variables increases, the model becomes more complex, making it
more prone to overfitting the training set. In this case, we can use only three key ob-
servations to predict whether or not F5 is sealing with high accuracy. When OP_4 is
drilled as the first well, we observe similar properties in the process of identifying the
optimal observations subset: the Random Forest algorithm extracts an observation sub-
set with relatively higher prediction accuracy than the subsets produced by the other
algorithms and an optimal number of approximately three observations.

Table 3 shows the optimal observation subset with three key observations identified
using the Random Forest model, as well as the probabilities of individual realizations
with observed values located in the two best disjoint subspaces Ωb

1, Ωb
2 for predicting

whether fault F5 is non-sealing and sealing, respectively. We note that, although the
best single observation r′b and p′b have good classification performances (Fig. 15), the
optimal combination of observations does not necessarily include r′b or p′b. The optimal
observation subset from OP_3 has one observation of pressure derivative p′ obtained at
day 19, and this is only the 18th-best single observation with AUC =0.636 (Fig. 14a).
However, after additional two observations from r′ are combined, the accuracy rate
for identifying models with non-sealing and sealing fault could reach 92% and 94%,
respectively. When OP_4 is drilled as the first well, the optimal observation subset
consists of three observations from r′, whereas the best single observation r′b at day
25 with AUC=0.951 is not in the optimal subset. However, the prediction accuracy is
increased to 95% when fault F5 is non-sealing. The above results show that drilling
either OP_3 or OP_4 at the first decision step will result in obtaining highly reliable
information for reducing key uncertainty in the drilling-order problem (i.e., whether F5
is completely sealing or not). By using a supervised-learning algorithm, we efficiently
identified key observations from both OP_3 and OP_4 as well as the best division of
space for prediction purposes, and we also simultaneously estimated the the reliability
of information (i.e., prediction accuracy) in each subspace (Tab. 3). This allows the
direct computation of the posterior probability of key uncertainty using Bayes’ theorem,
thereby avoiding the need for history matching to re-estimate uncertainty.

Assessing value of information through key action
By identifying the key reservoir feature that has the largest influence on the optimal
drilling sequence, we obtained two possible key actions at the first step (i.e., OP_3 and
OP_4) that are more likely to provide useful information for reducing the key uncer-
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N b
f = 3 Information from OP_3 Information from OP_4

Optimal observation subset ob = (r′day2, r
′
day25, p

′
day19) ob = (r′day19, r

′
day32, r

′
day48)

P (ob ∈ Ωb
1|F5non−sealing) 0.916 0.945

P (ob ∈ Ωb
2|F5sealing) 0.941 0.878

Table 3: Best observation subset and the reliability of the information in each observation subspace obtained from Random
Forest model

(a) Key uncertainty reduction based on information from OP_3 (b) Key uncertainty reduction based on information from OP_4

Figure 17: Posterior probabilities and marginal probabilities of observations obtained from different prior probability
distributions of key uncertainty

tainty in the drilling-order problem: whether fault F5 is sealing or not. Key observations
obtained from both OP_3 and OP_4 are demonstrated to have high predictive accuracy
for indicating if fault F5 is sealing or non-sealing. Although reducing key uncertainty
would potentially lead to better future decisions, taking a key action to acquire the use-
ful information for key uncertainty reduction is not always worthwhile, since there may
be a high hidden cost of obtaining information caused by the sub-optimality of the so-
lution which uses the key action. To judge whether taking the key action increases the
maximum expected NPV in current uncertainty state, we must evaluate the EVOI as-
sociated with this hidden cost (Eq.7). To compute the expected value of information,
we need to obtain the expected NPV from the initial optimal solution obtained utiliz-
ing the prior probability of key uncertainty and the optimal solutions (i.e., constrained
to the selected key action) in the posterior probability, and the marginal probabilities
of observations. All of these values are related to the prior probability. Hence, instead
of evaluating the EVOI only in one specific prior probability, we investigate the perfor-
mances of the VOI analysis through key action with different prior probabilities of key
uncertainty.

