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Abstract 

Ageing affects the human body in different ways. Healthy ageing is accompanied by an 

asymmetrical grey matter thinning, which affects the naturally thicker hemisphere stronger 

(Roe et al., 2021). How these structural changes relate to intrinsic activation patterns 

measured by resting state functional Magnetic Resonance Imaging (fMRI) remains unclear. 

Hence, in the current study, the relationship between grey matter probability values 

(GMPV) and effective connectivity (EC) was investigated. We used data from the BETULA 

longitudinal project (N = 227) from the collection waves T5 and T6. Canonical Correlation 

Analysis suggested patterns of relationships between EC and GMPVs within the Default 

Mode Network and the Central Executive Network, which were specified using generalized 

additive models predicting EC by GMPVs. EC changed over time in connections from left 

dorsal Prefrontal Cortex to right medial Temporal Gyrus and right Prefrontal Cortex to left 

Precuneus and could be better predicted by GMPVs than chronological age. There was a 

weak relationship between structural and functional lateralisation. Overall, the results 

support the expected ageing structure-function relationships. 

 

Keywords: ageing, grey matter, effective connectivity, resting state, fMRI 
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Sammendrag 

Aldring påvirker kroppen på forskjellige måter. Ikke-patologisk aldring karakteriseres av 

asymmetrisk tap av grå materie, som påvirker den tjukkere hemisfæren sterkere (Roe et al., 

2021). Det er ukjent hvordan disse strukturelle forandringene kan relateres til intrinsisk 

aktivitet som måles med «resting state» funksjonell magnetresonanstomografi (fMRI). Derfor 

undersøkte vi sammenhengen mellom sannsynlighetsverdier for grå materie (GMPV) og 

effektiv konnektivet (EC). De observerte dataene inneholder to tidspunkter, T5 og T6, fra det 

longitudinelle BETULA prosjektet (N = 227). Canonical Correlation Analysis indikerer 

relasjoner mellom EC og GMPV innom Default Mode Network og Central Executive 

Network. Sammenhengen mellom EC og GMPV ble spesifisert ved hjelp av generalized 

additive models. I tillegg fant vi forskjeller i EC mellom T5 og T6, fra venstre dorsal 

Prefrontal Cortex til høyre medial Temporal Gyrus og høyre Prefrontal Cortex til venstre 

Precuneus. Videre predikerte GMPV EC bedre enn kronologisk alder. Sammenhengen 

mellom strukturell og funksjonell lateralisering i de aktuelle dataene var svak. Det ble funnet 

markører for sammenhengen mellom hjernestruktur og -funksjon. 

 

Nøkkelord: aldring, grå materie, effektiv konnektivitet, resting state, fMRI 
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Abbreviations 

BOLD signal – blood oxygen level dependent signal 

CEN  – central executive network 

CSD  – cross spectral density 

CSD-DCM – cross spectral density dynamic causal modelling 

DAN  – dorsal attention network 

DCM  – dynamic causal modelling 

DMN  – default mode network 

EC  – effective connectivity 

ECI  – echo-planar imaging 

FC  – functional connectivity 

fMRI  – functional Magnetic Resonance Imaging 

GAM  – generalized additive model 

GLM  – generalized linear model 

GMPV  – grey matter probability value 

rs-fMRI – resting-state fMRI 

ldPFC  –  left dorsal Prefrontal Cortex 

LI  – laterality index 

lPC  –  left Precuneus 

lmTG  –  left medial Temporal Gyrus 
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lPC2rPC –  Effective connectivity from left Precuneus to right Precuneus. 

(Note: the “2” between the brain regions is also being used for other 

pairs of regions indicating a causal relationship. The first region 

indicates the origin of the connection and the second the end.) 

lPFC  –  left Prefrontal Cortex 

VASO method – vascular space occupancy method 

raPFC  –  right anterior Prefrontal Cortex 

rmTG  –  right medial Temporal Gyrus 

rPC  –  right Precuneus 

rPFC  –  right Prefrontal Cortex 

rs-FC  – resting-state functional connectivity 

rs-EC  – resting state effective connectivity 

SC  – structural connectivity 

SN  – salience network 

task-fMRI – task-based fMRI 
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Introduction 

Ageing is an essential part of life, affecting the human body in different ways. When 

researching ageing, the process is differentiated into healthy and pathological ageing. Healthy 

ageing can be defined as pathology- and diagnosis-free ageing (Peel et al., 2004) or as ageing 

while maintaining functional abilities and thereby wellbeing (WHO, 2020). However, healthy 

ageing also includes elements such as natural age-related atrophy or cortical thinning (Peel 

et al., 2004). Pathological ageing is accompanied by neurodegenerative disorders defined by 

the progressive, selective, and systematic loss of neurons in different brain regions (Martin, 

1999). This leads to the disruption of the particular neurotransmitter systems which can be 

categorised into specific disorders such Alzheimer’s, Parkinson’s or Huntington’s Diseases 

(Martin, 1999). 

The understanding of the effects of age and ageing on brain function is still limited 

(Grady, 2012). Neuroimaging modalities such as fMRI are useful tools to observe brain 

function across ageing (D’Esposito et al., 2003). Most studies use FC to show that brain 

function changes in both healthy and pathological ageing (D’Esposito et al., 2003). While 

these studies’ findings still need to be replicated, they also only allow limited inference about 

about how age and ageing affect the quality of the relationships between brain regions, such 

as their EC (Sala-Llonch et al., 2015). 

Only recently, Roe and colleagues (2021) found increased grey matter loss in most 

asymmetric brain regions to be a unique feature of ageing. How the loss of grey matter in 

these regions relates to EC is an unanswered question. Overall, the observation of healthy 

ageing can help establish a baseline understanding of the heterogenous process of ageing. 
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Therefore, this work will examine the relationship between grey matter and EC in an 

ageing sample. As fMRI is used in this study, the first chapter gives an overview of the 

neuroimaging technique fMRI and its history, followed by its different applications. First, an 

overview of the function of the method is provided. Second, the two main application 

settings, task and resting state fMRI are being described and compared. In this study, we 

used rs-fMRI data and further descriptions focus hence on rs-fMRI. Third, analytical 

approaches of rs-fMRI data are being described, followed by fourth, most recent findings on 

networks focus on rs-fMRI.  

The second chapter presents current literature on cerebral changes during ageing, 

distinguishing structural and functional changes. First, cortical thinning, and second, grey 

matter asymmetry (changes) are being discussed in the light of healthy ageing. Third, the 

state of the literature on age and ageing-dependent signal and connectivity changes are being 

described. Finally, the interplay of brain structure and function during ageing is being 

discussed. 

The third chapter embeds fMRI research and the current study into the context of 

the ongoing replication crisis. Pitfalls and potential solutions are being discussed. 

The fourth chapter gives an overview of the project. Both research questions and 

hypotheses are specified. 
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Magnetic Resonance Imaging 

One of the most widely used techniques in neuroimaging is magnetic resonance 

imaging (MRI). Magnetic resonance scanners create a strong magnetic field B0, which affects 

the alignment of the body’s protons, with Hydrogen protons (H) being of particular interest 

which can be found in water molecules (H2O) (Purves et al., 2013). Gradients send radio 

frequency pulse frequencies B1 for a few milliseconds, which changes the naturally running 

spin and directionality of the protons. After the radio pulse has been sent, the protons re-

align along the scanner’s main magnetic field (B0) which can be measured by the coil. The 

coil amplifies and digitizes the signal to extract information on both frequency and phase. A 

sequence1 is used to produce images of the brain in slices (Purves et al., 2013). 

Functional Imaging 

Functional MRI (fMRI) specifically uses different sequences to capture changes over 

time. The most commonly used fMRI sequences are echo planar imaging (EPI) sequences, as 

EPI is relatively fast allowing for more data sampling (Kirilina et al., 2016). Changes in 

voxel intensities gives information about the oxygenation of haemoglobin measured by the 

 

 

1 Sequences are the ‘runs of the scanner’, characterised by a frequency or combinations of frequencies used 

repeatedly for imaging. The characteristics of the frequency influence the output recorded by the head coil. For 

example, during MRI, T1-weighted images are obtained when using short repetition (TR) and echo times (TE). 

T2-weighted images can be obtained when using both long TR and TE. T1-weighted images give information 

about grey-to-white-matter contrasts and T2-weighted images between cerebral tissue and cerebrospinal fluid 

(Purves et al., 2013). 
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blood-oxygen level dependent (BOLD) signal (Purves et al., 2013). Other sequences can 

provide information about cerebral blood flow, volume or oxygen metabolism (L. Huber et 

al., 2019).  

The underlying principle for BOLD fMRI is biological. When neurons fire, astrocytes, 

one type of glial cells, signal to the blood vessels to supply more oxygen (which is being 

carried by the transport protein haemoglobin) and glucose-rich blood to cover the neurons’ 

metabolic demands (Attwell et al., 2010). Importantly, haemoglobin has different magnetic 

properties when oxygenised compared to deoxygenised, which is then captured by the EPI 

sequence. The underlying assumption for further inference is that brain areas displaying 

increased activity will become identifiable by higher oxyhaemoglobin levels carried into these 

areas by incoming, ‘freshly’ oxygenised blood, as these areas consume oxygen and glucose. 

The decrease of the relative concentration of deoxyhaemoglobin during the income of 

oxyhaemoglobin-rich blood can then be measured at the specific locations across the brain. 

The body interprets the astrocytes’ signals as a sign to oversupply the firing neurons, 

potentially anticipating future firing or simply supplying other metabolites from the blood. 

Within circa 5-6 seconds the fMRI signal peaks and then slowly decreases reaching levels 

below the baseline, lasting for 20-30 seconds, which has been modelled by the hemodynamic 

response function (HRF) (Elbau et al., 2018; Lindquist et al., 2009; Tsvetanov, Henson, et 

al., 2020). Hence, the BOLD signal is an indirect measure of synaptic activity reflected in 

collective ‘firing’ or local field potentials, which allows inferences about neuronal activity 

(Grady, 2012). 
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Over the years, fMRI has become one of the most popular methods among current 

neuroimaging techniques with an increasing number of publications every year (Marinsek, 

2017). There are several reasons for the popularity of fMRI. Firstly, the technique offers a 

high spatial resolution compared to other neuroimaging techniques while still maintaining an 

acceptable temporal resolution. Secondly, fMRI is non-invasive. Thirdly, MRI scanners are 

widely available in Europe and North America and once installed, they open wide 

possibilities for new discoveries (Glover, 2011).2 

Although fMRI is used in clinical studies, to support or monitor therapy, and study 

the effects of pharmacological interventions (Glover, 2011), its application is still limited and 

does usually not exceed presurgical planning (Specht, 2020). However, recent findings show 

that clinical fMRI has the potential to be used for individually tailored applications (Gordon 

et al., 2017; Gratton et al., 2018; Greene et al., 2020; Poldrack et al., 2015). Furthermore, 

both highly sampled single subject (Gordon et al., 2017; Gratton et al., 2018) and group-

averaged data might help to identify biomarkers and develop diagnostic classifiers for 

neuropsychological disorders (e.g., Eslami et al., 2019; Thomas et al., 2020). Advances in 

 

 

2 Additionally, a rather hypothetical reason is the attractiveness of graphical neuroimaging outputs. Some 

evidence suggests that evaluating information presented with neuroimages tends to appear more trustworthy and 

scientific in comparison with information presented as plain text or with standard graphs (Baker et al., 2017). 

The underlying process of this “neuroimaging bias” is yet poorly understood, possibly inapplicable to experts in 

the field (Baker et al., 2017). However, the increasing provision of funding for fMRI projects, in comparison to 

other fields’, might partly stem from this bias (Frégnac & Laurent, 2014). 
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establishing diagnostic classifiers are ongoing and adopting different machine-learning 

techniques provides relatively good diagnostic accuracy (see Šimundić, 2009) using MRI data 

(Yassin et al., 2020) or combination of fMRI and MRI data (Rakić et al., 2020). All 

considered, fMRI has a large potential for a range of applications in clinical and research 

settings (Gratton et al., 2018), even more so with the help of further development of 

methodology (Thomas et al., 2020). 

task-based fMRI 

In the approximately first 20 years since fMRI has been discovered by Ogawa and 

colleagues (1990), paradigm-based or task-based fMRI (task-fMRI) were used as the fMRI 

design of choice (Specht, 2020). The idea behind task-fMRI is that specific tasks evoke 

neuronal activity followed by metabolic changes, such as, oxyhaemoglobin-rich blood inflow, 

measured by BOLD-contrasts. An example of task-fMRI is to show images signalling the 

participant to tap with their index finger as the experimental condition alternating with a 

control condition showing only a fixation cross which does not require any movement. An 

elicited BOLD signal in motor areas, cerebellum and striatum during finger tapping 

(experimental condition) indicates activity in these regions during motor task execution 

(Gountouna et al., 2010). Additionally, subtracting the BOLD signal during the 

resting/control condition’s from the task condition informs the relative signal change, which 

should be statistically significant in the mentioned motor regions (Gountouna et al., 2010). 

resting-state fMRI 

Resting state fMRI (rs-fMRI) has first been introduced into the field by Biswal and 

colleagues (1995) in a seminal experiment. In rs-fMRI, the procedure can be seen as opposite 
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to task-fMRI. Instead of engaging in a particular task, the participant rests either with eyes 

closed or looking at an empty slide, fixation cross or similar (Poldrack, 2018). Hence, “rest” 

in rs-fMRI studies is refined as inactive wakefulness, when the participants is awake, but not 

involved in any particular cognitive task. Rs-fMRI analyses focus on low-frequency BOLD-

signal fluctuations, which are often used to map synchronous fluctuations, also called 

functional connectivity (Lee et al., 2013). Crucially, these patterns are systematic/non-

random and show spatiotemporal patterns (Lee et al., 2013). 

Ever since its introduction, rs-fMRI has been widely adopted (Snyder, 2016). Some of 

the main reasons are that: i) rs-fMRI is assumed to reveal unique information about the 

functional organisation of the brain, ii) the costs are lower than for task-fMRI, as the 

scanning durations are usually shorter, iii) rs-fMRI is easy to administer as it does not 

require participants to learn or execute any procedures, therefore constraint free (Canario et 

al., 2021). This allows to investigate individuals who are not able to execute certain tasks, 

due to cognitive impairment, motor problems (e.g., Lau et al., 2016; Y. Zhang et al., 2017) 

and neuropsychological disorders such as Alzheimer’s (Sanz-Arigita et al., 2010; Zhiqun 

Wang et al., 2015; Zhao et al., 2012; Zhou et al., 2013); or Parkinson’s Disease (Göttlich et 

al., 2013; Pan et al., 2017; Sang et al., 2015; Wei et al., 2014). Lately, the focus of the 

scientific community has been on development of new methods and improving research 

practices in neuroimaging studies. Several open access databases have been established over 

the recent years containing rich rs-fMRI data in order to achieve the aforementioned goals 

(Eickhoff et al., 2016; Harms et al., 2018; Madan, 2017). 
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Comparison of resting-state vs. task-based fMRI 

Task-fMRI is based on the assumption that neurons deplete of oxygen when firing, 

when the neuronal firing is evoked by a task or stimulus. The oxygen-depletion leads to the 

HRF-modelled overshoot of oxyhaemoglobin-rich blood. Conversely, the idea of rs-fMRI is 

based on the fact that, even during awake resting, approximately 20% of the body’s energy 

is consumed by the brain (Clarke & Sokoloff, 1999), which suggest there is high activity 

during rest (Hyder et al., 2013). This indicates that the brain constantly executes intrinsic 

processes, measurable by low frequency fluctuations below 0.1Hz (Biswal et al., 1995), which 

are not yet fully understood. A range of findings indicate an underlying permanent 

prevalence of top-down, also called intrinsic processes, which do not appear in response to 

specific sensory inputs (Friston, 2002). It is suggested that these intrinsic networks might 

exist in order to process information in an efficient and less energy-consuming way (van den 

Heuvel & Hulshoff Pol, 2010). In this context, it has been hypothesised that the brain uses 

elements of anticipation or works in a hypothesis-testing fashion, partly to conserve energy 

as well as to assure survival (Poldrack, 2018). Intrinsic processing seems to play an essential 

role in such prediction-making and hypothesis-testing. 

Moreover, many, if not most, of the major functional task-specific hubs have been 

mapped out on a macro-scale over the recent decades. The accumulated evidence suggests 

cognitive processes are dependent on the functioning of large-scale, interconnected networks 

rather than single regions (Hugdahl, 2018). Accordingly, the majority of fMRI research 

outputs has recently moved from task- towards rs-fMRI connectivity (Marinsek, 2017). 
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Critics of rs-fMRI argue that resting-state is just another task “state” (Campbell & 

Schacter, 2017). Subjects still exhibit activations dependent on a wide range of mental 

activities they engage in, which is likely to happen at rest (Campbell & Schacter, 2017). 

Additionally, it is likely that there are cohort-dependent differences in the engaged activates, 

possibly affecting the reliability of rs-fMRI (Campbell & Schacter, 2017). 

However, task-fMRI is not unanimously perceived as more reliable in comparison to 

rs-fMRI (e.g., C. M. Bennett & Miller, 2013; Elliott et al., 2020). For example, based on the 

task characteristics and experimental design, task-fMRI datasets often differ strongly from 

one another (C. M. Bennett & Miller, 2013). Hence, different task-fMRI studies’ findings are 

often difficult to compare with each other aggravating the findings’ generalisability. 

Briefly, rs-fMRI is set out to explore relationships between intrinsic neural activities 

in different cerebral regions over time (Poldrack, 2018). Task-fMRI on the other hand is 

focussed on activations provoked by a task. Therefore, rs-fMRI is preferentially chosen to 

investigate more general questions about the prevailing functional networks and their 

dynamics. However, it is not to say that any of the mentioned measures is obsolete – rs-

fMRI and task-fMRI are simply different tools to be applied in the right settings. To gain a 

holistic and detailed understanding of cognitive processes using neuroimaging, the most 

sensible option is to consider both resting-state and task networks, depending on the aim 

and hypothesis on hand (e.g., Campbell & Schacter, 2017; Dohmatob et al., 2021). 

Analysis of Resting State fMRI Data 

 When analysing resting state fMRI data, the goal is to identify consistent patterns of 

spontaneous fluctuations in brain activity (Smith et al., 2013). These patterns of co-
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occurring brain activity are also called connectivity and can be mapped out into resting-state 

networks (rs-networks) or functional connectome (Smith et al., 2013). There are two major 

analytical approaches for inferences about rs-networks: functional connectivity (FC) and 

effective connectivity (EC). 

 FC displays statistical dependencies between measures, using correlation analyses 

(Smith et al., 2013; Zeidman, Jafarian, Corbin, et al., 2019). Simultaneously occurring signal 

in different regions over time will be linked under the assumption that these co-active 

regions cooperate in a network. 

EC is a probabilistic measure of the direct causal relationships between brain regions; 

their effect on each other and themselves (Zeidman, Jafarian, Corbin, et al., 2019). This adds 

the directionality of effects within or between rs-networks (Friston et al., 2003). EC adopts 

the Bayesian approached to analyse the imaging data by using Dynamic Causal Modelling 

(DCM) to assess the connectivity between selected regions (see for DCM Friston et al., 2003; 

Zeidman, Jafarian, Corbin, et al., 2019; Zeidman, Jafarian, Seghier, et al., 2019). 

Importantly, as with other Bayesian methods, in DCM, prior assumption of the probability 

will together with observed probabilities inform the posterior probabilities. DCM priors are 

the qualities of connectivity, such as directionality (Friston et al., 2003). 

Commonly, in order to estimate the FC or EC, the main network nodes are selected, 

that are functionally distinct brain regions, representing the network’s edges/nodes (see 

figure 1 in Smith et al., 2013). To establish nodes or regions of interest (ROI), commonly 

parcellation is used; the brain is divided into voxels or spheres which serve as network nodes. 

Different data or hypothesis driven approaches can be used determine the parcellation of the 
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brain. First, neighbouring voxels can be clustered based on time-series-dependent similarities 

(k-nearest neighbour). Second, independent component analysis (ICA) indicates the 

independent activity pattern of different brain regions. Overlapping node activity maps in a 

time-series are represented by network edges (Smith et al., 2013). Third, early rs-fMRI 

studies calculated FC seed-based by selecting a region of the brain, for example an 8mm3 

voxel, and then correlating its time-series with all other voxels’ time-series (Smith et al., 

2013). Fourth, when testing specific hypotheses regarding the relationship between brain 

regions, a more recent approach – DCM – is used, examining directional connections within 

and between specific nodes. 

Parcellations with higher dimensionality (more nodes) will result in a finer analysis of 

the network connectivity by revealing information on within large-scale network connectivity 

(Lee et al., 2013). A lower dimensionality will inform about between connectivity, however 

with less detail regarding within large-scale network connectivity. Seed-based approaches are 

commonly used to test hypotheses on connectivity when prior information is available about 

the seed region (rather hypothesis-driven). These tests are correlational when using FC and 

causal when using EC. Data-driven approaches, such as ICA and different types of 

unsupervised machine-learning algorithms usually are used to explore networks and their 

qualities by clustering information (Lee et al., 2013). 

