
Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Semantics of multiway dataflow constraint systems

Magne Haveraaen a, Jaakko Järvi b,∗
a University of Bergen, Norway
b University of Turku, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 March 2019
Received in revised form 29 November 2020
Accepted 30 November 2020
Available online 3 December 2020

Keywords:
Dataflow constraint systems
Institutions
Reuse
Graphical user interfaces
Module system
Verification and testing

Multiway dataflow constraint systems (MDCS) is a programming model where statements
are not executed in a predetermined order. Rather, individual methods are selected from
specific method sets and then executed to achieve a desired global state. The selection is
done by a planner, which typically bases the choice of methods on the history of updates
to the global state. MDCS is well suited for describing user interface logic where choosing
what code to execute depends in complicated ways on the history of user interactions and
on data availability. User interfaces are the domain of examples in this paper.
Much of the research into MDCS has been on planning algorithms and their efficiency. Here
we investigate a semantic setting for MDCS, introducing dataflow constraints as modules
with explicit goals and related method sets. MDCS is defined in a similar manner, with
an explicit goal and a set of supporting dataflow constraints. This enables verification and
testing of methods and dataflow constraints against the goals. The exposition is based on
abstract syntax for an idealised programming language with global variables. On top of this
we define a modular reuse mechanism for dataflow constraints based on Goguen-Burstall
institution theory. We show how this setup enables reuse in user interfaces; traditionally
code that defines user interface logic is almost invariably non-reusable.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A dataflow constraint describes a relation amongst variables and means to satisfy that relation. The latter is a set of
functions, constraint satisfaction methods, that compute values for some of the relation’s variables, using others as input.
A collection of dataflow constraints to be satisfied simultaneously is a (dataflow) constraint system. There are many variations
of dataflow constraints and constraint solving algorithms [1–4]. The one we focus on here is multiway dataflow constraint
systems (MDCS), where information can flow in different directions between a set of variables. Our prior work on dataflow
constraint solving include mechanisms for specialising fast solver programs when the constraint system is known stati-
cally [5] and a study of the properties of composing dataflows [6].

Dataflow constraints can increase the abstraction level of event-based programming: when programming with dataflow
constraints, the programmer declares a dependency between variables but leaves the details of maintaining that dependency,
what computations and assignments need to be performed and when, to the constraint system. The basic mode of operation
is that whenever the value of a variable in a constraint system is modified (triggered by an event from outside of the
system), the constraint solver computes a new variable valuation that satisfies all constraints in the system.

* Corresponding author.
E-mail addresses: magne.haveraaen@ii.uib.no (M. Haveraaen), jaakko.jarvi@utu.fi (J. Järvi).
https://doi.org/10.1016/j.jlamp.2020.100634
2352-2208/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.jlamp.2020.100634
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2020.100634&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:magne.haveraaen@ii.uib.no
mailto:jaakko.jarvi@utu.fi
https://doi.org/10.1016/j.jlamp.2020.100634
http://creativecommons.org/licenses/by/4.0/

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Fig. 1. An example GUI implemented using a constraint system.

Applications of dataflow constraint systems include frameworks for graphical user interface (GUI) programming, where
constraint systems are used for tasks such as layout and enforcing dependencies amongst user-modifiable values [7–9]
(several contemporary JavaScript GUI libraries, such as Angular, Knockout, and Backbone, support simple forms of dataflow
constraints); tools for collaborative work [10]; and spreadsheet applications. Dataflow constraint systems have also been
integrated to general purpose host languages to be applied for varied programming tasks [11,12].

This paper investigates the semantical underpinnings of constraint systems. Our goal is to provide a formal framework for
reasoning about constraint systems and their compositions. The main contributions of this paper are based on a perspective
on constraint systems as a programming model:

• A simple programming language with an abstract syntax normal form corresponding to multiple assignment.
• Integrated specifications allowing verification and testing.
• A module system for reuse of components based on variable substitution.
• Additional module combinators corresponding to the logical connectives &, | and ⇒ (conjunction, disjunction and im-

plication) with most distributivity properties intact.
• Rules for flattening module expressions.

Our semantics assumes an underlying programming language for code that computes variable valuations that satisfy indi-
vidual constraints, but is completely independent of the choice of built-in types and primitive operations of that language.

The paper introduces quite a few definitions. On the one hand they define the semantics of constraint systems, which we
apply in examples drawn from the domain of GUIs. On the other hand they build towards fitting constraint systems into the
institution [13] notion. Institutions are a theoretical framework for understanding model-based logic, but they can also be
used to explore metalevel design principles for programming languages, such as modular reuse mechanisms. Our semantic
foundation is based on algebraic specification theory; see the book [14] for a comprehensive introduction. The specification
language CASL [15], designed around the institution notion, and tool frameworks like Hets [16] show the flexibility that
such a design offers. The history of algebraic specifications for computer science goes back to the 1970s, with the ADJ
group [18,17] and what was to become the Larch group [19,20] as some influential examples. The two books [21,22] gave
an important introduction to the field as of the late 1980s. The flexibility of algebraic specifications for reuse has been
inspirational for our approach to MDCS semantics. Especially the role that institutions can play in reuse and modularisation
has motivated our work.

The organisation of the paper is as follows. As motivation, Section 2 describes how constraint systems appear in GUIs. It
also introduces a simple constraint system used in examples later in the paper. Section 3 defines the syntax and semantics
of a multiple assignment programming language. Section 4 explores dataflow constraints and composition operators, the
building blocks for multiway dataflow constraint systems. Section 5 relates the formalism to practical programming, applying
the formalism to modelling constraint systems arising in GUIs. Section 6 gathers all the definitions and shows how dataflow
constraints form an institution. Section 7 defines constraint systems with modular reuse. Section 8 summarises our findings.

2. Motivation: constraint systems in GUIs

We have found that complex user interface behaviours that are typically programmed in the “event handling logic”,
separately for each user interface, can be expressed as reusable algorithms when the state of a user interface is managed as
a constraint system. Such behaviours include propagating values, enabling and disabling widgets, recording user interaction
as scripts, visualising and controlling the dataflow, and undo [23,25,24].

As an example, consider the small GUI in Fig. 1. This GUI for resizing an image is a simplified version of dialogs found
in many image manipulation applications. An image’s initial width and height are determined at the launch of the dialog.
The user can specify a new width and height relative to the initial values or directly as the number of pixels. Further, the
user can request that the GUI preserves the initial aspect ratio.

The variables are dependent on each other: changing the value of one triggers changes in others so that the GUI returns
to a consistent state. These dependencies and the set of consistent states are expressed by the constraint system in Fig. 2.
The variables wi , wr , and wa are bound, respectively, to the initial, relative, and absolute width fields and hi , hr , and
ha to the corresponding height fields. Fig. 2a shows the three constraints in the system: c1 is for enforcing the relation
wa = wi ∗ wr , c2 the relation ha = hi ∗hr , and c3 the relation wr = hr . The “Keep aspect ratio” checkbox has no corresponding
variable in the constraint system. Its value determines whether the c3 constraint is active or not.
2

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Fig. 2. The constraint system arising from the GUI of Fig. 1. Figure a depicts the relations (c1, c2, and c3) amongst the variables in the system. Figure b
shows the relations split into functional dependencies. A dashed ellipsis marks the set of methods that together implement a constraint’s relation; for
example, applying either of the methods m3 or m4 satisfies c2.

Fig. 2b shows the three constraints’ decomposed into constraint satisfaction methods; executing a method satisfies the
relation of its constraint. Solving a multiway dataflow constraint system boils down to selecting one method from each con-
straint such that they can be executed in an order that does not invalidate already enforced constraints, and then executing
the selected methods in such an order.

3. Syntax and semantics of a multiple assignment language

Here we define a programming model for multiway dataflow constraint systems as an abstract programming language, i.e.,
with abstract syntax and semantics relative to a base API. This follows the ideology suggested by the ADJ group [18] of not
looking at the concrete syntax but focusing on the initial algebra of the syntax. In our case we can use the multiple assign-
ment as the normal form for the syntax. The language builds on a base API (interface) that abstracts all primitive types and
functions of the language, includes all standard library types and functions, and encompasses any domain specific extension
needed by a user. In this way we achieve several exposition simplifications, yet a precise definition of the programming
language.

• We avoid a lengthy exposition of grammar rules for the concrete syntax.
• We avoid deciding what types and operations are part of the language or library.
• We do not have to describe how to declare and implement new types and functions at the user level, since we can

assume all such definitions are embodied in the base API.

Dealing with any of these issues becomes an orthogonal extension to the exposition of the abstract programming language.
As can be seen in the introductory example, constraints of a constraint system are connected by matching variable

names. Thus, mechanisms for a module system based on variable matching are central to our presentation. These pieces are
connected in Section 6.

In this section we first define standard notions of interfaces (signatures), expressions, and predicate expressions. Then
we define a small programming language built on multiple assignment statements. This programming language is given a
simple set theoretic semantics for an arbitrary model of the base interface.

In this exposition we need to reconcile established terminology and notation of algebraic specifications, programming
languages, and constraint systems. We decided to use a terminology close to programming languages. Thus we use interface
I where algebraic specifications use signature �, we separate expressions E I (which algebraic specifications call terms) and
statements S I since both of these are terms in language theory, call an individual statement a method m ∈ S V (which also
rings nicely with multiple assignment statement) to be compatible with constraint system terminology and avoid confusion
with substitutions s, and we replace the term algebra A with the term model μ to avoid confusion with assignment
sets Aμ,V . We also use the unfamiliar adjective staid to introduce specific requirements on interfaces and models. The
staid properties serve two purposes: to allow a uniform use of reasoning tools for expressions and predicates for dataflow
constraint systems, and to provide an equivalence relation on methods (statements) which have multiple assignments as
representatives—another benefit of the initial algebra approach to syntax.

Syntactic substitutions define mappings on variables, expressions and statements. We explore substitution as a means
of adapting variable names for modular reuse, and as a means of formalising both multiple assignment and statement
composition. In Section 6 we use substitutions to build a module system based on variable alignment in the institution
setting.

3.1. Interfaces and expressions

Type correct expressions are constructed from typed function declarations and a set of typed variables, where the types
and functions are declared by an interface.

Definition 3.1. An interface I declares a set of types Typ(I) and a set of functions Fun(I). A function f ∈ Fun(I) has an
argument list arg(f) = (t1, . . . , tk) ∈ Typ(I)∗ , k ≥ 0, and a result type res(f) = t ∈ Typ(I).
3

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
The notation X∗ denotes all sequences of elements from the set X . As a shorthand, a function declaration can be written
f : t1, . . . , tk → t .

Definition 3.2. A staid interface I is an interface with a type Predicate ∈ Typ(I) and functions

_ == _ : t, t → Predicate for all t ∈ Typ(I) (equality),
(_ ? _ : _) : Predicate, t, t → t for all t ∈ Typ(I) (choice),

TRUE ,FALSE :→ Predicate (truth values),
! _ : Predicate → Predicate (negation), and

_ & _, _ | _, _ => _ : Predicate,Predicate → Predicate (conjunction, disjunction, implication).

A function with the result type Predicate is called a predicate.

Definition 3.3. A collection of variables V for an interface I declares a set of variable names Nam(V) and a function typV :
Nam(V) → Typ(I).

As a shorthand, we write v ∈ V rather than v ∈ Nam(V), and we drop the subscript V on typV when it is unambiguous.
The same goes for other set operations on variables, assuming that the typing functions are compatible. For instance, the
subset relation X ⊆ V holds when Nam(X) ⊆ Nam(V) and typX (x) = typV (x) for every x ∈ Nam(X). Let ∅ denote the empty
collection of variables, i.e., Nam(∅) = {}.

Definition 3.4. The expressions of type t ∈ Typ(I) on an interface I with variables V is a set E I,V ,t freely generated by

• for v ∈ Nam(V) with typ(v) = t , then v ∈ E I,V ,t , and
• for f : t1, . . . , tk → t ∈ Fun(I), e1 ∈ E I,V ,t1 , . . . , ek ∈ E I,V ,tk , then f (e1, . . . , ek) ∈ E I,V ,t .

In expressions we use the function name as a shorthand for the function declaration, tacitly assuming that all ambiguities
are handled as needed. Let the set of all type correct expressions be E I,V = ∪t∈Typ(I)E I,V ,t . The expressions E I,∅ are called
variable-free or ground expressions. For an expression e ∈ E I,V , we let var(e) ⊆ V be the set of variables that appear in e, and
we extend the typing function from variables to typ : E I,V → Typ(I) by typ(e) = t for e ∈ E I,V ,t .

Aligning methods on global variables is an important aspect of multiway dataflow constraint systems. We therefore
introduce substitution as a mechanism to change variables in expressions.

Definition 3.5. Let I be an interface and X and Y be variables for I .

• A substitution (on variables) s : X → E I,Y is a function from Nam(X) to E I,Y such that typ(x) = typ(s(x)) for all x ∈
Nam(X).

• If s(x) ∈ Y for all x ∈ X ′ ⊆ X then s is a renaming limited to X ′ . It is simply a renaming when it is a renaming for all of
X .

There is no requirement that X and Y are disjoint. We do not impose any injectivity or surjectivity requirements on a
renaming.

Given a set of n distinct variables X = {x1, . . . , xn}, we can define a substitution s : X → E I,Y by the list [x1 �→
e1, . . . , xn �→ en], for e1, . . . , en ∈ E I,Y , meaning s(x1) = e1, . . . , s(xn) = en .

A substitution on variables s : X → E I,Y can be extended to a substitution on expressions, i.e., to a function s : E I,X → E I,Y

defined by

s(e) =
{

s(e) for e ∈ X ,

f (s(e1), . . . , s(ek)) for e = f (e1, . . . , ek).
(1)

Note that variable substitution aligns with expression substitution for variables, s(x) = s(x) for all x ∈ X . We therefore
normally overload the notation using s for both.

