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ABSTRACT

(Vectorial) Boolean functions play an important role in all domains related to computer
science, and in particular, in cryptography. The safety of a cryptosystem is quantified
via some characteristics of (vectorial) Boolean functions implemented in it. The non-
linearity and differential uniformity are among the most important characteristics of
cryptographic Boolean functions. Thus, bent and almost perfect nonlinear functions,
which have the best possible nonlinearity and differential uniformity, respectively, are
optimal cryptographic objects. This thesis is devoted to the investigation of the proper-
ties of these functions and is based on published articles.

In Paper I, a special subclass of bent Boolean functions, Niho bent functions, is
studded. Boolean functions, and bent functions in particular, are considered up to the
so-called EA-equivalence, which is the most general known equivalence relation pre-
serving bentness. However, for Niho bent functions, there is a more general equivalence
relation called o-equivalence, which is induced from the equivalence of o-polynomials
(a special type of permutation polynomials). In this paper we study a group of trans-
formations which generates all possible o-equivalent Niho bent functions from a given
o-polynomial, and we exclude all transformations that never produce EA-inequivalent
functions. We identify all cases which can potentially lead to pairwise EA-inequivalent
Niho bent functions in a same o-equivalence class. For all known o-monomials, we
identify the exact form of transformations which always lead to EA-inequivalent Niho
bent functions. For o-polynomials, which are not monomials, we identify the exact
form of transformations which can potentially lead to EA-inequivalent functions.

Paper II is devoted to the study of two long-standing open problems about APN
power functions. The six infinite families of APN power functions are among the oldest
known instances of APN functions. It was conjectured in 2000 that there does not
exist any APN power function inequivalent to the known ones. This is the first long
term open problem we study in Paper II. The functions affine equivalent to a power
function xi have the form L1 ◦ xi ◦ L2, where L1,L2 are linear transformations. This
gives an idea to examine the composition xi ◦L◦ x j, where L is a linear transformation
for providing new APN power functions. So, we investigate compositions xi ◦L◦ x1/ j,
for a linear polynomial L, and show that some of the known APN power functions
can be obtained from other known APN power functions through this construction.
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Moreover, we compute all APN functions of this form for n ≤ 9 and for L with binary
coefficients, thereby confirming that our theoretical constructions exhaust all possible
cases of known APN power functions. In addition, we present observations and data on

power functions with exponents
k−1
∑

i=1
2mi−1 defined over the field F2mk which generalize

the inverse and the Dobbertin families of APN power functions.
Another long-standing open problem is the Walsh spectrum of the Dobbertin APN

power family. In Paper II, we derive alternative representations for some of the known
families of APN monomials. We show that the Niho and Dobbertin functions can be
represented as the composition xi◦x1/ j of two power functions xi and x j, and prove that
our representations are optimal, i.e. no two power functions xi′ and x j′ of lesser alge-
braic degree can produce the same composition. We show as well that the exponents
of the Welch functions are optimal in this sense. Based on a computational data per-
formed for n ≤ 35, we present a conjecture depending on the parity of n, which wholly
describes the Walsh spectrum of the Dobbertin functions.

In Paper III, we generalize an infinite family of APN binomials, for n divisible by 4,
to a family of functions with all derivatives on non-zero directions being 2t-to-1 map-
pings (for some positive integer t). The similar result was obtained for the family of
APN binomials, for n divisible by 3, in 2012. That is, the family of APN binomials,
for n divisible by 3, was generalized to a family of differentially 2t-uniform functions
with all derivatives on non-zero directions being 2t-to-1 functions by relaxing a condi-
tion (for some positive integer t). We also show that a family of APN quadrinomials
obtained as a generalization of a known APN instance over F210 cannot be generalized
to functions with 2t-to-1 derivatives by relaxing conditions in a similar way.
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CHAPTER 1. INTRODUCTION

CHAPTER 1

INTRODUCTION

The objects of investigation in this thesis are discrete functions defined over finite fields
and their properties suitable mainly for cryptographic usage. There are different defi-
nitions of discrete functions in different literature. The most general one is as follow:
discrete functions are those functions whose both domain and codomain are discrete
sets (that is, countable sets). Discrete functions comprise their own branch of mathe-
matics and also have many applications in diverse fields such as statistics, economics,
information theory, cryptography, coding theory, projective geometry, combinatorics
and sequence design. A particular class of discrete functions, the so-called vectorial
Boolean functions, which take as an input a binary sequence1 of length n and give as
an output a binary sequence of length m (for some positive integers n and m) play a
significant role in all domains related to computer science.

For instance in cryptography, the resistance of a cryptosystem to various crypto-
graphic attacks is measured by certain characteristics of discrete functions implemented
in it. Thus, in order to protect a cryptosystem from a particular type of attack, discrete
functions implemented in it should satisfy the corresponding property and therefore
they are directly responsible for the security of the cryptosystem.

Among the main cryptographic characteristics of functions are differential unifor-
mity and nonlinearity. Bent and almost perfect nonlinear functions are functions which
have the best possible nonlinearity and differential uniformity, respectively. Within the
present thesis we will address different problems regarding these functions.

Structure of the thesis. The presented dissertation is organized as follow. It con-
sists of three chapters: Introduction (Chapter 1), Papers (Chapter 2) and Conclusions
(Chapter 3).

Chapter 1 is divided into four sections. In Section 1.1 we give a brief introduction
to cryptography and discuss the role of discrete functions in it. In Section 1.2 we
introduce the concept of vectorial Boolean functions, we present different ways of their

1A binary sequence is a sequence of 0s and 1s.
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2 CHAPTER 1. INTRODUCTION

representations and the main equivalence notions defined for them. An overview of
known up to date results about bent Boolean functions and APN functions as well as
how our new results fit into the overall picture of the current knowledge are presented
in Sections 1.3 and 1.4.

Chapter 2 is a collection of papers on which this thesis is based on.
In Chapter 3, we give a brief conclusion of our results and present some of the

possible directions of future research on the topics we address in this thesis.

1.1 Discrete functions in cryptography

Although discrete functions, and in particular (vectorial) Boolean functions, are inter-
esting objects for investigation by themselves, their study has also numerous practical
aspects. In this section we will briefly discuss their applications in cryptography (in
informal way).

Crytography is a branch of science that studies techniques of secure and trustable
communication. Cipher is a key concept in cryptography. It is a pair of encryption
and decryption algorithms. Encryption algorithm is a collection of steps whereby an
ordinary text (called a plaintext) is converted into unintelligible form (called a cipher-
text). Decryption does the converse: it converts the ciphertext back into a plaintext.
A general scheme of cipher is as follow. A plaintext P is encrypted into a ciphertext
C using the so-called encryption key Ek, then sent through a communication channel
to another user who applies the so-called decryption key DK and converts the message
into the original text (see fig. 1.1).

Figure 1.1: Cipher

Secure communication has been playing an important role since the ancient times.
The first known cipher is the Caesar cipher: each letter in the plaintext is replaced by
a letter at some fixed number of positions down the alphabet. The first known cipher
device, called the Scytale, was employed at the ancient Greece around 400 BC and
had been used for secret communications between military commanders. It consisted
of a tapered baton around which was spirally wrapped a piece of parchment inscribed
with the message. When unwrapped the parchment bore an incomprehensible set of
letters, but when wrapped around another baton of identical proportions, the original
text reappeared. One of the most well-known cipher machines is the Enigma, which
played a crucial role in the World War II. In the past, ciphers and cipher machines were
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used for military purposes and secret diplomatic communications. Nowadays we need
cryptography in our daily life and along with the development of modern technologies,
the need in cryptography is becoming more and more vital. The nature of ciphers has
also changed due to technological advances and ingrowing computer’s power.

Typically, a cryptosystem consists of three types of algorithms: key generation, en-
cryption and decryption. Depending on encryption and decryption keys, cryptography
is divided into two subcategories: symmetric and asymmetric cryptography. When for
decryption and encryption the same key is used (i.e., EK = DK), we are talking about
symmetric cryptography or private key cryptography. Thus, for exchanging informa-
tion by means of a symmetric cipher, two parties should pre-share key in a secure way;
this is a drawback. In asymmetric or public key cryptography, decryption and encryp-
tion keys are different: encryption key is public and decryption key is private. Asym-
metric cryptography is a rather new branch of cryptography, it arose only in the fourth
quarter of XX century. Asymmetric encryption schemes make possible to securely
communicate without having previously shared keys. However, it has some drawbacks
as well. For instance, decryption keys should be quite large to ensure security, and
the amount of data transmitting per second is quite low in general. Thus, symmetric
cryptography is still needed for the confidential transfer of large data and is an active
domain of research. Thanks to asymmetric cryptography, the sharing of a private key
for symmetric ciphers can be done via insecure channels, such as the internet.

There are two symmetric encryption schemes: stream ciphers and block ciphers.
In stream ciphers, a plain text is considered as a stream of characters, while in block
ciphers a plain text is divided into blocks of the same size.

1.1.1 Stream ciphers and Boolean functions

In stream ciphers, the plaintext, encryption/decryption key and ciphertext are consid-
ered as streams of characters. To obtain the ciphertext stream, each plain-text character
is combined one at a time with the corresponding character of the keystream. Stream
ciphers are based on the so-called Vernam cipher or one time pad (OTP), which was
used for secret communications between USA and USSR during the cold war.

Figure 1.2: OTP

Let P be a plaintext of n bits and EK be a key of n bits, i.e. P = p1 p2 . . . pn and
EK = k1k2 . . .kn. Then the cipher text C = EK(P) is also a stream of n bits c1 . . .cn such
that ci = pi ⊕ ki, for any i ∈ {1, . . . ,n} (see fig. 1.2). Decryption is done in the same
manner: by adding to each cipherstream bit the corresponding keystream bit.
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Figure 1.3: LFSR

Assuming that a key is selected every time at random and the same key is not used
twice, Vernam cipher gives unconditional security. However, the key stream should
have the same length as the plain text stream, which makes Vernam cipher impractical.
To make stream ciphers ”lighter” and more convenient for usage in practice, a smaller
secret key is used to generate a keystream which is combined with the plaintext digits in
a similar to the Vernam cipher’s way. However, the keystream is now not truly random,
it is a pseudorandom and unconditional security no longer holds.

Classical method to generate a pseudorandom key from a secret one are Linear Feed-
back Shift Registers or LFSRs (see fig. 1.3). An LFSR of length n is described via a
linear recurrence relation si = c1s1 + . . .cnsn−i (ci ∈ {0,1}, for all i). Thus, the inputs
and the outputs of the LFSR are linearly dependent. This makes them highly insecure,
since linear dependence is relatively easily analysed. To annihilate this weakness,
LFSRs are used in combination with Boolean functions, which are as much different
from affine functions (that is, linear functions plus constants) as possible. This char-
acteristic is quantified by the nonlinearity of the function. Thus, the security of such
cryptosystem entirely depends on the choice of a Boolean function and the nonlinearity
of the corresponding Boolean function is one of criteria. Another important crypto-
graphic characteristic of Boolean functions is their balancedness, which prevents from
statistical dependence between the inputs and the outputs of the function and high alge-
braic degree to avoid the so-called Berlekamp-Massey attack [83]. Formal definitions
of the nonlinearity, balancedness, and algebraic degree of functions will be given in
Sections 1.2.2 and 1.2.3.

1.1.2 Block ciphers and vectorial Boolean functions

In a block cipher, a plaintext P is represented by blocks Pi of a fixed length and several
blocks are encrypted with the same key.

All known block ciphers are iterated, which are designed by repeatedly applying an
invertible transformation, called a round function. The composition of N round func-
tions can be written as:

EK(·) = F0
K0
◦F1

K1
◦ . . .◦FN−1

KN−1
(·),

where F i
Ki

is the i-th round function and Ki is the i-th round key which is derived from
the original key K using the so-called a key schedule algorithm. The two most known
models of iterated block ciphers are Feistel Networks and Substitution Permutation
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Figure 1.4: Block cipher

Figure 1.5: Feistel cipher

Networks.
Feistel ciphers were first published in 1960’s by Feistel, for the design of the Lucifer

block cipher. The famous Data Encryption Standard (DES) was released as a modifi-
cation of the Lucifer in 1977. A Feistel network works by splitting the plaintext block
into two equal pieces and applying encryption in multiple rounds. More precisely, a
pair (xi

L,x
i
R) is an internal state of a Feistel cipher, where xi

L and xi
R are called the left

and right halves of the internal state, respectively. Then the round function of a Feistel
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network can be described as follow:

xi+1
L = xi

R ⊕F(xi
L,Ki);

xi+1
R = xi

L,

where F is a Feistel function (see fig. 1.5). Using this structure, both encryption and
decryption are identical, with the reversed order of round keys. So, Feistel cipher does
not need the involved functions to be injective for the encryption to be possible.

Figure 1.6: SPN

Another model of iterated block ciphers is the Substitution Permutation Network
(SPN). The round function of SPNs typically consists of a substitution layer, a permu-
tation layer and a key addition layer (see fig. 1.6). The substitution layer is the only
nonlinear part in the cipher and it consists from several S-boxes which are nothing else
than vectorial Boolean functions. To make decryption possible, the S-boxes (vectorial
functions) should be bijective. The permutation layer is a linear transformation (typ-
ically the input bits are permuted or shuffled). In the key addition layer, typically, a
round key Ki is added bit-wise to the internal state. Thus, the security of SPNs directly
depends on the properties of vectorial Boolean functions implemented in it.

The Advanced Encryption standard (AES) [47] (see fig. 1.7) is a Substitution Permu-
tation cipher, whose S-boxes are the inverse functions. The reasons behind the choice
of the inverse function as an S-box for AES will be explained in Section 1.3. In sequel
by block ciphers we will understand the SPN model of block ciphers.

Two most powerful attacks on block ciphers are differential [3] and linear attacks
[84], and the corresponding functions characteristics measuring the resistance to these
attacks are differential uniformity [90] and nonlinearity.. Some of the other important
criteria for vectorial Boolean functions are large enough algebraic degree and balanced-
ness, since they respectively prevent the cryptosystem from the so-called higher order
differential attack [74] and avoid statistical dependence between the inputs and outputs
of the function.
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Figure 1.7: A round in the AES

1.2 Discrete functions over finite fields. Basic concepts

The concept of Boolean functions was introduced in the second half of the XIX century
for the needs of a new branch of fundamental mathematics: mathematical logic. Like
many other concepts introduced in mathematics for purely theoretical reasons, Boolean
functions found their application in practice. Since the middle of the XX century, with
the rapid development of information and communication theory, the theory of Boolean
functions has become an important tool for solving problems on the construction and
analysis of discrete devices for transforming and processing information. In particu-
lar, many cryptographic problems are formulated in the terms of Boolean functions,
and techniques from the theory of Boolean functions are essential for solving these
problems.

1.2.1 Boolean functions and vectorial Boolean functions

A Boolean function f is a mapping which takes as an input a sequence of 0s and 1s
and gives as an output 0 or 1, i.e. f : {0,1}n 7→ {0,1} 2. A vectorial Boolean function
is a generalization of the classical concept of Boolean functions, it is a function whose
both the input and the output are sequences of 0s and 1s, i.e. F : {0,1}n 7→ {0,1}m, for
some positive integers n and m. More strictly, vectorial Boolean functions are discrete
functions from the n-dimensional vector space Fn

2 over the field F2 = {0,1} to the m-
dimensional vector space Fm

2 over F2, for some positive integers n and m. Through
the thesis we will assume by default that m ≤ n. When it is necessary to specify the
number of inputs and outputs of vectorial functions, we will call them (n,m)-functions;
An n-variable Boolean function is an (n,1)-function. Clearly, any (n,m)-function F
can be represented via n-variable Boolean functions f1, . . . , fm, called the coordinate

2{0,1}n = {0,1}× . . .×{0,1}︸ ︷︷ ︸
n times

= {(a1, . . .an) : ai ∈ {0,1}, i ∈ {1, . . . ,n}}.
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functions of F , as follow:

F(x) = F(x1, . . . ,xn) = ( f1(x1, . . . ,xn), . . . , f2(x1, . . . ,xn)),

for any x ∈ Fn
2.

With any (n,m)-function F are associated the so-called component functions, that is,
non-zero linear combinations of the coordinate functions, i.e. the functions of the form
v ·F , where v ∈ Fm

2 ,v ̸= 0 and · is an inner product in the linear space Fm
2 .

There is a huge number of different (vectorial) Boolean functions even in small num-
bers of inputs and outputs. The number of different (n,m)-functions equals (2m)2n

.
Thus, for instance, as it can be easily calculated, there are 225

= 4.294.967.296 differ-
ent Boolen functions in 5 variables and (225

)2 = (4.294.967.296)2 > 18 ·218 different
(5,2)-functions. The number of (vectorial) Boolean functions grows rapidly with in-
creasing numbers of inputs and outputs. Hence, in order to find functions satisfying
certain properties, direct computer searches are not possible. It becomes necessary
to find and formulate mathematical properties and characterizations of the functions
satisfying these properties, that can be used to reduce the complexity of the search.
To analyse properties of functions, we need first a convenient representation of them.
(Vectorial) Boolean functions can be represented in several different ways. In the next
Section 1.2.2 we shall describe some of them.

1.2.2 Representations of (vectorial) Boolean functions

The classical and the most well-known representation of (vectorial) Boolean functions
is the truth-table (or in the case of vectorial functions – the look-up table). The truth
table (look-up table) of a given function is simply the list of all ordered pairs such
that the first entry of the pair is an element of the domain of the function and the
second is the value of the function at this entry. However, in cryptography truth table
representations are not much used since the investigation of most of the properties
of functions suitable for cryptographic uses via truth-tables is not convenient. The
most used representation in cryptography is a polynomial representation. (Vectorial)
Boolean functions admit several polynomial representations. The most general one is
the so-called ANF (algebraic normal form); any (vectorial) Boolean function can be
uniquely represented in the algebraic normal form. The ANF of an (n,m)-function F
is the unique polynomial of the following form:

F(x1, . . . ,xn) = ∑
u∈Fn

2

au

n

∏
i=1

xui
i ,

where au ∈ Fm
2 , for any (x1, . . . ,xn) ∈ Fn

2, and the symbol ∑ is interpreted here as the
component wise addition modulo 2 of vectors from Fm

2 . The algebraic degree of F , de-
noted by deg(F), is defined as max

au ̸=0
{wt(u)|u∈Fn

2}, where wt(u) =wt((u0, . . . ,un−1)) =

n−1
∑

i=0
ui and is called the weight of vector u. Functions of algebraic degree 1, resp. 2,

resp. 3 are called affine, resp. quadratic, resp. cubic etc. An affine function F such
that F(0) = 0 is called linear.
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Due to the fact that the finite field F2n of order 2n is an n-dimensional vector space
over F2, any (n,m)-function F can be considered as a map between fields, i.e. F :F2n 7→
F2m . Since any function from a finite filed to itself can be represented via the univariate
polynomial of degree at most 2n − 1 over F2n in the unique way, any (n,n)-function
admits such representation:

F(x) =
2n−1

∑
i=0

aixi, (1.1)

where the symbol ∑ stands for addition in F2n . Such representation is called the uni-
variate representation. When m is a divisor of n, any (n,m)-function can be considered
as a function from the field F2n to F2n (since in this case F2m is a subfield of F2n) and
therefore, also admits the unique univariate representation. In particular, Boolean func-
tions also can be represented in the form 1.1. The algebraic degree of F (deg(F)) in
the univariate polynomial representation is max

ai ̸=0
{wt(i)|i ∈ {0, . . . ,2n−1}}, where wt(i)

corresponds to the weight of i in its bivariate representation (that is, i = (i0, . . . , in−1)

such that i =
n−1
∑

k=0
ik2k), or simply, to the 2-weight of i. Thus, an (n,m)-function F is

• linear, if F(x) =
2n−1
∑

i=0
aix2i

;

• affine, if it is a sum of a linear function and constant;

• quadratic, if F(x) =
2n−1
∑

i, j=0
ai, jx2i+2 j

+A(x), where A is an affine function.

Functions which have only one term in polynomial representation are called mono-
mials or power functions.

If m is a divisor of n, and (n,m)-function F admits also the so-called absolute trace
representation.

For any positive integer m dividing n, the trace function Trn
m is the mapping from F2n

to F2m defined by

Trn
m(x) =

n
m−1

∑
i=0

x2im
.

For m = 1, the function Trn
1 : F2n → F2 is called the absolute trace over F2n and is

denoted by Trn, i.e.

Trn(x) =
n−1

∑
i=0

x2i
. (1.2)

For any (n,m) function F (n divisible by m) there exists an (n,n)-function G such that
F(x) = Trn

m(G(x)), for all x ∈ F2n (for instance, G = λF , where Trn
m(λ ) =1). Hence,

every (n,m)-function F (for n divisible by m) admits the following univariate absolute
trace representation, which is unfortunately not unique:

F(x) = Trn
m

(
2n−1

∑
i=0

aixi

)
,
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where ai ∈ F2n .
In particular, any Boolean function admits a univariate absolute trace representation,

which is not unique. However, for a Boolean function f in n variables there exists the
unique subfield trace representation, as well:

f (x) = ∑
j∈Γ(n)

Trn j(β jx j)+β2n−1x2n−1,

where Γ(n) is a set of representatives of the cyclotomic classes of 2 modulo 2n − 1,
n j is the size of the cyclotomic class containing j and for any j ∈ Γ(n), β j ∈ F2n j,
β2n−1 ∈ F2.

Any (2m,m)-function F admits the so-called bivariate polynomial representation.
Indeed, a linear space F2m

2 can be identified with the Cartesian product of the field F2m

with itself, i.e. F2m ×F2m and F can be represented in the unique way as a bivariate
polynomial over F2m:

F(x,y) =
2m−1

∑
i, j=0

ai, jxiy j.

Then the algebraic degree of F (deg(F)) is max
ai, j ̸=0

{wt(i)+wt( j)|i, j ∈ {0, . . .2m−1}}.

A Boolean function in even number of variables also admits the bivariate represen-
tation. It can be written via the absolute trace function. A Boolean function f in
2m variables can be written in the form f (x,y) = Trm(P(x,y)), where P(x,y) is some
polynomial in two variables over Fm

2 . This representation of Boolean functions is not
unique.

1.2.3 Differential uniformity and nonlinearity of (vectorial) Boolean

functions

As we discussed in Section 1.1, the contribution of a function to the resistance of a
cryptosystem using it to a particular attack can be quantified through certain charac-
teristics of the functions implemented in it. Some of the main cryptographic criteria
of (vectorial) Boolean functions are a sufficiently large algebraic degree (to avoid, for
instance, higher order differential attacks on block ciphers [74] and the Berlekamp-
Massey attacks for stream ciphers [83]), balancedness (to avoid statistical dependence
between inputs and outputs), nonlinearity (to avoid linear attacks on block ciphers [84]
and fast correlation attacks on stream ciphers [86]), and differential uniformity [90] (to
avoid differential attacks on block ciphers [3]).

Recall from Section 1.2.2 that the algebraic degree of an (n,m)-function F is the
maximum 2-weight of the exponents with non-zero coefficients in the univariate poly-
nomial representation of F given in Relation (1.1) (m is a divisor of n). By the defini-
tion, the algebraic degree of an (n,m)-function is at most n.

An (n,m)-function F is called balanced if it takes every value of F2m the same
number of times. Or equivalently, a vectorial Boolean function is balanced if and only
if all its component functions are balanced Boolean functions (that is, take the value 0
the same number of times as the value 1) [82].
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Within this thesis, we will focus on the nonlinearity and differential properties mainly.
We fix the notation we will use in sequel. Let n be a positive integer. Then Fn

2 is a
linear space over F2 of dimension n, F2n denotes the finite field with 2n elements, and
F∗

2n denotes the multiplicative group of F2n , i.e. F∗
2n = F2n \{0}.

Let F be an (n,m)-function. Then the function DaF :F2n 7→F2m defined as DaF(x) =
F(x+a)+F(x) is called the derivative of F in the direction a ∈ F2n .

Definition 1. An (n,m)-function F is called differentially δ -uniform, if the equation

DaF(x) = b admits at most δ solutions for any a ∈ F2n, a ̸= 0 and any b ∈ F2m.

Differential uniformity introduced by Nyberg in 1990 [90] measures the resistance
of a cryptosystem to the differential attacks [3]. One of the crucial parts of differential
cryptanalysis introduced by Biham and Shamir is based on studying how the difference
in two inputs to a function affects the difference in the corresponding outputs, i.e. it
is based on the study of the number of solutions of the equation DaF(x) = b for any
a∈F2n,b∈F2m,a ̸= 0 and a given (n,m)-function F . Intuitively, the smaller the number
of solutions, the more difficult to find a correlation between inputs and outputs, which
makes the cryptosystem less vulnerable to the differental attack. Thus, low differential
uniformity is a property which protects the corresponding cryptosystem from this type
of attacks. The smallest possible value of differential uniformity is 2, since if x0 is a
solution of an equation DaF(x) = b (for some appropriate a and b), then x0 +a is also
a solution of the same equation.

Definition 2. Those (n,n)-functions whose differential uniformity is 2 are called

almost perfect nonlinear or, shortly, APN.

APN functions provide the cryptosystem with the best possible resistance against
differential attacks.

Another important cryptographic property of (vectorial) Boolean functions is the
nonlinearity. The nonlinearity quantifies how much a given function is different from
the functions which are the most simple to analyse: affine functions. The larger the
nonlinearity, the better the cryptosystem is protected against this type of attacks. The
linear cryptanalysis was introduced by Matsui in 1993 [84].

The Hamming distance between two Boolean functions f and g in n variables, de-
noted by dH( f ,g), is defined as the number of arguments x ∈ F2m such that f (x) ̸= g(x),
i.e.

dH( f ,g) = |{x ∈ F2m| f (x) ̸= g(x)}|.

Definition 3. The minimum Hamming distance between a given Boolean function

f in n variables and the set An of all affine Boolean functions in n variables is called

the nonlinearity of f and is denoted by N L ( f ), i.e.

N L ( f ) = min
a∈An

dH( f ,a).
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The nonlinearity of an (n,m)-function F is defined as the minimum nonlinearity of
its component functions v ·F , v ̸= 0:

N L (F) = min
v∈F2m ,v ̸=0

N L (v ·F).

The nonlinearity can be described via the Walsh transform as well.