Recent Analytical Advances: Dynamic Causal Modelling 

Recently, Dynamic Causal Modelling (DCM) has become more popular for analysing 

fMRI data. DCM is an analytical tool implemented in SPM12 developed by Friston and 

colleagues in (2003) (Friston et al., 2003). DCM relies on Bayesian statistics and allows to 
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model EC. In comparison to more mainstream analyses, based on frequentist statistics, 

namely the correlational relationship between voxel-level signal intensities, DCM simulates 

the bidirectional relationship between and within selected ROIs/nodes using the Bayesian 

model inversion and comparison (Zeidman, Jafarian, Corbin, et al., 2019). Initially, DCM 

has been developed for hypothesis testing in task neuroimaging. The technique is not limited 

to fMRI and has previously been used in electroencephalography (EEG) and 

magnetencephalography (MEG). More recently DCM has been applied to rs-fMRI data 

(Zeidman, Jafarian, Corbin, et al., 2019). 

Given the nature of DCM, the analysis requires predefined priors and selected ROIs 

(Friston et al., 2003). Broadly the DCM procedure can be described in three steps (Zeidman, 

Jafarian, Corbin, et al., 2019), that are the following: model specification, model estimation, 

and model comparison. Model specification, also called forward models are specified for the 

data, and are driven by the hypothesis at hand. Usually, several competing forward models 

are defined, which then are fitted to the dataset, i.e., estimating the model accuracy. Model 

estimation or model inversion assesses the probability of observing the data under the 

previously specified models and is defined as model evidence. Finally, model comparison, as 

suggested by its name, is used to compare the predefined and fitted models on a group level 

(Zeidman, Jafarian, Corbin, et al., 2019). For the model comparison at the group level, 

Bayesian approaches, such as Parametric Empirical Bayes (PEB), or frequentist approaches, 

such as ANCOVA, can be used (Zeidman, Jafarian, Seghier, et al., 2019). 

DCM for cross spectral densities (CSD) is the latest development for resting-state 

DCM. CSD is modelled by between-nodes/ROIs correlations of BOLD-signal frequency 
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distributions (Friston et al., 2014; Zeidman, Jafarian, Corbin, et al., 2019). Thereby, time 

course-dependent signal changes of one region are modelled as dependency of another region, 

representing EC (Friston et al., 2014; Zeidman, Jafarian, Corbin, et al., 2019). CSD-DCM is 

useful to model rs-fMRI, as it focusses on frequency instead of time, where large timepoint-

dependent changes are not expected, as it would be in task-fMRI. This allows CSD-DCM to 

model statistical dependencies among timeseries. Different from other DCMs (e.g., applied to 

task-fMRI data), connection strength between nodes is assumed to be constant in CSD-

DCM. In other words, no time-dependent fluctuations are being modelled, allowing for more 

efficient calculation as it requires less computational power than other DCMs and is more 

sensitive to inter-individual differences (Zeidman, Jafarian, Corbin, et al., 2019). 

Resting-State Networks 

Evidence from electroencephalography (EEG), positron emission tomography (PET) 

and fMRI provides evidence for the existence of a range of intrinsic resting-state networks 

across cortical as well as subcortical structures (Allen et al., 2011; Damoiseaux et al., 2006; 

Hacker et al., 2013; Mantini et al., 2007; Raichle et al., 2001). Three of these networks have 

been labelled to be core neurocognitive networks: default mode network (DMN), salience 

network (SN) and central executive network (CEN), and are suggested to be incremental for 

healthy cerebral functioning and cognition (Bagarinao et al., 2019; Bressler & Menon, 2010; 

Tsvetanov et al., 2016). 

Default Mode Network 

The DMN was the first intrinsic network discovered (Biswal et al., 1995). Before its 

discovery it was thought to be merely de-activations during the resting blocks in task fMRI 
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studies (see Shulman et al., 1997). Today, the DMN has been observed in other mammals as 

well such as monkeys, cats and mice (Raichle, 2015). In humans, three major DMN nodes 

have been defined: i) the ventral medial (VMPFC), ii) dorsal medial prefrontal cortex 

(DMPFC), and iii) the posterior cingulate cortex and adjacent precuneus including the 

lateral parietal cortex, approximate Brodmann area 39 (Raichle, 2015; Tsvetanov et al., 

2016). Although the role of the DMN remains unclear, certain functions have been attributed 

to the network and its subunits, such as self-referential thought (DMPFC), emotion 

processing (VMPFC), and recollection of experiences (posterior elements) (Raichle, 2015). 

Moreover, studies suggest that atypical DMN functioning and its connectivity with CEN and 

SN are associated with disease and disorders of the brain (A. C. Chen et al., 2013; Raichle, 

2015). Dysregulation of connectivity between the DMN nodes within and between other 

networks has been linked to depression (increased within-DMN connectivity; Kaiser et al., 

2016), bipolar II disorder (decreased DMN-cerebellum and within DMN connectivity; Gong 

et al., 2019; X. Luo et al., 2018), schizophrenia (evidence of direction of network alterations 

is yet unclear), attention-deficit/hyperactivity disorder (reduced within DMN connectivity), 

and neurodegenerative disorders such as Alzheimer’s Disease (reduced within DMN 

connectivity; Greicius, 2008). 

Central Executive Network 

CEN, also called cognitive control network or cognitive executive network has two 

main nodes: the dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC). 

CEN has been attributed to functions such as higher order cognition and attention 

regulation (Bressler & Menon, 2010; Tsvetanov et al., 2016). Cognitive or executive control 
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is an umbrella term for family of top-down cognitive functions necessary to cognitively 

control behaviour, such as inhibition, allowing for self-control; interference control, allowing 

for selective attention and cognitive inhibition; and working memory as well as cognitive 

flexibility, allowing for flexible, adaptive and creative real-time information processing 

(Diamond, 2013), finally initiation, vigilance and planning (Niendam et al., 2012). A number 

of studies has linked the mentioned functions with CEN (e.g., Niendam et al., 2012; 

Reineberg et al., 2018) as well as the connectivity between CEN, DMN and SN (e.g., Beaty 

et al., 2015). Interestingly, negative mood seems to decrease efficiency of information transfer 

within CEN (Provenzano et al., 2019). A range of neuropsychological disorders have been 

associated with CEN dysregulation, such as altered DMN-CEN connectivity in major 

depression (Mulders et al., 2015), decreased FC between CEN and cerebellum in bipolar II 

disorder (X. Luo et al., 2018), increased within CEN connectivity in obsessive compulsive 

disorder (OCD) (Y. Chen et al., 2016), decreased within CEN FC in borderline personality 

disorder (Doll et al., 2013), increased FC between CEN-DMN in schizophrenia (Manoliu et 

al., 2014). 

Salience Network 

SN main nodes are the anterior insula (AI) and anterior cingulate cortex (ACC) 

(Bressler & Menon, 2010; Tsvetanov et al., 2016). The name of this network stems from the 

functions of insula, i.e. detecting salient events/stimuli and allocating executive and 

sensorimotor resources to them (Goulden et al., 2014). SN and its subregions have also been 

suggested to be responsible for switching between DMN and CEN (Chand & Dhamala, 2017; 

Goulden et al., 2014; Sridharan et al., 2008; Uddin, 2015). This modulating function of SN 
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seems especially disrupted in pathological ageing, such as age-related mild cognitive 

impairment (Chand et al., 2017) or Alzheimer’s Disease (He et al., 2014; Joo et al., 2016). 

Additionally, in posttraumatic stress disorder (PTSD) (Abdallah et al., 2019) and 

unmedicated bipolar II disorder (Gong et al., 2019) within SN FC has been found to be 

increased. Interestingly, opposite to CEN, negative mood seems to increase the efficiency of 

information transfer within the SN (Provenzano et al., 2019). 
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Cerebral Changes During Healthy Ageing 

Aging is an essential part of life. Throughout the lifespan, the brain reorganises 

continuously adapting to the everchanging environment and ‘challenges at hand’ (Y. Chang, 

2014; Poldrack, 2018; Poldrack et al., 2015). Ageing can be quantified in different ways, for 

example, by looking at behavioural patterns, chronological or biological age. Grey matter 

properties, including cortical thinning and grey matter asymmetries are an example for 

biomarkers of ageing (e.g., Aycheh et al., 2018; Goh, 2011; Grady, 2012; N. Luo et al., 2020; 

Pur et al., 2019; Shaw et al., 2016). Additionally, functional properties, such as BOLD signal 

changes, can serve as biomarkers of ageing (Garrett et al., 2017; Gaut et al., 2019; Grady & 

Garrett, 2014; Kumral et al., 2020; Z. Li et al., 2017; Nomi et al., 2017; Tsvetanov et al., 

2015). 

In this section, an overview of the current state of the literature is being given. 

Firstly, structural changes during ageing are being described, namely, the well-documented 

phenomenon of cortical/grey matter thinning and its lateralisation. Thereafter, age-

dependent changes in cerebrovascular signals are discussed, and finally, bringing both brain 

structure and function together, the relationship between grey matter loss and functional 

connectivity. 

Cortical Thinning 

Over the recent years an extensive amount of research has linked chronological age to 

cortical thinning (e.g., Aycheh et al., 2018; Goh, 2011; Grady, 2012; N. Luo et al., 2020; Pur 

et al., 2019; Shaw et al., 2016). Hence, cortical thickness has been frequently treated as one 

of several indicators of biological age during healthy and pathological ageing (Aycheh et al., 
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2018; Corps & Rekik, 2019; Dafflon et al., 2020; Khundrakpam et al., 2015). Cortical 

thickness has also been classified as a biomarker of different ageing-related diseases, such as 

Alzheimer’s Disease (AD) (Dickerson & Wolk, 2012). Recent evidence suggests that cortical 

thickness in the frontal areas is most susceptible to thinning during the process of healthy 

ageing (Lemaitre et al., 2012; Roe et al., 2021).  

Given the existing evidence, it is suggested that cortical thickness among other 

structural data obtained from T1-weighted MR, can be used to predict chronological age 

(Aycheh et al., 2018; Bashyam et al., 2020; Cole, 2020; Madan & Kensinger, 2018; J. Wang 

et al., 2014). Chronological age can be defined as individual physical age value, whereas 

biological age can be derived from different biomarkers of interest, such as grey matter 

properties. Using two different databases (IXI and INDI), Wang and colleagues (2014) found 

that cortical thickness combined with curvatures – modelling sulci and gyri shapes with 

vectors, that predicted chronological age with high accuracy and sensitivity; with deviations 

of 4.57 and 1.38 years for the different datasets. In a large-scale cohort study, Aycheh and 

colleagues (2018) reported that cortical thickness is a reliable predictor of chronological age 

with a mean absolute error of 4 years (Aycheh et al., 2018). Another regression model 

presented by Madan and Kensinger (2018) compared different data modalities to determine 

which of them can serve as the best predictor of age. Their results suggest cortical thickness, 

when used as predictors together with fractal dimensionality - a measure of complexity of 

cortical and subcortical structures - served most accurately for chronological age-prediction 

with a median error of 6–7 years. Finally, a total of thirty-four neuroimaging measures were 

informative predictors of chronological age according to Cole and colleagues (2020). Of these, 
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grey matter volume and white matter hyperintensities were found to be the most informative 

predictors in a regression model predicting chronological age. Given all the above, it can be 

assumed that cortical thinning is not only a part of healthy ageing but can also be used as 

an estimate for chronological and biological age, and consequently be related to brain 

function. 

Cortical Thickness Asymmetry Changes 

A wide range of evidence shows that the brain is both structurally and functionally 

asymmetric (Agcaoglu et al., 2015; Chiarello et al., 2016; Hugdahl, 2005; Karolis et al., 2019; 

Kong et al., 2018; Toga & Thompson, 2003). These asymmetries are affected by the process 

of healthy ageing (Roe et al., 2021; N. Zuo et al., 2020). Recent research revealed that 

chronological age is negatively associated with asymmetries in cortical thickness (Agcaoglu et 

al., 2015; Roe et al., 2021). The strongest asymmetries in cortical thickness occur in the late 

20s, predominantly in frontal lobe, higher order cortical regions (Roe et al., 2021). The 

asymmetries decline continuously, because of decreases in thickness of the thicker 

hemisphere, during the following years in both healthy ageing and AD patients, with a 

notable acceleration in AD (Roe et al., 2021; N. Zuo et al., 2020). Changes in cortical 

thickness asymmetries are an important, however often overlooked feature of healthy ageing 

(Roe et al., 2021). Advancing the knowledge of structural changes during the lifespan will 

consequently advance inferences about pathological and healthy ageing. Moreover, improving 

the understanding of age-related structural changes offers the potential to link such to age-

related functional and behavioural changes in both healthy individuals and patients. 
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Cerebrovascular Signals 

The ageing of the body influences both neuronal and vascular systems (D’Esposito et 

al., 2003; Tsvetanov et al., 2019; West et al., 2019). In turn, the hemodynamic responses 

change in healthy ageing due to the effects on the vascular systems, such as cerebral blood 

volume and flow, cerebral metabolic rate of oxygen and venous oxygenation (Lu et al., 

2013).  

This results in additional noise in fMRI data (T. T. Liu, 2016). The magnitude of 

these noise components is often bigger than the signal of interest, making de-noising and 

noise reduction procedures crucial. Moreover, the signal-to-noise-ratio has been used as a 

metric of acquisition performance. Noise can be non-BOLD and BOLD-related. Examples for 

non-BOLD-related noise are motor activity, inter-scan, inter-subject, and inter-site 

variability and BOLD-related can originate from cardiac pulsation and respiration (T. T. 

Liu, 2016). 

Different MR sequences provide diverse information about the ageing brain. An 

example of such would be the vascular space occupancy (VASO) technique, also used as an 

indirect measurement of neuronal activity (L. Huber et al., 2014, 2017). VASO offers higher 

spatial specificity, which can add further detail to fMRI data, especially when used with 

higher magnetic field strength of 7T (L. Huber et al., 2014, 2017). Since VASO is solely 

focussed on cerebral blood flow, the signal is less susceptible to other physiological noise (Lu 

et al., 2013). VASO can additionally provide details about factors contributing to the BOLD 

signal, for example, how cerebral blood flow contributes to the BOLD signal (Lu et al., 

2013). However, a considerable amount of research is still focussed on validating VASO as a 



GREY MATTER LOSS AND EFFECTIVE CONNECTIVITY DURING AGEING 33 

valid method (Donahue et al., 2006; Hua et al., 2009; L. Huber, Finn, et al., 2020; L. Huber, 

Poser, et al., 2020; Jin & Kim, 2008; Scouten & Constable, 2007; Uh et al., 2011; Wu et al., 

2010). Currently, BOLD fMRI remains the leading technique (Lu et al., 2013). Nonetheless, 

variations in sequences artifact susceptibilities are dependent on the observed brain region 

(Lu et al., 2013). It is hence useful to observe either VASO or BOLD signal selectively 

dependent on the observed ROI, or both signals together (Lu et al., 2013). In the following 

the more researched BOLD signal changes during healthy ageing described in the literature 

will be summarized, followed by ageing-dependent connectivity changes. 

BOLD Signal Changes in Healthy Ageing 

It has been established, that the shape and temporal properties of the HRF vary 

between age groups: the time to reach the peak amplitude increases with older age, where 

the peak amplitudes are overall smaller (Abdelkarim et al., 2019; D’Esposito et al., 1999; 

Tsvetanov, Henson, et al., 2020; West et al., 2019). Additionally, the HRF is much more 

variable in older adults, from the mid-50s, potentially due to stronger differences in overall 

health and activity levels compared to younger adults (18-30 years) (West et al., 2019). 

Given the above, neurovascular coupling is affected with increasing age, in turn 

influencing the BOLD signal (D’Esposito et al., 2003). The literature indicates, that healthy 

ageing leads to a global decrease of BOLD signal variability (Garrett et al., 2017; Gaut et 

al., 2019; Grady & Garrett, 2014; Kumral et al., 2020; Z. Li et al., 2017; Nomi et al., 2017; 

Tsvetanov et al., 2015), where some evidence suggests a positive association between BOLD 

signal and ageing (Garrett et al., 2010). Nevertheless, more or increased task-induced signal 

does not mean “better” (e.g., Grady, 2012). Depending on the brain region and task, an 
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increased BOLD response does not have to lead to better task performance, but can also 

signify worse task performance (Grady, 2012). This is due to the interplay of excitatory and 

inhibitory firing, and the use of single brain regions for multiple functions (Hugdahl, 2018). 

Connectivity Changes 

Age-dependent physiological changes as summarized in the previous sections lead to 

changes in FC (Bethlehem et al., 2020; Sala-Llonch et al., 2015; Stumme et al., 2020). For 

example, older adults seem to have a higher global flexibility compared to younger adults, 

indicating that nodes switch more often between modules over time (Malagurski et al., 

2020). Additionally, there is significantly higher variability in network organisation in older 

adults (Malagurski et al., 2020). Such age-related FC changes have previously been labelled 

as disruptions in large-scale networks characterised by decreased strength and organisation 

of the connections (Andrews-Hanna et al., 2007; Goh, 2011) at the same time affecting the 

networks’ efficiency in transferring information (Bagarinao et al., 2020). Specifically, the age-

related cortical thickness asymmetry decrease in frontal and attentional networks (see Roe et 

al., 2021) might influence FC in the same areas (for comparison: Agcaoglu et al., 2015; 

Grady, 2012; Salami et al., 2014; Spreng et al., 2016). 

Neuroimaging research on healthy ageing has mainly focussed on FC and BOLD 

signal variability, with only few studies reporting EC changes during ageing (see review by 

Sala-Llonch et al., 2015). Studies on ageing reporting EC suggest that both within and 

between large-scale network EC contribute to explaining the variations in ageing as EC 

differs between age groups (Tsvetanov et al., 2015). Further literature indicates decreased 

EC in motor areas during motor imagery (imagined/mentalised movement, see L. Wang et 
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al., 2019), or stronger fronto-medio-temporal EC during an emotional memory task in 

comparison with younger adults (Waring et al., 2013). Finally, ageing influences EC when 

processing positive but not negatively loaded information, possibly leading to an age-related 

“positivity effect” (Addis et al., 2010). Interestingly, results from Addis and colleagues 

(2010) study on EC during healthy ageing suggests that only processing positive information 

is changed in comparison to negatively loaded information, likely leading to an age-related 

“positivity effect” (Addis et al., 2010). In the aforementioned study, EC of between the two 

groups, i.e., young vs. old individuals was compared when participants were exposed to 

images which were previously rated negatively and associated with high arousal, and to 

positively rated, low-arousal images. No age effects were discovered for the encoding of the 

negative images, but there were age differences discovered when encoding the positive 

images. 

A range of studies has shown that older adults show decreased FC in caudal brain 

regions including occipital, parietal and medio-temporal lobes (Goh, 2011). It has been 

suggested that this is due to a dedifferentiation of processing specificity (Goh, 2011). For 

example, studies comparing groups with mean ages of 20.9 and 60.9 (Park et al., 2004), or 

67.36 (ranging from 59–80) and 25.73 years (ranging from 20–35) respectively (Voss et al., 

2008) revealed that the visual cortex BOLD contrast in younger adults is more distinct for 

different visual stimuli than in older adults. On the other hand, age-related atrophy can lead 

to inaccuracies in co-registrations and hence makes BOLD-responses appear lower in older 

(Mage = 64.9, SD = 2.8 years) compared to younger individuals (Mage = 26.1, SD = 2.2) (X. 

Liu et al., 2017). 
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Within Network Functional Connectivity. Generally, chronological age has 

been associated negatively with whole brain FC (Farras-Permanyer et al., 2019), as well as 

within large-scale network resting-state functional connectivity3 (rs-FC) (Bagarinao et al., 

2019, 2020; Varangis et al., 2019). Chronological age has also been negatively associated with 

EC stability of neuronal activity within these networks (Tsvetanov et al., 2016). The same 

applies to FC in DMN, dorsal attention network (DAN)4, CEN and SN (Campbell & 

Schacter, 2017; Damoiseaux et al., 2008; Ferreira & Busatto, 2013; Grady, 2012; Mak et al., 

2017; Salami et al., 2014; Skouras & Scharnowski, 2019; Spreng et al., 2016; Tsvetanov et al., 

2016; Varangis et al., 2019; Voss et al., 2010). Additionally, recent evidence suggests that 

ageing affects DMN and CEN connectivity stronger than traumatic brain injury 

(Bittencourt-Villalpando et al., 2021). 

However, there are specific within resting-state network differences (e.g., 

Damoiseaux, 2017). For example within the DMN (Boraxbekk et al., 2016; Mak et al., 2017; 

Salami et al., 2014), Voss et al. (2010) found age-related decreases in posterior DMN FC, 

both for local and distributed connections. Similarly, Salami, Pudas and Nyberg (2014) 

showed that FC decreases in most parts of the DMN with increasing age. An exception 

seems to be the angular gyrus which showed a weaker negative relationship between 

 

 

3 See for a definition of functional connectivity the chapter “Analysis of Resting-State fMRI Data”. 

4 The dorsal attention network has also been labelled the task-positive network as it is positively correlated to 

different tasks, as opposed to the DMN (Esposito et al., 2018). Both dorsal and ventral rs-fMRI attention 

networks resemble the attention networks identified during task-fMRI neuroanatomically (Fox et al., 2006). 
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chronological age and FC than other DMN parts (Salami et al., 2014), consistent with 

previous findings (Allen et al., 2011; Biswal et al., 2010). In addition to an increased number 

of connections to the inferior parietal lobes, Tsvetanov and colleagues (2016) found that the 

connectivity in the right anterior insula increased with age. Even though, the major trend 

shows a decrease of DMN FC with higher age during both healthy and pathology related 

ageing, it is not a simple gradual decrease. The relationship between DMN FC strength and 

age has been suggested to be modelled as inverted U-shape (age on the x-axis, FC on the y-

axis) (Mak et al., 2017). 

