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Abstract
Radiation therapy using protons and heavier ions is a fast-growing therapeutic option for cancer
patients. A clinical system for particle imaging in particle therapy would enable online patient
position verification, estimation of the dose deposition through range monitoring and a reduction
of uncertainties in the calculation of the relative stopping power of the patient.
Several prototype imaging modalities offer radiography and computed tomography using

protons and heavy ions. A Digital Tracking Calorimeter (DTC), currently under development, has
been proposed as one such detector. In the DTC 43 longitudinal layers of laterally stacked ALPIDE
CMOS monolithic active pixel sensor chips are able to reconstruct a large number of
simultaneously recorded proton tracks.
In this study, we explored the capability of the DTC for helium imaging which offers favorable

spatial resolution over proton imaging. Helium ions exhibit a larger cross section for inelastic
nuclear interactions, increasing the number of produced secondaries in the imaged object and in
the detector itself. To that end, a filtering process able to remove a large fraction of the secondaries
was identified, and the track reconstruction process was adapted for helium ions.
By filtering on the energy loss along the tracks, on the incoming angle and on the particle

ranges, 97.5% of the secondaries were removed. After passing through 16 cm water, 50.0% of the
primary helium ions survived; after the proposed filtering 42.4% of the primaries remained; finally
after subsequent image reconstruction 31% of the primaries remained. Helium track
reconstruction leads to more track matching errors compared to protons due to the increased
available focus strength of the helium beam. In a head phantom radiograph, the Water Equivalent
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Path Length error envelope was 1.0 mm for helium and 1.1 mm for protons. This accuracy is
expected to be sufficient for helium imaging for pre-treatment verification purposes.

1. Introduction

Radiation therapy using protons and heavier ions is a fast-growing therapeutic option for cancer patients.
However, the possibility of in-vivo verification of the dose distribution given to the patient is lacking
compared to conventional radiation therapy using photons (Parodi and Polf 2018), this is also true for online
verification of the patient positioning (Hammi et al 2018). In addition, there are uncertainties connected to
the conversion of the measured x-ray mass attenuation of the planning CT to the relative stopping power
(RSP) needed during treatment planning in the order of 3% (Paganetti 2012). Using dual energy CT, the
uncertainty is further reduced to 2% (Bär et al 2017, Almeida et al 2018, Wohlfahrt and Richter 2020).

Direct measurement of the RSP prior to treatment as an input to or correction to the treatment planning
system (TPS) using particle imaging is currently being explored (Johnson 2018). By measuring the energy
loss of high-energy particles traversing the patient, it is possible to calculate the RSP along the particle’s
estimated path. In list-mode (non-integrated) particle computed tomography (PCT) two sets of particle
trackers measure the position/direction of each particle, yielding their curved path through the
patient (Williams 2004, Li et al 2006, Schulte et al 2008, Collins-Fekete et al 2017b, Krah et al 2018). A
sufficient number of projections (180–360) is then acquired in order to reconstruct volumetric RSP images
for use in dose calculation (Li et al 2006, Hansen et al 2014, Plautz et al 2016). Particle radiography (PRad)
has been suggested for use in positioning and range verification by correction of the existing CT-based RSP
map (Collins-Fekete et al 2017a, Dias et al 2019, Krah et al 2019). So far, no PCT or PRad systems are
clinically available.

1.1. Helium imaging
Due to the more widespread availability of proton therapy centers compared to heavy ion therapy facilities,
most research in the field of particle imaging so far has focused on protons as the particle species used to
generate images. Recently, the possibility of using helium ions for imaging has been explored due to its
reduced scattering power, leading to improved spatial resolution (Hansen et al 2014, Collins-Fekete et al
2017a, Volz et al 2017, Piersimoni et al 2018, Gehrke et al 2018a), as well as its potential for online treatment
monitoring (Volz et al 2020). So far, few studies on experimental helium list-mode imaging are
available (Volz et al 2017, Volz et al 2018, Gehrke et al 2018a, Amato et al 2020).

Compared to protons, helium has an increased probability of nuclear interactions leading to secondary
particles inside the patient and the detector, especially due to the possibility of projectile
fragmentation (Durante and Paganetti 2016, Gehrke et al 2018a, Volz et al 2018). Any detection system
(helium CT or helium radiography) must hence be able to effectively filter out secondary particles. In Volz
et al (2018) this additional fragmentation filter consists of a∆E− E cut in the multistage scintillator of the
US PCT consortium presented in Johnson et al (2016). In Gehrke et al (2018a), a CMOS pixel sensor
(TimePix) was used both as the tracking detector technology and as the energy detector. To suppress
secondary particles they applied a threshold on the size of the charge clusters generated by the particles on
the chip.

1.2. The digital tracking calorimeter
Pettersen et al (2017) showed that a Digital Tracking Calorimeter (DTC) consisting of a stack of silicon pixel
sensors was able to individually reconstruct a large number of proton tracks measured simultaneously in a
single readout cycle. Subsequent design optimization and experimental measurements (Pettersen et al 2019a,
Tambave et al 2019) showed promise in regards to proton imaging, as well as detection of heavier ions. The
DTC is currently under development and prototyping (Alme et al 2020).

The final DTC concept is that of a 3D pixel matrix for reconstruction of a large number of simultaneously
recorded particle trajectories, enabling PCT and PRad. It uses the high-granularity CMOS pixel chip ALPIDE
of the ALICE-ITS upgrade at CERN (Aglieri Rinella 2016). The ALPIDE pixel sensors have a pixel pitch of
29.24× 26.88 µm2 and a fast readout cycle of 5–10 µs due to their binary readout (no energy discrimination
above the activation threshold) and zero-suppression (no data transmitted from inactive pixels).

Especially, the simultaneous track reconstruction capabilities of the DTC are favorable in the context of
particle imaging: the DTC might allow for higher particle rates at cyclotron and synchrotron accelerators
compared to current detector designs despite the bunched beam structure with bunches typically lasting
20–50 ns and spaced 100–200 ns apart (Krimmer et al 2018).
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Other than most currently developed PRad and PCT systems that feature both a front and rear tracking
system, the envisioned DTC will rely only on a rear tracker. The path estimation is then performed using the
available pencil beam scanning system information to fill in the missing front tracker measurements. The
reason for this lies in the simultaneous measurement of a high multiplicity of particle tracks. Due to the
scattering in the phantom, correct matching of front and rear tracker vectors would be difficult. An
evaluation of the image quality achievable with such a system (denoted single-sided in this work) is
presented in the recent work by Sølie et al (2020).