Definition 4. For a given (n,m)-function, the map WF : F2n ×F2m 7→ Z defined as

WF(a,b) = ∑
x∈F2n

(−1)a·x+(b·F)(x),

is called the Walsh transform of F (inner products both in F2n and in F2m are denoted

by the same symbol ”·”). The value of the Walsh transform on (a,b) is called the

Walsh coefficients of F at points a,b; The following sets

{WF(a,b)|a ∈ F2n,b ∈ F2m,b ̸= 0}

and

{|WF(a,b)||a ∈ F2n,b ∈ F2m,b ̸= 0}

are called the Walsh spectrum and the extended Walsh spectrum of F , respectively.

In the case of an n-variable Boolean function f we simply have:

Wf (a) = ∑
x∈F2n

(−1)a·x+ f (x),

for any a ∈ F2n (where · is an inner product in F2n).
The Walsh transform as well as the nonlinearity of a (vectorial) Boolean function

does not depend on the choice of the inner product. The most used inner product in F2n

is: x ·y = Trn(xy), where Trn is the absolute trace function over F2n defined by Relation
(1.2).

It is easy to see that the Walsh transform of a Boolean function f in n variables
satisfies Parseval’s equation:

∑
a∈F2n

Wf (a)2 = 22n. (1.3)

Clearly, for any (n,m)-function F we have:

WF(a,b) = 2n −2dH((b ·F)(x),a · x),

therefore

dH((b ·F)(x),a · x) = 2n−1 − 1
2

WF(a,b)
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and the Hamming distance between an affine Boolean function a · x+ a0, where a0 ∈
{0,1} and any Boolean function of the form b ·F,b ̸= 0 can be either 2n−1 − 1

2WF(a,b)
or 2n−1 + 1

2WF(a,b). Hence, we have:

N L (F) = 2n−1 − 1
2

max
a∈F2n ,b∈F∗2m

|WF(a,b)|. (1.4)

From (1.3) and (1.4) the upper bound on the nonlinearity of (n,m)-function F fol-
lows:

N L (F)≤ 2n−1 −2
n
2−1. (1.5)

If (n,n)-function F is a permutation, then F and F−1 have the same nonlinearity
[33].

Definition 5. Bent functions are those (n,m)-functions (n even) with the highest

possible nonlinearity, that is 2n−1 − 2
n
2−1. Or, equivalently, with Walsh spectrum

{±2
n
2}.

A bent (n,m)-function can be defined also as a function whose all component func-
tions are bent Boolean functions (see, for instance, [33]). A bent Boolean function f
never can be balanced, since in the case of balancedness Wf (0) = 0. Therefore, bent
vectorial functions are unbalanced as well. A natural generalization of the class of bent
functions is the class of plateaued functions. A Boolean function f is called plateaued
if its Walsh spectrum is a subset of the set {0,±λ}, where λ is an integer. Because
of the Parseval’s equation (1.3), λ should be of the form 2 j, where j ≥ n

2 . A vecto-
rial Boolean function is called plateaued if all its component functions are plateaued
Boolean functions.

The algebraic degree of bent Boolean functions in n > 2 variables is at most n
2 [96].

The algebraic degree of plateaued functions is bounded above by n
2 +1, for n even, and

by n+1
2 , for n odd [33].

It is clear from the definition that bent functions exist only for n even. However,
this condition is not sufficient for the existence of bent (n,m)-functions: bent (n,m)-
functions exist only for m ≤ n

2 (n even) [90]. Thus, in the case m = n, bent (n,m)-
functions do not exist; (n,n)-functions with the best possible nonlinearity are called
maximally nonlinear.

An upper bound on the nonlinearity that is better than (1.5) can be deduced for an
(n,m)-function F with m > n [41], [99]:

N L (F)≤ 2n−1 − 1
2

(
3 ·2n −2

(2n −1)(2n−1 −1)
2m −1

−2
) 1

2
.

This bound can be achieved with equality only for n = m, n odd when it takes the form:

N L (F)≤ 2n−1 −2
n−1

2 .

Definition 6. An (n,n)-functions with the highest possible nonlinearity, that is 2n−1−
2

n−1
2 is called almost bent or, shortly, AB.
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AB functions can be characterized by their Walsh spectrum: an (n,n)-function F is
AB if and only if its Walsh spectrum is {0,±2

n+1
2 }.

Clearly AB functions exist only for n odd. Besides, every AB function is APN [41],
but converse is not true in general. Thus, AB functions provide an optimal resistance
against both differential and linear attacks. For n even, functions with nonlinearity
2n−1 −2

n
2 are known and it is conjectured that this value is the highest possible in this

case [97].
In coding theory APN and AB functions define error correcting codes optimal in

certain sense (see [36]); AB power functions play significant role in sequence design
[63].

1.2.4 Equivalence relations for (vectorial) Boolean functions

Equivalence relations are one of the most important and useful tools for the investiga-
tion of (vectorial) Boolean functions. Indeed, as it was discussed in Section 1.2.1, there
is a huge number of (vectorial) Boolean functions even in a small number of variables.
An equivalence relation allows us to make a partition of a set of (vectorial) Boolean
functions into equivalence classes and to investigate only one representative from each
class, which significantly reduces the complexity. Besides, equivalence relations can
be considered as a method of secondary constructions of functions (we will return to
this in Sections 1.3 and 1.4).

There are several known equivalence relations on a set of (vectorial) Boolean func-
tions. We shall define the main ones below. Let F and F ′ be two (n,m)-functions, then
they are called

• affine equivalent, if there are affine permutations A1 and A2 of F2m and F2n ,
respectively, such that F ′ = A1 ◦F ◦A2;

• extended affine equivalent or EA-equivalent, if there are affine permutations A1
and A2 of F2m and F2n , and an affine (n,m)-function A, respectively, such that
F ′ = A1 ◦F ◦A2 +A;

• CCZ-equivalent, if there is an affine permutation A of F2n ×F2m that maps the
graph G (F) = {(x,F(x)) : x ∈ F2n} of F to the graph G (F ′) of F ′ [36].

In the case of power functions, another equivalence notion is known. Let F(x) = xd

and G(x) = xe be two power functions defined over F2n , then they are called

• cyclotomic equivalent if d ≡ 2ke mod (2n − 1) for some positive integer k, or if
d−1 ≡ 2ke mod (2n − 1) in the case that gcd(d,2n − 1) = 1, for some positive
integer k.

The first three equivalence relations are listed in the increasing order of generality. It
is obvious that affine equivalence is a particular case of EA-equivalence, it is shown in
[36] that EA-equivalence is a particular case of CCZ-equivalence and every permuta-
tion is CCZ-equivlent to its inverse. It was proven in [23] that CCZ-equivalence is still
more general than EA-equivalence together with taking inverses of permutations. How-
ever, CCZ-equivalence and EA-equivalence coincide with each other on some classes
of functions:
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• on the set of all Boolean functions [23];

• on the set of quadratic APN functions [105];

• on the set of power functions (both CCZ-equivalence and EA-equivalence coin-
cide with cyclotomic equivalence) [104];

• on the set of bent functions [16, 17] (in general, for functions with surjective3

derivatives, CCZ-equivalence coincides with EA-equivalence [24]).

Moreover,

• a quadratic APN function defined over F2n is CCZ-equivalent to a power function
if and only if it is EA-equivalent to a function of the form x2i+1, (i,n) = 1 [104];

• a plateaued APN function defined over F2n,n even, is CCZ-equivalent to a power
function if and only if are EA-equivalent [103].

The differential uniformity and nonlinearity are preserved by both CCZ-equivalence
and EA-equivalence. The algebraic degree of functions is preserved by EA-equivalence,
but is not preserved by CCZ-equivalence. Thus, via CCZ-equivalence, functions of
larger algebraic degree can be obtained.

The most general currently known equivalence relation on the set of all vectorial
Boolean functions that preserves differential uniformity and nonlinearity is CCZ-
equivalence. However, for some specific types of functions are known equivalences
which are more general. For instance, o-equivalence on the set of the so-called Niho
bent functions [40] and isotopic equivalence on the set of the so-called planar functions
[24] are more general than CCZ-equivalence.

Deciding whether two given functions F and G are CCZ-equivalent is a difficult
problem in general. Usually the CCZ-equivalence or inequivalence of functions is de-
cided using code isomorphism. More precisely, any given (n,n)-function F can be
associated with a linear code CF whose generating matrix is

CF =




1 1 1 . . . 1
0 1 α . . . α2n−2

F(0) F(1) F(α) . . . F(α2n−2)


 ,

where α is a primitive element of F2n4. Then functions F and G are CCZ-equivalent if
and only if their linear codes CF and CG are isomorphic [8].

It is known that the extended Walsh spectrum is preserved by CCZ-equivalence, and
then can potentially allow to verify the inequivalence of functions belonging to distinct
CCZ-equivalence classes.

3A function f : X 7→ Y is called surjective if for every element y ∈ Y there exists at least one x ∈ X such

that f (x) = y.
4A generator of the multiplicative group of F2n .
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1.3 APN functions

Recall that APN functions are (n,n)-functions with the lowest possible differential uni-
formity, that is 2. Classification and investigation of APN functions is important for
cryptography, since these functions possess an optimum resistance to differential crypt-
analysis. Besides, APN functions define optimal objects also in the theory of commu-
tative semifields, coding theory, sequence design etc.

APN functions have been studied since the early 90’s [90] but only a few infinite
classes of APN functions are known to date. Complete characterization of APN func-
tions is done only for n ≤ 5 [7]. Among the currently known infinite families of APN
functions are six infinite families of APN power functions and more or less 15 (de-
pending on how we count) infinite families of quadratic APN polynomials. The known
families cover only a small percentage of all APN functions found by computer investi-
gations, since only in the field F28 more than 20.000 APN functions CCZ-inequivalent
to each other are known [1], [101]. Finding new examples of infinite families of APN
functions is an intense ongoing research area. All currently known infinite families of
APN functions are presented in Tables 1.1 and 1.2.

1.3.1 APN power functions

The first known examples of APN functions were power functions (see Table 1.1).
The last known case has been constructed in 2000 by H. Dobbertin [53] and it was
conjectured that there do not exist APN power functions inequivalent to know cases
listed in Table 1.1 [53]. The conjecture has been verified computationally for n ≤ 24 by
Anne Canteaut [53] and later by Yves Edel for n ≤ 34, n even (unpublished). However,
the conjecture is open up to date.

Table 1.1: Known infinite families of APN power functions over F2n

Family Exponent Conditions Algebraic degree Source

Gold 2i +1 gcd(i,n) = 1 2 [63, 90]

Kasami 22i −2i +1 gcd(i,n) = 1 i+1 [68, 71]

Welch 2t +3 n = 2t +1 3 [55]

Niho
2t +2t/2 −1, t even

n = 2t +1
(t +2)/2

[54]
2t +2(3t+1)/2 −1, t odd t +1

Inverse 22t −1 n = 2t +1 n−1 [2, 90]

Dobbertin 24i +23i +22i +2i −1 n = 5i i+3 [53]

There are a few reasons why power functions were discovered first. The main of
them is that most of known APN power functions, for n odd, are AB (except inverse
and Dobbertin functions), and AB power functions have been studied in the sequence
design and coding theory along before the concept of AB functions was introduced by
Chabaud and Vaudenay in 90’s. The most part of known APN power functions were
discovered in 1960’s and early 1970’s. AB power functions define sequences with
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optimal properties for radar and wireless communication systems (see, for instance,
[64], [89]) and correspond to binary cyclic codes with two zeros, whose duals are
optimal [36].

A maximal length sequence or, shortly, an m-sequence is a binary sequence which
can be generated by an LFSR of some degree n (or, equivalently, can be described by
a linear recurrence relation si = a1s1 + . . .ansn−i,ai ∈ {0,1}, for all i) with maximum
period N (that is, 2n − 1). For any m-sequence s = (si) of length 2n − 1 there exists a
unique λ ∈ F2n,λ ̸= 0, such that si = Trn(λα i), for all i ∈ {0, . . . ,2n −2}, where α is
some primitive element in F2n . The autocorrelation value of an m-sequence s at non-

zero shift τ
(

that is, Csi(τ) =
N−1
∑

i=0
(−1)si⊕si+τ

)
equals to −1 [90]. Sequences with the

auto-correlation value −1 considered optimal for a usage in radars and code division
multiple access (CDMA) in telecommunications.

When a communication system uses a set of several signals (usually corresponding
to different users), each of these signals should be easily distinguished from any other
signal in the set and its time-shifted versions. To achieve this the distance between a
sequence s of length N and all cyclic shifts of another sequence s′ of the same length
N should be large. The distance between two m-sequences s and s′ is measured via a

crosscorrelation function: Csi,s′i
(τ) =

N−1
∑

i=0
(−1)si⊕s′i+τ .

For any two m-sequences s and s′ of the same length 2n − 1, there exists an integer
d ∈ {0, . . . ,2n−2} and a pair (λ ,λ ′) of elements from F∗

2n such that si = Trn(λα i) and
s′i = Trn(λ ′αdi). When λ = λ ′, s′ is called the d-decimated sequence of s. Then the
crosscorrelation between two sequences s and s′ is

Csi,s′i
(τ) =

2n−2

∑
i=0

(−1)Trn(α i+ j+αdi+ j′+τ ) = ∑
x∈F∗2n

(−1)Trn(ατ ′(α j−τ ′x+xd)),

where τ ′ = j′+ τ , λ = α j, λ ′ = α j′ , for some j, j′ ∈ {0, . . . ,2n −2}.
Thus, Csi,s′i

does not depends on λ ′ = α j′ and therefore, in order to find the cross-
correlation between two different sequences of the same length, it is enough to study
the crosscorrelation between sequence s and its d-decimated sequences. The values
of the crosscorrelation function between a sequence and its d-deciminated sequence
are the values of the Walsh transform of the power function xd define over F2n (since
gcd(d,2n − 1) = 1, then F(x) = xd is a permutation and WF(a,b) = WF

(
ab−

1
d ,1
)
).

Thus, AB power functions (maximally nonlinear) define decimations with the lowest
possible crosscorrelation, which is of great importance in CDMA.

A relationship between APN and AB functions and properties of related codes has
been observed in [68] and developed further in [36], [31]. Any linear subspace C of Fn

2
of dimension k is called a binary linear code of length n and dimension k and is denoted
by [n,k,d], where d = min

c∈C ,c̸=0
wt(c) and is the minimum distance of C . The numbers

n,k and d are called parameters of C . The elements of C are called codewords. Any
linear code C is associated with its dual linear code C⊥ = [n,n− k,d⊥]:

C⊥ = {x ∈ Fn
2|c · x = 0,∀c ∈ C },

where · is an inner product in Fn
2.
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A linear code is called 2l-divisible, if the weight of any of its codewords wt(c) is
divisible by 2l (for a positive integer l). Two linear codes with the same parameters are
called isomorphic if they coincide, up to the order of codewords.

A linear code C of length n can be defined by the so-called parity-check matrix H (a
binary matrix of the size r×n):

C = {c ∈ Fn
2|cHT = 0},

where HT is the transposed matrix of H.
A linear binary code C of length m is called cyclic if, for any codeword (c0, . . . ,cn−1)

from C , (cn−1, . . . ,c0) is also a codeword in C . If we identify a vector (c0, . . . ,cn−1) of
Fn

2 with the polynomial c(x)= c0x0+c1x1+ . . .+cn−1xn−1, then any linear binary cyclic
code is an ideal of the ring F2[x]/(xn−1) of the polynomials over F2 modulo xn−1. For
any such code C there exists a unique polynomial g, called the generator polynomial of
C , such that any codeword c of C can be uniquely expressed as c(x) = a(x)g(x). The
roots of the generator polynomial are called the zeros of the code C . If n = 2m −1 and
α is a primitive element of Fm

2 then the defining set of C is

I(C) = {i : 0 ≤ i ≤ 2m−2,α i is a zero of C }.

Since C is a binary code, its defining set is a union of 2-cyclotomic cosets modulo
2m−1: Cl(a) = {2 ja mod (2m−1)}. The defining set of a binary cyclic code of length
2m −1 is usually identified with the representatives of the corresponding 2-cyclotomic
cosets modulo 2m −1.

Vectorial Boolean functions define linear codes and the APN and AB properties of
functions can be characterized via the corresponding linear codes.
Let F be a function defined on F2m such that F(0) = 0. Let CF be a binary linear
[2m −1,k,d]-code defined by the following parity-check matrix:

HF =

(
1 α . . . α2m−2

F(1) F(α) . . . F(α2m−2)

)
,

where α is a primitive element of F2m . Then [36]

• 3 ≤ d ≤ 5 and dim CF ≥ 2m −2m−1;

• If F is APN then dim CF = 2m − 2m− 1 and C⊥
F does not contain the all-one

vector;

• F is APN if and only if d = 5;

• F is AB if the weight of every codeword of the dual code C⊥
F belongs to the set

{0,2m−1,2m−1 ±2
m−1

2 }.

Binary linear codes of length 2m−1 and dimension 2m are optimal, in certain sense.
These optimal codes correspond to AB functions [36]. In particular, if F is an AB
power function xd defined over F2m , the corresponding code CF is a binary cyclic code
of length 2m −1 with two zeros: α and αd whose dual is optimal.
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Besides, the Walsh spectrum of function F defined over F2m can be characterized by
the dual code of CF [36]:

{WF(a,b) : a,b ∈ F2n}= {2n −2wt(c) : c ∈ C⊥}.

Another characterization of the AB property was obtained in [30]: an (m,m)-function
F , for m odd, is AB if and only if F is APN and the dual code of CF is 2

m−1
2 -divisible.

This statement was used in the proof that the Dobbertin APN power functions are not
AB (we will return to this further).

Thus, cyclic codes with two zeros, whose dual is optimal are related to highly nonlin-
ear power functions over finite fields; they also correspond to pairs of maximum-length
sequences with optimal crosscorrelation values.

Another reasons why in the beginning main attention was paid to APN power func-
tions is that power functions, in general, are simpler to analyse. Indeed, the APN
property in the case of power functions is simpler to check. Let F(x) = xd be a function
defined over the field F2n , then for any a ∈ F2n , a ̸= 0, we have:

DaF(x) = F(x+a)+F(x) = (x+a)d + xd = ad

((x
a
+1
)d

+
(x

a

)d
)

= adD1

(x
a

)
.

Thus, the number of solutions of the equation DaF(x) = b is equal to the number of

solutions of the equation D1F
(x

a

)
=

b
ad , for any a,b ∈ F2n , a ̸= 0 and therefore, in the

case of power functions it is enough to check whether the equation D1F(y) = c admits
at most 2 solutions for any c ∈ F2n .

Computing the Walsh spectrum of power functions is also simpler than in the general
case. Indeed, for F(x) = xd we have

WF(a,b) = ∑
x∈F2n

(−1)Trn(ax+bF(x)) = ∑
x∈∈F2n

(−1)Trn(x+b(a−dx)d) =WF(1,ba−d),

therefore {WF(a,b)|a ∈ F2n,b ∈ F2m,b ̸= 0}= {WF(1,c)|c ∈ F2m,c ̸= 0}.
Besides, power functions are considered up to cyclotomic equivalence, which is sig-

nificantly simpler to test than both EA- and CCZ-equivalence.
An important property of APN power functions due to Dobbertin [53] (for proof

see [33]): power APN functions are permutations when defined over a field of odd
dimension and are 3-to-1, otherwise. Thus, APN power permutations do not exist over
F2n , for n even, and in the case of power permutations, the optimal value of differential
uniformity is 4.

Determining the Walsh spectrum of a (vectorial) Boolean function and, in particular,
of a power function characterizes many of its important properties. Moreover as we
discussed above, there is a correspondence between the Walsh coefficients of a power
function and the weight distribution of an associated linear code [36] and the crosscore-
lation values of m-sequences [89]. It is also known that the extended Walsh spectrum is
invariant under CCZ-equivalence [36], and knowing the Walsh spectrum of two func-
tions can potentially allow to verify their CCZ-inequivalence, that is, the fact that they
belong to distinct CCZ-equivalence classes.
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Although the exponents of Gold, Kasami, Welch and Niho power functions from
Table 1.1 were discovered and investigated within the sequence theory since 1960’s,
not all of them have been proven to be maximally nonlinear at that time.

The Walsh spectrum of the Gold and Kasami functions (for n odd) was determined
in 1968 and 1971 by Gold and Kasami5, respectively [63], [72]. As all AB functions,
they have Walsh spectrum {0,±2

n−1
2 } (for n odd). Another proof of the AB property of

the Kasami functions is done in [56] by Dobbertin. The APNness of Kasami functions
in the even case was proven in [68]. The Walsh spectrum of the Gold and Kasami
functions coincide also in the even case and has the form: {0,±2

n
2 ,±2

n+2
2 }.

The optimal nonlinearity of the Welch functions (that is, in contemporary terms,
their property of being AB) was conjectured by Welch in 19686. The common Walsh
spectrum of the Welch and Niho functions was conjectured in 1972 by Niho [90]. These
conjectures remained open for almost 30 years. The progress in solving them became
possible after the invention of the APN property. First, Dobbertin has proved that the
Welch and Kasami functions are APN in [54], [55] and then the Walsh spectrum of
these functions which is {0,±2

n−1
2 } was determined using their APNness and applying

methods of coding theory (via cyclic codes) [30, 31, 67].
The Walsh spectrum of the inverse function was determined by Lachaud and Wolf-

mann in [76], it consists of all integers divisible by 4 from the interval [−2
n
2+1 +

1;2
n
2+1 + 1]. For n odd, the inverse functions are APN, but they are not AB (since

the algebraic degree of the inverse function is n−1, while AB functions have algebraic
degree not more than n+1

2 [36]). For n even, APN power functions could not be per-
mutations, therefore the optimal value of differential uniformity in even case is 4. For
cryptographic uses, n even is preferred because it allows to decompose the elements of
F2n over F2n/2 and to express the operations in the half field. The inverse function, for n
even, is a permutation with differential uniformity 4 and has the best known nonlinear-
ity (for n even), that is 2n−1−2

n
2 . Thus, it is an optimal function for cryptographic uses

and due to this, it was chosen as the S-box for AES [47]. The problem of finding APN
permutations in even number of variables is one of the most attractive problems in the
theory of Boolean functions. It was long believed that such functions did not exist. The
conjecture was disproved by Dillon et al. when they constructed an APN permutation
over F26 [9]. To date this function is the only known APN permutation in even number
of variables.

The last known case of APN power functions was found in 1999 by Canteaut and
Dobbertin independently, and proven by Dobbertin in 2000 [53]. To date, the Walsh
spectrum and even the nonlinearity of the Dobbertin family of power functions remain
unknown. This problem has already been open for 20 years, and without any progress
since the seminal work of Canteaut, Charpin and Dobbertin from 2000, in which they
proved that all Walsh coefficients of the Dobbertin function over F2n are divisible by
2

n
5 , but not all of them are divisible by 22 n

5+1 [31]. The latter non divisibility result
shows that the Dobbertin functions are not AB, for n odd. It follows from the weight
divisibility of the duals of cyclic codes with two zeros of length 2n−1 (for more details

5As stated in [89] the Walsh spectrum of the Kasami function was computed by Welch in 1969 [102],

however the result was never published.
6The conjecture was mentioned in [64].
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see [55], [31]) and does not clarify the internal structure of the functions. In 2020 we
presented two new results on the Dobbertin functions [14]. Based on computational
data, we presented a conjecture fully describing the Walsh spectrum of the Dobbertin
power functions defined over F25m . Depending on the parity of m, it has the following
possible forms:

• {0,22m(2m+1),±25k−2,±a ·22m | 1 ≤ a ≤ k · (k+1),a odd}, for m = 2k−1,k ∈
N;

• {0,−22m(2m + 1),±25k,±25k+1,±a · 22m | 1 ≤ a ≤ k · (k + 2),a odd}, for m =
2k,k ∈ N.

Motivated by [36], we obtained alternative representations for the Niho and Dob-
bertin exponents: they can be represented as the composition xi ◦ x1/ j of two power
functions xi and x j of smaller algebraic degree than the original functions. The Niho
power functions defined over F22t+1 can be represented in the form xi ◦x1/ j, where i = 3

and j ∈ {2
3t
2 + 2t + 1,2t+1 + 2

t
2 + 1,2t+1 + 2

t
2+1 + 1}, for t even and j ∈ {2

3(t+1)
2 +

2
t+1

2 + 1,2
3t+1

2 + 2t+1 − 1,2t + 2
t−1

2 + 1}, for t odd; The Dobbertin power functions
defined over the field F25m can be represented in the form xi ◦ x1/ j, where the or-
dered pair of exponents (i, j) is one of the following 4 pairs: (22m + 2m + 1,2m + 1),
(23m +22m +1,22m +1), (23m +2m +1,23m +1), (22m +2m +1,24m +1) [14]. More-
over, we prove that our representations are optimal, i.e. no two power functions xi′,
and x j′ of smaller algebraic degree can produce the corresponding functions in the sim-
ilar way. A natural continuation of our work is to find a proof of the conjecture about
the Walsh spectrum of the Dobbertin functions. We believe that alternative representa-
tions of the Doobertin exponent found in [14] can be a useful tool for approaching this
problem.

The conjecture about non-existence of APN power functions inequivalent to known
six classes was studied in [14]. In a view of this conjecture, two constructions xi ◦
L ◦ x1/ j, where L is a linear polynomial and power functions xd with exponent of the

form d =
k−1
∑

i=1
2mi − 1 over F2mk were examined in [14]. An initial motivation to study

the first construction is the observation that the Kasami power functions (in odd case)
can be obtained from Gold functions via such construction. This suggests that this
construction may be a source for new APN power functions constructed from known
ones. The second construction can also be potentially helpful for approaching that
conjecture, since the exponents of both the inverse and the Dobbertin functions are
special cases of this form [12].