The age-related FC changes in SN as well as CEN seem to be similar to those in the 

DMN (He et al., 2013; Joo et al., 2016; Onoda et al., 2012). However, it has been suggested 

that those can be counteracted by cognitive training (Cao et al., 2016; M. Xu et al., 2020). 

Moreover, compared to younger adults, older healthy adults seem to engage SN and DMN 

less often (Marstaller et al., 2015). Similarly, FC within the anterior cingulate cortex was 

found to increase with higher age (Cao et al., 2014). The key nodes of SN and CEN appear 

to be negatively related with both healthy and pathological ageing (He et al., 2013, 2014; Joo 

et al., 2016). On the contrary, FC within DAN is suggested to be reduced with increasing 

age (Spreng et al., 2016), providing a possible explanation of the well-known age-related 

deterioration of attention processes (Tomasi & Volkow, 2012). Although it could be assumed 

that there is an overall trend of decrease in connectivity within large-scale networks during 

healthy ageing, bidirectional region-dependent patterns of age-related within network 

connectivity changes make it difficult to conclude with such all-or-nothing statement. 
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Between Network Functional Connectivity. In contrast to within large-scale 

network FC decreases, the between large-scale network FC has been positively associated 

with increasing age, which is also referred to as de-differentiation (Damoiseaux, 2017; Goh, 

2011; Grady et al., 2016; Hughes et al., 2020; Stumme et al., 2020). Simultaneously, 

Bagarinao et al. (2019) concluded that the core neurocognitive networks (DMN, SN, CEN) 

and basal ganglia networks showed relatively preserved connectivity between networks. 

Furthermore, Spreng and colleagues’ (2016) suggested that DAN-DMN FC was higher for 

healthy older adults compared to younger adults. Other networks, such as the hippocampal 

system were found to show increased connectivity with frontal networks, which has been 

associated with lower memory processing (Salami et al., 2014). The literature suggests that 

the FC is increased in visuospatial and precuneus networks with other networks in older 

individuals (Bagarinao et al., 2019). Additionally, there has been a range of reports of 

increased DMN-FPN FC (Campbell & Schacter, 2017). Opposingly, there is evidence for 

decreased FPN-DAN FC (Campbell & Schacter, 2017), DMN-SN FC (Cao et al., 2014), and 

CEN-DMN connectivity (He et al., 2013). Moreover, the anterior cingulate cortex, a region 

of the SN, has been reported to exhibit a decrease in FC to other regions such as 

hippocampus and thalamus during the process of healthy ageing (Cao et al., 2014). Hence, 

the connectivity between networks and directionality of age-related changes of such cannot 

be generalized for the entire brain. 

There have been estimates of chronological age accounting for circa 10% of the 

individual differences in FC (Boraxbekk et al., 2016). Furthermore, Tsvetanov and 

colleagues (2016) found, that EC between SN, DMN, and DAN could explain up to 20% of 



GREY MATTER LOSS AND EFFECTIVE CONNECTIVITY DURING AGEING 39 

the variance of age. Further, Tsvetanov et al. (2019) showed that the relationship between 

age and FC could be explained by the neurovascular and cardiovascular factors. 

Unfortunately, the overall understanding of how structural and functional changes interact 

throughout healthy ageing is still limited (Carp et al., 2011; Fjell et al., 2017; Kalpouzos et 

al., 2012). 

In conclusion, age-related physiological changes lead to differences in BOLD signal 

variability. Since FC is calculated based on the BOLD signal, these changes are directly 

related to the BOLD signal variability. On the one hand, the academic literature suggests 

that there are age-related trends of within network FC decreases and between network FC 

increases. On the other hand, there are age-dependent regional FC changes not following 

these trends, dependent on a variety of factors, which may as well be structural (e.g., 

Damoiseaux & Greicius, 2009). It is therefore reasonable to investigate the relationship 

between structural and functional parameters to achieve a better understanding of the 

ageing brain. To our knowledge, there are no studies addressing the relationship between 

grey matter properties and EC. Hence, the next section will focus on the relationship 

between grey matter and FC, another estimate of connectivity. 

Relationship between Grey Matter and Functional Connectivity 

Recent literature on ageing suggests a relationship between cortical thickness and FC 

in humans (Huntenburg et al., 2017; Tsvetanov, Gazzina, et al., 2020) and non-human 

primates (Beul et al., 2017). One example in humans are grey matter and FC differences 

between left and right handers, which can be linked to behaviour (M. Li et al., 2015). 

However, in a study by Huntenburg and colleagues (2017) the relationship between cortical 
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thickness and FC did not persist when controlling for shared cortical thickness variance and 

T1 parameters. Furthermore, the relationship between cortical thickness and FC were not 

found by Mueller and colleagues (2013), albeit the authors report a positive correlation (r = 

0.30, p < 0.0001) between sulcal depth variability and FC variability. More recent evidence 

by Vieira and colleagues (2020) revealed a relationship between FC and cortical thickness 

throughout the ageing process. Additionally, age-related cortical thinning was related to 

changes in white matter diffusion parameters (Pinto et al., 2020), fractal dimension, and 

cortical surface changes (King et al., 2009; Reishofer et al., 2018), but also FC, specifically in 

the DMN (Fjell et al., 2017; Romero-Garcia et al., 2014). However, this relationship between 

cortical thickness and FC in DMN does not seem to be strong (Fjell et al., 2017).  

Given all the above, the relationship between structural and functional connectivity 

is still unclear (Fjell et al., 2017; N. Luo et al., 2020; Zimmermann et al., 2016). The 

evidence from several studies do suggest a structural-functional-connectivity-relationship is 

present (Levakov et al., 2021; Rosenthal et al., 2018; Ystad et al., 2011), other studies 

challenge these findings, proposing that the relationship is non-existent (e.g., Tsang et al., 

2017). Conversely, FC was found to be a predictor of cortical thickness in pathological 

development, such as Parkinson’s Disease progression (Yau et al., 2018). Recent evidence 

suggests, it can be concluded that age affects structural and functional parameters 

differentially as well as task performance based on both individual differences and type of 

task (Rieck et al., 2021). Although there is a body of literature indicating some association 

between cortical thickness and FC in humans, understanding the relationship between FC, 
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cortical thinning, and other structural parameters requires further investigation, especially 

considering the process of healthy ageing. 
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fMRI Reliability 

It is often unclear where uncertainty in fMRI findings originates, as there are many 

different sources of error, which lowers generalizability. Particularly multivariate phenomena 

such as ageing become difficult to explain when error is added from additional sources 

outside the phenomena’s parameter space, for example, via analytic and/or inferential errors 

(Nieuwenhuis et al., 2011; Poldrack, 2011; Yarkoni, 2019), questionable research practices 

(Gelman & Loken, 2013; Lilienfeld, 2017; Simmons et al., 2011; Wicherts et al., 2016) or a 

biased literature which fails to report null findings (Francis, 2013; Friese & Frankenbach, 

2020; Wicherts, 2017). The term replication crisis refers to low reliability and replicability, 

which has recently thematised particularly in psychology and biomedical sciences (e.g., De 

Boeck & Jeon, 2018; Gelman & Loken, 2013; Ioannidis, 2018; Loken & Gelman, 2017; Nuzzo, 

2015; Pashler & Harris, 2012). Neuroimaging has “its own replication crisis” (Boekel et al., 

2015; Dinga et al., 2019; D. E. Huber et al., 2019), as indicated by a notable trend of failed 

attempts to replicate previously published fMRI studies (Boekel et al., 2015; Dinga et al., 

2019). In addition, publication bias aggravates fMRI meta-analyses (Müller et al., 2018), and 

the usage of QRPs might be common (Poldrack et al., 2017). Overall, replicability depends 

on a multitude of study-specific factors, such as pre-processing, statistical procedures and 

their power, study design, and the strength of the observed effect (for more detail on fMRI 

reliability and replicability issues see Appendix H). This section will however focus on how 

to improve fMRI reliability and replicability, which is crucial to all aspects of fMRI research, 

including ageing research, as this can be directly related to present executed research. 
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Different practices have continuously been developed and improved, considering the 

replication crisis and how to tackle it in neuroscience (Gorgolewski & Poldrack, 2016; 

Nichols et al., 2017). Major themes include making data, code, and much information as 

possible around the final papers openly accessibly, in order to avoid QRPs (Gorgolewski & 

Poldrack, 2016). Additional initiatives include a) to constantly revise fMRI data processing 

and analysis choices and their influence on statistical inference (Botvinik-Nezer et al., 2020; 

Poldrack et al., 2017) and b) to collect, gather and curate large open access 

datasets/databases to establish reusable data and coordinated collaborations (DuPre et al., 

2020; Eickhoff et al., 2016; W. Liu et al., 2017; Madan, 2017; Poldrack & Gorgolewski, 2014; 

Tardif et al., 2016; Van Horn & Gazzaniga, 2013). Such large datasets help to increase study 

samples and thereby power, which helps detecting true effects while avoiding false positives 

(see for more on statistical power: Cohen, 1992). Power can also be increased with the help 

of higher data quality and increased recording times – for example, to up to 20-30 mins, 

combining different measures when calculating connectivity (X. N. Zuo et al., 2019), or more 

recent sampling approaches such as multi-echo sequences (Lynch et al., 2020). If new data 

are to be collected, a sensible step to calculate and justify sample sizes is a priori power 

analysis, which has only recently been adapted to neuroscience (Poldrack et al., 2017). After 

the results are known, reporting both corrected and uncorrected values supports 

transparency and balances type 1 and 2 error rates (Poldrack et al., 2017). A type 1 error, 

also false positive, refers to the rejection of the null hypothesis although it is true. Type 2 

errors, or false negatives, refer to the wrongful claim that the null hypothesis is true 
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although it is not. The choice of α- and β-levels influence type 1 and 2 error rates, 

respectively. 

Additionally, recommended practices for achieving a more reliable neuroimaging 

findings include avoiding or at least minimizing the following; i) noise induced by weak 

experimental design and data processing methods (X. N. Zuo & Xing, 2014), ii) the usage of 

specific error-prone analytical methods (Eklund et al., 2016) and variations of analytical 

choices (Botvinik-Nezer et al., 2020). In that sense, it has been expressed that rs-fMRI needs 

better de-noising and analysis techniques (O’Connor & Zeffiro, 2019). Finally, iii) QRPs 

(Poldrack et al., 2017), and iv) a lack of control for error and multiple comparison should be 

avoided (C. Bennett et al., 2009; Eklund et al., 2016; Loring et al., 2002; Woo et al., 2014). 

v) Using such techniques, code, and reporting in a standardised fashion would increase 

reliability (Botvinik-Nezer et al., 2020; Nichols et al., 2017; Poldrack et al., 2017). 

While there seems to be a good understanding on how to improve fMRI reliability at 

different frontiers, as outlined above, the contribution of individual differences to BOLD 

signal fluctuations are unclear. It is established that a large number of exogenous and 

endogenous factors affect both within- and between-subjects BOLD signal variability 

(Appendix I) Some studies suggest only small within-subject rs-FC fluctuations when 

scanning the same individual(s) repeatedly (Gordon et al., 2017; Poldrack et al., 2015). 

Moreover, individual differences from group-level network organisation or “network variants” 

seem to be constant, suggesting to be trait-like characteristics of rs-FC (Seitzman et al., 

2019). However, there are still many influential factors to be discovered. This urges further 
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investigation, not only by asking which factors influence the BOLD signal, but also under 

which conditions (Specht, 2020). 

Although at different pace across countries, world population is experiencing an 

ongoing longevity revolution, meaning that the share of older adults across societies is 

increasing (United Nations, 2019). Ageing and individual differences connected to it is a 

universal phenomenon pressing the importance to understand underlying mechanisms of the 

brain in healthy and pathological ageing. Ageing leads to structural cerebral changes, but 

how these relate to functional variability remains unclear. Hence, this study will explore 

effects of age-related structural cerebral changes on EC in a well-powered study. To ensure 

the use of the findings for the broader scientific community, all materials, data, and code are 

openly available at https://osf.io/9bax3/ to maximise reproducibility and replicability. 
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Project Overview 

 This project set out to answer the questions: ‘what are general associations between 

cortical thickness, chronological age and effective connectivity?’, and ‘how does grey matter 

lateralisation influence effective connectivity during healthy ageing?’. Answering these 

questions helps to provide a range of insights into whether cortical thickness 

and chronological age, as well as lateralisation are important to consider when drawing 

inferences about effective connectivity and other forms of BOLD-signal derived data from 

resting-state fMRI in healthy ageing. The relationship between structural measures such as 

cortical thickness and measures of connectivity can help modelling healthy ageing and 

explain age-related cognitive changes and decline. Moreover, as ageing is a human universal, 

it is a factor which cannot be circumvented when testing participants. A better 

understanding and control of ageing effects can help to improve data processing and 

interpretability. In accordance with previous findings, we formulated the following 

preregistered5 hypotheses: 

• H1 Regional cortical thickness is positively associated with regional effective 

connectivity. 

• H2a Older subjects have a lower within large-scale network effective connectivity 

than younger subjects. 

 

 

5 Find the preregistration at https://osf.io/mysrp. 
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• H2b Older subjects have a higher between large-scale network (DMN and CEN) 

effective connectivity than younger subjects. 

• H3 cortical thickness is over time a better predictor of effective connectivity than 

chronological age. 

• H4 Individuals’ cortical thickness lateralisation and chronological age predict effective 

connectivity lateralisation. 

o H4a Left-lateralised cortical thickness predicts left-lateralised effective 

connectivity 

o H4b Right-lateralised cortical thickness predicts right-lateralised effective 

connectivity 

The analyses focus on DMN and CEN as those networks have not only been found to 

be influenced by ageing, and have been connected to different ageing-related behavioural 

changes (such as cognitive decline), but are also likely influenced by the mainly frontal grey 

matter de-assymetrisation, which represent major parts of both DMN and CEN (Roe et al., 

2021). If cortical thickness and/or chronological age are reliable predictors in a model 

explaining effective connectivity, they should be considered in future fMRI studies to 

increase the findings' robustness and reliability when observing individuals of different age 

groups. In case a strong predictor for EC can be identified, it might serve as biomarker for 

both healthy and pathological ageing. Furthermore, the results help to interpret ageing-

dependent changes in cortical thickness asymmetries and extend previous findings on 

the asymmetric ageing brain by Roe and colleagues (2021). Evidence on the relationship 

between cortical thickness and effective connectivity is still sparse, and this study will 
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advance the literature with novel insights from a large-scale longitudinal sample. 

Finally, this research will help to better understand general dynamics of the healthily ageing 

brain. 
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Methods 

Participants 

For the original data collection in Umeå, the BETULA Project received local IRB 

approval. Data for the current project were provided by the BETULA project team after an 

ethics approval was obtained from the BETULA steering committee. The BETULA Project 

is a longitudinal study focussed on healthy ageing, memory and dementia in Sweden lead by 

Prof. Nyberg from Umeå University (Nilsson et al., 1997, 2004). For the purposes of this 

project, the data from T5 (2008-2010) and T6 (2013-2014) were used.  

There were 375 participants at T5, and 233 at T6. Due to technical errors and/or 

severe motion during scanning, corrupted data or not coming back for the re-test led to the 

reduced participant number at T6. Participants with more than 5% of missing resting-state 

fMRI data were excluded from the analysis. 

The final sample resulted in 227 participants with functional and structural MRI 

scans from two independent occasions with approximately 4 years in between. At the first 

point of data collection, participants were at least 25 years old and Swedish native speakers. 

Information on age was available as cohort membership, with each cohort spanning 5 years. 

Based on this information, the age ranged from 25 to 80 years (M = 46.7, Mdn = 45, SD= 

9.71). Additionally, the age ranged from 25 to 80 years (M = 46.7, Mdn = 45, SD= 9.72) at 

T5 and from 25 to 80 years (M = 46.7, Mdn = 45, SD= 9.72) at T6. For the purpose of this 

study, participants were divided into two age group via a median split (Mdn = 45 years). 

That resulted in a younger group with n = 122 (M = 39.47, SD = 5.51, Mdn =40, min = 25, 
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max = 45 years) and an older group with n = 105 (M = 55.1, SD = 6.11, Mdn = 55, min = 

50, max = 80 years). 

Procedure 

Full procedure of the BETULA study can be found in Salami et al (2014). 

Importantly for this study, participants were screened for neurological pathology, dementia, 

and auditory or visual impairment, and excluded when any of the mentioned were present. 

Rs-fMRI were acquired as part of several scans. All participants’ rs-fMRI were acquired over 

a 6-minutes period during which participants were asked to look at a fixation cross after 

acquiring structural MRI (Salami et al., 2014).  

Data Acquisition 

Images were acquired at Umeå University, Sweden with a 3-T General Electric 

scanner equipped with a 32-channel head coil (Salami et al., 2014). A gradient echo-planar 

imaging (ECI) sequence (37 transaxial slices, thickness: 3.4 mm, gap = 0.5 mm, TR = 

2000 ms, TE = 30 ms, flip angle: 80°, field of view: 25 × 25 cm, 170 volumes) was used for rs-

fMRI acquisition (Gorbach et al., 2020). Ten dummy scans were collected and discarded 

before experimental image acquisition (Salami et al., 2014). High-resolution T1-weighted 

structural images were collected with a 3D fast spoiled gradient EPI sequence (180 slices; 

thickness = 1 mm; TR = 8.2 ms; TE = 3.2 ms; flip angle = 12°; field of view: 25 × 25 cm) 

(Salami et al., 2014). 

Image Processing 

 Data were pre-processed in the MATLAB package SPM12. First, the slice-timing 

correction was applied, using the temporal middle slice (number 2) as reference image. Data 
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were then realigned and un-warped and the additionally estimated mean images across the 

time series served as reference image for the co-registration with the structural T1 image. In 

the following step, this co-registered structural image was segmented and subsequently all 

volumes were normalised into MNI space using deformation fields, which was estimated 

during the segmentation procedure (probability maps for grey matter, white matter, 

cerebrospinal fluid, and other organics). The images were smoothed using a Gaussian kernel 

of 6x6x6 mm3 and finally two Generalized Linear Models applied regressing out the effects of 

movement, white matter and cerebrospinal fluid. 

Research Design 

A repeated measures design was used to investigate the relationship between cortical 

thickness and effective connectivity. A 2 x 2 mixed design was used to look at differences in 

EC between younger and older adults and their cortical thickness comparing T5 and T6. The 

same mixed designs were used to investigate whether biological age (estimated as grey 

matter probabilities) or chronological age are better predictors of EC changes, and whether 

there are differences in EC between people with either primarily left-, right, or bi-laterally 

leaning grey matter probabilities. Observed variables were grey matter probability values for 

each ROI (8 in total), chronological age (recorded as cohort membership), effective 

connectivity values for each node and between nodes (64 in total), as well as the 

lateralization of grey matter probability values calculated by the Laterality Index  

[LI = (L - R) / (L + R]. For the Laterality index, L has been specified as volume of the 

specified left region and R as the volume of the specified right region (e.g., Esteves et al., 

2017). Here, we used grey matter probability instead of volume. A negative LI indicates a 
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higher probability in the right hemisphere, and a positive LI indicates a higher probability in 

the left hemisphere in the specific ROI. When applying the LI formula, we defined the 

specific region, for example Left Dorsolateral Prefrontal Cortex of the CEN as Left and the 

right counterpart, Right Anterior Prefrontal Cortex of the CEN, as Right (see Table 1). 

Cortical thickness and chronological age could be read out directly as a numeric value from 

the BETULA database. EC was extracted using DCM, and the grey matter probability 

values were calculated from the segmented T1-weighted images. 

Selection of Regions of Interest 

ROIs were selected based on the surface areas which are mostly affected by 

asymmetric grey matter loss as reported by Roe and colleagues (2021) for their BETULA 

sample (Figure 1A). These regions focus largely on frontal regions making the examination of 

DMN and CEN particularly promising (e.g., as reported in Yeo et al, 2011; Figure 1B), as 

those share main nodes with the most affected areas by grey matter loss reported by Roe et 

al. (2021). Additionally, DMN and CEN connectivity have previously been reported to be 

affected by ageing (e.g., Bittencourt-Villalpando et al., 2021). 

Establishing statistically informed ROIs required combining the grey matter 

thickness-informed, structural regions identified by Roe et al.’s (2021) with functional 

mapping of intrinsic networks. An established atlas has been provided by Yeo et al. (2011) 

and was applied here as a mask on the surface maps developed by Roe et al.’s (2021). 

Freesurfer (Fischl, 2012) was used to identify the regions, as depicted in Figure 1C and 1D. 

From these, the largest symmetric clusters for anterior and posterior DMN and CEN were 



GREY MATTER LOSS AND EFFECTIVE CONNECTIVITY DURING AGEING 53 

selected (see appendices A to D for full overview of clusters by regions and hemisphere), 

resulting in 8 ROIs for DCM (Table 1).  

