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Abstract

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder, af-
fecting ~ 1.8% of the population above 65 years. A combination of genetic and environ-
mental factors contributes to the risk of PD, but the molecular mechanisms underlying
its aetiology remain largely unaccounted for.

Profiling gene expression in the PD brain can identify molecular processes associated
with the pathogenesis and nominate candidate therapeutic targets for further study.
Most previous gene expression studies in PD focused on specific hypotheses and were
restricted to selected genes of interest and only few were performed transcriptome-wide.
While in part informative, the results of these studies must be interpreted with caution
due to a combination of technical and biological limitations. Factors applying specifically
to the study of human bulk brain tissue make it difficult to confidently and accurately
determine altered pathways. 1) Bulk brain tissue is composed of multiple cell types,
some of which are selectively affected in PD. Variation in cell-type composition across
samples introduces noise, while disease-associated changes in the number of neurons
and glia introduce systematic gene expression biases between conditions. 2) The com-
plex architecture of neurons complicates sample dissection and can result in variable
soma-to-synapses ratios across samples. This variability results in additional noise in
expression data since RNA and proteins can undergo axonal transport, with some pref-
erentially localizing to the soma or synapses. Another limitation of previous studies is
that gene-level analyses provide only an incomplete perspective on the expression land-
scape. Regulation at the transcript- and protein-level is often overlooked.

The work of this thesis comprises three alternative approaches of gene expression analy-
ses in the PD brain, aiming to overcome these limitations. We employed RNA-Seq and
mass spectrometry in the prefrontal cortex of PD patients and healthy controls and ap-
proached these challenges by profiling expression at transcript-, gene- and protein-level.
Considering the described aspects of bulk brain tissue, we adjusted for changes in cel-
lular composition, RNA quality and guided functional interpretation with the polarized
nature of neurons in mind.

Our results indicate that the frequently reported downregulation of mitochondrial func-

tion is partly driven by cellular composition. Adjusting for cell-type bias instead revealed
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altered pathways related to protein degradation, further strengthening their involvement
in disease pathology. Both differential gene and transcript isoform expression showed en-
richment for these. Additionally, we nominated genes that exhibit differential transcript
usage events, suggesting alternate regulation at the transcript-level. These candidates
can be targeted in future studies to identify functional consequences. Finally, we ob-
served discordance between transcriptome and proteome which we concluded reflects
alterations in PD proteostasis. Specifically, we identified certain proteasomal subunits
central to these regulatory changes, providing us with further evidence for the key role

of protein degradation in PD brain.
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Chapter 1

Introduction

This chapter introduces the scientific background of this work by summarizing principles
of molecular biology, characterizing Parkinson’s disease (PD), defining methodological

aspects and reviewing the current knowledge on gene expression in the PD brain.

1.1 Gene expression

In 1909, Wilhelm Johannsen introduced the term gene to describe the units associ-
ated with inherited traits [92]. The human genome, consisting of base-paired nucleotides
which form the double-stranded DNA (deoxyribonucleic acid) molecule, is now estimated
to comprise over 3 billion base pairs (bp) of genetic code, organized into 23 pairs of chro-
mosomes [168] in the nucleus of the cell.

In 1958, Francis Crick introduced the term central dogma of molecular biology [39] and
described a “residue-by-residue transfer of sequential information” from DNA to the in-
termediate messenger RNA (t¢ranscription) and from RNA to the protein (translation).
In 1970, he expanded on the explanation of his definition in response to critique labelling
his theory as oversimplified [38]. He suggested information transfers from DNA to RNA,
from RNA to protein, from DNA to DNA, from RNA to RNA, and possibly from RNA
to DNA (the latter two appeared in virus-infected cells) (Figure 1.1A).

The theory of an injective central dogma (i.e., a function that maps each element (gene)
to exactly one image (protein)), implies that the diversity of proteins is explained by
the nucleic acid sequence variation [177]. This incomplete view has long since been ex-
panded to a more complex understanding of how genes encode proteins. Proteins are no
longer viewed as the only functional end product of a gene. Instead, different types of

non-protein-coding RNA (Figure 1.1B), such as ribosomal or micro RNA are known to
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Figure 1.1: General aspects of gene expression

A) Extract of “Central Dogma of Molecular Biology” (reprinted from [38]). B)
Schematic diagram of possible outcomes of transcription: mRNA and non-protein-coding
RNA (adapted from [172]). C) Schematic presentation of a simplified protein-coding
gene template, its RNA transcript and its primary transcript isoform. D) Examples of
different types of alternative splicing. Exons are represented in pink shades, introns in
light blue. Unprocessed RNA is visualized on the left side, processed RNA on the right
(adapted from [29])

exhibit functionality. The fate of these non-translated RNA transcripts is diverse and
often regulated (e.g., function, cellular localization, half-life) [174].
A protein-coding gene template is comprised of coding DNA segments (exons), inter-

spersed among non-coding regions (introns). The complete sequence of exons and in-
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trons, together with flanking regulatory regions (termed 5’- and 3’ untranslated regions
(UTRs)) are transcribed in the nucleus of the cell by RNA polymerase II (in eukaryotes)
to the single-stranded pre-messenger RNA (pre-mRNA) in a process called transcrip-
tion. Introns are removed from the pre-mRNA co- or post-transcriptionally by a process
termed splicing to form the final messenger RNA (mRNA). Further transcript process-
ing involves the addition of a 5’-cap and a 3’-poly-A tail. The processed mRNA is then
transported to the ribosome, where it is translated into an amino acid sequence by a pro-
cess termed translation (Figure 1.1C). Finally, the peptide will fold into a 3-dimensional
structure to exert its biological function [37].

Each step of this process is highly regulated: i) at the genetic and epigenetic level, in-
fluencing initiation and rate of transcription ii) at the transcript level, impacting the
fate of the transcribed RNA molecule and iii) at the protein level, affecting protein func-
tion, localization and half-life. At the genetic level, sequence motifs and DNA binding
proteins control both the initiation and rate of transcription. Non-coding regulatory
sequences localized up-and down-stream of the gene‘s promoter site interact with inter-
mediary factors to enhance or repress the binding of transcription initiation factors and
RNA synthesis by the RNA polymerase [130, 37].

At the epigenetic level, mechanisms like DNA methylation and histone modification con-
trol gene expression by regulating the binding of transcription activators and inhibitors,
and the state of chromatin accessibility. For example, DNA methylation is typically asso-
ciated with repression of gene expression, whereas histone acetylation commonly renders
chromatin accessible, thereby leading to increased transcription [45]. The epigenome is
sensitive to environmental factors, and epigenetic modulation influences disease risk and
progression via alternate regulation of gene expression [132, 183, 11].

Regulation also takes place at the transcript level. One major regulatory process that
targets the RNA transcript itself is alternative splicing. It is estimated to occur in
approximately 95% of genes comprising more than one exon [91] and is highly tissue-
specific [174]. A multitude of alternative splicing events has been characterized. In-
stead of the canonical splicing of exons, these can be combined for example by skipping
exons and/or including introns (Figure 1.1D). Other RNA processing mechanisms like
alternative cleavage and polyadenylation or varying 3’-untranslated regions are also com-
mon [54]. Additionally, post-transcriptional regulation (before translation) can involve
the interaction between the RNA and regulators such as micro RNAs [57] or RNA bind-
ing proteins [65].

These transcript-specific mechanisms regulate the composition of the transcriptome. It
comprises RNA transcripts of diverse stability and half-life, sub-cellular localization and
functionality. Transcriptional regulation ultimately also affects the rate and initiation
of translation of protein-coding RNA, thereby shaping the proteome [54]. Finally, alter-

native RNA transcript processing can result in transcript variants that are non-protein-
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coding or in transcript variants that encode protein isoforms with altered functionality
(Figure 1.1B).

At the protein level, another layer of regulation is achieved for example by post-
translational modifications (PTMs) through covalent addition of functional groups,
which regulate protein function, stability, localization and degradation. Major PTMs
include phosphorylation, acetylation, and glycosylation, but also hydroxylation and C-
terminal amidation (for example of peptide hormones). Another possibility of protein
processing is cleavage of the protein, for example, to remove a targeting signal after ar-
rival at the subcellular destination, or generation of a peptide hormone [169)].

A balanced state of the proteome, depending on protein synthesis, protein folding, sta-
bility, and protein degradation can be summarized by the term protein homeostasis or
proteostasis [84]. The maintenance of proteostasis is highly regulated, including the initi-
ation and rate of translation, enzyme-assisted folding of the amino acid chain, transport
of proteins to their target location, unfolding of proteins and finally the rate of their
biological degradation [10]. An aberrant proteostasis can lead to the accumulation of
misfolded and non-functional protein.

In general, the complex regulatory network of gene expression enables tissue and cell
specificity and contributes to differentiation and development and changes with human
disease and ageing [150, 151, 103, 131, 91]. Studies of gene expression, in relevant cells
and tissues, allow us to identify disease-associated biological processes which can be fur-
ther investigated to understand disease initiation and progression and to develop targeted

therapies.

1.2 Studying gene expression

Experimental studies of gene expression focus on qualitative and/or quantitative assess-
ment, of RNA and protein. Early low-throughput gene expression profiling methods like
northern blots [171] and quantitative polymerase chain reaction (QPCR) [166] lacked the
possibility of parallelization [50] and were restricted to the detection and quantification
of only a few genes per assay in each sample. With the development of hybridization-
based microarray assays, the characterization of genome-wide expression patterns was
rendered possible through hybridization of pre-defined DNA probes with synthesized
fluorescently labelled complementary DNA (cDNA). Microarrays remained popular gene
expression methods until they were superseded by sequencing-based methodologies like
RNA-sequencing (RNA-Seq) [175]. The breakthrough of next-generation DNA sequenc-
ing technologies making genome-wide expression quantification through cDNA sequenc-

ing possible, omitting the need for pre-defined probe sets, enabled de-novo transcript
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detection and, most importantly, empowered hypothesis-free analyses.

Similarly, protein studies evolved from low throughput, targeted approaches based
on specific antibody binding, such as Western blot [100] and ELISA [109], to high-
throughput, hypothesis-free methodologies targeting the entire proteome by mass spec-
troscopy (MS) and related technologies [9]. Here, I will briefly describe common experi-
mental and computational approaches involved in high-throughput RNA-Seq analyses, a
central methodology to the work presented in this thesis. In addition, I will give a brief

introduction to high throughput proteomics.

1.2.1 Data generation approaches
RNA sequencing

RNA-Seq is performed using high throughput sequencing technologies like the popular
IMlumina sequencing by synthesis. The general processes briefly summarized here.
Following isolation, RNA undergoes fragmentation, followed by ¢cDNA synthesis to cre-
ate a library of cDNA fragments, each with adapters attached to their 5~ and 3’-ends.
cDNA fragments are loosely attached to a flow cell through hybridization with tethered
complementary adapters. A complementary strand of the hybridized fragment is cre-
ated, starting from the complementary adapter that is solidly attached to the flow cell.
The two strands are then denatured and the original cDNA fragment washed away. The
newly synthesized fragment is attached to the flow cell through the adapter to which the
original fragment was hybridized. Next, each DNA molecule is amplified in a process
called cluster generation. The synthesized fragments hybridize with their top adapters
to surrounding complementary adapters forming a bridge and allowing for amplifica-
tion by creating additional complementary strands, which, after denaturation are both
separated and tethered to the flow cell. This process is repeatedly performed for all
fragments simultaneously, finally resulting in clone amplified fragments. After the re-
moval of reverse strands, during sequencing-by-synthesis, from one or both ends in an
additional sequence cycle (paired-end sequencing), a characteristic fluorescent light is
emitted for each nucleotide that is added to the strand, resulting in clusters of frag-
ments to light up in the same colour, until the synthesis of the short sequence (read) is
completed [12]. With the clonal amplification, this sequencing methodology also termed
”ensemble-based” provides relative quantification of the expression, which possesses the
advantage of robustness against single mismatches, thereby reducing the sequencing er-
ror rate to < 1% [99].

Highly parallel sequencing of samples is achieved through multiplexing, whereby multi-

ple samples can be sequenced in the same lane of the flow cell with the help of distinct
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sample indices embedded in RNA molecule adapters.

Prior to library preparation, the collection of isolated RNA can be subject to filtering
of specific species of RNA molecules, for example by enrichment via the polyadenylated
(poly-A) 3’-ends of mature processed, protein-coding, mRNA, or through the removal of
ribosomal RNA (rRNA). Both procedures ensure appropriate signal detection by avoid-
ing the sequencing of highly abundant rRNA. While poly-A selection distinctly detects
protein-coding mRNA, it lacks the possibility to study non-coding RNAs such as IncR-
NAs. Additionally, accurate transcript quantification is highly dependent on the integrity
of the RNA. Due to the tail selection, partially degraded transcripts exhibit a 3’-end bias

(i.e., the read coverage differs between the 5’ (fewer reads) and 3’ (more reads) ends) [185].

The sequencing methodology described above is often termed “short-read sequenc-
ing”, since its output consists of relatively short reads (< 200 bp) with an aver-
age library size of 20-30 million reads per sample [157]. Depending on the com-
plexity of the transcriptome of interest and the chosen RNA selection methodology,
more reads might be necessary for accurate quantification of both low and abun-

dantly expressed transcripts and to achieve satisfying coverage of the transcriptome

number of reads - average read length (bp) [146])

(average genome coverage = genome or transcriptome length (bp)

Following alignment of raw sequence reads to a reference genome or transcriptome, gene
expression is quantified by the number of reads mapped to annotated regions defined as
genes. The alignment of reads from RNA-Seq experiments to a reference genome will
result in split reads on exon-exon junctions, where the reference genome constitutes an
intron, which is not present in the sequenced mature RNA due to splicing. Alignment
and quantification constitute the main computational bottlenecks in RNA-seq process-
ing, which has led to the active development of advanced computational methods to
reduce run-time. For example, recently developed algorithms reduce the steps of single
base alignment and quantification to infer transcript abundance directly through pseudo-
or quasi-mapping [21, 136]. Difficulties, however, remain: ambiguously mapped reads,
pose the challenge of determining their origin. Distinct alignment of reads to transcript
isoforms arising from alternative splicing or other alternative transcript processing is not

trivial.

Proteomics

Proteomics is the qualitative and/or quantitative study of the proteome, i.e., the collec-
tion of proteins present in a cell, tissue or organism. The proteomics field has evolved a
broad arsenal of technologies and methodologies, ranging from relative and absolute pro-

tein quantification to the detection and quantification of PTMs. While methodologically
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diverse and tailored to the research question at hand, proteomic analyses are generally
based on the following broad principles. First, protein fraction is purified from the sam-
ple of interest, digested into peptides, commonly by trypsinization, and either fraction-
ated according to their electrochemical properties (e.g., size and charge) or enriched for
specific peptide subpopulations (e.g., specific PTMs). The fractionated or enriched pep-
tide populations are separated, commonly using a liquid chromatography (LC)-based
technique (e.g., high-pressure liquid chromatography, HPLC). The separated peptides
are then ionized and assessed by mass spectrometry to assess their mass/charge ratio
and determine their identity. Identified peptides are quantified in relative or absolute
terms, depending on the design of the experiment. Finally, bioinformatic approaches are
employed to assemble, quality control and analyze the data [2]. Parallel MS-analysis of
multiple samples is possible via multiplexing methodologies, such as ”tandem mass tags”
(TMT) [164]. While powerful and constantly evolving, currently mainstream proteomic
methodologies with the inclusion of multiple batches challenged by a high abundance of
missing values, batch effects, and high false-positive rates introduced through channel

leakage, influencing both sensitivity and specificity of expression quantification [22].

1.2.2 Data analysis approaches
Differential gene expression and pathway enrichment analysis

In differential gene expression (DGE) analyses, transcript-level expression counts are
aggregated to the gene-level and then compared between conditions. Thus, DGE analysis
investigates changes in abundance of the summarized transcriptional output of a gene.
Differentially expressed genes (DEGs) can then be ranked by the magnitude of change
in expression or by its level of significance. This ranking can be used to test for the

enrichment/overrepresentation in specific functions.

Studying transcript isoforms: differential transcript usage

One way to study differences in the expression of transcript isoforms is differential tran-
script usage (DTU). In contrast to DGE, for DTU analysis, estimated transcript counts
are not aggregated at the gene level. This enables the consideration of potentially func-
tionally distinct transcript isoforms which originate from the same gene template. A
direct comparison of expression of transcript isoforms between two conditions is referred
to as differential transcript expression (DTE). For DTU, however, transcript isoform

abundance is investigated in relation to the complete transcriptional output of a gene
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(Figure 1.2). Thus, DTU analyses estimate “transcript usage” and detect changes in the
relative contribution of a transcript to the overall expression of the gene. Transcript us-
age corresponds to transcript-level expression counts of a transcript i normalized by the

sum of counts of all transcripts of a gene j:

t;

TUi,j: n; L )
k=1 "k

(1.1)

where n; equals the number of transcripts of gene j and ¢; is the expression count
of transcript i. Hence, differential transcript usage describes a change in proportions

between two conditions.

Differential

Condition 1 Condition 2 Entity Expression
Differential Gene Expression (DGE): Gene A DGE/
Change in the collective abundance of
[i] transcripts from a gene. Sum of all

individual changes to transcript
isoforms of that gene

Transcript A.1 DTE X

Differential Transcript Expression (DTE): Transcript A.2 DTE/

[i i] Change in the abundance of individual Transcript A.3 DTE/
transcripts, irrespective of gene of origin. Transcript B.1 DTE/
Transcript B.2 DTE Y

Gene A DTU/

Transcript A.1 DTUV

Differential Transcript Usage (DTU): Transcript A.2 DTUV

[iii] | Changein the abundance of individual Transcript A.3 DTU X
transcripts, compared only to transcripts Gene B DTUV

from the same gene. Transcript 8.1 DTUY

Transcript B.2 DTUV J

Gene B DGE X

Figure 1.2: Definition of DGE, DTE and DTU Schematic illustration of types of
differential expression (reprinted and adapted from [61])

Differential protein expression

Depending on the employed proteomics methodology, acquired peptide intensities are
aggregated to protein level abundances. Like in DGE analysis, differential protein ex-
pression (DPE) analysis identifies differences in protein levels between two conditions,
and subsequent functional enrichment analysis can be performed on the preferred statis-

tic of differentially expressed proteins (e.g., fold-change or significance)
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1.3 Parkinson’s disease

1.3.1 Epidemiology and clinical features

Parkinson’s disease (PD) is a major cause of death and disability and has a devastat-
ing global socioeconomic impact. It affects 1-2% of the population above the age of 65
years and its prevalence increases as the population ages [44, 66]. In Europe alone, PD
affects ~1.2 million people and has an estimated cost of € 14 billion/year [70]. Despite
more than two centuries of research, the molecular mechanisms underlying PD remain
largely unknown and there are no disease-modifying therapies able to prevent or delay
disease initiation and progression. Thus, the need to understand and treat PD has never
been more urgent. While references to parkinsonian symptoms can be found since an-
cient records, including an essay written by Galen in 169 CE on forms of tremor, the
first systematic medical description of the PD syndrome was published by James Parkin-
son in 1817 in his work entitled ” An Essay on the Shaking Palsy” [134]. The incidence
and prevalence of PD are strongly dependent on age. PD has an estimated prevalence
of 0.3% of the entire population in developed countries, but this number varies greatly
between age-groups [129]. While rare below the age of 50 years, PD is estimated to
affect ~1.8% of the population above the age of 65 years and more than 4% of those
over 85 years [44]. Reported incidence rates vary between 8-18 per 100,000 population
per year [43] and this variation reflects both methodological and population-specific age
composition variability. The sexes are asymmetrically affected with a male to female ra-
tio of ~1.5.

The clinical constellation of PD comprises a combination of motor and non-motor fea-
tures. Motor symptoms include resting tremor, bradykinesia, rigidity and postural insta-
bility. Typical non-motor symptoms include neuropsychiatric dysfunction, olfactory loss,
autonomic dysregulation, gastrointestinal dysmotility, sleep disorders, cognitive impair-
ment and dementia[94]. Current treatments for PD are purely symptomatic and provide
partial and transient relief for some of the motor symptoms. Since disease-modifying
neuroprotective therapies are lacking, the neurodegenerative process of PD develops in-

exorably, leading to progressive disability and premature death.

1.3.2 Aetiology

PD can be divided according to aetiology into monogenic and idiopathic forms. The term

PD will henceforth refer to idiopathic PD unless otherwise specified. Monogenic forms of
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PD account for generally less than 5% of all cases [14]. Multiple genes have been linked
to monogenic PD. Mutations in SNCA, LRRK2 and VPS35 cause autosomal dominant
disease, whereas mutations in PRKN, PARK7, PINK1, ATP13A2, FBXO7, PLA2G6,
DNAJC6, SYNJ1 and VPS13C are causes of autosomal recessive forms of PD and/or
parkinsonism.

Idiopathic forms of PD cannot be linked to a single causal gene and are believed to be
caused by a yet unresolved interplay between genetic predisposition and environmental
influences. The genetic background contributes to the risk of idiopathic PD, as evident
from twin studies consistently detecting a higher risk for monozygotic than for dizygotic
twins [180]. Furthermore, multiple studies have shown familial aggregation of PD, with
the relative risk for PD patients to have a first degree relative with PD generally esti-
mated between ~2-3 % [63, 163]. The estimated overall heritability of idiopathic PD
varies substantially between studies and is thought to be ~30-40 % [73, 180]. Genome
wide association studies (GWAS) have identified multiple genetic loci associated with id-
iopathic PD, including variation linked to SNCA, LRRK2, GBA, MAPT, and HLA. The
latest meta-analysis [127] identified a total of 90 variants in 78 loci, which collectively
explained 16-36% of the heritable risk of PD. The cause of the remaining heritable risk
of PD remains unknown and is commonly referred to as the “missing heritability”.

As heritability estimates and GWAS suggest, most of the risk of PD is not inherited and
is, therefore, assumed to be related to external, environmental factors. In spite of ex-
tensive epidemiological studies, only a few environmental factors have been definitively
linked to the disease and appear to have overall weak effects. Tobacco smoking, con-
sumption of caffeinated beverages (including coffee and tea), and high serum urate levels
have been associated with a reduced risk of PD [80]. Conversely, consumption of dairy
products, exposure to pesticides (in particular paraquat and rotenone) and certain heavy
metals, rural living, and traumatic brain injury have been repeatedly associated with an
increased risk of PD [7]. For many of these factors, findings are conflicting, however, and

whether they have a causal role in PD remains to be determined.

1.3.3 Pathology

The pathological hallmark of PD is the loss of the dopaminergic neurons of the sub-
stantia nigra pars compacta (SNc) in the presence of intraneuronal inclusions, composed
primarily of insoluble aggregates of a-synuclein, which are collectively termed Lewy
pathology. In addition, PD is characterized by progressive neuronal loss across multi-
ple regions in the nervous system, including the olfactory bulb, amygdala, hippocampus,
basal cholinergic nuclei, hypothalamus, multiple brainstem nuclei and the autonomic

and enteric nervous systems [48, 47]. Other typical features include reactive changes in
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the form of astrocytic gliosis and microglial activation, commonly accompanying neu-
ronal loss, and the variable presence of other pathological protein aggregates, such as
tau-containing neurofibrillary tangles and beta-amyloid plaques [48, 47]. Yet another
typical pathological feature of PD is qualitative mitochondrial respiratory chain (MRC)
changes, particularly in the form of neuronal respiratory chain complex I (termed hence-
forth ”complex I") deficiency, which was first reported in the SNc [143, 74] and later
found to be widespread throughout the PD brain [58].

While the neuropathological features of PD have been extensively described, their link
to neuronal dysfunction and clinical impairment remains poorly understood. Thus, it
is not known which of these pathological changes contribute to disease and should be

targeted by therapies

1.3.4 Molecular pathophysiology

While the cascade of molecular and cellular events underlying initiation and progression
of PD remain largely unknown, several biological processes have been strongly associated
with the disease. Some of the most widely studied include a-synuclein aggregation,

impaired proteostasis, and mitochondrial dysfunction.

Abnormal protein aggregation

a-synuclein aggregation and Lewy pathology (LP) formation are the pathological hall-
marks of PD. Normally, a-synuclein exists as soluble monomers and multimers localized
predominantly in presynaptic terminals [83]. In PD, due to poorly understood processes,
a-synuclein undergoes misfolding and forms insoluble fibrils. These aggregate into toxic
oligomers and gradually take the form of histologically recognizable aggregates termed
Lewy bodies and neurites [83]. It is hypothesized that oligomeric and/or aggregated
forms of a-synuclein are toxic to neurons and contribute to neuronal dysfunction and
death in PD. This is greatly supported by the fact that point mutations and dose-
increasing multiplications of the SNCA gene, encoding a-synuclein, cause PD [83, 137].
Thus, much of the current efforts to treat PD, by academia and industry alike, are largely
concentrated on either preventing the aggregation of a-synuclein [138] or removing its
aggregated forms from the patient brain [88]. However, the biological role and clinical
significance of a-synuclein aggregation in PD remain elusive. Based on a semiquantita-
tive assessment of a-synuclein positive LP in a series of post-mortem cases, Braak et al.
proposed a staging system, comprising six successive stages of LP, starting at the cau-

dal medulla oblongata and gradually ascending to finally become widespread throughout
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the neocortex [19]. It was further proposed that the anatomical distribution and load
of LP, as described by Braak et al., correlates with (and may explain) the clinical pro-
gression and severity of PD [19]. The Braak model of caudorostral spreading of LP has
been subsequently challenged, however, by studies showing that only about 50% of PD
patients show at pattern of LP consistent with Braak staging [93, 182]. Furthermore,
the proposed correlation between Braak LP stage and clinical phenotype has been ques-
tioned by multiple studies finding no association between the distribution or load of LP
and cognitive decline or extrapyramidal motor dysfunction [135, 90, 179, 126, 34, 89].
Moreover, extensive LP corresponding to Braak stages V-VI can be found in elderly indi-
viduals without clinical parkinsonism [19, 110, 95]. In fact, it has been shown that other
neuropathological markers such as neurofibrillary tangles and beta-amyloid plaques may
correlate better with the incidence and severity of dementia in PD [90, 72, 24]. Another
important source of uncertainty regarding the role of LP is the lack of definite correla-
tion between the distribution or load of LP and neuronal loss, both during early and late
phases of PD [159, 71].

An increasing body of evidence suggests that impaired protein degradation by the
ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway play a role
in PD. The UPS system is responsible for the degradation of unfolded or misfolded pro-
teins [186], including the removal of a-synuclein [158]. Failure of the UPS is thought to
contribute to cellular protein aggregates [187, 32]. Because of their long lifespan, neu-
rons are particularly vulnerable to protein aggregation due to reduced performance of
proteasomal function. The UPS also acts outside the cell body in axonal and presy-
naptic regions to enable time-efficient control of protein levels, for example, to support
neurotransmission [154].

Evidence supporting that impaired UPS function may be implicated in the pathogene-
sis of PD includes 1) the presence of a-synuclein and ubiquitin aggregates within Lewy
bodies [186, 101]. While experiments in cells have shown that UPS failure contributes to
a-synuclein aggregation, new studies suggest a vicious cycle in which a-synuclein aggre-
gates are proposed to actively contribute to UPS impairment [187, 112, 149]. 2) Evidence
of quantitative and functional decline of the proteasome has been found in the SNc¢ of
patients with idiopathic PD [121]. 3) Mutations in PRKN encoding an E3 ubiquitin lig-
ase cause autosomal recessive PD [98].

While most targeted protein degradation occurs through the UPS, protein aggregates,
cell organelles such as mitochondria, and other cytoplasmic components are degraded
by lysosomes via autophagy [104]. Several lines of evidence suggest that dysfunction
of the lysosome-autophagy system may be contributing to the pathogenesis of PD: 1)
The accumulation of Lewy pathology suggest there may be decreased clearance of pro-
tein aggregates via autophagy. 2) Genetic variation in the GBA gene, encoding the

lysosomal enzyme beta-glucocerebrosidase, is the strongest known genetic risk factor for
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PD [104, 145]. Furthermore, in PD patients without risk variants in GBA, the pathologic
accumulation of a-synuclein was found to negatively influence GBA localization to the
lysosomes and consequently contribute to lysosome dysfunction. It has been suggested
that this may trigger a vicious cycle, in which impaired lysosomal function increases

a-synuclein aggregate accumulation [104, 120].

1.4 Gene expression studies in the Parkinson’s dis-

ease brain

1.4.1 DGE and associated pathways in PD

Hypothesis-guided expression analyses targeting PD genes (e.g. SNCA, DJ-1, PINK1)
have produced variable and partly conflicting findings without shedding much light on
the transcriptomic landscape of PD. These were rapidly replaced by genome-wide tran-
scriptomic studies, both using microarray assays and RNA-Seq.

The most recent (2018) review on DGE in PD reported a total of 63 original studies [17].
Of these, 33 were performed on brain tissue, 26 on blood, 3 using cerebrospinal fluid and
one was performed on skin tissue [17]. Of the 33 brain tissue studies, 18 were performed
on tissue of the SNc and only 8 on tissue extracted from the frontal cortex. Other brain
regions included the amygdala, striatum, putamen and occipital cortex. Only two of the
brain tissue studies were performed using RNA-Seq [52, 79].

