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Abstract

Auto-associative memories store a set of patterns and retrieve them by resorting to a

part of their contents. This thesis focuses on developing and extending a type of asso-

ciative memories relying on a sort of coded neural networks called clique-based neural

networks.

Background. Both associative memories and erasure correcting decoders deal with sim-

ilar tasks that revolve around retrieving missing pieces of information. However, despite

the similarity of their respective tasks, there is a gap in terms of efficiency and perfor-

mance which motivates applying coding techniques in the design of associative memories.

Clique-based neural networks, introduced by Gripon and Berrou, denote a family of as-

sociative memories that are inspired by biological considerations as well as concepts from

information theory. The usage of error-correcting coding and decoding techniques, bor-

rowed from the field of information theory, considerably boosts the performance of these

associative memories. The proposed neural network is organized in clusters of inter-

acting neurons such that patterns can be stored as neural cliques, which in turn can

be seen as codewords of a code. The tournament-based neural network is an extension

of clique-based neural networks with the ability to store sequences. In this model, se-

quences of any length can be stored as chains of tournaments. Both clique-based and

tournament-based associative memories have considerably larger storage capacity than

the Hopfield model, which is commonly considered as the benchmark model for associa-

tive memories.

Contribution. The aim of this thesis is to advance the research area in associative mem-

ory by generalizing the concepts of clique-based and tournament-based neural networks.

The generalization is expected to yield superior efficiency and retrieval performance. In

this thesis, we use the following approaches. First, in Paper I, the coding techniques

are used in two levels to enhance storage capacity and retrieval of partial erasures. In

Paper II, a modification to the structure of clique-based neural networks is proposed to

enhance the error-tolerance of the memory. Lastly, in Paper III, a modified version of

tournament-based neural networks is used for retrieval of a sequence from a given seg-

ment by means of forward and backward retrievals. Moreover, the sequence retrieval

performance is enhanced with the new retrieval techniques.
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Discussion. We achieve the aim of generalizing the clique-based associative memo-

ries originally proposed by Gripon, Berrou, and co-authors to more resilient memories

via using coding theory and graph theory approaches while maintaining their biologi-

cally plausible structures. The proposed models are quite flexible and can be employed

collectively.

K eywords. Neural Associative Memory, Content Addressable Memory, Error Correcting

Codes, Sparse Graphs, Sequence Storage, Clique-Based Neural Networks, Tournament-

Based Neural Networks.
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Clique-Based Neural Associative Memories

Clique-based neural associative memories
  with local coding and precoding.

Local-coding and pre-coding are introduced
to the clique-based neural networks to
enhance the storage capacity and retrieval
rate in the presence of partial erasures.
Local-coding projects a codeword to a neuron
instead of a random subpattern, but
maintains the network structure as well as
associated cliques to the patterns. Pre-
coding applies coding techniques to the input
patterns which alters the neural cliques.

Nested-clique network model of
neural associative memory.

Clique-based neural networks store
patterns as cliques of small sizes. 
The topology of these networks is
generalized so that patterns can be stored
as nested-cliques. The nested-clique
network enhances the error tolerance of
the original memories.

On Neural Associative Memory Structures:
Storage and Retrieval of Sequences

in a Chain of Tournaments

The structure of chain-of-tournaments in the
tournament-based neural network is
generalized by proposing a more general
structure, named Feedback TNN, as well as
more accurate retrieval algorithms, namely
Cache-Winner and Explore-Winner.
Feedback TNN is a more appropriate version
for retrieving sequences from both directions
by means of Feedback-Forward and Feedback-
Backward retrieval algorithms. 