Figure 17 shows effects of using the best observation subset ob from OP_3 or OP_4 to
evaluate the posterior probabilities of a non-sealing and sealing fault F5 with different
initial probabilities, i.e., Punseal = (0.9, 0.7, 0.5, 0.3, 0.1). The black values on the tops
of bars represent the marginal probabilities of observations located in the best two
disjoint subspaces Ωb

1 and Ωb
2, i.e., P (ob ∈ Ωb

1) and P (ob ∈ Ωb
2), irrespective of the

reservoir features. Since the prediction accuracy for observations located in the same
subspace is almost the same, we only need to compute the posterior probabilities
at ob ∈ Ωb

1 and ob ∈ Ωb
2 (marked with different colors in the bars) considering all

possible observations associated with ob. Note that the values in blue indicate the
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(a) EVOI based on key observations from OP_3 or OP_4 (b) EVOI with hidden cost caused by sub-optimal solutions

Figure 18: Comparison of standard EVOI and EVOI with the hidden cost of obtaining information from OP_3 or OP_4

posterior probabilitiesP (F5unseal|ob ∈ Ωb
1)while the values in red representP (F5seal|ob ∈

Ωb
2). Overall, using key observations from both OP_3 and OP_4 can significantly

reduce the uncertainty about whether fault F5 is completely sealing or not, but the
posterior probabilities are strongly influenced by the prior probabilities. The posterior
probabilities with observations ob ∈ Ωb

1 and ob ∈ Ωb
2 change considerably especially when

0.3 < PF5unseal < 0.7. When PF5unseal = 0.5, the posterior probabilities P (F5unseal|ob ∈
Ωb
1) andP (F5seal|ob ∈ Ωb

2) based on the key observations obtained from OP_3 could reach
0.94 and 0.92, respectively. When PF5unseal > 0.9 or < 0.1, ob ∈ Ωb

1 and ob ∈ Ωb
2 are almost

perfect observations for indicating a non-sealing and sealing fault F5, respectively. At
a fixed prior probability, both marginal probabilities of observations and posterior
probability distributions change slightly when key observations respectively from OP_3
and OP_4 are used, although the reliability of information is different (Tab. 3). In this
case, drilling either OP_3 or OP_4 as the first well can result in obtaining information
with similar effectiveness in terms of the reduction of key uncertainty for the drilling-
order problem, i.e., whether F5 is sealing or not.

The purpose of collecting information for key uncertainty reduction is to obtain a
better optimal drilling order solution with higher expected value. To study whether
key observations identified from OP_3 and OP_4 are useful in increasing expected
profitability, we computed the EVOI (Eq. 10) to evaluate their potential for increasing
the expected NPV from improved optimal solutions. Figure 18a compares the EVOIOP3

and EVOIOP4
obtained from the difference between the expected values of optimal

drilling sequences with and without use of additional information (i.e., key observations)
to reduce the uncertainty about whether F5 is sealing or not. Results show that both
EVOIOP3

and EVOIOP4
are positive when 0 < PF5unseal < 1. This indicates that the

optimal drilling sequence of the remaining wells is improved after reducing the key
uncertainty in the drilling-order problem. Also, the key observations from either
OP_3 or OP_4 are always helpful in making better future decisions with different
prior probabilities. When the initial probability of a non-sealing fault F5 is near 0.7,
both EVOIOP3

and EVOIOP4
reach their maximum values. Although the effects of

using information from OP_3 and OP_4 to reduce key uncertainty are similar (Fig.17),
EVOIOP3

is always higher than EVOIOP4
, i.e., more additional value can be created

with the information from OP_3. If we only consider the EVOI for choosing a key
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action, it seems that OP_3 should be preferred to OP_4. However, there might be a
large hidden cost of information caused by a sub-optimal solution when OP_3 or OP_4
is drilled as the first well. Hence, we should evaluate the net EVOI with this hidden
cost to determine whether it is worth drilling OP_3 or OP_4 first to obtain information
for improving future decisions, rather than taking the optimal decision for achieving the
maximum expected NPV over the current uncertainty state.

Figure 18b shows the net EVOI including the hidden cost of information when OP_3
or OP_4 is drilled as key action for first decision step. Note that there is no need
to compute the EVOI (Eq. 10) and the cost of information ECOI (Eq. 11) separately
for obtaining the net EVOI through a key action. This net EVOI can be computed
based on the EVOIa∗

i→akey
j+1

obtained from changing the initial optimal decision a∗i for
current uncertainty state to key action akeyj+1 (Eq. 7). Although EVOIOP3

> EVOIOP4
, the

hidden cost of obtaining information from OP_3 is much larger than the cost from OP_4
especially when there is a high probability that fault F5 is sealing. When the initial
probability of a non-sealing fault F5 is less than 0.7, the EVOIa∗

i→OP3
is negative, which

means that the additional value created by using the information from OP_3 to improve
the optimal drilling sequence of the remaining wells is not enough to compensate for
the hidden cost of obtaining information using a sub-optimal drilling sequence when
OP_3 drilled as the first well, i.e., EVOIOP3