Definition 3.6. Let X , Y and Z be variables for an interface I .
The composition of a substitution r : X → E I,Y and s : Y → E I,Z is a substitution (s ◦ r) : X → E I,Z defined by

(s ◦ r)(x) = s(r(x)). (2)
4

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Substitution composition is associative since function composition is associative. Define idV : V → E I,V by idV (v) = v
for all variables v ∈ V , then idV is neutral w.r.t. composition. That is, for s : X → E I,Y then idY ◦ s = s and s ◦ idX = s.
The composition of two renamings is a renaming, the composition of injective renamings is injective, the composition of
surjective renamings is surjective, and the composition of bijective renamings is bijective.

Fact 3.7. Let V be variables for an interface I . Then the substitutions s : V → E I,V form a monoid with substitution compo-
sition ◦ as the binary operation and the identity substituion idV : V → E I,V as neutral element.

Predicate expressions should follow normal semantic conventions.

Definition 3.8. Let I be a staid interface with variables x, y, z, x1, . . . , x′
1, . . . ∈ V , the types of which are clear from the

context.
In a staid model for I the following properties hold

TRUE = FALSE, (3)

(x == x) = TRUE, (4)

(x == y) = TRUE ⇔ (y == x) = TRUE, (5)

(x == y) = FALSE ⇔ (y == x) = FALSE, (6)(
x == y & y == z) = TRUE ⇒ (x == z

) = TRUE, (7)(
x1 == x′

1 & . . . & xk == x′
k

) = TRUE ⇒ (
f (x1, . . . , xk) == f (x′

1, . . . , x′
k)

) = TRUE

for all f : t1, . . . , tn → t ∈ Fun(I), (8)

TRUE ? x : y = x, (9)

FALSE ? x : y = y, (10)

TRUE & TRUE = TRUE, (11)

TRUE & FALSE = FALSE, (12)

FALSE & TRUE = FALSE, (13)

FALSE & FALSE = FALSE, (14)

TRUE | TRUE = TRUE, (15)

TRUE | FALSE = TRUE, (16)

FALSE | TRUE = TRUE, (17)

FALSE | FALSE = FALSE, (18)

TRUE => TRUE = TRUE, (19)

TRUE => FALSE = FALSE, (20)

FALSE => TRUE = TRUE, (21)

FALSE => FALSE = TRUE, (22)

! TRUE = FALSE, (23)

! FALSE = TRUE. (24)

The first line states that the two constants TRUE, FALSE are different, the next 4 lines establish that == is an equivalence
relation (in the model), while Equation (8) adds the congruence property. The next two lines define the effect of the
choice function. The rest are truth tables for the boolean connectives. From this we can, for a two-valued logic, derive the
associative and commutative properties for & and | , their distributivity, (p => q) = (! p | q), involutive properties for ! , de
Morgan’s laws, (p ? e1 : e2) = (! p ? e2 : e1), etc. From Equations (4)-(8) it follows that == is a congruence for I . We also
have that, interpreting e1 == c2 as a shorthand for (e1 == c2) = TRUE,

• when e1 == e2 then s(e1) == s(e2) for expressions e1, e2 ∈ E I,X and substitution s : X → E I,Y , and
• when e1 == e′

1, . . . , en == e′
n , for n a natural number, then [x1 �→ e1, . . . , xn �→ en](e) == [x1 �→ e′

1, . . . , xn �→ e′
n](e)

for expressions e1, e′ , . . . , en, e′
n ∈ E I,Y and e ∈ E I,X and distinct variables x1, . . . , xn ∈ X .
1

5

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
This approach is very similar to the approach taken in Larch and is supported by the Larch prover [19,20]. Note that
=, ⇒, ⇔ are at the proof system level, thus putting restrictions on staid models. The “proof table” setup gives the normal
semantics of predicates when generated in TRUE, FALSE, while admitting multivalued logics without any limiting constraints.

3.2. Multiple assignment statements

The basic building block for algorithms in our abstract programming language are sequences of multiple assignments
and choice statements. We term such sequences methods, and treat them as our algorithmic units.

Definition 3.9. Let I be a staid interface and V variables for I .
The statements (or the methods) S I,V for interface I with variables V are freely generated by

• (multiple assignment) x1, . . . , xn := e1, . . . , en where xi ∈ V , ei ∈ E I,V , all xi are distinct, and Typ(xi) = Typ(ei) for all i
where 0 < i≤n,

• (skip) skip,
• (sequence) m1; m2 where m1, m2 ∈ S I,V are statements, and
• (choice) if p then m1 elsem2 end where p ∈ E I,V ,Predicate and m1, m2 ∈ S I,V are statements.

Note the similarity between multiple assignment statements and substitutions. We will use this to translate between the
two notions.

Definition 3.10. Let m = (x1, . . . , xn := e1, . . . , en) be a multiple assignment statement and s = [x1 �→ e1, . . . , xn �→ en] be a
substitution for a staid interface I with distinct variables x1, . . . , xn ∈ V and expressions e1, . . . , en ∈ E I,V .

Define m |� = s (met-to-sub) which takes a multiple assignment statement to its corresponding substitution, and s−� = m
(sub-to-met) which takes a substitution to its corresponding multiple assignment statement.

The two operations are inverses, i.e., m = (m |�)−� and s = (s−�) |� .
We consider an assignment v := v to be vacuous, and that we can add/remove vacuous assignments in any multiple

assignment statement, i.e., (x1, . . . , xn := e1, . . . , en) = (x1, . . . , xn, v := e1, . . . , en, v) for v /∈ {x1, . . . , xn}. The following links
vacuous assignments with modifications of substitutions.

Definition 3.11. Let I be an interface, V , X, Y be compatible variables for I and s : X → E I,Y be a substitution.

• The V -extended substitution �s�V : (X ∪ V) → E I,Y ∪V is the substitution

�s�V (v) =
{

s(v) v ∈ X
v otherwise.

• Define m |�V = �m |��V as a shorthand to extend the substitution corresponding to a multiple assignment m with extra
variables.

• The V -stripped substitution �s�V : X ′ → E I,Y ′ , where the variables X ′ = X ∩ V and Y ′ = ∪x∈X ′ var(s(x)) ⊆ Y , is the substi-
tution �s�V (x) = s(x) for all x ∈ X ′ .

• The trimmed substitution �s� = �s�V ′ , where V ′ = {x ∈ X | s(x) = x}.
• Define s�−�� = �s−�� as a shorthand for trimming the multiple assignment statement corresponding to a substitution s.

Fact 3.12. Trimming a substitution s : X → E I,Y for variables X, Y ⊆ V removes all identity mappings from the substitution.
Thus �idV � is the empty substitution, �s� = ��s��, and �s� = ��s�V �. If X ∩ Y = ∅ then �s�V ◦ �s�V = �s�V and �s� = s.

We call X = out(m) the outputs and Y = inp(m) the inputs of m ∈ S I,V for m |� : X → E I,Y and variables X, Y ⊆ V . The
variables common to X and Y , upd(m) = inp(m) ∩ out(m), are called the updates of m. The variables of m are var(m) =
inp(m) ∪ out(m). The method is minimal, if its corresponding substitution is trimmed. We implicitly refer to the minimal
method when talking about its inputs and outputs.

In accordance with common semantic conventions for statements, we want the following properties for methods.

Definition 3.13. Let I be an interface, x1, . . . , x′
1, . . . ∈ V be variables for I , e1, . . . , e′

1, . . . ∈ E I,V be expressions, and p ∈
E I,V ,Predicate be a predicate expression.

In a staid statement semantics the following properties hold:

• Any permutation of assignments x1, . . . , xn := e1, . . . , en has the same semantics.
• Adding or removing a vacuous assignment from a multiple assignment statement has the same semantics as the original

multiple assignment.
6

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
• skip has the same semantics as the vacuous assignment ε := ε , where ε is the empty list of variables.
• if p then x1, . . . , xn := e1, . . . , en else x1, . . . , xn := e′

1, . . . , e
′
n end has the same semantics as x1, . . . , xn := p ? e1 : e′

1, . . . ,
p ? en : e′

n .
• Let

m = (
x1, . . . , xn := e1, . . . , en

)
,

m′ = (
x′

1, . . . , x′
n := e′

1, . . . , e′
n′

)
be multiple assignment statements. Then m; m′ has the same semantics as

x′
1, . . . , x′

n′ , . . . , x j, . . . := m |�V (e′
1), . . . ,m |�V (e′

n′), . . . ,m |�V (x j), . . .

where x j ∈ {x1, . . . , xn} \ {x′
1, . . . , x

′
n′ }.

Note that a multiple assignment statement for variables X ⊆ V can be expanded to a multiple assignment statement
on all variables of V by adding vacuous assignments. This simplifies reasoning on composition of multiple assignment
statements.

The staid semantics properties define a quotient on method syntax, with multiple assignment statements as (non-
canonical) representatives for each equivalence class.

Proposition 3.14. In staid statement semantics any statement is equivalent to a single multiple assignment statement.

Proof. We take the claim as an induction hypothesis. By staid semantics, the skip statement is a multiple assignment. By
the hypothesis, the statements in each branch of a choice statement can be coalesced into a single multiple assignment.
By staid semantics, a choice statement with a multiple assignment in each branch can be replaced by a single multiple
assignment statement. By staid semantics, a sequence of assignments can be replaced by a single assignment statement. �

For two multiple assignment statements m and m′ and the multiple assignment statement m′′ corresponding to their
composition, we get that out(m′′) = out(m) ∪ out(m′) and var(m′′) = var(m) ∪ var(m′). In these and similar situations we often
write out(m; m′), var(m; m′) etc. using m; m′ as a shorthand for introducing the multiple assignment statement m′′ .

Proposition 3.15 (Contravariant composition rules for methods/substitution). Let m and m′ be two multiple assignment statements,
then in staid statement semantics (m; m′) |�V = m |�V ◦ m′ |�V .

Proof. Let the substitution s = m |�V and s′ = [. . . , x′
j �→ e′

j, . . .] = m′ |�V . The composition m; m′ corresponds to the substi-
tution [. . . , x′

j �→ s(e′
j), . . .], which is the same as [. . . , x′

j �→ s(s′(x′
j)), . . .] = s ◦ s′ . �

Proposition 3.16. For staid statement semantics the statement composition is associative with skip as the neutral statement.

Proof. The composition of three multiple assignment statements m, m′, m′′ can be studied as the composition of the corre-

sponding substitutions,
(
(m; m′); m′′) |�V = (m |�V ◦ m′ |�V

) ◦ m′′ |�V = m |�V ◦ (m′ |�V ◦ m′′ |�V
) = (

m; (m′; m′′)
) |�V

. �
This gives us a monoid structure on statements with statement composition as the binary operation. We see that ex-

tracting variables out, var : S I,V → V becomes a monoid homomorphism from sequence of multiple assignment statements
to sets of variables (with ∪ as the binary operation).

With the initial algebra approach to syntax and staid semantics, we can now use a single multiple assignment statement
as the semantic normal form for any sequence of statements. We will typically choose either a trimmed assignment method
(m |�)�−�� or an assignment method extended to all the variables (m |�V)−� , though other representatives can be used when
needed.

We have omitted loops from our language since method execution will be controlled by an outside planner or iterator.
If iteration is needed within a method, we assume the library provides the needed facilities.

We can further extend substitution to act on multiple assignment statements, i.e., arbitrary methods presented in their
normal form.

Definition 3.17. Let V , W be compatible variables for an interface I , m ∈ S I,V be a multiple assignment statement m =
(x1, . . . , xn := e1, . . . , en) for x1, . . . , xn ∈ V and e1, . . . , en ∈ E I,V , and the substitution s : V → E I,W be an injective renaming
for out(m) = {x1, . . . , xn} ⊆ V .

The application of s to m yields a multiple assignment statement s(m) ∈ S I,W defined as s(x1), . . . , s(xn) := s(e1), . . . , s(en).
7

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Here the left hand side variables (from V) have to be replaced by variables (from W) by the substitution. The right hand
side expressions are changed according to the normal application of a substitution on expressions.

We can extend substitution to work on statement sequences by applying it individually to each statement. Such an
application is not interchangeable with staid statement semantics normalisation.

Example 3.18. Refer to Fig. 2, where we let m1 = (wa := �wi wr�) and m4 = (hr := ha/hi), thus the statement se-
quence m4; m1 has normal form m′′ = (hr, wa := ha/hi, �wi wr�). Define the substitution rr such that rr(hr) = rr(wr) = r
and the identity everywhere else, which fixes the aspect ratio r to be the same for both width and height. Now
rr(m4); rr(m1) = (r := ha/hi); (wa := �wir�) with normal form (r, wa := ha/hi, �wiha/hi�) which is very different from
rr(m′′) = (r, wa := ha/hi, �wir�) or equivalently (wa, r := �wir�, ha/hi) since the order of the assignments is immaterial.

3.3. Semantics for expressions

Our semantic notion is that of heterogeneous or many-sorted algebras [14]. We interpret types as denoting sets and
functions as denoting total set theoretic functions. This gives flexibility in choosing both the interface and a model for the
interface, but such that the predicate type and a few predicate operations must have a staid interpretation. This flexibility
allows us to work with any domain-specific API and associated semantics when solving practical problems. We just “plug in”
the appropriate interface and algebra to become compatible with the selected problem domain. The syntactic and semantic
framework has been defined with this in mind.

Definition 3.19. The model μ : I → Set of an interface I defines a set μ(t) for every t ∈ Typ(I) and a total function μ(f) :
μ(t1) × · · · × μ(tk) → μ(t) for every function f : t1, . . . , tk → t ∈ Fun(I).

Definition 3.20. A standard model μ for a staid interface I is a model for I where

μ(Predicate) = {tt, ff}, (25)

μ(TRUE) = tt, (26)

μ(FALSE) = ff, (27)

μ(==)(x, y) =
{

tt when x = y,
ff when x = y,

(28)

μ(_ ? _ : _)(p, y, z) =
{

y when p = tt,
z when p = ff,

(29)

μ(&)(p,q) =
{

tt when p = q = tt,
ff when p = ff or q = ff,

(30)

μ(|)(p,q) =
{

tt when p = tt or q = tt,
ff when p = q = ff,

(31)

μ(=>)(p,q) =
{

tt when p = ff or q = tt,
ff when p = tt and q = ff,

(32)

μ(!)(p) =
{

tt when p = ff,
ff when p = tt,

(33)

and tt and ff are distinct values.