DEGs in PD have shown remarkably poor concordance across different brain regions and
between different studies of the same region [17]. Many studies in brain were performed
on SN tissue using microarrays [49, 53, 18, 124, 123, 184, 75, 68]. These studies vary sub-
stantially in terms of applied methodology for quality-control and filtering, read-count
normalization, and statistical determination of differential expression. Notably, not all
studies undertake formal multiple testing correction, and many do not account for es-
sential confounding factors like sex, age, and the pronounced neuronal loss and gliosis
characterizing the SNc of individuals with PD. Moreover, a meta-analysis of 13 datasets
from 7 studies of different tissues revealed that applying a standardized analysis method-
ology did not lead to a marked increase in the concordance of DEGs across studies. In
fact, not even a single DEG was found in the intersection of all datasets - or even datasets
from the same region (SNc) [160].

Despite the low replication rate at the gene-level, enrichment of DEGs in pre-defined
functional gene-sets (i.e., pathways) showed higher concordance across studies. The
most consistently reported pathway in the SNc¢ was “dopamine metabolism”. Since this

biological process is specific to dopaminergic (DA) neurons, a cell-type that is selectively
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lost in the PD SNc, it is reasonable to assume that this finding most likely reflects al-
tered cell-composition, rather than disease-specific regulation. Therefore, accounting for
altered cellular composition is essential when analyzing gene expression data from bulk
brain tissue of individuals with PD and other neurodegenerative diseases. Few previous
studies have attempted to mitigate the problem of cell-composition in PD by different
approaches, including: 1) comparing their results to other neurodegenerative diseases
that also involve neuronal loss in SNc [75], selecting subregions of the SN¢ with mild
neuronal loss [18] or estimating cellular composition in silico [27].

Another way to circumvent the problem of different cell-composition between CT and
PD in the SNc is to isolate individual DA neurons using laser capture microdissection
(LCM). Studies applying this methodology reported no change in the expression of genes
involved in dopamine metabolism greene2012current, simunovic2009gene, corroborating
the hypothesis that those findings were driven by DA cell loss. Interestingly, a study
comparing LCM to bulk tissue expression data of SNc tissue reported high expression of
glial-specific genes and only low expression levels of neuron-specific genes in bulk brain
tissue [55]. While LCM offers a direct comparison of RNA expression in DA neurons
between conditions, contamination with non-neuronal RNA is still possible [55]. An ad-
ditional limitation is the high amount of total RNA required for the experiment. This
remains a challenge in PD patients, as only few DA neurons remain at terminal stages
of the disease, and these may not be fully representative of the cells that were lost, due
to a survivor bias. These findings highlight the difficulty of DGE analysis in PD brain
and its functional interpretation concerning cellular differences due to disease pathology.
An alternative brain region to study disease-related gene expression changes in is the
prefrontal cortex. It exhibits PD-related pathology, including a-synuclein pathology
and complex I deficiency, but shows only mild cellular changes [47, 58, 133]. Reported
altered pathways in prefrontal cortex tissue of PD are, among others, neuronal develop-
ment, glial- and oligodendrocyte-related function, olfactory transduction pathways, as
well as mitochondrial and immune function. While the neuronal loss is less pronounced
in the prefrontal cortex area, differences in cellular composition between cases and con-
trols are known to exist. Cell-type related pathways like neuronal development, glial
and oligodendrocyte function, suggest that the observed altered gene expression profile
reflects, at least partly, changes in the cellular composition.

Finally, studies of other brain regions like the striatum have reported changes in path-
ways such as UPS and oxidative phosphorylation, similar to those suggested by studies
of the SNc and prefrontal cortex tissue (Table 1.1). One important limitation of these
studies is that, while the striatum is not affected by neuronal loss in PD, it is substan-
tially denervated as a result of the loss of the dopaminergic input from the SNc. The
ensuing nigrostriatal denervation is likely to impact measured expression profiles through

two mechanisms: 1) loss of the RNA content of the nigrostriatal synapses will confound
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the comparison to control samples, and 2) striatal neurons may show changes reflecting
altered neurophysiological activity due to altered synaptic input.

Overall, pathways frequently nominated as altered in PD brain include dopamine-
metabolism, protein degradation, mitochondrial function (including OXPHOS), synaptic
vesicle dynamics and neuroinflammation [17]. A simplified overview of up- and down-
regulated pathways that have been proposed as affected by DGE in PD are listed in Table
1.1. Mitochondrial function and protein degradation have been reported as downregu-
lated by most studies, irrespective of tissue or methodology, and have been implicated
in PD in other research as described above. Altered pathways related to mitochondria
include OXPHOS, oxidative damage response and ATP synthesis. Interestingly, altered
and specifically decreased expression of genes encoding components of the mitochondrial
respiratory chain was reported as the transcriptional hallmark of cellular ageing [60].
This is in line with several experimental analyses in various species and tissues, sug-
gesting a decline in mitochondrial function with ageing [20, 28]. As mentioned above,
mitochondrial dysfunction is suggested to contribute to the pathogenesis of neurodegen-
erative diseases like Alzheimer’s disease and PD, although direct causal proof remains
elusive [5, 46, 31, 161, 42]. PD has been strongly linked to quantitative and functional
deficiency of the mitochondrial respiratory complex [58, 143].

The other consistently reported process associated with transcriptional alterations in PD
is protein homeostasis, specifically, protein degradation. DGE studies in PD brain high-
light the protein degradation pathway of the UPS mainly as downregulated. However,
genes encoding heat shock proteins, which perform chaperone activity related to protein
refolding and degradation, have been reported as both down- (LMD, DA neurons [147])
and upregulated (SN, prefrontal cortex and other brain areas [75, 184]). Protein degrada-
tion through the autophagy-lysosomal pathway has also been implicated as impaired in
PD, as discussed above. Gene expression changes in pathways related to protein degra-
dation via the autophagy-lysosomal pathway have been found in the prefrontal cortex
and striatum but are not as consistently reported as the UPS [27].

To conclude, transcriptomic analyses of brain tissue in PD face substantial challenges:
1) So far, most studies have been performed on microarrays, limiting the analysis to
a predefined probe set. 2) Studies in post-mortem tissue is challenged by transcript-,
cell-, tissue- and sample-dependent variability in RNA degradation, biasing quantifica-
tion of gene expression. 3) Studies in bulk-tissue suffer from low signal-to-noise ratio
due to heterogeneous cell-composition across samples and are biased by disease-specific
changes in cell-composition (i.e., neuronal loss and gliosis). 4) Gene expression patterns
in post-mortem tissue provide a snapshot of end-stage disease, which is not necessarily
informative regarding the processes implicated in neurodegeneration. 5) Methodological
and pathological variability contributes to the observed lack of concordance across stud-

ies at the gene-level.
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To date, no studies have focused on the prefrontal cortex using RNA-Seq to investigate

gene expression changes in PD while accounting for cellular composition.

1.4.2 Transcript isoforms in the PD brain

Specific isoform expression profiles in the human brain have been associated with neu-
ronal development and ageing [77] as well as with disease [170], including neurodegenera-
tion [111, 139]. Evidence of altered splicing in PD has been reported by studies targeting
specific genes [102]. Four splice variants of SNCA were reported to show higher expres-
sion in PD frontal cortex compared to healthy controls, although only one of them was
significantly overexpressed [13]. Furthermore, two splice variants of PARK2 were found
significantly overexpressed in PD brain [85]. These findings were, however, based on
small sample sizes and findings are yet to be replicated. Except for these targeted,
hypothesis-based studies, the role of transcript isoforms in PD and in particular the role
of DTU remains largely unexplored and no genome-wide studies have been carried out
to date.

1.4.3 Protein studies in PD

Protein expression analysis in PD has mostly been focused on proteins that were pre-
viously linked to the disease. Few hypothesis-free differential proteome analyses in PD
have been performed to date and were limited by the detection power of their method-
ology [51, 140].

Interestingly, in a recent integrated study of transcriptome and proteome in PD, the
authors reported that observed protein alterations in PD brain were mainly in disagree-
ment with the observed changes at the gene level [140].

Unfortunately, so far, limitations and difficulties involving proteomic methodologies force
us to continue to study gene expression to identify disease-related mechanisms. How-
ever, it is unclear whether the expression level of proteins can be directly inferred from
the expression level of RNA and whether disease-related functional consequences can
be directly concluded from altered transcription levels. While many have investigated
the correlation of transcriptome and proteome and studied the predictive value of the
transcriptome to protein level, studies do not necessarily agree [23]. Furthermore, how
the coupling of the transcriptome and proteome develops with ageing in the brain [178]
and particularly in the PD brain remains largely unknown. Further, alterations in the
coupling of transcriptome and proteome could give insight into the altered regulation of

protein synthesis and degradation, which is of specific interest in PD.
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extrinsic apoptosis / regulation of apoptosis
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Cytoskeletal structure

Py
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— ||

Regulation of oligodendrocyte precursor cells

Oligodendrocyte function

Olfactory receptor function

|||
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1

Table 1.1: Simplified listing of pathways nominated by DGE studies Up- and down-
regulated pathways are indicated by ”1” and ”|” respectively. If both up and downregulation,

or just deregulation was reported, it is represented as J.

” 9

_” indicates empty cells, i.e. no is

information given. LCM refers to neuron isolation by laser capture microdissection, (i.e., DA
neurons in SN, pyramidal neurons in Posterior cingulate cortex (PCC)). STR stands for stria-
tum, PFC for prefrontal cortex. This listing was generated by summarizing and extracting
results from studies reviewed in [17] and is not exhaustive but rather a schematic presentation.
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Chapter 2

Aims

This thesis aimed to unveil gene expression signatures that are most likely associated
with underlying disease mechanisms by considering i) the cellular complexity of bulk
brain tissue ii) the diversity of the transcriptome and iii) the relationship between tran-

scriptome and proteome.

e Paper I
Identify differentially expressed genes and associated functional processes in pre-
frontal cortex tissue of individuals with PD. Assess the confounding effect of altered

cell-composition on differential gene expression analyses.

e Paper II
Identify differential transcript usage events and associated functional processes in
prefrontal cortex tissue of individuals with PD. Highlighting the importance of dif-
ferential transcript usage analysis as a complement to conventional gene expression

analysis.

e Paper III
Determine if and how the coupling between transcriptome and proteome in the
human brain is altered with ageing and in individuals with PD. Identify distinct
mRNA-protein correlation patterns in each group and nominate associated biolog-

ical processes.
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Chapter 3

Material and Methods

This chapter describes the material and methods applied in study I, IT and III in detail.
These descriptions are based on the method section of the respective papers (published
for study I and II, in manuscript for study IIT). The methods were extracted from the
articles and adapted and rearranged to allow for a chronological order. While study I
and II were based on the material of two cohorts referred to as PW and NBB (described
below), these were respectively termed discovery cohort and replication cohort in the
published article of study II. All three studies involved control samples from the PW
cohort which we abbreviated with ”CT”. Although in manuscript III the control group

was abbreviated with "HA”, we refer to it as CT in the following method description.

3.1 Material

3.1.1 Subject cohorts: Paper I, IT and II1

The three studies were performed on data derived from fresh-frozen brain tissue. All
experiments were conducted in fresh-frozen prefrontal cortex (Brodmann area 9) from
a total of 53 individuals from two independent cohorts (PW and NBB) and Norwegian
sudden infant death syndrome (SIDS) individuals. Paper I and II included the analysis
of the two independent cohorts, PW and NBB, while paper III included the analysis of
one of the PW cohort and N = 4 SIDS infants (YG). Paper I additionally included an
independent cohort (PA) for which published data was reanalyzed.

The PW cohort (N = 29) comprised individuals with idiopathic PD (N = 17) from
the Park-West study, a prospective population-based cohort which has been described
in detail [3] and neurologically healthy controls (CT, N = 11). Whole-exome sequencing
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had been performed on all patients [62] and known/predicted pathogenic mutations in
genes implicated in Mendelian PD and other monogenic neurological disorders had been
excluded. None of the study participants had clinical signs of mitochondrial disease or
use of medication known to influence mitochondrial function. Controls had no known
neurological disease and were matched for age and gender. The NBB cohort consists of
N = 21 samples from the Netherlands Brain Bank, including idiopathic PD (N = 10)
and demographically matched neurologically healthy controls (N = 11). Individuals
with PD fulfilled the National Institute of Neurological Disorders and Stroke [64] and
the UK Parkinson’s disease Society Brain Bank [176] diagnostic criteria for the disease
at their final visit. Ethical permission for these studies was obtained from our regional
ethics committee (REK 2017/2082, 2010/1700, 131.04).

To investigate the effect of the rRNA depletion and random primer capture protocol
compared to the prevailing poly-A method, we re-analyzed an RNA-seq dataset from a
previous publication which employed a poly-A tail selection kit on post-mortem tissue
of the same brain area and same disease (PA cohort, N = 29 PD samples, N = 44
neurologically healthy controls, all males; GEO: GSE68719) [51]. Informed consent was

available from all individuals.

3.1.2 Tissue collection and neuropathology: Paper I, II and III

Brains were collected at autopsy and split sagittally along the corpus callosum. One
hemisphere was fixed whole in formaldehyde and the other coronally sectioned and snap-
frozen in liquid nitrogen. All samples were collected using a standard technique and
fixation time of ~ 2 weeks. There was no significant difference in post-mortem interval
(PMI) (independent t-test, PW cohort p = 0.16; NBB cohort p = 0.92), age (independent
t-test, PW cohort p = 0.18; NBB cohort p = 0.074) or gender (independent t-test, PW
cohort p = 0.94; NBB cohort p = 0.53) between PD subjects and controls. Routine
neuropathological examination including immunohistochemistry for a-synuclein, tau and
beta-amyloid was performed on all brains. All cases showed neuropathological changes
consistent with PD including degeneration of the dopaminergic neurons of the SNc¢ in
the presence of Lewy pathology. No pathological evidence of neurodegeneration or other

neurological disease was found in CT and infants.



3.2 Experimental methods 23

3.2 Experimental methods

3.2.1 RNA sequencing: Paper I, II and III

Total RNA was extracted from prefrontal cortex tissue homogenate for all samples using
RNeasy plus mini kit (Qiagen) with on-column DNase treatment according to manu-
facturer’s protocol. Final elution was made in 65 pl of dH20. The concentration and
integrity of the total RNA were estimated by Ribogreen assay (Thermo Fisher Scien-
tific), and Fragment Analyzer (Advanced Analytical), respectively. Five hundred ng of
total RNA was required for proceeding to downstream RNA-seq applications. First,
ribosomal RNA (rRNA) was removed using Ribo-Zero™ Gold (Epidemiology) kit (Illu-
mina, San Diego, CA) using manufacturer’s recommended protocol. Immediately after
the rRNA removal the RNA was fragmented and primed for the first strand synthesis
using the NEBNext First Strand synthesis module (New England BioLabs Inc., Ipswich,
MA). Directional second strand synthesis was performed using NEBNext Ultra Direc-
tional second strand synthesis kit. Following this, the samples were taken into standard
library preparation protocol using NEBNext DNA Library Prep Master Mix Set for Illu-
mina with slight modifications. Briefly, end-repair was done followed by poly-A addition
and custom adapter ligation. Post-ligated materials were individually barcoded with
unique in-house Genomic Services Lab (GSL) primers and amplified through 12 cycles
of PCR. Library quantity was assessed by Picogreen Assay (Thermo Fisher Scientific),
and the library quality was estimated by utilizing a DNA High Sense chip on a Caliper
Gx (Perkin Elmer). Accurate quantification of the final libraries for sequencing applica-
tions was determined using the qPCR-based KAPA Biosystems Library Quantification
kit (Kapa Biosystems, Inc.). Each library was diluted to a final concentration of 12.5
nM and pooled equimolar prior to clustering. 125 bp Paired-End (PE) sequencing was
performed on an Illumina HiSeq2500 sequencer (Illumina, Inc.) at a target depth of 60
million reads per sample.

In study I and IT we tested for differences in RNA quality, measured by the RNA integrity
number (RIN) and found that it varied across samples (mean = 5.3, range = 3.0 — 7.2
for PW; mean = 6.8, range = 3.2 — 9.1 for NBB), although the difference between con-
ditions did not reach statistical significance in any of the cohorts (t-test p = 0.72 and
p = 0.90 for PW and NBB cohorts, respectively).

For study III we employed the DV200 score and found RNA quality varied across samples
(medianye = 92, mediancr = 88, medianpp = 89), although the difference between
groups was not statistically significant (pyq,cr = 0.06, perpp = 0.74 , pyg,.pp = 0.07,

Wilcoxon rank sum test).
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3.2.2 qPCR analysis for confirmation of DTU events: paper II

RNA extraction was carried out using the RNeasy Lipid Tissue Mini Kit (QIAGEN
74804), starting with approximately 20 mg brain tissue from three individuals with PD
and three controls. 500 ng total RNA were subjected to cDNA synthesis using the Super-
Seript IV VILO Master Mix with ezDNase Enzyme (Thermofisher Scientific 11766500).
Experiments were carried out in triplicates starting with a new ¢cDNA synthesis from
aliquoted total RNA. For the SYBR Green quantitative PCR analysis, the PowerUp
SYBR Green Master Mix (Thermofisher Scientific, A25776) was used with a thermal cy-
cling of one cycle at 95°C for 20s and 40 cycles at 95°C for 3s and 60°C for 30s on a
StepOnePlus instrument (Thermofisher Scientific), and with the primers listed in Table
5.

3.2.3 Proteomics: Paper 111
Lysis and protein digestion

10pL of lysis buffer (4% SDS, 0.01M TRIS pH 7.6) was added to 1mg of brain tissue.
The tissue was mechanically lysed using Precellys CK 14 ceramic beads, together with
the Precellys Evolution (Bertin Corp, Rockville MD, USA). Lysed tissue was transferred
to Eppendorf tubes and heated to 95°C for 5 minutes, before centrifugation at 10.000g for
5 minutes. The clarified supernatant was transferred to new Eppendorf tubes. Protein
measurement was performed using the Pierce BCA protein assay kit (Thermo Fisher).
The samples were mixed with up to 50uL of the clarified lysate with 200uL of 8 M
urea in 0.1 M Tris/HCI pH 8.5 in the filter unit (Microcon YM-30 (Millipore, Cat.
MRCFOR030)) and centrifuged at 14,000 x g for 30 min and repeated twice. In total
30ug of protein per sample was used. The samples were reduced with 10mM DTT (1h,
RT) and alkylated using 50mM IAA (1h, RT), and digested overnight at 37°C with 1:50
enzyme: substrate ratio of sequencing grade trypsin (Promega, Madison, WI). Following
digestion, samples were acidified with formic acid and desalted using HLB Oasis SPE
cartridges (Waters, Milford, MA). Samples were eluted with 80% acetonitrile in 0.1%
formic acid and lyophilized. Peptides were stored at —80°C until use [81].

TMT labeling and fractionation

Digested peptides from each sample were chemically labelled with TMT reagents 10 plex

(Thermo Fisher). Peptides were resuspended in a 30uL resuspension buffer containing
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0.1M TEAB (Triethylammonium bicarbonate). TMT reagents (0.1mg) were dissolved in
414 L of anhydrous ACN of which 20uL was added to the peptides. Following incubation
at RT for 1 h, the reaction was quenched using 5% hydroxylamine in HEPES buffer for
15 min at RT. The TMT-labeled samples were pooled at equal protein ratios followed
by vacuum centrifuge to near dryness and desalting using Oasis PRIME HLB cartridges.
Peptides were fractionated into 8 fractions using the Pierce High pH Reverse-phase
Peptide fractionation kit (Thermo Fisher Scientific). The TMT experiment batch setup
included additional samples which were not considered in the analysis but included in

the preprocessing (filtering and normalization) of the proteomics data.

Liquid Chromatography and Mass Spectrometry Analysis

Each sample was freeze-dried in a Centrivap Concentrator (Labconco) and dissolved in
2% ACN, 1% FA. Approximately 0.5 pug of peptides from each fraction was injected
into an Ultimate 3000 RSLC system (Thermo Scientific) connected to a Q-Exactive
HF equipped with an EASY-spray ion source (Thermo Scientific). The samples were
loaded and desalted on a precolumn (Acclaim PepMap 100, 2 cm -75um i.d. nanoViper
column, packed with 3 ym C18 beads) at a flow rate of 3% for 5 min with 0.1%
TFA. The peptides were separated during a biphasic ACN gradient from two nanoflow
UPLC pumps (flow rate of O.QOOTZT.LR) on a 50cm analytical column (PepMap RSLC, 50
cm -75um i.d. EASY-spray column, packed with 2um C18 beads (Thermo Scientific).
Solvent A was 0.1% FA in water, and Solvent B was 100% ACN. The mass spectrometer
was operated in data-dependent acquisition mode to automatically switch between full
scan MS1 and MS2 acquisition. The instrument was controlled through @ Excative HF
Tune 2.4 and Xcalibur 3.0. MS spectra were acquired in the scan range of 375 —1500 m/z
with resolution of 60,000 at m/z 200, automatic gain control (AGC) target of 3-105, and
a maximum injection time (IT) of 50ms. The 12 most intense eluting peptides above
intensity threshold 6 - 10%, and charge states two or higher, were sequentially isolated
for higher energy collision dissociation (HCD) fragmentation and MS2 acquisition to a
normalized HCD collision energy of 32%, target AGC value of 1 - 10?, resolution R =
60,000, and IT of 110 ms. The precursor isolation window was set to 1.6m/z with
an isolation offset of 0.3 and a dynamic exclusion of 30s. Lock-mass (445.12003 m/z)
internal calibration was used, and isotope exclusion was active.

Raw data were analyzed by MaxQuant v1.5.5.1 [36] with “Variable Modifications” set
for TMT 10-plex 126, 127N, 127C, 128N 128C, 129N, 129C, 130N, 130C, 131 to be at

N-termini, as well as lysine for database searching and peptide identification.
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3.3 Analytical methods

3.3.1 Transcript count estimation: Paper I, II and III
Data quality control

FASTQ files were trimmed using Trimmomatic version 0.36 [16] to remove potential
lumina adapters and low-quality bases with the following parameters: ILLUMINA-
CLIP:truseq.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15. FASTQ
files were assessed using fastQC version 0.11.5 [6] prior and following trimming. For
an in-depth quality assessment in study I, we mapped the trimmed reads using HISAT2
version 2.1.0 [97] against the hgl9 human reference genome (using —rna-strandness RF
option) preserving lane-specific information. To discard potential lane-specific sequenc-
ing batch effects we inspected the output of the CollectRnaSeqMetrics tool of Picard
Tools version 2.6 [86]. Mapping efficiency and proportion of reads mapping to rRNA,
intronic, intergenic and coding regions were obtained from the output of the CollectR-
naSeqMetrics.

For the poly-A capture dataset [51] in study I, raw FASTQ files were obtained from the
Gene Expression Omnibus (GEO:GSE68719) and analyzed exactly as described for our
cohorts (with the exception of —rna-strandness in HISAT2, which was turned off to take

into account that the cDNA library of this cohort was unstranded).

RNA expression quantification

We used Salmon version 0.9.1 [136] to quantify the abundance at the transcript level
with the fragment-level GC bias correction option (-gcBias) and the appropriate option
for the library type (-1 ISR) against the Ensembl release 75 transcriptome.

For study I, transcript-level quantification was aggregated to gene-level counts using the
tximport R package version 1.8.0 [152] using the gene annotations provided by the same
Ensembl release (v75).

For study II, we excluded X and Y chromosomes from the GRCh37 reference genome,
restricting quantification to transcripts located on autosomes. Quantification obtained
from Salmon were scaled using the R package tximport [152] with the scaling method
scaledTPV, the favoured scaling method for DTU [115].

For study III, we used an updated version of Salmon (1.3.0) to quantify the abun-
dance at the transcript level with the fragment-level GC bias correction option (—gcBias)
using the updated GENCODE Release 32 (GRCh38.p13) reference transcriptome and

the GRCh38 reference genome, included as decoy [155]. Transcript counts were col-
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lapsed to gene-level using R package tximport version 1.14.2 with default parameters
(i.e. countsFromAbundances = FALSE) and the GENCODE Release 32 (GRCh38.p13)

annotation.

3.3.2 Transcript and gene pre-filtering
Paper 1

We filtered out genes in non-canonical chromosomes and scaffolds and transcripts en-
coded by the mitochondrial genome. To further reduce the potential for artefacts we
filtered out transcripts with unusually high expression by removing transcripts that gath-
ered more than 1% of the reads on more than half of the samples, which resulted in the
removal of 3 and 4 transcripts from the PW and NBB cohorts, respectively. Addition-
ally, low-expressed (i.e., genes whose expression was below the median expression in at
least 20% of the samples) were filtered out from downstream analyses. Samples were
then marked as outliers if their median correlation in gene expression (log counts per mil-
lion) with the other samples was below Q1 — 1.5 IQR or above Q3+ 1.5- IQR (Tukey’s
fences; Q1: first quartile, Q3: third quartile, IQR: inter-quartile range). As a result, 3
samples were marked as outliers in the PW cohort and 3 in the NBB cohort, and were

not included in downstream analyses (resulting sample sizes: PW = 26, NBB = 18).

Paper 11

Due to the complexity of the human transcriptome in terms of diversity and number of
transcripts per gene, DTU methodologies tend to exhibit a worse performance consider-
ing the false discovery rate (FDR) when compared to simpler organisms [153]. However,
FDR can be reduced considerably if the collection of transcripts undergoes filtering prior
to analysis [153]. Transcript filtering, in addition, alleviates the DRIMSeq’s (the tool
employed for DTU analysis) difficulty to capture the full bandwidth of transcript disper-
sion through the common gene-level dispersion estimate [128], which results otherwise in
a decrease in performance for genes with increasing number of transcripts. We thus ex-
cluded low expressed transcripts with a soft filter, allowing for a certain percentage of all
samples to have a transcript expression below the given threshold. This filtering method-
ology was chosen over hard filtering in order to avoid overlooking cases of DTU driven
by lack of expression in one of the groups being compared. Using the filtering method
available in the DRIMSeq package, we excluded transcripts for which more than N =

min (#Controls, #PD) samples did not reach 10 read counts or for which their relative
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contribution to the overall gene expression was smaller than one percent. In addition,
we filtered out genes with less than 10 counts in any one sample. To investigate changes
in transcript usage between PD and controls, the resulting filtered set of transcript-level
counts were used as an input for both DEXSeq and DRIMSeq as recently suggested by

[115]. Analyses were carried out independently on both cohorts.

Paper II1

Genes were filtered out if unusually highly expressed (i.e., if they accounted for more
than 1% of a sample’s library size in more than 50% of all the neurologically healthy
samples (i.e. YG and CT). We calculated logs transformed counts per million (CPM)
for the pre-filtered set of genes. Low-expressed genes loga(CPM) < 0.1, in at least 80%
of the samples) were also filtered out. The pre-filtered transcriptomic dataset resulted
in a total of N = 29,6014 genes. The dataset corresponding to the PD samples, added
subsequently in the analyses, was filtered independently following the same filtering

approaches and resulting in a total of N = 29,363 genes.

3.3.3 Estimation of marker gene profiles: Paper I and II

It has been previously shown that cell-type-specific transcriptional signature patterns
derived from bulk tissue samples (marker gene profiles, MGPs), can be used as surro-
gates for relative cell-type abundance across samples [116]. MGPs for each cell-type are
calculated individually across samples, by summarizing the concordant change in their
respective marker genes via the first principal component of their expression (i.e., log-
transformed counts per million (CPMs)). For the purpose of our study, we calculated
MGPs for the main cortical cell-types (neurons, oligodendroglia, microglia, endothelial
cells, and astrocytes). Cortical cell-type markers were obtained from the NeuroExpresso
database [116], a comprehensive database compiled using mouse brain cell-type expres-
sion datasets, and human orthologs were defined using HomoloGene [118]. To reduce
the impact of outlier samples, principal component analysis was repeated 100 times
on subsampled data, containing an equal number of subjects per group, and removing
markers with opposite sign to the main trend. The median score for each sample was
used as MGP for the downstream analyses. MGPs obtained with Neuroexpresso-based
markers were highly correlated with MGPs calculated using two independent sets of
markers from human brain single-cell transcriptomic studies [96, 167]. To assess poten-
tial variations associated with the disease across the neuronal markers, we examined the

overlap between the markers and the differentially expressed genes in four publicly avail-
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able datasets of laser microdissected neurons from PD brain (SNc dopaminergic neurons
[26, 55, 148] and posterior cingulate cortex pyramidal neurons [156]). We found minimal
overlap (3/78 genes) between our neuronal markers and genes differentially expressed in
PD dopaminergic neurons. Moreover, none of the markers were differentially expressed
in PD cortical neurons [156]. The vast majority of the cell-type markers used for the
calculation of MGPs changed in the same direction across our samples, indicating that
MGPs truly represent changes in global cell-type-specific transcription profiles, rather
than being driven by changes in specific genes.

In paper I, to unravel potential complex interactions between MGPs and other exper-
imental covariates, including disease status, we calculated the pairwise correlation be-
tween all the variables and also their association with the main axes of variation of gene
expression. To assist us in choosing an optimal set of MGPs to include as covariates, we
quantified the group differences in the cellular proportions between PD and controls us-
ing linear models adjusting for the known experimental covariates (i.e., RIN, PMI, sex,
age, and sequencing batch). Significant association with disease status was found for
oligodendrocyte MGP in the PW cohort and for microglia in the NBB cohort. Thus,

these were included in the downstream analyses of study I and II.