< ECOIa∗
i→OP3

. In that case, there is
no benefit to drilling OP_3 first even if it can provide highly reliable information for
reducing key uncertainty for the drilling-order problem, and OP_3 is preferred to a∗i
only when PF5unseal ≥ 0.7. However, EVOIa∗

i→OP4
is always positive and larger than

EVOIa∗
i→OP3

unless the prior probability of non-sealing fault F5 is extremely high.
After consideration of the hidden cost of information, when PF5unseal < 0.94, OP_4 will
be a better choice of key action than OP_3 while OP_3 will be preferred to OP_4 if
PF5unseal ≥ 0.94. In this case, performing the key-feature based VOI analysis (Fig. 7),
which considers only the future learning possibility through OP_3 or OP_4 that has a
higher EVOIa∗

i→akey
j+1

, leads to the same optimal decision with consideration of the future
information from all possible decision alternatives, which illustrates that by taking into
account future information from key action, we are able to make optimal decisions
which account for the possibilities of further learning without sacrificing the quality of
solution.

Instead of computing all EVOIa∗
i→akey

j+1
to identify the preferred akeyj+1, we can study

the initial optimal drilling sequence to quickly obtain a good akeyj+1 with a potentially
higher EVOIa∗

i→akey
j+1

. Since the hidden cost of information is caused by a sub-optimal
solution and the wells that have important contributions to increase the expected NPV are
generally preferable for drilling at an early stage, we expect that the cost ECOIa∗

i→akey
j+1

from akeyj+1 that is drilled at a later stage along the initial optimal complete drilling
sequence will be potentially larger than the hidden cost of obtaining information from
akeyj+1 drilled at an early stage. When there are several possible akeyj+1 with similar
reliability of information, we can choose the one that is supposed to be drilled earlier
for maximizing the expected NPV in the current uncertainty state to avoid a high hidden
cost of information. In this work, we used learned heuristic search with mean model
bias-correction methods to efficiently obtain robust optimal drilling sequence under
uncertainty. During the search process, the maximum expected NPV constrained to
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different selected wells is estimated without finding the actual optimal solution. Hence,
we could also obtain an approximation of ECOIa∗

i→akey
j+1

when computing the initial
optimal decision a∗ and without incurring additional costs.

For the drilling-order problem, we observe that the optimal drilling sequence always
starts with OP_4 when PF5unseal < 0.94, and then changes to OP_3 drilled as the first
well when PF5unseal ≥ 0.94, which indicates that one of the possible key actions (e.g.,
OP_3 or OP_4) has no hidden cost of information caused by a sub-optimal solution
since it is identical to the initial optimal decision a∗, i.e., ECOIa∗→a∗ = 0. When
a∗ is also able to provide useful information for key uncertainty reduction, we can
consider the future information from both a∗ and akeyj+1 that is identified from the other
decision alternatives to make a more robust decision in consideration of future learning
possibilities (Eq. 13). In this example, the optimal decision obtained after taking into
account the future information from both OP_3 and OP_4 is still the initial optimal
decision a∗ since taking a∗ is able to both generate highly reliable information for key
uncertainty reduction (i.e., valuable information for improving future decisions) and
maximize the expected NPV for the current assessment of uncertainty (i.e., no hidden
cost of information), although this might not always be the case in other problems. Note
that here, we only investigated the future learning possibilities at the first decision step.
After drilling a new well, the reservoir model will be updated through history matching
based on the actual data. The key-feature-based VOI analysis (Fig. 7) could then be
performed again to determine the next optimal well. At the second and later decision
stages, however, information from the remaining actions will generally have a smaller
potential for improving the optimal strategy, and there may be no clear key uncertainties
for the optimization problem. In that case, there would be no need to consider the effect
of future information when making the optimal decision, and one could simply use a
standard robust optimization method [31].

