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Abstract

There exist many problem-specific heuristic frameworks for solving combinatorial optimiza-

tion problems. These can perform well for specific use-cases, however when applied to

other problem domains these frameworks often do not generalize well. Metaheuristic frame-

works serve as an alternative that aims to be more generalizable to several problems, yet

these frameworks can suffer from poor selection of low-level heuristics during the search.

The adaptive layer of the metaheuristic framework of Adaptive Large Neighborhood Search

(ALNS) is an example of a heuristic selection mechanism that selects low-level heuristics

based on their recent performance during the search. In this thesis, we propose a hyper-

heuristic selection framework that uses Deep Reinforcement Learning (Deep RL) to more

efficiently select heuristics during the search compared to the adaptive layer of ALNS. Our

framework uses the representation power of Deep Learning (DL) together with the decision

making capability of Deep RL for processing search states (containing useful information

about the search) in order to efficiently select heuristics at each step of the search. In this

thesis, we introduce Deep Reinforcement Learning Hyperheuristic (DRLH), a general frame-

work for solving combinatorial optimization problems. Our experiments show that DRLH is

able to come up with better heuristic selection strategies compared to ALNS and a simple

Uniform Random Sampling (URS) framework, resulting in better solutions. Additionally,

we show that DRLH is not negatively affected by having a large pool of heuristics to choose

from, while ALNS does not perform well under these conditions, as it is unable to work

efficiently when given a large pool of heuristics to select from.
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Chapter 1

Introduction

1.1 Context and Motivation

A metaheuristic is an algorithmic framework that offers a coherent set of guidelines for the

design of heuristic optimization methods. Classical frameworks such as Genetic Algorithm

(GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and Simulated

Annealing (SA) are examples of such frameworks (Dokeroglu et al., 2019). Moreover, there is

a large body of literature that addresses solving combinatorial optimization problems using

metaheuristics. Among these, ALNS (Ropke and Pisinger, 2006) is one of the most widely

used metaheuristics. It is a general framework based on the principle of Large Neighborhood

Search (LNS) of (Shaw, 1998), where the objective value is iteratively improved by applying

a set of “removal” and “insertion” operators on the solution. In ALNS, each of the removal

and insertion operators have weights associated with them that determine the probabilities

of selecting these during the search. These weights are continuously updated after a certain

number of iterations (called a segment) based on their recent effect on improving the quality

of the solution during the segment. According to (Turkeš et al., 2021), the adaptive layer of

ALNS has only minor impact on the objective function value of the solutions in the studies

that have employed this framework. Moreover, the information that the adaptive layer uses

for selecting heuristics is limited to the past performance of each heuristic. This limited

data can make the adaptive layer näıve in terms of decision making capability because it

is not able to capture other (problem-independent) information about the current state of
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the search process, e.g., the difference in cost between past solutions, whether the current

solution has been encountered before during the search, or the number of iterations since

the solution was last changed, etc. We refer to the decision making capability of ALNS as

performing on a ”macro-level” in terms of adaptability, i.e., the weights of each heuristic is

only updated at the end of each segment. This means that the heuristics selected within a

segment are randomly sampled according to the fixed probabilities of the segment (as seen

in Fig. 6.5c). This limitation makes it impossible for ALNS to take advantage of any short-

term dependencies that occur within a segment that could help aid the heuristic selection

process.

Another area where ALNS struggles is when faced with a large number of heuristics to

choose from (See Fig. 6.3). In order to find the best set of available heuristics for ALNS

for a specific setting, initial experiments are often required to identify and remove inefficient

heuristics, and this can be both time consuming and computationally expensive (Hemmati

and Hvattum, 2017). Furthermore, some heuristics are known to perform very well for

specific problem variations or specific conditions during the search, but they may have a

poor average performance. In this case, it might be beneficial to remove these from the pool

of heuristics available to ALNS in order to increase the average performance of ALNS, but

this results in a less powerful pool of heuristics that is unable to perform as well during these

specific problem variations and conditions.

Reinforcement learning (RL) is a subset of machine learning concerned with “learning

how to make decisions”—how to map situations to actions—so as to maximize a numerical

reward signal. One of the main tasks in machine learning is to generalize a predictive model

based on available training data to new unseen situations. An RL agent learns how to

generalize a good policy through interaction with an environment which returns the reward

in exchange for receiving an action from the agent. Therefore, through a trial-and-error

search process, the agent is trained to achieve the maximum expected future rewards at each

step of decision making conditioned on the current situation (state). Thus, training an RL

agent (to achieve the best possible results in similar situations), makes the agent aware of

the dynamics of the environment as well as adaptable to similar environments with slightly

different settings. One of the more recent approaches in RL is Deep RL which benefits

from the powerful function approximation property of deep learning tools. In this approach,

different functions that are used to train and make decisions in an RL agent are implemented

using Artificial Neural Networks (ANNs). Different Deep RL algorithms dictate the training
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mechanism and interaction of the ANNs in the decision making process of the agent (Sutton

and Barto, 2018). Therefore, integration of the Deep RL into the adaptive layer of the ALNS

can make the resulting framework much smarter at making decisions at each iteration and

improve the overall performance of the framework.

In this thesis, we propose Deep Reinforcement Learning Hyperheuristic (DRLH),

a general selection hyperheuristic framework (definition in section 2.3) for solving combina-

torial optimization problems. In DRLH, we replace the adaptive layer of ALNS with a

Deep RL agent trained using Proximal Policy Optimization (PPO) method of (Schulman

et al., 2017) responsible for selecting heuristics at each iteration of the search. Our proposed

DRLH utilizes a search state consisting of a problem-independent feature set from the search

process and is trained with a problem-independent reward function that encourages better

solutions. This approach makes the framework easily applicable to many combinatorial op-

timization problems. The training process of DRLH makes it adaptable to different problem

conditions and settings, and ensures that DRLH is able to learn good strategies of heuristic

selection prior to testing, while also being effective when encountering new search states.

In contrast to the macro-level decision making of ALNS, the proposed DRLH makes deci-

sions at a ”micro-level”, meaning that only the current search state information affects the

probabilities of choosing heuristics. This allows for the probabilities of selecting heuristics

to change quickly from one iteration to the next, helping DRLH adapt to new information

of the search as soon as it becomes available (see Fig 6.5b). The Deep RL agent in DRLH is

able to effectively leverage this search state information at each step of the search process

in order to make better decisions for selecting heuristics compared to ALNS.

Our experiments also show that the performance of DRLH is not negatively affected by

increasing the number of available heuristics to choose from. In contrast to this, ALNS

struggles at handling a high number of heuristics to choose from. This advantage of our

framework makes the development process for DRLH very simple as DRLH can automatically

discover the effectiveness of different heuristics during the training phase without the need

for initial experiments in order to reduce the set of heuristics manually. DRLH is also able

to more effectively make use of a wider range of operators for different problem variations

and conditions without this negatively affecting its average performance.
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1.2 Thesis Outline

The outline for the rest of the thesis is as follows.

Chapter 2 - Background and Related Work gives the theoretical background related to

combinatorial optimization and reinforcement learning required for this thesis. It also covers

related work on hyperheursitics and previous attempts at solving combinatorial optimization

problems using deep reinforcement learning.

Chapter 3 - Problem Sets describes the dynamics of the four combinatorial optimization

problems used as example problems that can be solved by DRLH.

Chapter 4 - DRLH introduces the Deep Reinforcement Learning Hyperheuristic model

used in this thesis, and provides a detailed look into the framework and also the heuristics

used.

Chapter 5 - Experimental Setup contains the specifics of how the experiments were

conducted. This includes the hardware used to run the experiments, information about

the baseline methods used, hyperparameters and generation of the datasets for each of the

problems.

Chapter 6 - Results describes the findings of the experiments and discusses their relevance

and significance.

Chapter 7 - Conclusion and Future Work summarizes and concludes the thesis, and

finally looks at ideas for future work related to the thesis.
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Chapter 2

Background and Related Work

2.1 Combinatorial Optimization Problems

Optimization is the science of making the best possible decision. The main purpose is

to get insights into the systems and to find possible solutions for the decision problems

(Lundgren et al., 2003). Combinatorial optimization is about finding an optimal object

from a finite set of objects (Schrijver, 2003). Combinatorial optimization problems are

concerned with the efficient allocation of limited resources that can only be divided into

discrete parts in order to optimize an objective. These resources may be machines, people,

or other discrete inputs, and the divisibility constraint may restrict the possible alternatives

to a finite set. Furthermore, instances of realistic sizes usually have too many alternatives

to make complete enumeration a tractable option. For example, a car manufacturer may

want to determine the optimal amount of different models to produce in order to maximize

profit, an airline may need to set up schedules for the crew such that they minimize the

total operating cost, or a flexible manufacturing facility may want to schedule production

for a plant without knowing exactly which parts are going to be needed in the future. The

difference between make-do planning and those that use sophisticated mathematical models

in order to plan the optimal course of actions can be the difference of whether or not a

company survives in today’s competitive industrial environment (Hoffman and Ralphs, 2013).

Applications of combinatorial optimization range to many fields and domains, including:

operations research, algorithm theory, applied mathematics, artificial intelligence, machine
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learning, software engineering and more. Examples of Combinatorial Optimization Problems

(COPs) are but not limited to Vehicle Routing Problems (VRP), the Minimum Spanning Tree

(MST), Scheduling Problems (SP), Bin Packing Problem (BPP) and the Knapsack Problem

(KP). In this thesis we will mainly focus on variations of Vehicle Routing Problems and a

Scheduling Problem, but the main contribution of this work, DRLH, is readily applicable to

other COPs as well.