Table 1. Regions of Interest for the Dynamic Causal Modelling selected by cluster size 

Node 
Position Region Cluster 

Size (mm2) 
MNI Coordinates 
x y z 

Anterior DMN 
Left Dorsolateral 
Prefrontal Cortex 

(ldPFC) 
233.32 -40.2 47.2 3.7 

Anterior DMN 
Right Anterior 

Prefrontal Cortex 
(raPFC) 

210.73 40.1 46 5.7 

Posterior DMN Left Precuneus (lPC) 87.11 -42.9 -54.5 36.5 
Posterior DMN Right Precuneus (rPC) 85.06 41.4 -51.9 40.8 

Anterior CEN Left Prefrontal Cortex 
(lPFC) 1742.43 -7.1 54.2 30.3 

Anterior CEN Right Prefrontal Cortex 
(rPFC) 1678.16 6.8 52.2 31.6 

Posterior CEN Left Medial Temporal 
Gyrus (lmTG) 961.66 -64 -17.7 -16.8 

Posterior CEN Right Medial Temporal 
Gyrus (rmTG) 857.31 62.4 -16.3 -15.4 
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Figure 1. Identification of Regions of Interest by Combing Surface with Connectivity Maps 

 

LL-leftwards grey matter loss. RL-rightwards grey matter loss. Default: Default Mode Network, Central 

Executive: Central Executive Network. A) Age-dependent grey matter asymmetry changes conjunction maps 

identified by Roe et al. (2021) - supplementary Fig. 6). B) Seven intrinsic network parcellation by Yeo et al. 

(2011). C) Overlaying Roe et al.’s (2021) surface maps with the Yeo et al.’s (2011) locations of the Default Mode 

Network. D) Overlaying Roe et al.’s (2021) surface maps with the Yeo et al.’s (2011) locations of the Central 

Executive Network. 

A

B

C

D
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Analyses 

A first-level analysis was conducted using the SPM package (v2018) in MATLAB. 

Namely, CSD-DCM was used, with the inverse Fourier transformation to calculate EC for all 

possible connections within and between the ROIs (Zeidman, Jafarian, Corbin, et al., 2019). 

ROIs are defined as DMN and CEN for each individual, with four central nodes for each of 

the two networks, resulting in a total of eight nodes (Table 1). Hence, a total of sixty-four 

possible connections were assumed as priors for the DCM, which used the data from 454 

fMRI acquisitions, representing two scanning occasions for each of the participants. The 

outputs were sixty-four EC values for each of the n = 227 participants. 

Departing from the preregistration, instead of voxel-based morphometry (VBM) 

giving information about cortical thickness, Grey Matter Probability Values (GMPV) were 

used to assess grey matter differences in two separate age groups (young versus old). 

GMPVs are based on the probability of each voxel within the ROI being grey matter, based 

on the signal intensity. Across voxels, this gives a representation of grey matter relative to 

all other types of tissue (Narr et al., 2005). GMPVs were extracted for each ROI with the 

MarsBaR toolbox for SPM12 (MATLAB) using the segmented voxels. 

For group-level analyses, first, a Canonical Correlation Analysis (CCA) was used to 

relate GMPVs to EC to examine whether local grey matter changes influence EC (H1). 

Executing bivariate correlations would result in 64 x 8 = 512 possible correlations, which 

would be difficult to interpret. A suitable alternative is CCA, which is used to examine 

relationships between two sets of variables (Hotelling, 1936). CCA allows to some extent to 

reduce data dimensionality while keeping interpretability by forming latent 
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factors/dimensions from cross-covariance matrices (Hotelling, 1936). Second, mixed semi-

parametric MANOVAs were conducted to test age differences in EC in five models: two for 

self-inhibitory and two for between nodes EC in DMN and CEN, and one for the connections 

between DMN and CEN (H2). Models were organised in this way to allow network-specific 

inference while distinguishing self-inhibitory from between node EC and within from between 

network connections, allowing to answer H2a and H2b. Third, for each of the sixty-four EC 

values four GAMs were compared against each other examining whether biological age would 

be a better predictor of EC than chronological age (H3). Fourth, Repeated Measures 

Correlations and GAMs were used to explore to which extend lateralised GMPVs (calculated 

with the help of the Laterality Index) could predict lateralised EC. 

Additionally, different descriptive and explorative analyses are reported in the 

appendix to give a better understanding of the observed data supporting the interpretability 

of the results relevant to answering the hypotheses. Those include, firstly, a 2 (age group) x 

2 (timepoint) mixed semi-parametric MANOVA on GMPVs testing whether there was 

atrophy of grey matter in the ROIs over time and differences between age groups. Secondly, 

Intraclass Correlations (ICC) were used to estimate test-retest reliability of EC values. 

Thirdly, repeated measures correlations between the eight GMPVs and fourthly, bilateral 

correlations of GMPV and EC at the eight nodes were used to describe grey matter across 

the brain and how GMPV and EC relate cross-hemispherically. Finally, exploratory GAMs 

were used to quantify how combined lateralised GMPVs could predict regular and lateralised 

EC values, which served to extend on the planned analyses, allowing for deeper insights. All 
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statistical analyses on SPM outputs were carried out with R v3.6 (R Core Team, 2017). All 

code is available at https://osf.io/9bax3/. 
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Results 

Grey Matter Probability Values (GMPV) and Effective Connectivity (EC) in Hz 

were calculated for each of the 8 ROIs (4 in the DMN and 4 in the CEN) at two timepoints 

(T5 and T6) in DCM. Additionally, DCM provided EC between the 8 nodes, accounting for 8 

x 8 = 64 connections in total. While more positive self-inhibitory EC values indicate 

increased self-inhibition, negative between network EC values indicate inhibitory connections 

and positive excitatory connections, respectively (Zeidman, Jafarian, Corbin, et al., 2019). 

No data were missing. 

For the factorial design, participants’ chronological age, here defined as Cohort 

membership with 5-year range recorded at T5 (see Figure 2), was used to establish a younger 

and older group establishing the between-subjects factor, and timepoint (T5 and T6) the 

within-subjects factor6, respectively. 

Figure 2. Participants’ Age Distribution Based on Cohorts Defined at T5 

 

 

 

6 For descriptive statistics of GMPVs and self-inhibitory EC at T5 and T6 see Appendix J. For exploratory 

repeated measures correlations of GMPVs see Appendix E. 
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Sensitivity Analyses 

Using the pwr package in R (Champely et al., 2020), a sensitivity analysis using the 

smallest sample size of n = 105 defining the older group of adults aged older than 45, with α 

= .05 and β = .80 (power) revealed that the smallest detectable effects to be r = 0.27 for 

correlations, d = 0.37 for t-tests (with n1 = 122, n2 = 105 after median-split comparing the 

older and younger groups). An n = 227 with the same parameters results in f2 = 0.07 for 

Generalized Linear Models (GLM) with 8 predictors, and f2 = 0.13 for One-way ANOVAs. 

When aiming for β = .95 and keeping the other parameters as described above, the 

minimal detectable effects are r = 0.34 for correlations, d = 0.48 for t-tests (with n1 = 122, 

n2 = 105 after median-split), f2 = 0.1 for GLMs with 8 predictors, and f2 = 0.13 for One-way 

ANOVAs. The power curve for a 2x2 ANOVA indicates that at α = .05, with the current 

smallest group size of n = 105, the minimal detectable effect size is at f2 = 0.09 when aiming 

for β = 80% power (Figure 3; see Appendix G for additional power simulations). 

Figure 3. Power Curve for 2 x 2 ANOVA with the Smallest Group Being n = 105 
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H1: The Relationship between Grey Matter Probability Values (GMPV) and 

Effective Connectivity (EC) 

Table 2. Test of Canonical Dimensions for Grey Matter Probability, Effective Connectivity, 

Timepoint and Cohort 

Dimension Canonical Multiple 
Correlation r F df1 df2 p value 

1 0.79 1.33 585 3414.79 <.0001 
2 0.71 1.21 567 3045.29 .002 

 To test the relationship between GMPVs and EC, CCA was used on all data. This 

included GMPVs, all (self-inhibitory and between-nodes) EC values, timepoint and cohort 

membership, resulting in two statistically significant dimensions (see Table 2).  

Table 3. Grey Matter Probability and Self-Inhibitory Effective Connectivity Values as 

Standardized Canonical Coefficients on the Two Canonical Dimensions 

CEN 
Dimension 

DMN 
Dimension 

1 2 1 2 
lPFC GMPV -0.48 -0.17 ldPFC GMPV -0.42 0.57 
rPFC GMPV 0.22 -0.16 raPFC GMPV 0.29 0.43 
lmTG GMPV 0.56 -0.54 lPC GMPV 0.11 -0.45 
rmTG GMPV -0.03 -0.04 rPC GMPV -0.69 -0.03 

 lPFC EC 0.05 -0.45  ldPFC EC -0.27 0.00 
 rPFC EC -0.29 0.37  raPFC EC 0.02  -0.21 
 lmTG EC -0.22 -0.10  lPC EC 0.23 0.17 
 rmTG EC 0.24 0.04  rPC EC 0.27 -0.09 

Note: Not all CCA coefficients are included in this table; only GMPVs and self-inhibitory EC values. For a full 

overview of all coefficients see Appendix F: grouped by connections within the DMN (Appendix F.1), within the 

CEN (Appendix F.2), and between DMN and CEN (Appendix F.3). 

Suggested by the loadings of the GMPVs on the two dimensions (Table 3), these two 

dimensions can for example be interpreted as reflecting CEN (dimension 1) and DMN 
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(dimension 2). However, the standardised coefficients reflect the clustering onto the CEN 

and DMN dimensions only partly. Therefore, the relationship between EC and GMPV and 

H1 cannot be rejected. 

H2: Effective Connectivity in Younger Compared to Older Subjects 

To test whether younger subjects differ from older subjects in their EC (H2), five 

mixed 2 (age group: younger vs older sub-sample) x 2 (timepoint: T5 vs T6) semi-parametric 

or modified MANOVA-type models were run. Model 1 tested self-inhibitory connections 

within CEN. Model 2 tested self-inhibitory connections within DMN. Model 3 tested 

between-node connections within CEN, model 4 between-node connections within DMN, and 

model 5 between CEN and DMN. See Figure 4 for an overview of EC connections which 

differed significantly from zero in each of the four cells. Model 1 observing self-inhibitory 

CEN EC at the network’s four nodes (lPFC, rPFC, lmTG, rmTG) showed a significant 

effect of age F(4, 227) = 10.97, p = .037, but not of timepoint p = .11 or the timepoint-age 

interaction p = .70. For model 2 observing self-inhibitory DMN EC at the network’s four 

nodes (ldPFC, raPFC, lPC, rPC) there were no significant effects of age (p = .99), timepoint 

(p = .12), or age-timepoint interactions (p = .10). Model 3 observing CEN EC at all of the 

network’s possible twelve between node connections, showed a significant effect of timepoint 

F(12, 227) = 33.71, p = .005, but no effect of age (p = .61), or the time-age interaction (p = 

.25). Model 4 observing DMN EC at all of the possible twelve between node connections, 

showed no significant effects of timepoint (p = .31), age (p = .06), or their interaction (p = 

.89), and model 5 observing DMN-CEN EC showed a significant main effect of timepoint 
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F(32, 227) = 63.25, p = .006, but not for age (p = .32), or the age-timepoint interaction (p 

= .83).  

Bonferroni-corrected univariate Mann Whitney post-hoc comparisons for age-group 

differences in EC found a significant difference in lPFC EC between the younger (Mdn = -

0.09) and older (Mdn = -0.007) subsamples, U = 21994, p = .036, r = 0.12, 95% CI [0.03, 

0.21]. No other post-hoc comparisons for age-effects were significant. 

Figure 4. Effective Connectivity by Age Group and Timepoint Different from Zero 

 

Results of 228 Bonferroni-corrected Wilcoxon one-sample signed rank tests, leaving out non-significant EC values. 

Negative between-node EC values indicate inhibitory connections, positive values excitatory connections. Self-

inhibitory connections show increased inhibition for more positive values.  

Note: This is a descriptive figure to visualise data not used to test any hypothesis. 
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Bonferroni-corrected univariate Mann Whitney post-hoc comparisons for timepoint 

differences in EC revealed a significant increase in inhibitory EC in the ldPFC to rmTG 

connection from T5 (Mdn = -0.032) to T6 (Mdn = -0.138), U = 16343, p = .026, r = 0.23, 

95% CI [0.10, 0.35], and a significant change in EC in the rPFC to lPC connection from 

inhibitory EC at T5 (Mdn = -0.091) to excitatory EC at T6 (Mdn = 0.008), U = 9400, p = 

.016, r = 0.24, 95% CI [0.11, 0.36]. No other post-hoc comparisons for age-effects were 

significant. The age-group difference in lPFC EC was as predicted by H2a, yet the effect size 

was below the detectable range (see Sensitivity Analysis section) and can be labelled a false 

positive. No other differences were observed and H2a could be rejected. Timepoint/ageing 

effects in ldPFC to rmTG and rPFC to lPC connections were as predicted by H2b (and 

correlation tests sufficiently powered: for n = 227, α = .05, β = .80, rmin = .185), supporting 

H2b for the ldPFC to rmTG connection, but not rPFC to lPC EC, which does overall not 

allow to answer H2b conclusively. 

 H3: Grey Matter Probability Values and Age as Predictors of Effective 

Connectivity 

GMPVs were used as a proxy for biological age (for more detail on group differences 

in GMPV see Appendix J) and age-cohort membership for chronological age, serving both as 

predictors for Effective Connectivity (EC). As the data were non-normal, indicated by 

Shapiro-Wilk’s tests and QQ-Plots, linear models were selected only for control purposes. 

Instead generalized additive models (GAM) were used to predict EC from GMPVs and age 

in five different models for each of the possible sixty-four connections, allowing models which 

better fit the data. The first model was the null model containing only timepoint (T) as a  
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predictor (Equation 1). In model 1, age was added as a predictor (Equation 2), and model 2 

GMPVs, respectively, forming the full model (Equation 3). In model 3 age was subtracted 

from the full model (Equation 4). Finally, model 4 was a linear equivalent to the full GAM, 

used to control whether a linear model was the better fit (Equation 5). The difference 

between models 0-3 and 4 (Equations 1-5 below) are the smoothing functions f(x), which 

allow for to fit the model to non-linear data/trends. As H3 predicted biological age to be a 

better predictor of EC, model 1 only contained GMPVs and model 4 only age as predictors. 

GAM smoothing parameters were determined using unbiased risk estimation (UBRE) based 

on the mean square error. Analyses of Deviance (AoD) were used to test the GAMs against 

each other and the Akaike Information Criterion (AIC) and R2
adj to compare model fit across 

all models. 

The null model’s (Equation 1) Mdn R2
adj = -0.001 % of the variance in the between-

nodes EC values and Mdn R2
adj = .70% of the variance in self-inhibitory nodes. Model 1 

(Equation 2) including chronological age and timepoint explained Mdn R2
adj = 3.03% of the 

variance in the between-nodes EC values and Mdn R2
adj = 1.73% of the variance in self-

inhibitory nodes. The full model (Equation 3) explained Mdn R2
adj = 4.31% of the variance 

in the between-nodes EC values and Mdn R2
adj = 4.77% of the variance in self-inhibitory 

Model 0: EC= β0 + T + ε, ε~N(0, σ2) (1) 

Model 1: EC= β0 + T + f(age) + ε, ε~N(0, σ2) (2) 

Model 2: EC= β0 + T + f(GM1)+ … +f(GM8)+f(age)+ ε, ε~N(0, σ2) (3) 

Model 3: EC= β0 + T + f(GM1) + … + f(GM8) + ε, ε~N(0, σ2) (4) 

Model 4: EC= β0 + T + (GM1)β1 + … + (GM8)β8 + (age)β9 + ε, ε~N(0, σ2) (5) 

T: timepoint, GM: grey matter probability values, age: cohort membership  
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nodes. Yet, when comparing the models, most of the best fitting models were the grey-

matter-only models (Equation 4), which explained Mdn R2
adj = 3.97% of the variance in the  

Figure 5. Box and Violin Plots of R2
adj Values for the Five Models Explaining EC Across 

Between-Nodes and Self-Inhibitory Connections from Timepoint, Age, and GMPVs 

 

between-nodes EC values and Mdn R2
adj = 4.09% of the variance in self-inhibitory nodes. 

Finally, generally, the linear control models (Equation 5) explained less of the variance in 

the between-nodes EC values Mdn R2
adj = 1.18% and in self-inhibitory nodes Mdn R2

adj = 

1.84% than models 2 and 3. Full information on model comparisons and predictors can be 

found in Appendix M. The data support H3 that biological age is a better predictor of EC 

than chronological age. 

H4: Lateralised Grey Matter Probability and Effective Connectivity  

 The GMPV Laterality Index (LI) was calculated to establish anterior and posterior 

lateralised GMPVs for CEN and DMN using the eight GMPV values, and twenty-four 

monohemispheric between-nodes values as well as eight self-inhibitory EC values. To avoid 

confounded results from negative denominators, we adapted the LI formula as suggested 
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by Seghier (2008) to LI = (L-R)/(|L|+|R|), with L and R indicating the values for the 

respective hemispheres. A total of four lateralised GMPVs and sixteen lateralised EC 

resulted which were related to each other in 4x16 repeated measures correlations. After 

Bonferroni correction for multiple testing (α/64), the correlation between lateralized anterior 

DMN GMPVs and the connection between lateralized EC from DMN PFC to CEN mTG 

was marginally significant rrm = -0.22, 95% CI [-0.34, -0.09], p = .058; and significant 

between lateralized posterior DMN GMPVs and Precuneus to CEN PFC lateralised EC, rrm 

= 0.23, 95% CI [0.10, 0.35], p = .039. No other correlations were significant. These results do 

not allow for final conclusions about H4.7 

 

 

7 Different exploratory follow-up analyses can be found in the appendices: Appendix K for exploratory 

Spearman’s correlations between bilateral pairs of GMPVs and ECs; Appendix N for exploratory GAMs of the 

sixty-four ECs modelled by lateralized GMPVs; Appendix P for GAMs explaining lateralized EC from the 

lateralized GMPVs. 
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Discussion 

The aim of this study was to investigate the influence of grey matter loss on effective 

connectivity in an ageing sample. Canonical correlations indicated that there was a 

meaningful relationship between EC and GMPVs explained by two dimensions, which can be 

interpreted as the observed networks, CEN and DMN. When grouping participants into 

older and younger groups, an effect of age-group was found for self-inhibitory CEN EC and 

an effect of ageing for within CEN and between DMN and CEN EC. Yet, univariate tests 

showed this effect to be limited to between DMN and CEN EC: ldPFC to rmTG and rPFC 

to lPC. Moreover, GMPVs were shown to be better predictors of EC than chronological age. 

Modelling GMPV lateralisation effects on the lateralisation of EC via repeated measures 

correlations, using the Laterality Index, resulted in two significant correlations. First, a 

negative relationship was found between lateralized anterior DMN GMPVs and the 

lateralized EC connection from DMN PFC to CEN mTG. Second, a positive relationship was 

revealed between lateralized posterior DMN GMPVs and Precuneus to CEN PFC lateralised 

EC. The results’ implications are discussed by firstly revising the GMPV-EC relationship 

and secondly, the relationship between age, ageing, GMPV lateralisation and EC. Thirdly, 

limitations are discussed with a focus on EC reliability and study design. Finally, future 

directions for follow-up and extension studies are being provided. 

The Relationship Between Grey Matter and Effective Connectivity 

Several studies suggest there is a relationship between grey matter properties, such as 

thickness, and FC (Huntenburg et al., 2017; Tsvetanov, Gazzina, et al., 2020), and that 

ageing has an effect on this relationship (Fjell et al., 2017; Romero-Garcia et al., 2014). 
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However, the dynamics of the interplay between structure and function during ageing are yet 

unclear (Fjell et al., 2017; N. Luo et al., 2020; Zimmermann et al., 2016). In some cases, no 

connection between specific grey matter properties and connectivity could be found, for 

example, for grey matter thickness and FC (Tsang et al., 2017). Moreover, FC-SC 

relationships cannot be generalized to EC and the evidence on the EC-grey matter 

relationship is limited. There is a general consensus that the brain can be described with the 

help of interacting structural and functional networks (Batista-García-Ramó & Fernández-

Verdecia, 2018), making the inclusion of SC into DCMs useful (Hahn et al., 2019; Sokolov et 

al., 2018). Yet, there are, to my knowledge, no studies on the relationship between EC and 

GMPVs or other grey matter measures for DMN and CEN. 

In this study, a CCA showed that EC and GMPV data can be arranged in two 

dimensions, which can be interpreted as the two networks observed here, namely CEN and 

DMN. These networks have previously been defined as the main resting state networks and 

can be used to differentiate between task-active (CEN) and inactive (DMN) networks 

(Hugdahl et al., 2015) or default and extrinsic mode networks (Riemer et al., 2020). 

Interestingly, bivariate correlations of GMPVs and EC did not yield any significant 

relationships, suggesting multivariate dependencies. Hence, only when the contribution of 

grouped GMPVs is considered when explaining EC, the relationship between GMPVs and 

EC becomes visible, likely due to large intra-individual variations (Lo et al., 1995). GAMs 

showed that GMPVs could explain a small, yet significant proportion of EC variability 

across ECs. Additionally, GMPVs seemed to explain self-inhibitory EC better than between-

node EC, which indicates local dependencies. Local dependencies seem also to be supported 
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by lateralized GMPVs explaining only a small proportion of the variance of lateralized EC, 

with single predictors responsible for most of the variance explained by models superior to 

the null model (Appendix O). One way of interpreting these results is that GMPVs are 

related to EC, but that there are mediators of this relationship which explain EC better, 

such as white matter tracts, which can be used to model SC (Zhijiang Wang et al., 2014). 