Any model isomorphic to the standard model above is also considered a standard model for a staid interface.
In algebraic semantics variables are placeholders for values. A variable can be allocated a value of the appropriate type.

Definition 3.21. An allocation a : V → μ of values to variables V for an interface I with model μ defines a value a(v) ∈
μ(typ(v)) for all v ∈ Nam(V).

Define Aμ,V = {a : V → μ} to be the set of all allocations of values from μ to variables V .

Definition 3.22. Let μ be a model for the interface I and a ∈ Aμ,V be an allocation to variables V for I .
The evaluation [[_]]μ,a,t : E I,V ,t → μ(t) of expressions of type t ∈ Typ(I) with allocation a is defined by

[[e]]μ,a,t =
{

a(e) for e ∈ V ,

μ(f)([[e]] , . . . , [[e]]) for e = f (e , . . . , e) and f : t , . . . , t → t.
(34)
1 μ,a,t1 k μ,a,tk 1 k 1 k

8

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
We often omit the type information t from [[e]]μ,a,t , writing just [[e]]μ,a , since we always have that t = typ(e). Variable-
free expressions E I,∅ represent all values of μ that we can denote. A model μ may contain undenotable values. For instance,
relatively few of the mathematical real numbers are denotable.

Proposition 3.23. For a staid interface the standard model is staid.

Proof. Follows easily from the definition of staid expressions and the semantic properties above. �
We can now study semantics for substitutions.

Definition 3.24. Let μ : I → Set be a model and X, Y be variables for an interface I .
The semantics of a substitution s : X → E I,Y is a contravariant mapping of allocations [[s]]μ,_ : Aμ,Y → Aμ,X defined by ([[s]]μ,_(b)

)
(x) = [[s(x)]]μ,b for b ∈ Aμ,Y and x ∈ X .

Proposition 3.25. Let I be an interface, X and Y be variables for I , μ : I → Set be a model for I , s : X → E I,Y be a substitution, and
b : Y → μ be an allocation.

For any expression e ∈ E I,X we have that [[s(e)]]μ,b = [[e]]μ,[[s]]μ,b .

Proof. Here [[s]]μ,b ∈ Aμ,X is an allocation that gives all variables in e a value. The value for variable x is [[s]]μ,b(x) =
[[s(x)]]μ,b , where s(x) is the subexpression replacing x in e. Hence, for all variables x ∈ X , evaluating the subexpression s(x)
inside s(e) for allocation b yields the same value as using [[s]]μ,b(x) directly in e. �
Fact 3.26. For substitutions s1 : X → E I,Y and s2 : Y → E I,Z the composition semantics is contravariant [[s2 ◦ s1]]μ,_ =
[[s1]]μ,_ ◦ [[s2]]μ,_.

This is evident since [[s2(s1(x))]]μ,c = [[s1(x)]]μ,[[s2]]μ,c = [[x]]μ,[[s1]]μ,[[s2]]μ,c
= [[x]]μ,_

([[s1]]μ,[[s2]]μ,c

)=[[x]]μ,_
([[s1]]μ,_([[s2]]μ,_(c))

)
= [[x]]μ,_

(
([[s1]]μ,_ ◦ [[s2]]μ,_)(c)

) = ([[s1]]μ,_ ◦ [[s2]]μ,_(c)
)
(x) for any allocation c ∈ Aμ,Z and variable x ∈ X .

3.4. Semantics for statements

The standard semantics for imperative languages uses a global store indexed by locations [26]. The variables of the
program denote locations, and the content of the variable is stored at the location. This allows the modelling of pointers, of
data structures requiring more than one location, such as C style arrays, and other effects of a language design that allows
aliasing. Even though our notion of methods are imperative in the sense that we assign values to variables in the multiple
assignment statements, we do not need a global store in our setting. The reason is that we can model the association of
variables to values by allocations as defined above. Rather than using a global store, we define the semantics of methods as
allocation transformers.

Definition 3.27. Let μ : I → Set be a standard model for the staid interface I with variables V .
The semantics of a statement m ∈ S I,V is a transformation of allocations [[m]]μ,_ : Aμ,V → Aμ,V where for allocation

a ∈ Aμ,V and each method (see Definition 3.9)

[[x1, . . . , xn := e1, . . . , en]]μ,a(v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[[e1]]μ,a when v = x1,
...

[[en]]μ,a when v = xn,
a(v) otherwise,

(35)

[[skip]]μ,a(v) = a(v), (36)

[[m1;m2]]μ,a(v) = [[m2]]μ,[[m1]]μ,a (v), (37)

[[if p thenm1 elsem2 end]]μ,a(v) =
{ [[m1]]μ,a(v) when [[p]]μ,a = μ(TRUE),

[[m2]]μ,a(v) when [[p]]μ,a = μ(FALSE).
(38)

Fact 3.28. The semantics of statement sequencing is the covariant composition of the component allocation transformations,
[[m1; m2]]μ,_ = [[m2]]μ,_ ◦ [[m1]]μ,_.

Due to the semantics of substitutions being contravariant to the substitutions, and the substitutions being contravariant
to the methods, we end up with the semantics of a method and its associated substitution to be the same.
9

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Proposition 3.29. Let m ∈ S I,V be a method and s : X → E I,Y be a substitution for staid interface I with a standard semantics μ and
variables X, Y ⊆ V . Then the following holds:

[[m]]μ,_ = [[m |�V]]μ,_ : Aμ,V → Aμ,V

[[�s�V]]μ,_ = [[s−�]]μ,_ : Aμ,V → Aμ,V

Proof. Consider any v ∈ V and any a ∈ AI,V . For the first claim we have that

[[m]]μ,a(v) = [[m |�V (v)]]μ,a = [[m |�V]]μ,a(v).

Similarly for the second claim, we have that

[[�s�V]]μ,a(v) = [[�s�V (v)]]μ,a = [[s−�]]μ,a(v) �
Fact 3.30. The semantics of statement sequencing is contravariant to the semantics of the composition of the corresponding
substitution, i.e., for a method sequence m1; m2 we get that [[m1; m2]]μ,_ = [[m |�V

1 ◦ m |�V
2]]μ,_ : AI,V → AI,V .

This follows since [[m1; m2]]μ,_ = [[m2]]μ,_ ◦ [[m1]]μ,_ = [[m |�V
2]]μ,_ ◦ [[m |�V

1]]μ,_ = [[m |�V
1 ◦ m |�V

2]]μ,_ by Fact 3.26.

Proposition 3.31. Let μ : I → Set be a standard model for the staid interface I with variables V .
Then the semantics for methods m ∈ S I,V is staid.

Proof. The proof is by cases from the definition of staid statement semantics 3.13.

• Since all variables are distinct, the defined multiple assignment of new values to variables is independent of ordering
of assignments within the statement.

• A missing variable assignment or a vacuous assignment both represent the identity allocation mapping, [[ε := ε]]μ,a =
a = [[x1, . . . , xn := x1, . . . , xn]]μ,a for all a ∈ Aμ,V .

• The skip statement and the vacuous assignment both represent the identity allocation mapping, [[skip]]μ,a = a =
[[ε := ε]]μ,a for all allocations a ∈ Aμ,V .

• [[if p then x1, . . . , xn := e1, . . . , en else x1, . . . , xn := e′
1, . . . , e

′
n end]]μ,a(v) is equal to [[x1, . . . , xn := p ? e1 : e′

1, . . . , p ? en :
e′

n]]μ,a(v) for all variables v ∈ V and for all allocations a ∈ Aμ,V .
• The semantics of sequences m; m′ of multiple assignments m, m′ ∈ S I,V , where m′ = (. . . , x′

i, . . . := . . . , e′
i, . . .), is

[[m;m′]]μ,a(v) = [[m′]]μ,[[m]]μ,a (v)

=

⎧⎪⎪⎨
⎪⎪⎩

. . .

[[e′
i]]μ,[[m]]μ,a when v = x′

i ,
. . .

[[m]]μ,a(v) otherwise

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

. . .

[[e′
i]]μ,(m |�V)μ,a

when v = x′
i ,

. . .

[[m |�V]]μ,a(v) otherwise

=

⎧⎪⎪⎨
⎪⎪⎩

. . .

[[m |�V (e′
i)]]μ,a when v = x′

i ,
. . .

[[m |�V (v)]]μ,a otherwise, i.e., v = x j ∈ {. . . , x′
i, . . .}

= [[. . . , x′
i, . . . , x j, . . . := . . . ,m |�V (e′

i), . . . ,m |�V (x j) . . .]]μ,a,

for all variables v ∈ V and for all allocations a ∈ Aμ,V . �
3.5. Axioms and propositions for models

If a predicate expression is true for all allocations in a model, it is a “property” of the model. A property is an “axiom”
if we think of it as a requirement on which models we will accept. It is a “proposition” of the model if it happens to hold
in a chosen model. In principle we can prove the “propositions” from the “axioms” of a model. Technically “axioms” and
10

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
“propositions” are the same, the only difference being the authors’ perspective. We will use the term axiom except when
we specifically want to emphasise that the property should be proved for a model. Axioms demand properties of models,
without deciding exactly which model we are considering. The properties we defined for staid semantics of staid interfaces
are axioms on the models.

Definition 3.32. Let I be a staid interface and V a collection of variables for I .
An axiom is a predicate expression p ∈ E I,V ,Predicate.
A model μ for I satisfies an axiom p ∈ E I,V ,Predicate, written μ |=I,V p, iff [[p]]μ,a = μ(TRUE) for all allocations a ∈ Aμ,V .

For short we say that p holds for μ when meaning μ |=I,V p. We also write q |=I,V ,μ p for predicates p, q as a shorthand
for whenever μ |=I,V q then μ |=I,V p.

This definition gives us boolean expression logic as our specification formalism. Boolean expressions are part of our
staid interface notation, and are common as expressions in programming languages. Such axioms can be tested by running
them as normal code and providing test cases as input data for the predicate’s variables (allocations in our exposition
above) [27]. Algebraic specification theory identifies a sequence of increasingly more powerful logics leading up to predicate
logic: equational logic, conditional equational logic, boolean expression (propositional) logic, first order predicate logic [14].
In this sequence, boolean expression logic is the most powerful logic that can easily be tested in a programming language
setting.

Example 3.33. For a staid interface I with predicate ≤ : t, t → Predicate, the following axioms on variables {x, y, z} of type t
define a total order on the type t: x≤x (reflexive), x≤y & y≤x => x == y (antisymmetric), x≤y & y≤z => x≤z (transitive),
and x≤y | y≤x (connected).

Here we used the shorthand of providing a set of axioms P ⊆ E I,V ,Predicate rather than explicitly writing one big ax-
iom & p∈P p (recall that in the standard model & is associative and commutative):

(
μ |=I,V P

) = (∀(p ∈ P)(μ |=I,V p)
) =(

μ |=I,V (& p∈P p)
)
.

Axioms can be used to verify properties of software if they convey enough information about the model. Axioms are
resistant to variable substitution.

Proposition 3.34. Let X, Y be variables for a staid interface I , s : X → E I,Y a substitution, and μ a standard model for I . If an axiom
p ∈ E I,X,Predicate holds in μ, then s(p) ∈ E I,Y ,Predicate holds in μ.

Proof. That p ∈ E I,X,Predicate holds in μ means that p holds for every allocation a : X → μ. Let b : Y → μ be some allocation.
Then, for all e ∈ E I,Y we have that [[s(e)]]μ,b = [[e]]μ,[[s]]μ,b . Hence, s(p) holds for b, since p holds for any allocation. This is
the case for any b : Y → μ, thus s(p) will hold in μ whenever p holds in μ. �

Thus whenever μ |=I,X p holds then μ |=I,Y s(p) holds.

Example 3.35. Here we show how to specify semiring (sometimes called rig) using the notions we have introduced for
axioms. The interface can be written as

type T;
function mult (a:T, b:T) : T;
function one () : T;
function plus (a:T, b:T) : T;
function zero () : T;

with axioms stating that:

• mult is a monoid with one as unit:
mult (mult (a, b), c) == mult (a, mult (b, c)) and mult (a, one ()) == a and mult (one (), a) == a.

• plus is a commutative monoid with zero as unit:
plus (plus (a, b), c) == plus (a, plus (b, c)) and plus (a, zero ()) == a and plus (zero (), a) == a and
plus (a, b) == plus (b, a).

• mult distributes over plus :
mult (a, plus (b, c)) == plus (mult (a, b), mult (a, c)) and
mult (plus (b, c), a) == plus (mult (b, a), mult (c, a)).

• mult by zero annihilates:
mult (a, zero ()) == zero () and mult (zero (), a) == zero ().
11

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
A semiring is commutative if mult is commutative: mult (a, b) == mult (b, a). The standard example of a commutative
semiring is the natural numbers: multiplication for mult with 1 for one and addition for plus with 0 for zero .

A semiring is idempotent if plus is idempotent: plus (a, a) == a. Examples of idempotent commutative semirings are
the tropical semirings: addition for mult with 0 for one and minimum (or maximum) for plus with ∞ (respectively
−∞) for zero .

Idempotent commutative semirings also show up when we investigate dataflow constraint properties in Section 4.2.

4. Dataflow constraints

From now on we update our terminology to match the literature on multiway dataflow constraint systems. All interfaces
will be staid with standard models (two valued logic), thus expression and statement semantics are staid.

The constraints C I,V = E I,V ,Predicate are the predicate expressions for interface I with variables V . A constraint c ∈ C I,V
holds for an allocation a ∈ Aμ,V , or a satisfies c, when [[c]]μ,a = μ(TRUE). We also write A |=I,μ,V c when c holds for all
a ∈ A ⊆ Aμ,V

A method is a multiple assignment statement m ∈ S I,V , or dually, a substitution m |�V : V → E I,V which is contravariant
to the statement. The semantics of a method m is a covariant mapping of allocations, while the semantics of the cor-
responding substitution m |�V is a contravariant mapping of allocations, i.e., for a method sequence m1; m2 we have that
[[m1; m2]]μ,_ = [[m |�V

1 ◦ m |�V
2]]μ,_ : Aμ,V → Aμ,V . Note that in the following we use m; m′ consistently as a shorthand for the

single multiple assignment statement corresponding to this composition in staid semantics (Proposition 3.14).