Routing Problems

One of the most studied applications of combinatorial optimization problems are Routing

Problems that originate from the Traveling Salesman Problem (TSP). TSP is one of the most

well-known and fundamental problems in the area of combinatorial Optimization Problems

that has been widely researched for decades. In this problem a salesman has to visit a

number of cities exactly once and then return to his original starting location. This can

be formulated as a NP-Hard optimization problem of trying to find the minimum distance

Hamiltonian Cycle.

Among a massive number of routing problems in the literature, the Vehicle Routing

Problem (VRP) has received a lot of attention. In VRP multiple routes are conducted from

the depot, usually to satisfy some additional constraint of the route such as a maximum

weight limit (CVRP) or to stay within specific time windows of the nodes (VRPTW). VRP

variants build up a rich family of routing problems.

The Pickup and Delivery Problem (PDP) is a generalization of the classical VRP variants.

In PDP the requests consist of a pickup location and a delivery location. In order to complete

the request, the vehicle must first go to the pickup location to get the item, and then drop it

off at the delivery location. The classical version of PDP is where each request has exactly

one pickup location and one corresponding delivery location.

In this work, considering the time frame of a master thesis, we limited ourselves to

examine our proposed algorithm on a set of routing problems and also a simple scheduling

problem as they are proper representatives for all combinatorial optimization problems. The

problems addressed in this thesis will be detailed in chapter 3.
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2.2 Solution Methods

There are many approaches for solving combinatorial optimization problems. For a better

overview we can divide these approaches into two main categories, known as exact approaches

and heuristic approaches. We will primarily look into the heuristic approaches and it’s many

sub-variants as this is the main focus of this thesis, but before that we will briefly explain

what constitutes an exact approach in order to provide some context on alternative methods

for solving COPs.

2.2.1 Exact Approach

An exact approach for an optimization problem will always find a global optimal solution, but

can often take longer to run than a heuristic approach. This is especially true for real world

problems with many constraints and large instance sizes. In order to guarantee optimality,

exact approaches need to explore a sizable portion of the solutions in the solution space.

Examples of exact approaches include branch-and-cut, branch-and-bound, branch-and-price

(Costa et al., 2019).

2.2.2 Heuristic Approach

Heuristic approaches are able to find good solutions in a short amount of time. The solutions

found are not required to be optimal, but are usually satisfactory to the specific use-case

of the search. Heuristic approaches are typically much faster than exact approaches and

may be the only alternative on large instance sizes where finding the global optimal best is

not tractable with exact approaches. For this reason heuristics are very popular and have

been widely studied by the optimization community for several decades. Two main ways of

conducting a search using a heuristic approach can be divided into constructive heuristics

which seeks to sequentially build up a solution from scratch, and perturbative heuristics

(also called local search heuristics) which seeks to modify an existing solution in order to

improve it. We will go into more details for each of these in the following.
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Constructive Heuristics

A constructive heuristic is one that builds up a solution one element at a time until a

finished solution has been constructed. These approaches are generally able to find much

better solutions than random approaches, but may struggle to find anything close to that

of exact approaches or perturbative heuristic approaches. An advantage of constructive

heuristics is that they can usually find solutions very quickly, and because of this they are

often used in order to build an initial feasible solution for perturbative approaches which is

later improved. An example of a constructive heuristic for the TSP is the Nearest Neighbor

heuristic which visits the closest node at each step until all the nodes have been visited.

Perturbative Heuristics

A perturbative heuristic is one that modifies an existing solution in order to create a new

solution. This is the most common type of heuristics in optimization research. Such heuristics

can be adjusted to a specific problem or they can be general heuristics applicable to multiple

problems, such as swap or exchange. It is normal to combine many perturbative heuristics

into a pool of heuristics as this has shown to give better results than using only a single

heuristic throughout the entire search (Fisher and Thompson, 1963). An important aspect of

perturbative heuristics is how much they should change the solution. This aspect is addressed

by the concept of a neighborhood. The neighborhood of a solution is defined as all the possible

solutions that can result from using one of the heuristics on the solution. In order to avoid

getting stuck in a local optima, it can be beneficial to have a large neighborhood. A large

neighborhood can be achieved by having a good mix of diversification and intensification

within the heuristics. Diversification helps change the solution, even if it results in a worse

objective value, in order to escape local optima. On the other hand, intensification helps

to find solutions that strictly improve the objective value of the solution. Examples of

frameworks that employ large neighborhoods are the Large Neighborhood Search (LNS)

framework of (Shaw, 1998), and later the ALNS framework of (Pisinger and Ropke, 2007).

These methods work by applying destroy and repair steps repeatedly on the solution which

provides a good balance of intensification and diversification.

8



2.2.3 Metaheuristics

A metaheuristic is a high-level problem-independent algorithmic framework that provides

a set of guidelines or strategies to develop heuristic optimization algorithms (Sörensen and

Glover, 2013).

The field of metaheuristics aims to search within a search space of problem solutions.

They make few assumptions about the optimization problems being solved and can there-

fore be seen as problem-independent approaches, meaning that they can be applied to a

wide range of different problems. The most widely used metaheuristics are designed for

perturbative heuristics and includes the likes of: Simulated Annealing (SA), Tabu Search

(TS), Adaptive Large Neighborhood Search (ALNS), Genetic Algorithms (GA). There also

exist construction-based metaheuristics such as Sampling and Beam Search (BS) which lets

constructive heuristics find much better results than they would have been capable of finding

without a metaheuristic guiding the search.

2.3 Hyperheuristics

A hyperheuristic is a heuristic search method that seeks to guide the selection or generation

process of heuristics in order to more efficiently solve combinatorial optimization problems.

The term hyperheuristic was first used in the context of combinatorial optimization by Cowl-

ing et al. (2001) and described as heuristics to choose heuristics. Burke et al. (2010b) later

extended the definition of hyperheuristic to ‘a search method or learning mechanism for

selecting or generating heuristics to solve computational search problems’.

Burke et al. (2010a) classified hyperheuristics according to two dimensions (i) the nature

of the heuristic search space, and (ii) the source of feedback during learning. (i) creates

a distinction between selection hyperheuristics and generation hyperheuristic, and further

classification can be made to differentiate between construction and perturbation hyper-

heuristics. (ii) separates the sources of feedback during learning such as Online, Offline and

No Learning. This thesis will focus on selection hyperheuristics which is concerned with

selecting heuristics during the search, and we will be comparing methods that use different

sources of feedback in the result section.

9



An important aspect of hyperheuristics is that there should exist a domain barrier be-

tween the dynamics of the underlying problem and the mechanisms for selecting or generating

heuristics. In other words, hyperheuristic research has long focused on creating problem-

independent approaches applicable to a wide range of problems in favor of specifically de-

signed approaches that might obtain better results for specific problems. Later in this thesis

we will present DRLH, a general selection hyperheuristic using deep reinforcement learning,

which we will compare to two simpler selection mechanisms, namely ALNS and URS.

2.4 Reinforcement Learning

Machine learning is often divided into three fields: supervised learning, unsupervised learning

and reinforcement learning. In supervised learning there exists a training set of input-output

pairs where the goal is to learn a behavior that most closely resembles that of the input-output

pairs found in new unseen data from a similar distribution as the training set. Unsupervised

learning also concerns a dataset, but the tasks usually consist of exploring the underlying

structure of the data itself and can be used to discover clusters, anomalies or other interesting

properties of the data. This thesis will focus on the field of RL, which is different from both

supervised and unsupervised learning in that a dataset is not provided. Instead RL learns

by interacting with an environment in which each action results in a reward and the goal

is to earn as much reward as possible during an episode consisting of a number of steps.

The types of problems that RL tackles are those in which the underlying model of the

environment is unknown and is affected by the agent’s choice of actions (Sutton and Barto,

2018). Applications of RL takes place in a wide range of fields including: games (Mnih

et al., 2015, Silver et al., 2016), robotics (Kober et al., 2013, Levine et al., 2016, 2018),

vehicle routing problems (Kool et al., 2019, Nazari et al., 2018), autonomous driving (Sallab

et al., 2017), drug design (Popova et al., 2018), health and medicine (Frank et al., 2005,

Zhao et al., 2009), Media and Advertising (Abe et al., 2004, Agarwal et al., 2016, Cai et al.,

2017), Finance (Bertoluzzo and Corazza, 2014), text, speech and dialog systems (Dhingra

et al., 2017, Paulus et al., 2017) and others.

In this chapter we will give an introduction to RL and its core concepts. Then we will

look at deep reinforcement learning and see how integrating deep learning into RL enables

even more powerful approaches such as policy gradient methods.
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2.4.1 Introduction to Reinforcement Learning

Reinforcement learning (RL) is a computational approach to learning with the goal of taking

a sequence of actions in order to maximize a numerical reward without manually specifying

which actions to be taken. RL consists of an agent whose task is to take a sequence of actions

in a dynamic environment. The environment provides the agent with observable states that

the agent can use to decide which actions to take and rewards that inform the agent about

how desirable it is to take actions in the corresponding states.

This can be written more formally as, an agent observes a state st from the environment

at step t. The agent then decides to take action at, changing the environment so that it

transitions to a new observable state st+1 and also provides a reward rt+1 as feedback to the

agent. The goal of the agent is to maximize the cumulative reward of an episode (consisting

of a number of steps), and doing so requires the agent to follow a policy π, serving as a

strategic plan for what actions to take in any given state of the environment. To achieve

this, the learner has to find out which actions result in the higher reward through a trial

and error process of interacting with the environment and observing the outcome of actions

taken in specific states. In the case of more complex tasks the effect of an action might be

more than just the immediate reward as an action can also affect the rewards received in

subsequent steps.