3.3.4 Differential analysis
Paper 1

We performed differential gene expression analyses using the DESeq2 R package version
1.22.2 [114] with default parameters. Experimental covariates (sex, age, RIN, PMI, and
sequencing batch), as well as oligodendrocyte and microglia MGPs, were incorporated
into the statistical model. Multiple hypothesis testing was performed with the default
automatic filtering of DESeq2 followed by false discovery rate (FDR) calculation by the
Benjamini-Hochberg procedure. Analyses were carried out independently for the two

cohorts.

Paper 11

We performed DTU analysis between PD and controls using two alternative approaches
implemented in the tools DRIMSeq [128] and DEXSeq [4]. While DEXSeq was de-
signed for detecting differential exon usage, it is also suitable for assessing DTU by
using estimated transcript abundances directly [153, 113, 4]. DRIMSeq was developed

specifically for DTU analyses and is based on estimated transcript counts [128]. These
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methods assess alternative transcript regulation by directly identifying transcripts that
are differentially used, rather than detecting specific splice events. Both methods have
shown comparable performance in benchmarks with simulated data [115, 128, 4]. A
further advantage was that these tools allow for the inclusion of known covariates into
the model design. DRIMSeq assumes a Dirichlet multinomial model for each gene and
estimates a gene-wise precision parameter, whereas DEXSeq assumes a negative bino-
mial distribution for counts of each transcript and estimates a transcript-wise dispersion
parameter [115]. It is worth noting that DRIMSeq bases its analysis directly on the cal-
culated transcript proportions, thereby modelling the correlation among transcripts in
their parent-gene directly, whereas those correlations may not be accurately captured by
DEXSeq, as it models each transcript separately and accounts for gene-transcript inter-
action with a covariate in its model design [115].

Sources of variation in our data were identified using principal component analysis (PCA)
at the gene-level. RIN correlated highly with the first principal component, indicating
that RNA quality represents a major source of variation in the expression data.

To explore the effect of accounting for disease-associated MGPs in the DTU results, we
compared the two alternative designs, with and without oligodendrocyte and microglia
MGPs. Accounting for cellular composition slightly increased the discovery signal, iden-
tifying a few more DTU genes with both DRIMSeq and DEXSeq. This effect was minor,
however, as most DTU genes and events were identified irrespective of whether cell-type
composition was accounted for or not.

The results of the DTU analyses were further processed with StageR [165]. Gene-level
aggregated p-values (g-values), as well as transcript-level p-values, were passed to stageR
for a two-stage screening of significance. For DEXSeq, nominal p-values of all transcripts
of a gene were aggregated to a g-value and corrected using the function perGeneQvalue.
For DRIMSeq, nominal p-values were already reported at the gene-level and further cor-
rected within stageR using the Benjamini-Hochberg (BH) FDR procedure. To control
the family-wise error rate (FWER), transcript-level significance was corrected within-
gene, if the gene passed the first screening stage of stageR, with respect to the FDR
controlled gene-level significance (q-value). Transcripts of genes that did not pass the
first screening stage, were not further assessed for significance at the transcript-level.
Nominal transcript-level p-values of both tools were adjusted within StageR using an
adapted Holm-Shaffer FWER correction method specifically designed for DTU analysis
[165].

We define a transcript as a DTU event, if the FWER-controlled p < «, with o = 0.05.
Similarly, we define as DTU gene any gene that exhibits at least one DTU event.

We define ae = 0.05 for nominal significance.
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3.3.5 Protein intensity normalization and filtering: Paper III

Aggregated protein intensities from maxQuant were further processed in a downstream
analysis using R. First, proteins labelled as “Reverse”, “Potential.contaminant” and
“Only.identified.by.site” were removed from the analysis. In addition, proteins were re-
moved if they exhibited at least one zero intensity in a sample. In order to filter out
highly-expressed proteins, we selected the top four highest expressed proteins in each
sample (which ranged from 3% to 5% of the total expression of a sample). The union
set of these (a total of 19 proteins) was then filtered out from every sample.

We considered three possible normalization approaches for protein quantification, i) raw
protein intensities, ii) quantile normalization, and iii) batch effect correction [22] fol-
lowed by root mean square scaling. To assess each of these strategies we explored the
association of the first two components of the principal component analysis (PCA) of the
protein expression matrix with the batch variable. Raw protein intensities (i) showed
a clear clustering of samples which was associated with the batches of the TMT exper-
iment, which was further amplified by quantile normalization (ii). This effect was no
longer noticeable when we applied batch correction (iii), as suggested in [22], where we
divided protein intensities by the correction factor based on the reference channels in
the respective batches, followed by root mean square scaling.

Additionally, we were able to leverage the RNA-Seq data from the same samples to
gain insight into the biological validity of the three alternative normalization options
by studying the transcriptome-proteome correlation in the neurologically-healthy groups
(CT and YG; log2 transformed values for proteins, and log2 transcript CPMs). The
transcriptome-proteome correlation was significantly higher in the batch corrected strat-
egy both across samples and across genes. Based on these observations we chose to apply
the batch correction and subsequent root mean square scaling (iii). The pre-filtered pro-

teomic dataset was composed of a total of N = 2,961 proteins.

3.3.6 RNA - protein integration: Paper 111

We used sparse partial least square (sPLS) as implemented in the mixOmics R package
version 6.10.9 [142, 107] to find the linear combinations of variables (transcripts and pro-
teins) that maximize covariance between the transcriptomic and the proteomic layers.
sPLS was performed on the pre-filtered transcriptomic (X) and proteomic (Y) datasets
using the “canonical” mode and the parameters keepx = 50 and keepy = 50 for feature
selection.

To investigate changes in the transcriptome-proteome correlation between neurologically-

healthy groups YG and CT we performed an additional filtering step on both transcripts
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and proteins, aiming at increasing the biological signal-to-noise ratio. Genes were flagged
for removal if they satisfied at least one of the following criteria: i) not present in the
pre-filtered transcriptome, ii) not present in the pre-filtered proteome, iii) low median
transcript expression (below 10% quantile), iv) low transcript variance (below 15% quan-
tile). The removal of flagged genes resulted in an analysis-ready dataset of N = 2,107
genes.

The dataset corresponding to the PD samples, employed in a subsequent comparison,
was filtered independently, following the same filtering approaches and resulting in a
slightly lower number of genes in the final analysis-ready list (N = 1942). Gene-wise
transcript - protein Pearson correlations were calculated across samples independently
for each group (CT, PD, YG) using logy transformed CPMs for transcript abundance
and logs transformed batch-corrected and root mean square scaled protein intensities.
Protein-protein interaction networks were generated using the R package coexnet ver-
sion 1.8.0 [78], which retrieves information on protein co-expression and experimentally
evidenced interaction from STRING [162]. Vertices were clustered using the R package

igraph version 1.2.5 [40], and its implemented “edge-betweenness” cluster algorithm.

3.3.7 Functional gene-set enrichment analysis
Paper 1

Genes were scored according to their significance by transforming the p-values to account

for direction of change. For each gene, the up-regulated score was calculated as

12, if LFC <0
Sup = (3.1)

g otherwise

, and the down-regulated score as Sgoun = 1 —.Sy,, where LFC corresponds to the log fold
change and p to the nominal p-value of the gene. Genes were then tested for enrichment
using alternatively log(Sy,) and 10g(Sgown) scores employing the gene score resampling
method implemented in the ermineR package version 1.0.1 [117], an R wrapper package
for ermineJ [108] with the complete Gene Ontology (GO) database annotation [8] to
obtain lists of up-and down-regulated pathways for each cohort.

In order to characterize the main biological processes affected by the cell-type correction,
we scored pathways based on the loss of significance caused by the addition of cellular
estimates to the gene expression model. We quantified the difference in the level of
significance in the up-and down-regulated enrichment results for each significant pathway

as A = log(po) — log(pcr), where por and py are the corrected enrichment p-values for
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the model with cell- types (CT) and without (0), respectively. Only pathways that
were significant in either one of the models were analyzed in this manner (py < 0.05 or
per < 005)

Paper 11

To assess the enrichment of DTU genes in predefined functional gene sets (pathways), we
employed the enrichment function of the stringDB R package [162]. DTU genes identified
in our discovery cohort were used as hits and all genes surviving the filtering step during
pre-processing were used as background. Enrichment was tested for pathways defined
by the Genome Ontology (GO) [8, 35]. Each of the three GO categories (Biological
Process, Molecular Function, Cellular Compartment) was tested separately. To reduce
redundancy of the topmost enriched pathways (FDR < 0.05), we performed a clustering
in each of the three GO categories. Pathways were clustered by iteratively joining nearest
neighbours based on pathway similarity, which we defined with Cohen’s kappa coefficient
(k). The similarity of newly formed clusters and unvisited neighbours was iteratively
recalculated until no two clusters’ x was higher than a chosen threshold of 0.4. Each
cluster was given a representative title, chosen from the names of all the pathways in a
cluster. The choice of the cluster title depended on the pathway size, pathway significance
or chosen randomly if none of the previous criteria was sufficient. Finally, each pathway
cluster was assigned a p-value by aggregating p-values of all cluster members with the
Fisher method.

For specific cases of isoform switches between protein-coding transcripts, we used the
tool DeepLoc [1] to predict subcellular localization by retrieving the encoded amino acid

sequence from the Ensembl release 75.

Paper 111

To investigate changes in the transcriptome-proteome correlation between groups, we ap-
plied different gene scoring strategies to rank genes according to their change in correla-
tion (dr). For example, to investigate changes occurring in the healthy aging process (i.e.,
comparing YG vs CT) each gene would be scored by ér = ror — ryq. Correspondingly,
to investigate changes occurring in the process of ageing with Parkinson’s disease, gene
scores would be calculated as dr = rpp — ryq. Finally, changes in transcript-protein cor-
relations between CT and PD groups would be calculated as ér = rpp —rcor. For each of
these three group comparisons (YG—CT, YG—PD, CT—PD), we wanted to specifically
identify genes belonging to three functional scenarios in regard to their transcript-protein

coupling: a) “decoupling”, genes that show a positive transcript-protein correlation in



34 Material and Methods

the reference group (e.g., YG) and loose this correlation (r ~ 0) in the other group
(e.g., CT); b) “increased inverse correlation”, genes which show a correlation above or
equal to zero in the reference group and a negative correlation in the other group; and
¢) “increased positive correlation”, genes with a correlation above or equal to zero in the
reference group that show an increased positive correlation in the group compared. To

this end, gene-specific scores were calculated as follows:

VRyes >0 (3.2)
SZ = _‘Rageing| + Rref (3 3)
Si = _Rageing + t(Rref) (34)
Sz = Rageing - t(Rref)7 (3 5)
z+1
with t(z) = = ; (3.6)
, where 7 € 1,2, 3 specified the comparison being made:

Ryq, foriel,2

Rop=4 "¢ (3.7)

Rep, fori=3

Rpp, forie2,3
Heasing = Rer, fori=2 (38)
Heatmaps to visualize scoring distributions were created with the R package Complex-
Heatmap [69]. The above gene scorings were used to test for functional enrichment. To
this end, we employed the gene score resampling method implemented in the R package
ermineR version 1.0.1.9 [117], an R wrapper package for ermineJ [108] with the complete
Gene Ontology (GO) database annotation [8] (using aspects: biological process, molec-

ular function and cellular component).
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Summary of results

4.1 Paper I: Common gene expression signatures in
Parkinson’s disease are driven by changes in cell

composition

Multiple studies have examined the transcriptomic signatures associated with PD us-
ing post-mortem bulk brain tissue data. While these studies have the potential to shed
light on the pathogenesis of PD, they have two major limitations: 1) poor RNA qual-
ity, characteristic of post-mortem samples and 2) heterogeneity in cell-type composition,
characteristic of brain bulk tissue samples. Here, we carried out the first genome-wide
RNA-Seq study employing rRNA depletion and random primer capture (Ribo-Zero ap-
proach) in post-mortem brain tissue from neurologically healthy controls (CT) and indi-
viduals with idiopathic PD (PD). We studied fresh-frozen prefrontal cortex (Brodmann
area 9) from a total of 49 individuals from two independent case-control cohorts, the Nor-
wegian ParkWest study (PW, N = 29) and the Netherlands Brain Bank (NBB, N = 21).
In addition, we reanalyzed data from a previously published genome-wide poly-A RNA-
Seq study. To account for the variation in cell-type composition, we used marker gene
profiles (MGPs) as surrogates of relative cell-type abundance across the samples.

The main findings from this study were as followed:

1. RNA-Seq data produced with the Ribo-Zero method resulted in more even tran-
script coverage and substantially less 3’-end bias, compared to poly-A selected
RNA-Seq. These findings suggest that the Ribo-Zero approach is superior to poly-
A selection, resulting in more accurate mapping and quantification of the tran-

scriptomic data with low RNA quality.
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2. RNA quality, represented by the RNA integrity number (RIN), and relative cell
type abundance, estimated using MGPs, are the main source of variance in tran-

scriptomic data.

3. Cell composition is confounded with the disease state in PD and has a major impact
on the outcome and interpretation of the analyses. We found significant differences
between conditions in the relative abundance of oligodendrocytes and microglia.
Adjusting for cellular composition by including MGPs for cell-types significantly
different between conditions, resulted in: i) overall fewer differentially expressed

genes and ii) altered pathway enrichment results.

Specifically, adjusting for cell-types attenuated the enrichment for pathways related to
mitochondria, immunity and neuronal functions, while highlighting pathways related to
endoplasmic reticulum, unfolded protein response and lipid/fatty acid oxidation. These
findings indicate that differential gene expression signatures in PD bulk brain tissue
are highly biased by underlying differences in cell-type composition. Modelling cell-
type heterogeneity allows us to unveil transcriptomic signatures that are closer to true
regulatory changes in the PD brain and are, therefore, more likely to be associated with

underlying disease mechanisms.

4.2 Paper II: Differential transcript usage in the

Parkinson’s disease brain

While multiple studies assessed DGE in the PD brain, the role of alternate splicing,
isoform switches and DTU remained largely unexplored. In this work, we performed the
first genome-wide DTU study in PD, using the same RNA-Seq dataset as for Paper 1.
Implementation of rRNA depletion and random primer capture during data generation
gave us access to unbiased transcript information, including both coding (mRNA) and
non-coding RNA.

The main findings from this study were as followed:

1. The majority of genes exhibiting DTU in PD are not picked up by conventional
DGE analysis. Moreover, even for genes exhibiting altered expression in the DGE
analysis, DTU assessment provided vital additional information, in some cases,
completely changing the conclusion from the findings. For example, DGE analysis
indicated upregulation of MIA in PD, which is suggestive of an increase in the
protein product of this gene. However, DTU analysis revealed that the protein-

coding transcript isoform of this gene was in fact downregulated, and the observed
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upregulation of MIA in the DGE analysis was driven by an increase in the non-
coding transcript variant of this gene. Thus, in this case, DGE analysis alone would

lead to a misleading functional interpretation.

2. In total, we identified 19 genes showing DTU in PD, which replicated across both
the PW and NBB cohorts. Among them, we observed DTU events with func-
tional consequences, due to usage changes between protein-coding and non-coding
transcript variants and/or, through changes between variants encoding proteins
isoforms with different subcellular localization. Of special interest is the gene
THEMS5. This gene exhibited two isoforms, only one of which is predicted to local-
ize to mitochondria, where it is involved in mitochondrial fatty acid metabolism.
Decreased function of this protein has been shown to lead to abnormal mitochon-
drial morphology and impaired mitochondrial respiration, both of which have been
associated with PD. Our analyses indicated down-regulation of the transcript vari-
ant encoding the full-length THEMS5 protein isoform, predicted to localize to mito-
chondria, and upregulation of the non-mitochondrial isoform, providing a putative

mechanism leading to decreased THEMS5 function in PD.

3. Functional gene-set enrichment analyses of DTU events pointed to commonly re-
ported pathways in association with PD, including reactive oxygen species genera-
tion and protein homeostasis, suggesting that the identified DTU events are related

to molecular mechanisms already associated with the disease.

In conclusion, the findings of this study provided the first insight into the DTU landscape
of PD demonstrating that DTU events can have important functional consequences in
the PD brain. With this study, we demonstrate that DGE analyses should be comple-
mented by DTU analyses in order to provide a more accurate and complete picture of

the functional impact of transcriptomic alterations.

4.3 Paper I1I: Altered transcriptome-proteome cou-
pling indicates aberrant proteostasis in Parkin-

son’s disease

The correlation between mRNA and protein levels has been shown to decline in the age-
ing brain, and it has been proposed that this phenomenon may reflect age-dependent
changes in proteostasis. It is thought that impaired proteostasis may be implicated in
the pathogenesis of PD, but evidence derived from the patient brain is currently lim-

ited. Here, we hypothesized that if impaired proteostasis occurs in PD, this should be
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reflected in the form of altered correlation between the transcriptome and proteome in
the patients’ brain, compared to healthy ageing.

To test our hypothesis, we performed transcriptome and proteome-wide analyses in pre-
frontal cortex tissue from healthy aged individuals (HA, N = 11) and PD patients
(N = 17). To differentiate ageing-related changes from disease-associated alterations
in the transcriptome-proteome coupling, we compared correlations to a reference group
of 4 infants (YG). Integrating transcriptomics with proteomics provided an additional,
highly informative dimension to the gene expression profile of the PD brain.
Comparing gene-wise, across-sample correlations of RNA and protein levels between YG
and HA, we observed that most genes decouple (i.e., correlation coefficient r approaches
0) with ageing, in line with previous research. Functional gene-set analysis did not re-
sult in significant enrichment for any specific biological processes, suggesting that this
decoupling is a widespread, possibly genome-wide phenomenon. Interestingly, we found
significant enrichment for synaptic vesicle related processes, in genes that showed in-
verse/ negative correlation in HA.

The PD brain revealed a more pronounced trend of transcript-protein decoupling than
HA, with no significant enrichment of distinct biological pathways, suggesting wide-
spread alterations in the regulation of proteostasis. Interestingly, the PD group was
characterized by significant enrichment of mitochondrial respiration and proteasomal
pathways among genes with increased positive correlation and increased negative corre-
lation, respectively.

Alterations in proteostasis reflected in negative correlations in PD were observed in genes
enriched for proteasomal subunits. We hypothesized that negative correlations across
samples can be explained by variable neuronal soma-to-synapse ratios across tissue sam-
ples. Spatial separation of mRNA and protein into the neuronal soma and synapses, re-
spectively, could result in negative correlations between mRNA and protein level across
samples.

Genes showing inverse correlation in PD were enriched for proteasome subunits, sug-
gesting that these proteins become spatially polarized in PD neurons, with accentuated
spatial separation of transcript and protein between the soma and axon/synapses. More-
over, the PD brain was characterized by increased positive mRNA-protein correlation
for genes encoding components of the mitochondrial respiratory chain, suggesting these
may require tighter regulation in the face of mitochondrial pathology characterizing the
PD brain.

Our results are highly consistent with a proteome-wide impairment of proteostasis in
the PD brain and strongly support the hypothesis that aberrant proteasomal function
is implicated in the pathogenesis of PD. Moreover, our findings have important implica-
tions for the correct interpretation of differential gene expression studies in PD. In the

presence of a disease-specific altered relationship between transcript and protein levels,
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measured differences in mRNA levels cannot be used to confidently predict differences in
the encoded proteins and should be supplemented with direct determination of proteins

nominated by the analyses.
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Chapter 5

Discussion

5.1 Introduction to discussion

Gene expression is the process by which the genotypic information encoded in the genome
(i.e., the genotype) determines the phenotype. Typically, information encoded in the
DNA is first transcribed to RNA and then translated into protein, i.e., the functional
product influencing the phenotype [141]. Genetic and epigenetic disease-related changes
ultimately converge on, and influence, gene expression. PD aetiology may be reflected
in alterations of both transcriptome and proteome and the identification of these alter-
ations can be linked to molecular mechanisms and functional pathways underlying the
disease and further assist in the search for possible therapeutic candidates.

As elaborated in the thesis introduction, previous research of gene expression in PD
mainly targeted PD-linked genes. Fewer hypothesis-free transcriptome-wide analyses of
differentially expressed genes have been performed. While these helped shaping our un-
derstanding of altered gene expression in PD, they also exhibited limitations in both
methodology and biological interpretability. The major limitations can be summarized

as follows:

1. As most data was generated with microarrays, low expressed genes, and genes not

defined in the probe set were missed in the analysis.

2. In analyses of RNA-Seq datasets of post-mortem tissue, RNA degradation was not

considered as a possible confounder.

3. Previously favoured brain areas exhibit substantial alterations in cellular compo-

sition due to disease pathology confounding observed expression signals.
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4. Brain areas exhibiting reduced pathology were employed for gene expression anal-

ysis with the assumption that possible altered cellular composition is negligible.

5. The expression landscape at the transcript isoform level has not been adequately
explored. Alternatively expressed transcript isoforms were mainly investigated in

a hypothesis-guided strategy, targeting PD genes.

6. Functional interpretation of DEGs assumed that these reflect changes of the pri-
mary protein-coding transcript isoform, thereby overlooking the possibility of ex-
pression changes in transcript isoforms which can encode functionally diverse pro-

teins.

7. Functional interpretation of DEGs assumed a perfect correlation between mRNA
and protein level (i.e., changes at the gene level directly infer the same changes at

the protein level).

This thesis comprises three complementary approaches aiming to improve our under-
standing of the molecular changes taking place in the PD brain. By extending conven-
tional gene expression studies, we hoped to surmount the limitations of previous research.
Our results revealed several important technical, as well as biological aspects of relevance
to the study of PD and, by extension, molecular studies in bulk brain tissue affected by

neurodegeneration.

5.2 RNA sequencing using Poly-A enrichment ver-

sus ribosomal depletion

Until recently, most gene expression studies in PD brain employed microarrays. With the
development of RNA-Seq, genome-wide expression studies have become feasible. Two
popular approaches to reduce the signal of highly abundant ribosomal RNA were briefly
mentioned in section 1.2.1: i) exclusively sequencing polyadenylated mRNA through
poly-A enrichment and ii) RNA-Seq after ribosomal depletion. The results of our analy-
ses revealed that ribosomal depletion is advantageous to poly-A when aiming at uncov-

ering disease-associated molecular mechanisms in post-mortem brain tissue.
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5.2.1 Poly-A limits gene expression analysis to protein-coding
RNA

The most used technique in the few previous PD RNA-Seq studies involved poly-A
selection. While poly-A selection is restricted to poly-A transcripts, thereby mostly ex-
cluding non-poly-A transcripts such as IncRNA or other non-protein-coding isoforms,
ribosomal depletion prior to RNA-Seq enables the quantification of the complete diver-
sity of transcript isoforms. This means that potentially functional non-coding RNAs
are included in differential expression analyses, and the complete transcriptomic land-
scape can be mapped out to assist the exploration of altered transcriptional regulation
underlying disease mechanisms. In paper II we reported the occurrence of robust DTU
events exhibited by both processed non-coding transcripts and non-protein-coding RNA
like IncRNAs. In some cases, these were predicted to have functional consequences at
the protein level. With this, we highlighted the necessity to perform transcript isoform
analysis in addition to DGE analysis, when aiming to investigate transcriptome-wide ex-
pression changes. We concluded that RNA-Seq should not be restricted to poly-A RNA
but instead include the sequencing of non-protein-coding RNA | which might be function-
ally relevant for disease-associated mechanisms. To achieve this, we employed ribosomal

depletion prior to RNA-Seq.

5.2.2 Effects of post-mortem degradation can be alleviated by

ribosomal depletion

Poly-A enrichment for RNA-Seq involves the hybridization of the poly-A tail with oligo
(dT) primers at the mRNA’s 3’-end. Comparative analyses of poly-A and ribosomal de-
pleted RNA-Seq datasets investigated the read coverage at 3’- and 5’-ends as well as the
overall evenness of coverage across the full length of transcripts. These studies reported
that poly-A selection results in 5~ / 3’-end bias, whereby coverage at the 5-end was
reduced, along with a generally non-uniform coverage across the transcript body com-
pared to ribosomal depleted RNA-Seq data [41, 185]. The authors proposed that read
coverage in poly-A is dependent on RNA integrity and that partial degradation of tran-
scripts can result in 3’-end bias.

Post-mortem tissue is particularly affected by RNA degradation. This degradation oc-
curs from both 5’- and 3’-ends and introduces substantial biases to expression quantifica-
tion. In paper I, we re-analyzed poly-A RNA-Seq data of bulk brain tissue and observed
increased 3’-end bias along with reduced evenness of read coverage when compared to

the ribosomal depleted dataset. We concluded that post-mortem RNA degradation in
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combination with poly-A-introduced bias leads to substantially reduced quality of ex-
pression quantification.

We conclude that ribosomal depletion prior to RNA-Seq results in reduced 3’-end bias,
alleviating the effects of post-mortem degradation and provides, even in post-mortem
tissue, near-uniform coverage across the transcript body, thereby reducing bias in ex-
pression quantification. Nevertheless, complete removal of RNA degradation induced 3’-

and 5’-end bias was not possible.

5.3 Bulk brain tissue complicates expression analy-

ses

5.3.1 Expression variance is correlated with RNA quality

RNA quality is a crucial measure to consider when analyzing RNA of post-mortem tissue
samples. RNA quality is assessed prior to sequencing and often represented by measures
like RIN. This measure can be informative of the state of degradation in a sample. In
study II, we assessed gene expression profiles in reduced dimensionality using principal
component (PC) analysis and observed that the first PC correlated with RIN, suggesting
that some of the variance in our data is explained by varying degrees of RNA quality. If
RIN is confounded with the condition variable it can bias differential expression analyses.
These findings stress the importance of adjusting for RNA quality or other measures of
RNA degradation, particularly when the studied tissue is susceptible to degradation.
We implemented this by adding RIN as covariate in the DGE model design. While this
approach effectively reduces noise, difficulties remain.

The rate of RNA degradation in human tissue is not well understood and difficult to
account for. Simulated data showed that while many transcripts were highly susceptible
to degradation, the degree of degradation varied across genes and cell types [87]. Gene-
specific characteristics that were associated with rate of degradation were for example
gene length, transcript expression, guanine-cytosine (GC) content [87]. Further, varying
degrees of degradation susceptibility across cell-types were observed in blood samples, an
effect that most likely also applies to brain tissue with its vast diversity of cell-types[87].
Consequently, an unknown degree of variance due to RNA quality possibly remains,

despite adjusting for it by RNA quality measures like RIN.



5.3 Bulk brain tissue complicates expression analyses 45

5.3.2 Cellular composition is reflected in expression data of

bulk brain tissue

RNA-Seq studies in bulk brain tissue face the difficulty of noise introduced through cell-
type heterogeneity. Differences in cellular composition originate from factors of both
biological and technical nature, in the latter case for example during tissue collection.
We observed biological variability in cellular composition which included: i) within-group
variance and ii) across-group differences.

The heterogeneous disease pathology of PD, including varying degrees of neuronal degra-
dation and microglial infiltration, manifests in variable cell compositions. These are re-
flected in the gene expression pattern and complicate DGE analyses by decreasing the
signal-to-noise ratio.

Differences in cellular composition between conditions confound DGE analyses. In our
study, we found that these differences explain much of the observed variance. To miti-
gate the confounding effect, differences in cellular composition between two conditions
need to be accounted for, either by explicitly adjusting for them or by bearing in mind
that fold changes could be partly reflecting differences in cellular composition.
Neuronal cell death and the consequential reduced neuronal density in PD patients leads
to decreased expression levels of neuron-specific or highly abundant genes within neu-
rons. Thus, functional enrichment of DGE results obtained without formally accounting
for cellular composition should be interpreted with consideration for the likely drivers of
the observed signal. For example, enrichment for mitochondrial function is at least partly
driven by reduced neuronal density in PD tissue, as mitochondrial function-related genes
are highly expressed in neuronal cells. The adjustment for cellular composition in the
statistical model design then results in an attenuated transcriptional signal of reduced
mitochondrial function.

In early transcriptional studies of SNe, differences in neuronal density between condi-
tions were identified as the main contributor to the commonly observed downregulation
of dopamine metabolism (introduction section 1.4.1). Following this conclusion, studies
increasingly favoured brain areas like the prefrontal cortex (PFC), which are less subject
to neurodegeneration. Our findings, however, reveal that even in PFC, disease pathol-
ogy is reflected in gene expression. The observed varying expression of microglial and
oligodendrocyte marker genes gives further evidence of cell composition bias in PFC.
While these findings may be specific to PD-associated changes in cellular composition,
they are also possibly relevant for other neurodegenerative diseases with pathology that
affects cell-type composition. We, therefore, suggest that cellular composition should be
considered when studying bulk brain tissue, even when targeting less degenerated brain

areas.
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5.3.3 Neuronal polarity can influence studies of bulk brain tis-

sue

The architecture or polarization of the neuronal cell-type poses difficulties to both differ-
ential expression analyses and integration of transcriptomics and proteomics, particularly
in regions comprised of projection neurons, as their axons reach into distal areas [125].
Both tissue sample dissection and biological sample variability can contribute to vari-
ance in the soma-to-synapse ratios.