In that regard, the favorable scattering of helium ions is expected to be beneficial especially for a
single-sided system: the focus strength achievable at a clinical pencil beam scanning system is determined not
only by the focusing in the beam line, but especially also from the scattering in the beam monitoring system
and air drift between nozzle and patient. Hence, helium ions can be focused more compared to proton
beams. For example at the Heidelberg Ion-Beam Therapy Center (HIT), the highest clinical focus strength
for a proton beam has a full width at half maximum (FWHM) spot size of 7 mm, while for the helium beam
a 4 mm FWHM is possible at the highest beam energy (Kleffner et al 2009).

In this work, we are interested in studying the feasibility of the DTC in regards to helium imaging using
Monte Carlo simulations. We aim at exploring several questions of relevance to helium beam imaging with a
DTC. First, since the ALPIDE chips have binary readout, the energy deposited inside the ALPIDE by a
traversing particle (Edep) is calculated based on the size of the charge diffused area. Helium has a higher
dE/dz in the detector, and it will be of interest to evaluate how this will affect the Edep resolution (impacting
the range assessment and filtering of helium fragments) and cluster separation (impacting the track
reconstruction). Second, compared to protons, the helium track reconstruction process is expected to be
degraded by the increased cluster merging, the possibility of a thinner pencil beam (higher particle density)
and the increased secondary production. On the other hand, the tracking should be improved by the
reduction of multiple Coulomb scattering. Hence, the tracking algorithm should be adapted and tested for
helium imaging. Third, the DTC is planned to contain layers of 3.5 mm aluminum slabs for energy
absorption. Due to the dependence of projectile fragmentation with the target atomic mass (Zeitlin and La
Tessa 2016), it is of interest to investigate different absorber materials in terms of primary survival in the
detector.

1.3. Secondary particle production
When helium ions traverse the imaged object and the detector, there is an increased probability of secondary
production compared to protons. This is primarily due to the mass/charge ratio changing nuclear
interactions leading to projectile fragmentation and an increased cross section for target
fragmentation (Loveland et al 1986, Zeitlin and La Tessa 2016). The secondaries from target fragmentation
are isotopes of the target material, having low range and high linear energy transfer (LET).

The lighter fragments originating from projectile fragmentation have similar velocity and direction (and
thus, residual range) compared to the initial helium particle (Zeitlin and La Tessa 2016, Rovituso et al 2017).
The fragment species are mainly protons, deuterons, tritons, neutrons and 3He (Krämer et al 2016).

In range telescope detectors such as the DTC, one could in principle think of including the secondary
fragments in the image reconstruction process due to their similar residual range. However, for protons
(which is the predominantly produced projectile fragment (Rovituso et al 2017)), there are several
competing production channels (Krämer et al 2016) leading to shorter residual ranges such as inelastic
scattering from the produced projectile fragments and neutron absorption (Rovituso et al 2017). Hence, a
model for the energy loss at the fragmentation process is necessary before recuperation of the excess dose
given to the patient due to fragmentation would be possible.

Since the DTC reconstructs the tracks of 50–200 simultaneously recorded particles, any produced
secondary may introduce confusion in the tracking process. The contribution of secondary particles has been
shown to largely be suppressed with energy deposition-based filters (Gehrke et al 2018a, Volz et al 2018), and
hence similar filters will be explored in the following.

2. Methods

2.1. Detector geometry
The detector consists of two low-mass tracker layers, followed by 41 calorimeter layers where the particles are
stopped and tracked. The tracker layers are placed 5 cm apart from each other, and from the calorimeter
layers (Sølie et al 2020). A schematic design of one of the two tracker layers and one of the 41 calorimeter
layers as implemented is shown in figure 1.

The geometry as laid out in Alme et al (2020) was here implemented and simplified towards a
representative longitudinalmaterial distribution. In short, a layer here consists of a flexible PCB (FPCB) and
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Figure 1. The materials and thicknesses of the different sublayers in the implemented design of the DTC: one tracker layer and
one calorimeter layer are shown. CF: carbon-epoxy carrier, FPCB: flexible printed circuit board, Pi: polyimide.

the ALPIDE chip glued onto each side of a 3.5 mm aluminum absorber. A single calorimeter layer has a
water-equivalent thickness (WET) of 8.2 mm. The first two layers which form the rear tracker of the device
are mounted on two 200 µm carbon-epoxy carrier (CF) absorbers for stabilization. This is done in order to
reduce the amount of scattering when measuring the position and angle of the particle track, resulting in a
layer-wise WET of 1.8 mm.

In total, the WET of the detector is 33.98 cm. Since a large object translates into a short (residual) track in
the DTC, and that too short residual ranges complicates both the track reconstruction and the range
calculation, we require that the minimum track length for reconstruction is three calorimeter layers plus the
two tracker layers. Thus, a 230 MeV u−1 proton or helium beam allows for the reconstruction of objects up
to 30 cmWET.

2.2. Monte Carlo simulations
In this study the Monte Carlo (MC) software GATE version 8.2 (Jan et al 2004, Jan et al 2011, Sarrut et al
2014) and Geant4 version 10.5.1 (Agostinelli et al 2003, Allison et al 2016) were used. The physics list
QBBC_EMZ with an I-value (mean excitation potential) of water of 78 eV was applied. The step length was
adjusted to a maximum of 1 mm to accurately track the helium through the imaged object (in the detector
the step length is limited by the small slab thicknesses) and the production thresholds for γ,e± and protons
were set to 10 µm inside the ALPIDE chip (keeping the default value of 0.7 mm outside the sensitive areas).
This has been shown to yield sufficient accuracy (Pettersen et al 2019a). The simulations used in the analysis
were performed using only the ALPIDE chip slabs as sensitive detectors.