A policy determines the behavior of the agent. The probability of taking action at ∈ A(st)

in state st ∈ S is modeled as the probability distribution π(at|st), and the agent uses this

to sample its next action from π(at|st). It works as a mapping between the states received

from the environment to the actions that should be selected by the agent for those states.

The policy is the most essential part of the learning agent, as it is sufficient to understand

the behavior of the agent. In terms of what constitutes a policy, it can range from a simple

function or lookup table to more complex systems such as neural networks.

The reward function essentially defines the goal of the task at hand in a numerical way

that can be optimized by RL. Rewards can be dense or sparse, meaning that they can either

be given as feedback to the agent at every step of an episode or only at specific steps such

as the final step of the episode. The goal of the agent is to maximize the cumulative reward

received during an episode. Because each action affects the environment in some way it

is not always advantageous for the agent to take the action giving the highest immediate
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reward, as the agent should also take into account the total future reward it can receive and

try to take the action that maximizes this. Due to the way the reward function influences

the intended objective of the agent, it is the main source of change to the policy of an agent,

and greatly affects the effectiveness of the learning process.

A value function v(s) indicates how good it is to be in a state. While the reward

function only gives the immediate return, the value function estimates the expected future

reward received from the current state until the end of the episode. The reward function

thus indicates the immediate desirability of the state, while the value function gives an

approximation of the long-term benefit of the state by also accounting for the rewards that

are likely to follow in future steps from the given state.

Figure 2.1: At each step t = 1, 2, 3, ... the agent receives an observation (state) st ∈ S from
the environment and takes one of the available actions at ∈ A(s). This action changes the
environment in some way, and a new observation st+1 and a reward rt+1 is given to the agent.
Figure from (Sutton and Barto, 2018).

One way to categorize RL approaches is to make the distinction between: value-based

methods, policy-based methods and actor-critic methods (Sutton and Barto, 2018). The

distinguishing factors between these approaches are that:

• Value-based: Has an implicit policy based on a learnt value function.

• Policy-based: Does not have a value function. Uses a learnt policy function to select

actions.

• Actor-critic: Has both a learnt policy and a learnt value function.

Value-based methods use a value function to estimate the expected return of being in

a state. One commonly used value function is the state value function V π(s) = E(R|S)
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Figure 2.2: Venn diagram illustrating the relationship between value-based, policy-based
and actor-critic methods.

which estimates the expected return based only on the input state. Another value function

is the quality function (Q-value) Qπ(s, a) = E(R|s, a) that uses both the initial action a and

the initial state s in order to estimate the expected return. Using Qπ(s, a) the agent can

greedily choose the a that maximizes the quality function at each step. Finding Qπ(s, a) can

therefore be used to effectively solve RL problems. The most common way to estimate the

quality function relies on the recursive definition of the Bellman equation (Bellman, 1954).

Qπ(s, a) = Est+1 [rt+1 + γQπ(st+1, π(st+1))]

Policy-based methods are different from value-based methods in that they learn an opti-

mal policy directly without using a value function. Such policy in these methods is typically

parametrized as a vector θ with πθ acting as a stochastic function parametrized by θ that

takes states and actions as inputs, and outputs a probability distribution over the available

actions. A common occurrence in policy-based methods is to use the weights of a neural

network to correspond to the parameter θ, which we will cover in detail in the next section.

Policy-based methods typically suffer from a high variance, although some measures can be

taken in an attempt to reduce the variance, such as comparing the performance of the agent

to a baseline, e.g., random action selection.

Actor critic methods combine the benefits from using a value function and a policy in

order to improve learning. The actor (policy) is responsible for selecting actions to perform,
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while the critic (value function) attempts to estimate the value of the states so that the actor

can maximize the expected return. The inclusion of value functions in policy-based methods

results in a compromise between high bias and high variance (Konda and Tsitsiklis, 2001,

Schulman et al., 2018). Several actor critic methods have been shown to be state-of-the-art

approaches when used in a policy gradient setting, which we will cover in detail in the next

section.

Figure 2.3: Actor-critic architecture. The policy is represented by the actor and maps input
states to output actions. The value function is represented by the critic. During the learning
phase the both the actor network and the critic network is updated in which the critics
evaluation of states contributes to the update of the actor. Figure from (Sutton and Barto,
2018).

2.4.2 Deep Reinforcement Learning

Deep reinforcement learning is a combination of RL and deep learning which allows agents

to work on unstructured input data through the use of neural networks, omitting the need

to manually engineer the state space. Neural networks provide excellent representation

learning properties that can create rich and complex models which can be used to tackle

complex problems in a variety of fields such as object detection (Baird and Wang, 1995),
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speech recognition (Bengio et al., 2013) and language translation (Vaswani et al., 2017). The

representation learning properties of neural networks makes them able to learn from high

dimensional input data as well as scale effectively to high dimensional problems. This makes

them an ideal fit to be used in RL in which classical RL methods suffer from the explosion

of the dimensionality of the state and action spaces for complex problems. The idea is that

neural networks can be used to approximate the optimal policy π∗, value function V ∗ and

Q-value Q∗.

While classical RL approaches rely on tabular representation which limits the number of

states and actions that it can handle, the inclusion of deep neural networks as a function

approximator can be used to overcome these restrictions. This is useful as the state space

of real world problems is often very large, making it infeasible to explore all of the states

and action-state pairs. Additionally, large state spaces might not be representable in tabular

approaches due to hardware limitations as the size of the table needs to fit in memory for

it to work. Another benefit of using neural networks as a function approximator is that

relevant features from raw inputs can be generalized across similar states, leading to better

representation and lower training times. This also makes the agent able to work well when

faced with unseen states, which is not the case when using tabular methods.

Value function methods can benefit from deep learning by replacing the one-to-one value

table with a deep neural network as a function approximator. The output of the network

is used as probabilities for each of the possible actions, and is typically sampled or greedily

selected by the agent. A popular value function method using deep RL was introduced by

Mnih et al. (2015) called Deep Q-Network (DQN). This method combines Q-learning with

neural networks and has been shown to be highly effective when applied to a wide range of

tasks. This approach later led to a surge of similar methods seeking to improve on DQN,

such as Double DQN (van Hasselt et al., 2015) and Rainbow DQN (Hessel et al., 2017).

Policy gradient methods are a subclass of policy search methods from classical RL in

which the policy π(a|s, θ) parameter θ is encoded by the weights of a neural network. Con-

sequently, we observe that optimizing the parameters of θ to find the optimal policy is

equivalent to optimizing the weights of the neural network. This is beneficial as deep learn-

ing techniques such as back-propagation can be used in order to find the optimal policy, and

because of this network-based deep RL methods have been very successful for solving RL

tasks. An advantage of policy gradient methods is that they often provide a stable conver-

gence property which improves smoothly at each time step. This is in contrast to value-based
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methods, where updating the value function can often cause drastic changes to the behavior,

leading to large oscillations when training. Another advantage of policy gradient methods is

that they work well in the face of uncertainty as they are able to effectively learn stochastic

policies. A disadvantage of policy gradient methods is their tendency to converge to a local

optima instead of the global optima (Sutton and Barto, 2018).

Proximal Policy Optimization (PPO) (Schulman et al., 2017) is a state-of-the-art policy

gradient method that has gained a lot of popularity due to its relative speed and ease of

use compared to other state-of-the-art methods. It is based on the actor-critic architecture

and is able to handle both discrete and continuous action spaces. The main contributions of

PPO are (1) the Clipped Surrogate Objective and (2) the use of multiple epochs of stochastic

gradient ascent to perform each policy update. The Clipped Surrogate Objective is designed

to improve training stability by limiting the change made to the policy at each step, thus

ensuring that training is less likely to diverge. Furthermore, in contrast to vanilla policy

gradient methods, PPO allows running multiple epochs of gradient ascent on the sampled

training data without causing destructively large policy updates. This allows it to squeeze

more out of the training data and reduce sample inefficiency. The combination of both high

data efficiency and reliable performance makes PPO an excellent first choice when attempting

to solve a problem using deep RL. PPO has been applied to solve many problems, such as

improving the state-of-the-art performance on Atari games and Mujoco robotic tasks. PPO

is also the method that we have elected to use as the backbone in our implementation of

DRLH.

2.5 Related Work

Özcan et al. (2010) propose a hyperheuristic method that uses a RL hyperheuristic for solving

examination timetabling. Performance is compared against a simple random hyperheuristic

and some previous work, and results show that using RL obtains better results than simply

selecting heuristics at random. The type of RL used here learns during the search process by

adjusting the probabilities of choosing heuristics based on their recent performance during

the search. This type of RL framework shares many similarities with the ALNS framework,

and therefore suffers from the same limitations as those mentioned for ALNS.
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A train and test hyperheuristic method for the Vehicle Routing Problem named Ap-

prentice Learning-based Hyper-heuristic (ALHH) was proposed by Asta and Özcan (2014)

in which an apprentice agent seeks to imitate the behavior of an expert agent. The training

of the ALHH works by running the expert on a number of training instances and recording

the selected actions of the expert together with a search state that consists of the previous

action used and the change in objective function value for the past n steps. These recordings

of search state and action pairs build up a training dataset in which a decision tree classifier

is used in order to predict the action choice of the expert. This makes up a supervised clas-

sification problem in which the final accuracy of the model is reported to be around 65%.