The consequences for differential expression analyses are substantial: i) reduced power,
with increase in noise and ii) observed expression variance cannot be confidently assigned
to either of the two variables, in cases where soma-to-synapse variance is confounded
with conditions. More specifically, comparing tissue samples from conditions that differ
in synaptic density can result in associations between decreased expression of synaptic
proteins with the condition characterized by the lowest synaptic density. In this case,
it is unclear to which extent the observed downregulation can be explained by differ-
ences in synapse density or by altered regulation of expression between conditions. This
is particularly relevant for neurodegenerative diseases which typically show substantial
synaptic loss, as a result of neuronal dysfunction and death.

Similarly, varying soma-to-synapse ratios can generate unexpected signal when integrat-
ing transcriptomics with proteomics to study regulatory mechanisms. Both transcript
and protein reside throughout the cell in soma, axons and synapses and in cases of spa-
tial separation of the two biological entities, anticorrelating levels of RNA and protein

can be observed across samples(/within genes).

5.4 The complexity of transcriptome is not consid-

ered in differential gene expression studies

DGE studies are performed with the goal to identify alterations in transcriptional reg-
ulation with likely consequences at the protein level. These are assumed to reflect the
same change in expression (i.e., increased (decreased) gene expression is interpreted as
increased (decreased) expression of the encoded protein). The complexity of the tran-
scriptome and the existence of multiple transcript isoforms per gene are thereby ne-
glected.

Two problems arise from this. First, functionally relevant changes in expression of non-
primary transcripts are missed. Secondly, aggregating transcript counts to gene-level

counts might produce inaccurate estimates of gene expression, particularly if the se-
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quencing method captures mRNA transcripts along with processed non-coding isoforms.
One option is to directly study alternative regulation, for example by quantifying reads
mapped to splice junctions to identify alternative splice events. However, additional
steps are required for functional interpretation, including annotating the event to a gene
and further to a transcript isoform and possibly aggregating and quantifying events that
were annotated to the same gene.

The development of algorithms that directly estimate the abundance of each isoform
simplified the study of alternative transcriptional regulation, for example through DTE
or DTU analysis. DTU has the advantage of evaluating transcript isoform expression in
relation to the gene’s complete transcriptional output, thereby providing a normalized
measure to compare isoform expression across groups (see also section 1.2.2).
Additionally, DTU analysis can contribute to a more accurate functional interpretation
of DGE results. The modelled transcript usage of each isoform can be compared to
the estimated change in expression at the gene level (DGE result) and candidates of

transcript isoforms that most likely reflect the gene level change can be narrowed down.

5.5 Functional insights by integrating RN A sequenc-

ing data with proteomics

Alterations in gene expression ultimately affect the proteome composition and function.
While proteomic studies should, in theory, contain most of the biological relevant signal,
they also have several limitations (see also introduction section 1.2.1). For instance,
in our dataset, we only identified ~ 2,900 proteins, compared to more than ~ 17,900
protein-coding genes identified in the RNA-Seq dataset. One informative way to exploit
the proteomic dataset is to integrate it with RNA-Seq data, to assess the correlation

between RNA and protein level.
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5.6 The transcriptional landscape of Parkinson’s

disease

5.6.1 PD associated alterations in cellular composition re-

flected in gene expression data

We showed that adjusting for cellular composition dramatically reduces the signal of
transcriptional downregulation of mitochondria, a consistently reported signature of PD.
While this does not necessarily downplay the involvement of mitochondrial dysfunction
in PD [58, 143], it suggests that this dysfunction is not as readily reflected in the tran-
scriptome as previously thought.

One potential explanation for this is a low signal-to-noise ratio in bulk PFC tissue.
Pathology studies show that while mitochondrial respiratory defects are expressed in the
PFC of PD patients, their distribution is highly variable across neurons, exhibiting a
mosaic-pattern where only a few cells show respiratory deficiencies. Thus, it may be dif-
ficult to capture this signal in bulk-tissue transcriptomics. Furthermore, impairment of
mitochondrial function could be due to other mechanisms acting downstream of tran-
scriptional regulation. The results of study III support this hypothesis, stressing that
transcript levels are not always a direct proxy for protein levels, and that regulation of
protein synthesis, as well as protein degradation, plays a central role in the regulation
of gene expression. Indeed, it was shown that respiratory complex I is proteolytically
cleaved upon oxidative stress in cell-models [15]. Finally, our findings indicate that al-
tered cellular composition in PD brain involves changes in microglia and oligodendrocyte
density. While evidence for the role of oligodendrocytes in PD pathology is just recently
emerging [56], increased microglial differentiation has been suggested by other studies
employing complementary methodologies (see Introduction section 1.3.3). We conclude
that microglial infiltration also manifests in PFC and oligodendrocytes may play a role

in disease pathology.

5.6.2 Altered biological pathways in PD brain

The findings of study I indicate altered expression of genes in biological pathways that
have so far not been consistently reported in transcriptomic studies. For example,
lipid/fatty acid oxidation was among the top differential gene expression signatures in
our studies. Metabolic changes predominantly relating to fatty acid oxidation have
been observed in the serum of early-stage PD patients and even suggested as a possi-

ble biomarker to diagnose disease onset [25]. However, how this is relevant to the brain
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is unknown. In study I, we also discuss that tissue extraction is a possible contributor
to differences in cellular composition. Differences in white-grey matter ratio between
cases and controls could indeed influence gene expression signatures related to fatty acid
metabolism.

Other pathways which were revealed after adjusting for cellular composition suggest a
downregulation of endoplasmic reticulum (ER) related function and upregulation of un-
folded protein response (UPR). Both ER stress and UPR have been proposed to play
a role in neurodegenerative disease pathology [33]. ER stress, in terms of accumulation
of unfolded or misfolded proteins in the ER, induces various UPR mechanisms resulting
in, for example, modulations of rate of protein synthesis and/or removal of misfolded
proteins, either through autophagy or ER-associated protein degradation [82] through
the UPS pathway and with the help of heat shock proteins. Finally, when UPR fails
to reduce ER stress upon too high abundance of misfolded proteins, apoptosis is trig-
gered [82]. However, the pathological protein aggregation in PD is mainly observed in
the cytosol and direct evidence for ER stress or increased UPR is mainly based on in
vitro models and not extensively studied in human PD brain [144]. Yet, the frequently
reported transcriptional upregulation of heat shock proteins and downregulation of UPS

pathways may be further evidence for UPR involvement in disease pathology.

5.6.3 Differential transcript usage analysis indicates altered

transcriptional regulation in the PD brain

Robust DTU events which replicated across two independent patient cohorts indicate al-
tered transcriptional regulation the PD brain. Possible contributors include alternative
splicing events, alternative transcription start sites as well as alternative cleavage and
polyadenylation. The enrichment for biological pathways like reactive oxygen species and
ubiquitin-related enzyme activity is in line with commonly reported transcriptional sig-
natures, despite disagreeing fold changes between DTU and DGE results. Interestingly,
the most significantly enriched cellular component was the ER, similar to the enrichment
for ER-related function in study I. These are important findings for understanding the
molecular changes in the PD brain and could help shifting the focus of future studies to
transcriptional regulatory processes, or shape hypothesis-guided functional analyses of

genes exhibiting PD-associated DTU events.
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5.6.4 Altered RNNA-protein correlation indicates aberrant pro-

teostasis in PD brain

As summarized in the introduction of this thesis, aberrant proteostasis is believed to be
contributing to the pathogenesis of PD. Most of the supporting evidence is, however, ei-
ther inferred from the observation of protein aggregates in the PD brain [47], based on
the study of monogenic diseases [181], whose relevance for idiopathic PD is questionable
at best or derived from cell and animal models that do not necessarily reflect human dis-
ease [104]. Since PD is, to the best of our knowledge, strictly a human disease, evidence
of impaired proteostasis derived from patients is required to confirm this hypothesis. In
study IIT we provide, for the first time, evidence strongly suggesting that proteome-wide
aberrant proteostasis occurs in the brain of individuals with PD.

The altered coupling of transcriptome and proteome for some subunits of the proteasome
complex adds further support to the importance of the UPS pathway in PD pathology.
Based on the negatively correlating RNA and protein levels, we conclude an increased
spatial separation between these subunits and their transcript. This lays the ground for
future work in which protein abundance in axonal and synaptic regions for these sub-
units could be investigated to test the hypothesis that PD neurons exhibit alterations in

the stoichiometry of their proteasome.

5.7 Stratifying PD samples to reduce noise intro-

duced by disease heterogeneity

In studies I and II, we exploited RNA-Seq data from brain tissue of two independent
patient cohorts. This enabled us to perform an independent replication of our findings.
We became aware of the low replicability of fold changes at both the level of genes and
transcript isoforms. Low concordance of DEGs has been suggested already in previous
studies [17]. However, our analyses further highlight the heterogeneity of the disease.
We observed great variation in expression across cohorts. While commonly referred to
as a single entity, PD exhibits high interindividual variability and diversity. This in-
cludes factors like age of onset, constellation and severity of clinical features, rate of
progression, response to treatment, risk of complications, type, severity and distribu-
tion of underlying pathology [67, 30, 72]. The basis for this clinicopathological diversity
remains largely undetermined but is assumed to reflect different, albeit unknown, un-
derlying mechanisms driving the initiation and progression of the disease in different
patients [106, 105]. Having no biomarkers stratifying PD according to underlying molec-

ular dysfunction, research is conducted on clinically selected cohorts, which are highly
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heterogeneous regarding underlying disease mechanisms and, therefore, also in terms of
study readouts. This could be mitigated by stratifying PD samples based on clinical,
pathological and molecular features. A successful stratification could purify the expres-
sion signal and increase power in DGE studies. Identified molecular signatures could

then assist in biomarker detection for distinct subgroups of PD patients.

5.8 Study limitations and caveats

5.8.1 Sample size

While the sample sizes in this study are comparable to or higher than those used in
previous research [17], sample size is one of the biggest limitations of this work. As dis-
cussed above, disease heterogeneity introduces noise and reduces power in differential
expression analyses.

Low sample size is also limiting correlation analyses. In study III, the sample size is par-
ticularly small for the infant group (N = 4). Nevertheless, we observed high correlation
between RNA and protein level, corroborating the previously reported phenomenon of
tight coupling between transcriptome and proteome at an early age [178]. Significance
of correlation can only be assessed when sample sizes are high and, therefore, we only
report general trends of correlation affecting groups of genes enriched in specific func-
tions. To identify more robust correlation patterns, an increased sample size would be
beneficial, specifically in the YG group, but also in the CT and PD.

5.8.2 The drawbacks of post-mortem tissue

The studies included in this thesis are founded upon the assumption that transcripts
and/or proteins can be accurately identified and quantified in post-mortem brain tissue.
Accurate quantification is highly dependent on the quality of RNA, which is subject
to post-mortem degradation and therefore negatively associated with post-mortem time
interval. While we included RIN as a covariate in the statistical models of both DGE
and DTU studies, we are aware that statistically adjusting for RIN cannot fully account

for the complex degrees of variance introduced through post-mortem degradation.
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5.8.3 Validity of samples as controls

While our control individuals had no clinical history or neuropathological evidence of
neurodegenerative disorders, the existence of other neurological disorders or consumption
of drugs impacting molecular signatures in the brain cannot be ruled out. In the third
paper, we analyzed data from infants with sudden infant death syndrome, for which an

underlying brain condition cannot be excluded with confidence.

5.8.4 Tissue collection introduces white-grey matter ratio bias

Brain tissue is comprised of grey and white matter, which are vastly different in terms
of cell composition. Grey matter is mainly composed of neuronal cell bodies and most
types of glia, whereas white matter contains predominantly myelinated axons, and, to
a lesser extent, glial cells, mainly oligodendrocytes [173, 122]. Sample extraction from
frozen tissue is performed manually and is therefore subject to human error and variation.
Variable white-grey matter ratios across samples could introduce bias if these were group-
specific and could further result in gene expression patterns that are confounded by

changes in cellular composition.

5.8.5 Integration of RNA sequencing data and proteomics de-

rived from different tissue samples

An important limitation is that the RNA and protein data were derived from the same
human donor but not from the exact same tissue sample. While this may result in
suboptimal integration of the two omics layers when correlating the RNA and protein
readouts, it should not affect the group comparison, which was the focus of our study.
Moreover, while not identical, the tissue samples used for RNA and protein were derived
from the same area (Brodmann 9) and were immediately adjacent, thus minimizing the

discrepancy as much as possible by current technologies.

5.8.6 Disease-associated variation in cellular composition

As already discussed, we found differences in cellular composition to be the main source
of variation in our transcriptomic data, specifically differences between conditions. While
we did adjust for cellular composition by utilizing known cell type markers, we cannot

guarantee to have completely removed cell-type bias due to the following reasons: i) we
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have no direct assessment on the validity of the markers ii) adding surrogate variables
for cell estimates which are partly confounded with the disease state can bias the effect
size estimation of both these variables.

In the DTU analysis, we found that adjusting for cell-types had only minor effects on the
results. However, we are aware that an improved adjustment for cellular composition
would involve the calculation of cell-type estimates based on known cell-type marker
transcript isoforms instead of marker genes. As these are not well established to date,

we were not able to apply this.

5.8.7 Adjusting for covariates versus regressing out

As described in the previous section, in study I and IT we decided to adjust for known
sources of variance in our data (e.g., RIN and cell-type estimates). There are two popular
approaches to account for confounding factors in regression analysis that aim to estimate
the effect size of variable x; on the dependent variable y, with an additional variable
T, which is confounded with z;. These are: i) regressing out known variance that can
be attributed to x5 by employing the residuals of the regression of y on x5 as data to
test for the effects of x; on y or ii) accounting for confounding factors by including
both x; and x5 as covariates into the model design, thereby testing for their effects on y
simultaneously [59].

We decided to include covariates in the model design which limited us to the use of
statistical tools that allow this (like DESeq2 for DGE and DRIMSeq, DEXSeq for DTU).
However, this choice was necessary, as the "regression of residuals” method leads to
biased effect estimation of the variable of interest (x;), which increases with increasing
correlation between the independent variables z; and x5, as shown in [59]. This is highly
relevant in our analyses where we model expression (y in the toy example) and assume

that cell type estimators (x3) are partly confounded with the condition variable (1) [59].
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Chapter 6

Conclusions and future directions

6.1 Concluding remarks

The work presented in this thesis reports several novel findings and advances the cur-
rent knowledge of gene expression changes in PD. The main highlights of our findings

are summarized below.

1. Commonly reported gene expression patterns, related to biological processes like
mitochondrial function and synaptic transmission, are mainly driven by differences

in cell composition.

2. ER-related processes and lipid oxidation are possibly altered and impairment of

UPS involved in disease pathology.

3. Expression changes at the gene-level are not conclusive of functional consequences.

Often these were not driven by changes in protein-coding transcript isoforms.

4. The PD brain is characterized by profoundly altered correlation between mRNA
and protein expression levels. These findings provide robust patient-derived evi-

dence of proteome-wide impairment of proteostasis in the PD brain.

5. Overall, our results stress that caution is needed when interpreting and drawing
functional conclusions based on gene expression studies in the brain, in particular

for neurodegenerative diseases.
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6.2 Future work and outlook

The analysis of bulk brain tissue is challenged by the diversity of cell-types, which varies
with age, disease and is influenced by tissue extraction. Data generation is further
complicated by complex post-mortem degradation of both RNA and protein. Adjusting
for cellular composition with MGPs is one option to mitigate cell-type bias, although
we cannot fully assess the validity of these. Cellular deconvolution methods are another
option. However, RNA degradation influences the performance of these, as they are

often based on gene-expression signatures.

6.2.1 Single-cell RNA sequencing

Our findings highlight the need for single-cell RNA-Seq, which enables the sequencing of
RNA of thousands of single nuclei in parallel. While powerful, current single-cell RNA-
Seq approaches also have several limitations.

One such limitation is the substantially higher cost in comparison to bulk tissue RNA-
Seq. This is particularly critical considering the high heterogeneity of PD, which, as
discussed above, becomes apparent in the lack of robust signal in DGE studies. High
sample sizes are required and might not be easily affordable.

Secondly, due to post-mortem changes and the complex architecture of brain, single-cell
RNA-Seq in patient brain tissue is constrained to nuclei, rather than entire cells. Thus,
RNA in neuronal processes and synaptic terminals is not captured. These areas exhibit
high abundant and specifically expressed transcripts, which as we proposed in paper
III, might be involved in underlying disease mechanisms. Furthermore, the pathological
hallmark of aggregated protein in synaptic terminals, in particular a-synuclein, but also
other proteins, suggest a key role of synapses in the pathology of PD. Transcriptomic
studies, derived from single-cell sequencing which exclude RNA from these areas would
therefore potentially overlook relevant functional insight.

Lastly, most single-cell sequencing setups do not involve full-length transcript sequencing
but are instead targeting short terminal fragments of the transcript. While single-cell
full-length transcript sequencing methodologies have been proposed, they are lacking
sensitivity for non-poly-A RNA, due to apparent difficulties in the application of riboso-
mal depletion [76].

While the rapid methodological improvement might combat these challenges, the prob-

lem of missing gene expression signals from synapses persists.
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6.2.2 Single-cell proteomics

Finally, to capture consequences of altered transcriptional regulation without inferring
protein levels from mRNA levels and without cell-type bias, single-cell proteomics seems
like the optimal solution that is yet to be fully established [119]. However, also here,

only nuclei specific expression would be captured.

6.2.3 Vision

Given the rapid evolution of technologies, computational approaches, and mathemati-
cal modelling in the field of neuroscience, one cannot help but be optimistic regarding
breakthroughs in the near future. I envision that the gene-expression profile of PD, and
other neurodegenerative disorders, will be fully deciphered during my lifetime — most
likely via a compound approach integrating bulk-tissue analyses in large sample sizes,
with advanced mathematical models to estimate the cell-type composition, and improved

single-cell isolation methods allowing us to study all parts of a neuron.
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Abstract

The etiology of Parkinson’s disease is largely unknown. Genome-wide transcriptomic studies in bulk brain tissue
have identified several molecular signatures associated with the disease. While these studies have the potential to
shed light into the pathogenesis of Parkinson’s disease, they are also limited by two major confounders: RNA post-
mortem degradation and heterogeneous cell type composition of bulk tissue samples. We performed RNA
sequencing following ribosomal RNA depletion in the prefrontal cortex of 49 individuals from two independent
case-control cohorts. Using cell type specific markers, we estimated the cell type composition for each sample and
included this in our analysis models to compensate for the variation in cell type proportions. Ribosomal RNA
depletion followed by capture by random primers resulted in substantially more even transcript coverage,
compared to poly(A) capture, in post-mortem tissue. Moreover, we show that cell type composition is a major
confounder of differential gene expression analysis in the Parkinson’s disease brain. Accounting for cell type
proportions attenuated numerous transcriptomic signatures that have been previously associated with Parkinson’s
disease, including vesicle trafficking, synaptic transmission, immune and mitochondrial function. Conversely,
pathways related to endoplasmic reticulum, lipid oxidation and unfolded protein response were strengthened and
surface as the top differential gene expression signatures in the Parkinson's disease prefrontal cortex. Our results
indicate that differential gene expression signatures in Parkinson’s disease bulk brain tissue are significantly
confounded by underlying differences in cell type composition. Modeling cell type heterogeneity is crucial in order
to unveil transcriptomic signatures that represent regulatory changes in the Parkinson’s disease brain and are,
therefore, more likely to be associated with underlying disease mechanisms.
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Introduction

Parkinson’s disease (PD) is the second most prevalent
neurodegenerative disorder, affecting ~ 1.8% of the popu-
lation above 65years [45]. PD is a complex disorder
caused by a combination of genetic and environmental
factors, but the molecular mechanisms underlying its eti-
ology remain largely unaccounted for. Genome-wide tran-
scriptomic studies can identify expression signatures
associated with PD. While not able to establish causality,
these studies hold the potential to highlight important bio-
logical mechanisms, some of which may be exploited as
targets for therapeutic modulation.

A recent systematic review identified 33 original
genome-wide transcriptomic studies in the PD brain, of
which 5 were performed on laser microdissected neu-
rons from the substantia nigra pars compacta (SNc) and
the remaining in bulk tissue from various brain regions
[8]. These studies show surprisingly low replicability at
the level of individual genes, however, and only partial
concordance for pathways. The most consistent alter-
ations have been found in pathways related to energy
metabolism/mitochondrial function and protein degrad-
ation, followed by synaptic transmission, vesicle traffick-
ing, lysosome/autophagy and neuroinflammation [8].
While these processes commonly show differential ex-
pression signatures in PD, it remains unknown whether
this is because they truly reflect the biology of PD or
due to systematic bias and confounding factors. Two
major sources of bias for transcriptomic studies in the
human brain are the post-mortem degradation of RNA
and the highly heterogeneous cell type composition of
bulk tissue samples.

RNA degradation of variable extent occurs in post-
mortem tissue. To further complicate the picture, it has
been shown that different cell types exhibit different de-
grees of susceptibility to RNA degradation [32], poten-
tially confounding differences in cellular composition
with differences in RNA quality. Access to high-quality
brain tissue is generally limited, and thus an optimal
choice of experimental platforms becomes paramount to
maximize sensitivity. While RNA microarrays are being
gradually superseded by RNA-seq technology, only 3 out
of the 33 studies identified by an up-to-date review [8]
used RNA-seq, and all of them employed poly(A) cap-
ture, a widely used protocol (in both RNA-seq and
microarray analyses) to restrict the analysis to mature
mRNA [20, 30, 46]. However, this library preparation
method only picks up RNA fragments with a poly-A tail,
introducing substantial bias in low quality RNA samples
[1, 25, 47, 56]. A well-established approach to mitigate
this limitation is whole RNA-seq following active riboso-
mal RNA (rRNA) depletion and capture by random
primers, such as the Illumina Ribo-Zero technique [31].
To our knowledge there are no genome-wide
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transcriptomic studies on PD brain employing active
rRNA depletion methods to date.

Systematic differences in sample cell composition repre-
sent another important confounding factor. These typic-
ally originate from two sources: biological differences (e.g.
secondary to neurodegeneration) and technical variation
in sample dissection and preparation. Brain areas affected
by neurodegeneration are characterized by neuronal loss
and gliosis, resulting in a systematically increased glia-to-
neurons ratio in patients. This confounder is strongest in
areas with severe changes, such as the SNc, but is also
present to a variable degree in less affected areas, such as
the neocortex. In addition, technical sources of variation
due to sampling may affect any brain region and cause an
uneven distribution of gray and white matter, resulting in
a variable fraction of oligodendrocytes. Thus, transcrip-
tional signatures associated with PD in bulk brain tissue
may reflect changes in cellular composition rather than
disease-specific transcriptional modulation. This observa-
tion has already been put forward using neurodegenera-
tive mouse models and re-analysis of human brain
transcriptomic data [50]. Heterogeneous cell composition
is, hence, a major confounder that needs to be considered
and appropriately addressed in transcriptomic studies in
bulk brain samples.

We report the first genome-wide transcriptomic study
in the PD brain employing RNA-seq following rRNA de-
pletion and random primer capture. We show that this
approach is able to substantially mitigate the bias of
post-mortem degradation, resulting in substantially bet-
ter transcript coverage compared to poly(A) capture.
Moreover, by estimating the relative cell type proportion
in our samples, we confirm that cellular composition is a
major source of variation in bulk tissue data, confound-
ing the differential gene expression profile even in the
less affected prefrontal cortex. By incorporating the esti-
mated cell type proportions into our analysis models, we
were able to unveil transcriptomic signatures which are
more likely to be associated with the underlying disease
mechanisms.

Material and methods

Subject cohorts

All experiments were conducted in fresh-frozen pre-
frontal cortex (Brodmann area 9) from a total of 49 indi-
viduals from two independent cohorts. The first cohort
(n=29) comprised individuals with idiopathic PD (n =
18) from the Park-West study (PW), a prospective
population-based cohort which has been described in
detail [2] and neurologically healthy controls (Ctrl, #n =
11) from our brain bank for aging and neurodegenera-
tion. Whole-exome sequencing had been performed on
all patients [24] and known/predicted pathogenic muta-
tions in genes implicated in Mendelian PD and other
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monogenic neurological disorders had been excluded.
None of the study participants had clinical signs of mito-
chondrial disease or use of medication known to influ-
ence mitochondrial function (Additional file 1). Controls
had no known neurological disease and were matched
for age and gender. The second cohort comprised sam-
ples from 21 individuals from the Netherlands Brain
Bank (NBB) including idiopathic PD (n = 10) and demo-
graphically matched neurologically healthy controls (n =
11). Individuals with PD fulfilled the National Institute
of Neurological Disorders and Stroke [26] and the UK
Parkinson’s disease Society Brain Bank [54] diagnostic
criteria for the disease at their final visit. Ethical permis-
sion for these studies was obtained from our regional
ethics committee (REK 2017/2082, 2010/1700, 131.04).

To investigate the effect of the rRNA depletion and
random primer capture protocol compared to the pre-
vailing poly(A) method, we re-analyzed an RNA-seq
dataset from a previous publication which employed a
poly(A) tail selection kit on post-mortem tissue of the
same brain area and same disease (PA cohort, n =29 PD
samples, 7 = 44 neurologically healthy controls, all males;
GEO: GSE68719) [20]. Informed consent was available
from all individuals.

Tissue collection and neuropathology

Brains were collected at autopsy and split sagittaly along
the corpus callosum. One hemisphere was fixed whole in
formaldehyde and the other coronally sectioned and
snap-frozen in liquid nitrogen. All samples were col-
lected using a standard technique and fixation time of ~
2 weeks. There was no significant difference in post-
mortem interval (PMI) (independent t-test, PW cohort
p=0.16; NBB cohort p=0.92), age (independent t-test,
PW cohort p=0.18; NBB cohort p =0.074) or gender
(independent t-test, PW cohort p=0.94; NBB cohort
p=0.53) between PD subjects and controls. Subject
demographics and tissue availability are provided in
Additional file 1. Routine neuropathological examination
including immunohistochemistry for a-synuclein, tau
and beta amyloid was performed on all brains. All cases
showed neuropathological changes consistent with PD
including degeneration of the dopaminergic neurons of
the SNc in the presence of Lewy pathology. Controls
had no pathological evidence of neurodegeneration.

RNA sequencing

Total RNA was extracted from prefrontal cortex tissue
homogenate for all samples using RNeasy plus mini kit
(Qiagen) with on-column DNase treatment according to
manufacturer’s protocol. Final elution was made in 65 pl
of dH20. The concentration and integrity of the total
RNA was estimated by Ribogreen assay (Thermo Fisher
Scientific), and Fragment Analyzer (Advanced Analytical),
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respectively and 500 ng of total RNA was used for down-
stream RNA-seq applications. First, rRNA was removed
using Ribo-Zero™ Gold (Epidemiology) kit (Ilumina, San
Diego, CA) using manufacturer’s recommended protocol.
Immediately after the rRNA removal the RNA was frag-
mented and primed for the first strand synthesis using the
NEBNext First Strand synthesis module (New England
BioLabs Inc., Ipswich, MA). Directional second strand
synthesis was performed using NEBNExt Ultra Directional
second strand synthesis kit. Following this the samples
were taken into standard library preparation protocol
using NEBNext” DNA Library Prep Master Mix Set for
Ilumina® with slight modifications. Briefly, end-repair was
done followed by poly(A) addition and custom adapter
ligation. Post-ligated materials were individually barcoded
with unique in-house Genomic Services Lab (GSL)
primers and amplified through 12 cycles of PCR. Library
quantity was assessed by Picogreen Assay (Thermo Fisher
Scientific), and the library quality was estimated by utiliz-
ing a DNA High Sense chip on a Caliper Gx (Perkin
Elmer). Accurate quantification of the final libraries for se-
quencing applications was determined using the qPCR-
based KAPA Biosystems Library Quantification kit (Kapa
Biosystems, Inc.). Each library was diluted to a final con-
centration of 12.5 nM and pooled equimolar prior to clus-
tering. One hundred twenty-fivebp Paired-End (PE)
sequencing was performed on an Illumina HiSeq2500 se-
quencer (Illumina, Inc.). RNA quality, as measured by the
RNA integrity number (RIN), varied across samples
(mean = 5.3, range = 3.0-7.2 for PW; mean = 6.8, range =
3.2-9.1 for NBB), although the difference between condi-
tions did not reach statistical significance in any of the co-
horts (t-test P=0.72 and 0.90 for PW and NBB cohorts,
respectively).

Data quality control

FASTQ files were trimmed using Trimmomatic version
0.36 [7] to remove potential Illumina adapters and low
quality bases with the following parameters: ILLUMI-
NACLIP:truseq.fa:2:30:10 LEADING:3 TRAILING:3 SLI-
DINGWINDOW:4:15. FASTQ files were assessed using
fastQC version 0.11.5 [3] prior and following trimming.
For an in-depth quality assessment, we mapped the
trimmed reads using HISAT2 version 2.1.0 [34] against
the hgl9 human reference genome (using --rna-strand-
ness RF option) preserving lane-specific information. To
discard potential lane-specific sequencing batch effects
we inspected the output of the CollectRnaSeqMetrics
tool of Picard Tools version 2.6 [11]. Mapping efficiency
and proportion of reads mapping to rRNA, intronic,
intergenic and coding regions were obtained from the
output of the CollectRnaSeqMetrics (Additional file 2:
Figure S1 and S2).
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For the poly(A) capture dataset [20], raw FASTQ files
were obtained from the Gene Expression Omnibus
(GEO:GSE68719) and analyzed exactly as described for
our cohorts (with the exception of --rna-strandness in
HISAT2, which was turned off to take into account that
the cDNA library of this cohort was unstranded).