Most recent efforts investigating how structural features explain functional features of the 

brain focussed on white matter fibre tracts (see Jamalabadi et al., 2021). However, recent 

evidence shows that in addition to white matter tracts also grey matter density at the 

network nodes plays a role for SC (Jamalabadi et al., 2021). Moreover, different 

characteristics of grey matter can be related to white-matter-tract-based structural 

connectivity (Jamalabadi et al., 2021; Zhijiang Wang et al., 2014), which in turn can be 

related to EC (Furl, 2015) and FC (Damoiseaux & Greicius, 2009; Honey et al., 2009; Messé 

et al., 2015). While Jamalabadi and colleagues (2021) suggest that grey matter and white 

matter properties improve SC modelling, more research is needed to relate such models to 

EC or FC. Additionally, the combination of different structural and functional features 

serves better in predicting behaviour and disease than functional features on their own, 

forming another reason to further investigate structure-function relationships (Yao et al., 

2021). 

Age, Grey Matter Lateralisation and Effective Connectivity 

 In line with the current theory, that brain age is represented more accurately by 

biological properties than chronological age, we found that GMPVs predicted self-inhibitory 

EC better than chronological age (Cole et al., 2019). Dedifferentiation has been put forward 
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as a possible explanatory mechanism of ageing-specific changes in brain function (Goh, 

2011). This has been specified by previous evidence for decreasing within network FC 

(Bagarinao et al., 2019, 2020; Varangis et al., 2019) but increasing between network FC 

(Damoiseaux, 2017; Goh, 2011; Grady et al., 2016; Hughes et al., 2020; Stumme et al., 2020). 

The detected lower within-network EC of the older compared to the younger group can be 

classified as a statistical artifact (type 1 error), based on the standard assumptions of 

minimal power being 80% and alpha = 0.05. Significant aging/timepoint-differences between 

network EC from ldPFC to rmTG and from rPFC to lPC provided mixed evidence for the 

assumption of increased between network connectivity. While the ldPFC to rmTG became 

more inhibitory, the rPFC to lPC connection was inhibitory at T5 and became slightly 

excitatory at T6 (yet statistically not different from 0). The reason for this mixed evidence 

might be, the lack of GMPV decrease over time. With a significant decrease of GMPVs over 

time, for example, when choosing longer inter-test intervals, also more EC changes might be 

expected. Another reason for the lack of observed effects might be that the MANOVAs on 

EC were underpowered. Power simulations based on randomly selected EC values indicated 

power below 80% (Appendix G). However, these simulations cannot be directly applied to 

the tests run, as different EC values were combined in the MANOVA models. 

Focussing on lateralisation effects, the presented results are not conclusive. It is 

important to keep in mind that functional and grey matter asymmetries are not necessarily 

congruent with each other within the DMN (Saenger et al., 2012). Moreover, lateralised EC 

values are difficult to interpret. For example, a positive lateralised EC value can indicate 

more excitatory EC in the left compared to the right hemisphere, but also that there is more 



GREY MATTER LOSS AND EFFECTIVE CONNECTIVITY DURING AGEING 71 

inhibitory activity in the left compared to the right hemisphere. This is a function and 

problem of the laterality index equation (Seghier, 2008). 

Only one positive repeated measures correlation was found indicating parallel 

lateralisation of grey matter and EC, namely between lateralized posterior DMN GMPVs 

and Precuneus to CEN PFC lateralised EC values. Considering that GMPVs did not 

significantly decrease over time, this finding is not necessarily surprising. However, opposing 

to the predictions in H4, the second meaningful correlation, based on the correlation strength 

and approaching significance, indicated the opposite relationship. Such effect could be 

interpreted as the more “left lateralised” GMPVs, the more “right lateralised” EC. This 

provides rather no congruent evidence for bivariate relationship between local lateralised 

grey matter and lateralised EC (as proposed by Saenger et al., 2012). When further 

exploring multivariate relationships (Appendix O), by modelling lateralised EC from 

lateralised GMPVs and chronological age, in nearly all models there was one lateralised 

GMPV which explained a small proportion, but most of the variance within the models in 

lateralised EC, and none of the lateralised GMPVs served to predict CEN self-inhibitory 

lateralised EC. This indicates that this relationship depends to a certain extent on specific 

GMPV changes. Potentially, analysing larger GMPV volumes would help describing this 

relationship better. However, only a small proportion of variance in lateralised EC could be 

explained by lateralised GMPVs. 

Furthermore, there were differences between CEN and DMN in self-inhibitory nodes 

and, for which it is likely, that the lateralized GMPVs lack explanatory power because the 

two networks differ in how they are functionally affected by structural changes during 
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healthy ageing (Appendix O). The academic literature suggests, that lateralization changes 

in resting state networks, such as the DMN (Banks et al., 2018). Additionally, lateralization 

of both DMN and CEN during ageing are influenced by further factors such as cognitive 

training (C. Luo et al., 2016). However, only recently a comprehensive taxonomy on 

functional lateralisation has been published (Karolis et al., 2019), and accordingly, a deeper 

understanding of the interplay between structural and functional lateralisation during 

healthy ageing is still lacking and requires further investigation. 

Although GMPVs were generally the better predictors of EC than age, age was a still 

a significant predictor of EC in several of the GAMs. However, directionality of the influence 

of either age or GMPVs could not be generalized from the model predictors as there were no 

uniform trends. Ageing effects have been identified in the literature as global signal decrease 

(Garrett et al., 2017; Gaut et al., 2019; Grady & Garrett, 2014; Kumral et al., 2020; Z. Li et 

al., 2017; Nomi et al., 2017; Tsvetanov et al., 2015), and within network FC decrease 

(Bagarinao et al., 2019, 2020; Varangis et al., 2019) and between network FC increase 

(Damoiseaux, 2017; Goh, 2011; Grady et al., 2016; Hughes et al., 2020; Stumme et al., 2020). 

Here, we articulated the hypotheses following such trends in the literature in addition to 

grey matter loss could as a possible explanation of EC changes. Yet, we did not find any EC 

differences between age groups, however EC changes over time indicating ageing effects. 

Simultaneously, we found that GMPVs could explain a proportion of the variance in the 

different EC values, which indicates differential influence of regional GMPV on specific 

functional connections. Further research is needed unveiling the relationship of grey matter 

and other markers of brain structure and EC during healthy ageing. 
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Limitations 

Low Effective Connectivity Reliability 

Intra-class correlations values of EC were extremely low (ICC < .12, Appendix L), 

indicating that most of the variance was explained by within-individual effects (Noble et al., 

2019). This is not the only example of low ICCs for EC values using DCM. Another study 

observed low cross-session correlations of EC in both Parkinson’s patients and healthy 

controls during an action selection task is Rowe et al. (2010). As a comparison, global 

regression DCM, using the Human Connectome Project resting state data, EC ICCs were 

considerably lower (mean ICC = .24, 95% CI [-0.18 0.59]) than for the social cognition task 

(mean ICC = .42, 95% CI [-0.07 0.75]) (Frässle & Stephan, 2021). Such global estimates are 

higher than the local estimates provided in this study. The listed EC ICCs are coherent with 

test-retest calculations for FC from both rs-fMRI (Noble et al., 2019) and task-fMRI, which 

suggests a considerably small test-retest reliability (Elliott et al., 2020). Based on this, it is 

not surprising that group-level analyses of the presented EC data show diffuse patterns over 

time, are difficult to be clustered into meaningful dimensions, as attempted with CCAs, 

correlated with GMCVs (or other variables), or compared in single to multi-factorial design 

in any meaningful way. Specifically individual differences in ageing might contribute to 

decreased ICCs, given the trend of decreased EC stability at older ages (Tsvetanov et al., 

2016). This explains in part why the presented models have only considerably small 

explanatory power (e.g., indicated by low R2
adj values) for EC, and timepoint-dependent 

changes are problematic to trace (as test-retest reliability is low), making the interpretation 

of the results difficult. 
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Study Design 

The inter-scanning interval might be crucial to reliably detect EC as well as EC 

changes. While a recent study has shown global rs-fMRI EC ICC to be poor with mean ICC 

= .24 with an unspecified inter-session, but below 4 years (Frässle & Stephan, 2021), the 

inter-session period of this study extends to 4 years. Short-term test-retests rs-fMRI studies 

showed higher ICCs, for example in children with and without attention-

deficit/hyperactivity disorder (Somandepalli et al., 2015). Hence, the long time between 

scanning session might have led to low ICCs. Opposingly, reducing the time between scans 

might increase ICC values. Moreover, the presented low ICCs might indicate that resting 

state networks are not stable on a local level, even at key-network nodes, while global 

networks are kept relatively stable intra-individually (Poldrack et al., 2015). 

On the other hand, one might also argue for longer inter-scan intervals. Diffuse and 

potentially non-linear relationships over time between grey matter volume and FC have also 

been found in pathological samples, such as Alzheimer’s Disease (Serra et al., 2016). It is 

possible that longitudinal data needs to be sampled over longer periods than done here 

(potentially decades) for the full effects of grey-matter atrophy on brain function to become 

detectable (Serra et al., 2016). Here, we found a main effect of age-group but not of time-

point or their interaction on GMPVs (Appendix J). This might indicate that the inter-

sampling period was too short to detect grey matter loss and consequential EC changes. 

Another explanation could be that functional plasticity compensates for structural changes 

(Greenwood, 2007). In that case, even when increasing the inter-scan interval, no ageing-

effects would be detected. 
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Additionally, the current DCM framework was limited to eight 6mm3 spheres, which 

were defined based on the grey matter de-asymmetrisation hubs defined in Roe et al. (2021) 

and their overlay with the DMN and CEN defined by Yeo el al (2011). It is possible that 

these spheres were too small or numerically insufficient to model the respective networks 

appropriately. The selected spheres are only parts of the greater network regions (e.g., 

Precuneus in DMN), which might have exhibited excitatory or inhibitory activity at other 

locations within the same network which were not considered in the current analysis. In 

other words, the scale of observation is important and a good trade-off between local and 

global specificity (network vs whole brain) needs to be established on a study-to-study basis 

to allow for a well-fitting yet generalizable model (Hawkins, 2004).  

Increasing the complexity of the current resting state network models by including 

more nodes and connections between nodes would increase the computations needed, 

potentially also the models’ representativeness of multiconnected real brain networks. 

Arguing against more global analyses of the current data, GMPVs explained similar 

proportions of variance of both local/self-inhibiting and between nodes EC across models, 

while the CCA suggested only two dimensions. Therefore, increasing model-complexity by 

adding nodes and connections within the established networks (CEN and DMN) might help 

to better understand the underlying processes. 

Future Directions 

There are wide possibilities for collecting data, with the best solution being to 

introduce the same protocols to multiple labs allowing for large-scale data accumulations. 

Recording additional variables such as respiration and heart rate during scanning, indicators 
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of cardiovascular health, sleep, eating (and drinking) and activity habits, and scanning at 

different (especially longer) intervals, to allow for short-term to long-term ICCs, can be a 

starting point for future fMRI studies on ageing. Integrating task- and rs-fMRI, can help to 

better capturing the connectivity changes as an in relationship to age-related processes 

(Geerligs & Tsvetanov, 2017; Millar, Ances, et al., 2020). Additionally, for richer data a 

multimodal data collection could be recommended, for instance a combination of fMRI with 

other methods such as EEG or MEG, might allow to infer causal links between observed 

changes and age (Jafarian et al., 2020). For both, existing and future data, explorative 

analyses, including machine learning can add to predicting age, disease, or certain 

behaviours. 

Analyses of the brain structure-function relationships will still need to be expanded 

and grey matter properties considered more on this equation. Also generally, there is more 

research needed on the structure-function relationship, especially considering effective 

connectivity. Adding grey matter properties to structural models predicting functional 

properties seems promising in advancing our understanding of the relationships between 

structure and function of the human brain (Jamalabadi et al., 2021). 

Conclusion 

Common findings from the literature suggesting i) biological age to be a better 

predictor of connectivity than chronological age and ii) resting state networks organised as 

DMN and CEN containing structure-function relationship could be replicated. The 

relationships between both non-lateralised and lateralised GMPVs and EC was weak, 

suggesting that, amongst structural features, grey matter might not be the best predictor of 
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EC in asymmetrically thinning areas. Combining grey matter with other structural features 

might be a solution to reach better predictions of connectivity, or to generally observe 

relationships between brain structure and function. Furthermore, the evidence for age and 

ageing differences in EC was weak. For a better understanding of brain structure-function 

relationships during ageing, further research is needed observing EC and the relationship 

between EC and grey matter during healthy and pathological ageing, as well as contributing 

and underlying mechanisms, such as plasticity. 
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Appendices 

Appendix A 

Regions of Interest in the anterior Central Executive Network (for Dynamic Causal 

Modelling) 

Hemisphere F 
Statistic 

Cluster 
Size 

(mm2) 

MNI Coordinates  

x y z Short Name 

left 17.93 233.32 -40.2 47.2 3.7 Frontal_Mid_L 

right 17.93 210.73 40.1 46 5.7 Frontal_Mid_R 

right 4.755 198.48 6 10.7 29.8 Cingulum_Ant_R 

left 4.755 170.32 -6.6 12.7 26.4 Cingulum_Ant_L 
right 11.354 133.41 39.8 37.4 26.2 Frontal_Mid_R 

left 16.916 117.43 -30.4 47.7 9.9 Frontal_Mid_L 

left 11.354 116.7 -40.8 38.4 25.1 Frontal_Inf_Tri_L 

right 16.916 91.96 29.4 46.7 13 Frontal_Mid_R 

left 11.192 77.31 -38.3 41.9 -3.8 Frontal_Inf_Orb_L 

left 6.535 67.68 -23.5 37.3 -10.8 Frontal_Mid_Orb_L 
right 4.333 61.9 21.2 13.6 55.7 Frontal_Sup_R 

left 4.333 59.96 -20 13.4 57.5 Frontal_Sup_L 

right 11.192 58.34 38.6 43.2 0.7 Frontal_Inf_Tri_R 

left 2.949 56.62 -10.1 14.2 50.7 Supp_Motor_Area_L 

right 6.535 54.99 24.6 38 -12.2 Frontal_Sup_Orb_R 

left 20.02 50.07 -35.9 29.8 33.9 Frontal_Mid_L 
right 7.763 49.8 45.5 24.2 32.2 Frontal_Inf_Tri_R 

right 2.949 46.94 10.3 14.5 49.1 Supp_Motor_Area_R 

left 7.763 41.24 -45.4 26.8 28.9 Frontal_Inf_Tri_L 

left 4.443 39.77 -28.9 10.2 47.6 Frontal_Mid_L 

left 15.676 39.43 -25.8 35.3 32.2 Frontal_Mid_L 

right 4.797 35.02 43.5 31.4 20.9 Frontal_Mid_R 
right 20.02 34.87 34.3 28.4 34 Frontal_Mid_R 

left 5.395 33.75 -23.6 44.1 18.3 Frontal_Mid_L 

right 15.676 32.4 26.8 33.3 32.6 Frontal_Mid_R 

right 4.443 31.4 27.7 13.6 44.2 Frontal_Mid_R 

left 1.86 28.58 -30.5 43.3 -13 Frontal_Mid_Orb_L 

left 4.797 26.3 -43.4 31.1 20.5 Frontal_Inf_Tri_L 
left 1.185 23.68 -9.1 32.8 39.9 Frontal_Sup_Medial_L 

right 1.86 23.31 32.6 48.8 -10.8 Frontal_Mid_Orb_R 

right 5.395 21.93 23.8 41.7 22.6 Frontal_Sup_R 
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CONTINUATION APPENDIX A 
 

Hemisphere F 
Statistic 

Cluster 
Size 

(mm2) 

MNI Coordinates  

x y z Short Name 

left 1.085 20.79 -28 6.5 53.9 Frontal_Mid_L 

right 1.185 20.66 8.6 34.1 39.3 Frontal_Sup_Medial_R 
right 14.073 19.38 8.8 24.3 38.4 Cingulum_Mid_R 

left 14.073 16.52 -9.5 22.8 39.1 Cingulum_Mid_L 

right 1.085 16.24 29 8.2 48.3 Frontal_Mid_R 

left 1.638 12.52 -23.8 38.7 27.8 Frontal_Mid_L 

left 1.607 12.18 -28.6 45.8 16.8 Frontal_Mid_L 

right 1.638 11.5 27.4 39.3 30.3 Frontal_Mid_R 
left 2.59 9.76 -12.6 32.5 27.2 Cingulum_Ant_L 

right 2.59 8.91 14.6 32.6 26 Cingulum_Ant_R 

right 1.607 7.5 27.3 41.1 18.6 Frontal_Mid_R 
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Appendix B 

Regions of Interest in the posterior Central Executive Network (for Dynamic Causal 

Modelling) 

Hemisphere 
F 

Statistic 

Cluster 

Size 

(mm2) 

MNI Coordinates  

x y z Short Name 

left 9.348 87.11 -42.9 -54.5 36.5 Angular_L 

right 9.348 85.06 41.4 -51.9 40.8 Parietal_Inf_R 

right 4.779 83.6 54.6 -39.7 39.9 SupraMarginal_R 

left 4.779 75.88 -56.2 -41.3 40.3 Parietal_Inf_L 

left 11.682 69.37 -34.7 -66.1 42.7 Parietal_Inf_L 

right 11.682 62.54 37.1 -62.9 45.1 Angular_R 

right 14.281 10.07 15.3 -62.7 31.9 Precuneus_R 

left 14.281 9.49 -15.2 -64.5 30.6 Precuneus_L 

right 4.56 7.04 32.5 -55 39.5 Angular_R 

left 4.56 5.63 -30.2 -55 35.7 Angular_L 
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Appendix C 

Regions of Interest in the anterior Default Mode Network (for Dynamic Causal Modelling) 

Hemisphere F 
Statistic 

Cluster 
Size 

(mm2) 

MNI Coordinates  

x y z Short Name 

left 21.269 1742.43 -7.1 54.2 30.3 Frontal_Sup_Medial_L 

right 21.269 1678.16 6.8 52.2 31.6 Frontal_Sup_Medial_R 

left 13.151 257.18 -23.5 21.1 35.7 Frontal_Mid_L 

right 13.151 216.36 25.2 23.5 39.5 Frontal_Mid_R 

right 5.985 153.71 19.8 61.4 -1.3 Frontal_Sup_Orb_R 

left 5.985 146.01 -17.7 61.7 -4.5 Frontal_Sup_Orb_L 
left 1.858 124.19 -6.6 35.6 17.1 Cingulum_Ant_L 

right 1.858 107.65 7 34.3 17.8 Cingulum_Ant_R 

left 5.264 97.72 -22.6 49.9 20.5 Frontal_Mid_L 

left 12.548 88.21 -19.4 29.1 51.4 Frontal_Sup_L 

right 12.548 82.53 18.5 28.5 53 Frontal_Sup_R 

right 5.264 62.97 23 47.7 22.8 Frontal_Sup_R 
left 5.17 53.11 -32 12.9 47.7 Frontal_Mid_L 

left 6.768 51.02 -4.5 25.1 -4.1 Olfactory_L 

right 6.768 48.12 5.5 31.2 -6.1 Cingulum_Ant_R 

left 6.231 44.55 -14.4 20.3 56.7 Frontal_Sup_L 

right 5.17 44.31 31.3 17.6 45.8 Frontal_Mid_R 

right 6.231 39.05 16.5 21.3 54.4 Frontal_Sup_R 
left 2.876 33.9 -8.1 37.4 39.3 Frontal_Sup_Medial_L 

right 2.876 29.19 8.6 36.8 37.2 Frontal_Sup_Medial_R 

right 2.257 28.79 10.4 31.2 53.2 Frontal_Sup_Medial_R 

right 0.497 26.32 8.5 49.2 -14.3 Rectus_R 

left 2.257 23.86 -9.6 34.5 51.6 Frontal_Sup_Medial_L 

left 0.497 23.39 -4.5 46.6 -20.5 Rectus_L 
right 5.45 22.22 28.8 48.7 0.2 Frontal_Mid_R 

left 5.45 22.02 -29 50.8 -2.5 Frontal_Sup_Orb_L 

left 5.617 21.97 -43.8 37.6 -4.5 Frontal_Inf_Orb_L 

right 5.617 16.57 41.6 39.2 -1.7 Frontal_Inf_Orb_R 

left 0.43 14.49 -28.7 57.1 -8.6 Frontal_Mid_Orb_L 

right 0.43 13.71 31.7 55.1 -7.3 Frontal_Mid_Orb_R 
right 4.913 8.95 45.5 23.5 8.2 Frontal_Inf_Tri_R 

right 0.188 8.91 10.6 11.8 63.1 Supp_Motor_Area_R 

left 4.913 7.86 -43.6 23.9 7.5 Frontal_Inf_Tri_L 

left 0.188 7.3 -10 8.7 64.6 Supp_Motor_Area_L 
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Appendix D 

Regions of Interest in the posterior Default Mode Network (for Dynamic Causal Modelling) 

Hemisphere F 
Statistic 

Cluster 
Size 

(mm2) 