In the end ALHH’s performance is compared against the expert and is reported to perform

very similarly to the expert, and even slightly outperforming the expert for some instances.

Tyasnurita et al. (2015) further improved upon the apprentice learning approach by

replacing the decision tree classifier with a multilayer perceptron (MLP) neural network,

and named their approach MLP-ALHH. This change increased the representational power

of the search state and resulted in a better performance that is reported to even outperform

the expert.

A limitation of ALHH and MLP-ALHH is their use of the supervised learning framework

which makes performance of these approaches bounded by the expert algorithm’s perfor-

mance and behavior. A consequence of this is that the feedback used to train the predictive

models of ALHH and MLP-ALHH is binary, i.e. it either matches that of the expert or not,

leaving no room for alternative strategies that might perform even better than the expert.

In contrast, DRLH uses a Deep RL framework that neither requires, nor is bounded by an

expert agent and therefore has more potential to outperform existing methods by coming

up with new ways of selecting heuristics. The feedback used to train DRLH depends on the

effect of the action on the solutions, and the amount received varies depending on several

factors. Additionally, DRLH takes future iterations of the search into account, while ALHH

and MLP-ALHH only considers the immediate effect of the action on the solution. Because

of this, diversifying behavior is encouraged in DRLH when it gets stuck, as it will help im-

prove the solution in future iterations. Another difference of DRLH compared to ALHH and

MLP-ALHH is that the features of the search state used by DRLH are richer in that they

contain more information compared to the search state of the other two methods.

In addition to hyperheuristic approaches there have also recently been many attempts at

solving popular routing problems using Deep RL by the ML community. A big limitation of
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these works is that they all rely on problem-dependent information, and are usually designed

to solve a single problem or a small selection of related problems, often requiring significant

changes to the approach in order to make them work for several problems. In first versions

of these studies, Deep RL is used as a constructive heuristic approach for solving the vehicle

routing problem in which the agent, representing the vehicle, selects the next node to visit

at each time step (Kool et al., 2019, Nazari et al., 2018). Although this is very effective when

compared to simple construction heuristics for solving routing problems, it lacks the quality

of solutions provided by iterative metaheuristic approaches as well as being unable to find

feasible solutions in the case of more difficult routing problems that involve more advanced

constraints such as pickup and delivery problem with time windows.

Another approach that leverages Deep RL in solving combinatorial optimizations is to

take advantage of the decision making ability of the agent in generating or selecting low-level

heuristics to be applied on the solution. Hottung and Tierney (2019) have used a Deep RL

agent to generate a heuristic for rebuilding partially destroyed routes in the Capacitated

Vehicle Routing Problem (CVRP) in a large neighbourhood search framework. This method

is an example of heuristic generation and is specifically designed to solve the CVRP. Thus,

it can not easily be generalized to other problem domains. In (Chen and Tian, 2019), a

framework is presented for using two Deep RL agents for finding a node in the solution

and the best heuristic to apply on that node at each step. Although the authors claim

that this method is generalizable to three different combinatorial optimization problems, the

details in representation of the problem as well as the input and type of ANNs used for the

agents from one problem to another changes a lot depending on the nature of the problem.

Additionally, one would have to come up with new inputs and representation when applying

this method to other optimization problems that are not discussed in the study which reduces

the generalizability of the framework. Lu et al. (2020) suggested the use of a Deep RL agent

for choosing low-level heuristic at each step for the CVRP problem. This work also suffers

from the generalizability to other types of optimization problems due to the elements of

Deep RL agent that is specific to the CVRP problem. Additionally, in this approach the

training process of the agent is designed in such a way that the agent is only focused on

intensification rather than diversification. Thus, the diversification in their framework is

done by a rule-based escape approach rather than giving the RL agent freedom to find the

balance between diversification and intensification, which could lead to better results.

To the best of our knowledge previous work on this topic either suffer from a lack of
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generalizability or they do not take advantage of the learning mechanism and representation

power of Deep RL. In this work we seek to address these issues by introducing DRLH.
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Chapter 3

Problem Sets

We consider four sets of combinatorial optimization problems as examples of problems that

can be solved using DRLH. These problems are the Capacitated Vehicle Routing Problem

(CVRP), Parallel Job Scheduling Problem (PJSP), Pickup and Delivery Problem (PDP)

and Pickup and Delivery Problem with Time Windows (PDPTW).

3.1 Capacitated Vehicle Routing Problem (CVRP)

The Capacitated Vehicle Routing Problem is one of the most studied routing problems in

the literature. It consists of a set of N orders that needs to be served by any of the M

available vehicles. Additionally, there is a depot in which the vehicles travel from and return

to when serving the orders. Each order has a weight Wi associated to it, and the vehicles

have a maximum capacity. The sequence of orders that a vehicle visits after leaving the

depot before returning to the depot is referred to as a tour. There needs to be a minimum of

one tour and a maximum of N tours. The combined weight of the orders in a tour can not

exceed the maximum capacity of the vehicle, and so several tours are often needed in order

to solve the CVRP problem. The objective of this problem is to create a set of tours that

minimize the total distance travelled by all the vehicles that are serving at least one order.
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Figure 3.1: CVRP Problem Illustration

3.2 Parallel Job Scheduling Problem (PJSP)

In the Parallel Job Scheduling Problem, we are given N jobs and M machines. Each of the

machines operate with a different processing speed, and so the time required to complete job

i on machine m is Ti,m. Each job has a due time associated with it, and if a job is finished

after its due time then there is a delay. The delay for job i is the difference in time between

the due time and the actual finishing time of job i, and can never be lower than 0. The

objective of the problem is to find a sequence of jobs to complete on each of the machines

in order to minimize the total delay of all the jobs.

3.3 Pickup and Delivery Problem (PDP)

In Pickup and Delivery Problem we are given N calls and a single vehicle with a maximum

capacity. Each call has a weight, a pickup location, and a delivery location, and is served
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Figure 3.2: PJSP Problem Illustration

when the order is transported by the vehicle from the pickup to the delivery location. The

objective of the problem is to minimize the traveling distance of the vehicle while serving all

the calls and not carrying more than the maximum capacity at any point.

3.4 Pickup and Delivery Problem with Time Windows

(PDPTW)

In the Pickup and Delivery Problem with Time Windows, we are given a set of calls. A call

consists of an origin and a destination and an amount of goods that should be transported.

A heterogeneous fleet of vehicles are serving the calls, picking up goods at their origins and

delivering them to their destinations. Time windows are assigned to each call at origins

and destinations. Pickups and deliveries must be within the associated time windows. In

the event of early arrival of a vehicle to a node before the start of the time window, the

mentioned vehicle must wait until the beginning of the time window before being able to

perform the pick up or delivery. A vehicle is never allowed to arrive at a node after the

end of the time window. Additionally, a service time is considered for each time a call gets

picked up or delivered, i.e., the time it takes a vehicle to load or deliver the goods at each

node. For each call, a set of feasible vehicles is determined. Each vehicle has a predetermined

maximum capacity of goods as well as a starting terminal in which duty of the vehicle starts.
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Figure 3.3: PDP Problem Illustration

Moreover, a start time is assigned to each vehicle indicating the time that the vehicle leaves

its starting terminal. The vehicle must leave its start terminal at the starting time, even if

a possible waiting time at the first node visited occurs. The goal is to construct valid routes

for each vehicle, such that time windows and capacity constraints are satisfied along each

route, each pickup is served before the corresponding delivery, pickup and deliveries of each

call are served on the same route and each vehicle only serves calls it is allowed to serve.

The construction of the routes should be in such a way that they minimize the cost function.

There is also a compatibility constraint between the vehicles and the calls. Thus, not all

vehicles are able to handle all the calls. If we are not able to handle all calls by our fleet, we

have to outsource them and pay the cost of not transporting them. For more details, readers

are referred to (Hemmati et al., 2014).
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Figure 3.4: PDPTW Problem Illustration
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Chapter 4

DRLH

In this chapter, we present the DRLH, a hyperheuristic approach based on Deep RL and

ALNS. We illustrate the performance of this novel hyperheuristic by applying it to the

different problems discussed in chapter 3. Our proposed hyperheuristic framework uses an

RL agent for the selection of heuristics. This process improves on the ALNS framework

of (Ropke and Pisinger, 2006) by leveraging the RL agent’s decision making capability in

choosing the next heuristic to apply on the solution in each iteration. The pseudocode of

DRLH is illustrated in Algorithm 1

4.1 Generating Heuristics

The heuristic generation process follows the steps in Algorithm 2. The set H consists of all

possible heuristics that can be applied on the solution l at each iteration. The general method

for obtaining these heuristics is to combine a removal and an insertion operator. Furthermore,

additional heuristics can also be placed in H that do not share the characteristic of being

a combination of removal and insertion operators. In the following we present one example

set of H for the problems in chapter 3.
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Algorithm 1: DRLH

Function Deep Reinforcement Learning Hyperheuristic

Generate an initial solution l with objective function of f(l) (see section 4.5)
H=Generate heuristics() (see section 4.1)
lbest = l, f(lbest) = f(l)
Repeat

l
′
= l

choose h ∈ H based on policy π(h|s, θ) (see section 4.4)

Apply heuristic h to l
′

if f(l
′
) < f(lbest) then

lbest = l
end

if accept(l
′
, l) (see section 4.3), then

l = l
′

end

Until stop-criterion met (see section 4.3)
return lbest

Algorithm 2: Generation of the set of heuristics H

Function Generate heuristics

H={};
foreach removal operator r ∈ R do

foreach insertion operator j ∈ I do
Create a heuristic h by combining r and j;
H = H ∪ h;

end

end
foreach additional heuristic c ∈ C do

H = H ∪ c;
end
return H

4.2 Sample Set of Heuristics

Each heuristic h ∈ H is a combination of a removal and an insertion operator presented in

Tables 4.1 and 4.2. Furthermore, one additional intensifying heuristic is also added to H.