RNA expression quantification and filtering

We used Salmon version 0.9.1 [43] to quantify the abun-
dance at the transcript level with the fragment-level GC
bias correction option (--gcBias) and the appropriate
option for the library type (-1 ISR) against the Ensembl
release 75 transcriptome. Transcript-level quantification
was collapsed onto gene-level quantification using the
tximport R package version 1.8.0 [49] according to the
gene definitions provided by the same Ensembl release.
We filtered out genes in non-canonical chromosomes
and scaffolds, and transcripts encoded by the mitochon-
drial genome. To further reduce the potential for arti-
facts we filtered out transcripts with unusually high
expression by removing transcripts that gathered more
than 1% of the reads on more than half of the samples,
which resulted in the removal of 3 and 4 transcripts
from the PW and NBB cohorts, respectively. Addition-
ally, low-expressed (i.e. genes whose expression was
below the median expression in at least 20% of the sam-
ples) were filtered out from downstream analyses. Sam-
ples were then marked as outliers if their median
correlation in gene expression (log counts per million)
with the other samples was below Q;—1.5*IQR or above
Qs + 1.5*IQR (Tukey’s fences; Q;: first quartile, Qs: third
quartile, IQR: inter-quartile range). As a result, 3 sam-
ples were marked as outliers in the PW cohort and 3 in
the NBB cohort, and were not included in downstream
analyses (resulting sample sizes: Npy =26, Nypp =18,
Additional file 2: Figure S3).

Estimation of marker gene profiles

It has been previously shown that cell type-specific tran-
scriptional signature patterns derived from bulk tissue
samples (marker gene profiles, MGPs), can be used as
surrogates for relative cell type abundance across sam-
ples [37]. MGPs for each cell type are calculated indi-
vidually, by summarizing the concordant change in their
respective marker genes via the first principal compo-
nent of their expression (i.e. log-transformed counts per
million (CPMs)). For the purpose of our study, we calcu-
lated MGPs for the main cortical cell types (neurons,
oligodendroglia, microglia, endothelial cells, and astro-
cytes). Cortical cell type markers were obtained from the
NeuroExpresso database [37], a comprehensive database
compiled using mouse brain cell type expression data-
sets, and human orthologs were defined using Homolo-
Gene [38]. To reduce the impact of outlier samples,
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principal component analysis was repeated 100 times on
subsampled data, containing an equal number of sub-
jects per group, and removing markers with opposite
sign of the main trend. The median score for each sam-
ple was used as MGP for the downstream analyses.
MGPs obtained with Neuroexpresso-based markers were
highly correlated with MGPs calculated using two inde-
pendent sets of markers from human brain single-cell
transcriptomic studies [33, 53] (Additional file 2: Figures
S4-8, Additional file 2: Table S1). To assess potential
variations associated with the disease across the neur-
onal markers, we examined the overlap between the
markers and the differentially expressed genes in four
publicly available datasets of laser microdissected neu-
rons from PD brain (SNc dopaminergic neurons [13, 22,
48] and posterior cingulate cortex pyramidal neurons
[51]). We found minimal overlap (3/78 genes) between
our neuronal markers and genes differentially expressed
in PD dopaminergic neurons. Moreover, none of the
markers were differentially expressed in PD cortical neu-
rons [51] (Additional File 2: Figure S9). The vast major-
ity of the cell type markers used for the calculation of
MGPs changed in the same direction across our samples
(Additional File 2: Figure S9), indicating that MGPs truly
represent changes in global cell type-specific transcrip-
tion profiles, rather than being driven by changes in spe-
cific genes.

To unravel potential complex interactions between
MGPs and other experimental covariates, including dis-
ease status, we calculated the pairwise correlation be-
tween all the variables and also their association with
the main axes of variation of gene expression. To assist
us in choosing an optimal set of MGPs to include as co-
variates, we quantified the group differences in the cellu-
lar proportions between PD and controls using linear
models adjusting for the known experimental covariates
(i.e. RIN, PMI, sex, age, and sequencing batch). Signifi-
cant association with disease status was found for oligo-
dendrocyte MGP in the PW cohort and for microglia in
the NBB cohort. Thus, these were included in the down-
stream analyses.

Differential gene expression and functional enrichment
analyses

We performed differential gene expression analyses
using the DESeq2 R package version 1.22.2 [35] with de-
fault parameters. Experimental covariates (sex, age, RIN,
PMI, and sequencing batch) as well as oligodendrocyte
and microglia MGPs were incorporated into the statis-
tical model. Multiple hypothesis testing was performed
with the default automatic filtering of DESeq2 followed
by false discovery rate (FDR) calculation by the
Benjamini-Hochberg procedure. Analyses were carried
out independently for the two cohorts. Genes were
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scored according to their significance by transforming the
p-values to account for direction of change. For each gene,

the up-regulated score was calculated as Sy, =

{l—p /2,LEC <0 , and the down-regulated score as

p/2,LFC>0
Sdown =1-S8,,, where LFC corresponds to the log fold
change and p to the nominal p-value of the gene. Genes
were then tested for enrichment using alternatively
log(S,,) and log(Sgown) scores employing the gene score
resampling method implemented in the ermineR package
version 1.0.1 [39], an R wrapper package for ermine] [27]
with the complete Gene Ontology (GO) database annota-
tion [5] to obtain lists of up- and down-regulated path-
ways for each cohort.

In order to characterize the main biological processes
affected by the cell type correction, we scored pathways
based on the loss of significance caused by the addition of
cellular estimates to the gene expression model. We quan-
tified the difference in the level of significance in the up-
and down-regulated enrichment results for each signifi-
cant pathway as A =log(po) — log(pcr), where pcr and pg
are the corrected enrichment p-values for the model with
cell types (CT) and without (0), respectively. Only path-
ways that were significant in either one of the models were
analyzed in this manner (p, < 0.05 or pcr < 0.05).

The source code for the analyses is available in the
GitLab repository (https://git.app.uib.no/neuromics/cell-
composition-rna-pd) under the GPL public license v3.0.

Results

Ribo-zero is superior to poly(A) selection in post-mortem
brain

We carried out RNA-seq using rRNA depletion and ran-
dom primer capture (henceforth referred to as Ribo-Zero)
in fresh-frozen prefrontal cortex (Brodmann area 9) from
a total of 49 individuals from two independent cohorts:
the Norwegian ParkWest study (PW, n =29) [2] and the
Netherlands Brain Bank (NBB, # = 21). Comparison of our
data to a published poly(A) capture dataset of similar
characteristics [20] (PA cohort) revealed important differ-
ences of mapping coverage. Mapping efficiency was
slightly higher in the poly(A) dataset (PA: median = 0.976,
range = 0.971-0.980) compared to the Ribo-Zero datasets
(PW: median = 0.952, range = 0.940-0.962; NBB: median =
0.959, range =0.947-0.965). The counts per million
(CPM) of rRNA regions, as defined by Ensembl release 75,
was very low in all samples (PW: median = 3099, range =
1047-7071; NBB: median = 1583, range = 1129-5024) and,
as expected, significantly lower in the Ribo-Zero cohorts
compared to the poly(A) dataset (PA: median = 40,058,
range = 10,701-95,183) (Additional file 2: Figure S1).
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In both datasets, the RIN was positively correlated with
mapping efficiency to mRNA regions, but not to inter-
genic and/or intronic regions (Additional file 2: Figure
S2). Despite having higher mean RIN values, the PA co-
hort showed a marked unevenness of transcript body
coverage compared to the Ribo-Zero cohorts (Fig. la).
The median coefficient of variation in coverage was sig-
nificantly lower in the Ribo-Zero cohorts and the 5'- and
3’-ends of the transcripts showed substantially better
coverage compared to the PA cohort (Fig. 1b). Moreover,
in the Ribo-Zero datasets both the 3'- and 5'-end cover-
age loss showed a significant inverse correlation with the
RIN values. In contrast, RIN showed no correlation with
the 5'-bias and a positive correlation with the 3’-bias in
the PA dataset (Fig. 1c). Thus, Ribo-Zero results in sub-
stantially better and more even coverage of the transcrip-
tome in post-mortem brain tissue, providing a better
alternative to poly(A) capture and minimizing the pro-
spect of transcript quantification biases downstream.

Cell composition is a major confounder of gene
expression in bulk brain samples

The observed gene expression profiles in bulk brain tis-
sue can be dramatically influenced by differences in cel-
lular composition. Such differences can be a result of
variation in gray/white matter ratios introduced during
tissue extraction, inter-subject variability or represent
disease related alterations [14, 37, 52]. To study the con-
tribution of various technical and biological sources of
variation in our dataset we first estimated marker gene
profiles (MGPs) for the major classes of cortical cell
types (astrocytes, microglia, oligodendrocytes, endothe-
lial cells and neurons) in our samples by summarizing
the expression of the cell type-specific marker genes as
previously described [37, 52]. Next, we examined the
Pearson’s correlation between potential sources of bio-
logical variation in our data, including technical and
demographic factors (RIN, PMI, sex, age, and disease
status) and MGPs. MGPs for neuronal cell types were
significantly anticorrelated with the other main cortical
cell types in both cohorts (p <0.05, Fig. 2a). In agree-
ment with previous studies [6, 32], MGPs were also
correlated with RNA quality. In both cohorts RIN was
significantly correlated with neuronal (positive correl-
ation) and astrocyte (negative correlation) MGPs. Signifi-
cant negative correlation of RIN with microglia MGPs
was observed in the NBB cohort (Fig. 2a). Most concern-
ing was the detection of a significant association between
the oligodendrocyte MGP and the disease status in the
PW cohort (Fig. 2a). The main axis of variation in gene
expression (which explained 44 and 45% of the total
variance in PW and NBB, respectively) was significantly
correlated with RNA quality and cellular composition in
both cohorts (Fig. 2b), singling out RNA quality and
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Fig. 1 Transcript coverage profiles of Ribo-Zero datasets compared to poly(A). a Heatmaps of transcript coverage in our two cohorts (PW, NBB)
and a poly(A) dataset (PA). The y-axis shows samples sorted by RIN (top: lowest RIN; bottom highest RIN). The x-axis represents the transcript
body percentiles (5' to 3'). The shading for a given row represents the sample-normalized coverage averaged across all transcripts. b Boxplots for
different coverage quality metrics: median 5-bias, median 3"-bias and median coefficient of variation (CV) for each cohort. The bias metric is
calculated by Picard tools on the 1000 most highly expressed transcripts and corresponds to the mean coverage of the 3'(or 5)-most 100 bases
divided by the mean coverage of the whole transcript. Values closer to 1 indicate absence of bias, while values departing from 1 indicate a
coverage bias (asterisks indicate significance at (*) p > 0.05, (**) p < 0.01, (***) p £0.001, (***) p £0.0001, Wilcoxon test). The same metrics are
expanded in (c), with sample scatterplots showing RIN values against the coverage quality metrics. Linear regression trends are indicated with
black lines. P-values for the F-statistic of the linear model are also shown in the panels. Panels are organized in columns (cohorts) and quality
metrics (rows). CV = coefficient of variation; PW = ParkWest cohort; NBB = Netherlands Brain Bank cohort; PA = poly(A) cohort

cellular composition as the main drivers of transcrip-

tional change in bulk brain tissue.

We next looked for differences in cellular proportions
between PD and controls adjusting for the known

experimental covariates. In the NBB cohort, PD subjects
exhibited a significant increase in the microglia MGP
(p =0.015, Wilcoxon test), while a significant increase in
the oligodendrocyte MGP (p = 5.5 x 10”2, Wilcoxon test)
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Fig. 2 Analysis of sample covariates. a Pearson correlation coefficients for each pair of variables are shown in correlograms. Sizes of the circles in
the upper triangular of the correlograms are proportional to the Pearson correlation coefficient, with color indicating positive (blue) or negative
(red) coefficients. The precise values for the Pearson coefficients are indicated in the lower triangular. Non-significant pairwise correlations (p =
0.05) are represented with a cross. b Heatmaps showing the association between the sample variables with the first 5 principal components of
the gene expression. Only significant p-values (p < 0.05) are shown (linear regression F-test). ¢ Cell type estimates based on MGPs for the main
cortical cell types controlling for all the experimental variables except disease status (i.e. sex, age, PMI, RIN, and sequencing batch). P-values
calculated with Wilcoxon tests. PW = ParkWest cohort; NBB = Netherlands Brain Bank cohort

was observed in PD subjects from the PW cohort. In
both cohorts, these changes were accompanied by a
non-significant decrease in neuronal MGPs (Fig. 2c).

MGPs of different cell types are not entirely independ-
ent from each other, since changes in one cell type can
be accompanied by changes in other cell types. Thus, to
ensure that neuronal, endothelial, and astrocyte MGPs
do not differ between the groups, we re-estimated group
differences in these MGPs while adjusting for the oligo-
dendrocyte and microglia MGPs. This analysis showed
no significant differences between the groups (Add-
itional file 2: Figure S10). Therefore, only MGPs of oli-
godendrocytes and microglia were included in the
statistical model of differential expression.

Differential gene expression

Differential gene expression analysis of a total of ~ 31,
000 pre-filtered genes was carried out using experimen-
tal covariates (sex, age, PMI, RIN, and sequencing batch)
with or without oligodendrocyte and microglia MGPs.
In the PW cohort, 595 genes were defined as differen-
tially expressed (FDR < 0.05) without adjusting for cell
type composition. Inclusion of oligodendrocyte and
microglia MGPs in the model decreased the number of
differentially expressed genes to a total of 220. In total,
74 genes remained significant both with and without ad-
justment for cell type composition. No genes with FDR <
0.05 were identified in the NBB cohort, irrespective of
adjustment for cell type composition. A list with the
nominally significant genes overlapping between the two
cohorts is provided in Additional file 3. Comprehensive
results of differential expression analysis are available in
Additional file 4.

Functional enrichment

Functional enrichment analysis of the differential gene
expression results without MGP adjustment indicated
476 significantly enriched (FDR < 0.05) pathways in PW
(107 up-regulated and 369 down-regulated) and 992 in
NBB (421 up-regulated and 571 down-regulated). MGP
adjustment reduced the number of significant pathways
to 89 in PW (35 up-regulated and 54 down-regulated)
and 248 in NBB (115 up-regulated and 133 down-
regulated). Of these, 34 pathways replicated across the
two cohorts. Concordant pathways comprised protein

folding, ER-related processes and lipid oxidation (Fig. 3).
The complete results are provided in Additional file 5.

As expected, scoring each pathway according to the
change in p-value when accounting for cellularity, re-
vealed a marked downplay of the relevant cell type-
specific functions (Table 1). In the PW cohort, which
was characterized by a skewed oligodendrocytes/neurons
proportion, the function with the largest attenuation (i.e.
increase in p-value) was seen for up-regulation of mye-
lination and other oligodendrocyte related functions and
for down-regulation of neuronal pathways. For NBB, ac-
counting for cell-composition resulted in attenuation of
immunity and neuronal pathways, consistent with the
unbalanced microglial/neuronal proportions seen in that
cohort (Table 1). Strikingly, pathways linked to mito-
chondrial respiration, including respiratory complex I,
were among the down-regulated processes that lost stat-
istical significance when controlling for cellularity. The
attenuation of the mitochondrial signal was observed in
both cohorts. Conversely, up-regulation of protein
folding-related pathways gained significance in both co-
horts (Table 2 and Fig. 3). Complete results are provided
in Additional file 6.

Discussion

We present the first genome-wide transcriptomic study
in the PD brain employing whole RNA-seq after rRNA
depletion and random primer capture (Ribo-Zero). Our
findings show that PD-associated differential gene ex-
pression signatures in bulk brain tissue are influenced to
a great extent by the underlying differences in cell type
composition of the samples. Modeling cell type hetero-
geneity allowed us to highlight transcriptional signatures
that are likely to represent aberrant gene expression
within the cells of the PD brain, rather than changes in
cell composition.

Our results suggest that the Ribo-Zero approach is su-
perior to the more commonly used poly(A) method and
allows for a more accurate mapping and quantification
of the transcriptome in post-mortem brain tissue. The
Ribo-Zero method provides substantially higher even-
ness of coverage and effectively mitigates the 3'- and 5'-
end coverage bias associated with poly(A) capture.
Ultimately, the unevenness of coverage will influence
transcript quantification, affecting the sensitivity of the
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differential expression estimates. While these observa-  of experimental variables specific to each cohort, in
tions are in agreement with previous comprehensive re-  addition to the RNA sequencing methodology. Further-
ports [1, 25, 47, 56], we cannot rule out the contribution  more, while the Ribo-Zero protocol shows advantages
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Table 1 Loss of significance in enriched pathways

PW

Up-regulated Down-regulated

Pathway Delta Pathway Delta

myelination —885 regulation of synaptic —963
vesicle exocytosis

ensheathment of neurons —867 intrinsic component of  —9.60
synaptic membrane

axon ensheathment —867 regulation of synaptic -9.58
vesicle cycle

detection of chemical stimulus —7.95 positive regulation of —948

involved in sensory perception of synaptic transmission

bitter taste

oligodendrocyte differentiation - Schaffer collateral - CAT ~ —9.46

694  synapse

oligodendrocyte development —6.58 regulation of synaptic —944
plasticity

apical junction complex —5.57 regulation of -941
neurotransmitter
secretion

glial cell development —554 presynaptic membrane  —9.27

glial cell differentiation —5.52 regulation of synaptic -9.19
vesicle transport

tight junction —4.16 protein transport within ~ =9.11
lipid bilayer

NBB

Up-regulated Down-regulated

Pathway Delta Pathway Delta

activation of innate immune —854  ribonucleoside -9.09

response monophosphate
metabolic process

regulation of leukocyte —8.11 purine nucleoside -9.03

proliferation triphosphate metabolic
process

regulation of lymphocyte —801 mitochondrial -899

proliferation membrane part

regulation of mononuclear cell —7.79 ATP metabolic process ~ —892

proliferation

innate immune response-activating —7.43 regulation of synaptic -887

signal transduction vesicle exocytosis

regulation of adaptive immune —7.16 inner mitochondrial —8.82

response membrane protein
complex

response to interferon-gamma —7.15 purine ribonucleoside -8.77
triphosphate metabolic
process

adaptive immune response based ~ —7.07 respiratory chain -8.70

on somatic recombination of

immune receptors built from

immunoglobulin superfamily

domains

blood microparticle —6.75 regulation of synaptic —868
vesicle transport

regulation of T cell proliferation —6.73  cellular respiration —843

Tables representing the top 10 pathways with the lowest delta for up-
and down-regulated pathways for PW and NBB cohorts. The delta value
represents the change in the enrichment -log, (p-value) between the
results with and without MGP adjustment (negative values of delta imply
a loss of significance when accounting for cellularity). Complete results
are provided in Additional file 6

Page 10 of 14

compared to the poly(A) method, it is certainly not suffi-
cient to fully mitigate the impact of RNA degradation on
transcript quantification.

Our study supports the notion that cell composition
can be a major confounder in bulk brain tissue tran-
scriptomics. We estimated the relative cell type abun-
dance across our samples by calculating MGPs for the
main cortical cell types. While MGPs do not provide a
direct measure of cell counts, they are a validated and
robust surrogate for cell type composition [37, 52].
Moreover, we show that MGPs are (1) highly consistent
across three different single cell-based marker sets, (2)
highly robust to marker gene outliers, and (3) not sus-
ceptible to PD-associated changes in gene expression.
Taken together, these results indicate that MGPs reliably
represent the general behavior of cell type-specific tran-
scriptional signature in our data.

Our analyses indicate that the observed expression
profiles in both cohorts were driven predominantly by a
combination of technical factors associated with RNA
quality, and differences in cellular composition between
PD and controls. This difference was primarily due to ol-
igodendrocytes in PW and microglia in NBB. Since
oligodendrocyte proliferation is not a pathological fea-
ture of PD, it is plausible that the difference in oligo-
dendrocyte MGPs in PW was due to technical variation
in gray/white matter content introduced during tissue
sampling. Microglial infiltration does occur in affected
areas of the PD brain [18]. It is noteworthy, however,
that increased microglial MGP was only observed in one
of the cohorts (NBB), highlighting the biological hetero-
geneity of PD. Accounting for relative cell proportions
reduced the number of differentially expressed genes
and attenuated the calculated enrichment of cell type-
specific pathways between PD and controls. In the PW
cohort, this alleviated a substantial false positive signa-
ture of oligodendrocyte genes presumably caused by
skewed grey/white matter sampling bias. Similar sam-
pling bias could be responsible for oligodendroglia-
specific functions appointed to PD brain in previous
transcriptomic studies [46].

Intriguingly, accounting for cellular proportions down-
played several of the transcriptomic signatures that have
been previously associated with PD. For instance, the
signal from  vesicle trafficking- and  synaptic
transmission-related processes [9, 10, 15, 21, 29, 40] was
significantly attenuated in both cohorts, suggesting that
the signal was primarily driven by changes in neuronal
proportions between PD and controls, rather than
modulation of these pathways within neurons. More-
over, we observed an attenuation in the down-regulation
of mitochondrial pathways, including the respiratory
chain and oxidative phosphorylation, which are among
the most consistent transcriptomic signatures in PD [8,
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Table 2 Gain of significance in enriched pathways

PW

Up-regulated Down-regulated

Pathway Delta Pathway Delta

protein folding 5.77  DNA packaging complex 376

‘de novo' protein folding 573  basement membrane 347

unfolded protein binding 5.54  positive regulation of 252
epithelial cell proliferation

chaperone-mediated 532 negative regulation of 249

protein folding gliogenesis

‘de novo' posttranslational  4.68  fatty acid beta-oxidation 230

protein folding

heat shock protein binding 434  nucleosome 218

response to unfolded 410  glomerulus development 2.16

protein

response to topologically 353 aorta development 2.06

incorrect protein

oxidoreductase activity, 274 endothelium development 195

acting on paired...

NBB

Up-regulated Down-regulated

Pathway Delta Pathway Delta

positive regulation of 199 tertiary granule 522

cardiac muscle tissue dev...

regulation of smooth 198 ficolin-1-rich granule 5.00

muscle cell differentiation membrane

negative regulation of 198  regulation of myeloid 455

protein serine/threonine leukocyte mediated

kin... immunity

hormone-mediated 195  regulation of leukocyte 434

signaling pathway degranulation

lung alveolus development  1.71  specific granule 4.22

positive regulation of 169 ficolin-1-rich granule 415

striated muscle tissue dev...

positive regulation of 169  tertiary granule membrane  3.57

muscle organ development

positive regulation of 162  regulation of mast cell 352

muscle tissue development activation

negative regulation of MAP 148  vacuolar lumen 3.05

kinase activity

regulation of cardiac muscle 148  regulation of mast cell 3.05

cell differentiation

degranulation

Tables representing the top 10 pathways with the highest delta for up- and
down-regulated pathways for both cohorts. The delta value represents the

change in the enrichment -log;, (p-value) between the results with and

without MGP adjustment (positive values imply an increase in p-value when
accounting for cellularity). Complete results are provided in Additional file 6

9, 19, 20, 29, 42, 55, 57]. The loss of transcriptional sig-
nal in these pathways is intriguing, because there is com-
pelling evidence that decreased complex I protein levels
occur in PD neurons [23]. Our results suggest that the
previously reported transcriptional down-regulation of
the respiratory chain is at least partly driven by altered
cellular composition (due to decreased number of
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neurons which highly express these genes) and may
therefore not be the sole mechanism by which neuronal
complex I deficiency occurs in PD. Indeed, it has been
suggested that complex I deficiency in PD may be medi-
ated by proteolytic degradation by the LON-CIpP prote-
ase system, rather than transcriptional regulation [44].

Changes in the cell-composition of the affected brain
regions occur in all neurodegenerative diseases, includ-
ing PD, Alzheimer disease, amyotrophic lateral sclerosis
(ALS) and Huntington disease. Interestingly, common
and overlapping transcriptional signatures have been re-
ported across these neurodegenerative diseases, includ-
ing mitochondrial, neuronal-specific, and immunity-
related pathways [4, 17]. Our findings suggest that these
common transcriptional signatures of neurodegeneration
may largely represent the common pattern of altered
cellularity, involving neuronal loss and glial proliferation,
rather than biological processes of causal nature.

Accounting for cell type composition in our samples
highlighted processes related to the endoplasmic
reticulum, unfolded protein response and lipid/fatty acid
oxidation as the top differential gene expression signa-
tures in the PD prefrontal cortex. Unfolded protein re-
sponse is indeed one of the most consistently reported
transcriptomic signatures in PD [8, 9, 20, 28, 41, 55].
Moreover, endoplasmic reticulum stress and aberrant
proteostasis have been associated with the accumulation
of misfolded proteins, including o-synuclein, in both
in vitro studies and animal models of PD [16]. While less
is known regarding the role of lipid metabolism in PD,
evidence of aberrant fatty acid oxidation has been found
by metabolomic studies in serum [12] and urine [36] of
patients. Our results corroborate these findings and indi-
cate that aberrant fatty acid metabolism occurs in the
PD prefrontal cortex.

Based on our findings, we advocate that modeling cell
type heterogeneity is crucial in order to unveil transcrip-
tomic signatures reflecting regulatory changes in the PD
brain. It is, however, important noting that modeling of
cellular estimates cannot completely mitigate the cell-
composition bias in bulk tissue. Moreover, cell type cor-
rection complicates the identification of transcriptional
changes that are confounded with changes in cellular
composition and may thus increase the false negative
rate. Single-cell or cell-sorting based methods will be
key to overcoming this limitation and deciphering tran-
scriptomic signatures directly associated with underlying
disease mechanisms in PD.

Conclusions

Our findings show that differential gene expression sig-
natures derived from bulk brain tissue of PD patients are
significantly confounded by underlying differences in cell
type composition. Modeling cell type heterogeneity is
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crucial in order to unveil transcriptomic signatures that
represent regulatory changes in the PD brain and are,
therefore, more likely to be associated with underlying
disease mechanisms.
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Abstract

Studies of differential gene expression have identified several molecular signatures and
pathways associated with Parkinson’s disease (PD). The role of isoform switches and
differential transcript usage (DTU) remains, however, unexplored. Here, we report the first
genome-wide study of DTU in PD. We performed RNA sequencing following ribosomal
RNA depletion in prefrontal cortex samples of 49 individuals from two independent case-
control cohorts. DTU was assessed using two transcript-count based approaches, imple-
mented in the DRIMSeq and DEXSeq tools. Multiple PD-associated DTU events were
detected in each cohort, of which 23 DTU events in 19 genes replicated across both patient
cohorts. For several of these, including THEM5, SLC16A1 and BCHE, DTU was predicted
to have substantial functional consequences, such as altered subcellular localization or
switching to non-protein coding isoforms. Furthermore, genes with PD-associated DTU
were enriched in functional pathways previously linked to PD, including reactive oxygen spe-
cies generation and protein homeostasis. Importantly, the vast majority of genes exhibiting
DTU were not differentially expressed at the gene-level and were therefore not identified by
conventional differential gene expression analysis. Our findings provide the first insight into
the DTU landscape of PD and identify novel disease-associated genes. Moreover, we show
that DTU may have important functional consequences in the PD brain, since it is predicted
to alter the functional composition of the proteome. Based on these results, we propose
that DTU analysis is an essential complement to differential gene expression studies in
order to provide a more accurate and complete picture of disease-associated transcriptomic
alterations.

Author summary

Altered expression has been found at the level of genes and pathways in the brain of indi-
viduals with Parkinson’s disease but remains unexplored at the level of individual tran-
scripts. Thus, it is largely unknown whether transcript-specific events, for instance due to
altered splicing or post-transcriptional modifications, occur in the Parkinson’s disease
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brain. Using RNA sequencing data from 49 brain samples, we performed a transcrip-
tome-wide study of differential transcript usage in Parkinson’s disease. We identified tran-
script-specific changes in multiple genes, and many of these were predicted to have
important functional consequences on the encoded protein, such as altered subcellular
localization or total protein levels. Interestingly, the vast majority of these transcript-spe-
cific changes were not detected by conventional differential gene expression analysis.

Our findings suggest that analyses of differential transcript usage can provide additional
insight into the transcriptomic landscape of complex brain disorders.

Introduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder, affecting
more than 1% of the population above the age of 60 years [1]. Both genetic and environmental
factors influence the risk of PD, but the molecular mechanisms underlying disease initiation
and progression remain unknown. Studies of differential gene expression (DGE) employing
microarrays or RNA sequencing (RNA-Seq) have identified molecular signatures associated
with PD, including various aspects of mitochondrial function, protein degradation, neuroin-
flammation, vesicular transport and synaptic transmission [2].