MNI Coordinates  

x y z Short Name 

right 27.711 857.31 62.4 -16.3 -15.4 Temporal_Mid_R 

left 11.305 383.78 -41.7 -63.7 33.8 Angular_L 

right 11.305 368.03 47.1 -59.9 31.5 Angular_R 

left 21.509 341.52 -49.2 -41.7 0.2 Temporal_Mid_L 

right 21.509 277.09 45.8 -41.5 0.1 Temporal_Mid_R 

left 8.713 95.39 -55.1 -28.4 -12.4 Temporal_Mid_L 
right 2.506 89.98 50.8 -52.9 31.9 Angular_R 

right 8.713 85.62 55.3 -27.2 -12.5 Temporal_Mid_R 

left 2.506 69.33 -51.6 -60.1 30.9 Angular_L 

right 5.998 53.69 39.8 -64.7 46.9 Angular_R 

left 5.998 50.36 -36.7 -68 46.1 Angular_L 

left 5.284 49.82 -56.5 -11.9 -8 Temporal_Mid_L 
right 0.98 46.56 4.3 -15.4 36.6 Cingulum_Mid_R 

left 2.868 44.76 -5.3 -33.3 35.8 Cingulum_Mid_L 

left 0.98 44.33 -3.8 -12.1 37.5 Cingulum_Mid_L 

right 2.868 42.47 6.3 -37.2 32.8 Cingulum_Mid_R 

right 5.284 41.94 56.7 -12.1 -5.1 Temporal_Sup_R 

right 14.885 39.91 12 -63.8 31.2 Precuneus_R 
left 3.21 39.65 -38 -56.9 22.3 Angular_L 

right 8.147 38.78 57.6 -42.6 25.7 SupraMarginal_R 

right 3.21 35.63 46.1 -55.9 20.9 Temporal_Mid_R 

left 14.885 34.83 -12.3 -63.8 29.6 Cuneus_L 

left 2.404 34.12 -51 -52.5 19.8 Temporal_Mid_L 

left 8.147 27.67 -60 -49.8 27.6 SupraMarginal_L 
right 2.404 25.1 47 -46.5 19.3 Temporal_Mid_R 

right 3.506 22.04 48.1 -59.9 40 Angular_R 

left 3.506 19.44 -44.3 -65.1 42.8 Angular_L 

left 2.516 15.63 -51.6 -56.4 27.2 Angular_L 

right 2.516 15.46 52.3 -51.3 28.5 Angular_R 

left 0.789 11.94 -3.9 -9.5 33.4 Cingulum_Mid_L 
right 0.789 10.19 3.8 -14.6 34 Cingulum_Mid_R 

left 3.306 9.42 -17.1 -58.9 12.3 Calcarine_L 

right 4.201 8.38 7.6 -44.7 45.5 Precuneus_R 

left 4.201 7.6 -7.6 -44.2 45.6 Precuneus_L 
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CONTINUATION APPENDIX D 

Hemisphere F 
Statistic 

Cluster 
Size 

(mm2) 

MNI Coordinates  

x y z Short Name 

left 1.565 7.52 -52.4 -50.1 32.3 SupraMarginal_L 

right 1.194 7.24 55.9 -42.5 16.5 Temporal_Sup_R 
right 1.565 6.57 53.9 -47.8 32.4 Angular_R 

right 3.306 6.05 21.1 -57 16.9 Calcarine_R 

left 1.194 5.56 -61.2 -49.8 17.2 Temporal_Mid_L 
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Appendix E 

Repeated measures correlations of Grey Matter Probability Values (GMPV) for the 8 nodes 

(overview of nodes in Table 1). 

Correlations r-value 
95% CI 
lower 
bound 

95% CI 
higher 
bound 

Uncorrected 
p-value 

Corrected 
p-value 

ldPFC x lmTG 0.300 0.177 0.414 <.001 <.001 
ldPFC x lPFC 0.214 0.086 0.335 .001 .024 
ldPFC x rPC 0.134 0.003 0.260 .044 .920 

ldPFC x rdPFC 0.395 0.278 0.499 <.001 <.001 
ldPFC x rmTG 0.287 0.163 0.403 <.001 <.001 
ldPFC x rPFC 0.281 0.156 0.397 <.001 <.001 
lmTG x lPFC 0.271 0.145 0.387 <.001 .001 
lmTG x rPC 0.203 0.075 0.325 .002 .043 

lmTG x rdPFC 0.181 0.052 0.305 .006 .127 
lmTG x rmTG 0.311 0.188 0.424 <.001 <.001 
lmTG x rPFC 0.397 0.282 0.502 <.001 <.001 
lPFC x rPC 0.237 0.110 0.357 <.001 .006 

lPFC x rdPFC 0.142 0.012 0.268 .032 .664 
lPFC x rmTG 0.217 0.089 0.338 .001 .021 
lPFC x rPFC 0.586 0.493 0.666 <.001 <.001 
rPC x rdPFC 0.132 0.001 0.258 .047 .990 
rPC x rmTG 0.188 0.059 0.311 .004 .092 
rPC x rPFC 0.198 0.069 0.320 .003 .058 

rdPFC x rmTG 0.136 0.005 0.262 .041 .854 
rdPFC x rPFC 0.253 0.127 0.372 <.001 .002 
rmTG x rPFC 0.227 0.100 0.347 .001 .012 

Note: The table shows a clear relationship of GMPVs across the ROIs. Corrections refer to Bonferroni 

corrections, in this case, calculated by multiplying the p-values by the number of tests (21). 
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Appendix F 

Full Canonical Correlation Coefficient Tables 

Appendix F.1 

Standardized Canonical Coefficients for Effective Connectivity for the significant Dimensions 

1 and 2 for all within-DMN Connections 

DMN nodes and Connections Dimension 1 Dimension 2 

ldPFC -0.27 0.00 
raPFC_2_ldPFC 0.05 -0.14 
rPC_2_ldPFC 0.16 0.04 
lPC_2_ldPFC -0.04 -0.19 

lmTG_2_ldPFC 0.04 -0.07 
rmTG_2_ldPFC 0.12 -0.27 
ldPFC_2_raPFC -0.08 0.15 

raPFC 0.02 -0.21 
rPC_2_raPFC -0.05 0.11 
lPC_2_raPFC 0.03 -0.05 
ldPFC_2_rPC -0.20 0.09 
raPFC_2_rPC 0.04 0.09 

rPC 0.27 -0.09 
lPC_2_rPC -0.12 0.02 

ldPFC_2_lPC 0.26 0.13 
raPFC_2_lPC 0.06 -0.02 
rPC_2_lPC -0.24 0.06 

lPC 0.23 0.17 
Note: Larger loadings on one dimension are marked big. 
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Appendix F.2 

Standardized Canonical Coefficients for Effective Connectivity for the significant Dimensions 

1 and 2 for all within-CEN Connections 

CEN nodes and Connections Dimension 1 Dimension 2 

lPFC 0.05 -0.45 
rPFC_2_lPFC -0.11 0.30 
lmTG_2_lPFC -0.08 0.16 
rmTG_2_lPFC -0.02 -0.16 
ldPFC_2_rPFC 0.06 -0.29 
raPFC_2_rPFC -0.02 0.01 
lPFC_2_rPFC 0.03 -0.22 

rPFC -0.29 0.37 
lmTG_2_rPFC 0.15 -0.09 
rmTG_2_rPFC 0.12 -0.03 
lPFC_2_lmTG 0.29 0.05 
rPFC_2_lmTG 0.02 -0.09 

lmTG -0.22 -0.10 
rmTG_2_lmTG 0.13 0.15 
lPFC_2_rmTG -0.24 0.05 
rPFC_2_rmTG 0.15 -0.24 
lmTG_2_rmTG -0.18 -0.25 

rmTG 0.24 0.04 
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Appendix F.3 

Standardized Canonical Coefficients for Effective Connectivity for the significant Dimensions 

1 and 2 for all between-CEN-DMN Connections 

Between CEN and DMN 
Connections Dimension 1 Dimension 2 

lPFC_2_raPFC -0.15 -0.02 
rPFC_2_raPFC -0.07 0.05 
lmTG_2_raPFC -0.12 0.05 
rmTG_2_raPFC 0.01 0.04 

lPFC_2_rPC 0.37 0.28 
rPFC_2_rPC 0.20 0.09 
lmTG_2_rPC 0.13 0.19 
rmTG_2_rPC -0.02 0.17 
lPFC_2_lPC -0.16 -0.13 
rPFC_2_lPC -0.13 0.08 
lmTG_2_lPC -0.23 0.05 
rmTG_2_lPC -0.18 -0.02 

ldPFC_2_lPFC -0.02 0.21 
raPFC_2_lPFC -0.08 0.37 
rPC_2_lPFC -0.36 0.17 
lPC_2_lPFC -0.15 0.02 
rPC_2_rPFC 0.04 0.02 
lPC_2_rPFC 0.07 0.06 

ldPFC_2_lmTG -0.06 0.20 
raPFC_2_lmTG -0.12 0.24 
rPC_2_lmTG -0.40 0.19 
lPC_2_lmTG -0.34 -0.16 

ldPFC_2_rmTG 0.18 0.00 
raPFC_2_rmTG 0.08 0.12 
rPC_2_rmTG 0.11 0.02 
lPC_2_rmTG -0.07 -0.10 

lPFC_2_ldPFC -0.04 0.03 
rPFC_2_ldPFC 0.14 -0.14 
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Appendix G 

Power Simulations 

Four of the sixty-four EC values were randomly selected from a pool of self-inhibitory 

EC and between nodes EC values to simulate data simulations using the SuperPower 

package (Caldwell et al., 2021). Self-inhibitory EC values were ldPFC and rmTG EC and 

the two between nodes EC values were connections from ldPFC to raPFC and from rmTG 

to lPFC. Simulations indicated power β < 80% when using MANOVAs, especially for the 

between-nodes EC. Yet, it is difficult to predict the power when including variables which 

might be bundled in multivariate models as done here with semi-parametric MANOVAs and 

when considering strong variability between EC values at/between different locations. For 

specifics find the code on OSF under ANOVA_Power_EC.Rmd at https://osf.io/9bax3/. 
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Appendix H 

Low fMRI Study Replicability  

A high rate of false positives in neuroimaging has previously become known as 

‘voodoo correlations’ (Fiedler, 2011; Vul et al., 2009). A popular example is the dead salmon 

study (C. Bennett et al., 2009). Bennett and colleagues (2009) presented allegedly significant 

BOLD contrasts – when not controlling for multiple comparison – in a dead fish’s head. Ever 

since, reporting corrected results has somewhat become the standard in neuroimaging 

studies.  

Additionally, different factors can contribute to reduced replicability in each study 

phase. Starting with the fMRI study design, it is crucial to make sure that the study design 

is sufficiently powered8. Translated to task-fMRI that would mean to increase samples 

significantly, as previous research suggests that even for current standards large samples of n 

= 100 participants have a rather satisfying than perfect replicability (Turner et al., 2018). 

Yet, replicability also depends on the task used (which will influence observable effects) and 

how the data are analysed (focussing on group level or region of interest activations) 

(Kampa et al., 2020). The central design-trade-off evolves hence around the number of 

subjects and how often to test each subject. Observing one (Poldrack et al., 2015) or few 

 

 

8 Statistical power (also β) is the probability of detecting a true effect, or in other words, detecting an effect 

when the null hypothesis is false (Cohen, 1992). Power is dependent on the choice of the alpha level (usually α

=.05), sample size (N) and effect size. 
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individuals (Gordon et al., 2017) intensively can provide high quality data and unique 

insights into the functioning of the observed individuals’ brains when observed often and 

long enough. However, the data generalisability of single or few subject studies is limited 

(Lehmann et al., 2020). When examining fewer individuals, higher resolutions might be 

desirable to improve data quality. However, when reaching higher resolutions, co-registration 

procedures might become problematic. Vice versa, when using large datasets including 

multiple subjects, group-averaged data might obscure precise activity or network mapping 

(Gordon et al., 2017). Additionally, different sources of artifacts specific to MRI and fMRI 

data can impact both effect size estimates and statistical power (Lombardo et al., 2016). 

Beyond design choices, which usually affect artifacts, power and effect size, the choice 

of pre-processing and analysis methods can lead to substantial variations in results 

(Botvinik-Nezer et al., 2020; Eklund et al., 2016; Poldrack et al., 2017), which also applies to 

rs-fMRI data use in order to estimate FC (Geerligs et al., 2017). This is nicely illustrated by 

a study, which described 70 different labs’ analyses of the same dataset to answer 9 

hypotheses, resulting in different, and partly opposing conclusions based on different 

analytical approaches (Botvinik-Nezer et al., 2020). 

The described issues lead to low reliability in fMRI studies (Elliott et al., 2020; 

Holiga et al., 2018; Noble et al., 2019; C. Zhang, Baum, et al., 2018; X. N. Zuo et al., 2019). 

Without reliability, fMRI findings cannot be generalised and are hence unlikely to replicate. 

Although study results on reliability in rs-fMRI are conflicting (Noble et al., 2019; C. Zhang, 

Baum, et al., 2018), rs-fMRI reliability seems to be stronger than task-fMRI reliability 

(Holiga et al., 2018). Additionally, recent large-scale analyses of task-fMRI show low test-
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retest reliability (Elliott et al., 2020). However, the replicability on task-fMRI seems to be 

higher for group activations and lower for regions of interest (Kampa et al., 2020). 

Replicability differs between task – as can be expected, there seems to be a positive 

relationship between originally observed effect sizes / activation strength and replicability 

(Kampa et al., 2020). Although it is difficult to make general claims about task-fMRI 

replicability, as opposed to rs-fMRI, task-fMRI has the advantage of a control condition 

(Specht, 2020). Overall, fMRI study replicability is reduced by QRP usage, publication bias, 

problems with study design (including low power and data quality), data processing and 

statistical testing, and finally, misinterpreting results. 
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Appendix I 

Examples of Factors influencing the BOLD Signal 
 

  Factor Study 

Endogenous 
Factors age(ing) 

(Agcaoglu et al., 2015; Goldstone et al., 2016; Kumral 
et al., 2020; Millar, Petersen, et al., 2020; Mowinckel et 
al., 2012; Tsvetanov et al., 2019; Wink, 2019) 

 
genetic disposition (Barber et al., 2021) 

 
neurovascular factors (Millar, Petersen, et al., 2020; Tsvetanov et al., 2019; 

West et al., 2019) 

 
(cardio)vascular factors (e.g., 
cardiac pulsations) (Hutchison et al., 2013; Tsvetanov et al., 2015) 

 heart rate variability (C. Chang et al., 2013) 

 
Age-dependent heart rate 
variability (Kumral et al., 2019) 

 hypertension (Bu et al., 2018; Carnevale et al., 2020) 

 Body temperature (Sun et al., 2013) 

 respiration  (Hutchison et al., 2013) 

 movement in the scanner (Hutchison et al., 2013) 

 activity levels (Boraxbekk et al., 2016) 

 habitual sleep duration (Curtis et al., 2016) 

 sleep deprivation (Dai et al., 2012) 

 mood (Harrison et al., 2008) 

 neuropsychological disorders (e.g. depression: Hamilton et al., 2011) 

 antidepressants for de-pression (Anand et al., 2005) 

 anaesthesia (Martuzzi et al., 2010) 

 inflammation (Labrenz et al., 2016; Lekander et al., 2016) 

 laterality (Tian et al., 2011) 

 

gender 

(Dai et al., 2012; Filippi et al., 2013; Goldstone et al., 
2016; Jamadar et al., 2019; Tian et al., 2011; Wink, 
2019; C. Xu et al., 2015; C. Zhang, Dougherty, et al., 
2018) 

 
menstrual cycle (oestrogen and 
progesterone changes) (Pritschet et al., 2020) 

Exogenous 
Factors noise of the MR scanner (Skouras et al., 2013) 

 scanner drift (Hutchison et al., 2013) 

 time of year (Choe et al., 2015) 

 time of day (Orban et al., 2020; Vaisvilaite et al., 2020) 

 
verbal intelligence and 
education (Bastin et al., 2012) 

 
room temperature 
(fluctuations) (Oi et al., 2017) 
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Appendix J 

Exploring Grey Matter Probability Value Differences Between Age Groups Across 

Measurement Timepoints 

A 2 (age group) x 2 (timepoint) mixed semi-parametric MANOVA on GMPVs 

testing whether there was atrophy of grey matter in the ROIs over time and differences in 

GMPVs between age groups revealed that there a significant main effect of age F(8, 227) = 

120.37, p < .001, but no significant effect of timepoint (p = .20) or the age-time interaction 

(p = .57). 

To further examine the influence of age group on GMPVs, independent samples 

Welch’s t-tests were used to examine whether there are age-group differences for each of the 

8 nodes with Bonferroni corrected α = 0.05/8. In the anterior DMN, GMPV was higher in 

ldPFC in younger (M = 0.63, SD = 0.09) compared to the older participants (M = 0.61, SD 

= 0.08), t(450.25) = 2.63, p = .004, d = 0.24, 95% CI[-0.02; 0.51]. Also in raPFC, GMPV 

was higher in younger (M = 0.53, SD = 0.12) compared to the older participants (M = 0.49, 

SD = 0.10), t(451.57) = 3.05, p = .001, d = 0.28, 95% CI[0.02; 0.54] as well as in the 

posterior DMN’s rPC, with GMPV being higher in the younger group (M = 0.58, SD = 

0.07) compared to the older group (M = 0.55, SD = 0.08) t(452) = 3.03, p = .001, d = 0.29, 

95% CI[0.02; 0.55]. In the anterior CEN, rPFC GMPV was higher in the younger (M = 0.52, 

SD = 0.12) compared to the older group (M = 0.49, SD = 0.10), t(399.42) = 4.49, p < .001, 

d = 0.30, 95% CI[0.04; 0.56]. In the posterior CEN, lmTG GMPV was higher in the younger 

(M = 0.52, SD = 0.12) compared to the older group (M = 0.49, SD = 0.10), t(414.62) = 

7.46, p < .001, d = 0.71, 95% CI[0.44; 0.98], rmTG GMPV for younger (M = 0.67, SD = 
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0.07) compared to the older group (M = 0.64, SD = 0.06), t(449.1) = 3.95, p < .001, d = 

0.37, 95% CI[0.11; 0.63] (see Figure below). No other comparisons were significant. 