Paper I Paper II Paper III

clique-based neural networks

partial-erasure

Cache-Winner
Explore-Winner

Feedback TNN

tournament-based neural network

neural associative memory

nested-clique networks

coding theory

error-correcting codes

winner-takes-all

GB model

error tolerance

cluster

Sparse memories

graph-based codes

local-coding

pre-coding

binary neural networks

self-dual additive
codes

superclusters

short and long connections

Feedback-Forward

sequence storage

fixed length pattern

Backward-Forward

Hamming distance

Thesis at a glance. As illustrated, the clique-based neural associative memories are
generalized according to three directions that are published in Paper I, Paper II, and
Paper III. A very brief summary of the contributions in each study as well as the central
terms in this thesis are depicted.
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Chapter 1

Introduction

1.1 Motivation

In the mid-twentieth century, the pioneering works of McCulloch and Pitts (1943) and

Shannon (1948) opened the door in two seemingly distant fields respectively; artificial

neural networks and information theory. Pursuing an information-theoretic perspec-

tive could bridge between the brain, or computational neuroscience, and information

science. For instance, a variable-processor of a Low-Density Parity Check (LDPC) de-

coder [Gallager, 1962; MacKay and Neal, 1995] and a neuron in the McCulloch-Pitts

model [McCulloch and Pitts, 1943] both aggregate input signals, positive/excitatory

or negative/inhibitory, in order to generate output based on the summation result.

These types of analogy can be an inspiring starting point in the design of neuro-inspired

information-processing machines. The (artificial) neural associative memory, as a spe-

cific class of neural networks that mimic the associative memory in the brain, is capable

of memorizing (learning) a set of patterns and recalling them afterwards in the pres-

ence of errors or erasures. This retrieval of missing pieces of information is similar to

the problem of reliable communication over noisy channels, and more particularly to the

iterative decoding techniques in modern coding theory and graph-based codes.

Despite the similarity of the tasks, there exists only a few studies that address the con-

nections between information storage in the brain and modern error correcting decoders.

Gripon and Berrou [2011] proposed a novel sparse neuro-inspired associative memory

that regulates neurons into clusters and memorizes patterns as fully interconnected sub-

graphs or cliques in graph theory terms. This model of associative memory benefits

from both information theory and neural network concepts where different approaches

and strategies are used to combine error correcting codes with associative memories in
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order to improve their performance [see, e.g., Gripon, 2011; Gripon and Berrou, 2012].

Learning and retrieval of temporal sequences in neural networks plays a significant role

in human intelligence which is approached in many ways [see, Brea et al., 2011; Hawkins

et al., 2009; Jiang et al., 2016; Maurer et al., 2005, to mention a few]. Tournament-based

Neural Network [Jiang et al., 2016] is a high efficiency sequence model of the clique-based

neural networks which benefits from oriented connections in the cliques.

Both the clique-based neural network [Gripon and Berrou, 2011] and the extended version

for storing sequences [Jiang et al., 2016] can be considered as significant brain-inspired

memory systems that initiate a wide range of studies in the associative memory research

area.

In this thesis, the architecture of clique-based and tournament-based neural networks

is improved and more accurate retrieval algorithms are proposed which yield a superior

efficiency and retrieval performance. It is worthy to emphasize at the outset that the

proposed models in this thesis are not intended to be faithful models of associative

memory and neural networks but rather to use them as a source of inspiration. We try

to achieve optimal designs of associative memory by applying techniques from coding

theory and graph theory while their relevance to the memory system in brain is on an

abstract level.

1.2 Organization

The rest of thesis is organized as follows. Chapter 2 gives a summary of required concepts

from graph theory and neural associative memories. In Chapter 3, an overview of Coding

theory and its applications to associative memories is given. Chapter 4 briefly explains

the network of neural cliques and tournament-based neural networks as the ground of this

thesis. A summary of the three papers is provided in Chapter 5. The thesis concludes

by suggesting some future research directions in Chapter 6. The papers are included in

Chapter 7, and finally a preliminary version of first paper which was presented in the 2015

IEEE 14th Canadian Workshop on Information Theory can be found in Appendix A.



Chapter 2

Graphs, Neural Networks, and

Memories

2.1 Graph Theory

Graph theory as a branch of mathematics, on one hand investigates some of the deep-

est and most fundamental problems in pure mathematics, and on the other hand offers

many useful results directly applicable to real world problems. Euler [1741] originally in-

troduced graphs as an abstract way of capturing the fundamental properties of a specific

problem domain, for instance, the relationships between the vertices, edges, and faces in

geometric objects. In the rest of this section, all the necessary terms and definitions re-

lated to graph theory are provided in order to make the thesis self-contained [see, Bondy

et al., 1976, for a through introduction to graph theory and its applications].