An important limitation of DGE studies, however, is that they do not account for isoform
diversity. Most genes encode more than one transcript isoform (henceforth called isoform),
arising from alternative splicing, alternative usage of transcription start sites, or post-transcrip-
tional regulation events such as alternative cleavage and polyadenylation [3]. Distinguishing
between isoforms is essential, as these can encode proteins with different functions and/or sub-
cellular localizations, or no protein product at all. Isoforms can also be associated with varying
degrees of mRNA stability, for example by varying the length of the 3’-untranslated regions,
which ultimately influences the rate of translation and hence the quantity of the encoded pro-
tein [4]. Moreover, differential splicing can impact cellular function without causing major
changes on the levels of expressed protein. The diversity of tissue-specific isoform expression
patterns is mainly attributed to differential usage of untranslated transcripts and/or non-prin-
cipal isoforms, suggesting that even small changes in isoform usage can have a substantial
effect on the composition and function of the proteome [5].

An efficient method to characterize differences in the isoform landscape is via differential
transcript usage (DTU) analysis. DTU is a measure of the relative contribution of one tran-
script to the overall expression of the gene (i.e. the total transcriptional output). The analysis is
based on individual transcript read counts normalized to the sum of all transcript read counts
of the gene. This sets DTU apart from differential transcript expression (DTE), where the indi-
vidual transcript counts are investigated independently from the context of the total transcrip-
tional output. DTU requires at least one DTE event for the usage ratio between the transcripts
of a gene to change. In contrast, DTE can occur without DTU, when the expression of an
isoform is altered but its relative contribution to the total transcriptional output remains
unchanged [6].

Individual transcript-level information—DTE or DTU—is lost in conventional DGE analy-
sis, where the counts of individual transcripts are collapsed at the gene level. DTU events
changing in opposite directions (e.g. when one transcript is up-regulated and another down-
regulated) may cancel out at the gene level. Thus, transcript usage quantification has the poten-
tial to identify candidate genes and processes which would otherwise remain concealed in tra-
ditional DGE and DTE studies.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009182 November 2, 2020
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In the human brain, specific transcript usage profiles have been associated with neuronal
development and aging [7] as well as with disease [8], including neurodegeneration [9, 10].
Current evidence suggests that differential splicing and DTU may be implicated in PD [11].
Disease-associated alternative splicing has been reported for genes linked to idiopathic and
monogenic PD, including SNCA [12], PRKN [12, 13] and PARK7 [14]. With the exception of
these targeted, hypothesis-based studies, however, the role of DTU in PD remains largely
unexplored and no genome-wide DTU studies have been carried out to date.

In the present study we report the first genome-wide analysis of DTU in PD. We show that
DTU does occur in the PD brain and identify genes that show robust, altered isoform ratios
across two separate cohorts of individuals with idiopathic PD and neurologically healthy con-
trols: a discovery cohort from the Park West study [15] (n = 28) and a replication cohort from
the Netherlands Brain Bank (n = 21).

Results
Multiple DTU events are detected in the PD prefrontal cortex

We first analyzed RNA-Seq data from the prefrontal cortex of our discovery cohort (n = 17/11
PD/controls; Table A in S1 File), using two alternative approaches (DRIMSeq [16] and DEX-
Seq [17]) to characterize DTU between PD and controls. Statistically significant DTU surviv-
ing multiple testing correction are referred to as DTU events and a gene exhibiting at least one
DTU event is referred to as a DTU gene (detailed definitions are provided in the Methods).

In the discovery cohort, DTU analysis was based on n = 40, 520 transcripts and identified
814 DTU events in 584 DTU genes. The analysis with DEXSeq identified 254 DTU genes and
495 DTU genes were reported by DRIMSeq, with 165 detected by both methods (Fig 1A). The
number of single DTU events per DTU gene ranged from one to three (Table 1). The most
common Ensembl transcript biotype involved in DTU events was “protein coding” for both
DEXSeq and DRIMSeq, followed by “processed transcript” (i.e., transcripts not containing an
OREF) and “retained intron” (i.e., transcripts containing intronic sequences) (Fig 1B). We
tested for overrepresentation of DTU events across transcript biotypes using Fisher’s exact test
and found that DTU events were overrepresented in 3 categories for DRIMSeq after multiple
testing correction at alpha 0.05 (protein coding, retained intron, antisense). Although no cate-
gories were significantly overrepresented after Bonferroni correction using DEXSeq, the low-
est p-values were for “antisense” and “protein coding”, in agreement with DRIMSeq. Test
statistics for each of the biotype categories are listed in S1 Table.

Visualization of the overall behavior of the effect size as a function of the mean transcript
expression (MA-plot) and nominal transcript significance (Volcano-plot) are shown in SIA
and S1B Fig. The p-value distribution varied depending on the number of transcripts a gene
possessed. This variation behaved differently in DRIMSeq and DEXSeq—the p-value distribu-
tion became more uneven with increasing numbers of transcripts in DRIMSeq and decreasing
number of transcripts in DEXSeq (S2C Fig). A list of identified DTU events is provided in
Table B in S1 File.

Gene-set enrichment analysis (GSEA) of the DTU genes showed clusters of enriched path-
ways related to regulation of cell development, identical protein binding and perinuclear
region of cytoplasm as the top most significant in each of the GO Ontology categories (Biologi-
cal process, Molecular function, Cellular component) (Table 2).

To validate our methodology, we sought to confirm relative transcript abundances of genes
with a DTU event by quantitative PCR (qQPCR). To this end, we selected two genes fulfilling
the following criteria: i) adequate individual transcript expression levels (i.e., the transcript
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Fig 1. Overlap of DTU genes and transcripts between DEXSeq and DRIMSeq. A: Venn diagram showing the overlap between DTU genes
resulting from analyses using DEXSeq and DRIMSeq, and genes that show DGE in the discovery cohort. B: Distribution of DTU events across
defined transcript biotypes for each of the two tools (panels). Transcript biotypes are arranged on the y-axis, with the percentage of DTU events in
each biotype category of all tool-specific DTU events represented on the x-axis. Text labels show the percentage of DTU events relative to the
number of transcripts tested in each biotype category.

https://doi.org/10.1371/journal.pgen.1009182.g001
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Table 1. Distribution of the number of DTU events per gene.

Tool 1 transcript 2 transcripts 3 transcripts
DEXSeq 173 76 5
DRIMSeq 312 181 2

https://doi.org/10.1371/journal.pgen.1009182.t001

was present in both cohorts after pre-filtering and detectable by qPCR) and ii) sufficiently dis-
tinct exonic composition of the individual transcripts to allow transcript-specific amplification
(i.e., it was possible to design individual primer pairs that would detect one specific transcript
variant alone). The genes ZNF189 and BCHE satisfied all criteria and their transcript variants

could be successfully amplified, serving as a proof-of-principle target (Fig 2A). The qPCR

Table 2. Enriched GO pathway clusters.

‘ Pathway p-value
GO biological process
regulation of cell development 6.62-107"
regulation of nitric oxide biosynthetic process 1.96-107"°
mitotic cell cycle 6.43-107"°
regulation of transport 1.71-107%
nuclear DNA replication 1.20-107%
regulation of cellular component size 1.46 - 107
phosphate-containing compound metabolic process 551107
single-organism catabolic process 565107
negative regulation of transcription, DNA-templated 245107
neurotrophin TRK receptor signaling pathway 3.52-107°
GO molecular functions
identical protein binding 7.26-107"°
nucleic acid binding transcription factor activity 2.15-107"°
ubiquitin-protein transferase activity 1.78 -107%
protein kinase binding 7.60 - 107°°
zinc ion binding 6.15- 107"
substrate-specific transporter activity 7.63 107"
transcription cofactor activity 821-107"
protein serine/threonine kinase activity 126107
DNA-directed DNA polymerase activity3 1.82-107"
Ras guanyl-nucleotide exchange factor activity 2.41-107°
GO cellular component
perinuclear region of cytoplasm 232107
nuclear speck 9.90 - 107
nuclear chromosome part 4.04-107°
plasma membrane part 1.33-107"
intercellular bridge 1.56 - 10~
cell projection 1.74 107"
nuclear envelope 1.95 107"
nucleolus 310107
membrane protein complex 3.18- 1072

Displayed are the titles of each pathway cluster. A cluster consists of multiple pathways that share a set of genes and

have shown high overlap. Only significant pathways after correction have been considered for the clustering. The list

of clusters is sorted by the aggregated p-values of each pathway in one cluster.

https://doi.org/10.1371/journal.pgen.1009182.t002
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Fig 2. qPCR validation of ZNF189 and BCHE relative transcript abundances in individuals with PD and controls. A: Schematic representation of ZNF189 and
BCHE transcript variants analysed by gPCR. qPCR primer positions are indicated by arrows. B: Comparison of relative transcript abundances for the genes
ZNF189 and BCHE, obtained from RNASeq and gPCR. The upper row represents raw relative transcript abundances. Listed are only transcripts that remained after
filtering. Data points are grouped by condition on the x-axis (PD vs CT). The three data points per group represent the three samples selected for qPCR. The lower
row represents the results of qPCR analysis. Red lines show the mean of the respective group.

https://doi.org/10.1371/journal.pgen.1009182.9002

analysis replicated the results of the RNA-Seq-based DTU analyses for two of the three iso-
forms of ZNF189 (ENST00000374861 and ENST00000259395), while the third isoform
(ENST00000339664) appeared unchanged (Fig 2B). The qPCR analysis for BCHE confirmed
the increased relative expression of isoform ENST00000540653 and the decreased relative
expression of isform ENST00000264381 (Fig 2B).

Pre-filtering reduces transcriptome complexity

To reduce the false discovery rate (FDR), transcripts and genes underwent a pre-filtering
based on a minimum expression level prior to the analysis (see Methods). This pre-filtering

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009182 November 2, 2020 6/24
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affected the distribution of mean transcript expression and the mean number of transcripts
per gene. In the discovery cohort, 77% (n = 137, 437) of all transcripts and 75% (n = 38, 100) of
all genes were removed due to insufficient expression. Likewise, 82% (n = 143, 823) of all tran-
scripts and 78% (n = 39, 342) of all genes were filtered out in the replication cohort. The distri-
bution of mean transcript expression in the discovery cohort was shifted from a median of 15
read counts to 61, and from 12 to 63 in the replication cohort, after excluding low expressed
transcripts and genes. The filtering procedure reduced the standard deviation of the mean
transcript distribution in both cohorts from 30,753 to 432 in the discovery cohort, and from
39,096 to 484 in the replication cohort (Fig 3A). We also observed a reduction in the median
number of transcripts per gene, from 9 to 3 in the discovery cohort and from 10 to 3 in the rep-
lication cohort (Fig 3B). We also observed an increase in the relative amount of protein coding
transcripts as well as a decrease in the amount of pseudogene transcripts, snoRNAs, snRNAs,
miRNAs and rRNAs (Fig 3C).

Alternative DTU methods agree in effect size and are minimally influenced
by accounting for cell type composition

We investigated the agreement of effect size (i.e., the modeled coefficient for the disease state)
in terms of magnitude and direction between the two tools in the discovery cohort. Overall,
both methods agreed on the estimated effect size (R = 0.97, p = 2.2 - 10", n = 40, 520) and the
concordance was even more pronounced in the subset of DTU events that were significant for
either one of the cohorts (R=0.98, p=2.2 - 1076, n = 813) (Fig 4). The general trend of statisti-
cal significance showed that transcripts which were identified as DTU events by at least one

of the methods were likely to be defined at least as nominally significant by the alternative
method: 97% of all DRIMSeq DTU events were nominally significant according to DEXSeq
and 98% of all DEXSeq DTU events were reported as nominally significant by DRIMSeq. The
concordance between the two methods in the replication cohort is shown in S2 Fig. We have
recently shown that cell type heterogeneity can have a substantial impact on DGE analyses in
bulk brain tissue [18]. To determine whether this also applied to our DTU analyses, we
assessed the effect of accounting for cell type composition on our results. To this end, we
obtained relative cellularity estimates (marker gene profiles, MGPs) for the cortical cell-types
that were shown to be significantly associated with disease status (oligodendrocytes and micro-
glia) in our previous study employing the same samples [18]. Accounting for cellular composi-
tion slightly increased the discovery signal, identifying a few more DTU genes with both
DRIMSeq and DEXSeq. This effect was minor, however, as most DTU genes and events were
identified irrespective of whether cell-type composition was accounted for or not (S3 and S4
Figs).

Most DTU events are not detected by conventional DGE analysis

Next, we sought to determine whether DTU events were detectable at the gene level by com-
paring the results of the DTU analysis to a conventional DGE analysis performed on the same
dataset [18]. We found that less than 3% (1 = 13) of the DTU genes (n = 584) were also signifi-
cant at the gene level (BH corrected, FDR < 0.05) (Fig 1A), suggesting that compensatory
changes across transcripts can balance out overall gene expression. Indeed, in genes with two
DTU events, the effect size of these generally tended to move in opposite directions, canceling
out the change in overall gene expression (Fig 5A). Similarly, in genes with only one DTU
event, the effect size of DGE was smaller than the effect size of DTU, or even close to zero (Fig
5B), which likely originated from compensation distributed across multiple transcripts.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009182 November 2, 2020 7/24
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https://doi.org/10.1371/journal.pgen.1009182.g005
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Table 3. DTU genes detected by DGE.

Tool
DRIMSeq
DRIMSeq
DEXSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq
DRIMSeq

Gene
BCHE
BCHE
DAAM2
EAF1-AS1
FRG1B
FRG1B
FRG1B
FRMPD2
FRMPD2
HIBCH
MIA

MIA
MMP24-AS1
PRODH
SLCO1A2
SLCO1A2
TSPAN15
TSPAN15
UFSP2
VWF
VWF

Transcript ID Biotype ESDTU ES DGE

ENST00000540653 protein coding 1.81 -0.96
ENST00000264381 protein coding -1.81 -0.96
ENST00000491083 processed transcript 0.99 -0.80
ENST00000610011 antisense 2.79 0.99
ENST00000439954 protein coding -0.77 -1.26
ENST00000358464 protein coding -0.79 -1.26
ENST00000479318 nonsense mediated decay 1.13 -1.26
ENST00000491130 retained intron -2.97 -1.17
ENST00000486151 retained intron 2.97 -1.17
ENST00000414928 nonsense mediated decay 1.58 0.88
ENST00000597600 protein coding -2.08 1.43
ENST00000593317 retained intron 2.08 1.43
ENST00000566203 antisense 0.91 -0.58
ENST00000334029 protein coding -1.48 -1.17
ENST00000452078 protein coding -0.83 -1.04
ENST00000463718 retained intron 0.83 -1.04
ENST00000475069 retained intron 2.32 -0.84
ENST00000373290 protein coding -2.32 -0.84
ENST00000509180 protein coding 1.22 -0.60
ENST00000538635 processed transcript -1.38 -0.93
ENST00000261405 protein coding 1.38 -0.93

Each transcript is described by its Ensemble identifier (version 75). The effect size (ES) is relative to the controls, i.e. positive ES represents an increase in PD relative to

controls, negative ES a decrease. All entries in the table represent DTU events of which the parent gene was detected by DGE (BH adjusted, FDR = 0.05). DTU events
that were identified by both DRIMSeq and DEXSeq are listed only with the estimated ES of DRIMSeq. The list is sorted by gene name in alphabetical order.

https://doi.org/10.1371/journal.pgen.1009182.t003

Only 13 DTU genes with at least one DTU event were also identified by DGE (Table 3). Six
of these genes had a single DTU event and the remaining 7 had multiple DTU events. Of the 6
genes with a single DTU event, 3 showed the same direction of change in both DGE and DTU,
whereas in the other 3, DGE and DTU indicated changes in opposite directions. For all 7 DTU
genes with multiple DTU events, at least one DTU event was in the opposite direction of the
DGE change. For example, while the protein coding transcript of the VWF gene was up-regu-
lated, DGE analysis showed down-regulation at the gene-level, driven by a non-protein coding
isoform. These results indicate that DTU analyses provide important additional insight into
the transcriptomic landscape of PD.

Detected DTU events replicated in an independent patient cohort

We replicated our findings using RNA-Seq data from an independent cohort from the Nether-
lands Brain Bank (n = 10/11 PD/controls; Table A in S1 File). A total of 32,040 transcripts
passed quality filtering in the replication cohort. The majority of these (n = 29, 807; 93%) over-
lapped with the pre-filtered transcripts of the discovery cohort and were further analyzed for
replication. A total of 10,713 transcripts from the discovery cohort, however, did not pass pre-
filtering in the replication cohort. Of these, 249 were identified as DTU events in the discovery
cohort (S5A Fig). To assess the overall concordance between the two cohorts, we divided the
common set of transcripts into 4 categories according to their nominal significance in differ-
ential usage in PD: i. non-significant in either cohort, ii. significant only in the discovery
cohort, iii. significant in both cohorts, iv. significant only in the replication cohort. For each
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category we assessed the concordance in DTU direction between the discovery and replication
cohort (Fig 6A). In the group of non-significant transcripts, we observed a low correlation in
the direction of DTU (Pearson’s R = 0.07,p=2.2 - 107", n = 2, 5002), with only 54% of tran-
scripts agreeing between the cohorts. A higher correlation (Pearson’s R =0.19, p = 2.2 - 107*%,
n = 3776) was observed for the group of transcripts which were nominally significant in the
discovery cohort only, where 59% of transcripts showed the same direction of change in both
cohorts. Transcripts which were significant only in the replication cohort showed no correla-
tion (Pearson’s R = 0.058, p = 0.092, n = 843) in the direction of DTU. The highest correlation
(Pearson’s R = 0.25, p = 0.6 - 107, n = 186) was observed in the group of transcripts that were
nominally significant in both cohorts, with a 62% concordance in direction.

When we reduced the collection of transcripts to DTU events detected in the discovery
cohort, we saw a high correlation (Pearson’s R = 0.28, nn = 481, p = 2.5 - 10™'°), with 64% of
these transcripts agreeing on the direction of change. This suggests that highly significant
DTU events identified in our discovery cohort show a similar trend in our replication cohort
(Fig 6B). Notably, 23% of the DTU genes identified in the discovery cohort were filtered out
during pre-processing of the replication cohort and thus were excluded from this analysis.

A total of 23 DTU events in 19 genes detected in the discovery cohort were concordant in
direction of change and nominally significant in the replication cohort (Table 4).

Among the 19 replicated DTU genes, 15 showed one DTU event and four comprised two
DTU events per gene. Interestingly, in the four genes exhibiting two DTU events (LINC00499,
BCHE, THEMS5, SLC16A1), these moved in opposite directions. In BCHE and THEM5, DTU
resulted in isoform switches (i.e. two DTU events in opposite directions) between different
protein-coding transcripts. THEM5, encoding an acyl-CoA thioesterase involved in mitochon-
drial fatty acid metabolism, showed decreased usage of the full-length transcript (encoding a
247 amino acid protein) and increased usage of a shorter transcript (encoding a 119 amino
acid protein) in PD. The down-regulated, full-length isoform was predicted to localize to the
mitochondria (likelihood = 0.99), whereas the up-regulated, shorter isoform was more likely
to localize to the extracellular space (likelihood = 0.36) than to the mitochondria (likeli-
hood = 0.21). Hence, the decreased usage of the full-length isoform could result in a decrease
of mitochondrial THEMS5 activity in PD. A similar pattern was observed for the BCHE gene,
encoding a butyrylcholinesterase, with the full-length isoform (encoding a protein of 602
amino acids) down-regulated in PD, and an up-regulated shorter transcript encoding a puta-
tive protein of 64 amino acids. While both isoforms were predicted to be soluble and localize
to the extracellular space, the shorter isoform lacks the substrate binding site located at posi-
tions 144 and 145 and it is therefore predicted to be non-functional, suggesting that BCHE
function may be down-regulated in PD. The SLC16A1 gene, encoding a lactate transporter in
oligodendroglia, showed a switch from a protein-coding to a non-protein coding isoform in
PD, revealing decreased expression of the protein coding transcript in PD.

In agreement with the down-regulation observed at the gene level, only 2 out of 19 repli-
cated genes with DTU showed a significant altered overall gene expression: BCHE and
PRODH (BH corrected, FDR < 0.05). In the case of BCHE, the down-regulation was observed
for the full-length transcript as described above. PRODH exhibited a single DTU event consist-
ing of a decreased relative expression of a protein-coding transcript variant in PD.

No evidence of DTU for genes linked to monogenic PD

Previous research had suggested that genes linked to monogenic PD, including SNCA, PARK7
and PRKN, may exhibit altered transcript expression patterns in idiopathic PD [11, 12, 14].
Therefore, we sought to investigate whether these observations replicate in our data.
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https://doi.org/10.1371/journal.pgen.1009182.9006
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Table 4. Replicated DTU genes.

Tool Gene
DEXSeq BCHE
DEXSeq BCHE
DEXSeq XPA
DEXSeq VWA9
DRIMSeq SLC16A1
DRIMSeq SLC16A1
DRIMSeq THEM5
DRIMSeq THEM5
DRIMSeq BCHE
DRIMSeq BCHE
DRIMSeq HDAC3
DRIMSeq XPA
DRIMSeq ZNF208
DRIMSeq VWA9
DRIMSeq SLC2A4RG
DRIMSeq CD46
DRIMSeq ST3GAL5
DRIMSeq ACO1
DRIMSeq PRODH
DRIMSeq RPS9
DRIMSeq LRTOMT
DRIMSeq LINC00499
DRIMSeq RNF38
DRIMSeq APIP
DRIMSeq CNPY2
DRIMSeq LINC00499
DRIMSeq ACAA1

Transcript ID

ENST00000264381
ENST00000540653
ENST00000375128
ENST00000573314
ENST00000369626
ENST00000478835
ENST00000453881
ENST00000368817
ENST00000540653
ENST00000264381
ENST00000305264
ENST00000375128
ENST00000601993
ENST00000573314
ENST00000473157
ENST00000367041
ENST00000393808
ENST00000379923
ENST00000334029
ENST00000391752
ENST00000440313
ENST00000510736
ENST00000377885
ENST00000527830
ENST00000548013
ENST00000502757
ENST00000452171

Biotype ES discovery cohort
protein coding -1.78
protein coding 1.79
protein coding -1.18
nonsense mediated decay -1.81
protein coding -1.02
processed transcript 1.02
protein coding 1.74
protein coding -1.74
protein coding 1.81
protein coding -1.81
protein coding -1.38
protein coding -1.15
protein coding 1.13
nonsense mediated decay -1.70
processed transcript -2.30
protein coding -1.25
protein coding -0.96
protein coding -1.38
protein coding -1.48
protein coding 2.56
protein coding 1.41
lincRNA -1.14
protein coding -0.98
processed transcript -2.87
retained intron -0.79
lincRNA 0.93
protein coding -1.26

ES replication cohort

-1.16

1.16
-0.82
-0.86
-0.91

0.91

1.77
-1.77

1.06
-1.06
-0.63
-0.78

1.07
-0.81
-2.09
-0.59
-0.54
-1.83
-1.39

0.95

0.68
-0.68
-0.87
-2.49
-0.31

0.54
-0.83

Each transcript is described by its Ensemble identifier (version 75). The effect size (ES) is relative to the controls, i.e. positive ES represents an increase in transcript

usage in PD relative to controls, negative ES a decrease. The p-value as reported by stageR for each tool separately (DEXSeq and DRIMSeq) is representative for the level

of significance after FWER control with a = 0.05 and is lower than 0.03 for all listed DTU events. The table is sorted by the p-value in increasing order and grouped by

the tool that identified the transcript

https://doi.org/10.1371/journal.pgen.1009182.t1004

Increased expression of four SNCA transcript variants, encoding the protein isoforms

SNCA-140, SNCA-126, SNCA-112 and SNCA-98, were reported in the prefrontal cortex of
individuals with PD [12]. None of these transcripts showed evidence of DTU in our analysis.
The transcript (ENST00000506244) encoding the full-length protein (SNCA-140), showed a

trend for reduced relative expression in PD, but this did not reach statistical significance

(p = 0.055, effect size = —0.48, DRIMSeq). In the same study, two out of seven protein-coding
splice variants of PRKN (TV3 and TV12) were suggested to be overexpressed in the PD brain.
In our data, only two PRKN transcript variants (TV1 and TV2) showed sufficient expression
to be analyzed, and neither of them showed statistical evidence of DTU (nominal p > 0.79,
absolute effect size < 0.09, DRIMSeq) in agreement with the results reported in [12].

Finally, one study reported that the altered relative transcript abundance of PARK? in

blood may be used as a biomarker for PD [14]. None of the transcript variants of PARK7 were
sufficiently expressed in our dataset to investigate the transcript usage pattern of this gene in

the PD brain.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009182 November 2, 2020
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Discussion

We report the first transcriptome-wide DTU study in PD. Our analyses reveal that multiple
DTU events occur in the PD brain and many of these are predicted to have a functional
impact. Interestingly, the vast majority of genes exhibiting DTU are not detected by conven-
tional DGE analysis on the same dataset. This is either because DTU occurs in low-expressed
isoforms, or due to antagonistic, inverse changes in other transcripts of the same gene, cancel-
ing out the net change at the gene expression level.

Our findings suggest that DTU events in PD may have important downstream conse-
quences for protein function, irrespective of whether there is a measurable difference in the
total gene expression levels. Changes in the relative expression of different transcripts of a gene
affect the ratio of the resulting protein isoforms and could, therefore, influence biological pro-
cesses through variation in function and/or subcellular localization. Moreover, switches may
occur between protein coding and non-coding transcript isoforms, thereby affecting the over-
all protein level. Changes in the usage ratios of low expressed and/or non-protein coding iso-
forms may also have important biological effects, as it has been shown that these are highly
cell- and tissue-specific, and have a substantial impact on the composition and function of the
proteome [5].

In our dataset, individuals with PD showed a significant decrease in the relative usage of a
THEMS5 transcript variant that encodes the full-length THEMS5 protein isoform, predicted to
localize to mitochondria. This isoform is involved in mitochondrial fatty acid metabolism by
exhibiting esterase activity with a preference for long and unsaturated fatty acid-CoA esters
[19]. Decreased THEMS function has been shown to influence the remodeling process of mito-
chondrial inner membrane cardiolipin [19, 20], resulting in abnormal mitochondrial mor-
phology and impaired mitochondrial respiration [19], both of which occur in PD [18, 21]. A
concomitant increase in the relative expression of a shorter THEMS5 isoform resulted in rela-
tively unchanged levels of total gene expression. However, as this isoform encodes a protein
lacking the first 37 N-terminal amino acids, it is unlikely to localize to mitochondria, and may
therefore not replace the full-length protein functionally [19].

A protein-coding transcript of the SLC16A1 gene was significantly down-regulated in the
PD brain and accompanied by an increase of similar magnitude in a non-protein coding tran-
script. SLC16A1 encodes a monocarboxylate transporter (MCT1) responsible for lactate and
pyruvate trafficking across cell membranes. MCT1I is the most abundant lactate transporter in
the central nervous system, where it is highly expressed in oligodendroglia. It has been shown
that MCT1 plays a key role in the energy homeostasis of neurons, by regulating lactate trans-
port between oligodendroglia and axons. MCT1 disruption causes axonal dysfunction and
neurodegeneration in cell and animal models and MCT1 levels have been found to be
decreased in patients and mouse models of ALS [22, 23].

Another gene of interest was BCHE, which showed a decreased usage of the protein-coding
full-length transcript, suggesting that the level of the functional full length protein isoform
may be decreased in PD. Interestingly, genetic variation in this gene has been associated with
Alzheimer’s disease [24], susceptibility to pesticide toxicity [25] and, more recently, with PD
[26].

In the few genes that were detected by both DTU and DGE analysis, DTU provided addi-
tional functional insight. Since changes in the relative isoform expression can occur in oppo-
site directions to the overall gene-level expression, transcript-level resolution is essential in
order to predict the functional consequences of altered expression.

Our analyses did not confirm a previous report of altered transcript expression in the
SNCA gene in the PD frontal cortex [12]. These findings were based on a small PD cohort
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(n = 5) with no reported neuropathological confirmation of the diagnosis. The fact that the
reported transcripts were confidently detected in our data but showed no evidence (or trend)
of altered relative expression in either of our cohorts, suggests that this effect, if real, is not a
general or common phenomenon in PD. Alternatively, the lack of replication may reflect dif-
ferent genetic backgrounds and environmental exposures in different populations (Spanish,
Norwegian and Dutch). The PRKN transcripts TV3 and TV12, which were reported to show
altered expression in PD in the same sample as SNCA [12, 13] did not show sufficient expres-
sion in our material to be confidently assessed for replication.

While most identified DTU genes in our results do not have a known role in PD, pathway
analyses showed significant enrichment in clusters associated with the pathophysiology of PD,
including reactive oxygen species (ROS) generation and protein degradation. These results
confirm that our findings are related to the biology of PD and highlight DTU analyses as a
complementary strategy to nominating novel disease candidate genes and processes.

A potential limitation in our study is posed by differences in cell-type composition between
brain tissue of patients and controls. We have recently shown that this can be an important
confounding factor in differential expression analysis of bulk brain tissue [18]. To mitigate this
problem, we accounted for differences in cellularity across samples by including cell type esti-
mates for specific cell types found to be significantly associated with disease status, as covari-
ates in our model. Notably, correcting for cell-type composition had only a minor effect in our
results, supporting the notion that most identified DTU events are not driven by differences in
cellularity between PD and controls.