Grey Matter Probability Values by Age Group 

 

Note: Age groups were defined as “up to 45 years of age” (younger group) and older than 45 years of age (older 

group). Significance levels are based on uncorrected p-values indicating *p < .05, **p < .01, ***p < .001, ****p 

< .0001. ldPFC and raPFC are part of the anterior portion of the DMN, lPC and rPC of the posterior portion, 

respectively. lPFC and rPFC are part of the anterior portion of the CEN, lmTG and rmTG of the posterior 

portion, respectively. ldPFC = left dorsal Prefrontal Cortex, raPFC = right anterior Prefrontal Cortex, lPC = 

left Precuneus, rPC = right Precuneus, lPFC = left Prefrontal Cortex, rPFC = right Prefrontal Cortex, lmTG = 

left medial Temporal Gyrus, rmTG = right medial Temporal Gyrus. 
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Appendix K 

Bilateral Correlations of GMPV and EC at the Eight Nodes 

Region and Measure Spearman's 
r Statistic p p 

corrected 
ant_DMN_GM 0.38 9625782.51 <.001 <.001 
post_DMN_GM 0.41 9233754.76 <.001 <.001 

ant_CEN_DMN_GM 0.32 10645439.4 <.001 <.001 
post_CEN_DMN_GM 0.62 5877776.64 <.001 <.001 

self_inhib_ant_DMN_EC 0.26 11524102 <.001 <.001 
self_inhib_post_DMN_EC 0.00 15535658 .931 1 

ant_DMN_EC -0.31 20467546 <.001 <.001 
Precuneus_Frontal_same_side_DMN_EC -0.08 16881476 .081 1 

Frontal_Precuneus_cross_DMN_EC 0.03 15107116 .511 1 
post_DMN_EC -0.51 23503302 <.001 <.001 

Precuneus_Frontal_cross_DMN_EC 0.01 15395112 .781 1 
Frontal_Precuneus_same_side_DMN_EC 0.06 14597374 .171 1 

self_inhib_post_CEN_EC -0.07 16639020 .151 1 
self_inhib_ant_CEN_EC 0.08 14320944 .081 1 

ant_CEN_EC -0.39 21673586 <.001 <.001 
Fronto_Temporal_same_side_CEN_EC 0.04 14902744 .341 1 
Temporo_Fronto_same_side_CEN_EC -0.04 16291296 .341 1 

Fronto_Temporal_cross_CEN_EC -0.01 15761968 .821 1 
Temporo_Fronto_cross_CEN_EC -0.01 15785712 .801 1 

post_CEN_EC -0.35 21035214 <.001 <.001 
 

Spearman correlations were conducted due to non-normality of the data for anterior DMN in 

ldPFC and raPFC, posterior DMN in lPC and rPC, anterior CEN in lPFC and rPFC, and 

posterior CEN in lmTG and rmTG. The correlations above show a clear pattern of bi-lateral 

relationships for GMPVs, but not for EC values. 
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Appendix L 

Intra Class Correlations of Effective Connectivity at T5 and T6 

ICC Label ICC 
Frontal_Mid_L 0.04 

Frontal_Mid_R_2_Frontal_Mid_L 0.01 
Precuneus_R_2_Frontal_Mid_L 0.01 
Precuneus_L_2_Frontal_Mid_L <.01 

Frontal_Sup_Medial_L_2_Frontal_Mid_L 0.09 
Frontal_Sup_Medial_R_2_Frontal_Mid_L 0.19 

Temporal_Mid_L_2_Frontal_Mid_L 0.15 
Temporal_Mid_R_2_Frontal_Mid_L <.01 
Frontal_Mid_L_2_Frontal_Mid_R <.01 

Frontal_Mid_R <.01 
Precuneus_R_2_Frontal_Mid_R <.01 
Precuneus_L_2_Frontal_Mid_R <.01 

Frontal_Sup_Medial_L_2_Frontal_Mid_R <.01 
Frontal_Sup_Medial_R_2_Frontal_Mid_R 0.02 

Temporal_Mid_L_2_Frontal_Mid_R 0.10 
Temporal_Mid_R_2_Frontal_Mid_R <.01 

Frontal_Mid_L_2_Precuneus_R <.01 
Frontal_Mid_R_2_Precuneus_R <.01 

Precuneus_R 0.10 
Precuneus_L_2_Precuneus_R <.01 

Frontal_Sup_Medial_L_2_Precuneus_R <.01 
Frontal_Sup_Medial_R_2_Precuneus_R <.01 

Temporal_Mid_L_2_Precuneus_R 0.13 
Temporal_Mid_R_2_Precuneus_R 0.14 
Frontal_Mid_L_2_Precuneus_L <.01 
Frontal_Mid_R_2_Precuneus_L <.01 
Precuneus_R_2_Precuneus_L 0.04 

Precuneus_L <.01 
Frontal_Sup_Medial_L_2_Precuneus_L 0.10 
Frontal_Sup_Medial_R_2_Precuneus_L 0.01 

Temporal_Mid_L_2_Precuneus_L 0.04 
Temporal_Mid_R_2_Precuneus_L <.01 

Frontal_Mid_L_2_Frontal_Sup_Medial_L 0.05 
Frontal_Mid_R_2_Frontal_Sup_Medial_L 0.02 
Precuneus_R_2_Frontal_Sup_Medial_L <.01 
Precuneus_L_2_Frontal_Sup_Medial_L <.01 
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ICC Label ICC 

Frontal_Sup_Medial_L <.01 
Frontal_Sup_Medial_R_2_Frontal_Sup_Medial_L 0.09 

Temporal_Mid_L_2_Frontal_Sup_Medial_L 0.04 
Temporal_Mid_R_2_Frontal_Sup_Medial_L <.01 
Frontal_Mid_L_2_Frontal_Sup_Medial_R 0.03 
Frontal_Mid_R_2_Frontal_Sup_Medial_R 0.03 
Precuneus_R_2_Frontal_Sup_Medial_R 0.02 
Precuneus_L_2_Frontal_Sup_Medial_R <.01 

Frontal_Sup_Medial_L_2_Frontal_Sup_Medial_R 0.08 
Frontal_Sup_Medial_R 0.11 

Temporal_Mid_L_2_Frontal_Sup_Medial_R <.01 
Temporal_Mid_R_2_Frontal_Sup_Medial_R 0.01 

Frontal_Mid_L_2_Temporal_Mid_L <.01 
Frontal_Mid_R_2_Temporal_Mid_L 0.06 
Precuneus_R_2_Temporal_Mid_L <.01 
Precuneus_L_2_Temporal_Mid_L 0.05 

Frontal_Sup_Medial_L_2_Temporal_Mid_L <.01 
Frontal_Sup_Medial_R_2_Temporal_Mid_L <.01 

Temporal_Mid_L 0.11 
Temporal_Mid_R_2_Temporal_Mid_L 0.09 
Frontal_Mid_L_2_Temporal_Mid_R <.01 
Frontal_Mid_R_2_Temporal_Mid_R <.01 
Precuneus_R_2_Temporal_Mid_R 0.05 
Precuneus_L_2_Temporal_Mid_R <.01 

Frontal_Sup_Medial_L_2_Temporal_Mid_R 0.06 
Frontal_Sup_Medial_R_2_Temporal_Mid_R <.01 

Temporal_Mid_L_2_Temporal_Mid_R 0.09 
Temporal_Mid_R <.01 
Precuneus_L_GM 0.05 

Frontal_Mid_L_GM 0.01 
Temporal_Mid_L_GM <.01 

Frontal_Sup_Medial_L_GM 0.05 
Precuneus_R_GM <.01 

Frontal_Mid_R_GM 0.04 
Temporal_Mid_R_GM <.01 

Frontal_Sup_Medial_R_GM 0.02 
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Appendix M 

Age and GMPVs Predicting EC 
 
Appendix M.1 

GAM Result Table 
 
Best fitting models are marked fat. 
Note: The best fitting model was determined based on the variance explained, the AIC, and its simplicity. 
 

EC 

Model 0 Model 1 Model 2 Model 3 Model 4 

R2adj AIC R2adj AIC 

Change in 
deviance 
e1plained 
p-value 

R2adj AIC 

Change in 
deviance 

e1plained p-
value 

R2adj AIC 

Change in 
deviance 

e1plained p-
value 

R2adj AIC 

Self-Inhibitory EC 

lPFC 0.014 236.64 0.039 225.93 <.001 0.067 224.60 .056 0.055 234.34 1.000 0.024 240.14 
rPFC 0.003 202.93 0.004 203.51 .311 0.026 202.85 .093 0.026 202.85 .002 0.018 205.15 

lmTG -0.002 243.90 -0.002 244.24 .329 0.046 235.73 .003 0.046 235.73 .019 0.014 245.54 

rmTG 0.009 277.43 0.014 278.20 1.000 0.047 271.98 .013 0.040 274.20 .063 0.019 281.53 

ldPFC 0.005 213.76 0.020 210.66 .041 0.048 209.56 .054 0.042 209.12 .228 0.014 281.57 

raPFC 0.011 250.79 0.039 242.06 .004 0.053 245.84 .243 0.025 255.80 .002 0.015 257.74 

lPC 0.035 296.74 0.039 296.29 .134 0.087 287.19 .003 0.085 287.10 .233 0.056 296.04 

rPC 0.004 292.61 0.010 291.16 1.000 0.036 293.84 .148 0.029 289.74 .395 0.026 291.33 
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EC 

Model 0 Model 1 Model 2 Model 3 Model 4 

R2adj AIC R2adj AIC 

Change in 
deviance 
e1plained 
p-value 

R2adj AIC 

Change in 
deviance 

e1plained p-
value 

R2adj AIC 

Change in 
deviance 

e1plained p-
value 

R2adj AIC 

Within CEN EC 

rPFC 2 lPFC 0.008 281.19 0.008 282.13 .480 0.052 278.97 .015 0.056 282.92 .473 -0.004 295.50 

lPFC 2 rPFC -0.002 280.84 -0.002 280.85 .016 0.007 285.29 .404 0.007 285.29 1.000 -0.007 291.85 

lPFC 2 lmTG -0.002 180.30 -0.001 180.88 .308 0.023 181.61 .088 0.023 180.65 .612 -0.003 189.68 

lmTG 2 lPFC -0.002 180.30 -0.001 180.88 .308 0.023 181.61 .088 0.023 180.65 .612 -0.003 189.68 

lPFC 2 rmTG -0.001 158.35 -0.001 158.36 .002 0.039 153.92 .015 0.039 153.92 .006 0.012 161.01 

rmTG 2 lPFC < 0.001 319.48 0.004 320.67 .272 0.049 317.57 .020 0.042 317.59 .185 0.002 327.55 
rPFC 2 lmTG -0.001 185.67 < 0.001 187.33 .478 0.007 188.90 .314 0.006 188.31 .288 -0.006 196.86 

lmTG 2 rPFC < 0.001 445.01 0.001 445.71 .350 0.022 446.12 .122 0.022 446.12 < .001 0.008 450.29 
rPFC 2 
rmTG < 0.001 218.17 < 0.001 218.17 .025 0.008 220.04 .302 0.008 219.92 .171 -0.003 228.50 

rmTG 2 
rPFC 0.002 321.48 0.025 318.61 .029 0.048 324.79 .256 0.047 321.43 .592 < 0.001 331.00 

lmTG 2 
rmTG 0.011 378.79 0.011 379.01 .270 0.026 377.80 .100 0.026 377.80 .005 0.010 388.02 

rmTG 2 
lmTG -0.002 393.52 0.012 393.60 .115 0.018 396.42 .418 0.016 399.13 .933 -0.007 404.62 

Within DMN EC 
ldPFC 2 
raPFC -0.001 146.41 -0.001 146.41 .002 0.007 155.80 .636 0.007 155.80 1.000 -0.011 159.78 

raPFC 2 
ldPFC 0.008 242.43 0.008 243.13 .345 0.049 239.86 .019 0.049 239.27 .432 0.014 248.27 

ldPFC 2 lPC 0.001 253.74 0.011 250.32 .019 0.074 240.27 .002 0.062 246.23 1.000 0.048 240.70 

lPC 2 ldPFC -0.001 17.31 0.002 18.00 .292 0.031 23.70 .166 0.028 21.39 .488 0.008 22.26 
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EC 

Model 0 Model 1 Model 2 Model 3 Model 4 

R2adj AIC R2adj AIC 

Change in 
deviance 
e1plained 
p-value 

R2adj AIC 

Change in 
deviance 

e1plained p-
value 

R2adj AIC 

Change in 
deviance 

e1plained p-
value 

R2adj AIC 

ldPFC 2 rPC 0.001 260.80 0.001 261.49 .447 0.055 254.61 .005 0.055 254.61 .004 0.017 262.17 

rPC 2 ldPFC -0.002 -48.24 0.002 -45.01 .391 0.040 -50.33 .014 0.040 -50.33 < .001 -0.012 -34.99 

raPFC 2 lPC 0.028 285.87 0.033 285.02 .102 0.075 278.89 .009 0.074 278.77 .204 0.050 284.55 

lPC 2 raPFC -0.001 71.16 < 0.001 71.83 .342 0.023 74.57 .146 0.022 74.09 .308 -0.002 80.28 

raPFC 2 rPC < 0.001 279.00 < 0.001 279.00 .005 0.047 268.46 .002 0.047 268.46 .002 0.027 275.10 
rPC 2 raPFC -0.001 7.78 < 0.001 9.27 .480 0.035 8.55 .038 0.032 8.55 .213 -0.002 17.18 

lPC 2 rPC 0.001 312.49 0.001 312.50 .025 0.030 314.34 .097 0.029 313.47 .365 0.017 314.22 

rPC 2 lPC -0.001 242.85 -0.001 242.85 .002 0.058 232.56 .002 0.058 232.56 .009 0.039 233.36 

Between DMN and CEN EC 
raPFC 2 
lPFC 0.001 277.65 0.043 264.01 <.001 0.129 243.42 < .001 0.107 248.04 .029 0.042 267.52 

raPFC 2 
rPFC -0.002 285.81 0.004 284.14 .057 0.064 274.94 .003 0.064 274.94 .002 0.029 280.31 

lPFC 2 
ldPFC -0.001 -13.42 -0.001 -12.66 .399 0.024 -16.56 .031 0.024 -16.56 < .001 0.003 -6.43 

rPFC 2 
raPFC 0.002 30.95 0.012 27.11 .017 0.030 28.39 .144 0.031 34.57 .697 0.010 35.81 

raPFC 2 
lmTG -0.002 319.62 -0.002 319.62 .003 0.052 316.76 .013 0.052 316.76 .001 0.008 324.01 

raPFC 2 
rmTG -0.001 288.42 0.014 288.86 .109 0.019 291.64 .415 0.024 293.74 .322 -0.004 298.62 

lmTG 2 
raPFC -0.002 228.96 0.005 228.71 .156 0.029 228.90 .084 0.022 224.34 .432 0.009 232.89 

rmTG 2 
raPFC 0.001 72.57 0.006 74.34 .304 0.028 66.18 .003 0.028 66.18 .002 0.020 72.61 
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EC 

Model 0 Model 1 Model 2 Model 3 Model 4 

R2adj AIC R2adj AIC 

Change in 
deviance 
e1plained 
p-value 

R2adj AIC 

Change in 
deviance 

e1plained p-
value 

R2adj AIC 

Change in 
deviance 

e1plained p-
value 

R2adj AIC 

ldPFC 2 
lPFC -0.002 206.89 0.020 202.27 .017 0.072 196.52 .009 0.051 198.56 .053 0.027 202.56 

ldPFC 2 
rPFC -0.002 225.13 0.008 225.48 .139 0.049 224.37 .038 0.035 223.39 .160 0.012 227.49 

lPFC 2 
ldPFC -0.002 -14.78 -0.002 -14.77 <.001 0.011 -7.36 .461 0.009 -10.60 .580 0.004 -8.58 

rPFC 2 
ldPFC -0.002 86.63 -0.002 86.63 .001 0.014 92.16 .303 0.013 90.47 .499 0.001 93.89 

ldPFC 2 
lmTG 0.002 287.22 0.002 287.22 .005 0.048 282.50 .010 0.048 282.50 .004 0.017 289.39 

ldPFC 2 
rmTG 0.025 228.03 0.025 228.03 .007 0.061 229.44 .067 0.059 227.69 .396 0.039 230.51 

lmTG 2 
ldPFC -0.001 199.78 0.002 200.78 .311 0.047 197.04 .015 0.044 194.49 .475 0.012 202.72 

rmTG 2 
ldPFC < 0.001 93.54 0.018 89.60 .024 0.090 75.56 < .001 0.077 75.87 .143 0.020 93.46 

lPC 2 lPFC -0.001 194.11 0.025 187.09 .006 0.083 178.48 .002 0.057 187.70 .004 0.034 186.69 
lPC 2 rPFC -0.002 191.20 0.005 190.08 .116 0.046 182.88 .006 0.045 182.28 .366 0.024 188.28 

lPFC 2 lPC -0.002 53.00 -0.002 53.00 .001 0.059 49.45 .007 0.044 50.99 .061 0.015 54.06 

rPFC 2 lPC 0.022 175.07 0.022 175.07 .004 0.039 174.40 .097 0.039 175.71 .555 0.031 179.50 

lPC 2 lmTG -0.002 189.44 0.005 188.64 .116 0.074 174.14 .001 0.068 168.73 .543 0.060 169.50 

lPC 2 rmTG 0.007 170.76 0.012 169.36 .072 0.047 164.02 .016 0.044 163.97 .220 0.029 169.21 

lmTG 2 lPC 0.003 268.96 0.020 262.20 .003 0.036 262.51 .141 0.028 265.92 .013 0.029 265.66 
rmTG 2 lPC 0.005 229.45 0.010 229.97 .200 0.070 229.62 .011 0.071 226.21 .797 0.007 237.07 

rPC 2 lPFC -0.002 191.64 -0.002 191.87 .262 0.080 174.44 < .001 0.080 173.90 .353 0.040 181.41 
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EC 

Model 0 Model 1 Model 2 Model 3 Model 4 

R2adj AIC R2adj AIC 

Change in 
deviance 
e1plained 
p-value 

R2adj AIC 

Change in 
deviance 

e1plained p-
value 

R2adj AIC 

Change in 
deviance 

e1plained p-
value 

R2adj AIC 

rPC 2 rPFC -0.001 121.31 0.001 122.55 .364 0.054 109.41 .001 0.042 115.46 1.000 0.028 116.70 

lPFC 2 rPC -0.002 193.71 0.004 193.57 .159 0.087 173.94 < .001 0.080 177.53 1.000 0.046 180.42 

rPFC 2 rPC < 0.001 190.09 < 0.001 190.68 .405 0.030 187.35 .028 0.030 185.34 .618 0.008 195.45 

rPC 2 lmTG -0.002 204.81 0.004 203.32 .066 0.049 189.81 .001 0.046 189.59 .257 0.036 196.10 

rPC 2 rmTG 0.001 129.72 0.001 129.72 .001 0.018 133.89 .248 0.018 133.89 .001 -0.011 143.97 
lmTG 2 rPC -0.002 355.13 0.006 356.89 .228 0.035 352.81 .026 0.035 352.81 .003 0.011 357.84 

rmTG 2 rPC -0.002 338.47 0.001 339.61 .315 0.033 340.92 .072 0.026 341.58 .138 0.010 341.95 
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Significant Predictors for the best fitting models 

EC 
Best 

Fitting 
Model 

Best Fitting Model's Significant Predictors 

 
Self-Inhibitory EC  

lPFC 2 rPFC GMPV F(9, 454) = 1.57, p = .007, age F(9, 454) = 0.99, p = .002, and timepoint (model coefficient) t(454) = 2.71, p = .007  

rPFC 3 ldPFC GMPV F(9, 454) = 0.95, p = .007, lmTG GMPV F(9, 454) = 0.37, p = .046   

lmTG 3 rPC GMPV F(9, 454) = 0.62, p = .014, lmTG GMPV F(9, 454) = 1.54, p = .016, and rmTG GMPV F(9, 454) = 0.40, p = .04   

rmTG 2 rPC GMPV F(9, 454) = 1.28, p = .014, and age F(9, 454) = 0.67, p = .044, and timepoint (model coefficient) t(454) = -2.54, p = .012   

ldPFC 2 lPC GMPV F(9, 454) = 0.71, p = .047   

raPFC 1 age F(9, 454) = 1.67, p = .002, timepoint t(454) = 2.45, p = .015  

lPC 3 ldPFC F(9, 454) = 0.51, p = .024, lPFC F(9, 454) = 1.24, p = .005  

rPC 3 rPC GMPV F(9, 454) = 0.997, p = .005  

Within CEN EC  

rPFC 2 lPFC 3 ldPFC GMPV F(9, 454) = 1.36, p = .025, timepoint t(454) = 2.19, p = .029  

lPFC 2 rPFC 3 none  

lPFC 2 lmTG 3 none  

lmTG 2 lPFC 3 none  

lPFC 2 rmTG 3 rPFC GMPV F(9, 454) = 0.97, p = .002, rmTG F(9, 454) = 0.65, p = .044  

rmTG 2 lPFC 3 raPFC GMPV F(9, 454) = 0.80, p = .0278, rmTG F(9, 454) = 0.69, p = .047  

rPFC 2 lmTG 3 none  

lmTG 2 rPFC 3 none  
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rPFC 2 rmTG 3 none  

rmTG 2 rPFC 3 lPC GMPV F(9, 454) = 1.29, p = .0445, lmTG F(9, 454) = 0.67, p = .048  

lmTG 2 rmTG 3 laPFC GMPV F(9, 454) = 1.70, p = .008  

rmTG 2 lmTG 1 none  

Within DMN EC  

ldPFC 2 raPFC 3 none  

raPFC 2 ldPFC 3 ldPFC GMPV F(9, 454) = 0.39, p = .047, raPFC GMPV F(9, 454) = 0.81, p = .027, rPFC GMPV F(9, 454) = 0.50, p = .022, lmTG 
GMPV F(9, 454) = 0.78, p = .025 

 

ldPFC 2 lPC 3 raPFC GMPV F(9, 454) = 0.68, p = .009, rPFC GMPV F(9, 454) = 1.23, p = .04  

lPC 2 ldPFC 3 none  

ldPFC 2 rPC 3 raPFC GMPV F(9, 454) = 0.65, p = .011, lPFC GMPV F(9, 454) = 1.46, p = .003  

rPC 2 ldPFC 3 rPC GMPV F(9, 454) = 1.73, p = .004  

raPFC 2 lPC 3 raPFC GMPV F(9, 454) = 0.77, p = .035, lPC GMPV F(9, 454) = 0.41, p = .037, lmTG GMPV F(9, 454) = 1.16, p = .021  

lPC 2 raPFC 3 ldPFC GMPV F(9, 454) = 0.72, p = .042  

raPFC 2 rPC 3 raPFC GMPV F(9, 454) = 0.66, p = .011, rPC GMPV F(9, 454) = 0.41, p < 0.001  

rPC 2 raPFC 3 none  

lPC 2 rPC 3 ldPFC GMPV F(9, 454) = 0.84, p = .004  

rPC 2 lPC 3 ldPFC GMPV F(9, 454) = 1.05, p = .001, lPC GMPV F(9, 454) = 1.53, p = .002, rmTG GMPV F(9, 454) = 0.51, p = .023  