1.3.2 Non-power APN functions

There are two main types of constructions of functions: primary (when functions are
constructed from the scratch) and secondary (when functions are constructed from al-
ready known functions in the same or other number of variables). In this section we will
describe some of the known methods of the secondary construction of APN functions
and will give an overview on the known infinite families of non-power APN functions.
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For a long time it was widely accepted that all APN functions are EA-equivalent to
power functions. The first infinite family of APN functions EA-inequivalent to power
functions was constructed only in 2006 [23]. In [23] it was shown that, for the Gold
APN functions, CCZ-equivalence is more general than EA-equivalence and taking the
inverse. As a result, the first classes of APN and AB functions EA-inequivalent to
power functions were constructed. However, based on computational data on small
dimensions it is conjectured in [15] that for non-Gold APN power functions, CCZ-
equivalence coincides with EA-equivalence taken together with the inverse transforma-
tion. Recently this conjecture was confirmed for the inverse function [75]. Nonetheless
in [20, 15] was shown also that for quadratic APN polynomials and for APN polyno-
mials CCZ-inequivalent to both quadratic and power functions, CCZ-quivalence can be
more general than EA-equivalence together with the inverse transformation.
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Table 1.2: Known infinite families of quadratic APN polynomials over F2n

Family Functions Conditions Source

F1-F2 x2s+1 +u2k−1x2ik+2mk+s
n = pk,gcd(k,3) = gcd(s,3k) = 1, p ∈
{3,4}, i = sk mod p,m = p − i,n ≥
12,u primitive in F∗

2n

[22]

F3 sxq+1 +x2i+1 +xq(2i+1)+cx2iq+1 +cqx2i+q q = 2m,n = 2m, gcd(i,m) = 1, c ∈
F2n ,s ∈ F2n \ Fq,X2i+1 + cX2i

+ cqX +

1 has no solution x s.t. xq+1 = 1

[18]

F4 x3 +a−1Trn
1(a

3x9) a ̸= 0 [20]

F5 x3 +a−1Trn
3(a

3x9 +a6x18) 3|n, a ̸= 0 [21]

F6 x3 +a−1Trn
3(a

6x18 +a12x36) 3|n,a ̸= 0 [21]

F7-F9 ux2s+1 + u2k
x2−k+2k+s

+ vx2−k+1 +

wu2k+1x2s+2k+s

n = 3k,gcd(k,3) = gcd(s,3k) = 1,v,w ∈
F2k ,vw ̸= 1,3|(k+ s),u primitive in F∗

2n

[5, 4]

F10 (x + x2m
)2k+1 + u′(ux + u2m

x2m
)(2

k+1)2i
+

u(x+ x2m
)(ux+u2m

x2m
)

n = 2m,m ⩾ 2 even, gcd(k,m) = 1

and i ⩾ 2 even, u primitive in F∗
2n ,u′ ∈

F2m not a cube

[106]

F11 a2x22m+1+1 + b2x2m+1+1 + ax22m+2 +

bx2m+2 +(c2 + c)x3

n = 3m,m odd,L(x) = ax22m
+ bx2m

+ cx

satisfies the conditions of Lemma 8 of

[13]

[13]

F12 u(uqx+xqu)(xq +x)+(uqx+xqu)22i+23i
+

a(uqx+ xqu)22i
(xq + x)2i

+b(xq + x)2i+1

q = 2m,n = 2m,gcd(i,m) = 1, x2i+1+ax+

b has no roots in F2m

[100]

F13 x3 +a(x2i+1)2k
+bx3·2m

+ c(x2i+m+2m
)2k n = 2m = 10,(a,b,c) = (β ,0,0), i = 3,k =

2,F4 =< β >
[26]

n = 2m, m odd, 3 ∤ m, (a,b,c) =

(β ,β 2,1),F4 =< β >, i ∈ {m−2,m,2m−
1,(m−1)−1 mod m

F14 u[(uqx+xqu)2i+1+(uqx+xqu)(xq+x)2i
+

(xq + x)2i+1] + (uqx + xqu)22i+1 + (uqx +

xqu)22i
(xq + x)+(xq + x)22i+1

q= 2m, n= 2m, gcd(3i,m) = 1, u primitive

in F∗
2m

[65]

F15 u[(uqx+xqu)2i+1+(uqx+xqu)(xq+x)2i
+

(xq + x)2i+1] + (uqx + xqu)23i
(xq + x) +

(uqx+ xqu)(xq + x)23i

q = 2m, m odd, n = 2m, gcd(3i,m) = 1, u

primitive in F∗
2m

[65]
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So, the first class of non-power APN and AB functions were constructed via CCZ-
equivalence. This shows that equivalence relations are important tools not only for the
investigation of functions, but also for their construction. Besides, the first and the only
known up to date APN permutation in even dimension was constructed by employing
CCZ-equivalence [9].

By construction, the APN and AB polynomials from [23] are CCZ-equivalent to
power functions. Thus, the question of the existence of non-power APN and AB func-
tions up to CCZ-equivalence was still open. The first examples of APN functions
CCZ-inequivalent to power functions were found in [59]. These were the binomials
x3+wx528 over F212 and x3+wx36 over F210 . The idea leading to these examples was to
consider the sum of two Gold APN functions. Later, as a generalization of the polyno-
mial x3 +wx528, the first infinite classes of APN binomials CCZ-inequivalent to power
functions were constructed in [22] (classes F1-F2 in Table 1.2). Class F1, for n divisible
by 3 is an AB permutation, for n odd. These classes of binomials proved the existence
of AB functions CCZ-inequivalent to power functions. Besides, they disproved the
conjecture from [36] about the non-existence of quadratic AB functions inequivalent to
the Gold functions. Applying the same idea of constructing new functions by adding
new quadratic terms to a known APN functions, the family of APN binomials F1, for
n divisible by 3, was generalized to trinomials and quadrinomials [5], [4]. Recently, an
infinite class of APN quadrinomials containing the binomial x3 +wx36 over F210 was
constructed in [26], using the same approach of adding new quadratic terms to known
functions.

In 2012, the family F1-F2 of APN binomials, for n divisible by 3, was generalized
to functions with 2t-to-1 derivatives in all non-zero directions with nonlinearity equal
to 2n−1 − 2(n+t)/2 for n+ t even, and 2n−1 − 2(n+t−1)/2 for n+ t odd by relaxing the
condition gcd(s,n) = 1 (see the conditions in Table 1.2) to gcd(s,n) = t, for some
positive integer t; these functions are permutations if and only if n/t is odd [6]. The
question of the possibility of such generalization for the second family (n divisible by 4)
remained open till 2020. In [48], we prove that by relaxing the condition gcd

(
s, n

2

)
= 1

to gcd
(
s, n

2

)
= t (for some positive integer t), the family F1-F2, for n divisible by 4, can

be also generalized to a family of functions with all derivatives in non-zero directions
being 2t-to-1 mappings and with the nonlinearity at least 2n−1−2

n
2+t−1; these functions

are permutations if and only if n/gcd(s,n) is odd (which is possible if and only if they
are EA-equivalent to power permutations x2s+1).

The simplest example of functions which can be generalized to a function with all
derivatives in non-zero directions being 2t-to-1 mappings is the Gold function. Indeed,
let x2i+1 be the Gold function defined over F2n . Relaxing the condition gcd(i,n) = 1 to
gcd(i,n) = t, for some positive integer t, the functions of the form x2i+1 become differ-
entially 2t-uniform, with all derivatives in non-zero direction being 2t-to-1 functions.
These functions are permutations if and only if n/gcd(i,n) = n/t is odd [90], and are
(2t + 1)–to–1 functions otherwise. Their nonlinearity is 2n−1 − 2(n+t)/2 when n/t is
odd, and 2n−1 −2(n+2t)/2 otherwise.

Thus, the APN binomials F1-F2 behave in the same way as the Gold functions from
the point of view of the differential uniformity, nonlinearity and being permutations.
These classes are not the only ones that can be generalized to functions with all deriva-
tives in non-zero direction being 2t-to-1 mappings. Another example is the family of
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hexanomials F3 constructed in [18]. In the same paper the authors prove that this fam-
ily can be generalized to a family which consists of 2t-difrentially uniform functions
(for some positive integer t) with all derivatives in non-zero directions being 2t-to-1
mappings. However, not all APN functions allow such generalization. For instance,
the class of quadrinomials F13 can not be generalized to 2t-differentially uniform func-
tions in the similar way, as shown in [48].

The family of hexanomials F3 was obtained by a generalization of a method of the
construction of APN polynomials introduced by J. Dillon in [50]; the original method is
to consider quadratic polynomials of the form F(x) = x(Ax2 +Bxq +Cx2q)+ x2(Dxq +
Ex2q)+Gx3q over F22m , where q = 2m. The original approach gave new examples of
quadratic APN functions in 6 and 8 variables which are CCZ-inequivalent to power
functions [8].

It was observed in [20] that functions of the form F + f , where F is an APN function
and f is a Boolean function can have differential uniformity at most 4. This leads to
a new family of APN and AB functions F4. Note that F4 is the only currently known
family of APN functions inequivalent to power functions defined for all values of n.

Constructions of the form L1(x3)+L2(x9) for linear functions L1 and L2 gave two
more infinite families of APN and AB functions F5 and F6 (see Table 1.2). The fam-
ily F11 from Table 1.2 was obtained via the so-called isotopic shift construction [13].
The authors tried to adapt the isotopic equivalence of planar functions (that is, func-
tions defined over the field Fpn , for prime p > 2) to vectorial functions and to obtain
a more general equivalence relation than CCZ-equivalence. Instead, they found a new
construction method of APN functions inequivalent to power functions. The so-called
the bivariate construction of APN functions introduced in [35] is a very fruitful method
of the contraction of new APN functions. Applying this method, several infinite fami-
lies of APN functions, namely, F10, F12, F14 and F15 were introduced (see [34],[65],
[100], [106]).

Note that almost all currently known APN polynomials (CCZ-inequivalent to mono-
mials) are quadratic. The only example of a non-quadratic and non-power APN func-
tion is known in dimension 6. It is a (6,6)-function of the form [7, 60]:

x3 +a17(x17 + x18 + x20 + x24)+Tr2(x21)+Tr3(a18x9)+

a14Tr6(a52x3 +a6x5 +a19x7 +a28x11 +a2x13).

For more details about constructions of APN functions see, for instance, [11, 10, 11,
29, 33].

1.4 Bent Boolean functions

Recall that bent functions are functions with the highest possible nonlinearity. Bent
Boolean functions were invented and named by Oscar Rothaus in 1966 as optimal com-
binatorial objects7. A natural extension of bent Boolean functions are bent vectorial
functions, i.e. functions with all component functions being bent Boolean functions
[90]. The investigation of bent functions was stimulated along with the development

7The work was published in May 1976.
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of computer science. Bent functions have applications in coding theory, cryptography,
sequence design, projective geometry. Bent Boolean functions play a role in coding
theory since they allow to construct good codes and, in particular, Kerdock codes [72],
and in the other domains of communications (for instance, in telecommunications, see
[93]). Bent vectorial functions can be used in block ciphers at the coast of additional
diffusion, compression, expansion layers, or as building blocks for the construction
of S-boxes. They are also used to construct algebraic manipulation detection codes
[69, 70].

Despite their simple and natural definition, bent functions admit a very complicated
structure in general. The general structure of bent functions over F2n is not yet clear.
The complete classification of bent functions is a hard open problem; it was done only
for n ≤ 8 [77]. Therefore, an important focus of research is to find constructions of bent
functions leading to infinite families of bent functions.

Bent functions always occur in pairs with their duals. The function f̃ is called the
dual of an n variable bent Boolean function f if Wf (x) = 2

n
2 (−1) f̃ (x), for every x ∈ F2n .

The dual of a bent function is again bent and its own dual is f itself [51].
Several primary constructions of bent functions in bivariate form have been intro-

duced in [51, 85]. Some are more principles of constructions than explicit (since they
need conditions which are difficult to achieve) like the PS class, other lead to explicit
bent functions: Maiorana-McFarland construction and the partial spread subclass PSap.

The Maiorana-McFarland class or, shortly, MM class is the collection of all n= 2m-
variable Boolean functions f of the form:

f (x,y) = x ·π(y)+g(y),

where · is an inner product in Fm
2 , π is a permutation over Fm

2 and g is a Boolean
function over Fm

2 . A necessary and sufficient condition for f being bent is the bijectivity
of π . The completed Maiorana-McFarland class consists of all functions which are
EA-equivalent to functions from Maiorana-McFarland functions. The completed MM
class contains all quadratic bent Boolean functions [51].

The PSap class is the set of n = 2m variable Boolean functions f over the field F22m

of the following form:

f (x,y) = g
(
xy2m−2),

where g is a balanced Boolean function on F2m such that g(0) = 0 (with the convention
1
0 = 0). The dual of the function g

(
xy2m−2

)
from the class PSap is g(yx2m−2). In general,

for every balanced function g, the dual of the bent function g(x
y) is g(y

x) [37].
Functions from the class H of bent Boolean functions introduced by Dillon in his

PhD thesis [51] have the following bivariate form:

f (x,y) = Trm
(
y+ xF

(
yx2m−2)),

where x,y ∈ F2m , F is a permutation of F2m s.t. F(x)+ x does not vanish and for any
β ∈ F2m \ {0}, the function F(x)+βx is 2-to-1. Dillon did not manage to find a bent
function in the class H that would not belong to the completed MM class. For a long
time it was unknown whether every function from H is EA-equivalent to a function
from MM. Later, when in [40] the explicit form of functions in the Dillon’s class H was
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derived (by relating it to the notion of o-polynomials), the question was answered neg-
atively in [25]: the MM class and Dillon’s class H are different up to EA-equivalence.

Bent functions can also be viewed in their univariate form. Finding explicit bent
functions in the univariate polynomial representation is more difficult than in the bi-
variate. A first step towards this is to focus on monomial bent functions, that is, the
bent functions of the form Trn(axd), for some positive integer d, and a ∈ F2n; then the
exponent d is called a bent exponent. Note that a function of the form Trn(axd) with
a bent exponent is bent not for every non-zero a. There are only a few exponents d
known that allow the construction of bent functions. The list of currently known mono-
mial bent functions is presented in Table 1.3. As stated in [78], this list is complete for
n ≤ 24 up to equivalence.

Table 1.3: The known monomial bent functions of the form Trn(axd) over F2n

Exponent d Conditions Family Reference

2i +1 gcd(i,n) = 1,a /∈< αgcd(d,2n−1) >, MM [63]

s(2
n
2 −1) gcd(s,2

n
2 +1) = 1, a ∈ F∗

2
n
2
, ∑

x∈F∗
2n/2

(−1)(ax+x−1) =−1 PSap [42, 51]

22i −2i +1 gcd(3,n) = gcd(3,n) = 1,a /∈< α3 > [52]

(2s +1)2 n = 4s, s odd, a ∈ F4 \F2·< α2s+1 > MM [43, 79]

22s +2s +1 n = 5s, a ∈ {r ∈ F
2

n
2
|Trn/2

s (r) = 0}·< αd > MM [32]

1.4.1 Niho bent functions

An important case of bent Boolean functions are the so-called Niho bent functions.
There are a few reasons why this class is of particular interest. First, some of the
constructions of non-monomial bent functions in univariate polynomial form are done
via Niho power functions (see for instance, [58]). Besides, it is known that Boolean
functions, and bent functions in particular, are considered up to EA-equivalence, which
is the most general known equivalence relation preserving bentness [16, 17]. However,
for Niho bent functions, a more general equivalence relation preserving bentness is
known [40]. In addition, Niho bent functions have an important property: every Niho
bent function defines a vectorial bent function. This property was first observed in [88],
however in [49] we provide the simpler proof of this statement. Moreover, Niho bent
functions played the central role in a proof that the class H introduced by Dillon in [51]
does not coincide with the completed MM class [40, 25].

The name of Niho exponent comes from a theorem dealing with power functions by
Niho [89]. Later, in [58] linear combinations of such power functions were considered
and the class of Niho bent functions was introduced.

A positive integer d (always understood modulo 2n−1) is said to be a Niho exponent
and xd a Niho power function if the restriction of xd to F2m (n= 2m) is linear or, in other
words, d ≡ 2 j mod (2m − 1), for some j < n. As we consider trn(axd) with a ∈ F2n ,
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without loss of generality, we can assume that d is in the normalized form, i.e., with
j = 0. Then we have a unique representation d = (2m −1)s+1.

Table 1.4: The known Niho bent function over F2n ,n = 2m

Family Function Conditions Reference

Monomials Trm(ax2m+1) a ∈ F∗
2m [63]

Binomials Trn(a1xd1 +a2xd2)

2d1 ≡ 2m + 1 (mod 2n − 1),

a1,a2 ∈ F∗
2n , (a1 +a2m

1 )2 = a2m+1
2

[58], [66]

Case 1: d2 = 3(2m −1)+1

Case 2: d2 = 1
4 (2

m − 1) + 1, m

odd

Case 3: d2 = 1
6 (2

m − 1) + 1, m

even

Leander-

Kholosha

Trn

(
a2x2m+1 + (a +

a2m
)∑2r−1−1

i=1 xdi
) 1 < r < m, gcd(r,m) = 1, 2rdi =

(2m −1)i+2r, a ∈ F2n , a+a2m ̸= 0

[80, 81]

Niho bent functions in bi-

variate form obtained from

o-polynomials

See for in-

stance, [40]

A few examples of infinite families of Niho bent functions are known. The corre-
sponding list is presented in Table 1.4.

The simplest example of Niho bent functions is the quadratic function of the form
Trm(ax2m+1) (note that s = 2m−1+1) defined over the field F2n,n = 2m (see Table 1.4).

Another known families of Niho bent functions are the binomial Niho bent functions
from Table 1.4. The binomial Niho bent functions can be written in an alternative form,
as

f (x) = Trm(ax2m+1)+Trn(bxd2),

where a = (a1+a2m

1 )2, b = a2, a = b2m+1 ∈ F∗
2m , d2 ∈ {3(2m−1)+1, 2m−1

4 +1(m odd),
2m−1

6 (m even)}. Note that if b = 0 and a ̸= 0 then f is the quadratic Niho bent function
from Table 1.4. These functions, for d2 = 3(2m −1)+1 and 6d2 = (2m −1)+6, have
algebraic degree m and do not belong to the completed MM class; the function for
4d2 = (2m − 1) + 4 has algebraic degree 3 [38, 25]. Originally, the family of Niho
bent binomials, for d2 = 3(2m − 1) + 1, was introduced under an assumption that if
m ≡ 2 mod 4, then b = c5, for some c ∈ F∗

2n; otherwise, b could be any element from
F∗

2n . Thanks to an observation made in [40] (we will return to this observation later
in this Section), it was shown in [66] that even for m ≡ 2 mod 4 the value of b can
be arbitrary. In [40], the bivariate representation of the family of binomial Niho bent
functions, for 4d2 = (2m −1)+4, and the bivariate expression of its dual was found. It
has been shown that the dual of this function has algebraic degree m+3

2 and belongs to
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the completed MM class (since the duals of functions from the MM class belong to the
MM class).

The family of binomal Niho bent functions, for 4d2 = (2m − 1) + 1,m odd, was
generalized by Leander and Kholosha into a function with 2r Niho exponents [80] (the
Leander-Kholosha family in Table 1.4). The algebraic degree of these functions is
r + 1 [28] and they belong to the completed MM class [38]. The duals of functions
belonging to the Leander-Kholosha family were found and their algebraic degree has
been computed in [25] and [38].

Table 1.5: The known o-polynomials over F2m

Family Function Conditions Reference

Translation x2i
gcd(i,n) = 1 [98]

Serge x6 m odd [98]

Glynn I x3·2k+4 m = 2k−1 [61]

Glynn II x2k+22k
m = 4k−1 [61]

Glynn III x22k+1+23k+1
m = 4k+1 [61]

Cherewitzo x2k
+ x2k+2 + x3·2k+4 m = 2k−1 [44]

Payne x
1
6 + x

1
2 + x

5
6 , m odd [94]

Subiaco δ 2(x4 + x)+δ 2(1+δ +δ 2)(x3 + x2)

x4 +δ 2x2 +1
+

x
1
2 ,

Trm(
1
δ ) = 1 (if m ≡ 2

(mod 4), then δ /∈ F4)

[46]

Adelaide 1
Trn

m
(v)
(

Trn
m(v

r)(x+ 1)+ (x+Trn
m(v)x

1
2 +

1)1−rTrn
m(vx+ v2m

)r
)
+ x

1
2

m even, r = ± 2m−1
3 , v ∈

F22m ,v2m+1 ̸= 1,v ̸= 1

[45]

O’Keefe-

Penttila

F(x) = x4 + x16 + x28 + ω11(x6 + x10 +

x14 + x18 + x22 + x26) + ω20(x8 + x20) +

ω6(x12 + x24)

ω5 = ω2 +1 and m = 5 [92]

In [40] the authors observed that there is a one-to-one correspondence between
Niho bent functions and a special type of permutation polynomials, the so-called o-
polynomials. A permutational polynomial G over F2m is called an o-polynomial if the
functions Pγ ,γ ∈ F2m defined over F2m as follow

Pγ(z) =

{
G(γ+z)+G(γ)

z if z ̸= 0;
0 if z = 0

are permutations, for all γ ∈ F2m . Then every Niho bent function in 2m variables is
EA-equivalent to a function g defined in a bivariate form as follow:
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g(x,y) =

{
Trm(xψ

(y
x)
)

if x ̸= 0;
Trm(µy) if x = 0

(1.6)

where ψ is a mapping from F2m such that G(z) = ψ(z)+ µz is an o-polynomial [40].
The class of functions defined by (1.6) is exactly the Dillon’s class H up to addition of a
linear term. Therefore, the class of Niho bent functions and the Dillon’s class H are the
same up to EA-equivalence. Note that, since functions from the families of binomial
Niho bent functions, for d = (2m−1)3+1 and 6d2 = (2m−1)+6, do not belong to the
completed MM class, the Dillon’s class H and MM are different up to EA-equivalence.

Originally, the notion of o-polynomial comes from projective geometry and it took
around 50 years for geometers to construct 9 classes of inequivalent o-polynomials.
The list of all known o-polynomials can be found in Table 1.4.1. This table consists of
5 quadratic and one cubic power functions, two trinomials, 2 families of o-polynomials
of more complicated form and 1 o-polynomial in dimension 25. It is conjectured that
the list of o-monomials is complete up to equivalence [61]. The conjecture is compu-
tationally verified for n ≤ 28 in [62].

The o-polynomials corresponding to the functions from the Leander-Kholosha fam-
ily of Niho bent functions are equivalent to the Frobenius map [80]. In [66], a relation
between Niho bent functions belonging to the families of binomial Niho bent func-
tions, for d = (2m − 1)3+ 1 and 6d2 = (2m − 1) + 6, and the Subiaco and Adelaide
o-polynomials, respectively, was found. This allowed to expand the class of binomial
Niho bent functions, for d = (2m −1)3+1, in the case m ≡ 2 mod 4 [66].

In [27] it was shown that any Niho bent function in univariate form defined over the
field F2n can be obtained as a sum of Leander-Kholosha functions taken with particular
non-zero coefficients from F2n . More precisely, any Niho bent function in a univariate
representation (defined over the field F2n), up to EA-equivalence, is obtained as a sum
of functions of the following form:

Trn

(
A2r−1x2m+1 +

2r−1−1

∑
i=1

Aix(2
m−1)(2m−ri+1)+1

)
,

where 0< r <m, Ai ∈F∗
2n (for r = 1, replace the last sum with zero). In particular, every

o-monomial corresponds to a bent function of Leander-Kholosha type with particular
coefficients of power terms.

In [40] the authors observed that the equivalence between o-polynomials induces
an equivalence relation of Niho bent functions, the so-called o-equivalence. Equiva-
lence of o-polynomials implies EA-equivalence of the corresponding Niho bent func-
tions. However, this new equivalence relation is more general than EA-equivalence,
since Niho bent functions generated by equivalent o-polynomials F and F−1 are EA-
inequivalent in general. Later, in [19] o-equivalence was successfully employed as a
method of the construction of new Niho bent functions from known ones. A group
of transformations (introduced in [44]) of order 24 preserving o-equivalence was stud-
ied. It was shown that these transformations can generate up to three EA-inequivalent
Niho bent functions from a given one (including its inverse). However the group of
transformations from [44] does not cover all possible transformations which applied to
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Niho bent functions preserves their o-equivalence. A more general group of transfor-
mations preserving the equivalence of o-polynomials was introduced in [91]. In [49],
we studied this group of transformations together with the inverse map, and proved
that EA-inequivalent Niho bent functions can arise only from a transformation of spe-
cific form (composed by specific transformations of the group in a special order and
involving the inverse map). We derived the number of Niho bent functions induced by
a given o-polynomial and, in the case of o-monomials, we identified the exact trans-
formations always leading to EA-inequivalent Niho bent functions. For o-polynomials
which are not monomials, the question of identifying such transformations which can
be guaranteed to lead to EA-inequivalent Niho bent functions remains open and it is an
interesting problem to study.

More information on constructions of bent functions can be found in [33, 39, 73, 87].
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Relation between o-equivalence and EA-equivalence
for Niho bent functions*

Diana Davidova†, Lilya Budaghyan,† Claude Carlet‡,†

Tor Helleseth,† Ferdinand Ihringer§, Tim Penttila¶

Abstract

Boolean functions, and bent functions in particular, are considered up to so-called
EA-equivalence, which is the most general known equivalence relation preserving bent-
ness of functions. However, for a special type of bent functions, so-called Niho bent
functions there is a more general equivalence relation called o-equivalence which is in-
duced from the equivalence of o-polynomials. In the present work we study, for a given
o-polynomial, a general construction which provides all possible o-equivalent Niho bent
functions, and we considerably simplify it to a form which excludes EA-equivalent cases.
That is, we identify all cases which can potentially lead to pairwise EA-inequivalent Niho
bent functions derived from o-equivalence of any given Niho bent function. Furthermore,
we determine all pairwise EA-inequivalent Niho bent functions arising from all known
o-polynomials via o-equivalence.

Keywords: Bent function, Boolean function, EA-equivalence, maximum nonlinear-
ity, Magic action, modified Magic action, Niho bent function, o-equivalence, o-polynomials,
ovals, hyperovals, Walsh transform.

1 Introduction

Boolean functions of n variables are binary functions over the vector space Fn
2 of all

binary vectors of length n, and can be viewed as functions over the Galois field F2n ,
thanks to the choice of a basis of F2n over F2. In this paper, we shall always have this
last viewpoint. Boolean functions are used in the pseudo-random generators of stream
ciphers and play a central role in their security.

Bent functions, introduced by Rothaus [38] in 1976, are Boolean functions having
an even number of variables n, that are maximally nonlinear in the sense that their non-
linearity, the minimum Hamming distance to all affine functions, is optimal (for more
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information on bent functions see, for instance, [13]). This corresponds to the fact that
their Walsh transform takes the values ±2n/2, only. Bent functions have attracted a lot
of research interest in mathematics because of their relation to difference sets and to
designs, and in the applications of mathematics to computer science because of their
relations to coding theory and cryptography. Despite their simple and natural defini-
tion, bent functions admit a very complicated structure in general. An important focus
of research is to find constructions of bent functions. Many methods are known and
some of them allow explicit constructions. We distinguish between primary construc-
tions giving bent functions from scratch and secondary constructions building new bent
functions from one or several given bent functions (in the same number of variables or
in different ones).