In each iteration, a heuristic h ∈ H is applied on the incumbent solution l with cost of f(l)

and generates a new solution l
′

with cost of f(l
′
). For our sample set of heuristics, H has

the size of |H| = 29 (7 removals × 4 insertions + 1 additional).
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4.2.1 Removal Operators R

The set of all removal operators R are provided in Table 4.1. Seven removal operators are

implemented, five of which are focused on inducing diversification through a high degree

of randomness denoted by Random in their name. For intensification purposes, we define

the operator “Remove largest D” which uses the metric Deviation D. We define the de-

viation Di as the difference in cost with and without elementi in the solution, and thus

“Remove largest D” removes the elements with the largest Di. Finally, “Remove τ” opera-

tor selects a number of consecutive elements in the solution and removes them.

Table 4.1: List of all removal operators

Name Description

Random remove XS Removes between 2-5 elements chosen randomly

Random remove S Removes between 5-10 elements chosen randomly

Random remove M Removes between 10-20 elements chosen randomly

Random remove L Removes between 20-30 elements chosen randomly

Random remove XL Removes between 30-40 elements chosen randomly

Remove largest D Removes 2-5 elements with the largest Di
Remove τ Removes a random segment of 2-5 consecutive elements in the solution

4.2.2 Insertion Operators I

Table 4.2 lists the set of insertion operators I used. A total of 4 insertion operators

are utilized to place the removed elements in a suitable position in solution l′. Operator

“Insert greedy” places each removed element in the position which obtains the minimum

total cost of the new solution f(l′). Operator “Insert beam search” performs beam search

with search depth of 10 for placing each removed element. Beam search keeps track of 10 the

best position combinations after inserting each removed element in the solution and puts the

elements in the best combination of positions that obtain the minimum f(l′) in the search

space. The “Insert by variance” operator calculates the variance of the ten best insertion

positions for each of the removed elements. Then the elements are ordered from high to

low variance and inserted back into the solution with the “Insert greedy” operator. Finally,

operator “Insert first” places each removed element randomly in the first feasible position

found in the new solution.
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Table 4.2: List of all insertion operators

Name Description

Insert greedy Inserts each element in the best possible position

Insert beam search Inserts each element in the best position using beam search

Insert by variance Sorts the insertion order based on variance and inserts
each element in the best possible position

Insert first Inserts each element randomly in the first feasible position

4.2.3 Additional Heuristics C

Unlike in ALNS where only removal and insertion operators are used, our framework can also

make use of standalone heuristics that employ neither of the these types of characteristics.

An example of one such additional heuristic, “Find single best”, is responsible for generating

the best possible new solution from the incumbent by changing one element. This heuristic

calculates the cost of removing each element and re-inserting it with “Insert greedy”, and

applies this procedure on the solution l for the element that achieves the minimum cost f(l
′
).

“Find single best” is the only additional heuristic that is used in the proposed sample set of

heuristics, H.

4.3 Acceptance Criteria and Stopping Condition

We use the acceptance criterion accept(l
′
, l) used in simulated annealing (Kirkpatrick et al.,

1983). This acceptance criterion depends on the difference in objective value between the

incumbent l and the new solution l
′
denoted as ∆E = f(l

′
)−f(l) together with a temperature

parameter T that is gradually decreasing throughout the search. A new solution is always

accepted if it has a lower cost than the incumbent, ∆E < 0. In addition, worse solutions are

accepted with probability e−|∆E|/T .

To determine the initial temperature T0 we accept all solutions for the first 100 iterations

of the search and keep track of all the non-improving steps, ∆E > 0. Then we calculate the

average of these positive deltas ∆E in order to get:

T0 =
∆E

ln 0.8
(4.1)
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To decrease the temperature we use the cooling schedule of (Crama and Schyns, 2003),

and the search terminates after a certain number of iterations has been reached.

4.4 Deep Reinforcement Learning Agent for Heuristic

Selection

In a typical RL setting, an agent is trained to optimize a policy π for choosing an action

through interaction with an environment. At each time step (iteration) t, the agent chooses

an action At and receives a scalar reward Rt from the environment indicating how good

the action was. State St is defined as the information received at each time step from the

environment based on the agent’s choice of action At from a set of possible actions. Thus, a

stochastic policy π for the agent is defined as

π(a|s) = Pr{At = a|St = s}. (4.2)

One such type of policy is the parameterized stochastic policy function in which the prob-

ability of action selection is also conditioned on a set of parameters θ ∈ Rd. As a result,

Eq.(4.2) is redefined as

π(a|s, θ) = Pr{At = a|St = s, θt = θ}. (4.3)

in which θt represents the parameters at time step t (Sutton and Barto, 2018). In our

setting, the policy π is a MultiLayer perceptron (MLP), which is a class of non-linear function

approximation (Goodfellow et al., 2016). In this scenario, the aim is to obtain the optimal

policy π∗ by tuning θ which represents the weights of the MLP network.

The training process for an RL agent is illustrated in Algorithm 3. For training the

weights of the MLP, we follow the policy gradient method of PPO introduced in (Schulman

et al., 2017). In order to generalize to different variations of an optimization problem, the

training process is done for a number of problem instances (episodes) with each instance

corresponding to a different set of attributes of the problem. Each instance is optimized

for a certain number of iterations (time steps) and at the end of each episode the policy

parameters θ are updated until we obtain the optimal policy. Once the training process is

complete, the optimal policy π∗ is used to solve unseen instances in the test sets.
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Algorithm 3: Training the Deep RL agent

Result: π∗ optimal policy
Start with random setting of θ for a random policy π;
for e← 1 to episodes do

Receive initial state S1;
for t← 1 to steps do

choose and perform action a ∈ At according to π(a|s, θ);
Receive Rt = v and s ∈ St+1 from the environment

end
Optimize the policy parameters θ according to PPO(Schulman et al., 2017).

end

As mentioned above, three main properties of the RL agent which is used to obtain the

optimal policy π∗ for solving the intended problem are the state representation, the action

space, and the reward function. These parameters dictate the training process and decision

making capability of the agent and are therefore essential for obtaining good solutions to

optimization problems. Moreover, in our proposed approach, these properties are set to be

independent of the type of problem which makes this approach generalize to many types

of combinatorial optimization problems. The state representation contains the information

about the current solution and the overall search state, and is shown to the agent at each

step in order to guide the agent in the action selection process. The action space consists of a

set of interchangeable heuristics that can be selected at each time step by the agent. Finally,

the reward function guides the learning of the agent during training and should be designed

in a way that helps the agent optimize the objective of the problem. In the following, we

explain the choice for each of these properties.

4.4.1 State Representation

The state consists of a set of useful features for guiding the agent to select the best ac-

tion/heuristic at each iteration in the search. We have prioritized general state features that

are independent of the specifics of the problem being solved. In other words, the state rep-

resentation is easily applicable to many optimization problems of different domains. Table

4.3 lists all the state features used by the agent.

The state features cost and min cost together with index step allow the agent to know

approximately how well it is doing during the search. This becomes apparent if cost and
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Table 4.3: A list of all features used for the state representation

Name Description

reduced cost The difference of cost between previous & current solutions

cost from min The difference of cost between current & best found solution

cost The cost of the current solution

min cost The cost of the best found solution

temp The current temperature

cs The cooling schedule (α)

no improvement The number of iterations since last improvement

index step The iteration number

was changed 1 if the solution was changed from the previous, 0 otherwise.

unseen 1 if the solution has not previously been encountered in the search, 0 otherwise.

last action sign 1 if the previous step resulted in a better solution, 0 otherwise.

last action The action in previous iteration encoded in 1-hot.

min cost are higher than their average values during training with respect to index step.

These state features primarily help at a macro-level by making the agent stick to a high-

level strategy of heuristic selection throughout the search (see section 6.7). cost from min,

temp, cs and no improvement inform the agent about how likely a new solution is to be

accepted. These state features help the agent know how much intensification/diversification

is appropriate at that step. For instance if it should try to escape a local optima or if

it should focus on intensification. The last five state features; reduced cost , was changed ,

unseen, last action sign and last action inform the agent about the immediate changes from

the previous solution to the current solution. In particular, reduced cost shows the difference

of cost between the previous and current solution. was changed indicates if the solution was

changed from the previous step to the current step. unseen indicates whether the current

solution was encountered before during the search. Finally, last action sign indicates if

the solution improved or worsened from the previous step, and last action indicates the

action that was used in the previous step. Together these five features give information

about what action the agent selected in the previous step and the result of that action.

This helps the agent make decisions at a micro-level and is particularly useful as the agent

can avoid selecting deterministic or semi-deterministic heuristics such as Remove largest D,

Insert by variance and Find single best twice in a row if the first time did not lead to any

improvement, because then it is less likely, if at all, to work the second time on the same

solution. This is particularly important for Find single best which is a fully deterministic

heuristic (see Table 6.4 for results related to this).
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4.4.2 Action

The actions in our setting for the agent are the same as the set of heuristics H, i.e, At = H.