Definition 4.1. Let c ∈ C I,V be a constraint on variables V for the interface I , μ a model for I , and m a method with inputs
X and outputs Y , for variables X, Y ⊆ V . The method m satisfies the constraint c in μ, written m |=I,μ,V c, iff [[c]]μ,[[m]]μ,a

holds for any allocation a ∈ Aμ,V .

Note that satisfaction entails that m establishes c in one step. We also say that the constraint c holds for m in μ. We can
stretch this to M |=I,μ,V c for a set of methods M , meaning that c holds for every m ∈ M .

Fact 4.2. The satisfaction m |=I,μ,V c is equivalent to μ |=I,V m |�V (c).

Both these definitions boil down to [[m |�V (c)]]μ,a holding for all allocations a ∈ Aμ,V . The fact basically elevates constraint
satisfaction by a method to a “proposition” m |�V (c) == TRUE that should hold in the model. There is a rich literature and
many tools, see for instance [20,16], for proving propositions from known properties (axioms) of the model.

Such a property can also be tested by choosing allocations (values) for the variables. Testing helps increase confidence
in the correctness of the code m related to the constraint c. Randomly selecting allocations is often an efficient approach to
thorough testing [28]. In some circumstances a careful selection of test cases amounts to proving a proposition [29].

Definition 4.3. Let μ be a model for an interface I . A (multiway) dataflow constraint is a tuple d = 〈V , c, M〉 where

• V are variables for I ,
• c ∈ C I,V is a constraint, and
• M ⊆ S I,V is a set of methods m ∈ M on V .

The dataflow constraint is sound for μ if M |=I,μ,V c.

Let var, con and met be the projections for dataflow constraints that return the variables V , the constraint c and the
methods M , respectively. We denote by D I,V the set of all dataflow constraints with variables V for interface I . The sound
dataflow constraints for a model μ for I are denoted by D I,V ,μ ⊆ D I,V .

Example 4.4. Assume the declarations and axioms for ≤ from Example 3.33. A dataflow constraint that maintains the
relationship x ≤ y between two variables x and y is:

R = 〈{x : t, y : t}, x ≤ y, {x := y, y := x, if x≤y then skip else x, y := y, x end}〉.
The first two methods satisfy c because x≤x (reflexive), while the third (provided in a non-normalised form) satisfies c
because x≤y | y≤x (connected).

We mentioned above that the set of input and output variables of a method do not have to be mutually exclusive. The
values that a method computes to its output variables can depend on the previous values of those variables. We do not
assume that methods are idempotent. The following example demonstrates this.
12

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Example 4.5. Assume a base API with integer operations and the integers as semantics. Define the dataflow constraint

〈{ f1 : int, f2 : int},TRUE, { f1, f2 := f2, f1 + f2}〉.
Executing the constraint’s sole method repeatedly, from initial values f1 = 0, f2 = 1, leads to the variable f1 to go through
the Fibonacci numbers.

4.1. Dataflow constraint combinators

Dataflow constraint combinators allow us to combine dataflow constraints in the same way as we combine constraints:
there are dataflow constraints for TRUE, FALSE, disjunction, sequencing, conjunction and implication. The combinators take
into account combining sets of variables, combining the constraints and combining the methods of the involved dataflow
constraints. The definitions below are not canonical, and other variations are possible. The combinators are defined to
achieve many of the expected properties of logical combinators while being syntactically recognisable. For instance:

• When defining the disjunction of two dataflow constraints d1, d2, we take the disjunction of the two constraints
con(d1) | con(d2) and union of the two method sets met(d1) ∪ met(d2). We could have included also two-sided sequenc-
ing of the two method sets {(m1; m2), (m2; m1) | m1 ∈ met(d1), m2 ∈ met(d2)}, but then we would not achieve associa-
tivity of the disjunction combinator. If we decide to use one-sided sequencing {(m1; m2) | m1 ∈ met(d1), m2 ∈ met(d2)}
we loose commutativity.

• For sequencing of two dataflow constraints d1, d2 we take the conjunction of the two constraints con(d1) & con(d2) and
the sequence of the two method sets met(d1); met(d2) ={(m1; m2) | m1∈met(d1), m2∈met(d2)} when the output variable
of m2 does not modify con(d1). We could have relaxed this to also allow

(
m1; if m |�

2 (con(d1)) then m2 else error end
)
.

Here the lack of an alternative for the else part is written as error. Now at runtime the planner could backtrack
when reaching an error, but then the runtime efficiency guarantees of planners will change. Or we could prove that the
condition m |�

2 (con(d1)) will hold in the selected model, and include the unconditional m1; m2 in met(d1; d2), but this
requires a powerful proof system as part of a software tool for the sequence combinator, giving unpredictable compile
times for dataflow constraint combinators.

• We could introduce additional syntactic constraints on methods, e.g., that output and input variable sets always have
to be disjoint. This will have the beneficial effect of making method sequencing idempotent (m; m) = m, but would
disallow normalising sequences of methods to a single method. For instance, normalising the method sequence x := y +
5; y := x + 4 becomes impossible since x, y := y + 5, y + 9 would be illegal.

That said, studying planners and their syntactic requirements may allow us to come up with more specialised variants of
the dataflow constraint combinators with interesting and useful properties.

The following two dataflow constraints play an important role in establishing useful algebraic properties of constraint
system combinators.

Definition 4.6. The dataflow constraint F = 〈∅, FALSE, ∅〉. The dataflow constraint T = 〈∅, TRUE, {ε := ε}〉.

Definition 4.7. Let d1 = 〈V 1, c1, M1〉 and d2 = 〈V 2, c2, M2〉 be dataflow constraints for interface I with variables V 1, V 2 ⊆ V .
We define the relation d1 ⊆ d2 on D I,V by c1 = c2 and M1 ⊆ M2.

Proposition 4.8. Let V be variables for an interface I and d1, d2 ∈ D I,V be dataflow contraints such that d1 ⊆ d2 .
If d2 is sound for a model μ for I , then d1 will also be sound for μ.

Proof. It is clear that d1 is a dataflow constraint with fewer methods than d2, but each method in d1 is also in d2. Since
every method in d2 satisfies the soundness criterion, so will every method in d1. �

In general, if we remove some methods from a sound dataflow constraint it will still be sound.
We will now define how to combine dataflow constraints and adapt them to different use contexts.

Definition 4.9. Let d = 〈V , c, M〉 ∈ D I,V be a dataflow constraint for interface I with variables V and W , and s : V → E I,W

be a substitution.
Then a method m ∈ M is substitution safe for s when (1) s is an injective renaming on out(m), i.e., s(out(m)) ⊆ W and for

every x, y ∈ V it is the case the s(x) = s(y) ⇒ x = y, and (2) s is interjection safe meaning the resulting method s(m) does
not unintentionally modify variables being used by s(m) and s(c), i.e., var

(
s((var(m) ∪ var(c)) \ out(m))

) ∩ s(out(m)) = ∅.
Define s(d) = 〈W , s(c), M ′〉 where M ′ = {s(m) | m ∈ M and m is substitution safe for s}.

It is obvious that s(d) ∈ D I,W is a dataflow constraint.
13

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Theorem 4.10 (Safe substitution preserves soundness). Let I be an interface, d = 〈V , c, M〉 a dataflow constraint, s : V → E I,W a
substitution, and V , W be variables for I .

If d is sound for a model μ for I , then s(d) is also a sound dataflow constraint for μ.

Proof. For a method s(m) ∈ M ′ there are two cases to consider: (1) variables v ∈ out(m) that are being assigned to in m,
. . . , v, . . . := . . . , e, . . . and (2) variables x ∈ (var(m) ∪var(c)) \out(m) that are not being assigned to. Both v and x are possibly
appearing on the right hand side of m and possibly used in c. The substitution will map variables v to variables w = s(v),
and map x to expressions s(x) and expressions e to expressions s(e). So in s(c) we will have w in place of v and s(x)
in place of x, and s(m) will have the form . . . , w, . . . := . . . , s(e), We know that m |�V (c), where v has been replaced
by e, holds in μ, and thus s(m |�V (c)), where v has been replaced by s(e) and x has been replaced by s(x), holds in μ. In
s(m) |�V (s(c)), v has been replaced by w that is replaced by s(e) and x has been replaced by s(x). Since m is substitution safe
for s, the substitution s(m) |�V does not capture any variable in s(x), thus s(m) |�V (s(c)) = s(m |�V (c)). Hence s(m) |�V (s(c))
holds in μ, as claimed. �

In other words, met(d) |=I,μ,V c implies met(s(d)) |=I,μ,W s(c). The substitution theorem allows us to reuse existing
dataflow constraints in new contexts. Here we remove methods rather than place conditions on s. If s is very well behaved,
i.e., it only renames the output variables of the methods in M , then none of the methods will be removed.

Proposition 4.11 (Disjunction). Let μ be a model for an interface I with variables V , and d1 = 〈V 1, c1, M1〉 and d2 = 〈V 2, c2, M2〉
be dataflow constraints, such that V 1, V 2 ⊆ V . Define d1|d2 = 〈V 1 ∪ V 2, c1|c2, M1 ∪ M2〉.

If both d1 and d2 are sound in μ, then d1|d2 is a sound dataflow constraint in μ.

Proof. The requirement for soundness is that any method establishes the constraint in one execution. This is clearly the
case since the methods of d1 establish c1 and hence c1|c2, and similarly for the methods of d2. �
Proposition 4.12 (Sequencing). Let μ be a model for an interface I with variables V , and d1 = 〈V 1, c1, M1〉 and d2 = 〈V 2, c2, M2〉 be
dataflow constraints, such that V 1, V 2 ⊆ V . Define d1; d2 = 〈V 1 ∪ V 2, c1&c2, M ′〉 where M ′ is the set of methods m1; m2 such that
out(m2) ∩ var(c1) = ∅, for all m1 ∈ M1 and m2 ∈ M2 .

If both d1 and d2 are sound in μ, then d1; d2 is a sound dataflow constraint in μ.

Note that we only allow methods in M ′ where the second method does not modify the satisfaction of the first constraint.

Proof. The methods of m1; m2 ∈ M ′ are such that m1 first establishes c1, then m2 establishes c2 without modifying any
values that are involved in c1. Thus m1; m2 establishes c1&c2 as required. �
Proposition 4.13 (Conjunction). Let μ be a model for an interface I with variables V , and d1 = 〈V 1, c1, M1〉 and d2 = 〈V 2, c2, M2〉
be dataflow constraints, such that V 1, V 2 ⊆ V . Define d1&d2 = (d1; d2)|(d2; d1).

If both d1 and d2 are sound in μ, then d1&d2 is a sound dataflow constraint in μ.

Proof. The methods from d1; d2 establish c1&c2, and the methods from d2; d1 establish c2&c1. The union of these methods
thus establish the disjunction of the constraint, as required. �

Because (c1&c2)|(c2&c1) = c1&c2, the conjunctive combinator establishes the same constraint as the sequence combina-
tor. It just provides a larger set of methods, since it combines the methods of m1 ∈ M1 and m2 ∈ M2 in both sequences
m1; m2 and m2; m1. The former sequence only includes method combinations where out(m2) ∩ var(c1) = ∅ and the latter
only combinations where out(m1) ∩ var(c2) = ∅.

Proposition 4.14 (Implication). Let μ be a model for an interface I with variables V , and d1 = 〈V 1, c1, M1〉 and d2 = 〈V 2, c2, M2〉
be dataflow constraints, such that V 1, V 2 ⊆ V . Define (d1 ⇒ d2) = 〈V 1 ∪ V 2, c1 => c2, M2 ∪ (M1; M2) ∪ M ′〉 where M1; M2 =
{m1; m2 | m1 ∈ M1, m2 ∈ M2} and M ′ = {if c1 then m2 else skip end | m2 ∈ M2}.

If both d1 and d2 are sound in μ, then d1 => d2 is a sound dataflow constraint in μ.

Proof. First note that if c2 holds then c1 => c2 holds, irrespective of the value of c1. Thus all methods of M2 make the
implication hold. Second note that all methods of M1 makes c1 hold, so they need to be followed by some method from
M2 to make c2 and thus the implication hold. Thus all methods of M1; M2 make the implication hold. Third note that if c1
holds a method from M2 must be executed, while if c1 does not hold, there is no need to update any variables. Thus all
methods of M ′ make the implication hold. �
14

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
If we had a way of making ! c1 hold, say a dataflow constraint d3 = 〈V 1, ! c1, M ′′〉, then we could add M ′′ to the set of
methods that makes c1 => c2 hold since they invalidate the premise c1. We are unable in general to automatically take
a method that establishes c and create a method that establishes ! c, and thus will not provide a negation combinator for
dataflow constraints.

We now have matching combinators for all the positive logical connectives.

Example 4.15. From the dataflow constraint R in Example 4.4 we can construct a dataflow constraint on three variables. Let
s = [x �→ y, y �→ z] be a substitution. Applying the substitution to R gives us the dataflow constraint s(R) = 〈{y : t, z : t}, y ≤
z, {(y := z), (z := y),

(
y, z := y≤z ? y : z, y≤z ? z : y})〉 after normalising the methods to the multiple assignment format.

R; s(R) = 〈{x : t, y : t, z : t}, x ≤ y & y ≤ z,

{(x, z := y, y), (y, z := x, x), (x, y, z := x≤y ? x : y, x≤y ? y : x, y)}〉,
s(R); R = 〈{x : t, y : t, z : t}, y ≤ z & x ≤ y,

{(x, y := z, z), (x, z := y, y), (x, y, z := y, y≤z ? y : z, y≤z ? z : y)}〉
s(R)&R = 〈{x : t, y : t, z : t}, y ≤ z & x ≤ y,

{(x, y := z, z), (x, z := y, y), (y, z := x, x),

(x, y, z := x≤y ? x : y, x≤y ? y : x, y), (x, y, z := y, y≤z ? y : z, y≤z ? z : y)}〉.