Conclusion

In this paper, we proposed a flexible workflow built on a key-feature-based value of
information analysis to make optimal decisions efficiently while accounting for the
possibilities for future learning through actions. Taking into account the effects of
future information before committing to a decision allows improvement of the optimal
strategy. However, it is infeasible and unnecessary to account for all possible future
observations from remaining actions (i.e., a standard VOI analysis with extensive form).
In our approach, the VOI analysis is only performed on a small number of key actions
that will provide key information for reducing the most important uncertainties in the
optimization problem. i.e., information that will be for making better future decisions.
Then, the optimal decision is made based on the trade-off between the key actions
and the initial optimal decision obtained without considering any future information.
The simplified VOI analysis based only on key actions and key information might
not result in the same optimal solution as the complete VOI analysis, but it offers a
practical way to obtain a near-optimal decision that accounts for the possibilities of
future learning (i.e., the opportunities to improve optimal strategy resulting from future
uncertainty reduction). The key actions can be identified by considering the possibility
of obtaining valuable information for reducing key uncertainties and the possibility of
achieving high expected NPVs for the current uncertainty state, so that there is no need
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to compare the actual expected values of all possible decisions. The focus on the use
of key information to reduce key uncertainties avoids the need for full history matching
to re-estimate all uncertainties in the optimization. Instead of considering all distinct
sets of observations obtained from all ensemble members when updating the reservoir
model, we divide the entire key observation space into a limited number of disjointed
subspaces, i.e., each subspace will have high information reliability for indicating a
specific key uncertainties subregion, and observations located in the same subspace
have similar prediction precision for key uncertainty reduction. Consequently, we only
have to re-estimate key uncertainties for each observation subspace and perform the
optimization process in a few posterior ensembles for computing the expected value
with information. The following conclusions can be drawn from the present study:

• Although many uncertainties arise in reservoir characterization, some of them have
little influence on the optimal decisions, even if they might be reduced significantly
by assimilation of acquired observations. By identifying key uncertainties for the
optimization problems, we can identify key actions that would provide the most
useful information for improving future decisions.

• When all observations are used to simultaneously re-estimate uncertainty, the
largest decrease in uncertainty may be in properties that are irrelevant to current
decisions, and the reduction in key uncertainties from some observations might
be very small. However, the computational penalty of including those nonessen-
tial observations in updating the reservoir model can be large. Thus, instead of
only reducing the decision space by identifying key actions, we also need to iden-
tify the most important observations for reducing key uncertainties to make the
computation manageable.

• Performing a key action to acquire information for reducing key uncertainty is not
necessarily worthwhile, even if there is no explicit cost in obtaining the informa-
tion and future decisions could be improved. When taking key action to obtain
information leads to a sub-optimal solution, there is a hidden cost in obtaining the
information. Instead of using the additional value that could be created with in-
formation to judge whether it is worth taking action, the criteria should be the net
expected value of information, including the hidden cost associated with changing
the optimal decision for the current uncertainty state to the key action.

• The initial action in the optimal sequence of actions based on current information
might, in some cases, be a possible key action. To obtain a robust decision, it may
be necessary to consider the possibility of future learning through both the initial
optimal decision and alternative key actions identified from the remaining decision
alternatives.

• The expected value of information attributed to key actions will depend on the
prior probability distribution of key uncertainties. Hence, changing the prior
probabilities will not only affect the standard (naïve) computation of the optimal
solution, but will also affect the optimal decision obtained from VOI analysis.

Although the methodology is illustrated by the application of drilling-order problems,
it can be extended to general sequential decision-making problems under uncertainty
while considering the effect of future information. The key point is to effectively identify
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key actions and key observations that are associated with the key reservoir features for
optimization problems. In our example application, key uncertainties are identified by
studying the sensitivity of deterministic optimization solutions to different individual
uncertainties. Key actions are identified by evaluating the reliability of information for
reducing key uncertainties and the hidden cost of obtaining information from key actions.
For large problems, it may be necessary to explore more generalized and efficient
approaches for identifying key uncertainties and key actions. To efficiently identify
key observations, we built supervised-learning algorithms that can automatically detect
the optimal combination of observations as well as the best division of space for
reducing key uncertainty. At the same time, we estimate the prediction accuracy (i.e.,
the information’s reliability) for observations located in each subspace. This allows
directly computing the posterior probability of key uncertainty based on Bayes’ theorem,
avoiding the necessity of expensive data assimilation algorithms to update the entire
reservoir model. Using learning algorithms to identify the important observations is
applicable for optimization problems with multiple key uncertainties that are continuous
or categorical variables. For continuous variables, the distribution of key uncertainties
could be divided into a set of optimized subregions based on the performance of the
observation subspaces in reducing key uncertainties. Our simplified VOI analysis
considers the future information only resulting from the current decision step. If the key
information can only be obtained by taking at least two actions (i.e., individual decision
alternatives are shown to be unreliable as a source of information for reducing key
uncertainty), we could extend the VOI analysis by considering the possibility of future
learning through the following two decision steps, i.e., a combination of information
from two actions. The simultaneous consideration of information from two actions
would increase the complexity of VOI analysis, computational cost of expected value
with information, and the hidden cost of obtaining key information caused by sub-
optimal solution, which will be constrained to more past decisions.
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f∗ actual expected objective function value of optimal control