At each iteration of the DRLH (c.f., Algorithm 1), a heuristic h is selected and applied on

the solution by the agent. Therefore the policy function π in Eq.(4.3) is redefined as

π(h|s, θ) = Pr{At = h|St = s, θt = θ}. (4.4)

4.4.3 Reward Function

A good reward function needs to balance the need for gradual and incremental rewards while

also preventing the agent from exploiting the reward function without actually optimizing the

intended objective (also known as reward hacking (Amodei et al., 2016)). For our framework,

we propose a reward function that has the above property. We refer to this as R5310
t , the

formula for which is

R5310
t =



5, if f(l
′
) < f(lbest)

3, if f(l
′
) < f(l)

1, if accept(l
′
, l)

0, otherwise

(4.5)

R5310
t is inspired from the scoring mechanism that is applied in the ALNS framework for

measuring the performance of each heuristic in a segment. This reward function encourages

the agent to find better solutions than the current one as this gives a high reward. In

addition it also gives a small reward if it finds a slightly worse solution that manages to get

accepted by the acceptance criterion. This property of the function in turn motivates the

agent to use diversifying operators when it is no longer able to improve upon the current

solution. Moreover, other reward functions were considered for the framework which take the

step-wise improvement of the solution as well as the amount of improvement into account.

Experiments on these reward functions demonstrated that the R5310
t proved to be more stable

and faster to train compared to the others (results in Appendix A). Furthermore, given the

fact that R5310
t comes from the original scoring function of ALNS in (Ropke and Pisinger,

2006), we use the same function for our Deep RL agent and ALNS for an equal comparison.
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4.5 Solution Representation and Initial Solution

For all the problems the solution is represented as a permutation of orders/calls/jobs on each

of the available vehicles/machines. Additionally, for the PDP and PDPTW, each call should

be in the solution twice, one time for each of the pickup and the delivery representations

respectively, and no call can be present in multiple vehicles, as the same vehicle has to both

pick up and deliver the call.

The initial solutions for all of the problems are created by inserting all the orders/call-

s/jobs into the vehicles/machines using the insert greedy operator from Table 4.2. For each

of the problems and each test instance, DRLH, ALNS and URS start with the same initial

solution for a fair comparison.

(a) CVRP (b) PJSP

(c) PDP (d) PDPTW

Figure 4.1: Solution representations for CVRP, PJSP, PDP and PDPTW.
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Chapter 5

Experimental Setup

5.1 Experimental Environment

The computational experiments in this thesis were run on a desktop computer running a 64-

bit Ubuntu 20.04 operating system with a AMD Ryzen 5 3600 processor and 32GB RAM.

5.2 Baseline Models

Two baseline frameworks are chosen to compare with DRLH. Both of these use the same set

of heuristics as DRLH with the difference being how the heuristics are selected. The details

of the baselines are presented in the following.

5.2.1 Adaptive Large Neighborhood Search (ALNS)

As our approach is improving on the ALNS algorithm, this method is chosen as a baseline for

performance comparison. This framework measures the performance of each heuristic using

a scoring function for a certain number of iterations, referred to as a segment. At the end

of each segment, the probability of choosing a heuristic during the next segment is updated
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using the aggregated scores of each heuristic in the previous segment. The extent to which

the scores of the previous segment should contribute to updating the weights is controlled

by the reaction factor.

There is a trade-off between speed and stability when choosing the values of the segment

size and the reaction factor. Longer segments mean less frequent updates of the weights,

but may increase the quality of the update. Similarly, a low reaction factor means that

the weights can take longer to reach their desired values, but may also prevent sudden

unfavorable changes to the weights due to the stochastic nature of the problem.

5.2.2 Uniform Random Sampling (URS)

As a simpler approach to selecting heuristics in each iteration, this method selects the heuris-

tic randomly from H with equal probabilities for each of the heuristics, h ∈ H.

5.3 Hyperparameter Selection

The hyperparameters for DRLH determine the speed and stability of the training process

and also the final performance of the trained model. A small learning rate will cause training

to take longer, but the smaller updates to the neural network also increase the chance of a

better final performance once the model has been fully trained. Because the training process

is done in advance of the testing stage, we opt for a slow and stable approach in order to

train the best models possible. The hyperparameters of DRLH for the experiments are listed

in Table 5.1.

In order to decide on the hyperparameters for DRLH we did some initial experiments on

a separate validation set to see which combinations performed best. After that we have used

the same hyperparameters for all experiments in this thesis and found that they work very

well across all the problem variations that we tested. It is likely that these hyperparameters

can work for any underlying combinatorial optimization problem, as the hyperparameters

for DRLH are related to the high-level problem of heuristic selection, which stays the same,

regardless of what the underlying combinatorial optimization problem actually is.
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Table 5.1: The hyperparameters used during training for the Deep RL agent of DRLH

Hyperparameter Value

Max epochs 5000
Learning rate 1e−5
Batch size 64
First hidden layer size 256
Second hidden layer size 256
Discount factor 0.5

5.4 Dataset Generation

For all the problem variations we generate a distinct training set consisting of 5000 instances,

and a distinct testing set consisting of 100 instances. The exception is for PDPTW where

we utilize a known set of benchmark instances for testing.

5.4.1 CVRP

CVRP data instances are generated in accordance with the generation scheme of (Kool et al.,

2019, Nazari et al., 2018), but we also add two bigger problem variations. Instances of sizes

N = 20, N = 50, N = 100, N = 200 and N = 500 are generated where N is the number of

orders. For each instance the depot location and node locations are sampled uniformly at

random from the unit square. Additionally, each order has a size associated with it defined

as γ̂ = γi/DN where γi is sampled from the discrete set of {1, ..., 9}, and the normalization

factor DN is set as D20 = 30, D50 = 40, D100 = 50, D200 = 50, D500 = 50, for instances with

N orders respectively.

5.4.2 PJSP

For the PJSP we generate instances of sizes N = 20, N = 50, N = 100, N = 300 and

N = 500 where N is the number of jobs and using M = bN/4c machines. Job i’s required

processing steps PSi are sampled from the discrete set of {100, 101, ..., 1000}, and machine

m’s speed Sm, in processing steps per time unit, is sampled from N (µ, σ2) with µ = 10,

σ = 30, and the speed is rounded to the nearest integer and bounded to be at least 1. From

there we get that the time required to process job i on machine m is calculated as dPSi/Sme.
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5.4.3 PDP

For this problem, PDP data instances of sizes N = 20, N = 50, and N = 100 are generated

where N is the number of nodes based on the generation scheme of (Kool et al., 2019, Nazari

et al., 2018). For each instance the depot location and node locations are sampled uniformly

at random in unit square. Half of the nodes are pickup locations whereas the other half is the

corresponding delivery locations. Additionally, each call has a size associated with it defined

as γ̂ = γi/DN where γi is sampled from the discrete set of {1, ..., 9}, and the normalization

factor DN is set as D20 = 15, D50 = 20, D100 = 25, for each problem with N number of

nodes respectively.

5.4.4 PDPTW

For the PDPTW we use instances with different combinations of number of calls and number

of vehicles, see table 5.2. For testing we use the benchmark instances of (Hemmati et al.,

2014). This consists of 5 instances of each variation. Previous work by Homsi et al. (2020)

have found the global optimal objectives for these instances, and we use these optimal values

in order to calculate the Min Gap (%) and Avg Gap (%) to the optimal values for instances

with 18, 35, 80 and 130 calls. Additionally, we also generate and test on a much larger

instance size of 300 calls where we don’t have the global optimal objectives, but instead use

the best known values found by DRLH with 10000 iterations to calculate the Min Gap (%)

and Avg Gap (%). For generating the training set we use the provided instance generator of

(Hemmati et al., 2014).

Table 5.2: Properties of different variations of the PDPTW instance types.

#Calls #Vehicles #Vehicle types

18 5 3
35 7 4
80 20 2
130 40 2
300 100 2

40



Chapter 6

Results

6.1 Results of CVRP

Fig. 6.1a shows the improvement in percentage that using DRLH and ALNS has over using

URS on CVRP instances of different sizes. We see that DRLH is able to outperform both

URS and ALNS for all the instance sizes except for the smallest size. There is also a clear

trend that shows how DRLH becomes increasingly better compared to URS and ALNS on

larger instance sizes.

6.2 Results of PJSP

Fig. 6.1b shows a similar result as for the CVRP problem. We see that DRLH is able to

outperform the other methods for all of the instance sizes tested. Compared to the previous

results, we see that the degree of improvement on larger instance sizes is less prominent for

DRLH, but we also see that ALNS does not perform noticeably better on larger instance

sizes at all. Because of that we still see a clear separation in performance between DRLH and

ALNS on larger instance sizes that seem to grow with larger instance sizes.
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Figure 6.1: Results of DRLH for CVRP, PJSP, PDP and PDPTW after 1000 iterations.

6.3 Results of PDP

Similarly to the other problems we see from Fig. 6.1c that DRLH outperforms ALNS and

URS on all the instance sizes tested and that the effectiveness of DRLH seems to increase with

larger instance sizes. Fig. 6.2 shows that the number of iterations for improving the solution

affects the minimum costs found for all the methods. We see that DRLH outperforms the

baselines when tested for 1000, 5000, 10000 and 25000 iterations, and that the percentage

difference between DRLH, ALNS and URS gets smaller as the number of iterations grows

larger. Intuitively this makes sense as all three methods are getting closer to finding the

optimal objectives for the test instances, and more iterations for improving the solution
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Figure 6.2: Boxplot results for different number of iterations for PDP100

during the search makes the choices of which heuristics to select less sensitive compared to

searching for a smaller number of iterations.

