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Abstract

The topographic evolution of the present-day mountains of western Norway is not com-
pletely resolved. Long after the breakup of the Caledonides, the mountains along the passive
continental margin of Norway remain high, with deep incising valleys and low relief surfaces
at the top. The origin of this post-Caledonian landscape is cause of controversy. The ongo-
ing debate revolves around two endmember hypotheses, where the established hypothesis
suggests peneplanation at the end of the Mesozoic, with subsequent uplift. A newer hypoth-
esis argues that the same observations can be explained by simply long-term slow erosion,
glacial flattening and isostatic rebound. Both these hypotheses are founded on observations
ranging from offshore sedimentary depositions, structural analysis, geophysical models and
thermochronological data. Despite the multi-disciplinary approach, the interpretations of
evidence remain ambiguous and there is increasing evidence that the evolution of the pas-
sive continental margin might even be more complex than either hypotheses leave to be-
lieve. This study presents the first steep vertical profile from the poorly surveyed inner Nord-
fjord area and provides new apatite fission track data and evidences for active fault displace-
ment, even on less fractured mountain flanks, as well as new insights into post-Caledonian
topographic evolution. The timing of faulting is closely tied to the North Sea Rifting and the
development of brittle features have been affected by intrabasement ductile precursor struc-
tures. Inverse modelling of time-temperature paths indicate a low relief surface at the end of
the Mesozoic. However, it remains unclear at which elevation said surface resided. During
the Cenozoic this surface was further worn down and deep valleys were carved out. The re-
sults from this study indicate that the passive continental margin of western Norway tells a
very complex story that most likely cannot be fully explained by either of the two endmember
hypotheses. The methods used in this study and especially the steep profile allow detailed
insights into the thermal and structural evolution of the upper most crustal level. Higher
resolution in sampling, together with combining multiple thermal dating techniques, would

increases our understanding of the Norwegian passive continental margin even further.
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Chapter 1
Introduction

Mount Skala is 1848 m a.s.l. and is the highest mountain in Norway with its base at sea
level. Itis part of the high elevation and low relief surfaces of the post-Caledonian landscape,
that dominates SW-Norway. Despite a long-lasting and heated debate about the origin of
this high elevation topography, the tectonomorphological evolution of the post-Caledonian
mountains remains incompletely resolved (e.g. Nielsen et al., 2009; Gabrielsen et al., 2010).
The debate revolves around two end-member hypotheses that try to explain the topographic
evolution of the passive continental margin of Norway: 1) a Late Mesozoic peneplanation of
the passive margin with subsequent Neogene uplift (e.g. Gabrielsen et al., 2010) or 2) a con-
tinuous slow erosion of a high elevation, Cenozoic glacial attening and isostatic rebound
(e.g. Nielsen et al., 2009). Even though both hypotheses describe a different topographic de-
velopment, both are based on the same multi-disciplinary observations that have been in-
terpreted in different ways. In previous apatite ssion track (AFT) studies in Norway, widely
spaced thermochronological data are interpreted to show domal uplift of SW-Norway dur-
ing the Neogene (Rohrman et al., 1995). Later studies along the Mgre-Trgndelag Fault Zone
show that the earlier interpreted domal uplift might rather be the result of fault block move-
ment along the North Atlantic passive margin (Red eld et al., 2004, 2005). Extensive AFT
studies in the Bergen and Hardanger area showed that thermal ages are signi cantly offset
by fault block displacement (Johannessen et al., 2013; Ksienzyk et al., 2014). This faulting
is connected to the two North Sea Rift Phases during the Permo-Triassic and Late Jurassic
(Fossen et al., 2021), making the Norwegian passive margin evolution arguably more com-
plex than the two opposing hypotheses leave to believe (Johannessen et al., 2013; Ksienzyk
etal., 2014). The main issue for interpretation of the passive margin is the wide spacing and
altitude of analyzed samples. While the continuous research of others steadily increased the
number of data (Hendriks et al., 2007), hardly any thermochronological studies have been

conducted in the area south of the Mgre-Trgndelag Fault Complex and north of Sognefjord,
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around the Nordfjord area, leaving a sizable gap in the available data set.

In this study, 19 samples will be analyzed using Apatite Fission Track and inverse maodelling
to reconstruct the thermal history of the inner Nordfjord area. The samples include one
ca. 1800 m high vertical pro le at Skala to draw more detailed conclusions on exhumation
throughtime and ve additional samples from the area around. Additionally, remote sensing
will be used to inspect lineaments in the area, which ought to help in the interpretation of
fault systems and their in uence on inferred ages. The aim of the study is to reconstruct a
detailed thermal history of the inner Nordfjord area and to evaluate the in uence of faulting

in the topographic evolution. The obtained data will culminate in a cohesive model that that
outline the post-Caledonian topographic evolution of the inner Nordfjord area. This model
will then be compared with previous hypotheses, to test if they can stand newly acquired

data and its implications on the evolution of the Norwegian passive continental margin.

1.1 Study area

The study area is located in the inner Nordfjord of Western Norway and covers an area of
about 1750 km2 (Fig. 1.1). The largest towns in the area are Sandane (2446 inhabitants)
and Stryn (2553 inhabitants) (SSB.no). The approximately E-W striking Nordfjord dominates
the study area. Several side valleys cut into the mountain with steep anks on both sides,
most notable the major N-S striking Oldendalen and the NW-SE striking Lodalen adjacent
to mount Skala. Skala is with 1848 m asl. the highest mountain in the study area. It is also
the mountain where the vertical pro le is located (Fig. 1.1). In the south-eastern part of the
study area, we nd the large Jostedalsbreen that feeds into several minor glaciers mostly per-
pendicular to the main valleys. The snow line starts around 1100 and 1500 m asl. (depending
on wind, Dahl and Nesje, 1992) meaning that even Skala is partially covered by snow all year

round.



1.1. STUDY AREA

Fig. 1.1: Overview map of the study area. Top right:

Overview of SW-Norway, red box shows study area.
Bottom: Zoomed in study area, red diamonds show

sample location. Orthophoto by Norgeskart.no
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