Boolean functions, and bent functions in particular, are considered up to so-called
EA-equivalence, which is the most general known equivalence relation preserving bent-
ness of functions [4, 5].

Bent functions are often better viewed in their bivariate representation, in the form
f (x,y), where x and y belong to Fm

2 or to F2m , where m = n/2. This representation has
led to the general families of explicit bent functions which are the original Maiorana-
McFarland class [32], the Partial Spreads (PSap) class and its generalizations to other
spreads from finite geometry (see a survey in Subsection 6.1.15 of [10]); these latter
classes are included in the more general but less explicit PS class, which is itself in-
cluded in the GPS class. Bent functions can also be viewed in their univariate form,
expressed by means of the trace function over F2n . Finding explicit bent functions in
this trace representation is usually more difficult than in the bivariate representation.
References containing information on explicit primary constructions of bent functions
in their bivariate and univariate forms are [10, 11, 27]. It is well known that some of
these explicit constructions belong to the Maiorana-McFarland class and to the PSap
class. When, in the early 1970s, Dillon introduced in his thesis [19] the two above
mentioned classes, he also introduced another one denoted by H, where bentness was
proven under some conditions which were not obvious to achieve. This made class
H an example of a non-explicit construction: at that time, Dillon was able to exhibit
only functions belonging, up to the affine equivalence (which is a particular case of
EA-equivalence), to the Maiorana-McFarland class.

It was observed in [12] that the class of the, so called, Niho bent functions (intro-
duced in [20] by Dobbertin et al) is, up to EA-equivalence, equal to the Dillon’s class
H. Note that functions in class H are defined in their bivariate representation and Niho
bent functions had originally a univariate form only. Three infinite families of Niho bi-
nomial bent functions were constructed in [20] and one of these constructions was later
generalized by Leander and Kholosha [28] into a function with 2r Niho exponents.
Another class was also extended in [22]. In [7] it was proven that some of these infi-
nite families of Niho bent functions are EA-inequivalent to any Maiorana-McFarland
function which implied that classes H and Maiorana-McFarland are different up to
EA-equivalence.

In the same paper [12], the authors also showed that Niho bent functions define o-
polynomials and, conversely, every o-polynomial defines a Niho bent function. They
also discovered that a given o-polynomial F can produce two different (up to EA-
equivalence) Niho bent functions, namely, the ones derived from F and its inverse F−1.
Since taking the inverse of an o-polynomial is a particular case of the equivalence of
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o-polynomials, a natural question was to explore this equivalence for the construction
of further EA-inequivalent cases of Niho bent functions. The first work in this direction
was done in [8] where the group of transformations (introduced in [16]) of order 24 pre-
serving the equivalence of o-polynomials was studied for relation to EA-equivalence.
It was shown that these transformations can lead to up to four EA-inequivalent func-
tions including those derived from an o-polynomial and its inverse. That is, two new
transformations which can potentially provide EA-inequivalent functions from a given
o-polynomial were discovered. Hence, application of the equivalence of o-polynomials
can be considered as a construction method for new (up to EA-equivalence) Niho bent
functions from the known ones.

Note that the group of transformations from [16] does not cover all possible trans-
formations within equivalence of o-polynomials. A more general group of transfor-
mations, so-called the Magic action, was presented in [23], which is an action of a
group of transformations acting on projective line on the set of o-permutations. In this
paper we study the modified Magic action, a transformation of o-polynomials preserv-
ing projective equivalence. We show that o-polynomials are projectively equivalent
if and only if they lie on the same orbit under the modified Magic action and the in-
verse map. Further we prove that, for a given o-polynomial, EA-inequivalent Niho bent
functions can arise only from a specific formula involving particular compositions of
transformations of the modified magic action and the inverse map. We show that each
o-monomial can define up to four EA-inequivalent bent functions. We prove, for in-
stance, that the Pyne hyperoval can give rise to EA-inequivalent Niho bent functions
defined by o-polynomials which lie on 3 different orbits of the modified Magic action.
For each of the known o-polynomials we provide an explicit number of pairwise EA-
inequivalent Niho bent functions which can be derived via o-equivalence. Moreover,
we give an explicit description (involving transformations of the modified magic action
and the inverse map) of all o-polynomials providing pairwise EA-inequivalent Niho
bent functions.

The paper is organized as follows. In Section 2 we recall necessary background, in
Section 3 we define Niho bent functions via o-polynomials and vice versa. In Section
4 we prove that the affine equivalence of o-polynomials yields in some cases the EA-
equivalence of the corresponding Niho bent functions. The known fact that every o-
polynomial on F2m necessarily defines a vectorial Niho bent function from F22m to
F2m can be seen as a corollary. In Section 5 the modified magic action is introduced
and it is proven that potentially EA-inequivalent Niho bent functions can arise from
o-polynomials which lie on the same orbit under the modified Magic action and the
inverse map. The main results of the paper are contained in Sections 6 and 7, where
we obtain an exact form of the orbit on which o-polynomials should lie to produce
potentially EA-inequivalent Niho bent functions. For each of the known o-polynomials
we provide the explicit number and representations for all equivalent o-polynomials
which provide pairwise EA-inequivalent Niho bent functions.

2 Notation and Preliminaries

45



2.1 Trace Representation, Boolean Functions in Univariate and Bivari-
ate Forms

For any positive integer k and any r dividing k, the trace function Trk
r is the mapping

from F2k to F2r defined by

Trk
r(x) :=

k
r−1

∑
i=0

x2ir
= x+ x2r

+ x22r
+ · · ·+ x2k−r

.

In particular, the absolute trace over F2k is the function Trk
1(x) = ∑k−1

i=0 x2i
(in what

follows, we just use Trk to denote the absolute trace). Recall that the trace function
satisfies the transitivity property Trk = Trr ◦Trk

r .
The univariate representation of a Boolean function is defined as follows: we iden-

tify Fn
2 (the n-dimensional vector space over F2) with F2n and consider the arguments

of f as elements in F2n . An inner product in F2n is x ·y = Trn(xy). There exists a unique
univariate polynomial ∑2n−1

i=0 aixi over F2n that represents f (this is true for any vectorial
function from F2n to itself and therefore for any Boolean function since F2 is a subfield
of F2n). The algebraic degree of f is equal to the maximum 2-weight of the exponents
of those monomials with nonzero coefficients in the univariate representation, where
the 2-weight w2(i) of an integer i is the number of ones in its binary expansion. More-
over, f being Boolean, its univariate representation can be written uniquely in the form
of

f (x) = ∑
j∈Γn

Tro( j)(a jx j)+a2n−1x2n−1 ,

where Γn is the set of integers obtained by choosing the smallest element in each cy-
clotomic coset modulo 2n− 1 (with respect to 2), o( j) is the size of the cyclotomic
coset containing j, a j ∈ F2o( j) and a2n−1 ∈ F2. The function f can also be written in a
non-unique way as Trn(P(x)) where P(x) is a polynomial over F2n .

The bivariate representation of a Boolean function is defined in this paper as follows:
we identify Fn

2 with F2m × F2m (where n = 2m) and consider the argument of f as
an ordered pair (x,y) of elements in F2m . There exists a unique bivariate polynomial
∑0≤i, j≤2m−1 ai, jxiy j over F2m that represents f . The algebraic degree of f is equal to
max(i, j) |ai, j 6=0(w2(i)+w2( j)). And f being Boolean, its bivariate representation can
be written in the form f (x,y) = Trm(P(x,y)), where P(x,y) is some polynomial of two
variables over F2m .

Remark 1. Let g(x,y) be a Boolean function over F2m × F2m . Then one can get a
univariate representation of g making the following substitutions:

x = t + t2m
and y = αt +(αt)2m

,

where α is a primitive element of F22m .

2.2 Walsh Transform and Bent Functions

Let f be an n-variable Boolean function. Its “sign” function is the integer-valued func-
tion χ f := (−1) f . The Walsh transform of f is the discrete Fourier transform of χ f
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whose value at point w ∈ F2n is defined by

χ̂ f (w) = ∑
x∈F2n

(−1) f (x)+Trn(wx) .

For even n, a Boolean function f in n variables is said to be bent if for any w ∈ F2n

we have χ̂ f (w) =±2
n
2 .

It is well known (see, for instance, [11]) that the algebraic degree of a bent Boolean
function in n > 2 variables is at most n

2 .
Bentness and algebraic degree (when larger than 1) are preserved by extended-affine

(EA-) equivalence. Two Boolean functions f and g in n variables are called EA-
equivalent if there exists an affine permutation A of F2n and an affine Boolean function
` such that f = g◦A+ `. If l = 0 then f and g are called affine equivalent. In the case
of vectorial functions there exists a more general notion of equivalence, called CCZ-
equivalence, but for Boolean functions, it reduces to EA-equivalence, see [4] (as well
as for bent vectorial functions [5]).

Two functions F and F ′ from F2n to itself are called EA-equivalent if A1◦F ◦A2+A
for some affine permutations A1 and A2 and for some affine function A. If A = 0 then
F and F ′ are called affine equivalent.

For positive integers n and t, a vectorial Boolean function F from Fn
2 to Ft

2 is called
bent if for any a ∈ Fn

2 \{0} the Boolean function a ·F(x) is bent. Bent functions exist
if and only if n is even and t ≤ n/2 (see [33]).

2.3 Projective plane, Ovals, Hyperovals

In the following we give a short introduction to the projective plane. We refer to [18]
for a detailed introduction to projective geometry. A projective plane consists of a set
of points P, a set of lines L, and an incidence relation I between P and L. The classical
projective plane PG(2,q) over F3

q has the 1-spaces of F3
q as points and the 2-spaces of

F3
q as lines. A point p is contained in a line ` if p ⊆ ` in F3

q. A set of points is called
collinear if they all lie on the same line. Note that PG(2,q) has q2 + q+ 1 points,
q2 +q+1 lines, each line contains q+1 points, and each point lies in q+1 lines. The
group PΓL(3,q) acts naturally on PG(2,q). In particular, it preserves incidence.

Let O be a set of points in PG(2,q) such that no three points are collinear. It is
well-known that |O| ≤ q+1 if q is odd and |O| ≤ q+2 is q is even. One can see this
as follows: Consider a point P ∈ O . Each of the q+1 lines on P contains at most one
more points, so |O| ≤ q+2. Suppose that equality holds. Then each line contains either
0 or 2 points. Consider a point R ∈ O . Then there are s lines through R with 2 points
and q+1− s lines through R with 0 points. Hence, q+2 = 2s, so q is even.

Call a line ` passant, tangent, respectively, secant if |`∩O|= 0, |`∩O|= 1, respec-
tively, |`∩O|= 2. If |O|= q+1, then O is called an oval. From the argument above it
follows that in this case each point of O lies on exactly one tangent and q secants. For
q even these secants all meet in one point N, the nucleus of O . If |O| = q+2, then O
is called a hyperoval and we usually write H instead of O . If |O|= q+1 and q even,
then O ∪{N} is a hyperoval.

In the following we limit ourselves to q = 2m even.
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A frame of PG(2,q) is a set of four points P = {P1,P2,P3,P4} such that any 3-
subset of P spans F3

q. The fundamental theorem of projective geometry (for projective
planes) states that PΓL(3,q) acts transitive on frames. As any four points of a hyperoval
H are a frame, we can assume that an oval O contains 〈(1,0,0)〉,〈(0,0,1)〉,〈(1,1,1)〉 ∈
O and has 〈(0,1,0)〉 as its nucleus. In the following we usually leave out the brackets
〈·〉 for the sake of readibility. Hence, we can write O as

O = {(x,F(x),1) : x ∈ F2m}∪{(1,0,0)},
where the polynomial F satisfies the following:

(a) F is a permutation polynomial over F2m of degree at most q−2 satisfying F(0) = 0
and F(1) = 1.

(b) For any s ∈ F∗2m the function

Fs(x) :=

{
F(x+s)+F(x)

x if x 6= 0,
0 otherwise.

is a permutation polynomial. Here and further int he paper we denote F∗2m = F2m \
{0}.

Such a polynomial F is called an o-polynomial and, conversely, each o-polynomial
defines an oval. If we do not require F(1) = 1, then F is called an o-permutation. We
write O(F) for the oval defined by the o-polynomial F , and we write H (F) for the
hyperoval defined by F .

Note that throughout this paper O consists of points of the form (x,F(x),1), while
in the hyperplane literature, usually the form (1,x, f (x)) is used.

For a hyperoval H we have 2m + 2 choices for the nucleus N ∈H to obtain an
oval H \ {N}. Hence, each hyperoval H defines 2m + 2 o-polynomials. Two o-
polynomials are called (projectively) equivalent, if they define equivalent hyperovals
(under the natural action of PΓL(3,q)).

2.4 Niho Bent Functions

A positive integer d (always understood modulo 2n−1 with n = 2m) is a Niho exponent
and t → td is a Niho power function if the restriction of td to F2m is linear or, equiva-
lently, if d ≡ 2 j (mod 2m−1) for some j < n. As we consider Trn(atd) with a ∈ F2n ,
without loss of generality, we can assume that d is in the normalized form, i.e., with
j = 0. Then we have a unique representation d = (2m−1)s+1 with 2≤ s≤ 2m. If some
s is written as a fraction, this has to be interpreted modulo 2m+1 (e.g., 1/2= 2m−1+1).
Following are examples of bent functions consisting of one or more Niho exponents:

1. Quadratic function Trm(at2m+1) with a ∈ F∗2m (here s = 2m−1 +1).

2. Binomials of the form f (t) = Trn(α1td1 +α2td2), where 2d1 ≡ 2m+1 (mod 2n−
1) and α1,α2 ∈ F∗2n are such that (α1 +α2m

1 )2 = α2m+1
2 . Equivalently, denoting

a = (α1 +α2m

1 )2 and b = α2 we have a = b2m+1 ∈ F∗2m and

f (t) = Trm(at2m+1)+Trn(btd2).
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We note that if b = 0 and a 6= 0 then f is a bent function listed under number 1.
The possible values of d2 are [20, 22]:

d2 = (2m−1)3+1,
6d2 = (2m−1)+6 (taking m even).

These functions have algebraic degree m and do not belong to the completed
Maiorana-McFarland class [7].

3. Take 1 < r < m with gcd(r,m) = 1 and define

f (t) = Trn

(
a2t2m+1 +(a+a2m

)
2r−1−1

∑
i=1

tdi

)
, (1)

where 2rdi = (2m− 1)i+ 2r and a ∈ F2n is such that a+ a2m 6= 0 [28, 29]. This
function has algebraic degree r+1 (see [6]) and belongs to the completed Maiorana-
McFarland class [14].

4. Bent functions in a bivariate representation obtained from the known o-polynomials.

Consider the listed above two binomial bent functions. If gcd(d2,2n− 1) = d and
b = β d for some β ∈ F2n then b can be “absorbed” in the power term td2 by a linear
substitution of variable t. In this case, up to EA-equivalence, b = a = 1. In particular,
this applies to any b when gcd(d2,2n− 1) = 1 that holds in both cases except when
d2 = (2m−1)3+1 with m≡ 2 (mod 4) where d = 5. In this exceptional case, we can
get up to 5 different classes but the exact situation has to be further investigated.

3 Class H of Bent Functions and o-polynomials

Here we restrict ourselves with fields F2n with n even, n = 2m.
In his thesis [19], Dillon introduced the class of bent functions denoted by H. The

functions in this class are defined in their bivariate form as

f (x,y) = Trm(y+ xF(yx2m−2)),

where x,y ∈ F2m , and

• F is a permutation of F2m s.t. F(x)+ x doesn’t vanish,

• for any β ∈ F∗2m the function F(x)+βx is 2-to-1.

Dillon was able to exhibit bent functions in H that also belong to the completed Maiorana-
McFarland class. Dillon’s class H was modified in [12] into a class H of the functions:

g(x,y) =

{
Trm

(
xG
(y

x

))
, if x 6= 0

Trm(µy), otherwise
(2)
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where µ ∈ F2m,G : F2m 7→ F2m satisfying the following conditions:

F : z 7→ G(z)+µz is a permutation over F2m, (3)
z 7→ F(z)+β z is 2-to-1 on F2m for any β ∈ F∗2m. (4)

Here condition (4) implies condition (3) and it is necessary and sufficient for g being
bent. Functions in H and the Dillon class are the same up to addition of a linear
term Trm((µ +1)y) to (2). Niho bent functions are functions in H in their univariant
representation.

Theorem 1 ([12]). A polynomial F on F2m satisfying F(0) = 0 and F(1) = 1 is an
o-polynomial if and only if

z 7→ F(z)+β z is 2-to-1 on F2m for any β ∈ F∗2m. (5)

Hence, obviously every o-polynomial defines a Niho bent function. And vice versa,
every Niho bent function defines an o-polynomial since it defines a polynomial F satis-
fying condition (5) of Theorem 1, and we can derive an o-polynomial F ′(x) = F(x)+F(0)

F(1)+F(0)
which fixes the requirements F ′(0) = 0 and F ′(1) = 1. Note that to get a Niho bent
function from a polynomial F it is sufficient that F satisfies only condition (5) while
the conditions F(0) = 0 and F(1) = 1 are not necessary.

In Section 2.3 we saw that each o-polynomial corresponds to a hyperoval and vice
versa, each hyperoval corresponds to an o-polynomial. We say that Niho bent functions
are o-equivalent if they define projectively equivalent hyperovals. As shown in [8, 12],
o-equivalent Niho bent functions may be EA-inequivalent. For example, Niho bent
functions defined by o-polynomials F and F−1 are o-equivalent but they are, in general,
EA-inequivalent.

Here is the list of all known o-polynomials (we also give names of the corresponding
hyperovals):

1. F(x) = x2, regular hyperoval;

2. F(x) = x2i
, i and m are coprime, i > 1, irregular translation hyperoval;

3. F(x) = x6, m is odd, Segre hyperoval;

4. F(x) = x3·2k+4, m = 2k−1, Glynn I;

5. F(x) = x2k+22k
, m = 4k−1, Glynn II;

6. F(x) = x22k+1+23k+1
, m = 4k+1, Glynn II;

7. F(x) = x2k
+ x2k+2 + x3·2k+4, m = 2k−1, Cherowitzo hyperoval;

8. F(x) = x
1
6 + x

1
2 + x

5
6 , m is odd, Payne hyperoval;

9. F(x) =
δ 2(x4 + x)+δ 2(1+δ +δ 2)(x3 + x2)

x4 +δ 2x2 +1
+ x

1
2 ,

where Trm(
1
δ ) = 1 (if m≡ 2 (mod 4), then δ /∈F4), Subiaco hyperoval (for m= 4

also known as Lunelli-Sce hyperoval);
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10. F(x) =
1

Trn
m
(v)
(

Trn
m(v

r)(x + 1) + (x + Trn
m(v)x

1
2 + 1)1−rTrn

m(vx + v2m
)r
)
+ x

1
2 ,

where m is even, r =±2m−1
3 , v ∈ F22m,v2m+1 6= 1,v 6= 1, Adelaide hyperoval.

11. F(x) = x4 + x16 + x28 +ω11(x6 + x10 + x14 + x18 + x22 + x26)+ω20(x8 + x20)+
ω6(x12 + x24) with ω5 = ω2 +1 and m = 5, O’Keefe-Penttila hyperoval.

Note that an o-polynomial F defined on F2m has the following form [18]:

F(x) =

2m−2
2

∑
k=1

b2kx2k.

A comprehensive survey on the class H , bent functions and o-polynomias can be
found in [31], Chapter 8.

4 Vectorial Niho bent functions from o-polynomials

It is known since 2011 that every o-polynomial defines a Boolean Niho bent function
[12]. In this section, we revisit the fact that, actually, every o-polynomial on F2m de-
fines a vectorial Niho bent function from F2m×F2m to F2m . This connection has been
originally observed in [30]. In the present paper, we derive this result by studying some
simple transformations of o-polynomials.

Below we show that in some cases, affine equivalence of o-polynomials yields EA-
equivalence of the corresponding Niho bent functions. Note that in general if a function
F ′ is affine equivalent to an o-polynomial F then F ′ is not necessarily an o-polynomial.

Lemma 1. Let F be an o-polynomial defined on F2m and a,b ∈ F∗2m . Then G(x) =

aF(bx) is an o-polynomial on F2m if and only if a =
1

F(b)
(or, what is the same,

b = F−1(a−1)). The Niho bent functions defined by the o-polynomials F and G =
1

F(b)
F(bx) are affine equivalent.

Proof. Suppose G(x) = aF(bx) is an o-polynomial, then G(0) = aF(0) = 0 for any

a,b ∈ F2m and 1 = G(1) = aF(b), hence G is an o-polynomial if and only if a =
1

F(b)
.

The Niho bent function corresponding to the o-polynomial F is f (x,y) = Trm(xF(y
x)),

and the one corresponding to G is
g(x,y) = Trm(xG(y

x)) = Trm(xaF(by
x)) = Trm(xaF(aby

ax )) = Trm(vF(u
v)),

where v = ax , u = aby. Hence, g = f ◦A with A(x,y) = (ax,aby), and, therefore, f and
g are affine equivalent.

Corollary 1. For every o-polynomial F defined on F2m the function xF(y
x) from F2m×

F2m to F2m is bent. That is, every o-polynomial on F2m defines a vectorial Niho bent
function xF(y

x) from F2m×F2m to F2m .

Proof. From Lemma 1 we have that for a given o-polynomial F and any a ∈ F∗2m the
function g(x,y) = Trm(axF(by

x )) is Niho bent where b = F−1(a−1). Then the function
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ḡ(x,y) = Trm(axF(y
x)) is also bent since g and ḡ are affine equivalent, that is, g =

ḡ ◦A with A(x,y) = (x,by), and clearly, such a transformation A keeps ḡ as a Niho
function.

Lemma 2. Let F be an o-polynomial on F2m and A(x) = x2 j
be an automorphism over

F2m . Then the Niho bent functions defined by o-polynomials F and G = A◦F ◦A−1 are
affine equivalent.

Proof. Obviously if F is an o-polynomial, then G(x)= (F(x2− j
))2 j

is also an o-polynomial.
Consider the Niho bent function defined by G:

g(x,y) = Trm

(
xG
(y

x

))
= Trm

(
xA◦F ◦A−1

(y
x

))
=

Trm

(
x
(

F
((y

x

)2− j))2 j)
= Trm

(
x2− j

F
((y

x

)2− j))
= Trm

(
uF
(v

u

))
,

where u = x2− j
and v = y2− j

. Thus, f and g are affine equivalent (g = f ◦ A with
A(x,y) = (x,y)2− j

).

Lemma 3. Let F be an o-polynomial on F2m and A1(x) = x+a and A2(x) = x+b for
a,b ∈ F2m . Then G = A1 ◦F ◦A2 is an o-polynomial on F2m if and only if b = F(a) and
F(a+ 1)+F(a) = 1. Furthermore, the Niho bent functions defined by o-polynomials
F and G are EA-equivalent.

Proof. Suppose G(x) = A1 ◦F ◦A2(x) = F(x+ a)+ b is an o-polynomial. Then 0 =
G(0) = F(a)+b and, therefore, F(a) = b and 1 = G(1) = F(1+a)+b = F(1+a)+
F(a).
Further we have
g(x,y) = Trm

(
xA1 ◦F ◦A2

(y
x

))
= Trm

(
x
(

F
(y

x
+a
)
+b
))

=

Trm

(
xF
(y+ax

x

))
+Trm(bx) = Trm

(
xF
(u

x

))
+Trm(bx),

where u = y + ax. Thus, g and f are EA-equivalent (g = f ◦ A + l with A(x,y) =
(x,y+ax) and l(x,y) = Trm(bx)).

5 The modified Magic action

Let F be the collection of all functions F : F2m 7→ F2m such that F(0) = 0.
The following set

PΓL(2,2m) = {x 7→ Ax2 j |A ∈ GL(2,F2m),0≤ j ≤ m−1}
is a group of transformations acting on the projective lines, i.e. on the set with the
elements of the form: {(a · x,a · y)|(x,y) 6= (0,0),x,y ∈ F2m,a 6= 0}.

An action of the group PΓL(2,2m) on F was introduced and described in [23].
Define the image of F ∈F under the transformation ψ ∈ PΓL(2,2m), ψ : x 7→ Ax2 j

,

A =

(
a b
c d

)
∈ GL(2,2m), 0≤ j ≤ m−1, as a function ψF : F2m 7→ F2m such that

ψF(x) = |A|− 1
2

[
(bx+d)F2 j

(ax+ c
bx+d

)
+bxF2 j

(a
b

)
+dF2 j

( c
d

)]
.
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This yields an action of PΓL(2,2m) on F , which is called the magic action. The magic
action takes o-permutations to o-permutations and it is a semi-linear transformation, i.e.
ψ(F +G) = ψF +ψG, for any F,G ∈F ,
ψaF = a2 jψF , for any a ∈ F2m , F ∈F , 0≤ j ≤ m−1.

Let us recall two theorems (Theorem 4 and Theorem 6) from [23]. For a given
o-polynomial F denote O(F) the oval defined by F .

Theorem 2. [23] Let F be an o-permutation on F2m and let ψ ∈ PΓL(2,2m) be ψ :

x 7→ Ax2 j
for A =

(
a b
c d

)
∈ GL(2,F2m) and 0 ≤ j ≤ m− 1. Then G = ψF is also an

o-permutation on F2m . In fact, O(G) = ψ̄(O(F)), where ψ̄ ∈ PΓL(3,2m) is defined by

ψ̄ : x 7→ Āx2 j
, where Ā =




d 0 c
bψF(d

b) |A|
1
2 aψF( c

a)
b 0 a


.

Note that the formulation of the theorem above differs from the one in [23] because
in the current paper (following notations of [8]) the points of the oval (or the hyperoval)
defined by an o-polynomial F are considered as (x,F(x),1), meanwhile in [23] the form
(1,x,F(x)) is used.

Theorem 3. [23] Let F and G be o-permutations on F2m , and suppose further that the
ovals defined by F and G, i.e. O(F) and O(G) are equivalent under PΓL(3,2m). Then
there exists ψ ∈ PΓL(2,2m) such that G = ψF.

The magic action can be also described by a collection of generators of PΓL(2,2m)
[23]:

σa : x 7→
(

a 0
0 1

)
x, σaF(x) = a−

1
2 F(ax), a ∈ F∗2m;

τc : x 7→
(

1 0
c 1

)
x, τcF(x) = F(x+ c)+F(c), c ∈ F2m;

ϕ : x 7→
(

0 1
1 0

)
x, ϕF(x) = xF(x−1);

ρ2 j : x 7→ x2 j
, ρ2 jF(x) = (F(x−2 j

))2 j
, 0≤ j ≤ m−1.