6.4 Results of PDPTW

Finally, we observe a similar trend for PDPTW as for the other problems, which can be

seen in Fig. 6.1d. From this figure, showing results after 1000 iterations, we see that

DRLH outperforms ALNS and URS on all instance sizes tested and that performance tends

to increase on larger instance sizes.

In addition to this figure we also report results for PDPTW shown in Tables 6.1, 6.2 and

6.3 for 1000, 5000 and 10000 iterations respectively. We see from the tables that DRLH out-

performs ALNS and URS on all of the tests on average, showing that it can find high

quality solutions and has a robust average performance. Furthermore, we can see that the

performance difference between DRLH and the baselines increases on bigger instances, mean-

ing that DRLH scales favorably to the size of the problem, making it more viable for big

industrial-sized problems compared to ALNS and URS.

We have also included the average time in seconds for optimizing the test instances. Note

that the difference in time-usage is not directly dependent on the framework for selecting the
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heuristics (DRLH, ALNS, URS), but rather on the difference in time-usage of the heuristics

themselves. This means that if all the heuristics used the same amount of time, then there

would not be any time difference between the frameworks. However, because there is a rela-

tively large variation in the time-usage between the different heuristics, we see a considerable

variation between the frameworks as they all have a different strategy for heuristic selection.

Table 6.1: Average results for PDPTW instances with mixed call sizes after 1000 iterations

DRLH ALNS URS

Min Gap Avg Gap Time Min Gap Avg Gap Time Min Gap Avg Gap Time
#C #V (%) (%) (s) (%) (%) (s) (%) (%) (s)

18 5 0.00 0.18 32 0.00 0.46 25 0.00 0.40 12
35 7 2.67 5.78 9 3.45 7.08 36 2.46 6.40 27
80 20 3.04 4.85 37 3.64 6.51 98 4.62 7.23 100
130 40 3.44 4.66 100 4.00 6.24 186 4.85 6.71 176
300 100 2.40 3.15 637 3.10 5.04 599 5.29 6.51 398

Table 6.2: Average results for PDPTW instances with mixed call sizes after 5000 iterations

DRLH ALNS URS

Min Gap Avg Gap Time Min Gap Avg Gap Time Min Gap Avg Gap Time
#C #V (%) (%) (s) (%) (%) (s) (%) (%) (s)

18 5 0.00 0.00 56 0.00 0.11 159 0.00 0.01 64
35 7 1.02 2.95 218 0.78 3.24 207 1.26 3.49 141
80 20 1.76 3.25 201 2.11 4.04 503 2.54 4.14 471
130 40 2.10 3.14 530 2.51 3.93 837 2.91 4.09 767
300 100 0.48 1.15 2580 1.01 2.35 2062 2.07 2.99 2352

Table 6.3: Average results for PDPTW instances with mixed call sizes after 10000 iterations

DRLH ALNS URS

Min Gap Avg Gap Time Min Gap Avg Gap Time Min Gap Avg Gap Time
#C #V (%) (%) (s) (%) (%) (s) (%) (%) (s)

18 5 0.00 0.00 219 0.00 0.02 338 0.00 0.00 102
35 7 0.67 2.02 182 0.78 2.66 410 0.68 2.77 289
80 20 1.80 2.95 321 2.03 3.33 757 2.17 3.36 972
130 40 1.93 2.84 877 2.38 3.34 1307 2.56 3.37 1609
300 100 0.00 0.64 4630 0.55 1.89 4120 1.46 2.18 4203

6.5 Results of an Increased Pool of Heuristics

In addition to the set of heuristics mentioned in section 4.1 we have also created an extended

set of heuristics (see Appendix B). In total this extended set consists of 142 heuristics. Fig.
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Figure 6.3: Results of an Increased Pool of Heuristics
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6.3 shows the average gap of using the extended set compared to using the standard set for

each of DRLH, ALNS and URS. The extended set obtains worse results on average compared

to the standard set, but there is an interesting difference between the performance hit of

DRLH, ALNS and URS when comparing the results of the extended set and the standard set.

We see from Fig. 6.3 that DRLH is relatively unaffected by increasing the number of available

heuristics (being only 0.02% worse on average), while ALNS and URS are performing much

worse when using the extended set, and ALNS is hit especially hard. A likely reason for this

is that there are too many heuristics to accurately explore all of them during the search in

order to identify the best heuristics and take advantage of them during the search.

An important conclusion from this result (albeit one that needs further empirical proof)

is that when using DRLH, it is possible to supply it with a large number of heuristics and

let DRLH identify the best ones to use. This is not possible for ALNS and consequently it

is often necessary to spend time carrying out prior experiments with the aim of finding a

small set of the best performing heuristics to include in the final ALNS model. This also

resonates with the conclusion of Turkeš et al. (2021), who argue that the performance of

ALNS benefits more from a careful a priori selection of heuristics, than from an elaborate

adaptive layer. Considering that this can be quite time consuming, using DRLH can lead

to a simpler development phase where heuristics can be added to DRLH without needing to

establish their effectiveness beforehand, and not having to worry whether adding them will

hurt the overall performance. Should a heuristic be unnecessary, then DRLH will learn to

not use it during the training phase.

In addition to DRLH having a simpler development phase, an increased (or more nuanced)

set of heuristics also has a larger potential to work well for a wide range of conditions, such

as for different problems, instance sizes and specific situations encountered in the search.

In other words, reducing the set of heuristics could negatively affect the performance of

ALNS, but much less so for DRLH. Some heuristics work well only in specific situations,

and so removing these ”specialized” heuristics due to their poor average performance gives

less potential for ALNS to be able to handle a diverse set of problem and instance variations

compared to DRLH, which learns to take advantage of any heuristic that performs well in

specific situations. Of course, these claims are based on a limited number of experiments

and should be validated in a broad range of (future) experiments.
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6.6 Performance Results

In this section we explore the speed and characteristics of the performance of DRLH, ALNS

and URS on the different problems. Fig. 6.4 shows that DRLH is able to quickly find better

solutions compared to ALNS and URS for all the problems. Although for CVRP, it takes a

little bit longer initially, but ultimately reaches a much lower average minimum cost before

the convergence of all three methods start to stagnate. For all the problems, DRLH is able

to reach a better cost after less than 500 iterations than what ALNS is able to reach after

1000 iterations. With the exception of the CVRP problem, DRLH is also extremely efficient

in the beginning of the search, reaching costs in only 100 iterations that takes ALNS about

500 iterations to match. We refer to Appendix C for a complete collection of performance

plots for all the problems that we have tested.

6.7 Heuristic Selection Strategies

The micro-level heuristic usage of DRLH means that DRLH is able to drastically change

the probabilities of selecting heuristics from one iteration to the next by taking advantage of

the information provided by the search state, see Fig. 6.5a and 6.5b. This is in contrast to

the macro-level heuristic usage of ALNS where the probabilities of selecting operators only

are updated at the beginning of each segment, meaning that the decision making of ALNS

within a single segment is random according to the locked probabilities of that segment, see

Fig. 6.5c. Depending on the problem and available heuristics to select, there might exist

exploitable strategies and patterns for heuristic selection, such as heuristics that: work well

when used together, work well for escaping local minima, work well on solutions not previ-

ously encountered during the search. Using DRLH, these types of exploitable strategies can

be automatically discovered without the need for specially designed algorithms designed by

human experts. One such exploitable strategy found by DRLH on our problem with our

provided set of heuristics we will refer to as minimizing wasted actions. We define a wasted

action as the selection of a deterministic heuristic (in our case Find single best) for two

consecutive unsuccessful iterations. The reason that this action is wasted is because of the

deterministic nature of the heuristic, which makes it so that if the solution did not change in

the previous iteration, then it is guaranteed not to change in the following iteration as well.
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Figure 6.4: Average performance of DRLH, ALNS and URS on each of the problems.



(a) Smoothed probabilities of selecting heuristics for DRLH.

(b) Actual probabilities of selecting heuristics for DRLH, zoomed in between iteration
2000-2300.

(c) Actual probabilities of selecting heuristics for ALNS

Figure 6.5: Example of the probability of selecting heuristics for DRLH and ALNS.

Even though we have not specifically programmed DRLH to utilize this strategy, it becomes

clear by examining Table 6.4 that DRLH has picked up on this strategy when learning to

optimize micro-level heuristic selection. Table 6.4 shows that the number of wasted actions

for DRLH is almost non-existent for most problem variations. ALNS on the other hand ends

up with far more wasted actions than DRLH, even though ALNS also uses Find single best

much more seldom on average. Fig. 6.5c shows how the heuristic probabilities for ALNS
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remain locked within the segments, making it impossible for ALNS to exploit strategies such

as minimizing wasted actions which relies on excellent micro-level heuristic selection such as

what DRLH demonstrates.

Table 6.4: The percentage of wasted actions of the total number of deterministic heuristics
selected averaged over the test set.