Formally, a graph G is an ordered pair (V,E) denoting an arbitrary nonempty set of

objects V called vertices, and a set of edges E ⊂ V × V , such that each edge is an

unordered pair of, not necessarily distinct, vertices of G. The ends of an edge are incident

with the edge, and vice versa. Two vertices that are incident with a common edge are

adjacent. The same applies for two edges which are incident through a common vertex.

An edge with distinct ends is called a link, while a loop refers to an edge with identical

ends. The number of vertices adjacent to v is called the degree d(v) of the vertex. A

graph is simple if it has no loops and no multiple links between the same pair of vertices.

Graph theory is mostly concerned with the study of simple graphs. A simple graph with

n vertices that contains no edge is called an empty graph. It is called a complete graph

and denoted by Kn if it has all the possible edges. Graph H is a subgraph of G (written

H ⊆ G) if V (H) ⊆ V (G), and E(H) ⊆ E(G), where E(H) is restricted to a subset of
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edges that have both ends at V (H). The induced subgraph of G on W ⊂ V (G) (written

G[W ]) contains vertices W and all edges from E(G) whose endpoints are both in W . A

graph in which each edge (link) has an assigned orientation is called a directed graph and

abbreviated as digraph. A directed edge (u, v) in a digraph that joins u to v is usually

called arc, where u is the tail and v is the head. A subdigraph, can be defined similar

to a subgraph. A clique is a complete subgraph of a simple graph, and a tournament

is a directed graph captured by assigning an orientation to each edge in a complete

(sub)graph. Graph G with n vertices can be specified by an n × n adjacency matrix

A(G)[aij], where aij denotes the number of edges joining vertices i and j. In simple

graphs, adjacency matrices are binary (aij = 1 if (i, j) ∈ E and aij = 0 otherwise) with

all diagonal elements equal to 0. Moreover, the undirected simple graphs have symmetric

adjacency matrices. The vertex set of a k-partite graph can be partitioned into k subsets

in a way that no edge has both ends in the same partition. When k = 2, the graph is

called bipartite. Figure 2.1 illustrates some of the above mentioned types of graphs. In

the rest of thesis, we use the term graph and subgraph for directed graphs too whenever

there is no ambiguity.

a) empty graph b) complete graph ,
clique of size 3 (in red)

c) bipartite graph
d) digraph of size 5,

tournament of size 4 (in red)

Figure 2.1: Illustration of an empty graph (a) with five vertices, Complete graph K5

and a clique of size three (b), a bipartite graph (c), and a digraph with five vertices and
a tournament of size four (d). The adjacency matrices of the graphs are also provided.

Graphs are mathematical objects and it is possible to define operations on two graphs

to make a new graph. The Cartesian product of graphs G and H, denoted by G � H,

is a graph with vertex set

V (G � H) = V (G)× V (H),

namely, the set {(g, h)|g ∈ G, h ∈ H}. The edge set of the product is defined as all pairs

((g1, h1), (g2, h2)) of vertices where either (g1, g2) ∈ E(G) and h1 = h2, or g1 = g2 and
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(h1, h2) ∈ E(H)1 (see Figure 2.2 for an example).

Figure 2.2: Illustration of Cartesian product of two graphs G � H.

This Cartesian product is commutative up to isomorphism2. Remind that an operation

is commutative if the order of operands does not affect the result, say G � H ≈ H � G.

This product is also connected with matrix operations and has many interesting appli-

cations in neural network structures [see, e.g., Imrich et al., 2008, for a depth study of

Cartesian product in graphs].

Graphs can be used as a preliminary tool for representing many real-world situations

such as a network of people or brain connectivity. Graphs play an essential role in design

of a system, such as a communication scheme or an artificial neural network with specific

characteristics. Graphs are used in the rest of thesis in the latter cases [see also, Sporns,

2018, for some applications of graph theory in brain networks].

2.2 Neural Networks

The field of Neural Networks studies the properties of networks of idealized neurons.