The helium beam was defined as a gaussian pencil beam with an FWHM of 4 mm with a divergence of 1
mrad (Schoemers et al 2015). The energy was 229.25 MeV u−1, determined by having the same range in
water as 230 MeV protons (32.9 cm) (Berger et al 2005). For the analysis of track reconstruction and filter
performance, 105 primary helium ions were simulated. The radiography in section 2.10 and the comparison
of primary survival in section 2.6 required improved statistics of, respectively, 1250 primaries/spot for 2150
pencil beam spots and 106 primaries per material.

2.3. Charge diffusionmodel
A charged particle passing through the epitaxial (sensitive) layer of an ALPIDE chip will normally activate
5–30 pixels around its track. This is due to the lack of a reverse bias voltage across the sensitive layer, enabling
charge diffusion of the released electron–hole pairs. This process was studied in Tambave et al (2019)
(including a library of 22 000 measured cluster shapes) and modeled in Pettersen et al (2019a). A power law
between the number of activated pixels n and the Edep (in keV µm−1) was found to be

n= 4.23× E 0.65dep . (1)

For each hit in MC generated data, a discrete position was assigned corresponding to the center of the closest
pixel. The charge diffusion process was then modeled by randomly choosing a cluster shape with the correct
size from the cluster library according to equation (1). In addition, for helium applications with high Edep,
there were several cases where the Edep values were outside the bounds of the library (above ~ 28
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pixels/cluster, corresponding to ~ 19 keV µm−1). In these cases, a circular cluster shape was generated up to
70 pixels/cluster (75 keV µm−1) according to equation (1). Before applying the charge diffusion model, all
particles contained within a single pixel (such as short range electrons) were binned together.

Close hits (with a lateral distance of<150 µm) could result in merged clusters. While the track
reconstruction algorithm allows for a missing cluster in a single layer through further extrapolation, 3%–5%
of the proton tracks were pairwise confused due to cluster merging in Pettersen et al (2019a).

2.4. Helium track reconstruction
Using the 3D hit information throughout the DTC it is possible to reconstruct a high number of
simultaneous particle tracks resulting from a single data readout cycle (in this study up to 150 primaries per
readout frame were considered). In Pettersen et al (2019b) track reconstruction algorithms for the DTC were
presented. In short, a track-following and track-splitting scheme (Strandlie and Frühwirth 2010) were
applied starting at the distal end of the detector and moving to the front end.

For each seed hit in the last active layer, every nearby hit in the next-to-last active layer were identified. For
each hit-pair, the track was extrapolated to the next layer, where the angular deviation to the closest match
(or more) was calculated. When two similar matches were identified, both candidate tracks were explored.
This process was repeated until one of two conditions was met: either the first layer was reached, or the total

angular deviation along the track S=
√∑n

i=0(∆θi)2 was larger than a pre-set value Smax = 275 mrad,

corresponding roughly to the 2σ value of S at the layer containing the Bragg peak of a 250 MeV beam
incident on the DTC (see Pettersen et al (2019b)). To avoid discarding relatively straight track segments that
already underwent scattering close to Smax, only tracks where new segments exceeded∆θi,max = 100 mrad in
addition to S> Smax were discarded. These values were found in Pettersen et al (2019b) by maximizing the
fraction of correctly reconstructed tracks using a proton beam. For helium applications, due to less expected
scattering of the primaries, it is expected that a tighter bound can be put on the Smax,∆θi,max parameters.

At the end, several tracks originated from a single seed in the last layer: the straightest track (lowest S)
was kept, and the remaining hits were made available for the next track candidate. This procedure was found
to yield acceptable results for track reconstruction for both thick (Pettersen et al 2017) and thin (Pettersen
et al 2019a) absorber layers. In addition, a forward (front-to-back) track-filling model was subsequently
applied to identify unused clusters downstream to the reconstructed tracks.

The reconstructed tracks could then be aggregated down to their essential values necessary for image
reconstruction: the initial tracker vector (equivalent to the rear tracker position and direction information)
and the Water Equivalent Path Length (WEPL) of the track (see the next section).

To consider a track correctly reconstructed it has to originate from the same primary, and must be
completely reconstructed at its endpoints (detector front face and its last hit). Thus we can define the
fraction of correctly reconstructed tracks (FCR) as the number of correctly reconstructed tracks divided by
the total number of tracks. The FCR is given after filtering is applied.

2.5. Range calculations
The WEPL of a single projectile was found by performing a model-fit of the layer-wise Edep along the
projectile’s track to the Bragg–Kleeman depth-dose function, as suggested in Pettersen et al (2017). Then, a
collection of projectiles give rise to the mean WEPL and the WEPL uncertainty (range straggling) by
calculating the mean and standard deviation from a histogram over the individual WEPL values.

2.5.1. Detector calibration
The detector was calibrated through MC simulations with increasing water phantom thicknesses, where the
(MC truth) stopping position of the primaries inside the detector was recorded. The WEPL to each detector
layer was stored and later interpolated using cubic splines (Pettersen et al 2018).

2.5.2. WEPL accuracy and uncertainty
To quantify the WEPL accuracy and uncertainty in the detector calibration and in the radiographic images,
we compared the reconstructed WEPL values of, respectively, the water phantom and head phantom, to their
MC truth values.

For the detector calibration, each water phantom thickness yielded a nominal (MC truth) WEPL value.
The difference between the reconstructed mean WEPL and the nominal mean WEPL is the WEPL accuracy.
The accuracy was plotted as a function of object thickness. The mean and standard deviation of the accuracy
across all water phantom thicknesses were calculated: the standard deviation of the distribution of WEPL
errors is here reported as the WEPL error envelope (its mean is by design zero due to the calibration).
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This procedure was repeated for the radiographic images: subtracting the ‘MC truth’ image from the
reconstructed image, we obtained a pixel-wise WEPL error map. Again, the standard deviation of all the
WEPL errors is reported as the pixel-wise WEPL error envelope.

Another metric is the WEPL uncertainty, or measured range straggling. It was observed in Pettersen et al
(2019a) that the number of layers covered by the range straggling distribution played an important role in
the WEPL accuracy. This was because a broader distribution (or less distance between the layers) lead to
more layers being involved in the calculation of the mean WEPL, reducing the width of the WEPL error
envelope. In this work, using the detector calibration setup, we calculated the±2σ window of the WEPL
uncertainty across object thicknesses as a proxy for the layer coverage.