Example 4.16. Here we show an example with a conjunction between two constraints that are inconsistent. Assume we
have a type t with arithmetic and comparison operations.

d1 = 〈{x : t, y : t}, x ≤ y, {(x := y), (y := x), (x := y − 1), (if x > y then x, y := y, x else skip end)}〉,
d2 = 〈{x : t, y : t}, x > y, {(y := x − 1), (if x ≤ y then x, y := y, x − 1 else skip end)}〉

Let the global system have the variables x, y. The conjunction of these constraints yields

d1&d2 = 〈{x : t, y : t}, x≤y&x > y, {}〉.
Given normal integer semantics for t there is obviously no way of satisfying the combined constraint. The set of methods
also reduce to the empty set since all output variables of the methods are used in the constraint. Thus soundness has been
preserved by the conjunction.

Example 4.17. This is a variation of the above example, but here we use a substitution to achieve a consistent constraint
when combining the two dataflow constraints. Assume we have the same type t and the same two dataflow constraints as
above. Let the global system have the variables a, b : t and let s = [x �→ a, y �→ b] and s′ = [x �→ b, y �→ a] be substitutions
into the global variables a, b : t . The conjunction of the two constraints with their respective substitutions yields

s(d1)&s′(d2) = 〈{a : t,b : t},a≤b&b > a, {}〉.
Again we get an empty set of methods which ensures preservation of soundness. In this case, with standard integer se-
mantics for t , we can actually satisfy the combined constraint, though our syntactic combinator rules cannot take this into
account.

However, if we apply the implication combinator, we get a more interesting result.

s(d1) => s′(d2)

= 〈{a : t,b : t},a≤b => b > a, {
(a := b − 1), (if b ≤ a then b,a := a,b − 1 else skip end),

(a := b;a := b − 1),

(b := a;a := b − 1),

(a := b − 1;a := b − 1),

(if a > b then a,b := b,a else skip end;a := b − 1),

(a := b; if b ≤ a then b,a := a,b − 1 else skip end),

(b := a; if b ≤ a then b,a := a,b − 1 else skip end),
15

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
(a := b − 1; if b ≤ a then b,a := a,b − 1 else skip end),

(if a > b then a,b := b,a else skip end; if b ≤ a then b,a := a,b − 1 else skip end),

(if a≤b then a := b − 1 else skip end),

(if a≤b then if b ≤ a then b,a := a,b − 1 else skip end else skip end).}〉.
Here we have three groups of methods: those from s′(d2), those from s(d1); s′(d2), and finally the methods from s′(d2)

checked by the premise a≤b from s(d1). With axioms giving properties of the model and proof support tools, we might
analyse what is going on in more detail and simplify the resulting dataflow constraint system.

For some specific constraints for an interface I and variables V , such as the constraint c = (x1 == e1 & . . . & xn == en) ∈
C I,V , where e1, . . . , en ∈ E I,Y and X, Y ⊆ V for X = {x1, . . . , xn}, it is possible to generate a method m = (x1, . . . , xn := e1,

. . . en). This is, however, a one-way dataflow method from variables Y to variables X , which does not give methods for
dataflows into Y . Given specifications for I , e.g., that the expressions e1, . . . , en are affine, it is possible to generate more
methods. Exploring such possibilities builds on specifications with support tools. Though an interesting research direction,
it is beyond the scope of this paper.

4.2. Dataflow constraint combinator properties

Here we look into properties of dataflow constraints, starting with how dataflow constraints interact with substitutions.
Recall (Fact 3.7) that substitutions form a monoid with substitution composition ◦ as the binary associative operation and
the identity substitution as the neutral element.

Proposition 4.18 (Substitution is a monoid action on dataflow constraints). Let I be an interface, V variables for I , s1, s2 : V → E I,V
be substitutions and d ∈ D I,V a dataflow constraint. Then the following monoid action properties hold for substitutions applied to
dataflow constraints.

• The identity substitution idV : V → V is neutral on dataflow constraints, i.e., idV (d) = d.
• Substitution composes on dataflow constraints, i.e., s2(s1(d)) = (s2 ◦ s1)(d).

The monoid action preserves soundness for d.

Proof. Most of the needed properties follow from the definition of the identity substitution and of substitution composi-
tion. We need to show that the methods filtered by substitution safety in the second bullet point are met

(
(s2 ◦ s1)(d)

) =
met

(
s2(s1(d))

)
.

On both sides the injective renaming property gives the same filter, ensuring that the variables out(m) are renamed
to distinct variables out(s2(s1(m))). The interjection safety criterion, for every m ∈ met(d), on the left of the equation
above expands to var

(
s1((var(m) ∪ var(c)) \ out(m))

) ∩ s1
(
out(m)

) = ∅ and var
(
s2((var(s1(m)) ∪ var(s1(c))) \ out(s1(m)))

) ∩(
s2(out(s1(m)))

) = ∅, while on the right side of the equation expands to var
(
(s2 ◦ s1)((var(m) ∪ var(c)) \ out(m))

) ∩ (
(s2 ◦

s1)(out(m))
) = var

(
s2(s1((var(m) ∪ var(c)) \ out(m)))

) ∩ (
s2(s1(out(m)))

) = var
(
s2((var(s1(m)) ∪ var(s1(c))) \ out(s1(m)))

) ∩(
s2(out(s1(m)))

) = ∅. This matches the second safety criterion from the left side. Note that if the first safety criterion on the
left is violated, so will the second criterion: the injective renaming aspect of s2 on out(s1(m)) will propagate the interjected
variables from var

(
s1((var(m) ∪ var(c)) \ out(m))

)
, which will then not be disjoint from

(
s2(out(s1(m)))

)
.

Since substitution preserves soundness, the monoid action also preserves soundness. �
Proposition 4.19 (Substitution distributes over dataflow constraint combinators). Let V , W be variables for I , s : V → E I,W be a sub-
stitution and d1, d2 ∈ D I,V be dataflow constraints. Then the following distribution properties of substitution over dataflow constraint
combinators hold for any staid semantics.

• s(d1|d2) = s(d1)|s(d2)

• s(d1; d2) ⊆ s(d1); s(d2)

• s(d1&d2) ⊆ s(d1)&s(d2)

• s(d1 => d2) ⊆ s(d1) => s(d2).

The distribution properties also preserve soundness.

Proof. Let V 1, V 2 ⊆ V be variables, d1 = 〈V 1, c1, M1〉 and d2 = 〈V 2, c2, M2〉 be dataflow constraints, and W1 = var(s(V 1))

and W2 = var(s(V 2)).
For all the combinators � ∈ {|, ; , &, => }, variables var(s(var(d1 � d2))) = var(s(V 1 ∪ V 2)) = W1 ∪ W2 = var(s(V 1)) ∪

var(s(V 2)) = var(s(d1)) ∪ var(s(d2)) = var(s(d1) � s(d2)).
16

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
For all the combinators � ∈ {|, &, => }, constraints con(s(d1 � d2)) = s(con(d1 � d2)) = s(con(d1) � con(d2)) =
s(con(d1)) � s(con(d2)).

For the disjunction combinator | the new set of methods are M1 ∪ M2. The safety criterion filtering is thus the same for
both s(d1|d2) and s(d1)|s(d2).

For the sequencing combinator; we need to consider two filtering mechanisms. In s(m1; m2), for m1 ∈ M1, m2 ∈ M2,
we know that all cases where m2 modifies the constraint c1 are filtered out, then the methods are normalised to multiple
assignment and the substitution safety requirement is applied. In s(m1); s(m2), for m1 ∈ M1, m2 ∈ M2, we know that first the
substitution safety condition filters away methods from M1 and M2, before the sequencing constraint filters out those s(m2)

that modify s(c1). Since s is an injective renaming on out(m2) the latter filtering amounts to former sequence constraint
filtering. The methods m1 and m2 can fail the substitution safety criterion for s for two reasons: (1) s is not an injective
renaming on out(m1) ∪ out(m2) but then s will not be an injective renaming on the normalised method m1; m2, or (2) s
interjects new output variables from s(m1) into its right hand side expressions or into c1 or similarly for s(m2) and s(c2) but
in either case applying s to the normalised method m1; m2 will violate the interjection criterion. Thus s(d1; d2) ⊆ s(d1); s(d2).

The remaining combinators, � ∈ {&, => } create the new set of methods from unions of sequences, which behaves
similarly to the sequencing operator for the reated sets. In addition => adds a conditional method which adds var(c1) to
the inerjection criterion for s(d1 => d2) but not for s(d1) => s(d2). Thus s(d1 � d2) ⊆ s(d1) � s(d2).

All the combinators and substitution preserve soundness individually, and hence in combination. �
From Example 3.18 we know there exists m1 and m2 which individually satisfy the substitution safety criterion, but

where the normalised method m1; m2 does not. Hence we do not get an equality between s(d1; d2) and s(d1); s(d2).

Proposition 4.20 (Disjunction combinator forms an idempotent commutative monoid). Let d1, d2 and d3 be dataflow constraints in
D I,V . Then the following idempotent commutative monoid properties hold in staid semantics.

• F |d1 = d1
• d1|F = d1
• (d1|d2)|d3 = d1|(d2|d3)

• d1|d2 = d2|d1
• d1|d1 = d1

These properties also preserve soundness.

Proof. Seen by expanding the components of the combined dataflow constraints on both sides of the equality. Note that
the individual operations preserve soundness on both sides of the equality. �
Proposition 4.21 (Sequencing combinator forms a monoid with annihilation). Let d1, d2 and d3 be dataflow constraints in D I,V . Then
the following monoid properties with annihilation hold in staid semantics.

• T ; d1 = d1
• d1; T = d1
• (d1; d2); d3 = d1; (d2; d3)

• F ; d1 = F
• d1; F = F

These properties also preserve soundness.

Proof. Seen by expanding the components of the combined dataflow constraints on both sides of the equality. Note that
the individual operations preserve soundness on both sides of the equality. �
Proposition 4.22 (Conjunction combinator forms a commutative monoid with annihilation). Let d1, d2 and d3 be dataflow constraints
in D I,V . Then the following commutative monoid with annihilation properties hold in staid semantics.

• T &d1 = d1
• d1&T = d1
• (d1&d2)&d3 = d1&(d2&d3)

• d1&d2 = d2&d1
• F &d1 = F
• d1&F = F

These properties also preserve soundness.
17

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Proof. Seen by expanding the components of the combined dataflow constraints on both sides of the equality. Note that
the individual operations preserve soundness on both sides of the equality. �
Proposition 4.23 (Distributivity of sequencing and conjunction combinators over disjunction combinator). Let d1, d2 and d3 be
dataflow constraints in D I,V . Then the following distributivity properties hold in staid semantics.

• (d1|d2); d3 = (d1; d3)|(d2; d3)

• d1; (d2|d3) = (d1; d2)|(d1; d3)

• (d1|d2)&d3 = (d1&d3)|(d2&d3)

The distributivity properties also preserve soundness.

Proof. Seen by expanding the components of the combined dataflow constraints on both sides of the equality. Note that
the individual operations preserve soundness on both sides of the equality. �

This establishes similar combinator laws for dataflow constraints as we have for logical combinators. The major exception
is the distributivity of conjunction over disjunction, (d1&d2)|d3 = (d1|d3)&(d2|d3), which does not hold.

The following two facts relate dataflow combinators to the semiring concept 3.35.

Fact 4.24 (The sequencing combinator gives an idempotent semiring). The dataflow combinators in staid semantics define an
idempotent semiring by sequencing for mult with T for one and disjunction for plus with F for zero .

Fact 4.25 (The conjunction combinator gives an idempotent commutative semiring). The dataflow combinators in staid semantics
define an idempotent commutative semiring by conjunction for mult with T for one and disjunction for plus with F
for zero .

On a case by case basis we may come up with more combinators than those above. For instance, assume two dataflow
constraints d1 = 〈V 1, c, P1〉 and d2 = 〈V 2, c, P2〉 that have the same constraint c and their combination d = 〈V 1 ∪ V 2, c, M ′〉,
where M ′ = met((d1&d2)|d1|d2). The combined dataflow constraint has a larger set of methods for solving the constraint c.

5. UI examples

Prior to fitting our constraint systems semantics to the institution settings, the topic of the next section, we relate the
constructions thus far to practical programming. We have achieved the following: for an interface I with model μ we can
flexibly combine independently developed dataflow constraints d1 = 〈V 1, c1, M1〉, . . . , dn = 〈Vn, cn, Mn〉.

First we need a common set of variables V and for each di a substitution si : V i → E I,V . This aligns all constraints on
the same set of variables, possibly with local transformations on each constraint system’s methods and local constraints. If
each transformation is sufficiently well behaved, i.e., they are mostly renamings on each di ’s output variables, the resulting
constraint system will have enough methods to satisfy the desired constraints efficiently.

We demonstrate with the familiar image scaling GUI example how substitution and composing (with conjunction) of
dataflow constraints enable reuse when constructing constraint systems.

Example 5.1. In our example GUI for scaling an image, see Section 2 and Example 3.18, the user can specify the width of
the image either as the number of pixels wa or as a scaling factor wr to be applied to the initial width wi of the image;
and similarly for the corresponding height variables hi, ha , and hr . The two dataflow constraints, one between wa , wi , and
wr , and the other between ha , hi , and hr , can be constructed by substitution from the same dataflow constraint

G = 〈{vi : int, va : int, vr : float}, �vi vr� == va, {(va := �vi vr�), (vr := va/vi)}〉.
We assume normal semantics for the types and operations and that vi = 0. The substitutions sw = [vi �→ wi, va �→ wa, vr �→
wr] and sh = [vi �→ hi, va �→ ha, vr �→ hr] maps G to the global variables wi, wa, wr, hi, ha, hr as desired. The conjunction of
these dataflow constraints is a dataflow constraint whose constraint defines when an image scaling GUI is in a consistent
state and whose methods provide the means to bring the GUI into such a state:

sw(G) & sh(G) = 〈{wi : int, wa : int, wr : float,hi : int,ha : int,hr : float},
�wi wr� == wa & �hihr� == ha,

{(wa,ha := �wi wr�, �hihr�),
(wa,hr := �wi wr�,ha/hi),
18

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
(wr,ha := wa/wi, �hihr�),
(wr,hr := wa/wi,ha/hi)}〉.