While our top DTU findings replicate across the two independent cohorts, suggesting these
changes are robustly associated with PD, we nevertheless observe an overall low concordance
between the cohorts. This most likely reflects a combination of biological and technical factors,
including limited power due to the relatively small sizes of the cohorts, heterogeneous disease
biology and cell-composition, population-specific and/or brain bank-specific effects, differ-
ences in the age and RIN ranges. Differences between the cohorts were also evident in the fil-
tering results, whereby a larger number of transcripts in the replication cohort were filtered
out in comparison to the discovery cohort, as summarized in S5A Fig. We hypothesized that
this may be related to the overall higher RINs of the samples from the replication cohort. Tran-
scripts which were detected in the discovery cohort but not in the replication cohort showed a
negative correlation with RIN (S5B Fig), suggesting that lower RNA quality (reflected by lower
RIN values) is associated with higher transcript counts due to an increase in non-specific align-
ments in degraded samples.

Further replication in larger samples will be required in order to confirm and further dis-
sect the DTU landscape of the PD brain. Methodological limitations should also be considered.
While DRIMSeq was designed specifically for DTU analysis and assesses the relationship of
each transcript abundance relative to the total transcriptional output, it may have difficulties to
correctly estimate the dispersion for genes with a large number of isoforms [16]. This can
potentially lead to inaccurate transcript proportion estimations and increase the susceptibility
to false positive results, as suggested by the p-value distributions. Conversely, DEXSeq cannot
capture the transcript-gene relationship directly, which might explain its general lower sensi-
tivity compared to DRIMSeq.

Conclusion

In conclusion, our findings provide the first insight into the DTU landscape of PD. We show that
DTU is a prominent feature in the PD brain and may have important functional consequences by
altering the structural and functional composition of the proteome. We therefore propose that
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DTU analyses should be an essential component of transcriptomic studies, along with DGE anal-
yses, because they provide additional insight into the transcriptomic landscape and allow a more
accurate prediction of the functional consequences of detected changes in gene expression.

Methods
Cohorts

Fresh-frozen prefrontal cortex tissue (Brodmann area 9) was available from two independent
cohorts. The discovery cohort comprised individuals with idiopathic PD (n = 17) from the
Park West study, a prospective population-based cohort, which has been described in detail
[15], and demographically matched controls (n = 11). Samples were collected and stored in
our Brain Bank for Aging and Neurodegeneration. The replication cohort comprised individu-
als with idiopathic PD (n = 10) and demographically matched controls (n = 11) from the Neth-
erlands Brain Bank. The details of the cohorts are summarized in Table A in S1 File.

Ethics statement

Ethical permission for these studies was obtained from our regional ethics committee
“Regional Committee for Medical and Health Research Ethics™: REK 2017/2082, 2010/1700,
131.04 (REC, https://rekportalen.no/). Written formal informed consent was obtained from all
participants or their next of kin.

RNA sequencing

Total RNA was extracted from prefrontal cortex tissue homogenate for all samples using
RNeasy plus mini kit (Qiagen) with on-column DNase treatment according to manufacturer’s
protocol. Final elution was made in 65 ul of dH20. The concentration and integrity of the
total RNA was estimated by Ribogreen assay (Thermo Fisher Scientific), and Fragment Ana-
lyzer (Advanced Analytical), respectively. Five hundred ng of total RNA was required for pro-
ceeding to downstream RNA-seq applications. First, ribosomal RNA (rRNA) was removed
using Ribo-Zero™ Gold (Epidemiology) kit (Illumina, San Diego, CA) using manufacturer’s
recommended protocol. Immediately after the rRNA removal the RNA was fragmented and
primed for the first strand synthesis using the NEBNext First Strand synthesis module (New
England BioLabs Inc., Ipswich, MA). Directional second strand synthesis was performed using
NEBNext Ultra Directional second strand synthesis kit. Following this the samples were taken
into standard library preparation protocol using NEBNext DNA Library Prep Master Mix Set
for Illumina with slight modifications. Briefly, end-repair was done followed by poly(A) addi-
tion and custom adapter ligation. Post-ligated materials were individually barcoded with
unique in-house Genomic Services Lab (GSL) primers and amplified through 12 cycles of
PCR. Library quantity was assessed by Picogreen Assay (Thermo Fisher Scientific), and the
library quality was estimated by utilizing a DNA High Sense chip on a Caliper Gx (Perkin
Elmer). Accurate quantification of the final libraries for sequencing applications was deter-
mined using the gPCR-based KAPA Biosystems Library Quantification kit (Kapa Biosystems,
Inc.). Each library was diluted to a final concentration of 12.5 nM and pooled equimolar prior
to clustering. 125 bp Paired-End (PE) sequencing was performed on an Illumina HiSeq2500
sequencer (Illumina, Inc.) at a target depth of 60 million reads per sample.

FASTQ files were trimmed using Trimmomatic [27] to remove potential Illumina adapters
and low quality bases with the following parameters:

ILLUMINACLIP:truseq.fa:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15.

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009182 November 2, 2020 17/24



PLOS GENETICS

Differential transcript usage in the Parkinson’s disease brain

FASTQ files were assessed using fastQC [28] prior and following trimming.

Transcript quantification

We used Salmon [29] with the fragment-level GC bias correction option (- ~gcBias) and
the appropriate option for the library type (-1 ISR) to quantify transcript expression in
pseudo-alignment mode, using the GRCh37 genome as a reference. X and Y chromosomes
were excluded from the GRCh37 reference genome, restricting quantification to transcripts
located on autosomes.

Transcripts per million (TPM) values obtained with Salmon were scaled using the R pack-
age tximport [30] with the scaling method scaledTPWV, the favored scaling method for DTU
(31].

DTU analyses and quality control

DTU analyses estimate transcript usage and detect changes in the relative contribution of a
transcript to the overall expression of the gene. Transcript usage corresponds to the transcript-
level expression counts of a transcript i normalized by the sum of counts of all transcripts of a
gene j:

t
TU, = =
Zk:l tk

where n; equals the number of transcripts of gene j and ¢; is the expression count of transcript

: ()

i. Hence, differential transcript usage describes a change in proportions between the groups
(PD and controls).

For our analysis, we employed an alignment-free abundance estimation method [29],
which enabled read quantification at the transcript level directly, as opposed to traditional read
alignment methods that require bin or exon read counting and subsequent summarization to
transcript level.

We performed DTU analysis between PD and controls using two alternative approaches
implemented in the tools DRIMSeq [16] and DEXSeq [17]. While DEXSeq was designed for
detecting differential exon usage, it is also suitable for assessing DTU by using estimated tran-
script abundances directly [6, 31, 32]. DRIMSeq was developed specifically for DTU analyses
and is based on estimated transcript counts [16]. These methods assess alternative splicing by
directly identifying transcripts that are differentially used, rather than detecting specific splice
events. Both methods have shown comparable performance in benchmarks with simulated
data [16, 31, 32]. A further advantage was that these tools allow for the inclusion of known
covariates into the model design. DRIMSeq assumes a Dirichlet multinomial model for each
gene and estimates a gene-wise precision parameter, whereas DEXSeq assumes a negative
binomial distribution for counts of each transcript and estimates a transcript-wise dispersion
parameter [31]. It is worth noting that DRIMSeq bases its analyses directly on the calculated
transcript proportions, thereby modeling the correlation among transcripts in their parent-
gene directly, whereas those correlations may not be accurately captured by DEXSeq, as it
models each transcript separately and accounts for gene-transcript interaction with a covariate
in its model design [31].

Due to the complexity of the human transcriptome in terms of diversity and number of tran-
scripts per gene, DTU methodologies tend to exhibit a worse performance considering the false
discovery rate (FDR) when compared to simpler organisms [6]. However, FDR can be reduced
considerably if the collection of transcripts undergoes filtering prior to analysis [6]. Transcript
filtering, in addition, alleviates the DRIMSeq-specific difficulty of capturing the full bandwidth
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of transcript dispersion through the common gene-level dispersion estimate [16], which results
otherwise in a decrease in performance for genes with increasing number of transcripts. We
thus excluded lowly expressed transcripts with a soft filter, allowing for a certain percentage of
all samples to have a transcript expression below the given threshold. This filtering methodol-
ogy was chosen over hard filtering in order to avoid overlooking cases of DTU driven by lack of
expression in one of the groups being compared, which would have been the case with a hard
threshold filtering. Using the filtering method available in the DRIMSeq package, we excluded
transcripts for which more thann = min (#Controls, #PD) samples did not reach 10
read counts or for which their relative contribution to the overall gene expression was smaller
than one percent. In addition, we filtered out genes with less than 10 counts in any one sample.
To investigate changes in transcript usage between PD and controls, the resulting filtered set of
transcript-level counts were used as an input for both DEXSeq and DRIMSeq as recently sug-
gested by [31]. Analyses were carried out independently on both cohorts.

Model design

Sources of variation in our data were identified using principal component analysis (PCA) at
the gene-level. RNA integrity number (RIN) correlated highly with the first principal compo-
nent, indicating that RNA quality represents a major source of variation in the expression data.

Relative cellular composition in our samples was obtained from our previous study [18]
using marker gene profiles (MGPs) [33, 34]. In summary, an MGP was calculated for each of
the main cortical cell types (neurons, oligodendrocytes, astrocytes, endothelial, and microglia)
by performing a PCA on the log-transformed expression (in counts per million) of cell type-
specific marker genes from the NeuroExpresso database [33] and extracting the first principal
component. MGPs for oligodendrocyte and microglia showed a significant association with
the disease status (controls vs PD) and were accounted for in the DTU models together with
RIN, gender, and age.

To explore the effect of accounting for disease-associated MGPs in the DTU results, we
compared the two alternative designs, with and without oligodendrocyte and microglia MGPs.
Accounting for cellular composition slightly increased the discovery signal, identifying a few
more DTU genes with both DRIMSeq and DEXSeq. This effect was minor, however, as most
DTU genes and events were identified irrespective of whether cell-type composition was
accounted for or not (S3 and $4 Figs).

Statistical testing

The results of the DTU analyses were further processed with StageR [35]. Gene-level aggre-
gated p-values (q-values) as well as transcript-level p-values were passed to stageR for a two-
stage screening of significance. For DEXSeq, nominal p-values of all transcripts of a gene were
aggregated to a q-value and corrected using the function perGeneQvalue. For DRIMSeq, nomi-
nal p-values were already reported at the gene-level and further corrected within stageR using
the Benjamini-Hochberg (BH) FDR procedure. To control the FWER, transcript-level signifi-
cance was corrected within-gene, if the gene passed the first screening stage of stageR, with
respect to the FDR controlled gene-level significance (q-value). Transcripts of genes which did
not pass the first screening stage, were not further assessed for significance at the transcript-
level. Nominal transcript-level p-values of both tools were adjusted within StageR using an
adapted Holm-Shaffer family-wise error rate (FWER) correction method specifically designed
for DTU analysis [35].

We define a transcript as a DTU event, if the FWER-controlled p < a with a = 0.05. Simi-
larly, we define as DTU gene any gene that exhibits at least one DTU event.
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Similarly, we define o = 0.05 for nominal significance.

DTU pathway enrichment analysis

To assess the enrichment of DTU genes in predefined functional gene sets (pathways), we
employed the enrichment function of the stringDB R package [36]. DTU genes identified in
our discovery cohort were used as hits and all genes surviving the filtering step during pre-pro-
cessing were used as background. Enrichment was tested for pathways defined by the Genome
Ontology (GO) [37, 38]. Each of the three GO categories (Biological Process, Molecular Func-
tion, Cellular Compartment) was tested separately. To reduce redundancy of the top most
enriched pathways (FDR < 0.05), we performed a clustering in each of the three GO catego-
ries. Pathways were clustered by iteratively joining nearest neighbors based on pathway simi-
larity, which we defined with the Cohen’s kappa coefficient (x). The similarity of newly
formed clusters and unvisited neighbours was iteratively recalculated, until no two clusters’ x
was higher than a chosen threshold of 0.4. Each cluster was given a representative title, chosen
from the names of all the pathways in a cluster. The choice of the cluster title depended on the
pathway size, pathway significance or chosen randomly if none of the previous criteria were
sufficient. Finally, each pathway cluster was assigned a p-value by aggregating p-values of all
cluster members with the Fisher method.

For specific cases of isoform switches between protein coding transcripts, we used the
tool DeepLoc [39] to predict subcellular localization by retrieving the encoded amino acid
sequence from the Ensembl release 75.

RNA extraction, cDNA synthesis and quantitative PCR analysis

RNA extraction was carried out using the RNeasy Lipid Tissue Mini Kit (QIAGEN 74804),
starting with ca. 20 mg brain tissue from three individuals with PD and three controls. 500 ng
total RNA were subjected to cDNA synthesis using the SuperScript IV VILO Master Mix with
ezDNase Enzyme (Thermofisher Scientific 11766500). Experiments were carried out in tripli-
cates starting with a new cDNA synthesis from aliquoted total RNA. For the SYBR Green
quantitative PCR analysis, the PowerUp SYBR Green Master Mix (Thermofisher Scientific,
A25776) was used with a thermal cycling of one cycle at 95°C for 20s and 40 cycles at 95°C for
3s and 60°C for 30s on a StepOnePlus instrument (Thermofisher Scientific), and with the
primers listed in Table 5.

Table 5. qPCR primer sequences.

Transcript ID Primer name Primer sequence

ENST00000374861 ZNF189_374861 fw 5“TGGGGTTCGGGGTTGGGG-3
ENST00000374861 ZNF189_374861 rv 5“CGGTCACGACCCCAACAGC-3°
ENST00000339664 ZNF189_339664 fw 5-“GATGGCTTCCCCGAGCCC-3*
ENST00000339664 ZNF189_339664 rv 5-ACACAGCCACATCCTCAAATG-3*
ENST00000259395 ZNF189_259395 fw 5-GAGATGGCTTCCCCGAGCC-3
ENST00000259395 ZNF189_259395 rv 5-CTTATTTTCTCAGGCCGATTTATC-3*
ENST00000540653 BCHE_540653 fw 5- GCAAACTTTGCCATCTTTGTTG-3*
ENST00000540653 BCHE_540653 rv 5- CTTGTGCTATTGTTCTGAGTC-3*
ENST00000264381 BCHE_264381 fw 5- AGATCCATAGTGAAACGGTGG-3*
ENST00000264381 BCHE_264381 rv 5- CITTGTGCTATTGTTCTGAGTC-3¢

https://doi.org/10.1371/journal.pgen.1009182.t005

GAPDH

Assay ID Hs00266705_g1 (Thermofisher)
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Supporting information

S1 Fig. Diagnostic plots. Data points in all plots represent one transcript, with coloring show-
ing significant transcripts (a = 0.05) in red. P-values (uncorrected) are displayed as (—log10(p-
value)). A: Volcano plot displaying the effect size (as estimated by the respective tool) in the x-
axis and the p-value on the y-axis. Triangles mark extreme p-value outliers that were adjusted
to fit into the plot. B: MA plot visualizing a transcript’s significance as a function of its mean
expression over all samples. C: Density ridges display the distribution of gene-level significance
(~log10(p-value)) per gene type, where genes are grouped according to the number of tran-
scripts they have after filtering. The color gradient was applied to visualize the p-value scale.
The vertical dashed line corresponds to a p-value of 0.05.

(TIFF)

S2 Fig. Concordance between DEXSeq and DRIMSeq in the replication cohort. Estimated
transcript usage effect sizes are shown for each transcript of the replication cohort, with results
from each tool on each of the axes (DRIMSeq x-axis, DEXSeq y-axis). Points situated on the
diagonal represent transcripts with equal effect size estimations of both tools; points situated
inside the first and third quadrant of the coordinate system represent transcripts agreeing in
direction according to both tools (i.e. up-regulated in PD: first quadrant, down-regulated in
PD: third quadrant). A: Transcripts that did not reach statistical significance in the DTU analy-
ses by either DRIMSeq or DEXSeq. B Transcripts found to be significant by both tools. C:
Transcripts found to be significant by DEXSeq only. D: Transcripts found to be significant by
DRIMSeq only. Transcripts identified as DTU events (significant after p-value adjustment) are
coloured according to the plot legend. Red: transcript identified as a DTU event by both tools,
yellow: transcript identified as a DTU event by DRIMSeq only, grey: transcript either didn’t
survive FWER correction by neither tool or wasn’t nominally significant beforehand. (Tran-
scripts can appear significant after FWER control even if they weren’t nominally significant,
due to StageR assigning significance by relying on the assumption that if DTU is occurring in
the gene (that is: the gene has passed the screening stage) and one of its transcripts is signifi-
cant, the other must subsequently also take part in the DTU to compensate).

(TIFF)

S3 Fig. Overlap DTU genes and events, with and without cell correction. DTU genes (A, B)
and events (C, D) resulting from the analysis which included cell type estimations (purple) are
overlapped with the results of the analysis where differences in cell types were not taken into
account (turquoise). Only DTU events which were identified in the discovery cohort and
replicated in the independent replication cohort were considered for this plot. A: DTU genes
identified by DRIMSeq. B: DTU genes identified by DEXSeq. C: DTU events identified by
DRIMSeq. D: DTU events identified by DEXSeq.

(TIFF)

$4 Fig. Characteristics of the replicated DTU genes and events depicted as heatmaps. Repli-
cated DTU events (significant after OFWER correction in the discovery cohort, agreeing on
the direction of change across cohorts and nominally significant at alpha = 0.05 in the replica-
tion cohort) are arranged in the y-axis. A: transcript’s adjusted p-value (white cells indicate
adjusted p-value >=0.05). B: Transcript’s log fold change (white cells correspond to tran-
scripts not identified as DTU events). C: Transcript’s nominal (uncorrected) p-value. In all
heatmaps, characteristics are grouped by model design (i.e. with (“Incl. MGPs”) or without
(“w/o MGPs”) accounting for MGPs) and by tool (DRIMseq or DEXSeq).

(TIFF)
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S5 Fig. Effect of pre-filtering on the number of transcripts per cohort. A: Venn diagram for
the sets of transcripts which survived pre-filtering in each cohort. Number of transcripts that
survived filtering in the replication cohort (green), in the discovery cohort (red), and number
of transcripts identified as DTU events in the discovery cohort (blue). B: Distribution of the
correlation coefficients between transcript abundance (TPM) and sample RIN for non-concor-
dant transcripts (i.e. transcripts removed during the pre-filtering in the replication cohort, but
not in the discovery cohort) and concordant transcripts (i.e. transcripts that survived pre-fil-
tering in both cohorts).

(TIFF)

S1 File. A: Cohort demographic and experimental information. B: DTU events. Table of iden-
tified DTU events, grouped by cohort (replication, discovery) and tool (DRIMSeq, DEXSeq).
Gene-level and transcript-level p-values as reported by stageR (after FWER correction). Effect
size corresponds to the coefficient of the condition variable (Control, PD) in the analysis
model.

(XLSX)

S1 Table. Overrepresentation analysis of DTU events in transcript biotypes. P-values and
odds ratios were determined by Fisher’s exact test. The contingency table was built up separating
transcripts by whether or not they were identified as DTU events and whether they were defined
as the biotype of interest (as defined by Ensembl version 75). The rows are grouped by the tool
which identified the DTU event and sorted by increasing p-value of the Fisher’s exact test.

(PDF)
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Abstract

The correlation between mRNA and protein levels has been shown to decline in the ageing
brain, possibly reflecting age-dependent changes in the proteostasis. It is thought that impaired
proteostasis may be implicated in the pathogenesis of Parkinson’s disease (PD), but evidence
derived from the patient brain is currently limited. Here, we hypothesized that if impaired
proteostasis occurs in PD, this should be reflected in the form of altered correlation between
transcriptome and proteome compared to healthy ageing.

To test this hypothesis, we integrated transcriptomic data with proteomics from prefrontal
cortex tissue of 17 PD patients and 11 demographically matched healthy controls and assessed
gene-specific correlations between RNA and protein level. To control for the effects of ageing,
brain samples from 4 infants were included in the analyses.

In the healthy aged brain, we observed a genome-wide decreased correlation between mRNA and
protein levels. Moreover, a group of genes encoding synaptic vesicle proteins exhibited inverse
correlations. This phenomenon likely reflects the spatial separation of mRNA and protein into
the neuronal soma and synapsis, respectively, commonly characterizing these genes. Most genes
showed a significantly lower correlation between mRNA and protein levels in PD compared to
neurologically healthy ageing, consistent with a proteome-wide decline in proteostasis. Genes
showing an inverse correlation in PD were enriched for proteasome subunits, suggesting that
these proteins show accentuated spatial separation of transcript and protein between the soma
and axon/synapses in PD neurons. Moreover, the PD brain was characterized by increased
positive mRNA-protein correlation for some genes encoding components of the mitochondrial
respiratory chain, suggesting these may require tighter regulation in the face of mitochondrial
pathology characterizing the PD brain.

Our results are highly consistent with a proteome-wide impairment of proteostasis in the PD
brain and strongly support the hypothesis that aberrant proteasomal function is implicated
in the pathogenesis of PD. Moreover, our findings have important implications for the correct
interpretation of differential gene expression studies in PD. In the presence of disease-specific
altered coupling of transcriptome and proteome, measured differences in mRNA levels cannot be
used to infer changes at the protein-level and should be supplemented with direct determination
of proteins nominated by the analyses.
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Introduction

Gene expression is the process by which the information encoded in the genome (i.e., the genotype)
determines the phenotype. Typically, information encoded in the DNA is first transcribed to
RNA and then translated into protein, the functional product influencing the phenotype [42].
Despite the hierarchical organization of gene expression, the relationship between transcript and
protein levels is highly variable in mammalian cells, both across genes and across individuals.
Imperfect correlations between mRNA and protein levels are commonly attributed to regulatory
mechanisms acting downstream of transcription and influencing the rate of protein synthesis and
degradation [5,10,28]. For example, splicing, polyadenylation, and RNA-binding factors regulate
translation rates, while the ubiquitin-proteasome system and lysosomal degradation regulate
protein turnover. The balanced interplay between these regulatory mechanisms is crucial for
maintaining cellular proteostasis.

It was recently shown that the correlation between mRNA and protein levels declines with ageing
in the human brain, possibly due to altered post-transcriptional regulation [8,54] and declining
proteostasis [28]. Impaired proteostasis is thought to contribute to the misfolding and aggregation
of proteins observed in neurons and other postmitotic cells with ageing [28], a phenomenon that
is substantially more pronounced in age-dependent neurodegenerative proteinopathies, such as
Parkinson’s disease (PD) and Alzheimer’s disease (AD) [17]. Several lines of evidence indicate
that aberrant proteostasis is indeed implicated in PD [36]. The accumulation of Lewy bodies and
neurites, intraneuronal inclusions containing aggregated forms of the protein a-synuclein [27],
suggests decreased function of the autophagy-lysosomal pathway [37]. This is further supported
by the fact that mutations in GBA, encoding the lysosomal enzyme glucocerebrosidase, greatly
increase the risk of PD [1]. Altered mRNA levels of proteasomal components have been
consistently found in transcriptomic studies of the PD brain [7], suggesting that dysfunction of
the ubiquitin-proteasome system may also play a role.

We hypothesized that if impaired proteostasis occurs in PD, this should be reflected in the form
of altered correlation between the transcriptome and proteome in the patients’ brain compared to
healthy ageing. To test our hypothesis, we performed transcriptome and proteome-wide analyses,
using RNA sequencing and proteomics, in the brain of 17 PD patients and 11 demographically
matched healthy controls, and assessed the correlation between the levels of each transcript
and its cognate protein. Since it is known that extensive changes leading to mRNA-protein
decoupling occur with ageing in the human brain [8,54], we also analyzed brain samples of
four individuals in early infancy. Ageing remains the strongest known PD risk factor, and this
additional group allowed us to distinguish changes in mRNA-protein correlations arising due to
neurologically healthy ageing from those that are specific to pathological ageing with PD.

Our results show that the PD brain is characterized by genome-wide altered mRNA-protein
correlation, compared to neurologically healthy ageing. The pattern of this altered relationship
between transcriptome and proteome is highly consistent with a disease-related impairment in
proteostasis.

Materials and Methods

Cohorts

All experiments were conducted in fresh-frozen prefrontal cortex (Brodmann area 9) tissue from
a total of 33 individuals comprising young infants (YG, N = 4, age 0-0.38 years), neurologically
healthy aged individuals (HA, N = 11, age 63-88 years) and individuals with idiopathic
Parkinson’s disease (PD) (N = 17, age 69-95 years) from the Park-West study, a prospective
population-based cohort which has been described in detail [2]. Whole-exome sequencing had
been performed on all PD patients and known causes of Mendelian PD and other monogenic
neurological disorders had been excluded [19]. Controls had no known neurological disease
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and were matched for age and gender. Individuals with PD fulfilled the National Institute of
Neurological Disorders and Stroke [20] and the UK Parkinson’s disease Society Brain Bank [53]
diagnostic criteria for the disease at their final visit. Ethical permission for these studies was
obtained from our regional ethics committee (REK 2017/2082, 2010/1700, 131.04). Cohort
demographics are listed in S1 File.

Sample collection

Brains were collected at autopsy and split sagittally along the corpus callosum. One hemisphere
was fixed whole in formaldehyde and the other coronally sectioned and snap-frozen in liquid
nitrogen. All samples were collected using a standard technique and fixation time of ~ 2
weeks. Subject demographics and tissue availability are provided in S1 Figure. Routine
neuropathological examination including immunohistochemistry for a-synuclein, tau and beta-
amyloid was performed on PD and HA brains. All PD cases showed neuropathological changes
consistent with PD including degeneration of the dopaminergic neurons of the substantia nigra
pars compacta in the presence of Lewy pathology. Controls had no pathological evidence of
neurodegeneration.

RNA sequencing

Total RNA was extracted from prefrontal cortex tissue homogenate for all samples using RNeasy
plus mini kit (Qiagen) with on-column DNase treatment according to the manufacturer’s protocol.
The final elution was made in 65ul of dH20. The concentration and integrity of the total RNA
were estimated by Ribogreen assay (Thermo Fisher Scientific), and Fragment Analyzer (Advanced
Analytical), respectively and 500ng of total RNA was used for downstream RNA-seq applications.
First, nuclear and mitochondrial rRNA was removed using Ribo-Zero™ Gold (Epidemiology)
kit (Illumina, San Diego, CA) using the manufacturer’s recommended protocol. Immediately
after rRNA removal, RNA was fragmented and primed for the first strand synthesis using the
NEBNext First Strand synthesis module (New England BioLabs Inc., Ipswich, MA). Directional
second strand synthesis was performed using NEBNExt Ultra Directional second strand synthesis
kit. Following this, the samples were taken into standard library preparation protocol using
NEBNext DNA Library Prep Master Mix Set for Illumina with slight modifications. Briefly,
end-repair was done followed by poly(A) addition and custom adapter ligation. Post-ligated
materials were individually barcoded with unique in-house Genomic Services Lab (GSL) primers
and amplified through 12cycles of PCR. Library quantity was assessed by Picogreen Assay
(Thermo Fisher Scientific), and the library quality was estimated by utilizing a DNA High
Sense chip on a Caliper Gx (Perkin Elmer). Accurate quantification of the final libraries
for sequencing applications was determined using the qPCR-based KAPA Biosystems Library
Quantification kit (Kapa Biosystems, Inc.). Each library was diluted to a final concentration
of 12.5nM and pooled equimolar prior to clustering. One hundred twenty-five bp Paired-End
(PE) sequencing was performed on an Illumina HiSeq2500 sequencer (Illumina, Inc.). RNA
quality, measured by the DV200 score, varied across samples (mediany g = 92, mediancy = 88,
medianpp = 89), although the difference between groups was not statistically significant
(pya,cr = 0.06, pcr,pp = 0.74 , pye,pp = 0.07, Wilcoxon rank sum test).

RNA-Seq quality control and transcript abundance estimation

FASTQ files were trimmed using Trimmomatic version 0.39 [6] to remove potential Illumina
adapters and low quality bases with the following parameters: ILLUMINACLIP:truseq.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15. FASTQ files were assessed using fastQC version
0.11.5 [3] prior to and following trimming. We used Salmon version 1.3.0 [41] to quantify the
abundance at the transcript level with the fragment-level GC bias correction option (--gcBias)
using the GENCODE Release 32 (GRCh38.p13) reference transcriptome and the GRCh38
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reference genome, included as decoy [47]. Transcript counts were collapsed to gene-level using
R package tximport version 1.14.2 with default parameters (i.e., countsFromAbundances =
FALSE) and the GENCODE Release 32 (GRCh38.p13) annotation. Henceforth, we use the
notion of transcript in a gene-centric sense, i.e., as the entity defined by all transcript isoforms
mapped to the same gene. mtDNA-encoded genes were removed from the analysis. Genes were
further filtered out if unusually highly expressed (i.e., if they accounted for more than 1% of
a sample’s library size in more than 50% of all the neurologically healthy samples (i.e., YG,
HA)). We calculated logs transformed counts per million (CPM) for the pre-filtered set of genes.

Low-expressed genes (loga — CPM < 0.1, in at least 80% of the samples) were also filtered out.

The pre-filtered transcriptomic dataset resulted in a total of N = 29,601 genes. The dataset
corresponding to the PD samples, added subsequently in the analyses, was filtered independently
following the same filtering approaches and resulting in a total of N = 29, 363 genes.