2.6. Absorber material optimization
In Pettersen et al (2019a) energy-degrading absorber layers of 3.5 mm aluminum were recommended for
proton imaging using the DTC. It is of interest to explore whether alternative materials are favorable for
helium imaging with regards to the depth-dependent survival of the primary particles.

Three different materials were considered for the absorber in the calorimeter layers: the original
aluminum (ρ= 2.7 g cm−3), graphite (ρ= 1.7 g cm−3), carbon foam (ρ= 0.7 g cm−3) and polymethyl
methacrylate (PMMA, ρ= 1.19 g cm−3): the thickness of the materials were scaled up to match the WET of
3.5 mm aluminum at 125 MeV u−1, thus ensuring that the beam ranges are equal in terms of the number of
traversed layers. These thicknesses correspond to 4.86, 11.79 and 6.37 mm for graphite, carbon foam and
PMMA, respectively.

A water phantom of 10 cm thickness was placed proximal to the detector in this simulation. The number
of primary particles was scored in each detector layer (note that, in order to reduce the uncertainties, track
reconstruction was not applied here and only the primary hits were scored). Then the reduction of the
number of primaries close to the Bragg peak, relative to the number of primaries in the first layer, was found
for each material. The survival was evaluated in the last layer before the Bragg peak region (layer number 29
in figure 6). This excludes differences in the fluence loss drop due to range straggling, which for helium ions
at 230MeV u−1 initial energy is ~1.8 mm.

For this study, the inelastic nuclear-nuclear cross sections from Shen et al (1989) were used in GATE,
through the 4He model G4BinaryLightIonReaction and dataset G4IonsShenCrossSection. This
combination was recently verified for helium projectiles in the relevant energy range (Horst et al 2019).

2.7. Filtering of secondary particles
The goal of the filtering process is to remove as many secondaries as possible while keeping the number of
primaries more or less intact. In this section, we will explicate the criteria to decide upon which distributions
should be used for filtering, and the cut values of the various filters after applying them successively. The
threshold values were found by comparing the distributions of primary and secondary tracks.

The Edep is a powerful discriminatory tool for particle identification due both to the shape of a particle’s
depth dose-curve (leading to rejection of incorrectly reconstructed and disappearing tracks) and to the large
differences in dE/dz between different particles (leading to particle identification).

In this study, a helium pencil beam as previously defined in section 2.2 was impinging on a water
phantom of depth 16 cm and lateral dimensions to match the detector, placed with an air gap of 14.5 cm
between the phantom and the front tracker.

We define here a secondary particle as a track that either was a secondary particle, or one that at some
stage produced a (hadronic) secondary particle (i.e. a primary helium ion producing a target fragment but
staying intact itself). In addition, tracks that were incompletely reconstructed (thus containing no Bragg
peak) were tagged as secondary particles as they should be removed by the filtering process.

2.7.1. Filtering on small pixel clusters
A high number of low Edep hadrons were usually seen in the simulated DTC data after a detector readout
threshold of 0.1 keV µm−1 was applied in accordance with Tambave et al (2019).

Before track reconstruction, a filter was applied on clusters of≤ 5 pixels (corresponding to
Edep < 1.3 keV µm−1). In figure 2 (top) the cluster sizes of primary and secondary particles are shown. This
filter simplifies the track reconstruction, however a conservative cut value was chosen to minimize the
number of removed primary particles used for the track reconstruction.

2.7.2. Filtering on minimum track length
All tracks crossing fewer than five layers (including the two tracker layers) were removed—a Bragg peak
occurring in this region would correspond to an imaged object size in excess of 30 cmWEPL which is
currently outside of the scope of the DTC, or to a secondary or an incompletely tracked particle.
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Figure 2. Top: The cluster size distribution of primary and secondary hits in the detector prior to track reconstruction. The cut
value is≤ 5 pixels per cluster. Bottom: Filter on the Edep in the last layer, as calculated by the diffused cluster size. The cut value is
8 keV µm−1. These figures were made using a 229.25 MeV u−1 helium beam traversing a 16 cm water phantom.

2.7.3. Filtering on the deposited energy
The DTC yields an estimate of the Edep in each traversed layer along a particle’s track, and hence we defined
two filters: one for the Bragg peak region and one for the plateau region.

First, for a primary particle we required that the deposited energy in its last tracked layer (downstream)
be at least 8 keV µm−1. This filter is shown in figure 2 (bottom). Second, a cut was placed on the deposited
energy in the plateau region of a single track, as defined by the mean Edep of the first five traversed layers. A
threshold value of 3.5 keV µm−1 was set as shown in figure 3 (top).

2.7.4. Filtering on the track’s residual range
A combined histogram for all the residual ranges yielded the peak range bin µ, and a 3σ cut on the range is
performed. The distributions are shown in figure 3 (bottom). This filter is not specific to helium imaging, as
it is usually performed during image reconstruction on a pixel-wise basis (Penfold et al 2010, Collins-Fekete
et al 2016).

2.7.5. Filtering on the incoming angle
To remove fragments originating from the object as well as particles that underwent single large angle
scattering, a filter on the particle’s incoming angle was performed. The incoming angle is found from the two
tracker layers. The filter also removes primary particles that underwent non-Coulomb scattering events such
as elastic nuclear scattering (Gottschalk 2012, Krah et al 2018). Here a 45 mrad filter was applied,
corresponding to the 3σ value of the total angular distribution in figure 4.

2.8. Primary survival efficiency
A helium primary may be lost to physical processes such as nuclear interactions or large angle scattering,
happening inside the imaged object or the detector. It may also be lost during the track reconstruction or
during the filtering step. To quantify the primary loss from these processes we counted the number of
primaries that survived each step using the 16 cm water phantom simulation from section 2.7.
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Figure 3. Top: Filter on the deposited energy in the plateau region, as calculated by the diffused cluster size. The cut value is
3.5 keV µm−1. Bottom: Filter on the residual ranges. The highest bin µ is chosen together with a 3σ range window. These figures
were made using a 229.25 MeV u−1 helium beam traversing a 16 cm water phantom.