(6)

We slightly modify the magic action generators σa and τc multiplying them by appro-
priate constants to preserve the image of 1 at 1:

σ̃aF(x) =
a

1
2

F(a)
σaF(x) =

1
F(a)

F(ax), a ∈ F∗2m;

τ̃cF(x) =
1

F(1+ c)+F(c)
τcF(x) =

1
F(1+ c)+F(c)

(F(x+ c)+F(c)), c ∈ F2m.

(7)
The new set of generators

H = {σ̃a, τ̃c,ϕ,ρ2 j |0≤ j ≤ m−1,c ∈ F2m,a ∈ F∗2m
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preserves the property F(1) = 1 of the function F .
The action of the group with the new set of generators H on the set of all functions

F defined on F2m with the properties F(0) = 0 and F(1) = 1 will be called the modified
magic action.

Proposition 1. Two o-polynomials arise from equivalent hyperovals if and only if they
lie on the same orbit of the group generated by H and the inverse map.

Proof. According to the first part of Theorem 2, the magic action takes o-permutations
to o-permutations. Since the generators of the modified magic action differ from the
original magic action generators only by constant coefficient (what allows as to pre-
serve the property of F(1) = 1 for any o-polynomial F), then the modified magic action
takes o-polynomials to o-polynomials.

According to the second part of Theorem 2, if two o-permutations lie on the same
orbit under the magic action, then the corresponding ovals are equivalent and have fixed
nucleus (0,1,0).
Now suppose that two o-polynomials lie on the same orbit under the modified magic
action and the inverse map. Since each o-polynomial is an o-permutation, then the cor-
responding ovals defined by o-polynomials are equivalent and have nucleus (0,1,0).
As we know, each oval is contained in a unique hyperoval, which is obtained by adding
nucleus to the points of oval. So, hyperovals defined by the o-polynomials on the
same orbit under the modified magic action are equivalent. Also it is well known that
o-polynomials F and F−1 define equivalent hyperovals. Thus, we conclude that hyper-
ovals defined by the o-polynomials on the same orbit under the modified magic action
and the inverse map are equivalent.

Let’s show the converse statement. Suppose that hyperovals H (F) and H (G)
defined by o-polynomials F and G are equivalent. It means that there is a collineation
which maps H (F) to H (G). Consider the preimage of (0,1,0) under this collineation,
there are 3 possible cases:

1. The preimage of (0,1,0) is (0,1,0). It means that this collineation fixes point
(0,1,0). So deleting this point from hyperovals H (F) and H (G), we will get equiv-
alent ovals with fixed nucleus, hence by Theorem 3, their generator o-polynomials are
on the same orbit under the magic action, hence under the modified magic action.

2. The preimage of (0,1,0) is (1,0,0). Since hyperovals defined by o-polynomial
and its inverse o-polynomial are equivalent, then hyperoval H (F) is equivalent to a
hyperoval H (F−1) and by the corresponding collineation the point (1,0,0) has preim-
age (0,1,0). So, at the end we have that hyperovals H (F−1) and H (G) are equivalent
and the preimage of (0,1,0) is (0,1,0). Hence by the previous case 1 (and the fact that
an o-polynomial and its inverse belong to the same orbit under modified action and the
inverse) o-polynomials F and G are on the same orbit under modified magic action and
the inverse map.

The following diagram illustrates the previous decisions.

H (F−1) ∼= H (F) ∼= H (G)

∈ ∈ ∈

(0,1,0) 7→ (1,0,0) 7→ (0,1,0)
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3. The preimage of (0,1,0) is (t, f (t),1). Choose an element ϕ of PΓL(2,2m)
taking (1, t) to (0,1) (such authomorphism always exist, for example it can be defined

by matrix A =

(
0 0
1 0

)
). Applying ϕ to F we will get a hyperoval H (ϕF) equivalent

to H (G) where the preimage of (0,1,0) is (1,0,0). Because of the case 2, we get that
ϕF and G belong to the same orbit under the modified magic action and the inverse
map and so do F and G.

We formulate the next theorem without proof. First this result was announced in
September 2014 at the Forth Isree Conference ”Finite Geometries” [9] by the authors
of this paper, the complete proof can be found in [1].

Theorem 4. Two Niho bent functions are EA-equivalent if and only if the corresponding
ovals are equivalent. Hence, the number of EA-equivalence classes of Niho bent func-
tions arising from a hyperoval of PG(2,2m) is the number of orbits of the collineation
stabiliser of the hyperoval on the points of the hyperoval.

6 Niho bent functions and the modified magic action

A group of transformations of order 24 with 3 generators preserving o-polynomials
was considered in [8]. This group of transformations is a subgroup of the group with
the (modified) magic action generators and the inverse map. Precisely, they are the
transformations generated by ϕ , τ̃1 = τ1 and the inverse map. Only 4 of these transfor-
mations can lead to EA-inequivalent Niho bent functions [8].

As a continuation of the work of [8], let’s consider the modified magic action gener-
ators, and the inverse map and see which of them give rise to EA-inequivalent Niho bent
functions. From Proposition 1 it is clear that o-polynomials on the same orbit under the
modified magic action and the inverse map and only they are projectively equivalent.
Since we are interested in EA-inequivalent Niho bent functions arising from projec-
tively equivalent o-polynomials, we focus on the orbits of the modified magic action
together with the inverse map. We prove below that to get EA-inequivalent Niho bent
functions from a given o-polynomial it is sufficient to use only τ̃ and ϕ generators to-
gether with inverse map while ρ and σ̃ do not play any role in it. Moreover, we show
that all EA-inequivalent Niho bent functions can be obtained from a special formula.

6.1 Preliminary results

Following notations of [8] the generator ϕ will be denoted by ′ when needed. Let’s
recall the set of generators

H = {τ̃c, σ̃a, ′,ρ2 j |c ∈ F2m,a ∈ F∗2m,0≤ j ≤ m−1},
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where

σ̃aF(x) =
1

F(a)
F(ax), a ∈ F∗2m;

τ̃cF(x) = αc
FτcF(x) = αc

F(F(x+ c)+F(c)), c ∈ F2m,where αc
F =

1
τcF(1)

;

F ′(x) = ϕF(x) = xF(x−1);

ρ2 jF(x) = (F(x−2 j
))2 j

, 0≤ j ≤ m−1;

and prove a few statements about the generators of magic action and the inverse map.

Lemma 4. Let F be an o-polynomial on F2m . Then the following identities hold:

τ̃c ◦ τ̃dF = τ̃c+dF, (8)
σ̃a ◦ σ̃bF = σ̃abF, (9)

ρ2 j ◦ρ2iF = ρ2 j+iF, (10)

where a,b ∈ F∗2m , c,d ∈ F2m, 0≤ i, j ≤ m−1.

Proof. To prove the first equality note that

τc ◦ τdF(x) = τdF(x+ c)+ τdF(c) = F(x+ c+d)+F(d)+F(c+d)+F(d) =
F(x+ c+d)+F(c+d) = τc+dF.

Since magic action is a semilinear transformation we get:

τ̃c ◦ τ̃dF(x) =
1

F(1+d)+F(d)
1

τ̃dF(1+ c)+ τ̃d(c)
τc(τd(F(x)) =

1
F(1+d)+F(d)

F(1+d)+F(d)
F(1+d + c)+F(d + c)

τc+dF(x) =

1
F(1+d + c)+F(d + c)

τc+dF(x) = τ̃c+dF(x).

The other two equalities are straightforward to prove:

σ̃a ◦ σ̃bF =
1

σ̃bF(a)
σ̃bF(ax) =

1
1

F(b)F(ab)
1

F(b)
F(abx) =

1
F(ab)

F(abx) = σ̃abF(x),

ρ2i ◦ρ2 jF(x) = ρ2i(F(x
1

2 j ))2 j
= F(x

1
2 j+i )2 j+i

= ρ2i+ jF(x).

Corollary 2. Let F be an o-polynomial on F2m and k a positive integer. Then

(σ̃a1 ◦ σ̃a2 ◦ . . .◦ σ̃ak)F = σ̃a1·a2·...·akF,
(τ̃c1 ◦ τ̃c2 ◦ . . .◦ τ̃ck)F = τ̃c1+c2+...ckF,

(ρ2i1 ◦ρ2i2 ◦ . . .◦ρ2ik )F = ρ2i1+i2+...+ik F,

where a1, . . . ,ak ∈ F∗2m,c1, . . . ,ck ∈ F2m , 0≤ i j ≤ m−1 for all j ∈ {1, . . . ,k}.
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Proof. The proof follows by induction using Lemma 4.

Lemma 5. Let F be an o-polynomial on Fm
2 . Then the following identities hold:

(τ̃cF)−1(x) = τ̃F(c)F
−1
( 1

αc
F

x
)
, (11)

(σ̃aF)−1(x) = σ̃F(a)F
−1(x), (12)

(ρ2 jF)−1(x) = ρ2 jF−1(x), (13)

where a ∈ F∗2m , c ∈ F2m and 0≤ j ≤ m−1.

Proof. It is easy to see that τ̃F(c)F−1
(

1
αc

F

)
= 1, therefore

(τ̃cF)−1(x) = (αc
F(F(x+ c)+F(c)))−1 = F−1

( 1
αc

F
x+F(c)

)
+ c =

F−1
( 1

αc
F

x+F(c)
)
+F−1(F(c)) = τ̃F(c)F

−1
( 1

αc
F

x
)
.

Equalities (12) and (13) are straightforward to prove:

(σ̃aF)−1(x) =
( 1

F(a)
F(ax)

)−1
=

1
a

F−1(F(a)x) = σ̃F(a)F
−1(x),

(ρ2 jF)−1(x) = ((F(x2− j
))2 j

)−1 = (F(x2− j
)−1)2 j

= ρ2 jF−1(x).

Lemma 6. Let F be an o-polynomial on F2m . Then the following identities hold:

τ̃c ◦ρ2 jF = ρ2 j ◦ τ̃
c2− j F, (14)

τ̃c ◦ σ̃aF = σ̃a ◦ τ̃acF, (15)
(ρ2 jF)′ = ρ2 jF ′ (16)
(σ̃aF)′ = σ̃ 1

a
F ′, (17)

where a ∈ F∗2m , c ∈ F2m, 0≤ j ≤ m−1.

Proof. To prove the first equality, transform its left and right sides.

τ̃c ◦ρ2 jF(x) = αc
ρ2 j F(ρ2 jF(x+ c)+ρ2 jF(c)) =

αc
ρ2 j F((F((x+ c)2− j

))2 j
+(F(c2− j

))2 j
) = αc

ρ2 j F((F(x2− j
+ c2− j

))2 j
+(F(c2− j

))2 j
) =

αc
ρ2 j F(F(x2− j

+ c2− j
)+F(c2− j

))2 j

On the other hand,

ρ2 j ◦ τ̃
c2− j F(x) = (τ̃

c2− j F(x2− j
))2 j

= (αc2− j

F (F(x2− j
+ c2− j

)+F(c2− j
))2 j

.
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So, it is left to check that (αc2− j

F )2 j
= αc

ρ2 j F . Indeed,

αc
ρ2 j F =

1
ρ2 jF(1+ c)+ρ2 jF(c)

=
1

(F((1+ c)2− j
))2 j

+(F(c2− j
))2 j =

( 1
F(1+ c2− j

)+F(c2− j
)

)2 j

= (αc2− j

F )2 j
.

Thus we proved that τ̃c ◦ρ2 jF = ρ2 j ◦ τ̃
c2− j F .

Computing the left and the right sides of equality (15) we get

τ̃c ◦ σ̃aF(x) = αc
σ̃aF(σ̃aF(x+ c)+ σ̃aF(c)) = αc

σ̃aF(
1

F(a)
F(a(x+ c))+

1
F(a)

F(ac)),

σ̃a ◦ τ̃acF(x) =
1

τ̃acF(a)
αac

F (F(ax+ac)+F(ac)).

Note that the coefficients
1

F(a)
αc

σ̃aF and
1

τ̃acF(a)
αac

F are equal which means that

τ̃c ◦ σ̃aF = σ̃a ◦ τ̃acF. Indeed,

1
F(a)

αc
σ̃aF =

1
F(a)

1
σ̃aF(1+ c)+ σ̃aF(c)

=
1

F(a)
F(a)

F(a(1+ c))+F(ac)
=

1
F(a+ac)+F(ac)

,

1
τ̃acF(a)

αac
F =

F(1+ac)+F(ac)
F(a+ac)+F(ac)

1
F(1+ac)+F(ac)

=
1

F(a+ac)+F(ac)
.

The remaining two equalities are proved similarly. For (16) we get

ρ2 jF ′(x) = (F ′(x2− j
))2 j

= (x2− j
F(

1
x2− j ))

2 j
= x(F(

1
x2− j ))

2 j
= xρ2 jF(

1
x
) = (ρ2 jF)′(x).

Transforming both sides of Equality (17) we get

(σ̃aF)′(x) = xσ̃aF
(1

x

)
=

x
F(a)

F
(a

x

)
.

σ̃ 1
a
F ′(x) =

1
F ′(1

a)
F ′
(x

a

)
=

a
F(a)

x
a

F
(a

x

)
=

x
F(a)

F
(a

x

)
.

6.2 EA-inequivalent Niho bent functions and orbits

Further we need the following equality from [8]

((F ′)−1)′ = ((F−1)′)−1 (18)

Let’s introduce a few notations. Denote by gF the Niho bent function defined by an
o-polynomial F . When Niho bent functions gF and gF̄ are EA-equivalent (respectively,
EA-inequivalent), we will write gF ∼EA gF̄ (respectively, gF �EA gF̄ ). We will use no-

tation ”A
(p)
= B”, when the expression B is obtained from the expression A using equality

number p.
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Theorem 5. Let F be an o-polynomial. Then an o-polynomial F̄ obtained from F using
one generator of the modified magic action and the inverse map can produce a Niho
bent function EA-inequivalent to those defined by F and F−1 only if F̄ = (F ′)−1.

Proof. Assume F̄ is an o-polynomial which is obtained from o-polynomial F using
one generator of the modified magic action and the inverse map, i.e. F̄ has one of the
following forms: hF,hF−1,(hF)−1,(hF−1)−1, where h ∈ H.

As we show below, when h is σ̃a, τ̃c or ρ2 j , F̄ defines a Niho bent function EA-
equivalent to those defined by F or F−1.

a) Let h be σ̃a,a ∈ F∗2m . Then hF(x) = σ̃aF(x) = 1
F(a)F(ax) and by Lemma 1, the

corresponding Niho bent function is EA-equivalent to those defined by F . By the same
reason hF−1 = σ̃aF−1 and F−1 define EA-equivalent Niho bent functions. Further note
that

(hF)−1(x) = (σ̃aF)−1(x)
(12)
= σ̃F(a)F

−1(x).

Hence, g(σ̃aF)−1 ∼EA gF−1 and

(hF−1)−1(x) = (σ̃aF−1)−1(x)
(12)
= σ̃F−1(a)(F

−1)−1(x) = σ̃F−1(a)F(x),

and therefore g(σ̃aF−1)−1 ∼EA gF .
b) Suppose h is τ̃c with c ∈ F2m . Then hF(x) = τ̃cF(x) = αc

F(F(x+ c)+F(c)) and
hF−1(x) = τ̃cF−1 define Niho bent functions EA-equivalent to those defined by F and
F−1 respectively (by Lemma 3). Hence,

(hF)−1(x) = (τ̃cF(x))−1(x)
(11)
= τF(c)F

−1((αc
F)
−1x)

yields that g(hF)−1 ∼EA gF and from

(hF−1)−1(x) = (τ̃cF−1)−1(x)
(11)
= τF−1(c)(F

−1)−1
( 1

αc
F−1

x
)
= τF−1(c)F

( 1
αc

F−1
x
)

follows g(hF−1)−1 ∼EA gF .

c) Take now h = ρ2 j with 0≤ j ≤ m−1. Then hF(x) = ρ2 jF(x) = (F(x2−i
))2i

and
hF−1(x) = ρ2 jF−1 = (F−1(x2−i

))2i
, and by Lemma 2 we get that gρ2 j F and gρ2 j F−1 are

EA-equivalent to gF and gF−1 , respectively. Therefore, from (hF)−1(x)= (ρ2 jF)−1(x)
(13)
=

ρ2 jF−1 and

(hF−1)−1(x)= (ρ2 jF−1)−1 (13)
= ρ2 jF it follows that g(ρ2 j F)−1 ∼EA gF−1 and g(ρ2 j F−1)−1 ∼EA

gF .
d) Consider h = ′. The Niho bent function defined by an o-polynomial hF(x) =

F ′(x) = xF(x−1) is

gF ′(x,y) = Trm(x(F ′(
y
x
))) = Trm(x

y
x

F((
y
x
)−1)) = Trm(yF(

x
y
)) = gF(y,x),

i.e. gF ′ ∼EA gF . Similarly, g(F−1)′ ∼EA gF−1 .
The function (hF)−1(x)= (F ′)−1(x)= (xF(x−1))−1 can define a Niho bent function

EA-inequivalent to those defined by F and F−1. For example, an o-monomial x2i
de-

fines three surely EA-inequivalent Niho bent functions corresponding to o-polynomials
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F , F−1 and (F ′)−1 [8].
Using equality (18), we immediately get that a Niho bent function defined by the o-
polynomial (hF−1)−1(x) = ((F−1)′)−1(x) is EA-equivalent to one defined by (F ′)−1.

We rewrite the equalities of Lemmas 4, 5 and 6 in a more compact way. Equalities
(8) - (10) as

hb1 ◦hb2F = hb3F, (19)

where hb1,hb2,hb3 are the same generators from the set H \{′}with different parameters
b1,b2,b3 ∈ F2m .
Equalities (11) - (13) as

(hb1F)−1 = hb2F−1, (20)

where hb1,hb2 are the same generators from the set H \ {′} with different parameters
b1,b2 ∈ F2m . Note that right and left parts of the equality (11) have different arguments,
but it does not play any role in our study of EA-equivalence of resulting Niho bent
functions.
Equalities (14) - (15) as

τ̃c1 ◦hbF = hb ◦ τ̃c2F, (21)

where hb ∈ {σ̃a,ρ2 j}. And equalities (16) - (17) as

(hb1F)′ = hb2F ′, (22)

where hb1,hb2 are the same generators from the set {σ̃a,ρ2 j} with different parameters
b1,b2 ∈ F2m .

To make the formulation of the next theorem more visual instead of using the no-
tation ′ we will use the initial one, i.e. ϕ . We will also refer to the original notation ϕ
in some parts of the proof when convenient. Further, by ”reduce o-polynomial” we
mean that the original o-polynomial and the new one (reduced) define EA-equivalent
Niho bent functions. When we are saying ”delete generator” we mean that if we skip
this generator the new o-polynomial will define a Niho bent function EA-equivalent to
one generated by the original o-polynomial.

Let i be a positive integer and ki ≥ 0. By Hi we denote a composition of length ki of
generators ϕ and τ̃c following each other as follows:

Hi = ϕ ◦ τ̃ci1
◦ϕ ◦ τ̃ci2

◦ . . .
︸ ︷︷ ︸

ki

(23)

That is, if F is an o-polynomial and we denote Tj = ϕ ◦ τ̃ci j
, 0≤ j < (ki +1)/2 then

HiF =





F if ki = 0,
ϕF if ki = 1,
T1 ◦ . . .◦TsiF if ki = 2si,

T1 ◦ . . .◦Tsi ◦ϕF if ki = 2si +1.
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In the theorem below we prove that for a given o-polynomial we can derive all EA-
inequivalent Niho bent functions only using transformations ϕ , τ̃c and the inverse map
in a special sequence.

Theorem 6. Let F be an o-polynomial, gF the corresponding Niho bent function and
GF the class of all functions o-equivalent to gF . Then o-polynomials of the form

(H1(H2(H3(. . .(HqF)−1 . . .)−1)−1)−1, (24)

where Hi is defined by (23), for all i ∈ {1 . . .q}, q ≥ 1, and ki ≥ 1 for i ≥ 3, ki ≥ 0 for
i≤ 2, provide representatives for all EA-equivalence classes within GF . That is, up to
EA-equivalence, all Niho bent functions o-equivalent to gF arise from (24).

Proof. Note first that we can get F itself in the form (24) if we take q = 2, k1 = k2 = 0.
if q = 1 and k1 = 0 then we get F−1. Further we have a restriction ki ≥ 1 for i ≥ 3 to
avoid repetitions.

According to Proposition 1 any function o-equivalent to gF corresponds to an o-
polynomial of the form

h1 ◦h2 ◦ . . .◦hkF, (25)

where h1,h2, . . . ,hk (for some k ≥ 0) are generators of the modified magic action and
the inverse map. Our aim is to simplify this expression to exclude as many cases lead-
ing to EA-equivalent functions as possible. That is, we exclude certain sequences of
generators which surely lead to EA-equivalent Niho bent functions. By hi j we denote
a generator of the same type as hi but with a different parameter.

From Theorem 5 it follows

a) If h1 ∈H, then gh1◦h2◦...◦hkF ∼EA gh2◦...◦hkF and we can consider reduced o-polynomial
h2 ◦ . . .◦hkF ;

b) If h1 is the inverse map and h2 ∈ H \{′} then gh1◦h2◦...◦hkF ∼EA gh1◦h3◦...◦hkF , so we
can consider the reduced o-polynomial h1 ◦h3 ◦ . . .◦hkF .

Hence, if k = 1 in (25) then we can get an EA-inequivalent case only if h1 is the inverse
map, and it corresponds to (24) with q = 1 and k1 = 0. If k = 2 in (25) (and it cannot
be reduced to the case k = 1) then we can get EA-inequivalent cases only if h1 is the
inverse map and h2 = ′, and it corresponds to (24) with q = 1 and k1 = 1. If k ≥ 3 we
can reduce (25) until at some moment we will get an o-polynomial hi ◦hi+1 ◦ . . .◦hkF ,
where hi is the inverse map and hi+1 = ′, that is, we have

((hi+2 ◦ . . .◦hkF)′)−1. (26)

Note that here and further we assume that k is large enough to allow such a redaction
while otherwise, it is easy to see that the process would stop and provide a formula (24)
for some parameters.

If hi+2 ∈ {σ̃a,ρ2 j} or hi+2 is the inverse map then we can delete the generator
hi+2 and consider the reduced o-polynomial hi ◦ hi+1 ◦ hi+3 ◦ . . . ◦ hkF . Indeed, sup-
pose hi+2 ∈ {σ̃a,ρ2 j} then

hi ◦hi+1 ◦hi+2 ◦ . . .◦hkF = ((hi+2 ◦ . . .◦hkF)′)−1 (22)
=
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(h(i+2)1 ◦ (hi+3 ◦ . . .◦hkF)′)−1 (20)
= h(i+2)2 ◦ ((hi+3 ◦ . . .◦hkF)′)−1

and, according to (a), ghi◦hi+1◦hi+2◦...◦hkF ∼EA ghi◦hi+1◦hi+3◦...◦hkF . In the case when
hi+2 is the inverse map, using (18) we get the same result that the o-polynomials
(((hi+3 ◦ . . . ◦ hkF)−1)′)−1 = ((hi+3 ◦ . . . ◦ hkF)′)−1)′ and ((hi+3 ◦ . . . ◦ hkF)′)−1 = hi ◦
hi+1 ◦hi+3 ◦ . . .◦hkF define EA-equivalent Niho bent functions.
If hi+2 is ′, then hi+1 and hi+2 eliminate each other: hi ◦ hi+1 ◦ hi+2 ◦ . . . ◦ hkF =
hi ◦ hi+3 ◦ . . . ◦ hkF . If hi+2 = τ̃c, then we cannot eliminate it from the o-polynomial
hi ◦hi+1 ◦hi+2 . . .◦hkF .

Further consider an o-polynomial hi ◦ hi+1 ◦ hi+2 ◦ . . . ◦ hkF where hi is the inverse
map, hi+1 = ′, hi+2 = τ̃c, i.e. an o-polynomial

((τ̃c ◦hi+3 ◦ . . .◦hkF)′)−1. (27)

When k = i+2 then we get ((τ̃cF)′)−1 which has the form (24) with q = 1 and k1 = 2.
Hence, in (27) we can assume that k ≥ i+ 3. Further we can reduce hi+3 from (27)
unless hi+3 is ′. Indeed, consider first hi+3 ∈ {σ̃a,ρ2 j} then

((τ̃c ◦hi+3 ◦ . . .◦hkF)′)−1 (21)
= ((hi+3 ◦ τ̃c1 ◦hi+4 ◦ . . .◦hkF)′)−1 (22)

=

(h(i+3)1 ◦ (τ̃c1 ◦ . . .◦hkF)′)−1 (20)
= h(i+3)2 ◦ ((τ̃c1 ◦hi+4 ◦ . . .◦hkF)′)−1.

The last o-polynomial defines a Niho bent function EA-equivalent to one defined by
the o-polynomial ((τ̃c1 ◦hi+4 ◦ . . .◦hkF)′)−1 = hi ◦hi+1 ◦h(i+2)1 ◦hi+4 ◦ . . .◦hkF .
If hi+3 = τ̃c1 , then using (8) we immediately get hi ◦ hi+1 ◦ hi+2 ◦ hi+3 ◦ . . . ◦ hkF =
hi ◦hi+1 ◦h(i+2)1 ◦hi+4 ◦ . . .◦hkF , where h(i+2)1 = τ̃c+c1 .
If hi+3 is the inverse map then

hi ◦hi+1 ◦hi+2 ◦hi+3 ◦ . . .◦hkF = ((τ̃c((hi+4 ◦ . . .◦hkF)−1))′)−1 (20)
=

(((τ̃c1 ◦ hi+4 ◦ . . . ◦ hkF)−1)′)−1 = (((τ̃c1 ◦ hi+4 ◦ . . . ◦ hkF)′)−1)′, defines a Niho bent
function EA-equivalent to the one defined by ((τ̃c1 ◦ hi+4 ◦ . . . ◦ hkF)′)−1 = hi ◦ hi+1 ◦
h(i+2)1 ◦hi+4 ◦ . . .◦hkF .
Note that we could eliminate hi+3 as the inverse here because it is followed by hi+2 = τ̃c,
hi+1 = ′ and hi as the inverse map.