Here we see that the first method (wa, ha := �wi wr�, �hihr�) follows automatically from the constraint �wi wr� == wa &
�hihr� == ha . Since the constraint is affine, we could conceivably use a computer algebra tool to also generate the remaining
methods.

Assume now a GUI otherwise the same, except for requiring that the width and height are scaled by the same factor
r. Define rr = [wr �→ r, hr �→ r] to map the width and height ratios to the common ratio r. Thus, the global variables are
V = {wi, wa, hi, ha, r}. A suitable dataflow constraint for this GUI is attained by using slightly different substitutions. Let
rw = �rr�V ◦ sw = [vi �→ wi, va �→ wa, vr �→ r] and rh = �rr�V ◦ sh = [vi �→ hi, va �→ ha, vr �→ r]. Then

rw(G) & rh(G) = 〈{wi : int, wa : int,hi : int,ha : int, r : float},
�wir� == wa & �hir� == ha,

{(wa,ha := �wir�, �hir�),
(wa, r := �wi(ha/hi)�,ha/hi),

(ha, r := �hi(wa/wi)�, wa/wi)}〉.
The system obtained by �ra�{wi ,wa,hi ,ha}(sw(G) & sh(G)) is much smaller,

〈{wi : int, wa : int,hi : int,ha : int, r : float},
�wir� == wa & �hir� == ha,

{(wa,ha := �wir�, �hir�)}〉.
All other methods fail the substitution safety criteria for applying �rr�V to them.

We now give a second example on modelling and implementing a GUI as a dataflow constraint. The focus is on dynamic
composition of GUI fragments and reasoning about global properties that should hold in such compositions.

Example 5.2. See Fig. 3 for a GUI for scheduling a conference day, where the day starts at time S and ends at time E , and
each agenda item i has a start time si , duration di , and end time ei . An agenda item must satisfy ei == si + di ; we assume
the base API defines + for adding a duration to time (and similarly − for subtracting), and also overloads + for summing
two durations. A dataflow constraint for an agenda item would have at least a method that computes e from s and d, but
depending on the desired GUI functionality, possibly also one that computes s from e and d. In this example we choose
both, and the dataflow constraint for agenda items is

D1 = 〈{s : date,d : duration, e : date}, e == s + d, {e := s + d, s := e − d}〉.
Each consecutive pair of agenda items must satisfy, ei == si+1. Again, based on the desired functionality, whether earlier

agenda items should be adjusted after changes on later ones, the dataflow constraint that connects two adjacent agenda
items may have one or two methods. We again choose the design where data can flow to both directions:

D2 = 〈{eprev, snext}, eprev == snext, {snext := eprev, sprev := enext}〉.
Finally, the first (index 0) and last (index n) agenda items must satisfy s0 == S and en == E . Suitable substitutions on C2
gives dataflow constraints that can model these dependencies.

Assuming the program variables S and E , as well as si , di , and ei for i = 0, . . . , n, are bound to GUI widgets appropriately,
we get a well-behaved GUI by constructing the following new dataflow constraints via substitution:

K S = [eprev �→ S, snext �→ s0](D2),

K E = [eprev �→ en, snext �→ E](D2),

Ai = [s �→ si,d �→ di, e �→ ei](D1), for all i = 0, . . . ,n,

Ri = [eprev �→ ei, snext �→ si+1](D2), for all i = 0, . . . ,n − 1.

Further, our semantics of dataflow constraints allows for easy reasoning about invariants that the conjunction of the
constraints maintain. For example, a correct GUI always satisfies S + d0 + · · · + dn == E . Each conjunction L == Ai&Ri
gives the constraint ei == si + di & si+1 == ei , which simplifies to si+1 == si + di . Easy inductive argument shows that
in the conjunction L0& · · ·&Ln−1, sn == s0 + ∑

i=0,...,n−1 di holds. The invariant then follows directly from the conjunction
K S &(L0& · · ·&Ln−1)&An&K E .
19

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Fig. 3. A GUI implemented as a dynamic composition of fragments of GUI logic represented with dataflow constraints.

The above example is rather simple, but it highlights how fragments of GUI logic compose, and how the programmer
can be assured that the composition is well-behaved. We implemented the example using our constraint system based
GUI library HotDrink [24]; Fig. 3 shows a snapshot. Users can add, remove, and reorder agenda items at will, but as these
operations are defined in terms of the above substitutions, we can be certain that the invariant is respected.

6. Institution based module system

An institution [13] is a framework for relating syntax, specifications and models. It can be interpreted as a framework
for modular reuse of specification and code. We use this interpretation to formalise a module framework for constraint
systems. The restrictions the institution concept places ensures that such a module system will be very well behaved,
yet have significantly more powerful reuse mechanisms, namely signature morphisms, than standard module systems. In
addition, the institution framework allows the use of institution-independent tools, such as the institution-independent
specification structuring mechanisms [30] and syntactic theory functors for reuse and growing institutions piecemeal [31].
Institution theory is very general, phrased in terms of categories, functors and a satisfaction relation. We will give a short
overview of the needed concepts.

Many authors have investigated relationships between institutions, e.g., reuse based on theoroidal comorphisms (formerly
called maps of institutions) [32,33]. Most of this work is tied to logical frameworks, in line with Goguen and Burstall’s
original motivation for institutions to provide a framework for studying logical model-theory [13]. It is beyond the scope of
this paper to cover these topics.

Multiway dataflow constraint systems are built by coordinating individual dataflow constraints on a set of global vari-
ables. A modular reuse system needs to place the individual dataflow constraints appropriately in the global systems. Central
is the mapping of local variables from each dataflow constraint to the global setting.

In the next subsection we define the notions of categories and functors that we need. All the needed building blocks
have already been presented. Then we define the notion of institution, and instantiate that as a modular framework for
constraints and dataflow constraints.

6.1. Categories for constraint systems

As a reminder, a category consists of objects and morphisms. Morphisms connect two objects: the source and the target.
Every object A has an identity morphism idA : A → A. Every two morphisms f : A → B and g : B → C can be composed to
a morphism f ; g : A → C . The identity morphism is the identity for composition, i.e., for f : A → B , we have that idA; f = f
and f ; idB = f . Composition is associative, i.e., for f : A → B , g : B → C and h : C → D , (f ; g); h = f ; (g; h). The canonical
example of categories is Set that has sets as objects, total functions between sets as morphisms, identity functions on sets
as identity morphisms, and function composition as composition of morphisms.

Definition 6.1. For an interface I , model μ : I → Set and variables V for I , let Aμ,V be the set of allocations from V to μ.
The discrete category AllI,V ,μ is defined by

• objects: the powerset of Aμ,V , i.e., every subset A ⊆ Aμ,V is an object,
• morphisms: a single morphism idA : A → A for every A ⊆ Aμ,V ,
• identity morphism: the single morphism idA : A → A has to be the identity morphism for the object A ⊆ Aμ,V ,
• composition: for every morphism idA : A → A, the composition idA; idA = idA (the only possible choice).

Definition 6.2. For an interface I , the category SubvarI is defined by

• objects: an object for every collection of variables V ,
• morphisms from object V to V ′: all substitutions s : V → E I,V ′ from V to expressions on V ′ ,
• identity morphism on V : the identity substitution on variables V , and
• composition: composition of substitutions.
20

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Here we see that a morphism does not have to be a function between two objects. The substitutions take us from
variables to expressions, but have an associative composition operation with the identity substitution as the neutral element,
as required for a category.

We may construct categories with different objects but from the same morphisms as above.

Definition 6.3. For a staid interface I , the category ConI is defined by

• objects: an object is C I,V , the set of all constraints, for every collection of variables V ,
• morphisms from object C I,V to C I,V ′ : all substitutions s : V → E I,V ′ interpreted as substitutions on constraints,
• identity morphism on C I,V : the identity substitution on variables V , and
• composition: composition of substitutions.

Given an element c ∈ C I,V , the substitution maps it to an element s(c) ∈ C I,V ′ . In this case we have that the morphisms
actually are functions from constraints to constraints, with function composition as morphism composition. Thus Con I is a
subcategory of Set, written as ConI ⊆ Set.

Definition 6.4. For a staid interface I , the category DFCI is defined by

• objects: an object is D I,V , the set of all dataflow constraints, for every collection of variables V ,
• morphisms from object D I,V to D I,V ′ : all substitutions s : V → E I,V ′ interpreted as substitutions on dataflow constraints,
• identity morphism on D I,V : the identity substitution on variables V , and
• composition: composition of substitutions.

Recall the monoid action properties on dataflow constraints (Proposition 4.18) to see that this actually is a category:
calling the composition of two substitutions or calling them indvidually in sequence give the same result (s2 ◦ s1)(d) =
s2(s1(d)) as required. Here we also map sets to sets using the substitution function, thus DFC I ⊆ Set.

Another twist on making categories is the dual (or opposite) category. A dual category has the same objects and mor-
phisms as the original category, but the morphisms have swapped source and target nodes (so the direction of composition
also changes). Recall that methods behave dually to substitutions, with composition in the opposite order. Thus reversing
the arrows of the above categories is replacing every substitution s : V → E I,V ′ by the method s−� : V ← E I,V ′ , and we
achieve dual categories. In general, dual categories can be constructed even if the reversed morphisms do not have reason-
able interpretations. We can always restore the original category by taking the dual of the dual category; in the example
case this is switching back from methods to substitutions.

6.2. Functors

A functor is a mapping between categories. Given two categories C and D, a functor F : C → D maps objects to objects
and morphisms to morphisms, preserving identity morphisms and composition: for every object A in C, F (idA) = idF (A) , and
for every morphism f : A → B and g : B → C in C, F (f ; g) = F (f); F (g).

For example, we have a functor conI : SubvarI → ConI , given by conI (V) = C I,V , which maps a collection of variables
to the constraints on those variables, and conI (s : V → V ′) = s : C I,V → C I,V ′ , which maps the substitution on variables
to the substitution on the constraints. Likewise we have a functor dfcI : SubvarI → DFCI which takes variables V for I to
dataflow constraints D I,V , and maps substitutions in SubvarI to substitutions in DFCI . Interestingly, we also have functor
dcnI : DFCI → ConI that extracts the constraint con(d) from every dataflow constraint d ∈ D I,V . Such a functor is called
forgetful, since it forgets some of the structure of the source when mapping to the target.

We can define a functor alls : AllI,V ′,μ → AllI,V ,μ for a substitution s : V → E I,V ′ on variables.

• For an object A′ in AllI,V ′,μ , i.e., A′ ⊆ Aμ,V ′ , define the set of allocations alls(A′) = {[[s]]μ,_(a′) | a′ ∈ A′} ∈ Aμ,V .
• An identity mapping idA′ is mapped to the identity mapping idalls(A′) by alls(idA′), and
• composition in AllI,V ′,μ is mapped to composition in AllI,V ,μ by alls , basically since there is no other choice.

Now functors compose by the composition of mapping objects to objects and morphisms to morphisms, and the combined
mapping obeys the functor requirements. This also admits an identity functor, mapping a category to itself, by mapping
each object and each morphism to itself. It is now possible to define a category where the objects are the categories, the
morphisms are the functors, morphism composition is functor compostition, and the identity morphism is the identity
functor. This category is referred to as CAT.

Definition 6.5. For an interface I with model μ : I → Set, define the category AllI,μ by

• objects: the categories AllI,V ,μ for every collection of variables V for I ,
21

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
• morphisms from object AllI,V ′,μ to AllI,V ,μ: the functors alls : AllI,V ′,μ → AllI,V ,μ for every substitution s : V → E I,V ′ ,
• identity morphism on AllI,V ′,μ: the identity functor on AllI,V ′,μ ,
• composition: the composition of functors alls′ : AllI,V ′′,μ → AllI,V ′,μ with alls : AllI,V ′,μ → AllI,V ,μ is the functor alls;s′ :

AllI,V ′′,μ → AllI,V ,μ .

We see that AllI,μ ⊆ CAT.
The astute reader will notice that we can define a functor allI,μ : Subvarop

I → AllI,μ by allI,μ(V) = AllI,V ,μ and allI,μ(s−� :
V ← E I,V ′) = alls : AllI,V ′,μ → AllI,V ,μ . It goes from the dual of the category of variables and substitutions to the category
of categories of allocations. A functor from the dual category is called a contravariant functor to draw attention to this trait.

6.3. Institutions for constraints

Definition 6.6. An institution INST consists of

• a category Sig of signatures,
• a functor spec : Sig → Set of specifications
• a contravariant functor mod : Sigop → CAT of models,
• a satisfaction relation |= which for every object A of Sig defines a relation |=A⊆ mod(A) × spec(A),

such that the satisfaction condition holds: for every morphism f : A → A′ in Sig,

μ′ |=A′
(
spec(f : A → A′)

)
(c) ⇐⇒ (

mod(f op : A′ → A)
)
(μ′) |=A c,

where μ′ is an object of mod(A′) (model), and c ∈ spec(A) (specification).

We can now put together our categories and functors and define the institution of constraints. To ease reading of quanti-
fied formulas, we use · as a separator between the declaration of the quantified set X and the predicate p, thus we consider
∀x ∈ X · p as being clearer than ∀x : Xp or ∀(x : X)p especially when x : X is a large expression.

Definition 6.7. The institution CONS I,μ of constraints and allocations for a staid interface I with standard model μ consists
of

• the category SubvarI of variables and substitutions,
• the functor conI : SubvarI → ConI of constraints and substitutions,
• the contravariant functor allI,μ : Subvarop

I → AllI,μ of allocations from variables to μ,
• the V -indexed satisfaction relations |=I,μ,V ⊆ allI,μ(V) × conI (V) for variables V as an object of SubvarI , defined by

A |=I,μ,V c ⇐⇒ ∀(a : V → μ) ∈ A · [[c]]μ,a

for allocations a : V → μ in object A of AllI,V ,μ = allI,μ(V) and constraint c ∈ C I,V = conI (V).

Theorem 6.8. The claim that CONS I,μ is an institution holds.