Figure 4. Filter on the incoming angle. The filter value is 45 mrad. These figures were made using a 229.25 MeV u−1 helium beam
traversing a 16 cm water phantom.

2.8.1. Intrinsic efficiency
The transmission through water is given as εw = Nw/N0, where N0 is the number of particles in the beam
and Nw number of particles at the phantom exit.

The transmission through the detector is then given as εDTC = NBP/Nw, where NBP is the number of
primaries reaching the proximal tail of the range distribution, i.e. two layers upstream to the beam’s residual
WEPL range.
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The intrinsic efficiency of the detector due to physical effects can then be found as

εint = εw× εDTC =
NBP
N0

. (2)

2.8.2. Algorithmic efficiency
The track reconstruction algorithm analyses between Nw and NBP hit trajectories, yielding finally N ′

BP

tracks—this number might be higher than NBP due to reconstructed shorter tracks ending proximal to the
Bragg peak area. Thus the tracking efficiency can be given as εtracking = N ′

BP/NBP.
The secondary filtering is applied after the tracks have been reconstructed, and its resulting efficiency can

be given as εfilter = N ′ ′
BP/N

′
BP, where N

′ ′
BP is the final number of primaries remaining subsequent to the

filtering.
The algorithmic efficiency is then the product of the primary loss due to track reconstruction and due to

the secondary filtering.

εalg = εtracking× εfilter =
N ′ ′
BP

NBP
. (3)

2.8.3. Total efficiency
The total efficiency is the product of the intrinsic (determined by the physics of the setup) and algorithmic
efficiency (determined by the effectiveness of the applied algorithms):

εtot = εint× εalg =
N ′ ′
BP

N0
. (4)

Furthermore, the value εHeRad for helium radiography (and εpRad for proton radiography) is the total
efficiency of the system (εtot) multiplied by the additional primary survival efficiency after image
reconstruction has been performed.

2.9. Single-sided helium trajectory calculation
To estimate the helium trajectories, we implemented the extended most likely path (MLP) formalism by
Krah et al (2018). The formalism uses the available pencil beam scanning parameters (lateral position of the
spot center and beam covariance matrix) in place of the front tracker information. Within the formalism, the
energy loss represented by the integral over the momentum-velocity function (i.e., 1/β2p2) of the particles
was computed numerically using the same polynomial parametrization as was used in Sølie et al (2020) for
protons. This is valid also for helium ions at the same initial energy/range (Collins-Fekete et al 2017a, Gehrke
et al 2018a). The MLP accuracy was estimated using the methodology of Sølie et al (2020) with the realistic
tracker geometry and uncertainties of the DTC. The MLP accuracy of a 4 mm helium beam was compared to
a realistic 7 mm FWHM proton beam.

2.10. Single-sided helium radiography
To assess the expected image quality for helium ion radiography with the DTC, we investigated an
anthropomorphic pediatric head phantom model HN715 (CIRS, Norfolk, Virginia, USA). The phantom was
available as a digital geometry from the work of Giacometti et al (2017). A detailed material list as
implemented in the GATE simulations here can be found in Sølie et al (2020).

For this work, the same setup geometry for source and phantom positioning relative to the first tracking
layers as in Sølie et al (2020) was used. The primary helium beam with an FWHM of 4 mm consisted of 2150
discrete pencil beam spots placed in a grid with a 4 mm spacing in both lateral directions, the spacing being
equal to the FWHM of the pencil beams. Each pencil beam spot contained 1250 primary helium ions. This
corresponds to approximately 25 primaries per mm2 after filtering, based on a recommendation of 100
protons per mm2 for radiographs (Sadrozinski et al 2013), and that the reduced straggling of helium reduces
the required number of primaries by a factor of 4 (Gehrke et al 2018a).

The helium ion radiograph was reconstructed using the maximum likelihood formalism developed by
Collins-Fekete et al (2016). It was implemented for a similar single-sided setup in Sølie et al (2020).

A corresponding 230 MeV proton radiography was also simulated, using the broader 7 mm FWHM
beam together with a wider lateral spacing of 7 mm, in order to compare the WEPL accuracy. The density of
protons was higher, aiming for 100 primaries per mm2 after filtering.

2.11. Dose estimation
The radiation dose given to the head phantom during the acquisition of the helium radiograph was
calculated in GATE, as well as the corresponding dose for a proton radiography with approximately 100
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Figure 5. The fraction of correctly reconstructed tracks relative to the surviving tracks after filtering, as a function of the number
of primary 4 mm FWHM helium ions per reconstruction cycle. The corresponding data for a proton beam with a spot size of 7
mm FWHM in the same detector geometry is shown as well. Tracks originating from a 5 cm and a 16 cm water phantom are used.

protons per mm2 after filtering. For a tomographic scan we assume 180 projections each with 25 helium ions
or 100 protons per mm2 after filtering.

For comparison with x-ray CT, we apply the CT Dose Equivalent Index (CTDEI) framework of Hansen
et al (2014) where an ion CT weighted quality factor of QW = 2 is recommended as a safe assumption. While
Meyer et al (2019) estimated a lower relative biological effect in the entrance channel for protons and helium
across three patients and tissue types from FLUKA simulations, we maintain the conservative value from
Hansen et al (2014). Furthermore, we approximate the mean head dose to be the CTDEI (accurate to within
1% (Hansen et al 2014)), leading to the calculation of the effective dose defined in ICRP Report 102 (ICRP
2007) for a pediatric head, where a dose conversion factor of QW × 0.0032 mSv (cm mGy)−1 is multiplied
with the dose (equivalent) length product given by CTDEI× scan length.

3. Results

3.1. Helium track reconstruction
An optimization was performed in order to identify the ideal parameters for the track reconstruction. The
parameter Smax was reduced from 275 mrad to 175 mrad, while the∆θi,max was reduced from 100 mrad to
30 mrad.

After performing the secondary filtering, the fraction of correct tracks (FCR) was lower for helium than
for protons. It was also higher for larger traversed phantoms than for smaller (due to the shorter
reconstructed path length in the detector). In figure 5 the FCR in a few scenarios are shown, compared to a
proton beam with a larger beam spot size (7 mm FHWM).