Hence, if (25) produces a Niho bent function g EA-inequivalent to those corre-
sponding to F , F−1, (F ′)−1 and ((τ̃cF)′)−1 then g is EA-equivalent to the function
corresponding to an o-polynomial

(ϕ ◦ τ̃c′ ◦ϕ ◦hl′ ◦ . . .◦hkF)−1. (28)

Now consider an o-polynomial of the form:

(ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .◦hl ◦ . . .◦hkF)−1. (29)

Case 1. First we restrict to the case hl, . . . ,hk ∈ H when considering (29). Note
that if l is an even number in (29), then the generator ϕ acts on hl; if l is odd, then the
generator τ̃c acts on hl (for some c ∈ F2m). We consider l odd case, i.e. l = 2t +1 while
for l even case the proof is similar and we skip it.
If h2t+1 ∈ {σ̃a,ρ2 j} then

(ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .◦ τ̃ct ◦h2t+1 ◦ . . .◦hkF)−1 (21)
=
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(ϕ ◦ τ̃c1 ◦ϕ ◦ . . .◦ϕ ◦h2t+1 ◦ τ̃ct1
(h2t+2 ◦ . . .◦hkF))−1 (22)

=

(ϕ ◦ τ̃c1 ◦ϕ ◦ . . .◦h(2t+1)1 ◦ϕ(τ̃ct1
(h2t+2 ◦ . . .◦hkF)))−1 (21)

=
. . .

(h(2t+1)t (ϕ(τ̃c11
(ϕ(. . .(τ̃ct1

(h2t+2 ◦ . . .◦hkF)) . . .))))−1 (20)
=

h(2t+1)t+1(ϕ(τ̃c11
(ϕ(. . .(τ̃ct1

(h2t+2 ◦ . . .◦hkF)) . . .))))−1,
hence we can reduce the o-polynomial (ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .◦ τ̃ct ◦h2t+1◦ . . .◦hkF)−1,
and consider (ϕ ◦ τ̃c11

◦ϕ ◦ τ̃c21
◦ϕ ◦ . . .◦ τ̃ct1

◦h2t+2 ◦ . . .◦hkF)−1.
If h2t+1 = τ̃ct+1 then obviously we can consider o-polynomial
((τ̃c1(τ̃c2(. . .(τ̃ct+ct+1(h2t+2 ◦ . . .◦hkF))′ . . .)′)′)′)−1.
If h2t+1 = ′ then we cannot eliminate it.
Continuing this process we get for this case that the o-polynomial (25) can be reduced
to (ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .◦F)−1 as in (23). This corresponds to the case q = 1 in (24).

Case 2. Now we consider (29) and allow hl, . . . ,hk to be inverses too. We still as-
sume l be odd and (as we saw earlier in the proof) w.l.o.g. hl, . . . ,hk ∈{′, τ̃c, the inverse|c∈
F2m}. Take hl the inverse (the other possibilities for hl were discussed earlier in the
proof), i.e. consider the following o-polynomial:

(ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .(hl+1 ◦ . . .◦hkF)−1)−1. (30)

If hl+1 is the inverse, then it cancels with hl . If hl+1 is τ̃ct+1 , then

(ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .◦ (τ̃ct+1 ◦hl+2 ◦ . . .◦hkF)−1)−1 (20)
=

(ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .◦ τ̃c(t+1)1
(hl+2 ◦ . . .◦hkF)−1)−1,

which is of the form (30) with fewer transformations in the inner brackets.
If hl+1 is ϕ then we get (ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .◦ (ϕ ◦hl+2 ◦ . . .◦hkF)−1)−1.
If further hl+2 is τ̃ct+1 , then (ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .◦(ϕ ◦ τ̃ct+1 ◦hl+3◦ . . .◦hkF)−1)−1.

If hl+2 is the inverse or hl+2 = ϕ then we get (30). Indeed, if hl+2 = ϕ then it cancels
with hl+1, and if hl+2 is the inverse then we get:

(ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .◦ (ϕ(hl+3 ◦ . . .◦hkF)−1)−1)−1 (18)
=

(ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .◦ϕ(ϕ ◦hl+3 ◦ . . .◦hkF)−1)−1.

Continuing these process we will clearly transform (30) to (24) in a way that these
o-polynomials produce EA-equivalent Niho bent functions.

In this paper, when we say that two o-polynomials F and F ′ define potentially EA-
inequivalent Niho bent functions gF and gF ′ , it means that either in some cases gF
and gF ′ are EA-inequivalent, or it is not possible to deduce EA-equivalence with the
developed technique which leaves a possibility that gF and gF ′ may be EA-inequivalent.

Below we consider some particular cases of formula (24).

Corollary 3. Let F be an o-polynomial defined on F2m . Then o-polynomials

F◦c (x) =
(

αc
Fx
(

F
(1

x
+ c
)
+F(c)

))−1
, c ∈ F2m (31)

define a sequence of Niho bent functions gF◦c potentially EA-inequivalent to each other
for different c, and EA-inequivalent to Niho bent functions defined by F, F−1.
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Proof. o-polynomial (31) is the explicit form of o-polynomial (24) for q = 1,k1 = 2.
Indeed,

((τ̃cF)′)−1(x) =
(

xτ̃cF
(

1
x

))−1
=
(

αc
Fx
(

F
(

1
x + c

)
+F(c)

))−1
.

Note that F◦c = (F ′)−1 for c = 0. Hence, the o-polynomial (F ′)−1 is included in the
class of o-polynomials F◦c .

For c = 1 we get the function F◦=
(

x
(

F
(

1
x +1

)
+1
))−1

studied in [8] and which can

define a Niho bent function EA-inequivalent to those defined by F , F−1 and (F ′)−1.
For instance, when F(x) = x2i

, gF◦ is EA-inequivalent to gF , gF−1 and g(F ′)−1[8].
Using the equality (8) for every c ∈ F2m we can write:

F◦c = ((τ̃cF)′)−1 = ((τ̃1 ◦ τ̃c+1F)′)−1 = (τ̃c+1F)◦.

Since F◦, F , F−1 and (F ′)−1 can define four potentially EA-inequivalent Niho bent
functions, we obtain that F◦c can define Niho bent functions potentially EA-inequivalent
to those defined by τ̃c+1F , (τ̃c+1F)−1, ((τ̃c+1F)′)−1. It means that, for any c ∈ F2m a
Niho bent function gF◦c can be potentially EA-inequivalent to gF , gF−1 and gF◦c+1

.

Corollary 4. Let F be an o-polynomial defined on F2m . Then o-polynomials

(F∗c )
−1 =

(
αc

F ′

(
(1+ cx)F

( x
1+ cx

)
+ cxF

(1
c

)))−1
, c ∈ F2m (32)

define Niho bent functions g(F∗c )−1 which can potentially be EA-inequivalent to each
other for different c and EA-inequivalent to Niho bent functions defined by F, (F ′)−1.

Proof. o-polynomial (32) is the explicit form of o-polynomial (24) for q= 1 and k1 = 3.
Indeed,

((τ̃cF ′)′)−1(x) =
(

αc
F ′x
((

F ′
(1

x
+ c
)
+F ′(c)

))−1
=

(
αc

F ′x
(1+ cx

x
F
( x

1+ cx

)
+ cF

(1
c

)))−1
=

(
αc

F ′

(
(1+ cx)F

( x
1+ cx

)
+ cxF

(1
c

)))−1
.

Note that (F∗0 )
−1 = F−1. So the o-polynomial F−1 is included in the class of o-

polynomials (F∗c )
−1 with c = 0.

For c = 1 we get the function (F∗1 )
−1 = ((x+1)F( x

x+1)+ x)−1 also studied in[8], and
the Niho bent function associated with it is EA-equivalent to the one defined by F◦

[8]. But in the general case, for arbitrary c ∈ F2m we can’t say that (F∗c )
−1 defines an

o-polynomial EA-equivalent to those defined by F and F◦c .
Using equalities (8) and (31) note that (F∗c )

−1 = (F ′)◦c = (τ̃c+1F ′)◦.
Hence, we can say that (F∗c )

−1 = (F ′)◦c defines a Niho bent function potentially EA-
inequivalent to Niho bent functions defined by F ′, (F ′)−1 and (F ′)◦c+1 = (F∗c+1)

−1.

6.3 The case of o-monomials and the known o-polynomials

Further we study the consequences of the obtained results for the particular cases of
o-monomials and the known o-polynomials.
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Lemma 7. For an o-monomial F(x) = xd , the Niho bent functions defined by F◦c and
F◦ are EA-equivalent, for any c ∈ F∗2m .

Proof. We have for c 6= 0

F◦c (x) = (ϕ ◦ τ̃cF)−1 =
(

αc
Fx
((

F
(1

x
+ c
)
+F(c)

))−1
=

(
αc

Fx
((1

x
+ c
)d

+ cd
))−1

=
(

αc
Fx
((1+ cx

x

)d
+ cd

))−1
=

(
αc

Fcdx
((1+ cx

cx

)d
+1
))−1

=
(

αc
Fcd−1cx

((1+ cx
cx

)d
+1
))−1

=
1
c

F◦
( 1

αc
Fcd−1 x

)
.

From Lemma 1 it follows that Niho bent functions defined by F◦c and F◦ are EA-
equivalent for any c 6= 0.

From the proof of the previous lemma it is easy to see that for any o-monomial F

ϕ ◦ τ̃cF(x) = βc ϕ ◦ τ1F(cx), (33)

where βc = αc
Fcd−1,c ∈ F∗2m .

Lemma 8. For an o-monomial F(x) = xd , the Niho bent functions defined by (F∗c )
−1,

(F∗)−1 and F◦ are EA-equivalent, for c ∈ F∗2m .

Proof. F∗(x) = (x+1)F( x
x+1)+ x = (x+1)( x

x+1)
d + x.

For c 6= 0 we have

(F∗c )
−1(x) = (ϕ ◦ τc ◦ϕF)−1 =

(
αc

F ′

(
(1+ cx)F

( x
1+ cx

)
+ cxF

(1
c

)))−1
=

(
αc

F ′

(
(1+ cx)

( x
1+ cx

)d
+ cx

(1
c

)d))−1
=

(
αc

F ′

(1
c

)d(
(1+ cx)

( cx
1+ cx

)d
+ cx

))−1
=

1
c
(F∗)−1

( cd

αc
F ′

x
)
.

Using Lemma 1, we conclude that the Niho bent functions defined by (F∗)−1 and
(F∗c )

−1 are EA-equivalent for c 6= 0. According to [8], the Niho bent function defined
by (F∗)−1 and F◦ are EA-equivalent, and taking into account Lemma 7, we get that
Niho bent functions defined by (F∗c )

−1, (F∗)−1 and F◦ are EA-equivalent to each other
for any c 6= 0.

From the proof of above lemma it is easy to see that for any o-monomial F

ϕ ◦ τ̃c ◦ϕF(x) = γc ϕ ◦ τ1 ◦ϕF(cx). (34)

where γc = αc
F ′c

d−1,c ∈ F∗2m,F ′ = ϕF .

Further we will need the following equality, which holds for any o-polynomial F

ϕ ◦ τ1 ◦ϕF = τ1 ◦ϕ ◦ τ1F. (35)
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Indeed,

τ1 ◦ϕ ◦ τ1F(x) = (1+ x)
(

F
( 1

1+ x
+1
)
+1
)
+1 = (1+ x)F

( x
1+ x

)
+ x =

ϕ ◦ τ1 ◦ϕF(x).

To keep notations as simple as possible, since we are interested in EA-equivalence
of Niho bent functions and coefficients of arguments of o-polynomial do not affect on
EA-equivalence of Niho bent functions as well as coefficient of o-polynomial, then
instead of aF(bx) = G(x) we will write F ≈ G for a,b ∈ F∗2m .

Lemma 9. Let F be an o-monomial defined on F2m . Then

ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .︸ ︷︷ ︸
k

F ≈









τ1F, if t ≡ 0 mod 4;
ϕ ◦ τ1F, if t ≡ 1 mod 4;
τ1 ◦ϕF, if t ≡ 2 mod 4;
ϕ ◦ τ1 ◦ϕF, if t ≡ 3 mod 4;

if k = 2t





τ1 ◦ϕF, if t ≡ 0 mod 4;
ϕ ◦ τ1 ◦ϕF, if t ≡ 1 mod 4;
τ1F, if t ≡ 2 mod 4;
ϕ ◦ τ1F, if t ≡ 3 mod 4;

if k = 2t +1,

where t ≥ 1.

Proof. Assume that k = 2t, i.e. the orbit in the statment of this lemma has the form
ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .ϕ ◦ τ̃ct F . Then

1) For t = 1 we have ϕ ◦ τ̃c1F
(33)≈ ϕ ◦ τ̃1F .

2) For t = 2,

ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2F
(33)≈ ϕ ◦ τ̃c1 ◦ϕ ◦τ1F

(34)≈ ϕ ◦τ1 ◦ϕ ◦ τ̃c1F
(33)≈ ϕ ◦τ1 ◦ϕ ◦τ1F

(35)≈ ϕ ◦ϕ ◦
τ̃1 ◦ϕF ≈ τ1 ◦ϕF .
3) For t = 3,

ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ τ̃c3F
2)≈ ϕ ◦ τ̃c1 ◦ τ1 ◦ϕF ≈ ϕ ◦ τ̃c1+1 ◦ϕF

(34)≈ ϕ ◦ τ1 ◦ϕF
4) For t = 4

ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ τ̃c3 ◦ϕ ◦ τ̃c4F
3)≈ ϕ ◦ τ̃c1 ◦ϕ ◦ τ1 ◦ϕF

2)≈ τ1 ◦ϕ(ϕF)≈ τ1F .

Thus for even k ,

ϕ ◦ τ̃c1 ◦ . . .◦ϕ ◦ τ̃ct−3 ◦ϕ ◦ τ̃ct−2 ◦ϕ ◦ τ̃ct−1 ◦ϕ ◦ τ̃ct F
4)≈

ϕ ◦ τ̃c1 ◦ . . .◦ϕ ◦ τ̃ct−4 ◦ τ1F ≈ ϕ ◦ τ̃c1 ◦ . . .◦ϕ ◦ τ̃ct−4+1F
4)≈

. . .




τ1F, if t ≡ 0 mod 4;

ϕ ◦ τ̃c1 ◦ τ1F
1)≈ ϕ ◦ τ1F, if t ≡ 1 mod 4;

ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ τ1F
2)≈ τ1 ◦ϕF, if t ≡ 2 mod 4;

ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ τ̃c3 ◦ τ1F
3)≈ ϕ ◦ τ1 ◦ϕF, if t ≡ 3 mod 4;

66 CHAPTER 2. PAPERS



Note that ϕF is an o-monomial, therefore we can apply the previous formula to the
case of odd k. Indeed,
ϕ ◦ τ̃c1 ◦ . . .◦ϕ ◦ τ̃ct−3 ◦ϕ ◦ τ̃ct−2 ◦ϕ ◦ τ̃ct−1 ◦ϕ ◦ τ̃ct (ϕF)≈




τ1 ◦ϕF, if t ≡ 0 mod 4;
ϕ ◦ τ1(ϕF), if t ≡ 1 mod 4;
τ1 ◦ϕ(ϕF)≈ τ1F, if t ≡ 2 mod 4;
ϕ ◦ τ1 ◦ϕ(ϕF)≈ ϕ ◦ τ1 F, if t ≡ 3 mod 4;

Lemma 10. Let F be an o-monomial defined on F2m . Then

ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .︸ ︷︷ ︸
k

(ϕ ◦ τ1F)−1 ≈









(ϕ ◦ τ1F)−1, if t ≡ 0 mod 3;
(ϕ ◦ τ1(ϕF)−1)−1, if t ≡ 1 mod 3;
(ϕ ◦ τ1 ◦ϕF−1)−1, if t ≡ 2 mod 3,

if k = 2t





(ϕ ◦ τ1F−1)−1, if t ≡ 0 mod 3;
(ϕ ◦ τ1(ϕF−1)−1)−1, if t ≡ 1 mod 3;
(ϕ ◦ τ1 ◦ϕF)−1, if t ≡ 2 mod 3,

if k = 2t +1,

(36)

where t ≥ 1.

Proof. Assume that k = 2t, i.e. the orbit in the statement of this lemma has the form
ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ . . .ϕ ◦ τ̃ct (ϕ ◦ τ1F)−1. Then

1) For t = 1 we get:

ϕ ◦ τ̃c1(ϕ ◦ τ1F)−1 (20)≈ ϕ(τ̃c11
◦ϕ ◦ τ1F)−1 (18)≈ (ϕ(ϕ ◦ τ̃c11

◦ϕ ◦ τ1F)−1)−1 (??)≈

(ϕ(ϕ ◦ τ1 ◦ϕ ◦ τ̃c11
F)−1)−1 (33)≈ (ϕ(ϕ ◦ τ1 ◦ϕ ◦ τ1F)−1)−1 (35)≈ (ϕ(τ1 ◦ϕF)−1)−1 (20)≈

(ϕ ◦ τ1(ϕF)−1)−1.
2) For t = 2

ϕ ◦ τ̃c1 ◦ϕ ◦ τc2(ϕ ◦ τ1F)−1 1)≈ ϕ ◦ τ̃c1(ϕ ◦ τ1(ϕF)−1)−1 1)≈ (ϕ ◦ τ1(ϕ(ϕF)−1)−1)−1 (18)≈
(ϕ ◦ τ1 ◦ϕF−1)−1.

3) For t = 3,

ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2 ◦ϕ ◦ τc3(ϕ ◦ τ1F)−1 2)≈ ϕ ◦ τ̃c1(ϕ ◦ τ1 ◦ϕF−1)−1 1)≈ (ϕ ◦ τ1F)−1.

Thus,

67



ϕ ◦ τ̃c1 ◦ . . .ϕ ◦ τ̃ct−2 ◦ϕ ◦ τ̃ct−1 ◦ϕ ◦ τ̃ct (ϕ ◦ τ1F)−1 3)≈

ϕ ◦ τ̃c1 ◦ . . .ϕ ◦ τ̃ct−3(ϕ ◦ τ1F)−1 3)≈
. . .



(ϕ ◦ τ1F)−1, if t ≡ 0 mod 3;

ϕ ◦ τ̃c1(ϕ ◦ τ1F)−1 1)≈ (ϕ ◦ τ1(ϕF)−1)−1, if t ≡ 1 mod 3;

ϕ ◦ τ̃c1 ◦ϕ ◦ τ̃c2(ϕ ◦ τ1F)−1 2)≈ (ϕ ◦ τ1 ◦ϕF−1)−1, if t ≡ 2 mod 3.

Note that from (18) follows that ϕ(ϕ ◦ τ1F)−1 = (ϕ(τ1F)−1)−1 =
(ϕ ◦ τ1F−1)−1. Therefor the case of odd k comes down to the previous case. Indeed,

ϕ ◦ τ̃c1 ◦ . . .ϕ ◦ τ̃ct−2 ◦ϕ ◦ τ̃ct−1 ◦ϕ ◦ τ̃ct ◦ϕ(ϕ ◦ τ1F)−1 3)≈
ϕ ◦ τ̃c1 ◦ . . .ϕ ◦ τ̃ct−2 ◦ϕ ◦ τ̃ct−1 ◦ϕ ◦ τ̃ct (ϕ ◦ τ1F−1)−1 ≈



(ϕ ◦ τ1F−1)−1, if t ≡ 0 mod 3;
(ϕ ◦ τ1(ϕF−1)−1)−1, if t ≡ 1 mod 3;
(ϕ ◦ τ1 ◦ϕF)−1, if ≡ 2 mod 3.

Lemma 11. Let F be an o-monomial. Then for q≥ 3

(H1(H2(. . .(HqF)−1 . . .)−1)−1 ≈





τ1G−1;
(ϕ ◦ τ1G)−1;
ϕ ◦ τ1G,

where G ∈ {F,(ϕF)−1,ϕF−1,F−1,(ϕF−1)−1,ϕF} and Hi are defined by (23) for all
1≤ i≤ q .

Proof. First consider the following cases:
1. q = 1. It is easy to see that from Lemma 9 follows

(H1F)−1 ≈





(τ1F)−1 ≈ τ1F−1;
(ϕ ◦ τ1F)−1;
(τ1 ◦ϕF)−1 ≈ τ1(ϕF)−1;
(ϕ ◦ τ1 ◦ϕF)−1;

=

{
τ1G−1;
(ϕ ◦ τ1G)−1,

(37)

where G ∈ {F,ϕF}

2. q = 2. Obviously from Lemma 10 we have

(H1(ϕ ◦ τ1F)−1)−1 = ϕ ◦ τ1G, (38)

where G ∈ {F,(ϕF)−1,ϕF−1,F−1,(ϕF−1)−1,ϕF}.

Using (37) and (38) we get

(H1(H2F)−1)−1 37≈





(H1 ◦ τ1G−1
1 )−1 37≈

{
τ1G−1

2 ;
(ϕ ◦ τ1G2)

−1;

(H1(ϕ ◦ τ1G1)
−1)−1 38≈ ϕ ◦ τ1G2,

(39)
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where
G1 ∈ {F,ϕF},
G2 ∈ {G−1

1 ,ϕG−1
1 }= A1,

G2 ∈ {G1,(ϕG1)
−1,ϕG−1

1 ,G−1
1 ,(ϕG−1

1 )−1,ϕG1}= A2.
It is easy to see that

A1 = {F−1,(ϕF)−1,ϕF−1,(ϕF−1)−1},

A2 = {F,(ϕF)−1,ϕF−1,F−1,(ϕF−1)−1,ϕF}.
Indeed,
if we take G1 = F in A2, then we get {F,(ϕF)−1,ϕF−1,F−1,(ϕF−1)−1,ϕF}, if we
take G1 = ϕF , then we get the same set of o-polynomials, since

(ϕ(ϕF)−1)−1 (18)
= ((ϕF−1)−1)−1 = ϕF−1.

Note that all functions in the sets A1 and A2 are o-monomials.
3. q = 3,

(H1(H2(H3F)−1)−1)−1 (39)≈





(H1 ◦ τ1G−1
2 )−1 (37)≈

{
τ1G−1

3 ;
(ϕ ◦ τ1G3)

−1,

(H1(ϕ ◦ τ1G2)
−1)−1 (38)≈ ϕ ◦ τ1G3

(H1 ◦ϕ ◦ τ1G2)
−1 (37)≈

{
τ1G̃−1

3 ;
(ϕ ◦ τ1G̃3)

−1,

where G3 ∈ {G−1
2 ,ϕG−1

2 }, G3 ∈ {G2,ϕG−1
2 ,(ϕG2)

−1,G−1
2 ,(ϕG−1

2 )−1,ϕG2},
G̃3 ∈ {G2,ϕG2}, G2 ∈ A1, G2 ∈ A2.
Substituting in the corresponding sets o-monomials from A1 and A2, using (18), we get
that G3,G3, G̃3 belong to A2, therefore

(H1(H2(H3F)−1)−1)−1 ≈





τ1G−1
3 ;

ϕ ◦ τ1G3;
(ϕ ◦ τ1G3)

−1,

where G3 ∈ A2 = {F,(ϕF)−1,ϕF−1,F−1,(ϕF−1)−1,ϕF}.

We are going to prove this lemma by induction on the length of orbit q. For q = 3
the statement of the lemma is true as we saw above. Suppose that it is true for any
l ≤ q−1 and l ≥ 3. By our assumption:

(H1(H2(. . .(HqF)−1 . . .)−1)−1 ≈





(H1 ◦ τ1G−1)−1 (37)≈
{

τ1G−1
1 ;

(ϕ ◦ τ1G1)
−1,

(H1(ϕ ◦ τ1G)−1)−1 (38)≈ ϕ ◦ τ1G1,

(H1 ◦ϕ ◦ τ1G)−1 (37)≈
{

τ1G̃−1
1 ;

(ϕ ◦ τ1G̃1)
−1,

where G∈A2, G1 ∈{G−1,ϕG−1}, G1 ∈{G,(ϕG)−1,ϕG−1,G−1,(ϕG−1)−1,ϕG}, G̃1 ∈
{G,ϕG}. By straightforward computations it is easy to see that all of the sets are equal
to A2, thus
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(H1(H2(. . .(HqF)−1 . . .)−1)−1 ≈





τ1G−1;
(ϕ ◦ τ1G)−1;
ϕ ◦ τ1G,

where G ∈ {F,(ϕF)−1,ϕF−1,F−1,(ϕF−1)−1,ϕF}, which proves our statement.

Proposition 2. The modified magic action and the inverse map applied to o-monomials
give at most 4 EA-inequivalent functions. For an o-monomial F the 4 potentially EA-
inequivalent bent functions are defined by F,F−1,(F ′)−1 and F◦.

Proof. We use Lemma 11 and discuss the cases q = 1,2 and q≥ 3 separately.
1. q = 1. According to (37) (H1F)−1 has the following two forms τ1G−1 and

(ϕ ◦ τ1G)−1, where G ∈ {F,ϕF}. The first function obviously defines Niho bent func-
tions EA-equivalent to one defined by G−1 and therefore to those defined by F−1 and
(ϕF)−1 . The second function defines Niho bent functions EA-equivalent to one de-
fined by F◦ ( by Lemma 8 ).

2. q = 2 . From (39) we have:

(H1(H2F)−1)−1 ≈





τ1G−1
2 ;

(ϕ ◦ τ1G2)
−1;

ϕ ◦ τ1G2,
where
G2 ∈ {F−1,(ϕF)−1,ϕF−1,(ϕF−1)−1},
G2 ∈ {F,(ϕF)−1,ϕF−1,F−1,(ϕF−1)−1,ϕF}.

Obviously, τ1G−1
2 and ϕ ◦ τ1G2 define Niho bent function EA-equivalent to those

defined by G−1
2 and G2 respectively, which in their turn define Niho bent functions EA-

equivalent to F,F−1 and (F ′)−1. (ϕ ◦ τ1G2)
−1 defines functions EA-equivalent to one

defined by F◦. Indeed, (ϕ ◦ τ1G2)
−1 has one of the following forms:

• (ϕ ◦ τ1F−1)−1 (20)
= (ϕ(τ1F)−1)−1 (18)

= ϕ(ϕ ◦ τ1F)−1 defines Niho bent function EA-
equivalent to (ϕ ◦ τ1F)−1 = F◦

• (ϕ ◦ τ1 ◦ϕF−1)−1, by Lemma 8 defines Niho bent functions EA-equivalent to (ϕ ◦
τ1F−1)−1 = (ϕ(τ1F)−1)−1 (18)

= ϕ(ϕ ◦ τ1F)−1, which defines functions EA-equivalent
to one defined by (ϕ ◦ τ1F)−1 = F◦ ;

• (ϕ ◦τ1(ϕF)−1)−1 (20)
= (ϕ(τ1◦ϕF)−1)−1 (18)

= ϕ(ϕ ◦τ1◦ϕF)−1 defines Niho bent func-
tion EA-equivalent to F◦(by Lemma 8);

• (ϕ ◦ τ1(ϕF−1)−1)−1 = (ϕ ◦ τ1 ◦ ϕ(ϕF)−1)−1 (35)
= (τ1 ◦ ϕ ◦ τ1(ϕF)−1)−1 (20)

= τ1(ϕ ◦
τ1(ϕF)−1)−1 defines Niho bent function EA-equivalent to (ϕ ◦ τ1(ϕF)−1)−1, which
by the previous case defines Niho bent function EA-equivalent to F◦.