Lysis and protein digestion

10pL of lysis buffer (4% SDS, 0.01M TRIS pH 7.6) was added to 1mg of brain tissue. The
tissue was mechanically lysed using Precellys CK 14 ceramic beads, together with the Precellys
Evolution (Bertin Corp, Rockville MD, USA). Lysed tissue was transferred to Eppendorf tubes
and heated to 95°C for 5 minutes, before centrifugation at 10.000g for 5 minutes. The clarified
supernatant was transferred to new Eppendorf tubes. Protein measurement was performed using
the Pierce BCA protein assay kit (Thermo Fisher).

The samples were mixed with up to 50uL of the clarified lysate with 200uL of 8 M urea in 0.1
M Tris/HCI pH 8.5 in the filter unit (Microcon YM-30 (Millipore, Cat. MRCFOR030)) and
centrifuged at 14,000 x g for 30 min and repeated twice. In total 30ug of protein per sample
was used. The samples were reduced with 10mM DTT (1h, RT) and alkylated using 50m.M
TAA (1h, RT), and digested overnight at 37°C with 1:50 enzyme: substrate ratio of sequencing
grade trypsin (Promega, Madison, WI). Following digestion, samples were acidified with formic
acid and desalted using HLB Oasis SPE cartridges (Waters, Milford, MA). Samples were eluted
with 80% acetonitrile in 0.1% formic acid and lyophilized. Peptides were stored at —80°C until
use [26].

TMT labeling and fractionation

Digested peptides from each sample were chemically labelled with TMT reagents 10 plex
(Thermo Fisher). Peptides were resuspended in a 30uL resuspension buffer containing 0.1M
TEAB (Triethylammonium bicarbonate). TMT reagents (0.1mg) were dissolved in 41pL of
anhydrous ACN of which 20uL was added to the peptides. Following incubation at RT for
1 h, the reaction was quenched using 5% hydroxylamine in HEPES buffer for 15 min at RT.
The TMT-labeled samples were pooled at equal protein ratios followed by vacuum centrifuge
to near dryness and desalting using Oasis PRIME HLB cartridges. Peptides were fractionated
into 8 fractions using the Pierce High pH Reverse-phase Peptide fractionation kit (Thermo
Fisher Scientific). The TMT experiment batch setup included additional samples which were
not considered in the analysis but included in the preprocessing (filtering and normalization) of
the proteomics data.

Liquid Chromatography and Mass Spectrometry Analysis

Each sample was freeze-dried in a Centrivap Concentrator (Labconco) and dissolved in 2% ACN,
1% FA. Approximately 0.5 ug of peptides from each fraction was injected into an Ultimate 3000
RSLC system (Thermo Scientific) connected to a Q-Exactive HF equipped with an EASY-spray
ion source (Thermo Scientific). The samples were loaded and desalted on a precolumn (Acclaim
PepMap 100, 2 cm -75um i.d. nanoViper column, packed with 3 pm C18 beads) at a flow rate
of 3 “fn for 5 min with 0.1% TFA. The peptides were separated during a biphasic ACN gradient

m
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from two nanoflow UPLC pumps (flow rate of 0.200;:;) on a 50cm analytical column (PepMap

RSLC, 50 cm -75pm i.d. EASY-spray column, packed with 2um C18 beads (Thermo Scientific).
Solvent A was 0.1% FA in water, and Solvent B was 100% ACN. The mass spectrometer was
operated in data-dependent acquisition mode to automatically switch between full scan MS1
and MS2 acquisition. The instrument was controlled through Q Excative HF Tune 2.4 and
Xcalibur 3.0. MS spectra were acquired in the scan range of 375 — 1500 m/z with resolution of
60,000 at m/z 200, automatic gain control (AGC) target of 3 - 10°, and a maximum injection
time (IT) of 50ms. The 12 most intense eluting peptides above intensity threshold 6 - 10%, and
charge states two or higher, were sequentially isolated for higher energy collision dissociation
(HCD) fragmentation and MS2 acquisition to a normalized HCD collision energy of 32%, target
AGC value of 1-10°, resolution R = 60,000, and IT of 110 ms. The precursor isolation window
was set to 1.6m/z with an isolation offset of 0.3 and a dynamic exclusion of 30s. Lock-mass
(445.12003 m/z) internal calibration was used, and isotope exclusion was active.

Raw data were analyzed by MaxQuant v1.5.5.1 [13] with “Variable Modifications” set for TMT
10-plex 126, 127N, 127C, 128N 128C, 129N, 129C, 130N, 130C, 131 to be at N-termini, as well
as lysine for database searching and peptide identification.

Proteomics normalization and filtering

Aggregated protein intensities from maxQuant were further processed in a downstream analysis us-
ing R. First, proteins labelled as “Reverse”, “Potential. contaminant” and “Only.identified.by.site”
were removed from the analysis. In addition, proteins were removed if they exhibited at least
one zero intensity in a sample. In order to filter out highly-expressed proteins, we selected the
top four highest expressed proteins in each sample (which ranged from 3% to 5% of the total
expression of a sample). The union set of these (a total of 19 proteins) was then filtered out
from every sample.

We considered three possible normalization approaches for protein quantification, i) raw protein
intensities, ii) quantile normalization, and iii) batch effect correction [9] followed by root mean
square scaling. To assess each of these strategies we explored the association of the first two
components of the principal component analysis (PCA) of the protein expression matrix with
the TMT batch. Raw protein intensities (i) showed a clear clustering of samples which was
associated with the batches of the TMT experiment, which was further amplified by quantile
normalization (ii). This effect was no longer noticeable when we applied batch correction (iii),
as suggested in [9], where we divided protein intensities by the correction factor based on the
reference channels in the respective batches, followed by root mean square scaling (S1 Figure).
Additionally, we were able to leverage the RNA-seq data from the same samples to gain in-
sight into the biological validity of the three alternative normalization options by studying the
transcriptome-proteome correlation in the neurologically healthy groups (HA and YG; logs trans-
formed values for proteins, and logs transcript CPMs). The transcriptome-proteome correlation
was significantly higher in the batch-corrected strategy both across samples and across genes
(S2 Figure). Based on these observations we chose to apply the batch correction and subsequent
root mean square scaling (iii). The pre-filtered proteomic dataset was composed of a total of
N = 2,961 proteins.

Covariance between omic layers

We used sparse partial least square (sPLS) as implemented in the mixOmics R package version
6.10.9 [34,43] to find the linear combinations of variables (transcripts and proteins) that maximize
covariance between the transcriptomic and the proteomic layers. sPLS was performed on the
pre-filtered transcriptomic (X) and proteomic (Y) datasets using the “canonical” mode and the
parameters keepX = 50 and keepY = 50 for feature selection.
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Correlation between transcriptome and proteome

To investigate changes in the transcriptome-proteome correlation between neurologically-healthy
groups (YG vs HA) we performed an additional filtering step on both transcripts and proteins,
aiming at increasing the biological signal-to-noise ratio. Genes were flagged for removal if they
satisfied at least one of the following criteria: i) not present in the pre-filtered transcriptome,
ii) not present in the pre-filtered proteome, iii) low median transcript expression (below 10%
quantile), iv) low transcript variance (below 15% quantile). The removal of flagged genes resulted
in an analysis-ready dataset of N = 2,107 genes.

The dataset corresponding to the PD samples, employed in a subsequent comparison, was filtered
independently following the same filtering approaches and resulting in a slightly lower number
of genes in the final analysis-ready list (N = 1,942). Gene-wise transcript-protein Pearson
correlations were calculated across samples independently for each group (CT, PD, YG) using
logs transformed CPMs for transcript abundance and log2 transformed batch-corrected and root
mean square scaled protein intensities.

Gene scoring

To investigate changes in the transcriptome-proteome correlation between groups, we applied
different gene scoring strategies to rank genes according to their change in correlation (ér). For
example, to investigate changes occurring in the healthy ageing process (i.e., comparing YG vs
HA) each gene would be scored by 6r = rga — rye. Correspondingly, to investigate changes
occurring in the process of ageing with Parkinson’s disease, gene scores would be calculated as
or =rpp — ryg. Finally, changes in transcript-protein correlations between CT and PD groups
would be calculated as ér = rpp — rya (Figure 1A).

Specifically, for each of these three group comparisons (YG—HA, YG—PD, HA—PD), we
wanted to identify genes belonging to three functional scenarios in regard to their transcript-
protein coupling: a) "decoupling”, genes that show a positive transcript-protein correlation in
the reference group (e.g., YG) and loose this correlation (r ~ 0) in the other group (e.g., HA);
b) “increased inverse correlation”, genes which show a correlation above or equal to zero in
the reference group and a negative correlation in the other group; and ¢) “increased positive
correlation”, genes with a correlation above or equal to zero in the reference group that show an
increased correlation in the group compared (Figure 1B). To this end, gene-specific scores were
calculated as follows:

VRrep >0 (1)

S = ~|Rageing| + Rres (2)

Sy = —Rageing + t(Bref) (3)

8% = Rageing — t(Ryey), (4)

with t(z) = 3 L 5)

where 7 € 1,2, 3 specified the comparison being made:

R foriel,2
chf_{ YG, ori1el, (6)

Rpa, fori=3
Rpp, forie 2,3
Ra eing — / 7
gema {RHA, fori=2 ™)

Heatmaps to visualize scoring distributions in Figure 1C were created with the R package
ComplexHeatmap [23].
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Pathway enrichment analysis and clustering for visualization

The above gene scorings were used to test for functional enrichment. To this end, we employed
the gene score resampling method implemented in the R package ermineR version 1.0.1.9, an R
wrapper package for ermineJ [35] with the complete Gene Ontology (GO) database annotation [4]
(using aspects: biological process, molecular function and cellular component).

Protein interaction networks

Protein-protein interaction networks were generated using the R package coexnet version 1.8.0 [25],
which retrieves information on protein co-expression and experimentally evidenced interaction
from STRING [50]. Vertices were clustered using the R package igraph version 1.2.5 [14], and
its implemented “edge-betweenness” cluster algorithm.

Results

Brain RNA and protein expression patterns are highly distinct between
neurodevelopment and healthy ageing

Using RNA-seq and LC-MS-based proteomics, we mapped the transcriptome and proteome in
prefrontal cortex tissue from 4 young infants (YQG), 11 neurologically healthy aged individuals
(HA), and 17 individuals with idiopathic PD (PD). First, we assessed the overall expression
pattern of the groups YG and HA by integrating gene expression (X, N = 29,601 genes) with
protein expression (Y, N = 2,918 proteins). Using sparse Partial Least Squares regression
(sPLS), we were able to reduce dimensionality for both X and Y and project the samples in
an unsupervised manner onto the combined XY-variate space. The groups YG and HA were
markedly separated according to their biological characteristics in the combined variate space
(YG cluster median silhouette width = 0.71, Euclidean distance; HA group median silhouette
width = 0.53, Euclidean distance; Figure 2A) as well as in the separated variate space (Figure
2B), meaning that the group separation was independent of whether the selected features were
restricted to either the transcriptome or the proteome, with both datasets strongly agreeing.
The first XY-variate, was strongly correlated with age (r = 0.95, p = 8.24 - 1078, Pearson). The
N = 50 selected features for each component (I, IT) of X and Y, which were sufficient to separate
the groups, are visualized in a correlation heatmap in Figure 2C, highlighting interactions
between features of X and features of Y for which the correlation was greater than r = 0.2.

The transcriptome-proteome correlation signature is altered in the
aged brain

Since mRNA and protein levels are known to be tightly correlated during neurodevelopment,
we leveraged the YG group as a control outgroup to assess alterations that occur with age
and/or PD. To compare the transcriptome-proteome coupling between YG and HA groups, we
calculated gene-wise correlation coefficients (r, Pearson) across samples in each of the groups
(ryq and rg4) for the YG and HA groups, respectively). After pre-filtering, we were able to
assess the transcript-protein level correlation for 2,107 genes. Correlation coefficients for each
group are listed in S2 File. We will henceforth use the term gene for both the gene and the
protein it encodes.

As expected, transcriptome and proteome were significantly more correlated in the YG group
compared to the HA group as shown by the transcript-protein r distributions (median ry¢ = 0.31;
median 74 = 0.07; p < 2-10716, Wilcoxon) (Figure 3A). To further characterize the differences
in the transcriptome-proteome coupling, we generated a two-dimensional density plot of the gene-
wise transcript-protein correlation in the YG and HA groups (Figure 3B). The vast majority of
genes exhibited a high transcript-protein correlation in YG (ryg > 0.5) and a lack of correlation
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in HA (rga$sim0). We henceforth refer to this age-dependent decrease in transcript-protein
correlation as decreased coupling or, simply, decoupling. Additional high-density areas were
observed for genes with low absolute transcript-protein correlation in both groups, and for genes
transitioning from a highly positive correlation in YG to an inverse correlation in HA. Finally,
very few genes showed an age-dependent increase in correlation. These observations indicate
that most genes show a tight positive correlation between mRNA and protein levels during
early infancy. With aging, however, this correlation either decreases towards zero (rga — 0,
decoupling) or becomes inverse (rga < 0, increased anticorrelation).

Altered mRNA-protein correlation in the aged brain is enriched in
specific biological functions

Next, we assessed whether altered mRNA-protein correlation in the aged brain is enriched
for specific pre-defined biological pathways. To this end, we divided genes into three groups
according to their changes in correlation (YG — HA): i) decoupled (ryg > 0, rga ~ 0), ii)
increased inverse correlation (ryg > 0, rga < 0), iii) increased positive correlation (ryg > 0,
rga > ryg). Genes in each group were ranked according to the magnitude of the difference
(6(rga,rye)) (Figure 1, S2 File). While the majority of genes showed decoupling with ageing
(group i), we found no significant enrichment in this group for any specific biological pathway.
A protein-protein interaction network of the top decoupled genes (gene score > 90% quantile,
N = 58), revealed 4 interconnected groups with more than 5 members (Figure 3C), strongly
suggesting a functional relationship. Notably, 5 of the 7 members of one of these groups were
subunits of the proteasome complex (PSMA4, PSMB3, PSMD5, PSMDS8, PSMD1/). The gene
group with increased inverse correlation (group ii) showed significant enrichment for 14 pathways
(FDR < 0.05), mostly related to synaptic components and synaptic vesicles (S2 Figure, sheet
S1b). Finally, the minority of genes which showed increased positive correlation from YG to HA
(iil) were enriched in “regulation of hemostasis” (FDR = 0.04). Significantly enriched GO terms
for each of the three groups are listed with their FDR adjusted p-value in (S2 Figure, sheet
S1b-c).

The age-dependent decoupling between mRINA and protein levels is
more pronounced in the PD brain

Next, we wanted to assess how the coupling between transcriptome and proteome changes in
PD compared to normal, neurologically healthy ageing. Transcript-protein correlations across
all three groups (YG, HA and PD) were assessed for a total of 1,907 genes (see Methods). The
correlation distributions for PD and HA groups showed no significant difference (p = 0.52,
Wilcoxon) with a median close to zero for both groups (median rpp = 0.10, median 7z 4 = 0.08).
However, PD exhibited an overall lower variance (02(rga) = 0.15, 0?(rpp) = 0.08) and a
reduced range (range(rga) = [-0.97,0.93]; range(rpp) = [-0.70,0.80]), suggesting a more
pronounced trend of decoupling (Figure 4A).

To further investigate this, we calculated the absolute difference in the gene-wise transcript-
protein correlation between the YG group and either the HA (dqge = |rma| — |ryql) or the
PD group (dpp = |rpp| — |ryvel). Interestingly, the two distributions differed significantly
(p=2.2-1071¢, Wilcoxon, paired), with pp being significantly higher than deltaqge (Figure
4B). These findings indicate that the age-dependent loss of transcript-protein correlation is
more pronounced in pathological aging with PD than in healthy aging, as evident also by the
rga ~ ryg and rpp ~ ryq density distributions (S3 Figure). Despite these differences, dqge
and dpp showed a highly significant positive correlation (r = 0.71, p < 2.2 - 10716, Pearson)
(Figure 4C), suggesting that the process of decoupling is qualitative similar and has a comparable
genome-wide distribution in HA and PD, although it is more pronounced in the latter.
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Altered transcript-protein correlation in the PD brain is enriched for
specific biological processes

Similar to healthy ageing, transcript-protein correlation in the PD-brain showed a general trend
for decoupling compared to the YG group (Figure 4D) and no significant enrichment for specific
pathways. Genes showing increased inverse correlation with PD ageing were significantly enriched
for 136 pathways (FDR < 0.05) mainly related to protein degradation (including proteasome
complex, ubiquitination and unfolded protein response), immune response, transcription and
cell-cycle regulation (S2 Figure, sheet S2b). However, a closer look at the enrichment results
singled out several proteasomal subunits as main drivers of the enrichment signal across all these
pathways. Removal of proteasomal subunits from the gene lists, in fact, resulted in only three
statistically significant pathways. The signal of two of them (related to enhancer-binding), was
driven solely by 5 genes (CALCOCO1, H3F3A, RUVBL2, SFPQ, SUB1 ), while the enrichment of
the third significant pathway (unfolded protein binding) was supported by 36 genes which showed
negative correlation in PD. Genes showing increased positive correlation with PD ageing were
significantly enriched for 46 pathways, most of which were related to mitochondrial respiration
(S2 Figure, sheet S2c).

Since comparing YG and PD cannot confidently differentiate ageing- from disease-related
changes, we also performed a direct comparison between HA and PD. These analyses revealed
an altered profile of transcript-protein correlation in PD compared to HA (Figure 4D). Genes
showing increased decoupling in PD were significantly enriched for 17 pathways mostly related
to nitrogen metabolism. Genes showing increased inverse correlation in PD were enriched in
54 biological pathways, primarily related to protein degradation and immune response. Similar
to the comparison with the YG-group, this enrichment was driven primarily by proteasomal
subunits. The magnitude of anticorrelation was, however, heterogeneous, affecting certain
subunits more than others (median(r) = —0.18, range(r) = [—0.64,0.42], o, = 0.27, N = 22).
Finally, genes with increased positive correlation in PD were enriched for biological processes
related to mitochondrial respiration. A list of significantly enriched pathways in PD compared
to HA is provided in S2 Figure, sheet S3a-c.

Discussion

Here, we assess for the first time the genome-wide correlation between the transcriptome and
proteome in the PD brain, compared to neurologically healthy ageing. In the infants, the
vast majority of genes showed a strong positive correlation between mRNA and protein levels,
suggesting that in the neonatal brain, protein abundance is determined mainly by transcript
concentration. This correlation was significantly lower in the neurologically healthy aged indi-
viduals, consistent with an age-dependent decoupling between transcript and protein abundance.
Similar trends have been shown in yeast [31], fish [32], and the macaque and human brain [8, 54].
Previous studies have suggested that age-dependent decoupling in the brain may preferentially
affect certain biological processes, including transcriptional, translational and posttranslational
regulation, signalling pathways, and mitochondrial function [31,32,54]. In our data, genes that
decoupled in the aged group did not exhibit a significant enrichment in any specific biological
pathways, suggesting that the age-dependent loss of correlation between mRNA and protein is a
general, genome-wide process.

The phenomenon of age-dependent decoupling between mRNA and protein suggests that, in
the ageing brain, modulating the rates of translation and protein degradation assumes a more
central role in determining protein abundance than transcriptional regulation. On the other
hand, the observed tight correlation between mRNA and protein levels in the neonatal brain may
be, at least partly, related to the ongoing proliferation and migration of glial progenitors [49], a
process heavily dependent on transcriptional regulation via the binding of a broad spectrum of
transcription factors [15].
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In addition to the physiological effects of brain development, the mRNA-protein decoupling
observed in the ageing brain may also reflect pathological changes taking place in ageing postmi-
totic cells. A decline in proteasome function with ageing has been shown in multiple mammalian
tissues and is believed to be contributing to the accumulation of misfolded and damaged proteins
in the ageing brain (reviewed in [51]). Although not statistically significant, several subunits of
the proteasomal complex were among the top decoupled during healthy ageing. Our findings
provide further support to the notion of aberrant proteasomal function in the aged brain.

The age-dependent decoupling between mRNA and protein levels was significantly more pro-
nounced in the brain of individuals with PD. While our data cannot elucidate the molecular
mechanisms underlying this phenomenon, a state of heightened decoupling is consistent with
disease-related impairment in proteostasis due to altered proteasomal and/or lysosomal function,
both of which have been implicated in the pathogenesis of PD by numerous studies [30,33,55].
Thus, our findings support the hypothesis that aberrant proteostasis contributes to the patho-
genesis of PD.

In the healthy aged brain we identified a group of genes exhibiting inverse correlations between
transcript and protein levels. Anticorrelation between transcript and protein readouts can be
explained by the highly polarized cellular architecture of neurons, which allows spatial separation
between mRNA and protein [38]. While some proteins are translated locally at their resident
site, others are synthesized in the soma and transported along the axon/dendrites to their target
location. This leads to a steady state in which the transcript resides in the soma, whereas most
of the protein is either under transport in the axon or at the synapsis [38]. In these cases, since
brain tissue samples vary in relative grey/white matter content and therefore also in relative
soma/axonal content [39], readouts of transcript and protein levels will be anticorrelated across-
samples. Specifically, samples enriched in somas will show a high relative transcript/protein
ratio, whereas samples enriched in axons will show a low relative transcript/protein ratio. In line
with this hypothesis, genes showing negative correlation between transcript and protein levels in
healthy ageing were significantly enriched in synaptic vesicle related pathways. Synaptic vesicle
proteins were indeed shown to be preferentially translated in the cell body and undergo axonal
transport to the synapses [22,29], consistent with a spatial compartmentalization of transcripts
and their protein products. We also observed that the top negatively correlated genes in healthy
ageing were highly positively correlated in the infants, which may reflect a more homogenous
distribution of somata and axons and/or reduced axonal transport during development, likely
due to immature neuronal morphology [21,45].

Interestingly, genes showing inverse mRNA-protein correlation in PD were not significantly
enriched in synaptic function compared to healthy ageing. At least two factors may contribute
to this phenomenon. First, disruption of axonal transport has been shown to occur in the PD
brain (see [52] for a review). This would decrease the spatial separation between transcript
and protein, thereby blunting the negative correlation across samples. Second, the PD brain,
including the prefrontal cortex, is characterized by neuronal and synaptic loss and a relative
increase in glial populations [39]. It is therefore conceivable that, if the anticorrelation signal
originates from neurons, it may be diluted as a result of these changes in cellular composition.
Genes showing inverse mRNA-protein correlation in PD were enriched for subunits of the
proteasomal complex compared to both infants and neurologically healthy aged individuals. This
finding suggests that these proteins become specifically more polarized in PD, with accentuated
spatial separation of transcript and protein between soma and axon. The ubiquitin-proteasome
system has a crucial role in maintaining synaptic proteostasis and modulating neurotransmission
and has been shown to be enriched at the synapses [12,16,24,46,48]. Moreover, studies in mice
have shown that some proteasomal subunits are translated locally at the synapses, whereas
others are translated in the soma and transported to the synapses [11,22]. Furthermore, our
data indicate that the spatial mRNA-protein separation is uneven across the proteasomal sub-
units, suggesting a potentially altered stoichiometry of the synaptic proteasome in PD neurons.
The formation of an alternative proteasome complex consisting of an additional o — 4 subunit
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(PSMAT) in place of an o — 3 (PSMA4) has been shown to be involved in cellular adaption to
environmental stress [40]. These subunits showed a marked disparity in their correlation values
in the PD brain (rpsapar = —0.51; rpgyay = —0.17).

Interestingly, the PD brain was characterized by increased positive mRNA-protein correlation
for genes encoding components of the mitochondrial respiratory chain. We and others have
shown that quantitative and functional respiratory chain deficiencies characterize the PD-brain,
including the prefrontal cortex [18,44]. It is possible that a tighter relationship between tran-
scription and translation of at least some of the mitochondrial respiratory chain subunits allows
for better regulation in a highly strained system lacking spare capacity. Positive correlations for
widely expressed genes in neurons were also observed by [38].

The findings of this study should be interpreted in light of several limitations. First, post-mortem
RNA degradation in our samples may partly contribute to low correlations between mRNA and
protein. Proteins are generally more resilient to post-mortem degradation and survive for longer
periods than RNA. However, since there is no reason to assume that RNA degradation would be
systematically different between our groups, this factor is unlikely to confound our results of
differential transcript-protein correlation between groups. Second, due to the lower sensitivity
of proteomics, our dataset was constrained to only 1,400 proteins. Thus, our findings are not
necessarily representative of the entire genome. Third, the sample size for the YG group (N = 4)
was small due to the limited availability of this type of tissue, limiting the generalizability of
the ageing-associated findings. Nevertheless, the infant group did recapitulate the previously
observed high positive correlation for the vast majority of genes [54], suggesting the samples are
representative for transcript-protein correlation in the infant brain.

In summary, we show that the PD brain is characterized by altered coupling between the tran-
scriptome and proteome, compared to neurologically healthy ageing. This altered relationship
between mRNA and protein levels is consistent with an extensive, possibly proteome-wide,
impairment of proteostasis, and strongly supports the hypothesis that aberrant proteasomal
function is implicated in the pathogenesis of PD. Moreover, these findings have important
implications for the correct interpretation of transcriptomic studies in this field. Gene expression
studies are extensively used to identify disease-related pathways in ageing and neurodegeneration,
and it is generally assumed that observed differences in mRNA levels reflect differences at the
protein level. If the relationship between transcript and protein is altered in PD, this should
be accounted for when interpreting the molecular impact of differential gene expression in the
patient brain.
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Gene scoring ranking for gene-set enrichment analysis

A: Schematic illustration of comparisons between groups. Each comparison is between a ref-
erence group and an ageing group (either HA or PD). For S1, we define YG as the reference
and HA as the ageing group. Similarly, for S2, we define YG as a reference and PD as the
ageing group. Finally, in S3 we investigate the differences between HA (reference) and PD
(ageing). PD: Parkinson’s disease; HA: healthy aging; YG: infants. B: Schematic representation
of correlation changes: i) decoupling ii) increasing inverse correlation and iii) increasing positive
correlation. We calculated scores to rank genes according to each of these three trends to
perform change-specific pathway enrichment analysis. C: Gene scores calculated for the three
comparisons (as defined in A) and correlation trends (as defined in B) displayed in blue, mapped
to the respective reference and ageing correlation coefficient. The correlation coefficients are

coloured from -1 (dark blue) to zero (green) to 1 (yellow)
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Figure 2

A B .\.
10 10
. 2z Data source
~N
s Age (years) = 5 I = Protein (Y)
8 . Age< 0 @ e RNA(X)
o . 0< Age < 19
>'>_ ‘ 60 < Age <70 E‘ °* Condition
x o ° o * 78<Age<89 8 0 & f - Control
° . . < » - YG
5{ % ® ;
-4 0 4 8 -4 0 4 8
XY-variate1 Component 1

Color key

-099 0 05099

e

m%zggéwx;gowm
s
.

-
e e
S i o

Integrative analysis of age-specific expression patterns in the transcriptome and
proteome using sPLS
A: Data points (samples) coloured by age in years (binned) in the combined XY variate space
(coordinates of samples are the mean over the coordinates in the subspaces of X and Y). B:
Samples plotted separately in the subspaces X (circle) and Y (square) spanned by their first two
components. Colour coding indicates group membership (HA: dark blue; YG: turquoise); shape
indicates omic layer (protein expression: square; transcript expression: circle). C: Heatmap
displaying the selected features of components I and II from both omic layers: transcriptome
(x-axis) and proteome (y-axis). A correlation threshold of 0.2 was set to reduce the number of
features in the plot and facilitate visualization. Colour indicates correlation between features of
X and features of Y.
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Figure 3
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A: Distribution of gene-wise correlation coefficients for the groups YG (turquoise) and HA (dark
blue) (Wilcoxon unpaired test). B: Two-dimensional density plot displaying within-gene mRNA-
protein Pearson correlations in YG (x-axis) vs HA (y-axis). C: Protein-protein interaction
(PPI) network for genes in the 0.90 quantile of gene-scores ranking (blue) genes by decoupling
in HA. Vertex communities were identified using edge betweenness (R package igraph). Only
communities with more than 5 members are displayed. PPI based on coexpression, experimental
evidence of interaction and neighbourhood characteristics.
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Principal component analysis visualized for all TMT samples

Data points represent samples spanned by the first (x-axis) and second (y-axis) component
of principal component analysis on raw protein intensities (A), quantile normalized protein
intensities (B) and scaled batch corrected protein intensities (C and D). Colouring indicates the
TMT batch of the sample for A, B and C and the sample’s condition for D.
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Batch correction of proteomics data improves correlation with RNA
A: Distribution of gene-wise correlation coefficients (RNA ~ protein) (y-axis) are displayed for
the three normalization approaches of protein intensities (x-axis). B: Comparison of correlation
between sample-median RNA expression (x-axis) and sample-median protein expression (y-axis)
for the three different protein intensity normalization approaches (facets).
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Distributions of RN A-protein correlations in a comparison between groups
Two-dimensional density plot displaying both distribution and relationship between the reference
YG (x-axis) and the ageing groups (y-axis): YG vs HA (dark blue, first panel), and YG vs PD
(pink, second panel).

S1 File

Cohort demographic and experimental information

S2 File

Correlation coefficients and gene ranking
Contained are gene-wise Pearson correlation coefficients for each group (YG, HA, PD) as well
as scorings used to rank genes in the pathway enrichment analyses.

S3 File

Significantly enriched GO terms
Enriched go terms for each gene scoring are listed in respective sheets.
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