f∗ maximum net present value of optimal control

α bias correction factor

α bias correction factor

ᾱ average value of bias correction factor

ε̄ mean observed single-step error of estimated value

m̄ expected value of model parameter

m̄ expected value of model parameter

γ̄ mean observed single-step ratio of estimated value

μ̄ mean observed single-step ratio of variability in estimated value

μ̄ns mean single-step ratio of variability in estimated value

β partial correction factor for individual realizations

β partial correction factor

Δt time interval

Δt time interval

Δx length interval

δ distance between controls

γ single-step ratio of estimated value

γ single-step ratio of estimated value

α̂loc local estimate

α̂r regularized estimate

γ̂ forecast error of initial evaluation function value

f̂ learned evaluation function

f̂ learned evaluation function

ĥ learned heuristic function
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γ̂ estimated single-step ratio of estimated value

μ̂ estimated single-step ratio of variability in estimated value

λ regularization parameter/Lagrangian parameter (depending on context)

b0 vector of β at a fixed control x0
b vector of β from random controls and realizations

P vector of drilling sequence

w weight vector of β

ECOIa∗→akey hidden cost of information caused by sub-optimal solutions constrained to
decision akey

EVOI expected value of information

EVOIa∗→akey expected value of information changing decision a∗ to akey

EVWI expected value with information

EVWOI expected value without information

μ single-step ratio of variability in estimated value

μ viscosity of fluid

ω weight

Ωb key observation subspace

ρ distance-based weight

σ2α variance of bias correction factor α

σ2β variance of partial correction factor β

θ permeability

Θm subregion of key uncertainty

ε single-step error of estimated value

A cross-sectional area

A decision space

a decision alternative

a∗ optimal decision over the current assessment of uncertainty

a∗
fl optimal decision considering future information from current decision stage

a∗
fs optimal decision considering future information from all remaining decision

stages

a
key decision alternative providing important information for key uncertainty reduc-

tion
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b discount rate

b discount rate

C covariance of model parameter

d number of remaining actions

d number of remaining actions

E expected value of objective function

EV ∗ maximum expected value over current uncertainty state

f evaluation function/estimated maximum net present value

f objective function/evaluation function (depending on context)

fm first derivatives of objective function with respect to model parameter

fmm second derivatives of objective function with respect to model parameter

g actual economic value from previous actions

g economic value from previous actions

h heuristic function/estimated maximum future value

h heuristic function/estimated maximum future value

h history of past decisions and observations

h∗ maximum future value

IWEI injector economic index

J objective function

k log-permeability

L taper length

m model parameter

m model parameter

neff effective sample size

ns environment state at decision stage

ns environment state at decision stage

NΩb Number of observation subspaces

Ne Ensemble size

Ne total number of model realizations

Nr number of selected wells

Ns number of remaining wells
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Ns number of selected wells

Nw total number of wells

Nw total number of wells

Nx total number of random controls

NPV net present value

NPV net present value

O observation space

o observation obtained from specific decision

ob best observation subset for key uncertainty reduction

P pressure

P (Ωb | Θm) probability of observing ob ∈ Ωb at key uncertainty subregion Θm

P (Θm | Ωb) posterior probability of key uncertainty subregion Θm with observation
ob ∈ Ωb

P (Θm) prior probability of key uncertainty subregion Θm

P (o | h, a) probability of observing o from decision a following history h

PWEI producer economic index

q production/injection rate

q production/injection rate

Q∗ maximum expected value over all possible future observations from all remaining
actions

r reward/cost

r reward/cost

T total number of time steps

T total number of time steps

t time

t time

u uncertainty state

W cost of drilling well

W cost of drilling well

x control variable

x control variable

ΔtΦ learning time period
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ΔtL learning time period

Φ learning technique index

fn evaluation function at a specific state

fn evaluation function at a specific state

hn heuristic function at a specific state

hn heuristic function at a specific state

i control index/learning period index/cell index (depending on context)

i key uncertainty subregion index

j decision stage index/model realization index (depending on context)

j model realization index/time step index(depending on context)

j time step index

k key observation subspace index

k well index

L learning technique index

o oil

o oil

s decision stage

s decision stage

w water/well (depending on context)

w water/well(depending on context)

wi water injection

wi water injection

cos Cosine distance

L1 Manhattan distance

L2 Euclidean distance

eff effective sample size

m̄ reservoir mean model

Φ learning

i injection

i injection

L learning
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p production

p production

b best observation subset

lin linear approximation

m model parameter

o observation

quad quadratic approximation
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