Proof. The category ConI ⊆ Set and the category AllI,μ ⊆ CAT, ensuring the functors have correct codomains. For a sub-
stitution s : V → E I,V ′ , we must show that for every object A′ ∈ AllI,V ′,μ = allI,μ(V ′), i.e., A′ ⊆ AI,V ′ , and every constraint
c ∈ C I,V = conI (V)

A′ |=I,μ,V ′
(
conI (s : V → E I,V ′)

)
(c) ⇐⇒ (

allI,μ(s−� : E I,V ′ → V)
)
(A′) |=I,μ,V c,

which becomes, by expanding the definitions on each side,

A′ |=I,μ,V ′
(
conI (s : V → E I,V ′)

)
(c) ⇐⇒ ∀(a′ : V ′ → μ) ∈ A′ · [[s(c)]]μ,a′ ,(

allI,μ(s−� : E I,V ′ → V)
)
(A′) |=I,μ,V c ⇐⇒ ∀(a : V → μ) ∈ {[[s]]μ,a′ | a′ ∈ A′} · [[c]]μ,a

⇐⇒ ∀(a′ : V ′ → μ) ∈ A′ · [[c]]μ,[[s]]μ,a′ ,

respectively. Since [[s(c)]]μ,a′ = [[c]]μ,[[s]]μ,a′ the claim holds. �
Definition 6.9. The institution DFC I,μ of dataflow constraints and allocations for a staid interface I with standard model μ
consists of

• the category SubvarI of variables and substitutions,
22

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
• the functor dfcI : SubvarI → DFCI of dataflow constraints and substitutions,
• the contravariant functor allI,μ : Subvarop

I → AllI,μ of allocations from variables to μ,
• the V -indexed satisfaction relations |=I,μ,V ⊆ allI,μ(V) × dfcI (V) for variables V as an object of SubvarI , defined by

A |=I,μ,V d ⇐⇒ ∀(a : V → μ) ∈ A,m ∈ met(d) · [[con(d)]]μ,[[m]]μ,a

for all allocations a : V → μ in object A of AllI,V ,μ = allI,μ(V) and constraint d ∈ D I,V where D I,V = dfcI (V).

Theorem 6.10. The claim that DFC I,μ is an institution holds.

Proof. The category DFCI ⊆ Set and the category AllI,μ ⊆ CAT, ensuring the functors have correct codomains. For a sub-
stitution s : V → E I,V ′ , we must show that for every object A′ ∈ AllI,V ′,μ = allI,μ(V ′), i.e., A′ ⊆ AI,V ′ , and every dataflow
constraint d ∈ D I,V = dfcI (V)

A′ |=I,μ,V ′
(
dfcI (s : V → E I,V ′)

)
(d) ⇐⇒ (

allI,μ(s−� : E I,V ′ → V)
)
(A′) |=I,μ,V d,

which becomes, by expanding the definitions on each side,

A′ |=I,μ,V ′
(
dfcI (s : V → E I,V ′)

)
(d) ⇐⇒ ∀(a′ : V ′ → μ) ∈ A′,m′ ∈ met(s(d)) · [[con(s(d))]]μ,[[m′]]μ,a′

⇐⇒ ∀(a′ : V ′ → μ) ∈ A′,m′ ∈ met(s(d)) · [[m′ |�V s(con(d))]]μ,a′ ,(
allI,μ(s−� : E I,V ′ → V)

)
(A′) |=I,μ,V d ⇐⇒ ∀(a : V → μ) ∈ {[[s]]μ,a′ | a′ ∈ A′},m ∈ met(d) · [[con(d)]]μ,[[m]]μ,a

⇐⇒ ∀(a : V → μ) ∈ {[[s]]μ,a′ | a′ ∈ A′},m ∈ met(d) · [[m |�V con(d)]]μ,a

⇐⇒ ∀(a′ : V ′ → μ) ∈ A′,m′ ∈ met(s(d)) · [[m′ |�V s(con(d))]]μ,a′ ,

respectively. Thus the claim holds. �
7. Multiway dataflow constraint systems

A multiway dataflow constraint system, constraint system for short, is a collection D of dataflow constraints and a goal. The
methods of each dataflow constraint d ∈ D locally establish that dataflow constraint’s constraint. Together the conjunction
of the contraints of D should establish the constraint system’s goal. Thus an approriate sequence of one dataflow method
from each d ∈ D will establish the goal whenever one of the system’s variables is modified. The purpose is to let a planner
select the local methods from each dataflow constraint d ∈ D in order to achieve the global goal.

Definition 7.1. Let I be a staid interface with some staid semantics.
A constraint system is a triple 〈V , g, D〉 where V are variables for I , g ∈ C I,V is a constraint called the constraint system’s

goal, and D ⊆ D I,V is a set of dataflow constraints.
The meaning of a constraint system [[〈V , g, D〉]] = &d∈Dd, the dataflow constraint being the conjunction of all dataflow

constraints in D .

The global variables V for a constraint system coordinate all its parts. Each of the dataflow constraints handle a local set
of variables, related to the global set by an inclusion. The meaning of the constraint system is a syntactic translation to a
system wide (global) dataflow constraint. The semantics of the global dataflow constraint is the semantics of the system.

A planner selects methods from met(∪d∈Dd) repeatedly in order to achieve the goal g . To facilitate planning, a planner
algorithm imposes its own wellformedness requirements on the contained dataflow constraints. One requirement might be
that if two dataflow constraints d, d′ ∈ D have the same set of variables var(d) = var(d′) then d = d′ , and that for every
d ∈ D whenever two methods m, m′ ∈ met(d) have the same set of output variables out(m) = out(m′) then m = m′ . The so
called method restriction [34, p. 56] requires even that there are no two methods m, m′ ∈ met(d) such that out(m) ⊆ out(m′).
Assuming method restriction, there are planners with polynomial worst-case time complexity [35]. These syntactically de-
tectable restrictions ensure that a planner will always terminate, even if the sets of methods contain other errors or are not
compatible with their stated constraint. In fact most work on planners omit explicit constraints and just focus on the set of
methods met(∪d∈Dd), thus ignoring the ability to verify the constraint system against an explicitly stated goal.

Definition 7.2. Let I be a staid interface and μ a standard model for I .
A constraint system 〈V , g, D〉 is sound in μ when

1. each d ∈ D ⊆ D I,V ,μ is sound in μ, i.e., met(D) |=I,μ,V con(d), and
2. con(&d∈Dd) |=I,V ,μ g .
23

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
For a sound constraint system the participating dataflow constraints each contribute towards the goal. A sound constraint
system 〈V , g, D〉 is comprehensive in μ when for all allocations a ∈ Aμ,V there exists a method m ∈ met(&d∈Dd) such that
[[g]]μ,[[m]]μ,a holds. Ideally a planner’s wellformedness requirements should imply that the constraint system is comprehen-
sive. If the constraint system is not comprehensive, the planner may be unable to select any method from met(∪d∈Dd) to
achieve progress. This may happen if the dataflow constraint combinators end up with an empty set of methods. Also in
this situation the planner will terminate, but without meeting its goal. We will not discuss this further here.

We present three reuse mechanisms for constraint systems: substitution for adapting to a different set of global variables,
and conjunction and disjunction for combining constraint systems. We also have two specific constraint systems.

Definition 7.3. The constraint system true CST = 〈∅, TRUE, {T }〉 based on the dataflow constraint T .
The constraint system false CSF = 〈∅, FALSE, {}〉.

These two constraint systems are both sound and comprehensive for any staid interface since the set of variables is
empty.

Definition 7.4. Let I be a staid interface and V , W be variables for I .
Reuse of a constraint system C = 〈V , g, D〉 by a substitution s : V → E I,W is the triple s(C) = 〈W , s(g), s(D)〉.

It is easy to see that the reuse of a constraint system by a substitution yields a constraint system.

Proposition 7.5. Let I be a staid interface, μ be a standard model for I and s : V → E I,W be a substitution.
Substitution on constraint systems in staid semantics preserve meaning, i.e., s([[C]]) ⊆ [[s(C)]] .
If the constraint system C = 〈V , g, D〉 is sound for μ, then s(C) is also sound for μ.

Proof. Meaning is preserved since s([[C]]) = s([[〈V , g, D〉]]) = s(&d∈Dd) ⊆ &d∈s(D)d = [[〈W , s(g), s(D)〉]] = [[s(C)]] .
Preservation of soundness follows from the satisfaction condition for the institutions DFC I,μ and CONS I,μ . The former

takes sound dataflow constraints to sound dataflow constraints using the substitution. The latter matches the conjunction
of constraints from the dataflow constraint with the goal before and after the substitution, i.e., s(con(&d∈Dd)) |=I,V ,μ s(g)

since C is sound. �
It then follows that substitutions are a monoid action for the reuse of constraint systems. The monoid action also pre-

serves soundness of the constraint systems. Comprehensiveness may be destroyed by this reuse, since, depending on the
specific substitution, some methods in d ∈ D may have disappeared.

Definition 7.6 (Conjunction of constraint systems). Let I be a staid interface with staid semantics.
The conjunction of two constraint systems C1 = 〈V , g1, D1〉 and C2 = 〈V , g2, D2〉 is the triple C1&C2 =〈V , g1&g2, D1&D2〉

where D1&D2 = {d1&d2 | d1 ∈ D1, d2 ∈ D2}.

It is easy to see that the conjunction of two constraint systems yields a constraint system: the conjunction of two
dataflow constraints is a dataflow constraint, and the conjunction of two constraints is a constraint. The two constraint
systems C1 and C2 are on the same set of variables V . If this is not the case, then each of them can be aligned by
substitution from any local set of variables V 1 and V 2, respectively, to a global set of variables V before the conjunction.

Proposition 7.7. Let I be s staid interface and μ a standard model for I , and C1 = 〈V , g1, D1〉 and C2 = 〈V , g2, D2〉 be constraint
systems.

Conjunction on constraint systems with staid semantics preserve meaning, i.e., [[C1&C2]] = [[C1]]&[[C2]] .
If the two constraint systems C1 and C2 are sound for μ, then C1&C2 is also sound for μ.

Proof. Meaning is preserved since (&d1∈D1 d1)&(&d2∈D2 d2) = &d∈{d1&d2|d1∈D1,d2∈D2}d = D1&D2.
The conjunction of sound dataflow constraints on compatible variables is a sound dataflow constraint, and since each

of the individual constraint systems is sound with respect to its individual goal, the conjunction of the goals is implied by
con(&d∈D1&D2 d). �

It now follows that conjunction of constraint systems is associative and commutative, with CST as unit and CSF as zero.
Comprehensiveness may be lost due to the interaction between methods when combining them.

Definition 7.8 (Disjunction of constraint systems). Let I be a staid interface with staid semantics.
The disjunction of two constraint systems C1 = 〈V , g1, D1〉 and C2 = 〈V , g2, D2〉 is C1 | C2 = 〈V , g1|g2, D〉, where D =(

(&d∈D1\D d) | (&d∈D \D1 d)
)
&(&d∈D1∩D d).
2 2 2

24

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
It is easy to see that the disjunction of two constraint systems yields a constraint system since all combinators yield the
appropriate results. The two constraint systems C1 and C2 may be aligned to the same set of global variables V if necessary
for the disjunction.

Proposition 7.9. Let I be a staid interface and μ a standard model for I , and C1 = 〈V , g1, D1〉 and C2 = 〈V , g2, D2〉 be constraint
systems.

Disjunction on constraint systems with staid semantics preserve meaning, i.e., [[C1 | C2]] = [[C1]] | [[C2]] .
If the two constraint systems C1 and C2 are sound for μ, then C1 | C2 is also sound for μ.

Proof. Let C1 | C2 = 〈V , g1|g2, D〉. Preservation of meaning follows by expanding the definition D , and then using distribu-
tivity of conjunction over disjunction for dataflow constraints.

[[C1 | C2]] = &d∈Dd = (
(&d∈D1\D2d) | (&d∈D2\D1d)

)
&(&d∈D1∩D2d)

= (
(&d∈D1\D2d)&(&d∈D1∩D2d)

) | ((&d∈D2\D1d)&(&d∈D1∩D2d)
) = (

(&d∈D1d)&(&d∈D2 d) = [[C1]] | [[C2]]
)
,

Then we need to show that con(|d∈D d) |=I,V ,μ g1|g2. Since

con((&d∈D1\D2d)&(&d∈D1∩D2d)) |=I,V ,μ c1and

con((&d∈D2\D1d)&(&d∈D1∩D2d)) |=I,V ,μ c2

the claim follows.
The meaning for the disjunction of dataflow constraints D maintains soundness from each of the components. �
It now follows that disjunction of constraint systems is associative and commutative with CSF as the unit, because (

(&d∈D1\{}d) | (&d∈{}\D1 d)
)
&(&d∈D1∩{}d) = (

(&d∈D1 d))
)
&(&d∈∅) = D1. We cannot get idempotency of disjunction since the

conjunction combinator on the dataflow constraints is not idempotent. Comprehensiveness may be lost due to the interac-
tion between methods when combining them.

Example 7.10. This is a constraint system version of Example 5.1. When building the constraint system we first define the
global set of variables and the goal,

V = {wi : int, wa : int, wr : float,hi : int,ha : int,hr : float},
g = �wi wr� == wa & �hihr� == ha,

then we find the relevant dataflow constraints and their mapping to the global set of variables, i.e., the dataflow constraint
G and the substitutions sw and sh as in the example. The resulting constraint system is

〈V , g, {sw(G), sh(G)}〉.
If we want to coordinate the aspect ratios for the width and the height, we can construct the constraint system 〈{wi :
int, wa : int, r : float, hi : int, ha : int}, �wir� == wa & �hir� == ha, {rw(G), rh(G)}〉.

8. Summary and conclusion

In investigating multiway dataflow constraint systems as a programming language, we designed a module system with
variable substitution (including renaming and name matching) as the basic reuse mechanism with conjunction and disjunc-
tion as combinators. We showed how to integrate a specification language with the programming language. In the presented
system, neither the specification nor the programming language needs to be nailed down: what are the languages’ built-in
types and operations is defined by a base API, a fixed but arbitrary signature.

We fitted the formal model of dataflow constraints into the institution framework, using variables and substitutions as
the signature category. This gave us both a solid footing for designing the module system, and a clear guidance for using
global variables as the coordinating “signature” with substitution as a powerful reuse mechanism.