One can study neural networks either to understand how the brain works (biology per-

spective), or to create machines that can learn, perform pattern recognition or discover

patterns in data (engineering perspective), or just as an instance of complex adaptive sys-

tems with interesting properties. Neural networks, therefore, can be seen as computer

implementation of interconnected nodes (processing units) and weights (connections)

based loosely on the human brain. In a sense, they borrow ideas from brain and biologi-

cal neural network functioning but usually are not faithful models of biological systems.

1We abuse the notation by representing edges, say (g1, g2), and vertices, say (g1, h1), similarly.
2A relabeling of vertices that keeps the graph structure
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The first known artificial unit based on biological neurons is the McCulloch-Pitts neu-

ron [McCulloch and Pitts, 1943] that functions as a logic gate. McCulloch-Pitts neuron

gets active and sends a signal to other neurons in case it receives sufficient excitatory

input which is not compensated by equally strong inhibitory input. Perceptron [Rosen-

blatt, 1958] is one of the first significant advances from the McCulloch-Pitts neuron that

uses non-binary input and weights connections. The network can learn by adjusting the

weights. A population of neurons perform a particular function in such a case. The

learning via updating the weight is inspired by biological neural systems and a simple

rule of synaptic plasticity, known as Hebb’s rule [Hebb, 1949] or associative learning.

Hebb’s rule provides the basis for unsupervised learning [for experimental evidence of

synaptic plasticity see, e.g., Karaminis and Thomas, 2012; Sommer, 2012]. The single

neuron (perceptron), can be seen as a feedforward device in which the connections are

pointing from the inputs to the output of the neuron. The neuron acts as a mathemat-

ical function with a weighted input sum that computes its output using a non-linear

transform (see Figure 2.3).

activation ( )

activity

Figure 2.3: A single neuron (perceptron) architecture that has I inputs xi and one output
y. Each input is associated with a weight ωi(i = 1, · · · , I). ω0 parameter refers to the
bias that can be associated to an input x0 which is fixed to 1. The activation of a neuron
is a =

∑
i ωixi, and the output y which is called the activity of the neuron is a function

of activation, i.e. y = f(a) [see sections 39-41 of MacKay, 2003, for an in-depth study
of single neurons].

Adding hidden layers to perceptrons yields multi-layer perceptrons, which includes input

neurons, hidden neurons and output neurons. The multilayer perceptron is a feedforward

network. All the connections in a feedforward network are directed so that the network

forms a directed acyclic graph. Feedforward neural networks, like multilayer perceptrons,

are common tools for nonlinear regression and classification problems [MacKay, 2003].

For multidimensional information processing such as memory, sequences and dynamics,

feedback or recurrent neural networks are beneficial as they have cycles in their structures

which can capture the relation and history of learning [see, e.g, Collobert et al., 2011;
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Medsker and Jain, 1999, for some of applications of recurrent neural networks].

Several neural network models function as memories using simple learning algo-

rithms [MacKay, 2003]. To devise a neural associative memory, the topology of the

neural network, the learning process (updating weights between neurons), and the recall-

ing algorithm have to be determined. The idea of associative memory will be discussed

briefly in the next section followed by the Hopfield network as a fully connected recurrent

network which is considered as the state-of-the-art reference of associative memories [see,

e.g. Gripon and Berrou, 2011].

2.3 Associative Memories

The family of memories can be split into address-based (or indexed) memories and as-

sociative memories (or content-addressable) memories. Address-based memory, which is

the more traditional one, stores data at a unique address and the data can be recalled

through its complete unique address. In contrast, an associative memory compares a

fragment of search data with stored data and returns the full matching data (see for

e.g., section 38 of [MacKay, 2003]). Association denotes the connectivity of two or more

pieces of information which is the basis of data retrieval. To be a little bit more specific,

this model describes an auto-associative memory. In other words, auto-associative mem-

ory refers to all memories which are able to retrieve a piece of data from only a sample

of itself. In hetero-associative memories the pair-wise relation between two patterns of

different length, e.g. the name of an object and its picture, is memorized. Therefore

Hetero-associative memories can recall an associated piece of datum from one category,

when providing data from another category. Address-based memory is not robust and

any mistake in the address can result into retrieval of a completely different memory.