The time required to reconstruct the helium tracks (excluding the time spent modeling the charge
diffusion process) is 1.4 ms per primary on an Intel® Xeon® Gold 6136 CPU@3.00 GHz, or approximately
40 s for a complete radiograph utilizing a 96 CPU core cluster.

3.2. Absorber material optimization
The depth-dependent survival of the helium beam in three different materials is shown in figure 6. The
aluminum absorbers yielded relative improvements of 8.1%±0.3%, 8.9%±0.3% and 9.2%±0.3% in track
survival compared to the graphite, carbon foam and PMMA based absorbers, respectively.

3.3. Secondary filter performance
In figure 7 an example of the reconstruction of the tracks in a pencil beam is shown before (left hand side)
and after (right hand side) application of the above filters.

The fractions of filtered and unfiltered secondaries, and filtered and unfiltered primaries are shown in
table 1 for successive application of the filters. Normalized to the number of generated primary particles,
87.6% of the reconstructed tracks were secondary and 50.0% were primary (i.e. 1.4 tracks per primary due to
helium fragmentation).
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Figure 6. The primary helium survival in the DTC for different absorber materials for a 229.25 MeV u−1 helium beam after
traversing a 10 cm water phantom. The absorber thickness was scaled to match the WET of 3.5 mm aluminum. The numbers are
normalized to per incoming particle.

Figure 7. A readout containing 100 reconstructed primaries slowed down in 10 cm water. The figures includes 124 tracks before
filtering (left) and 45 tracks after filtering (right). A black track is a correctly reconstructed primary; a red track is incorrectly
reconstructed due to confusion between two tracks; green tracks are secondaries. Grey tracks are incompletely reconstructed (too
short).

The filter on cluster sizes did not directly translate to the filtering strength of the track reconstruction:
while the filter removed 63.0% of the clusters originating from secondary particles and only 0.1% of the
clusters from the primary beam, the resulting reduction of secondary and primary tracks was 47.9% and
2.4%, respectively. This is likely due to fragmentation resulting in multiple secondaries (i.e.multiple clusters
per fragmenting primary), as well as the production of target fragments without breakup of the primary
helium ion.

When all the filters described in section 2.7 were applied, 97.5% of the secondaries were identified and
removed, whereas 15.2% of the reconstructed primary tracks were lost in the process. Thus, 42.4% of all the
incoming primary helium ions were available for subsequent image reconstruction.

In figure 8 the fractions of the different secondary particle species are shown as a function of detector
depth, before and after filtering. A secondary peak was seen around layer 20, corresponding to the Bragg
peak area. Prior to filtering, protons dominated (with up to 15% per generated primary) with a strong bias
towards the detector front. The deuteron and triton components were substantial at 8% and 3%, respectively.
After applying the filters, the same particle species were present at around 0.2%–0.6% per generated primary.

3.4. Primary survival efficiency
By counting the number of primaries passing through 16 cm water, in the various physical and
computational steps, we found that εw = 61.6%± 0.3%; εDTC = 74.5%± 0.4%; εtracking = 108.9%± 0.7%;
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Table 1. The efficiencies of the various filters shown after track reconstruction. The percentage values are given relative to the total
number of primary particles. UFP: unfiltered primaries; FP: filtered primaries; UFS: unfiltered secondaries; FS: filtered secondaries.

Filter UFP (%) FP (%) UFS (%) FS (%)

None 50.0(3) 0 87.6(4) 0
+ Cluster size>5 48.7(3) 1.22(4) 45.7(3) 41.9(2)
+>4 layers crossed 44.6(3) 5.32(7) 26.2(2) 61.4(3)
+ Edep in last layer 42.9(2) 7.08(9) 8.33(9) 79.3(4)
+ Edep in plateau 42.8(2) 7.16(9) 6.30(8) 81.3(4)
+ Residual range 42.8(2) 7.18(9) 2.49(5) 85.1(4)
+ Incoming angle 42.4(2) 7.57(9) 2.18(5) 85.4(4)

Figure 8. The secondary particle species distribution per primary helium ion. Shown before (left) and after (right) applying the
filters described in section 2.7. The figure was made using a 229.25 MeV u−1 helium beam traversing a 16 cm water phantom.

and εfilter = 84.8%± 0.4%. Note that εtracking > 100% is possible since short tracks are reconstructed (but
then removed by filtering).

Multiplying the numbers, we find an intrinsic efficiency εint = 45.9%± 0.3%; an algorithmic efficiency
εalg = 92.4%± 0.4%; and finally the total efficiency εtot = 42.4%± 0.2% which is the ratio of usable tracks
to the generated primary helium ions: it is the same number as given for unfiltered primaries in table 1.

3.5. WEPL accuracy and uncertainty
The WEPL accuracy for different water phantom thicknesses in the range 0–32 cmWEPL is shown in
figure 9 (top). An oscillating bias with a wavelength equal to the spacing between the sensitive layers is
visible, with a peak-to-peak amplitude of approximately 1 mm. The width of the WEPL error envelope for
the different thicknesses is 0.54 mmWEPL. For protons, the corresponding width is 0.25 mmWEPL. There
is also a small but visible low-frequency component for the helium scenario.

The 1σWEPL uncertainty (measured range straggling) averaged across object thicknesses of 0–30 cm is
2.5 mmWEPL (range 1.5–3.9 mm) for helium and 3.9 mmWEPL (range 3.5–4.7 mm) for protons. These
values can be found, scaled up by a factor of four, in figure 9 (bottom): there the corresponding WEPL
uncertainty is shown using the±2σ width as a metric for layer coverage. Thus, the range straggling of the
helium beam covers on average 1.2 layers, while the proton beam covers on average 1.9 layers.

In figure 10 examples of the range distributions of proton and helium for a single phantom thickness is
reported.

3.6. Helium trajectory calculation
The resulting single-sided MLP accuracy (compared to the MC helium paths) is shown in figure 11 when
using the extended MLP (Krah et al 2018). The average deviation fromMC at the upstream side of the water
phantom (where there is least information) was 0.75 mm for helium ions, as compared to 1.25 mm for
protons.