The specification and programming languages both operate in the same semantical domain, here on simple sets and set
theoretic functions for the base signature. This semantic compatibility allows proving and testing the relationship between
code (the constraint satisfaction methods of data flow constraints) and specifications (predicate expressions that define
when dataflow constraints are satisfied). The presented approach thus establishes a firm validation approach for dataflow
constraint systems.

The presented work is largely motivated by the widely recognised problem of programming user interfaces: the inability
to reuse code that defines the behaviour of user interfaces. We propose multiway dataflow constraint systems as the foun-
dation for programming GUIs, in lieu of event handling programming. The examples in this paper show that the presented
semantics can model concrete multiway dataflow constraint systems that arise in practical graphical user interfaces, and
guide their design and implementation.
25

M. Haveraaen and J. Järvi Journal of Logical and Algebraic Methods in Programming 121 (2021) 100634
Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] I.E. Sutherland, Sketchpad: a man-machine graphical communication system, in: Proceedings of the May 21-23, 1963, Spring Joint Computer Confer-
ence, AFIPS’63 (Spring), ACM, New York, NY, USA, 1963, pp. 329–346.

[2] B.A. Myers, R.G. McDaniel, R.C. Miller, A.S. Ferrency, A. Faulring, B.D. Kyle, A. Mickish, A. Klimovitski, P. Doane, The Amulet environment: new models
for effective user interface software development, IEEE Trans. Softw. Eng. 23 (6) (1997) 347–365, https://doi .org /10 .1109 /32 .601073.

[3] B. Myers, D. Giuse, R. Dannenberg, B. Zanden, D. Kosbie, E. Pervin, A. Mickish, P. Marchal, Garnet: comprehensive support for graphical, highly interac-
tive user interfaces, Computer 23 (11) (Nov. 1990) 71–85, https://doi .org /10 .1109 /2 .60882.

[4] B. Vander Zanden, An incremental algorithm for satisfying hierarchies of multiway dataflow constraints, ACM Trans. Program. Lang. Syst. 18 (1) (Jan.
1996) 30–72, https://doi .org /10 .1145 /225540 .225543.

[5] J. Järvi, G. Foust, M. Haveraaen, Specializing planners for hierarchical multi-way dataflow constraint systems, in: Proceedings of the 2014 International
Conference on Generative Programming: Concepts and Experiences, GPCE 2014, ACM, New York, NY, USA, 2014, pp. 1–10.

[6] J. Järvi, M. Haveraaen, J. Freeman, M. Marcus, Expressing multi-way data-flow constraint systems as a commutative monoid makes many of their
properties obvious, in: Proceedings of the 8th ACM SIGPLAN Workshop on Generic Programming, WGP’12, ACM, New York, NY, USA, 2012, pp. 25–32.

[7] M. Sannella, Skyblue: a multi-way local propagation constraint solver for user interface construction, in: Proceedings of the 7th Annual ACM Sympo-
sium on User Interface Software and Technology, UIST’94, ACM, New York, NY, USA, 1994, pp. 137–146.

[8] T.P. McCartney, User interface applications of a multi-way constraint solver, Tech. Rep. WUCS-95-22, Washington University of Saint Louis, MO, 1995,
Computer Science, Oct. 1995.

[9] S. Oney, B. Myers, J. Brandt, ConstraintJS: programming interactive behaviors for the web by integrating constraints and states, in: Proceedings of the
25th Annual ACM Symposium on User Interface Software and Technology, UIST’12, ACM, New York, NY, USA, 2012, pp. 229–238.

[10] K. Lin, D. Chen, G. Dromey, C. Sun, Maintaining constraints expressed as formulas in collaborative systems, in: 2007 International Conference on
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2007), 2007, pp. 318–327.

[11] C. Demetrescu, I. Finocchi, A. Ribichini, Reactive imperative programming with dataflow constraints, in: Proceedings of the 2011 ACM International
Conference on Object Oriented Programming Systems Languages and Applications, OOPSLA’11, ACM, New York, NY, USA, 2011, pp. 407–426.

[12] T. Felgentreff, A. Borning, R. Hirschfeld, Specifying and solving constraints on object behavior, J. Object Technol. 13 (4) (2014), https://doi .org /10 .5381 /
jot .2014 .13 .4 .a1 1–38.

[13] J.A. Goguen, R.M. Burstall, Institutions: abstract model theory for specification and programming, J. ACM 39 (1) (1992) 95–146, https://doi .org /10 .1145 /
147508 .147524.

[14] D. Sannella, A. Tarlecki, Foundations of Algebraic Specification and Formal Software Development, Software Development, Monographs in Theoretical
Computer Science. An EATCS Series, Springer, 2012.

[15] P.D. Mosses, CASL Reference Manual, The Complete Documentation of the Common Algebraic Specification Language, Lecture Notes in Computer
Science, vol. 2960, Springer, 2004.

[16] T. Mossakowski, C. Maeder, K. Lüttich, The heterogeneous tool set, Hets, in: O. Grumberg, M. Huth (Eds.), Tools and Algorithms for the Construction and
Analysis of Systems, 13th International Conference, TACAS 2007, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2007, Braga, Portugal, Proceedings, in: Lecture Notes in Computer Science, vol. 4424, Springer, 2007, pp. 519–522.

[17] J.A. Goguen, Memories of ADJ, in: G. Rozenberg, A. Salomaa (Eds.), Current Trends in Theoretical Computer Science - Essays and Tutorials, in: World
Scientific Series in Computer Science, vol. 40, World Scientific, 1993, pp. 76–81.

[18] J. Goguen, J. Thatcher, E. Wagner, An initial algebra approach to the specification, correctness and implementation of abstract data types, in: R. Yeh
(Ed.), Current Trends in Programming Methodology, vol. 4, Prentice Hall, 1978, pp. 80–149.

[19] J.V. Guttag, J.J. Horning, The algebraic specification of abstract data types, Acta Inform. 10 (1978) 27–52, https://doi .org /10 .1007 /BF00260922.
[20] J.V. Guttag, J.J. Horning, S.J. Garland, K.D. Jones, A. Modet, J.M. Wing, Larch: Languages and Tools for Formal Specification, Texts and Monographs in

Computer Science, Springer, 1993, p. 1993.
[21] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1: Equations and Initial Semantics, EATCS Monographs on Theoretical Computer Science,

vol. 6, Springer, 1985, p. 1985.
[22] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 2, EATCS Monographs on Theoretical Computer Science, vol. 21, Springer, 1990, p. 1990.
[23] J. Järvi, M. Marcus, S. Parent, J. Freeman, J.N. Smith, Algorithms for user interfaces, in: GPCE’09: Proc. of 8th International Conference on Generative

Programming and Component Engineering, ACM, New York, NY, USA, 2009, pp. 147–156.
[24] G. Foust, J. Järvi, S. Parent, Generating reactive programs for graphical user interfaces from multi-way dataflow constraint systems, in: Proceedings of

the 2015 International Conference on Generative Programming: Concepts and Experiences, GPCE 2015, ACM, New York, NY, USA, 2015, pp. 121–130.
[25] J. Freeman, J. Järvi, W. Kim, M. Marcus, S. Parent, Helping programmers help users, in: GPCE’11: Proc. of 10th International Conference on Generative

Programming and Component Engineering, ACM, New York, NY, USA, 2011, pp. 177–184.
[26] L. Allison, Programming denotational semantics II, Comput. J. 28 (5) (1985) 480–486, https://doi .org /10 .1093 /comjnl /28 .5 .480.
[27] A.H. Bagge, V. David, M. Haveraaen, Testing with axioms in C++ 2011, J. Object Technol. 10 (10) (2011) 1–32, https://doi .org /10 .5381 /jot .2011.10 .1.a10.
[28] R. Hamlet, Random testing, in: J. Marciniak (Ed.), Encyclopedia of Software Engineering, Wiley, 1994, pp. 970–978.
[29] J.-P. Bernardy, P. Jansson, K. Claessen, Testing polymorphic properties, in: A. Gordon (Ed.), Programming Languages and Systems: Proceedings of the

19th European Symposium on Programming (ESOP 2010), in: Lecture Notes in Computer Science, vol. 6012, Springer, 2010, pp. 125–144.
[30] D. Sannella, A. Tarlecki, Specifications in an arbitrary institution, Inf. Comput. 76 (2) (1988) 165–210, https://doi .org /10 .1016 /0890 -5401(88)90008 -9.
[31] M. Haveraaen, M. Roggenbach, Specifying with syntactic theory functors, J. Log. Algebraic Methods Program. 113 (2020) 100543, https://doi .org /10 .

1016 /j .jlamp .2020 .100543.
[32] J.A. Goguen, G. Rosu, Institution morphisms, Form. Asp. Comput. 13 (3–5) (2002) 274–307, https://doi .org /10 .1007 /s001650200013.
[33] J. Meseguer, General logics, in: H.-D. Ebbinghaus, J. Fernández-Prida, M. Garrido, D. Lascar, M. Rodríguez Artalejo (Eds.), Logic Colloquium’87, North-

Holland, 1989, pp. 275–329.
[34] M.J. Sannella, Constraint satisfaction and debugging for interactive user interfaces, Ph.D. thesis, University of Washington, Seattle, WA, USA, 1994, UW

Tech Report 94-09-10.
[35] G. Trombettoni, B. Neveu, Computational complexity of multi-way, dataflow constraint problems, in: Proceedings of the 15th International Joint Con-

ference on Artifical Intelligence–vol. 1, IJCAI’97, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997, pp. 358–363.
26

http://refhub.elsevier.com/S2352-2208(20)30119-X/bib5D3ECAD83C274B7538201BA0C3450C43s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib5D3ECAD83C274B7538201BA0C3450C43s1
https://doi.org/10.1109/32.601073
https://doi.org/10.1109/2.60882
https://doi.org/10.1145/225540.225543
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibCE2DD93C891C1E8275B6AF7934F5A967s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibCE2DD93C891C1E8275B6AF7934F5A967s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibAAF9BCFA6732F64A9A78E0DBB11B41B7s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibAAF9BCFA6732F64A9A78E0DBB11B41B7s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib2C8BD4D4691E2E41D295B486C103281Ds1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib2C8BD4D4691E2E41D295B486C103281Ds1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibCED93E6C0581EDC35FB8878A4F62375Fs1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibCED93E6C0581EDC35FB8878A4F62375Fs1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib0EA5A8CCDE38B4850D32ABD0AF8A12B4s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib0EA5A8CCDE38B4850D32ABD0AF8A12B4s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibFC68DE1407F3CBD2547FDC454BDDA3E5s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibFC68DE1407F3CBD2547FDC454BDDA3E5s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib1A114288787F733B4BA103023A1C0776s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib1A114288787F733B4BA103023A1C0776s1
https://doi.org/10.5381/jot.2014.13.4.a1
https://doi.org/10.5381/jot.2014.13.4.a1
https://doi.org/10.1145/147508.147524
https://doi.org/10.1145/147508.147524
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib658F4020634C9927014C54BB6970FF2Es1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib658F4020634C9927014C54BB6970FF2Es1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib1B551D8DDA18DDB5209FF0E4FAC37621s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib1B551D8DDA18DDB5209FF0E4FAC37621s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib4F4044B9A9C0D4F0583711BB165FBA87s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib4F4044B9A9C0D4F0583711BB165FBA87s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib4F4044B9A9C0D4F0583711BB165FBA87s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib4B165E959AA533C52A684E6E92817491s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib4B165E959AA533C52A684E6E92817491s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibAE8A5A044CE36A27FE5B3709986A82C0s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibAE8A5A044CE36A27FE5B3709986A82C0s1
https://doi.org/10.1007/BF00260922
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib3493E82860DB363A4829EDCB2BEAE071s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib3493E82860DB363A4829EDCB2BEAE071s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib7C687E4FE15F89FAE8B64AD598AF76CFs1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib7C687E4FE15F89FAE8B64AD598AF76CFs1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibFD11C45C566EB0A30D8C768FD942FACEs1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibC88FF2647E5CAE61D60EE53AE45D264Fs1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibC88FF2647E5CAE61D60EE53AE45D264Fs1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibD8C46C3BE452E212BA2C2CEB19F8A52Es1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibD8C46C3BE452E212BA2C2CEB19F8A52Es1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib99200DB7C51FC9B552355CDD8E0AE99Cs1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib99200DB7C51FC9B552355CDD8E0AE99Cs1
https://doi.org/10.1093/comjnl/28.5.480
https://doi.org/10.5381/jot.2011.10.1.a10
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib84B402A97A71677D9F2391BD1F872202s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibA4B1D4595C98125B56EE4C900DFB41B1s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibA4B1D4595C98125B56EE4C900DFB41B1s1
https://doi.org/10.1016/0890-5401(88)90008-9
https://doi.org/10.1016/j.jlamp.2020.100543
https://doi.org/10.1016/j.jlamp.2020.100543
https://doi.org/10.1007/s001650200013
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib7959D4994B577C828D37D17270907AB4s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib7959D4994B577C828D37D17270907AB4s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib048DF38F42A3B73BE064E0BABC6E1527s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bib048DF38F42A3B73BE064E0BABC6E1527s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibC61384B0CA34F171C40BD3A78B850108s1
http://refhub.elsevier.com/S2352-2208(20)30119-X/bibC61384B0CA34F171C40BD3A78B850108s1

	Semantics of multiway dataflow constraint systems
	1 Introduction
	2 Motivation: constraint systems in GUIs
	3 Syntax and semantics of a multiple assignment language
	3.1 Interfaces and expressions
	3.2 Multiple assignment statements
	3.3 Semantics for expressions
	3.4 Semantics for statements
	3.5 Axioms and propositions for models

	4 Dataflow constraints
	4.1 Dataflow constraint combinators
	4.2 Dataflow constraint combinator properties

	5 UI examples
	6 Institution based module system
	6.1 Categories for constraint systems
	6.2 Functors
	6.3 Institutions for constraints

	7 Multiway dataflow constraint systems
	8 Summary and conclusion
	Declaration of competing interest
	References