Moreover, it is not fault-tolerant and if an error happens on the data, say a bit is flipped,

this error will be present whenever that memory is retrieved. The error-correction codes

that detect and correct small numbers of errors make address-based memories error toler-

ance, however it can not be seen as an intrinsic property of the memory system [MacKay,

2003]. Biological memory systems are completely different from address-based memory

systems which motivates the study of artificial neural networks as parallel distributed

computational systems containing small processing units (neurons). Associative mem-

ories in computer science are indeed inspired from psychology and for this reason they

are referred to with the same name in both fields.
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2.3.1 Hopfield Neural Network

One of the first designs of an artificial neural network with auto-associative memory is

the Hopfield neural network [Hopfield, 1982]. The Hopfield network is capable of pattern

completion, given a partial pattern as well as error correction. The activity rule of the

Hopfield network for each neuron is based on roughly updating its state similar to a

single neuron with the threshold activation function.

x(a) = Θ(a) ≡





1 if a ≥ 0

−1 if a < 0.

The Hopfield network is a recurrent network and every neuron’s output is an input to all

the other neurons (see Figure 2.4 for an illustration), therefore there is a need to specify

an order for the network’s updates. The updates could be synchronous or asynchronous.

In the synchronous mode all neurons compute their activations and then update their

states simultaneously. In the asynchronous update mode, a neuron at a time computes

its activation and updates its state.

Figure 2.4: A Hopfield neural network consisting of eight neurons. The neurons are fully
connected through symmetric, bidirectional connections with weights ωij = ωji. The
activity, or the output of neuron i, is denoted by xi.

The Hopfield network learning is based on Hebb’s rule and the so-called one-shot learning,

where the network requires to observe each memory only once to learn the association

between them [Hopfield, 1982]. Each memory is a binary pattern, with xi ∈ {−1, 1}.
The learning rule is supposed to make a set of M binary patterns (or messages) xm as
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the stable states of the Hopfield network’s activity rule, ωii = 0 and

ωij =
M∑

m=1

xmi x
m
j when i 6= j.

The above rule is compatible with Hebb’s rule since it increases the connection weight

between two neurons if both have the same value. A distorted message (with values 0 for

erased bits) can be retrieved in an iterative update of neuron’s values (either synchronous

or asynchronous) until the network reaches a fixed point; i.e. xt+1
i = xti, i = i, · · · , n.

The fully connected structure of the Hopfield neural network is biologically implausible.

Other drawbacks include low efficiency and spurious memories [see, Hoffmann, 2019,

and references there]. Many modifications of the Hopfield neural network have been

studied to overcome these downsides [see, e.g. Berrou and Gripon, 2010; Kim et al.,

2017; Krotov and Hopfield, 2016; Maurer et al., 2005]. Boltzmann Machine, also named

stochastic Hopfield network with hidden units, is a more powerful version that uses

stochastic neurons [Ackley et al., 1985]. Willshaw-type model [Sommer and Palm, 1999;

Willshaw et al., 1969] considers binary connections instead of weighted ones and sparse

patterns. By virtue of sparse coding in the brain [see, e.g, Olshausen and Field, 2004;

Rinkus, 2010, for sparse coding], sparse associative memories can be regarded as more

biologically plausible models of memory [Gripon et al., 2016; Hoffmann, 2019]. Please

note that sparse neural networks and neuro-inspired associative memories may refer

to several categories [see, Gripon et al., 2016, for a comparative study of associative

memories with sparse information].
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Chapter 3

Error Correcting Codes and

Associative Memories

3.1 Communication Over Noisy Channels

According to Claude Shannon, the father of Information Theory, “the fundamental prob-

lem of communication is that of reproducing at one point either exactly or approximately

a message selected at another point”[Shannon, 1948]. In order to use the channel effi-

ciently, i.e. minimize transmission time and/or storage space, the source data is com-

pressed using a source coding scheme. Considering the fact that communication channels

are often noisy, error detection and correction codes add well-designed redundancy to the

messages to overcome the channel noise, which is usually referred to as channel coding.