3. For q≥ 3 by Lemma 11,

(H1(H2(. . .(HqF)−1 . . .)−1)−1 ≈





τ1G−1;
(ϕ ◦ τ1G)−1;
ϕ ◦ τ1G,

where G ∈ {F,(ϕF)−1,ϕF−1,F−1,(ϕF−1)−1,ϕF}.
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τ1G−1 and ϕ ◦ τ1G define Niho bent function EA-equivalent to G−1 and G corre-
spondingly, which in their turn define Niho bent functions EA-equivalent to F,F−1 and
(ϕF)−1.
(ϕ ◦ τ1G)−1 defines Niho bent functions EA-equivalent to F◦. Indeed, for G equals to
F−1,(ϕF)−1,ϕF−1,(ϕF−1)−1, we already prove it in the case q = 2. If G = ϕF , then
(ϕ ◦ τ1G)−1 = (ϕ ◦ τ1 ◦ϕF)−1 which defines Niho bent function EA-equivalent to one
defined by F◦ (by Lemma 8). If G = F , then (ϕ ◦ τ1F)−1 = F◦.

Proposition 3. The modified magic action and the inverse map applied to the Frobenius
map, give exactly 3 EA-inequivalent functions corresponding to F, F−1, (F ′)−1.

Proof. For the Frobenius map F(x) = x2i
we have: F◦ = (F ′)−1 = x

1
1−2i . Hence by

Proposition 2, F can potentially define 3 EA-inequivalent Niho bent functions corre-
sponding to F , F ′ and (F ′)−1. This 3 o-polynomials define 3 surly EA-inequivalent
Niho bent functions [8].

The Payne o-polynomial can be represented via Dickson polynomials. Let us recall
Dickson Polynomials. For every non-negative integer d Dickson polynomials Dd(x)
over F2m can be defined by a recursion relation in the following way:
D0(x) = 0,D1(x) = x, Dd+2(x) = xDd+1 +Dd(x), for all integers d ≥ 0.
It satisfies the following properties:
1. Dd ◦Dd′ = Ddd′ .
2. If d is co-prime with 2m−1, then Dd is a permutational polynomial.

Using Dickson polynomials we can prove the following results for the Payne o-
polynomials.

Lemma 12. Let F(x) = x
1
6 + x

1
2 + x

5
6 . Then F◦c = (F∗c )

−1 for any c ∈ F2m .

Proof. Note first, that F(x) = x
1
6 +x

1
2 +x

5
6 = D5(x

1
6 ). Also it is easy to see that F ′ = F .

Indeed,
F ′(x) = xF(x−1) = xD5(x−

1
6 ) = x(x−

1
6 + x−

1
2 + x−

5
6 ) =

x
1
6 + x

1
2 + x

5
6 = D5(x

1
6 ) = F(x).

Therefore (F ′)−1 = F−1, and hence,

(F∗c )
−1 = ((τcF ′)′)−1 = ((τcF)′)−1 = F◦c , for any c ∈ F2m.

Proposition 4. The modified magic action and the inverse map applied to o-polynomial
F(x) = x

1
6 + x

1
2 + x

5
6 can potentially give EA-inequivalent Niho bent functions corre-

sponding to o-polynomials F and F◦c , c ∈ F∗2m .

Proof. Immediately follows from Lemma 12.

Example For m = 5 we checked computationally that the o-polynomial F(x) = D5(x
1
6 )

over F2m defines 6 EA-inequivalent Niho bent functions corresponding to o-polynomials
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F , F−1 and F◦w ,F
◦
w3,F◦w5 , where w is a primitive element of F2m .

Remark The modified magic action and the inverse map applied to Subiaco, Adelaide
and x2k

+x2k+2+x3·2k+4 o-polinomials F can give a sequence of EA-inequivalent func-
tions defined by o-polynomials on the orbits F , F−1, F◦c , (τ̃cF)◦c , (τ̃c(F ′))◦c and so on.

7 The Known Hyperovals1

Over two decades, finite geometers determined the stabilizers of all known hyper-
ovals. In this section we provide an explicit list of all o-polynomials which provide
EA-inequivalent Niho bent functions for each of the known hyperovals. We start by
giving an overview over the number of EA-inequivalent Niho bent functions for each
known hyperoval.

Name Hyperoval Condition Number Ref.

Regular x2 m = 1 1 [25, Th. 4.1]

m = 2 1 [25, Th. 4.1]

m≥ 3 2 [25, Th. 4.2]

Irregular
Translation

x2i
m = 5 or m≥ 7 3 [25, Th. 4.3]

Segre x6 m = 5 2 [25, Th. 4.4]

m > 5 odd 4 [25, Th. 4.4]

Glynn I x3σ+4 m≥ 7 odd
σ = 2(m+1)/2

4 Th. 7

Glynn II xσ+λ m = 7
σ = 4 = λ

2 Th. 7

m > 7 odd
σ = 2(m+1)/2

λ = 2k for
m = 4k−1;
λ = 23k+1 for
m = 4k+1

4 Th. 7

Cherowitzo xσ + xσ+2 + x3σ+4 m = 5 10 [25, Th. 4.6]

m > 5 prime 4m+2m−2
m Th. 9

m > 5 odd nC(m) [25]

Payne x1/6 + x3/6 + x5/6 m≥ 5
is prime

3m+2m−1−1
m Th. 8

1Some of the results will repeat Section 6.2 results. We decided to keep both of them, since we use a mix of
algebraic and geometric approach.
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m≥ 5
is odd

nP(m) Th. 8

Lunelli-Sce
(Subiaco)

m = 4
ν prim. root
ν4 = ν +1

1 [25, Th. 4.1]

Subiaco m = 6
|Aut|= 60

3 [35, p. 98]

m = 6
|Aut|= 15

6 [35, p. 98]

m odd
m = 7

12 [37]

m odd
m > 7

nS(m) Th. 11

m≡ 0 (mod 4)
m > 6

nS(m) Th. 11

m≡ 2 (mod 4)
m > 6
|Aut|= 10e

Th. 12

m≡ 2 (mod 4)
m > 6
|Aut|= 5e/2
5 - m

Th. 12

Adelaide m = 6 8 [37]

m > 6
m even

nA(m) Th. 10

O’Keefe-
Penttila

m = 5 12 [24, Case 2]2

Below, for given o-polynomials F1 and F2, we denote F1 ∼= F2 if F1 and F2 define
EA-equivalent Niho bent functions gF1 and gF2 .

Note that a matrix corresponding to the transformation ϕ ◦ τc is
(

0 1
1 0

)
·
(

1 0
c 1

)
=

(
c 1
1 0

)
,

and that ϕ ◦ τ̃c = αc
F · (ϕ ◦ τc). Hence, by Theorem 3 the hyperoval defined by the o-

polynomial F◦c is obtained from the hyperoval defined by F using the following trans-
formation matrix (the first matrix in the product corresponds to the inverse transforma-

2Notice that the reference claims 1+110 instead of 1+11 orbits due to a typo.
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tion): 


0 1 0
1 0 0
0 0 1


 ·




0 0 1
0 αc

F αc
FF(c)/c

1 0 0


=




0 αc
F αc

FF(c)/c
0 0 1
1 0 c


 .

That is,

F◦c (x) =
(

αc
Fx
(

F
(1

x
+ c
)
+F(c)

))−1

corresponds to the map

Ac
F :=




0 αc
F αc

FF(c)/c
0 0 1
1 0 c


 .

Also recall that the choice of an o-polynomial for a given hyperoval H only depends
on which point of H is chosen as nucleus, so the o-polynomial is determined by the
preimage of (0,1,0). We have

Ac
F(c,F(c),1)T = (αc

FF(c)+αc
FF(c)/c,1,c+ c)T = (0,1,0).

Hence, F◦c ∼= F◦d if and only if 〈(c,F(c),1)〉 and 〈(d,F(d),1)〉 lie in the same point orbit
of the stabilizer of H . To summarize, we have the following:

(a) F◦c ∼= F◦d if and only if 〈(c,F(c),1)〉 and 〈(d,F(d),1)〉 lie in the same point orbit;

(b) F ∼= F◦c if and only if 〈(0,1,0)〉 and 〈(c,F(c),1)〉 lie in the same point orbit;

(c) F−1 ∼= F◦c if and only if 〈(1,0,0)〉 and 〈(c,F(c),1)〉 lie in the same point orbit;

(d) F ∼= F−1 if and only if 〈(0,1,0)〉 and 〈(1,0,0)〉 lie in the same point orbit.

As guidelined in [9] we use the known results on the orbits of the known hyperovals
to get the explicit numbers and representations for o-polynomials which provide o-
equivalent but EA-inequivalent Niho bent functions for each of the known hyperovals.

Lemma 13. Let m≥ 3. The two o-polynomials obtained from the regular hyperoval H ,
that is F(x) = x2, are (up to EA-equivalence for the corresponding Niho bent functions)
F and F−1.

Proof. By [25, Th. 4.2], one point orbit is the nucleus N and the other point orbit is
H \{N}. Hence, F−1 is a representative of the second orbit.

Lemma 14. Let m = 5 or m≥ 7. The three o-polynomials obtained from the irregular
translation hyperoval H , that is F(x) = x2i

with 1 < i < m−1 co-prime to m, are (up
to EA-equivalence for the corresponding Niho bent functions) F, F−1 and F◦0 .

Proof. By [25, Th. 4.3], one point orbit is the nucleus N = (0,1,0), another point orbit
is N′ := (1,0,0), and the last point orbit is H \ {N,N′}. Hence, F , F−1, and F◦0 are
representatives of the three orbits.

Lemma 15. Let m = 3 be odd. Consider the Segre hyperoval H , that is F(x) = x6.
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(a) If m = 5, then the two o-polynomials obtained from H are (up to EA-equivalence
for the corresponding Niho bent functions) F and F◦1 .

(b) If m > 5, then the two o-polynomials obtained from H are (up to EA-equivalence
for the corresponding Niho bent functions) F, F−1, F◦0 , and F◦1 .

Proof. By [25, Th. 4.4], for m= 5 the point orbits of H are {(1,0,0),(0,1,0),(0,0,1)}
and all the remaining points. Hence, (0,1,0) and (1,1,1) are representatives, so we can
choose F and F◦1 as representatives. For m > 5 the first orbit splits into three orbits, so
we have to add F−1 and F◦0 to the previous list.

Theorem 7. The collineation stabilizer of a Glynn hyperoval has 4 orbits unless it is of
type II and m = 7.

Proof. First consider the case Glynn I. By [25, Th. 4.4] we have 4 orbits unless (3σ +
4)2− (3σ +4)+1≡ 0 (mod 2m−1). This simplifies to

9 ·2m+1 +21 ·2(m+1)/2 +13≡ 31+21 ·2(m+1)/2 ≡ 0 (mod 2m−1).

One can easily check that this is never satisfied.
Now consider the case Glynn II. By [25, Th. 4.4] we have 4 orbits unless (σ +

λ )2− (σ +λ )+1≡ 0 (mod 2m−1). For m = 4k−1, this is

2(3m+7)/4−2(m+1)/4 +3≡ 0 (mod 2m−1).

Equality holds only for m = 7 as for m > 7 the left hand side is smaller than 2m− 1.
The calculation for m = 4k+1 is similar.

Similar to Lemma 15, we obtain the following.

Lemma 16. Let m≥ 7 be odd. Consider a hyperoval H of type Glynn I or Glynn II.

(a) If m = 7 , then the two o-polynomials obtained from H are (up to EA-equivalence
for the corresponding Niho bent functions) F and F◦1 .

(b) Otherwise, the four o-polynomials obtained from H are (up to EA-equivalence for
the corresponding Niho bent functions) F, F−1, F◦0 , and F◦1 .

Theorem 8. The number of orbits of the collineation stabilizer of the Payne hyperoval
H is given by 3+ 2m−1

m if m is a prime. More generally, the number of orbits are given
by

nP(m) := 3+ ∑
` |m, `>1

∣∣∣∣∣∣
F∗2` \

⋃

h | `, h<`

F∗2h

∣∣∣∣∣∣
/(2`).

For w a primitive element of Fq and c = w2n, we get F◦c ∼= F◦d if and only if d = w2in

or d = w−2in for some i ∈ {1, . . . ,m}. The o-polynomials F and F−1 define Niho bent
functions EA-inequivalent to those defined by all other o-polynomials from H .
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Proof. By [25, Th. 4.5], the orbits are {(0,1,0)}, {(1,0,0),(0,0,1)}, and sets

Hn := {(wn2i
, f (wn2i

),1) : i = 1, . . . ,m}∪{(1, f (wn2i
),wn2i

) : i = 1, . . . ,m},
where w is a primitive element of Fq. Notice that H0 is {(1,1,1)}. For m prime it is
easy to see that each orbit Hn has length m for n > 1, hence the total number of orbits
is 3+ 2m−1−1

m . In general, if wn ∈ F` with ` | m, then {(wn)2i} ∈ F`. This yields the
general formula.

The description of the equivalence of F◦c and F◦d follows directly from the explicit
description of the orbits.

For example for m = 5, the previous result gives the following representatives for
all 6 o-polynomials which can be obtained from the Payne hyperoval:

F, F−1, F◦1 , F◦w , F◦w3, F◦w5.

Theorem 9. The number of orbits of the collineation stabilizer of the Cherowitzo hy-
peroval is given by 4+ 22m−1−1

m if m is a prime. More generally, the number of orbits
are given by

nC(m) := 3+ ∑
` | m

∣∣∣∣∣∣
F∗(2`)\

⋃

h | `, h<`

F∗2h

∣∣∣∣∣∣
/`.

For w a primitive element of Fq and c = w2n, we get F◦c ∼= F◦d if and only if d = w2in for
some i ∈ {1, . . . ,m}. The Niho bent functions gF and gF−1 are both EA-inequivalent to
Niho bent functions defined by all other o-polynomials from H .

Proof. Corollary 4.5 in [3] describes the stabilizer as

{(x,y,z) 7→ (xα ,yα ,zα) : α ∈ Aut(Fq)}.
The rest of the calculation is similar to the Payne hyperoval, just that this time the first
and second coordinate cannot be interchanged.

Theorem 10. Let [1] := δ +δ−1. For c ∈ Fq, let

Oc := {c2h
+

h−1

∑
i=1

[1]2
i
: i = 0, . . . ,2m−1}.

The number of EA-inequivalent Niho bent functions obtained from the Adelaide hy-
peroval is nA(m) := 2+ |{Oc : c ∈ Fq}|. In particular, for fixed c ∈ Fq, the Niho bent
functions defined by the o-polynomials F, F−1, F◦c are pairwise EA-inequivalent. Fur-
thermore, gF◦c and gF◦d are EA-equivalent if and only if d ∈ Oc.

Proof. In [34, Eq. (9)] (in a slightly different representation) the stabilizer of the Ade-
laide polynomial was determined as the cyclic group generated by the map

θ : x 7→




1 0 [1]
0 1 [1]
0 0 1






x
F(x)

1




2

.
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From this it is easily verified that θ fixes (0,1,0) and (1,0,0), so gF and gF−1 are not
EA-equivalent to those functions defined by any of the other o-polynomials. Further-
more, it is easily checked that the orbit of (c,F(c),1) is

{(x,F(x),1) : x ∈ Oc}.

Theorem 11. Let m≥ 7 with m 6≡ 2 (mod 4), let

Oc := {x(−1)i+12i
: i = 0, . . . ,2m−1}.

The number of EA-inequivalent Niho bent functions obtained from the Subiaco hyper-
oval is nS(m) := 2+ |{Oc : c ∈ Fq}|. In particular, for fixed c 6= 0,1, the o-polynomials
F, F−1, F◦0 , F◦c provide pairwise EA-inequivalent Niho bent functions. Furthermore,
gF◦c and gF◦d are EA-equivalent if and only if d ∈ Oc.

Proof. By [26, Th. 13, Th. 16] (see also [17]), the stabilizer of the Subiaco hyperoval
H is generated by the map

θ : x 7→




0 0 1
0 1 0
1 0 0






x
F(x)

1




2

.

From this it is easily verified that θ fixes (0,1,0), {(1,0,0),(0,0,1)}, (1,1,1), so Niho
bent functions defined by F , F−1 ∼= F◦0 , and F◦1 are not EA-equivalent to those defined
by any other o-polynomial obtained from H . Furthermore, it is easily checked that the
orbit of (c,F(c),1) is

{(x,F(x),1) : x ∈ Oc}.
For m ≡ 2 (mod 4) there are two types of non-equivalent hyperovals, see [36]. In

particular, from Theorem 6.6 and Theorem 6.7 in [36] we obtain the following. We are
not aware of any nice description of the orbits of the given groups, but the information
is sufficient to calculate all o-polynomials efficiently.

Theorem 12. Let m≥ 6 with m≡ 2 (mod 4).

(a) If F(x)= δ 2(x4+x)
x4+δ 2x2+1 +x1/2, then gF is EA-inequivalent to all gF◦c and we have F−1∼=

F◦0 . Furthermore, F◦c ∼= F◦d if and only if (c,F(c),1)h = (d,F(d),1) for an element
h of the group (of size 10m) generated by

(i) (x,y,z) 7→ (z,y,x),

(ii) (x,y,z) 7→ (x+δ z,y+δ 2z,z),

(iii) (x,y,z) 7→ (z2 +δ 2x2,z2 +δy2,z2).

(b) If F(x) = x3+x2+δ 2x
x4+δ 2x2+1 +δx1/2, then gF , gF−1 , and gF◦0 are pairwise EA-inequivalent.

Furthermore, F◦c ∼= F◦d if and only if (c,F(c),1)h = (d,F(d),1)h for an element h
of the group (of size 5m/2) generated by

(i) (x,y,z) 7→ (xσ ,yσ ,zσ ) for σ ∈ Aut(F) with δ σ = δ ,
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(ii) (x,y,z) 7→ (z,y+δ z,x+δ z).

The O’Keefe-Penttila hyperoval for m = 5, which is not known to belong to any
infinite family, is stabilized by the group generated by




1 0 1
1 1 0
1 0 0


 .

Hence, most orbits have the form {(c,F(c),1),(1+c−1,1+c−1F(c),1),((1+c)−1,c−1(1+
F(c),1)}. Then, representatives for the 14 o-polynomials obtained from the hyperoval
and defining EA-inequivalent Niho bent functions are

F, F−1, F◦w , F◦w2, F◦w4, F◦w5, F◦w7, F◦w8, F◦w10, F◦w14, F◦w16, F◦w19.

Here w is a primitive element of F25 .
Note that one can find similar results in [2]. We use a different approach for finding

representatives of o-polynomials on the different orbits. Also, we use their different
representation (via generators of the Magic action and the inverse map) than in [2].
Therefore, we consider our representation sufficiently different. Furthermore, our re-
sults are slightly more detailed, for instance in [2] the author only estimates the number
of EA-inequivalent Niho bent functions from Cherowitzo and Payne hyperovals, while
we provide explicit formulas.
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Generalization of a class of APN binomials to
Gold-like functions

Diana Davidova and Nikolay Kaleyski
Department of Informatics, University of Bergen, Norway

Abstract
In 2008 Budaghyan, Carlet and Leander generalized a known instance of an APN

function over the finite field F212 and constructed two new infinite families of APN bino-
mials over the finite field F2n , one for n divisible by 3, and one for n divisible by 4. By
relaxing conditions, the family of APN binomials for n divisible by 3 was generalized to
a family of differentially 2t-uniform functions in 2012 by Bracken, Tan and Tan; in this
sense, the binomials behave in the same way as the Gold functions. In this paper, we show
that when relaxing conditions on the APN binomials for n divisible by 4, they also behave
in the same way as the Gold function x2s+1 (with s and n not necessarily coprime). As a
counterexample, we also show that a family of APN quadrinomials obtained as a general-
ization of a known APN instance over F210 cannot be generalized to functions with 2t-to-1
derivatives by relaxing conditions in a similar way.

Keywords. Almost perfect nonlinear, Boolean functions Differential uniformity Walsh
transform Walsh spectrum.

1 Introduction
Let n,m be natural numbers. A vectorial Boolean (n,m)-function, or simply an (n,m)-function,
or vectorial Boolean function, is a mapping from the n-dimensional vector space Fn

2 over the
finite field F2 = {0,1} to the m-dimensional vector space Fm

2 . Since the extension field F2n

can be identified with an n-dimensional vector space over F2, (n,m)-functions can be seen
as functions between the Galois fields F2n and F2m . Vectorial Boolean functions have many
applications in mathematics and computer science. In cryptography, they are the basic building
blocks of block ciphers, and the choice of functions directly influences the security of the
cipher. In order to construct cryptographically secure ciphers, it is necessary to understand
what properties such functions need to possess in order to resist various types of cryptanalytic
attacks, and to find methods for constructing functions having these desirable properties. In
our work, we mostly concentrate on the case when n = m, i.e. when the numbers of input and
output bits are the same. A comprehensive survey on (n,m)-functions can be found in [4, 8].

One of the most powerful attacks against block ciphers is differential cryptanalysis, in-
troduced by Biham and Shamir [1]. The attack is based on studying how the difference in
two inputs to a function affects the difference in the corresponding outputs. The resistance
to differential attacks of an (n,m)-function is measured by a property called its differential
uniformity. The lower the differential uniformity, the more resistant the cryptosystem is to dif-
ferential attacks. The class of almost perfect nonlinear (APN) functions is defined as the class
of (n,n)-functions having the best possible differential uniformity, and thus provides optimal
security against differential cryptanalysis.
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Another powerful attack against block ciphers is linear cryptanalysis, introduced by Matsui
[12]. The property of a function which measures the resistance to this kind of attack is called
nonlinearity. The nonlinearity N L (F) of an (n,m)-function F is defined to be the minimum
Hamming distance between any component of F and any affine (n,1)-function. An upper
bound on the nonlinearity of any (n,n)-function can be derived, and the class of almost bent
(AB) functions is defined as the class of those functions that meet this bound with equality and
therefore provide the best possible resistance to linear attacks.

Recall that the Gold functions are APN power functions over F2n of the form x2s+1 for some
natural number s satisfying gcd(s,n) = 1. Relaxing the condition to gcd(s,n) = t for some
positive integer t, the functions of the form F(x) = x2s+1 become differentially 2t-uniform,
with all their derivatives DaF(x) = F(x)+F(a+ x) for a 6= 0 being 2t-to-1 functions. These
functions are permutations if and only if n/gcd(s,n) = n/t is odd [13], and are (2t +1)–to–1
functions otherwise. Their nonlinearity is 2n−1−2(n+t)/2 when n/t is odd, and 2n−1−2(n+2t)/2

otherwise.
In 2008, two infinite families of (n, n)-APN binomials inequivalent to power functions were

introduced in [5] for values of n divisible by 3 or by 4 as generalizations of a known sporadic
APN instance over F212 [11]. These were the first known infinite families of APN functions
that are inequivalent to power functions. It was later shown in 2012 that the family of APN
binomials for n divisible by 3 can be generalized to functions with 2t-to-1 derivatives (for
some positive integer t) with nonlinearity equal to 2n−1− 2(n+t)/2 for n+ t even, and 2n−1−
2(n+t−1)/2 for n+ t odd by relaxing conditions [3]. Thus, the APN binomials for n divisible
by 3 behave in the same way as the Gold functions from the point of view of differential
uniformity, nonlinearity and properties of the image set.

In this paper we show that the second class of APN binomials from [5] (for n divisible
by 4) also behaves in the same way as the Gold functions in this respect. We note that all
the constructed functions (much like the APN binomials) are quadratic, and are therefore not
directly suitable for cryptographic use in practice. Nonetheless, the vast majority of known
APN functions are given by a quadratic representation, but contain representatives of higher
algebraic degrees in their CCZ-equivalence class. We also consider the family of APN quadri-
nomials constructed by generalizing a known APN instance over F210 [7] and computationally
verify that they provide a counterexample to this approach, in the sense that they cannot be
generalized to functions with 2t-to-1 derivatives by relaxing conditions in a similar way for
any even dimension n in the range 6≤ n≤ 14.

The paper is structured as follows. In Section 2, we recall the basic definitions and results
that we use throughout our work. In Section 3, we compute the differential uniformity of the
generalized families of binomials; an upper bound on their nonlinearity is then derived in Sec-
tion 4. Section 5, in which we computationally show that the APN quadrinomials constructed
in [7] cannot be generalized to 2t-uniform functions over F2n with 6 ≤ n ≤ 14, concludes the
paper.

2 Preliminaries
Let n be a positive integer. Then F2n denotes the finite field with 2n elements, and F∗2n denotes
its multiplicative group. For any positive integer k dividing n, the trace function Trn

k is the
mapping from F2n to F2k defined by Trn

k(x) = ∑Fracnk−1
i=0 x2ik

. For k = 1, the function Trn
1 :

F2n → F2 is called the absolute trace over F2n and is denoted simply by Trn(x), or by Tr(x) if
the dimension n is clear from context.
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Let n and m be positive integers. An (n,m)-function is any function F from F2n to F2m .
For any (n,m)-function F and for any a ∈ F2n , the function DaF(x) = F(x + a) + F(x) is
called the derivative of F in the direction a. Let δF(a,b) denote the number of solutions of
the equation DaF(x) = b for some a ∈ F2n and b ∈ F2m . The multiset {δF(a,b) : a ∈ F∗2n ,b ∈
F2m} is called the differential spectrum of F . The differential uniformity of F is the largest
value in its differential spectrum. We say that F is differentially δ -uniform if its differential
uniformity is at most δ . The differential uniformity of any (n,m)-function is clearly always
even, since if x ∈ F2n is a solution to DaF(x) = b for some a ∈ F2n and b ∈ F2m , then so
is x+ a. The lowest possible differential uniformity of any function is thus 2. A function
with differential uniformity equal to 2 is called almost perfect nonlinear (APN). Since a low
differential uniformity corresponds to a strong resistance to differential cryptanalysis, APN
functions provide optimal security against this type of attack.