3.7. Helium radiography
The generated radiograph is shown in figure 12 (left hand side). The corresponding WEPL error map is
shown on the right hand side, while the pixel-wise WEPL error distribution is shown at the bottom of the
figure.
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Figure 9. Top: The WEPL accuracy of protons and helium for increasing phantom thicknesses. Bottom: The WEPL uncertainty
envelope (measured range straggling) of protons and helium for increasing phantom thicknesses, in terms of the width of the
±2σ distribution as a metric for layer coverage. The two dashed lines represent the thicknesses of one (8.2 mmWEPL) and two
(16.4 mmWEPL) layers.

The oscillating range accuracy bias is visible as rings in the WEPL error map due to the shape of the head
phantom, with an amplitude comparable to what was observed in figure 9.

The width of the pixel-wise WEPL error envelope of the filtered helium radiograph was 1.0 mm. A
proton radiograph (not shown) generated using the same setup (but with a 7 mm FWHM pencil beam and
spot spacing, and 100 protonsmm−2) yielded a comparable WEPL error envelope of 1.1 mm. Most of the
pixel-wise errors (99%) were between−2.2 mmWEPL and 2.6 mmWEPL. Single-pixel regions close to high
gradient edges yielded the highest errors, this is due the reduced spatial resolution both from the scattering
and the reduced path estimation accuracy.

Due to the extra filtering and path curvature estimation steps involved in image reconstruction, the
overall primary efficiency for the generated radiograph was somewhat lower at εHeRad = 31.0%. The
corresponding number for a proton radiograph was εpRad = 40.3%.

3.8. Dose estimation
The integral dose given to the head phantom during the acquisition of the radiograph from 2.68× 106
helium primaries (24.2 mm−2 used for image reconstruction) was reported by GATE as 14.8 µGy. Although
tomographic helium scans are not discussed in this work, 180 projections would yield approximately
2.66 mGy in the head phantom.

The corresponding dose from 8.53× 106 proton primaries (100 mm−2 used for image reconstruction)
would be 11.4 µGy for a radiograph and 2.05 mGy for a corresponding tomographic reconstruction.
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Figure 10. Range histograms of the individual filtered tracks. The relative increase in range straggling for protons also increases
the range accuracy, due to the increased number of activated sensor layers involved in the range calculation (see also figure 9).

Figure 11. The deviation between the primary paths of MC and the estimated MLP using realistic helium and proton beams at
energy of 230 MeV u−1. The FWHM of the beams correspond to the smallest spot size available at that energy for protons and
helium at the Heidelberg Ion-Beam Therapy Center.

For a helium CT an effective dose can be estimated at

2.66 mGy× 18 cm× 2× 0.0032 mSv (mGy cm)−1 = 307µSv. (5)

4. Discussion

4.1. Absorber material
The planned material for energy absorbing layers of the DTC is aluminum. By considering several
carbon-based materials such as graphite, carbon foam and PMMA, it was shown that the primary survival
rate was favorable for aluminum by 8%–10%. As such, it is not advisable to substitute the absorber material
when applying the DTC for helium imaging, especially considering the increased physical length of the DTC
for absorber materials with lower RSP (requiring the same total WEPL).

4.2. WEPL accuracy and straggling
A periodic variation of the WEPL accuracy was observed for helium. The effect of slightly adjusting the
phantom thickness is that the range straggling distribution is pushed across the active layers, causing
periodic differences between the nominal and measured WEPL. This effect is more prominent when few
active layers are covered by the range straggling distribution, since fewer layers contribute to the range
calculation. The increased variation of helium is explained by its reduced range straggling with a factor of
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Figure 12. Helium single-sided radiograph, generated after applying the filters described in this text. The left figure shows the
reconstructed WEPL, while the right figure shows the its error relative to the true WEPL of the head phantom. The bottom figure
shows the pixel-wise errors of the filtered helium radiograph in comparison to a proton radiograph with the same setup and a
fourfold increase in the number of primaries.

σR,He/σR,p =
√

mp/mHe ≃ 0.5 (Durante and Paganetti 2016). In figure 9 (bottom) it was shown that the
broader range straggling of protons spans a larger number of sensor layers (1.9 layers for protons, 1.2 layers
for helium). This effect was earlier noted for protons with various absorber thicknesses in Pettersen et al
(2019a). These results were reflected in the generated radiographs, where they were shown as ring artifacts in
the WEPL error maps. This artifact was not seen in similar proton radiographs (cf figure 9 in Sølie et al
(2020)), consistent with the increased range straggling of protons. Further optimization of the initial energy
spread of the helium beam might mitigate the ring artifacts by broadening the range straggling
distribution—however this would be expected to come at a cost in regards to WEPL resolution and thus the
required number of primaries, reducing the dose efficiency.

There was also a slight low-frequency component in the range deviation for helium. This component is
thought to be an artifact from the range calibration of yet undetermined origin.

These effects increased the WEPL error envelope to 0.54 mmWEPL using a water phantom, which
compares to the corresponding proton envelope of 0.25 mmWEPL. These WEPL errors are expected to be
sufficient for imaging (Poludniowski et al 2015) before considering further sources of errors (such as from
the physical detector, from the experimental setup and beam quality). To improve upon this, thinner
absorbers and more sensitive layers would be needed, as investigated for protons in Pettersen et al (2019a).
However, this would in turn negatively affect the cost and complexity of the system. An improved calibration
scheme of the detector is currently being evaluated.

For helium radiography, the pixel-wise WEPL error envelope was slightly narrower compared to that of
protons, shown in the two distributions in figure 12 (bottom; 1.0 mmWEPL for helium ions and 1.1 mm
WEPL for protons). However, the WEPL error distribution for the helium radiograph showed an extra peak
at overestimated WEPL values consistent with the systematic ring artifacts present in the reconstruction of
figure 12 (right). That the pixel-wise WEPL error envelopes were broader for the head phantom compared to
the water phantom was expected, since the heterogeneity of the phantom complicates the track
reconstruction process (track matching errors introduce larger WEPL errors) and the MLP calculation.