Figure 3.1 illustrates a schematic diagram of a communication system and the source

and channel coding principle.

Channel coding aims to make the noisy channel behave like a noiseless channel. An error

correcting code is an encoding scheme that forms the allowed codewords (or patterns) for

transmission through a noisy channel, in such a way that the received codewords which

has been affected by noise can be still recovered. The receiver figures out whether the

received word is an allowed one. If the received word is not an allowed one, the receiver

finds the most probable codeword in the code. As a result, codes must be carefully

constructed in order to have high efficiency in the sense that the largest possible distance

between pairs of codewords is fulfilled.

Various strategies could be used to map the messages (or patterns) of length k into

codewords of length n by adding redundancy. A key characteristic of a code is its
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Information 
Source Transmitter Channel Receiver Destination

Signal Received
SignalNoise

Source
Coding

Codeword
Received

Word

Channel
Coding

Channel
Decoding

Source
Decoding

Figure 3.1: A schematic diagram of a communication system and the way source coding
and channel coding provide efficient and reliable communication over noisy channel.
The information source (or sender) starts the process by selecting a message to send.
Source coding compresses the data, and channel coding adds redundancy to them. The
transmitter (or encoder) converts the codeword into signals that can be sent from the
sender to the receiver. The channel of communication is the infrastructure (or medium)
that information passes through from transmitter to the receiver while noise might alter
the transmitted information. The receiver performs the opposite process of transmitter.
The Channel decoder finds the most probable emitted codeword and the source decoder
reverses the process of compression to retrieve the initial message (or pattern).

minimum distance, that is defined as the lowest Hamming distance between any two

codewords in the code. The Hamming distance between two codewords is defined as

the number of positions with different components. The minimum distance is closely

linked with the maximum number of errors that is guaranteed to be corrected. More

precisely, the maximum number of errors that is guaranteed to be corrected in any

codeword belonging to a code with minimum distance dmin equals bdmin−1
2
c. In the case

of erasures, this value equals dmin − 1. The decoder chooses the closest codeword to

the received word in terms of Hamming distance as it is supposed to be the most likely

transmitted codeword.

3.2 Role of Coding theory in Associative memories

Shannon’s well-known “source coding - channel coding” scheme of communication has

similarities to how the brain captures and stores essential information (see Figure 3.2).

The source coding part, that is concerned with the acquisition and compression of data,

has been vastly studied by computational neuroscience community under the name of

machine learning which mimics the brain as an intelligent learner and classifier [see

Berrou et al., 2014, and references therein]. The channel coding part, which is analogous

to the way mental information is encoded, retrieved and propagated in a robust and

durable manner, is the focus of this thesis.
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Physical World

Source Coding
nerves system

Channel Coding
mental information

Mental World

Figure 3.2: A schematic diagram of Shannon’s model of cognition [taken from Berrou
et al., 2014, Fig.1]. The external world provides richly detailed information. The in-
formation is strongly compressed first and then some smart redundancy is added which
enables robust and durable memorization.

In a neural associative memory, a set of patterns are learnt (memorized) first, and then

the full pattern that matches a given noisy fragment of a learned pattern is retrieved. In

channel coding, on the other hand, reliable and efficient retrieval of a set of codewords

(analogous to patterns in associative memory terminology) from a noisy version that the

receiver receives from the channel is expected. Coding theory techniques can increase

the storage capacity and improve the error correction capability of associative memories.

Neural associative memories are usually able to memorize any set of randomly chosen

patterns without distance optimization. Coding theory, therefore, can improve neural

associative memories error tolerance [see, Berrou and Gripon, 2010; Berrou et al., 2014;

Gripon, 2011; Hopfield, 2008; Mofrad et al., 2016; Salavati, 2014, to mention a few].

One approach that associative memory can benefit from coding theory is to focus on

learning patterns that have some kind of inherent redundancy. Berrou and Gripon

[2010] achieved considerable improvements in the pattern retrieval capacity of Hopfield

networks, by using error correcting codes combined with sparse data representation.