(a) CVRP

Wasted Actions (%)

#Orders #Iterations DRLH ALNS

20 1k 3.37 26.55
50 1k 0.00 23.98
100 1k 1.22 19.48
200 1k 0.00 23.43
500 1k 0.01 25.15

(b) PJSP

Wasted Actions (%)

#Jobs #Iterations DRLH ALNS

20 1k 0.00 20.82
50 1k 0.86 24.57
100 1k 0.00 24.80
300 1k 0.00 24.85
500 1k 0.00 24.50

(c) PDP

Wasted Actions (%)

#Calls #Iterations DRLH ALNS

20 1k 6.82 31.53
50 1k 0.00 29.00
100 1k 0.00 28.01
100 5k 0.02 30.62
100 10k 0.00 33.86
100 25k 0.00 32.69

(d) PDPTW

Wasted Actions (%)

#Calls #Iterations DRLH ALNS

18 1k 0.00 21.68
35 1k 0.00 28.65
80 1k 0.00 24.50
130 1k 0.00 19.60
300 1k 0.00 17.90

18 5k 0.00 30.88
35 5k 0.00 36.26
80 5k 0.00 27.49
130 5k 0.00 26.98
300 5k 0.00 26.10

18 10k 0.25 37.82
35 10k 0.00 36.60
80 10k 0.00 32.41
130 10k 0.08 29.67
300 10k 0.00 26.10
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Chapter 7

Conclusion and Future Work

In this thesis, we proposed DRLH, a general framework for solving combinatorial optimiza-

tion problems. In DRLH, we utilize a trained Deep Reinforcement Learning agent to select

low-level heuristics to be applied on the solution in each iteration of the search based on a

search state consisting of features from the search process. In our experiments, we solved four

combinatorial optimization problems CVRP, PJSP, PDP, and PDPTW using our proposed

approach and compared its performance with the baselines ALNS and URS. Our results show

that DRLH is able to select heuristics in a way that achieves better results for almost all of

the problem variations compared to ALNS and URS, and DRLH also finds better solutions

more quickly than ALNS for most of the problem variations. Furthermore, the performance

gap between DRLH and the baselines is shown to increase for larger problem sizes, making

DRLH a suitable option for large real-world problem instances. Additional experiments on

an extended set of heuristics show that DRLH is not negatively affected when selecting

from a large set of available heuristics, while the performance of ALNS is much worse in this

situation.

Future research should provide more empirical evidence for the superiority of DRLH over

ALNS by applying this novel hyperheuristic to different problems. A potential direction for

improving the model in the future is designing a reward function that is both stable and

takes into account the difference of objective value at each iteration of the search. Initial

experiments on alternative reward functions have shown promising results (see Appendix A),

but are time-consuming to train and not very stable compared to the R5310 reward function

that we have used in this thesis.
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List of Acronyms and Abbreviations

ALNS Adative Large Neighborhood Search.

ANN Artificial Neural Network.

CVRP Capacitated Vehicle Routing Problem.

LNS Large Neighborhood Search.

MLP MultiLayer perceptron.

PDP Pickup and Delivery Problem.

PDPTW Pickup and Delivery Problem with Time Windows.

PJSP Parallel Job Scheduling Problem.

PPO Proximal Policy Optimization.

RL Reinforcement Learning.

URS Uniform Random Sampling.
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Appendix A

Experiments on Different Reward Functions

A.1 RPM
t

RPM
t =

1, if f(l
′
) < f(l)

−1, otherwise
(A.1)

The RPM
t reward function focuses more heavily on intensification by punishing any action

choice that does not directly improve upon the current solution. This causes the agent to

favor intensifying heuristics more strongly than R5310
t . However, because the PPO framework

leverages the discounted future rewards as opposed to only the immediate reward for training

the agent, even the RPM
t can cause the agent to select heuristics with a high likelihood of

immediate negative reward if it sets it up for more positive rewards in future iterations.

Fig. A.1 illustrates the distribution of minimum costs found on the on the PDP100

test set after 1000 and 10000 iterations for two different versions of DRLH, trained with

reward functions R5310
t and RPM

t respectively. The model trained with R5310
t achieves a lower

median value for both iteration variations, with higher cost gathered around the median

value compared to the model trained with RPM
t . This makes the R5310

t reward function

more reliable to perform close to median, and we therefore decided to use the R5310
t reward

function in this thesis.

60



11 12 13 14 15 16 17 18
Cost

1K

10k

In
te

ra
ti

on
 N

um
.

14.22

14.56

13.64

13.71

R5310

RPM

Figure A.1: Comparison of the two reward functions.

A.2 RMC
t

RMC
t =

{
f(lbest)−f(l

′
)

f(lbest)
(A.2)

The RMC
t is a reward function that more directly correlates with the intended objective

of minimizing the cost of the best found solution, and achieve this as quickly as possible.

Instead of focusing on rewarding actions that directly improve the solution, this reward

function is subject to the performance of the entire search process up to the current step,

putting a greater emphasis on acting quickly and selecting heuristics that have a greater

impact on the solution. The challenge with using this reward function compared to reward

functions such as R5310
t and RPM

t is that there is an inherent delay between when a good

heuristic is selected and when the reward function gives a good reward. This makes it more

difficult to train an agent using this reward function, making training times much longer and

less stable than with the R5310
t reward function.

Having said that, the potential upside of using this reward function is very promising,

and results in Table A.1 show that RMC
t is able to outperform the R5310

t reward function on
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1k iteration searches. However, the agents were unable to learn effectively for larger number

of iterations such as 10k (Table A.2), and so results for this shows that RMC
t performs worse

than R5310
t on 10k iteration searches. A potential reason for why the RMC

t agents were unable

to learn well on 10k iteration searches is that the amount of improving iterations are much

less frequent, making the feedback signal from the RMC
t reward function even more delayed

and high variance. Another potential reason is that the training required in order to solve

10k iteration searches likely needed more training than what was possible to carry out for

our experiments due to time constraints with the experiments. We encourage future work

on improving the integration of the RMC
t reward function into the framework of DRLH as it

likely has a lot of potential.

Table A.1: Average results for PDPTW instances with mixed call sizes after 1000 iterations

DRLH with R5310
t DRLH with RMC

t

#C #V Min Gap (%) Avg Gap (%) Min Gap (%) Avg Gap (%)

18 5 0.00 0.18 0.00 0.11
35 7 2.67 5.78 1.48 3.65
80 20 3.04 4.85 3.15 4.39
130 40 3.44 4.66 2.99 4.33
300 100 2.40 3.15 2.28 3.00

Table A.2: Average results for PDPTW instances with mixed call sizes after 10000 iterations

DRLH with R5310
t DRLH with RMC

t

#C #V Min Gap (%) Avg Gap (%) Min Gap (%) Avg Gap (%)

18 5 0.00 0.00 0.00 0.13
35 7 0.67 2.02 0.42 2.32
80 20 1.80 2.95 2.55 3.87
130 40 1.93 2.84 2.20 3.04
300 100 0.00 0.64 1.12 1.88
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Appendix B

Extended Set of Heuristics

Tables B.1, B.2 and B.3 list the extended set of heuristics built up from 14 removal operators,

10 insertion operators and 2 additional operators, for a total of 14 × 10 + 2 = 142 total

heuristics, using the generation scheme of Algorithm 2. Most of these heuristics only use

problem-independent information, but some of them rely on problem-dependent information

specific to the PDPTW problem.
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Table B.1: List of extended removal operators

Name Description

Random remove XS Removes between 2-5 elements chosen randomly

Random remove S Removes between 5-10 elements chosen randomly

Random remove M Removes between 10-20 elements chosen randomly

Random remove L Removes between 20-30 elements chosen randomly

Random remove XL Removes between 30-40 elements chosen randomly

Random remove XXL Removes between 80-100 elements chosen randomly

Remove largest D S Removes 5-10 elements with the largest Di
Remove largest D L Removes 20-30 elements with the largest Di
Remove τ Removes a random segment of 2-5 consecutive elements in the solution

Remove least frequent S Removes between 5-10 elements that has been removed the least

Remove least frequent M Removes between 10-20 elements that has been removed the least

Remove least frequent XL Removes between 30-40 elements that has been removed the least

Remove one vehicle Removes all the elements in one vehicle

Remove two vehicles Removes all the elements in one vehicle

Table B.2: List of extended insertion operators

Name Description

Insert greedy Inserts each element in the best possible position

Insert beam search Inserts each element in the best position using beam search

Insert by variance Sorts the insertion order based on variance and inserts
each element in the best possible position

Insert first Inserts each element randomly in the first feasible position

Insert least loaded vehicle Inserts each element into the least loaded available vehicle

Insert least active vehicle Inserts each element into the least active available vehicle

Insert close vehicle Inserts each element into the closest available vehicle

Insert group Identifies the vehicles that can fit the most of the removed elements and
inserts each elements into these

Insert by difficulty Inserts each element using Insert greedy ordered by their difficulty,
which is a function of their compatibility with vehicles, strictness
of time windows,size and more.

Insert best fit Inserts each element into the vehicle that is the most compatible with the call.

Table B.3: List of extended additional heuristics

Name Description

Find single best Calculates the cost of removing each element and re-inserting it with Insert greedy, and
applies this procedure on the solution l for the element that achieves the minimum cost
f(l

′
).

Rearrange vehicles Removes all of the elements from each vehicle and inserts them back into the same vehicles
using Insert beam search



Appendix C

Additional Performance Plots

Figures C.1, C.2, C.3 and C.4 show the performance of DRLH, ALNS and URS averaged

over the test set for all the problems that we have tested. These show that DRLH usually

reaches better solutions more quickly than ALNS and URS, as well as ending up with better

solutions overall.
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Figure C.1: Average performance of DRLH, ALNS and URS on CVRP.
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Figure C.2: Average performance of DRLH, ALNS and URS on PJSP.
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Figure C.3: Average performance of DRLH, ALNS and URS on PDP.
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Figure C.4: Average performance of DRLH, ALNS and URS on PDPTW.
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