4.3. Filter performance
The pre-filter removing small clusters before track reconstruction reduced the number of secondary tracks
by approx 48%. This is an important filter that simplifies the track reconstruction, especially given that only
a small fraction of the primary tracks was removed (2.4%).
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After the track reconstruction, 63.7% of the reconstructed tracks were secondary tracks, or 87.6% per
generated primary. Most of them (15% per generated primary) were protons produced in the imaged object.
Deuterons, tritons and 3He were also present at 4%–6% levels per primary. This number includes
multiplicity events, i.e. events where more than one fragment was produced from a primary helium ion.

The remaining secondary tracks after filtering (largely 3He, 4He and hydrogenic isotopes with
comparable range) closely resembled a pure primary beam in the reported distributions. In figure 8 the same
species form a secondary peak close to the layer containing the Bragg peak: towards the Bragg peak region the
helium projectile has a higher mass-changing cross section (Horst et al 2019), and thus more target
projectiles were expected in that region. Due to the similarity of the observed distributions they are
nontrivial to remove, but also are not expected to degrade the WEPL accuracy to a significant degree:
especially if they originated from within the range telescope itself. This assumption is strengthened by
figure 9 (top) where the final WEPL accuracy was 0.5–0.8 mmWEPL in the studied scenarios.

The range filter is expected to be less efficient in removing secondaries when applied to a helium beam
passing through heterogeneous geometries. However, range filters are regularly used in particle imaging with
good results (Johnson et al 2016, Volz et al 2018), and the reconstructed head phantom yielded a good WEPL
accuracy.

Various filters were evaluated in addition to the ones mentioned in section 2.7: combinations of Edep
values across the detector layers; χ2 depth-dose fit goodness (Pettersen et al 2017); angular change along the
track; as well as lateral track positions. However, while some of these filters had a high discriminatory power
per se, they did not provide further secondary discrimination compared to the filters described in section 2.7.

Finally, 42.4% of the primaries in the MC-generated helium beam were reconstructed and survived the
applied filters, while keeping 2.5% of the observed secondary tracks. For comparison using similar Monte
Carlo studies, Gehrke et al (2018b) using a set of three pixel tracking detectors placed close to the Bragg peak
found a ratio of 45% between the incoming primary helium beam (when cropped to the lateral dimensions
of the detector) and the image-generating helium tracks. For the∆E− E filter used in combination with the
prototype pCT detector developed by the US pCT collaboration, Volz et al (2019) report a reduction to 43%
compared to the data set not using the∆E− E filter (before applying the 3σWEPL filter). However, this
number does not consider multiplicity fragmentation events originating from within the phantom, as
multiple hits on the rear tracker were automatically suppressed and therefore also not considered.

4.4. Helium track reconstruction
The fraction of correctly reconstructed tracks (FCR) for helium was lower than what was observed with
proton track reconstruction in a similar DTC as discussed in Pettersen et al (2019a). The main effect to
reduce the FCR is the higher particle density in the 4 mm FWHM helium beam, compared to the 7 mm
FWHM proton beam: these are both the smallest spot sizes realistically attainable. Other complicating factors
for reconstructing the helium beam is the increased complexity in tracking due to the higher density of
secondary tracks, and an increase in the Edep (higher probability that larger clusters merge). On the other
hand, these effects are compensated by the reduced complexity in track reconstruction due to the lower
scattering power of helium.

A wrongly reconstructed helium track is expected to degrade the image quality to a smaller degree (when
compared to protons), due to the smaller spot size. This is because two pairwise confused tracks in a thin
beam are closer together, reducing the added spatial separation.

It was observed in figure 5 that a 5 cm phantom object leads to a decrease in the FCR compared to a
16 cm object. This effect can be attributed to the increased residual primary range in the detector and
subsequent higher probability of track matching errors.

The current track reconstruction algorithm needs 40 s on the applied 96 CPU cluster to yield the input
necessary for the reconstruction of a radiograph containing 2.7 million helium primaries. It is expected that
further vectorized implementations of the code (e.g. on a graphical processing unit) would perform
significantly better in terms of processing time. A future clinical implementation of the imaging setup would
need such improvements in order to be viable in terms of reconstruction time. It should be stressed that the
FCR and speed are subject to continual improvement due to their sensitivity to the applied filtering, beam
quality, tracking parameters and constituent algorithms.

The ideal beam configuration (spot size, intensity) is a compromise between low uncertainty at the
phantom entrance (using the single-sided MLP reconstruction (Sølie et al 2020)), low uncertainty at the
detector entrance (due to pairwise track confusion during reconstruction) and track density (increased beam
intensity leads to higher track confusion). The effects of wrongly reconstructed tracks can be further
mitigated by lowering the beam intensity, however the images generated at 50 helium primaries per
reconstruction cycle (5 million helium ions per second) exhibit a high visual spatial resolution.

16



Phys. Med. Biol. 66 (2021) 035004 H E S Pettersen et al

It was also shown that the radiation doses given to a head phantom during the acquisition of helium
radiographs and CTs were, respectively, 14.8 µGy and 2.66 mGy. The latter number was further shown to
yield an effective dose of 307 µSv, an order of magnitude lower than reported x-ray CT doses of 2–3 µSv
(ICRP 2007, Hansen et al 2014). The estimated doses are in line with results from other groups (Johnson et al
2017, Dedes et al 2019).

5. Conclusions

In this study, we explored the feasibility of helium detection and track reconstruction in a high granularity
DTC. It was shown that the contribution of secondary fragments can efficiently be suppressed with adequate
filters. The tracking algorithm was shown to be less efficient for helium ions compared to protons impinging
on the detector: the increased focus strength available for helium ions at contemporary facilities works
against the track reconstruction due to the increased track density. Different absorber materials to degrade
the beam energy inside the calorimeter were investigated with the purpose of maximizing survival of primary
particles. The results reported in this study indicate that aluminum absorbers as proposed for proton
imaging are also ideal for helium ions. However, the most interesting result of this study is that—contrary to
expectation—the reduced range straggling of helium ions resulted in reduced range accuracy using absorber
material of the same water-equivalent thickness as for protons. Still, the range accuracy was found to be
sufficient for imaging. Hence, it can be concluded from the results of this study that the current DTC design
is feasible not only for proton imaging, but also for helium ion imaging. Further efforts will thus focus on
proton as well as helium ion imaging toward finalizing the first DTC prototype system.
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