Salavati et al. [2011] proposed a neural association mechanism that utilizes binary neu-

rons to memorize patterns belonging to Gold sequences, which constitute a family of low

correlation sequences. These techniques, that involve some kind of pre-coding, all en-

hance pattern retrieval capacity of the associative memory. It is noteworthy that working

with structured patterns is more biologically meaningful due to the fact that sensory in-

puts to the brain are pre-processed before actually being stored [see, e.g., Berrou et al.,

2014; Salavati, 2014; Salavati et al., 2011].

In another line of approaches, the associative memory is designed to be able to memorize

any random set of patterns. To benefit from coding techniques and redundancy, the

memory structure can impose some rules that make the memory more error resistant.
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For instance, as suggested in [Gripon and Berrou, 2011; Hopfield, 2008], the neurons can

be organized in clusters and just one neuron per cluster could be present in memorizing

a pattern. As another example, Salavati and Karbasi [2012] designed a two-level neural

associative model inspired from graph-based codes, in which the pattern neurons are

partitioned into clusters of bipartite graphs, where sub-patterns should form a subspace

or a code in coding terminology. These approaches can be seen as a sort of coding in

the memory structure design or local coding.



Chapter 4

Networks of Neural Cliques

By virtue of sparse coding in the brain [see, e.g, Olshausen and Field, 2004; Rinkus, 2010,

for sparse coding], sparse associative memories can be regarded as more biologically plau-

sible models of memory [Gripon et al., 2016; Hoffmann, 2019]. Sparse neural networks

and neuro-inspired associative memories may refer to several categories. Gripon et al.

[2016] have studied associative memories with sparse information, where patterns in the

learning set are random strings of 0s and 1s with about log n 1s, only. The sparse clique-

based associative memory models which are the ground models of this thesis are covered

in the subsequent sections.

4.1 The Original Clique-Based Neural Networks

The Clique-Based Neural Networks (CBNN) introduced by Gripon and Berrou [2011],

also referred to as GB model, are based on Willshaw networks [Willshaw et al., 1969],

and constructed by dividing a neural network with n neurons into c clusters which might

have different sizes [see also, Hopfield, 2008, for another clique-based neural associative

memory]. The patterns to be memorized are chosen in such a way that only one neuron

in each cluster is active for a given pattern1. A pattern then can be considered as a

random vector of length c log(n/c). The storage process maps a pattern to its associated

neurons, activates them and then connects all of them to form a clique (a complete sub-

graph). The input patterns are formed from a pre-defined alphabet A and each neuron

represents one of the symbols in the alphabet. For the sake of simplicity, the size of all

clusters are considered identical and equal to l = n/c, and therefore the alphabet size

1The term ‘fanal’ (which means lantern or beacon) is used by the authors [Gripon and Berrou, 2011]
to highlight the uniqueness of an active neuron in each cluster.
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is equal to l = |A| = n/c. Furthermore, in order to ease working with binary patterns,

we let l = 2κ and each binary pattern of length κ is then assigned to a symbol in the

alphabet A or equivalently a unique neuron in a cluster. The function f(.) maps each

subpattern to a unique neuron in the corresponding cluster,

f : {0, 1}κ → [|1; l|].

where [|1; l|] refers to the integer numbers between 1 and l, inclusive. The jth neuron in

the ith cluster is denoted by nij where its associated value, v(nij), equals one when it is

active, and zero otherwise; 1 ≤ i ≤ c and 1 ≤ j ≤ l.

4.1.1 Learning or Storage Process

The set of patterns to be stored, or learned by the network, is denoted by P where a

pattern p ∈ P contains c sub-patterns, p = p1p2 · · · pc; for pi ∈ A, 1 ≤ i ≤ c. The

learning process entails the assignment of a set of unique neurons -one per cluster- to

each pattern p ∈ P :

p = p1p2 · · · pc → (f(p1), f(p2), · · · , f(pc))

where f : {pi} → {nij|1 ≤ j ≤ l}.

The selected neurons get activated, v(nij) = 1, and a clique is formed by connecting

these c active neurons to each other through binary edges (i.e. with weight 0 or 1).