A component function of an (n,m)-function F is any function of the form x 7→ Trm(cF(x))
for c ∈ F∗2m . The component functions are clearly (n,1)-functions. The nonlinearity N L (F)
of F is the minimum Hamming distance between any component function of F and any affine
(n,1)-function, i.e. any function a : F2n → F2 satisfying a(x)+a(y)+a(z) = a(x+ y+ z) for
all x,y,z ∈ F2n . Recall that the Hamming distance between two (n,1)-functions f and g is the
number of inputs x ∈ F2n for which f (x) 6= g(x).

An important tool for analyzing any (n,m)-function F is the so-called Walsh transform.
The Walsh transform of F is the function WF : F2m×F2n → Z defined as WF(a,b) =

∑
x∈F2n

(−1)Trm(aF(x))+Trn(bx).

The nonlinearity of an (n,m)-function F can be expressed as
N L (F) = 2n−1− 1

2 max
a∈F∗2m ,b∈F2n

|WF(a,b)|. The nonlinearity of any (n,n)-function is bounded

from above by 2n−1− 2(n−1)/2[10]. Functions attaining this bound are called almost bent
(AB). Clearly, AB functions exist only for odd values of n; when n is even, functions with
nonlinearity 2n−1−2n/2 are known, and it is conjectured that this value is optimal in the even
case. Nonlinearity measures the resistance to linear cryptanalysis; the higher the nonlinearity,
the better. Thus, AB functions provide optimal security against linear cryptanalysis when n is
odd. Furthermore, all AB functions are necessarily APN [10], so that AB functions are optimal
with respect to differential cryptanalysis as well.

Due to the huge number of (n,m)-functions for non-trivial values of n and m, they are typ-
ically classified up to some notion of equivalence. The most general known equivalence rela-
tion which preserves differential uniformity (and hence APN-ness) is Carlet-Charpin-Zinoviev
(or CCZ) equivalence [6, 9]. We say that two (n,m)-functions F and F ′ are CCZ-equivalent if
there is an affine permutation A of F2n×F2m that maps the graph G (F) = {(x,F(x)) : x∈ F2n}
of F to the graph G (F ′) of F ′. A special case of CCZ-equivalence is extended affine (or EA)
equivalence. We say that F and F ′ are EA-equivalent if there are affine permutations A1 and
A2 of F2m and F2n , respectively, and an affine (n,m)-function A such that F ′ = A1 ◦F ◦A2+A.

In [5], Budaghyan, Carlet and Leander introduced the following two infinite families of
APN binomials:

1. For n = 3k:

F3(x) = x2s+1 +w2k−1x2ik+2mk+s
, (1)

where s and k are positive integers such that s≤ 4k−1, gcd(k,3) = gcd(s,3k) = 1, i= sk
mod 3, m = 3− i and w is a primitive element of the field F2n .
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2. For n = 4k:

F4(x) = x2s+1 +w2k−1x2ik+2mk+s
, (2)

where s and k are positive integers such that s≤ 4k−1, gcd(k,2) = gcd(s,2k) = 1, i= sk
mod 4, m = 4− i and w is a primitive element of the field F2n .

The first class of APN binomials (for n divisible by 3) are permutations if and only if k is odd.
As we show below, if the condition of k being odd is omitted, the binomials for n divisible

by 4 are EA-equivalent to the Gold functions. Indeed, let k be even. Then i = sk mod 4 is also
even. If i = 2, then

F(x) = x2s+1 +w2k−1x2ik+2mk+s
= x2s+1 +w2k−1x22k+22k+s

=

x2s+1 +w2k−1x22k(1+2s) = x2s+1 +w2k−1(x2s+1)22k

which is EA-equivalent to x2s+1 since x 7→ x+w2k−1x22k
is a linear permutation. Indeed, if

x+w2k−1x22k
= y+w2k−1y22k

and x 6= y, then we must have w1−2k
= (x+ y)22k−1 which is

impossible since 22k−1 is a multiple of 5 under the hypothesis, whereas 2k−1 is not.
In the same manner, if i = 0, we get

F(x) = x2s+1 +w2k−1x2ik+2mk+s
= x2s+1 +w2k−1x1+2s

=

x2s+1(1+w2k−1).

The complete Walsh spectra of the functions F3 and F4 were determined in [2].
As previously mentioned, relaxing the conditions allows the functions F3 to be generalized

to a family of 2t-differentially uniform functions in the same way as the Gold functions [3].
In this paper, we show how the family F4 can be generalized to functions with 2t-to-1 deriva-
tives in a similar way. Further, we provide a counterexample to the question of whether this
construction can be used to generalize any family of quadratic APN functions to a family of
2t-uniform functions: for the family of quadrinomials from [7], we computationally verify that
relaxing conditions does not lead to functions with 2t-to-1 derivatives for t > 1 over F2n for
any 6≤ n≤ 14.

For background on APN functions and cryptographic Boolean functions, we refer the
reader to [4] or [8].

3 Differential uniformity
In the following theorem, we show that by relaxing the condition gcd(s,2k) = 1 in (2) to
gcd(s,2k) = t for some positive integer t, we obtain functions over F24k all of whose derivatives
are 2t-to-1 functions.

Theorem 1. Let s,k, t be positive integers and let n = 4k. Let gcd(s,2k) = t, 2 - k, i = sk
mod 4, m = 4− i, and w be a primitive element of F2n . Then all derivatives DaF for a ∈ F∗2n of
the function

F(x) = wx2s+1 +w2k
x2ik+2mk+s

(3)

are 2t-to-1 functions. In particular, F is differentially 2t-uniform.
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Proof. We first show that for i even, F is EA-equivalent to x2s+1. To see this, consider two
cases depending on the value of i. First, suppose i = 2. Then

F(x) = wx2s+1 +w2k
x22k+22k+s

= wx2s+1 +w2k
(x2s+1)22k

which is EA-equivalent to x2s+1 since x 7→ wx + w2k
x22k

is a linear permutation. Indeed,
suppose that wx + w2k

x22k
= wy + w2k

y22k
for some two distinct elements x,y ∈ F2n; then

(x+ y)22k−1 = w1−2k
which is a contradiction since the exponent on the left-hand side is a

multiple of three, while the one on the right-hand side is not. Finally, note that the derivatives
of x2s+1 are all 2t-to-1 functions since gcd(s,4k) = gcd(s,2k) = t.

If i = 0, then

F(x) = wx2s+1 +w2k
x1+24k+s

= wx2s+1 +w2k
x1+2s

= x2s+1(w+w2k
),

which is EA-equivalent to x2s+1 (as w is a primitive element, we have w+w2k 6= 0), and hence
all of its derivatives are 2t-to-1 under the conditions on s, t and k.

We now consider the case of i odd. Both possibilities for i produce functions in the same
EA-equivalence class. For i = 1, the function (3) takes the form

F(x) = wx2s+1 +w2k
x2k+23k+s

. (4)

Consider the function F ′ defined by

F ′(x) = F(x)23k
= (wx2s+1 +w2k

x2k+23k+s
)23k

= wx22k+s+1 +w23k
x23k(2s+1).

Clearly, F ′ is EA-equivalent to F . From the condition ks = 1 mod 4 we get k mod 4 = s
mod 4, i.e. 2k+ s = 3s mod 4, hence (2k+ s)k = 3sk = 3 mod 4. Thus, denoting 2k+ s by
s′, we get F ′(x) = wx2s′+1 +w2−k

x23k+2k+s′
, which is precisely the function from (3) for i = 3.

It is thus enough to prove the theorem for i = 3, i.e. for the function F(x) = wx2s+1 +

w2k
x23k+2k+s

.
The derivatives of F are 2t-to-1 functions if and only if the equation F(x)+F(x+ v) = u

has either 0 or 2t solutions for any u,v ∈ Fn
2,v 6= 0. The left-hand side of this equality takes the

form

F(x)+F(x+ v) =

wx2s+1 +w2k
x23k+2k+s

+w(x+ v)2s+1 +w2k
(x+ v)23k+2k+s

=

wx2s+1 +w2k
x23k+2k+s

+wx2s+1 +wv2s+1 +wx2s
v+wxv2s

+w2k
x23k+2k+s

+

w2k
v23k+2k+s

+w2k
x23k

v2k+s
+w2k

v23k
x2k+s

=

wv2s+1 +wx2s
v+wxv2s

+w2k
v23k+2k+s

+w2k
x23k

v2k+s
+w2k

v23k
x2k+s

=

w2k
v23k+2k+s

((x
v

)23k

+
(x

v

)2k+s)
+wv2s+1

((x
v

)2s

+
(x

v

))
+wv2s+1+

w2k
v23k+2k+s

.

Dividing the last expression by wv2s+1 and substituting vx for x, we get a linear expression in
x:

a(x23k
+ x2k+s

)+(x2s
+ x)+1+a,
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where a = w2k−1v23k+2k+s−(2s+1). So, F(x)+F(x+ v) = u has 0 or 2t solutions if and only if
the kernel of the linear map

∆a(x) = a(x23k
+ x2k+s

)+(x2s
+ x)

has 2t elements. Consider the equation ∆a(x) = 0. We use Dobbertin’s multivariate method
and follow the computations from Theorem 2 of [5]. Let b = a2k

and c = b2k
. We get that

∆a(x) = 0 if and only if ab(bc+1)2s+1(x22s
+ x2s

) = 0,

assuming that P(a) = c(ab+1)2s+1 +a2s
(bc+1)2s+1 6= 0.

We now show that bc+ 1 6= 0. Clearly, bc+ 1 = 0 if and only if ab+ 1 = 0. Suppose
ab = 1, i.e. a2k+1 = 1. From

(23k +2k+s− (2s +1))(2k +1) = (22k−1)(2k +2s) mod (24k−1)

we get
1 = a2k+1 = (w2k−1v23k+2k+s−(2s+1))2k+1 = w22k−1v(2

2k−1)(2k+2s) =

(wv2k+2s
)22k−1,

hence wv2k+2s
is a (22k +1)-st power of an element from F2n . On the other hand, from ks = 3

mod 4 and 2 - k we have that k and s are odd, and k 6= s mod 4, which means that k−s= 2p for
some odd p. Thus, 2k +2s = 2s(2k−s +1) = 2s(22p +1). Since p is odd, we have 5 | 22p +1,
and therefore u2k+2s

is the fifth power of an element of the field, while wu2k+2s
is not. Thus

wu2k+2s
is also not a (22k +1)-st power. Hence, we get a contradiction, and so we must have

ab+1 6= 0 and hence bc+1 6= 0. Therefore, we have

∆a(x) = 0 if and only if x22s
+ x2s

= 0

when P(a) 6= 0.
By the statement of Theorem 1, k is odd and sk = 3 mod 4, so that s is also odd, and from

gcd(s,2k) = t it follows that gcd(s,4k) = t. Therefore the equation x22s
+ x2s

= 0, which is
equivalent to x2s

= 1, has exactly 2gcd(s,4k) = 2t solutions.
So we only have to show that P(a) = c(ab+1)2s+1 +a2s

(bc+1)2s+1 does not vanish.
Assume P(a) = 0, i.e.

c
a2s =

(bc+1
ab+1

)2s+1
.

We have that c
a2s is the third power of an element of the field since 3 | 2s +1,2n−1 (since s is

odd and n is even). On the other hand,

c
a2s = a22k−2s

= a2s(22k−s−1) = (w2k−1v23k+2k+s−(2s+1))2s(22k−s−1) =

w(2k−1)2s(22k−s−1)v(2
3k+2k+s−(2s+1))2s(22k−s−1)

and 23k + 2k+s− (2s + 1) = 2s(23k−s− 1)+ (2k+s− 1) is divisible by 3 because 3 | 23k−s− 1
and 3 | 2k+s− 1 due to k and s being odd. But since k and 2k− s are odd, we have 3 - 2k− 1
and 3 - 22k−s−1, which means that w(2k−1)2s(22k−s−1) is not a third power, therefore c

a2s is not
a third power either, and we get a contradiction.
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As the following proposition illustrates, the binomials from (3) also behave in the same
way as the Gold functions from the point of view of bijectivity.

Proposition 1. A function of the form (3) is a permutation if and only if it is EA-equivalent to
a 2t-differentially uniform permutation of the form x2s+1 for some positive integer s.

Proof. Recall that the power function x2s+1 over F2n is 2t-uniform for some positive integer t
if and only if gcd(s,n) = t, and it is a permutation if and only if n/t is odd.

Let F(x) = wx2s+1 +w2k
x2ik+2mk+s

be a function satisfying the conditions of Theorem 1.
If F is a permutation, then 4k/gcd(s,4k) is odd. Indeed, assume that F is a permutation and
4k/gcd(s,4k) is even. Since k is odd, we have that gcd(s,4k) should be odd or gcd(s,4k) = 2
mod 4. If gcd(s,4k) is odd, then so is s, and therefore 3 | 2s + 1. Since i = (sk mod 4) and
s,k are odd, then i is an odd number, and hence (m− i)k + s is also odd; hence 3 | 2ik(1+
2(m−i)k+s) = 2ik + 2mk+s. Thus, for any γ ∈ F22 , we have F(γx) = F(x). On the other hand,
if gcd(s,4k) = 2 mod 4, then s is even, and therefore i is also even due to i = sk mod 4.
Hence, as we discussed in the proof of Theorem 1, F is EA-equivalent to x2s+1 which is not a
permutation since 4k/gcd(s,4k) is even. Therefore 4k/gcd(s,4k) is necessarily odd if F is a
permutation. However, when 4k/gcd(4k,s) is odd, gcd(4k,s) is divisible by 4, and therefore s
is also divisible by 4 since k is odd. This means that F is EA-equivalent to a 2t-differentially
uniform permutation of the form x2l+1 for some positive integer l.

4 Magnitude of the Walsh coefficients
In following theorem, we compute an upper bound on the absolute values of the Walsh coeffi-
cients of the functions from (3). In the proof we make use of the following result.

Lemma 2 ([14]). Let n, l,d be positive integers such that gcd(n,s)= 1 and let G(x)=
d
∑

i=0
aixli ∈

F2n [x]. Then the equation G(x) = 0 has at most 2d solutions.

We are now ready to present the main result of this section.

Theorem 2. Let s,k, t be positive integers and let n = 4k. Let gcd(s,2k) = t, 2 - k, i = sk
mod 4, m = 4− i and let w be a primitive element of F2n . Then the Walsh coefficients of the
function F from (3) satisfy

|WF(a,b)| ≤ 22k+t

for any a ∈ F∗2n and b ∈ F2n .

Proof. For simplicity, instead of F(x) =wx2s+1+w2k
x2ik+2mk+s

, we consider the EA-equivalent
function F ′(x) = x2s+1 +αx2ik+2mk+s

, where α = w2k−1.
We are going to prove the theorem for i = 3 since as we already observed in the proof

of Theorem 1, if i is even, the function F(x) is EA-equivalent to a Gold-like differentially
2t-uniform function; and if i is odd, the functions that we obtain for i = 1 and for i = 3 are
EA-equivalent.

We have
W 2

F ′(a,b) = ∑
x

∑
y
(−1)Tr(ax+ay+bF ′(x)+bF ′(y)).

Substituting x+ y for y, we get

W 2
F ′(a,b) = ∑

x
∑
y
(−1)Tr(ax+a(x+y)+bF ′(x)+bF ′(x+y)).
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The exponent from the previous expression by straightforward calculations becomes

Tr(ax+a(x+ y)+bF ′(x)+bF ′(x+ y)) =

Tr(ay+b(x2s+1 +αx23k+2k+s
+(x+ y)2s+1 +α(x+ y)23k+2k+s

)) =

Tr(ay+by2s+1 +bαy2k+s+23k
)+Tr(bx2s

y+bxy2s
+bαx23k

y2k+s
+bαy23k

x2k+s
) =

Tr(ay+by2s+1 +bαy2k+s+23k
)+Tr(xL (y)),

where L (y)= (by)2−s
+by2s

+(bα)2−3k
y2s−2k

+(bα)23k−s
y22k−s

=(by)2−s
+by2s

+(bα)22k
y2s+2k

+

(bα)23k−s
y22k−s

is a linear function.
Thus

W 2
F ′(a,b) = 2n ∑

{y|L (y)=0}
(−1)Tr(ay+by2s+1+bαy2k+s+23k

).

The next step is to show that the cardinality of the kernel of L (y) is at most 22t , where
t = gcd(2k,s). Following the computations of [2], we have

b2−s+2k
L (y)+(bα)23k−s

L 22k
(y) = 0 and b22k

L (y)+(bα)2k
L 22k

(y) = 0,

from where we get

Ay2s
+By2−s

+Cy2s+2k
= 0, (5)

B2s
y2s

+A22k
y2−s

+Cy2−s+2k
= 0, (6)

where

A = b2−s+2k+1 +(bα)2−k+23k−s 6= 0,

B = b2−s+2−s+2k
+(bα)2k−s+23k−s

, and

C = b2−s+2k+2k
α2k

+b22k+23k−s
α23k−s 6= 0,

with B = 0 if and only if B2s−1 is a cube.
Assume that B 6= 0, i.e. B2s−1 is not a cube. Then from (5) and (6) we get

B22s
C2−s

y22s
+C2−s

A22k+s
y+B2−s

C2s
y2−2s

+A2−s
C2s

y = 0.

Denote the last expression by G(y). For some v 6= 0 in the kernel of G(y), consider the
expression Gv(y) = yG(y)+ vG(v)+(y+ v)G(y+ v) , i.e.

C2s
B2−s

(y2−2s
v+ v2−2s

y)+C2−s
B22s

(y22s
v+ v22s

y).

Note that the kernel of L (y) is contained in that of Gv(y). Then from Gv(y) = 0 we get

C2−s−2s
B22s−1

(y2−2s
v+ v2−2s

y)22s−1 = B2s−1.

If y2−2s
v+v2−2s

y= 0, i.e. yv−1 =(yv−1)22s
, then yv−1 ∈Fgcd(2s,4k)=F22t and therefore L (y)=

0 has exactly 22t solutions. Otherwise, if y2−2s
v+ v2−2s

y does not vanish, then the right-hand
side of the previous equation is not a cube by our assumption, while the left-hand side is.
Hence, L (y) = 0 has exactly 22t solutions, where t = gcd(2k,s).
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Suppose now that B = 0. Following the computations of [2], the equation L (y) = 0 be-
comes

(b+(bw)2k
v22k+s−2s

)y2s
+(b2−s

+(bw)23k−s
v22k−s−2−s

)y2−s
= 0.

If both coefficients (in front of y2s
and in front of y2−s

) in the above equation are nonzero, then
raising both sides to the power 2s, we get

(b+(bw)2k
v22k+s−2s

)2s
y22s

+(b2−s
+(bw)23k−s

v22k−s−2−s
)2s

y = 0.

Note that 2s = 2t s
t and gcd( s

t ,4k) = 1. Then, applying Lemma 2, we get that L (y) = 0
has at most 22t solutions. If exactly one of the coefficients is not zero, then the equation
will have exactly one solution, namely y = 0. If both coefficients are equal to zero, then
raising them to the power of 2s and of 2−s, and adding these powers together, we get v22k−1 =

b23k−2k−s
w−2k−s

= b1−23k
w−23k

which implies C = 0, a contradiction.
Thus, the kernel of L (y) consists of at most 22t elements, where t = gcd(2k,s) and there-

fore |W 2
F (a,b)| ≤ 2n22t and |WF(a,b)| ≤ 22k+t .

The next corollary immediately follows from Theorem 2.

Corollary 1. Let s,k, t be positive integers and let n = 4k. Let gcd(s,2k) = t, 2 - k, i = sk
mod 4, m = 4− i and let w be a primitive element of F2n . Then the nonlinearity of the function
F from (3) satisfies

N L (F)≥ 2n−1−22k+t−1.

5 A counterexample: generalizing a family of APN quadri-
nomials to 2t-uniform functions

As discussed above, both families of APN binomials from [5] can be generalized to functions
all of whose derivatives are 2t-to-1 by relaxing conditions; furthermore, the two families are
obtained as generalizations of a previously unclassified sporadic APN instance over F212 . An-
other sporadic APN instance, this time over F210 , was recently also generalized into an infinite
family [7]. This immediately raises the question of whether the same approach, i.e. relaxing
conditions in order to obtain functions with 2t-to-1 derivatives, could be applied to the lat-
ter family. In this section, we summarize our experimental results, which suggest that this is
impossible.

The functions in the infinite family from [7] are defined over F2n with n = 2m with m odd
such that 3 - m, and have the form

F(x) = x3 +β (x2i+1)2k
+β 2(x3)2m

+(x2i+1)2m+k
, (7)

where k is a non-negative integer, and β is a primitive element of F22 . It is shown that the
function in (7) is APN for i = m− 2 and i = (m− 2)−1 mod n, as well as for i = m and
i = m− 1 (however, the last two values yield functions that are trivially EA-equivalent to
known ones).

We computationally go through all functions of the form

F(x) = x2 j+1 +β (x2i+1)2k
+β 2(x2 j+1)2m

+(x2i+1)2m+k
(8)
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with 0 ≤ i, j ≤ n− 1 for all values of n = 2m with 6 ≤ n ≤ 14, disregarding the conditions
of 3 - m and of m being odd. For each such function, we test whether all of its derivatives are
2t-to-1 functions for some positive integer t. We restrict ourselves to the cases k = 0 and k = 1,
as the APN functions constructed for k ∈ {0,1} appear to exhaust all CCZ-equivalence classes
[7].

Besides the already known APN functions, for k = 0, we only encounter functions with
2t-to-1 derivatives when j = i, i.e. when all exponents are in the same cyclotomic coset. In the
case of k = 1, the only exceptions are for n = 12 where each pair ( j, i) with 2≤ j, i≤ 12 and
i, j even yields a 22-to-1, i.e. 4-to-1 function. However, since we do not observe other such
non-trivial functions for other dimensions n, this does not suggest that (7) can be generalized
to 2t-functions in general.

These computational results constitute convincing evidence that the quadrinomials of the
form (7) cannot be generalized to 2t-to-1 functions in the same way as the binomials from [5].

6 Conclusion
The APN binomial x3 +αx258 over F212 was generalized in 2008 to two infinite APN families
over F2n , one for 3 | n, and one for 4 | n. The family for 3 | n was generalized to a family
of functions with 2t-to-1 derivatives in 2012 [3] by relaxing conditions. We have shown that
the same approach can be applied to the family for 4 | n, and have computed the differential
uniformity of the resulting functions. We have also given a lower bound on their nonlinearity,
and have shown that this construction cannot be applied to any infinite family of quadratic
APN functions by computationally verifying that the quadrinomial family from [7] constitutes
a counterexample.
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CHAPTER 3

CONCLUSIONS

The research of the present thesis is dedicated to the following four problems related
to bent and almost perfect nonlinear (APN) functions: construction of new Niho bent
functions via o-equivalence (Paper I); the Walsh spectrum of the Dobbertin APN power
function (Paper II); the Dobbertin conjecture on non-existence of APN power functions
inequivalent to the known ones (Paper II) and possible generalization of known families
of APN functions into Gold-like functions (Paper III).

Regarding the first problem, we studied the relation of o-equivalence (for Niho bent
functions, it is a more general equivalence relation than EA-equivalence, and is in-
duced from the equivalence of o- polynomials) as a method for secondary construc-
tion of Niho bent functions. We studied a group of transformations, which preserves
the o-equivalence of Niho bent functions, but does not preserve their EA-equivalence,
and identified the exact transformations which always lead to EA-inequivalent Niho
bent functions within one o-equivalence class, in the case of o-monomials. For o-
polynomials, which are not monomials we identified the form of transformations which
can potentially lead to EA-inequivalent Niho bent functions within one o-equivalence
class. Our results lead, in particular, to the following interesting questions that can be
studied in the future:

• Find transformations always leading to a set of pairwise EA-inequivalent Niho
bent functions within one o-equivalence class;

• Identify in the set of pairwise EA-inequivalent Niho bent functions within one
of the o-equivalence classes known, those which are not EA-equivalent to other
known cases of Niho bent functions;

• Using o-equivalence, find a more general equivalence relation than CCZ-equiva-
lence for vectorial functions preserving differential uniformity and nonlinearity.
If such equivalence relation can be found, it will lead to numerous new problems.

For the second problem, which has been open without any progress for 20 years,
we introduced a conjecture giving a full description of the Walsh spectrum of the Dob-
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bertin functions. We obtained (optimal in certain sense) alternative representations of
the exponents for some of the known APN power functions, in particular, for the ex-
ponent of the Dobbertin function. These alternative representations may be useful in
future, for instance, for studying our conjecture about the Walsh spectrum of the Dob-
bertin functions, and may possibly lead to simpler proofs of the APN property of the
corresponding power functions. Thus, we leave the following problems for the future
study:

• Study the conjecture about the Walsh spectrum of the Dobbertin functions. In
particular,

– Collect and analyze data about the multiplicity of the Walsh coefficients of
the Dobbertin functions;

– Study alternative representations of the Dobbertin functions obtained in Pa-
per II for proving the conjecture;

• Simplify the proofs of the APN property of the Dobbertin and Niho APN power
functions, using their alternative representations obtained in Paper II.

For the third problem which has been also open since 2000, we considered a com-
position of the form xi ◦L◦ x1/ j , where L is a linear polynomial and a power function

xd over F2mk , where d =
k−1
∑

i=0
2mi − 1. We showed that some of the known APN power

functions can be obtained from each other via xi ◦L◦ x1/ j. This construction is yet not
well studied and admits many possible developments such as

• Examine functions of the form xi ◦L◦x1/ j, for L with non-binary coefficients (the
case of binary coefficients is covered in Paper II);

• Investigate constructions of the form xi ◦ L ◦ x1/ j, where L is a linear function
and xi ◦ x1/ j is an alternative representation of the Niho and Dobberin functions
obtained in Paper II;

• Study constructions F2 ◦L◦F−1
1 , where F2 ◦F−1

1 is CCZ-equivalent to F .

Moreover, power functions xd over F2mk , where d =
k−1
∑

i=0
2mi−1 studied in Paper II could

be a useful tool for approaching the conjecture about non-existence of APN power func-
tions inequivalent to known ones. Thus, further investigation of these power functions
can be done. In particular, an interesting problem is

• Investigation of the compositions of the power functions xd over F2mk , where

d =
k−1
∑

i=0
2mi −1 with known APN power functions and a linear map in between.

For the fourth problem we considered the family of APN binomials, for n divisible by
4 and showed that they behave exactly as the Gold functions (can be generalized to a
family of functions with all derivatives on non-zero directions being 2t-to-1 mappings,
for some positive integer t). As well as we showed that not all APN families behave in
this way. In the future, the following problem can be studied:

• Whether recently constructed APN families behave as Gold functions.
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