Between DMN and CEN EC  

raPFC 2 lPFC 2 ldPFC GMPV F(9, 454) = 1.40, p = .024, rmTG GMPV F(9, 454) = 2.50, p < 0.001, age F(9, 454) = 1.66, p = .005  

raPFC 2 rPFC 3 rPC GMPV F(9, 454) = 0.66, p = .011, lmTG GMPV F(9, 454) = 0.88, p = .014, and rmTG GMPV F(9, 454) = 1.06, p = .022  

lPFC 2 ldPFC 3 rPC GMPV F(9, 454) = 0.43, p = .036, rPFC GMPV F(9, 454) = 0.66, p = .045  

rPFC 2 raPFC 3 lmTG GMPV F(9, 454) = 0.71, p = .038  

raPFC 2 lmTG 3 laPFC GMPV F(9, 454) = 0.93 p = .033, rmTG GMPV F(9, 454) = 1.28 p = .014  

raPFC 2 rmTG 1 none  

lmTG 2 raPFC 3 lPFC GMPV F(9, 454) = 0.59 p = .016  

rmTG 2 raPFC 3 ldPFC GMPV F(9, 454) = 0.76, p = .006, lPFC GMPV F(9, 454) = 0.85, p = .004  
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ldPFC 2 lPFC 2 ldPFC GMPV F(9, 454) = 1.29, p = .004, rPC GMPV F(9, 454) = 0.98, p = .007, age F(9, 454) = 1.30, p = .020  

ldPFC 2 rPFC 3 ldPFC GMPV F(9, 454) = 1.64, p = .004, rPC GMPV F(9, 454) = 0.55, p = .032  

lPFC 2 ldPFC 2 lPFC GMPV F(9, 454) = 0.38 p = .037  

rPFC 2 ldPFC 3 none  

ldPFC 2 lmTG 3 ldPFC GMPV F(9, 454) = 0.94, p = .003  

ldPFC 2 rmTG 3 rmTG GMPV F(9, 454) = 0.56, p = .039  

lmTG 2 ldPFC 3 none  

rmTG 2 ldPFC 3 lPFC GMPV F(9, 454) = 1.19 p = .003, rmTG GMPV F(9, 454) = 2.86 p < .001  

lPC 2 lPFC 1 lmTG GMPV F(9, 454) = 1.63, p = .038, age F(9, 454) = 1.70, p < .001  

lPC 2 rPFC 3 lPC GMPV F(9, 454) = 0.39, p = .045, lmTG GMPV F(9, 454) = 0.81, p = .016, rmTG GMPV F(9, 454) = 0.60, p = .015  

lPFC 2 lPC 3 lmTG GMPV F(9, 454) = 0.88, p = .009  

rPFC 2 lPC 3 ldPFC GMPV F(9, 454) = 0.37, p = .046  

lPC 2 lmTG 3 lPC GMPV F(9, 454) = 2.34, p < .001  

lPC 2 rmTG 3 lPC GMPV F(9, 454) = 0.52, p = .048, rPFC GMPV F(9, 454) = 0.43, p = .037  

lmTG 2 lPC 2 rmTG GMPV F(9, 454) = 0.57, p = .036, age F(9, 454) = 0.63, p = .013  

rmTG 2 lPC 3 rPFC GMPV F(9, 454) = 1.83 p = .010  

rPC 2 lPFC 3 rPC GMPV F(9, 454) = 3.90, p < .001, lPC GMPV F(9, 454) = 0.54, p = .035, lmTG GMPV F(9, 454) = 0.73, p = .009  

rPC 2 rPFC 2 rPC GMPV F(9, 454) = 2.02, p < .001, lPC GMPV F(9, 454) = 0.66, p = .011, age F(9, 454) = 0.81, p = .015  

lPFC 2 rPC 2 ldPFC GMPV F(9, 454) = 0.63, p = .012, lPC GMPV F(9, 454) = 1.77, p = .008, lPFC GMPV F(9, 454) = 1.34, p < .001, age F(9, 
454) = 0.56, p = .024 

 

rPFC 2 rPC 3 lPFC GMPV F(9, 454) = 0.53, p = .021, rPFC GMPV F(9, 454) = 1.08, p = .034  

rPC 2 lmTG 3 rPC GMPV F(9, 454) = 1.51, p < .001, lPC GMPV F(9, 454) = 1.36, p = .002, lmTG GMPV F(9, 454) = 0.77, p = .006  

rPC 2 rmTG 3 none  

lmTG 2 rPC 3 rPC GMPV F(9, 454) = 0.60, p = .015  

rmTG 2 rPC 3 none  
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Appendix N 

GAMs with Lateralised GMPV Predicting EC 

The four lateralised GMPVs were used in GAMs to model the eight self-inhibitory EC values and fifty-six between nodes ECs from the 

lateralised GMPVs. That was done with the help of six models for each EC value: a null model (Equation 6), from which predictors were added 

stepwise to a full GAM including all four GMPVs (Equations 7-10), and a linear model (Equation 11) to test for a better fit of the linear model, 

using the AIC to compare all models’ and AoD to compare the GAMs’ fit. 

Model 0: EC= β0+f(age)+	T + ε, ε~N(0, σ2) (6) 

Model 1: EC = β0 + f(GM1) + f(age) + T +	ε, ε~N(0, σ2) (7) 

Model 2: EC = β0 + f(GM1) + f(GM2) + f(age) +	T + ε, ε~N(0, σ2) (8) 

Model 3: EC = β0 + f(GM1) + … + f(GM!) +	f(age) + T +	ε, ε~N(0, σ2 (9) 

Model 4: EC = β0 + f(GM1) + … + f(GM4) + f	(age)	+ T +	ε, ε~N(0, σ2) (10) 

Model 5: EC = β0+(GM1)β1 + … + (GM4)β4 + (age)β5 +T + ε, ε~N(0, σ2) (11) 

GM1: lateralized anterior DMN GMPV, GM2: lateralized posterior DMN GMPV, 

GM3: lateralized anterior CEN GMPV, GM4: lateralized posterior CEN GMPV, T: timepoint, age: cohort membership 
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EC Model 0 (age + 
timepoint) 

Model 1 (+ anterior 
CEN GMPV) 

Model 2 (+ posterior 
CEN GMPV) 

Model 3 (+ anterior 
DMN GMPV) 

Model 4 (+ posterior 
DMN GMPV) 

Model 5 (full 
linear model) 

  R2adj AIC R2adj AIC 
p var 
ex 
chg 

R2adj AIC p var 
ex chg R2adj AIC p var 

ex chg R2adj AIC p var 
ex chg R2adj AIC 

Self-Inhibitory EC 

lPFC 0.039 225.93 0.039 226.17 .279 0.039 226.17 .000 0.040 227.72 .536 0.040 227.72 1.000 0.033 233.03 
rPFC 0.004 203.51 0.008 202.89 .130 0.008 202.89 .003 0.008 202.89 .002 0.009 204.29 .427 0.002 208.38 

lmTG -0.002 244.24 0.006 243.29 .124 0.011 241.44 .036 0.011 241.44 .002 0.012 242.97 .537 0.006 245.30 
rmTG 0.014 278.16 0.019 279.06 .255 0.019 279.06 .007 0.019 279.06 .001 0.026 277.14 .065 0.007 283.43 

ldPFC 0.020 210.66 0.021 211.12 .280 0.038 210.14 .081 0.042 211.55 .312 0.056 207.44 .027 0.014 214.70 

raPFC 0.039 242.06 0.054 239.61 .060 0.054 239.61 1.000 0.054 239.69 .136 0.054 249.67 .607 0.024 214.70 

lPC 0.039 296.29 0.049 296.84 .150 0.051 297.21 .249 0.053 298.67 .383 0.075 293.36 .021 0.037 300.83 

rPC 0.010 291.16 0.012 292.31 .371 0.012 292.31 .004 0.018 290.54 .058 0.018 290.54 .003 0.014 293.00 

Within CEN EC   

rPFC 2 lPFC 0.008 282.13 0.008 282.14 1.000 0.011 285.69 .456 0.011 285.69 .001 0.009 284.34 .305 -0.001 290.09 
lPFC 2 rPFC -0.002 280.85 0.049 267.86 .001 0.049 269.90 .787 0.049 269.90 .004 0.053 269.79 1.000 -0.002 285.97 
lPFC 2 lmTG -0.001 180.88 -0.001 180.88 .001 -0.001 180.88 .001 -0.001 180.88 .000 0.027 174.68 .012 -0.008 187.94 
lmTG 2 lPFC 0.032 446.13 0.032 446.14 .025 0.032 446.14 .010 0.032 446.14 .011 0.032 446.14 .006 0.001 458.81 

lPFC 2 rmTG -0.001 158.36 -0.001 158.35 1.000 -0.001 158.36 .001 0.008 155.35 .028 0.015 156.36 .255 0.009 158.73 
rmTG 2 lPFC 0.004 320.67 0.006 320.93 .235 0.008 322.52 .385 0.008 322.52 1.000 0.027 317.39 .021 0.000 324.18 
rPFC 2 lmTG < 0.001 187.33 0.001 187.95 .315 0.002 188.69 .378 0.002 188.69 .001 0.002 188.69 .002 -0.005 192.41 
lmTG 2 rPFC 0.001 445.71 0.001 447.07 .498 0.003 447.24 .216 0.003 447.24 .006 0.004 447.83 .362 -0.001 450.26 
rPFC 2 rmTG < 0.001 218.17 < 0.001 218.17 .010 0.000 218.17 .004 0.002 220.37 .493 0.002 220.37 .001 -0.006 226.03 
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rmTG 2 rPFC 0.025 318.61 0.025 318.61 .008 0.029 319.69 .308 0.029 320.79 .548 0.035 319.04 .061 0.005 324.91 

lmTG 2 rmTG 0.011 379.01 0.011 379.69 .452 0.011 380.15 .307 0.011 380.24 .151 0.011 380.23 .010 0.004 386.91 
rmTG 2 lmTG 0.012 393.60 0.012 393.60 .009 0.012 393.46 .159 0.012 393.60 .157 0.035 388.07 .018 -0.008 401.14 

Within DMN EC 

ldPFC 2 raPFC -0.001 146.41 < 0.001 147.78 .417 < 0.001 147.78 < .001 0.012 149.31 .173 0.018 152.22 .343 -0.008 154.33 

raPFC 2 ldPFC 0.008 243.13 0.011 244.58 .389 0.017 244.58 .169 0.024 240.72 1.000 0.037 240.06 .111 0.015 243.91 
ldPFC 2 lPC 0.011 250.32 0.014 249.97 .151 0.016 251.60 .390 0.034 251.02 .079 0.034 251.02 1.000 0.008 255.33 
lPC 2 ldPFC 0.002 18.00 0.002 18.00 .001 0.002 19.15 .543 0.002 19.15 < .001 0.002 19.15 < .001 -0.006 24.62 
ldPFC 2 rPC 0.001 261.49 0.001 261.87 .284 0.022 257.53 .025 0.022 257.53 .002 0.022 257.64 -.006 <0.001 268.21 
rPC 2 ldPFC 0.002 -45.01 0.006 -48.68 1.000 0.023 -49.56 .083 0.023 -49.56 1.000 0.023 -49.56 .001 -0.007 -41.26 

raPFC 2 lPC 0.033 285.02 0.039 284.62 .169 0.039 284.62 1.000 0.039 285.99 .552 0.039 285.99 < .001 0.032 289.09 
lPC 2 raPFC < 0.001 71.83 0.013 71.59 .121 0.013 71.59 1.000 0.016 70.92 .153 0.017 72.60 .590 -0.006 78.23 
raPFC 2 rPC < 0.001 279.00 0.011 275.10 .017 0.013 276.59 .407 0.013 276.58 .002 0.017 276.93 .252 0.009 279.83 
rPC 2 raPFC < 0.001 9.27 0.013 7.81 .069 0.061 -8.22 < .001 0.061 -8.22 < .001 0.064 -2.45 .606 0.002 11.43 

lPC 2 rPC 0.001 312.50 0.001 312.49 .021 0.006 312.31 .178 0.011 314.16 .333 0.017 315.16 .254 0.002 316.99 
rPC 2 lPC -0.001 242.85 0.013 241.62 .078 0.020 240.76 .131 0.030 240.81 .140 0.055 235.92 .022 0.011 242.61 

Between DMN and CEN EC 

raPFC 2 lPFC 0.043 264.01 0.049 266.75 .340 0.049 267.52 .496 0.062 265.59 .080 0.064 265.40 .167 0.025 271.77 

raPFC 2 rPFC 0.004 284.14 0.017 284.91 .133 0.019 285.46 .298 0.033 283.68 .081 0.035 284.17 .304 0.005 287.60 
lPFC 2 ldPFC -0.001 -12.66 -0.001 -12.66 1.000 < 0.001 -11.92 .346 0.009 -12.17 .154 0.009 -11.92 .285 -0.006 -6.10 
rPFC 2 raPFC 0.012 27.11 0.029 27.08 .108 0.034 28.23 .269 0.037 29.34 .340 0.037 29.34 < .001 0.013 30.72 
raPFC 2 lmTG -0.002 319.62 -0.002 319.62 .004 -0.001 320.28 .336 -0.001 320.28 1.000 0.019 317.25 .042 -0.006 326.53 
raPFC 2 rmTG 0.014 288.86 0.013 290.44 .631 0.014 290.48 .159 0.018 289.40 .082 0.009 290.87 .066 0.003 291.48 

lmTG 2 raPFC 0.005 228.71 0.007 230.41 .428 0.011 231.76 .323 0.020 231.01 .135 0.020 231.01 1.000 -0.004 234.98 
rmTG 2 raPFC 0.006 74.34 0.026 70.09 .028 0.026 70.09 .001 0.028 70.76 .339 0.030 69.67 .054 0.012 72.46 
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ldPFC 2 lPFC 0.020 202.27 0.020 202.27 .004 0.049 196.09 .011 0.053 197.22 .317 0.053 197.21 1.000 0.003 209.73 

ldPFC 2 rPFC 0.008 225.48 0.013 224.47 .098 0.016 224.17 .164 0.016 224.18 .012 0.019 224.39 .226 0.007 226.02 
lPFC 2 ldPFC -0.002 -14.77 -0.001 -14.02 .407 -0.001 -14.02 .000 0.003 -13.23 .281 0.003 -13.23 < .001 -0.009 -6.50 
rPFC 2 ldPFC -0.002 86.63 -0.002 87.29 .419 < 0.001 88.48 .392 0.006 89.30 .245 0.006 89.30 < .001 -0.006 93.27 
ldPFC 2 lmTG 0.002 287.22 0.003 287.87 .419 0.003 287.87 .001 0.003 289.34 .527 0.003 289.33 .006 -0.005 295.35 
ldPFC 2 rmTG 0.025 228.03 0.026 229.31 .506 0.039 226.67 .054 0.044 228.72 .347 0.044 230.07 .514 0.018 236.39 

lmTG 2 ldPFC 0.002 200.78 0.027 197.06 .028 0.027 197.06 .004 0.027 197.12 .115 0.027 197.12 .008 -0.006 207.21 
rmTG 2 ldPFC 0.018 89.60 0.020 89.72 .208 0.020 89.73 .008 0.031 89.47 .134 0.032 90.25 .337 0.001 98.14 

lPC 2 lPFC 0.025 187.09 0.032 188.71 .240 0.051 182.68 .015 0.051 182.69 .027 0.051 184.42 .784 0.017 190.63 
lPC 2 rPFC 0.005 190.08 0.010 190.90 .251 0.020 189.40 .095 0.020 189.40 .003 0.020 189.40 .001 0.009 191.35 

lPFC 2 lPC -0.002 53.00 -0.002 53.65 .418 0.003 54.90 .294 0.003 54.90 < .001 0.007 55.18 .248 -0.003 58.67 
rPFC 2 lPC 0.022 175.07 0.022 175.07 .002 0.023 176.64 .440 0.028 177.91 .321 0.029 178.77 .359 0.019 181.29 
lPC 2 lmTG 0.005 188.64 0.012 188.26 .160 0.025 183.27 .010 0.028 184.32 .356 0.029 187.90 .621 0.023 183.05 
lPC 2 rmTG 0.012 169.36 0.015 169.28 .181 0.033 167.21 .056 0.046 165.58 .094 0.046 165.58 < .001 0.018 170.63 
lmTG 2 lPC 0.020 262.20 0.020 262.20 1.000 0.020 262.20 .003 0.020 263.37 .489 0.020 263.38 .002 0.014 268.64 

rmTG 2 lPC 0.010 229.97 0.014 230.79 .297 0.018 231.73 .267 0.020 233.23 .467 0.020 233.23 .003 0.003 235.28 
rPC 2 lPFC -0.002 191.87 -0.002 191.86 .027 0.022 181.79 < .001 0.022 181.79 .003 0.027 181.29 .173 0.023 185.17 
rPC 2 rPFC 0.001 122.55 0.001 122.55 .002 0.021 114.56 .002 0.030 115.00 .185 0.030 115.81 .448 0.015 118.87 
lPFC 2 rPC 0.004 193.57 0.010 191.22 .022 0.012 192.11 .342 0.012 193.22 .534 0.025 191.31 .070 0.008 194.23 
rPFC 2 rPC < 0.001 190.68 0.003 191.71 .330 0.003 191.71 1.000 0.021 194.43 .155 0.023 194.37 .174 0.006 192.49 

rPC 2 lmTG 0.004 203.32 0.004 203.32 .003 0.027 193.61 .001 0.029 193.77 .223 0.039 191.44 .072 0.035 192.46 
rPC 2 rmTG 0.001 129.72 0.001 129.72 .001 0.001 130.02 .313 0.001 130.02 .008 0.001 131.58 .549 -0.007 138.00 
lmTG 2 rPC 0.006 356.89 0.006 356.90 .007 0.006 356.89 .004 0.006 356.89 < .001 0.003 356.08 .246 -0.004 361.06 
rmTG 2 rPC 0.001 339.61 0.006 340.32 .258 0.006 340.33 .011 0.012 340.95 .230 0.013 341.69 .350 -0.002 343.57 

p var exp chg is the p-value for the change in variance explained when comparing models. 
Note: The best fitting model was determined based on the variance explained, the AIC, and its simplicity. Significant predictors are not reported. 
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EC Model 0 Model 1 Model 2 Model 3 Model 4 Model 5 

 Radj2 AIC Radj2 AIC dev expl 
chg p Radj2 AIC dev expl 

chg p Radj2 AIC dev expl 
chg p Radj2 AIC dev expl 

chg p Radj2 AIC 

CEN PFC 0.00 1071.17 0.00 1071.51 0.33 0.00 1071.51 1.00 0.00 1071.51 0.00 0.00 1071.51 0.01 -0.01 1078.56 

mTG 0.00 1032.26 0.00 1032.51 0.24 0.01 1032.32 0.17 0.01 1032.33 0.01 0.01 1033.69 0.45 0.00 1035.16 

DMN PFC 0.00 1006.95 0.00 1006.94 0.01 0.00 1007.47 0.40 0.04 998.92 0.00 0.05 998.50 0.12 -0.01 1014.61 

PC 0.00 1070.86 0.00 1071.50 0.33 0.00 1072.26 0.39 0.00 1073.82 0.34 0.02 1072.23 0.06 0.00 1077.12 

CEN PFC 
to mTG 0.00 1086.72 0.00 1086.73 1.00 0.00 1086.72 0.01 0.00 1086.72 0.00 0.01 1088.94 0.28 -0.01 1095.29 

CEN mTG 
to PFC 0.01 1121.42 0.01 1122.80 0.49 0.01 1122.79 0.04 0.01 1122.80 0.04 0.01 1122.79 0.03 0.00 1130.09 

DMN PFC 
to PC 0.00 1094.39 0.00 1094.90 0.39 0.00 1095.81 0.43 0.00 1095.80 0.18 0.01 1096.06 0.20 0.00 1094.94 

DMN PC to 
PFC 0.00 1114.80 0.01 1112.04 0.05 0.04 1103.79 0.01 0.04 1107.11 0.78 0.04 1110.58 0.50 0.00 1119.78 

DMN PFC 
to CEN 
PFC 

0.01 1065.21 0.01 1066.80 0.49 0.01 1066.81 0.02 0.01 1066.88 0.11 0.01 1066.86 0.04 -0.01 1074.65 

CEN PFC 
to DMN 
PFC 

0.00 1101.98 0.00 1103.28 0.39 0.01 1104.28 0.36 0.01 1103.04 0.10 0.01 1103.04 0.02 0.00 1105.31 
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DMN PFC 
to mTG 0.00 1072.00 0.01 1072.74 0.26 0.01 1072.74 0.01 0.01 1073.32 0.26 0.01 1075.07 0.40 0.00 1076.69 

mTG DMN 
to PFC 0.00 1109.17 0.03 1102.85 0.01 0.03 1104.84 0.54 0.03 1105.25 0.34 0.03 1103.48 1.00 0.00 1113.30 

PC to CEN 
PFC 0.00 1087.56 0.00 1088.93 0.30 0.04 1074.11 0.00 0.04 1075.56 0.45 0.04 1077.04 0.37 0.03 1075.40 

CEN PFC 
to PC 0.00 1096.88 0.00 1096.88 0.01 0.00 1096.88 0.00 0.01 1097.30 0.24 0.01 1098.18 0.46 0.00 1100.78 

PC to mTG 0.00 1095.88 0.00 1097.12 0.37 0.01 1097.85 0.28 0.02 1097.76 0.10 0.03 1099.72 0.28 0.00 1097.75 
mTG to PC 0.00 1070.21 0.00 1070.21 0.01 0.00 1070.21 1.00 0.00 1070.21 1.00 0.00 1070.21 0.01 -0.01 1077.43 

Model 0: Age and Cohort, Model 1: Model 0 + anterior DMN lateralized GMPV, Model 2: Model 1 + posterior DMN lateralized GMPV, Model 3: Model 2 + anterior CEN 

lateralized GMPV, Model 4: Model 3 + posterior DMN lateralized GMPV (full model), Model 5: Full linear model. dev expl chg p = deviance explained p-value 

 

In half (eight of sixteen) of the EC connections models, the null model provided the best explanation of the data, compared with the 

other models. However, in those cases the variance explained by the model was ≥	1%. Interestingly, adding more lateralized GMPVs to the 

models did add little to the variance explained and, in some models, decreased Radj
2. In most of the models which were better in explaining the 

variance in lateralised EC than the null model, one specific lateralized GMPVs contributed most to explaining the variance. The location of 

such “explanatory nodes” did not necessarily match the exact location of the EC nodes, which might be an indication for a mix of local and 

global effects. 