Accordingly, the learning process generates a set of binary edges

W = {ω(ij)(i′j′)| if i 6= i′ and ∃ p ∈ P s.t. f(pi) = nij and f(pi′) = ni′j′},

where ω(ij)(i′j′) is an edge between nij and ni′j′ . It is noteworthy that an edge ω(ij)(i′j′)

belongs to W if at least one pattern has both nij and ni′j′ neurons; however, beyond

one, the number of patterns that meet this criterion does not affect the set W .

Figure 4.1 illustrates the storing process in a GB network with 64 neurons split into

four clusters of 16 neurons each. The binary pattern p = 0100000110001100 is split

into 4 sub-patterns, namely, p1 = 0100, p2 = 0001, p3 = 1000, and p4 = 1100. Then,

each of these sub-patterns is mapped to a unique neuron in the corresponding cluster;

f(p1) = n1,5, f(p2) = n2,2, f(p3) = n3,9, and f(p4) = n4,13. Finally, these neurons are

fully interconnected to build a clique and store the pattern in the network (the yellow

clique in Figure 4.1 represents this pattern).
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Figure 4.1: Learning of three patterns, in a CBNN structure with c = 4 clusters and
l = 16 neurons per cluster. Node ni,j refers to the jth neuron in the ith cluster. The three
patterns (4, 1, 8, 12), (10, 2, 8, 1), and (10, 12, 6, 11) maps into cliques with yellow, green,
and purple colors respectively. The red nodes, n1,11 and n3,9, belong to two patterns.

4.1.2 Retrieval Process

Given a partial pattern, the purpose of the retrieval is to obtain a complete pattern. The

retrieval process utilizes the stored connections during the learning phase to restore the

erased or erroneous data related to a stored pattern. Different retrieval methods might

be used according to the type of distortion [see, Aboudib et al., 2014, for instance]. The

retrieval procedure from an erased pattern consists of two stages: the global dynamics

stage which establishes or eliminates connections based on provided parts of the pattern,

and a local decision stage that will decide about activation of neurons following a rule.

The Winner-Takes-All rule activates neurons with the highest activity (or maximum

score) whilst Losers-Kicked-Out rule (LsKO) uses a threshold filter to eliminate active

neurons with less activity [see Jiang, 2014, for an overview of different retrieval algorithms

and activation rules]. This global and local retrieval gradually complete the clique and

as a consequence retrieve the pattern.

Clearly, higher density (which is defined as the the ratio between the number of estab-

lished connections within the storage process and all possible connections) negatively

affects the retrieval accuracy. In Figure 4.1, given each of the coloured nodes with yel-
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low, green and purple, a unique retrieval is possible. In contrast, it is impossible to

retrieve a pattern by finding a unique clique using only one of the red nodes.

Various extensions of the CBNN family of associative memory have been proposed in the

literature, leading to improvements in data storage and retrieval. For instance, Aliabadi

et al. [2014] proposed an even more sparse structure that maps a sparse pattern to a

subset of clusters. Retrieval algorithms for sparse patterns in networks of neural cliques

are studied by Aboudib et al. [2014]. The latter work was improved to deal with the

challenging scenario of high interference leading to significantly corrupted probe by Jiang

et al. [2015]. We refer the interested reader to the following references for extensions and

applications of clique-based neural networks [Aboudib et al., 2016; Berrou and Kim-

Dufor, 2018; Danilo et al., 2015; Hacene et al., 2017, 2019; Jarollahi et al., 2014, 2015;

Jiang et al., 2016; Larras and Frappé, 2020; Larras et al., 2018; Marques et al., 2017;

Yao et al., 2014]

4.2 Tournament-based Neural Network for Sequence

Storage

A Tournament-Based neural network (TNN) is an extension of the non oriented clique-

based neural network which is able to store sequences of arbitrary length in binary neural

networks [Jiang, 2014; Jiang et al., 2016]. In a chain of tournaments of order c and degree

r, denoted by Tr(c), each of c nodes is connected to the next r nodes through directed

edges and therefore make a tournament of size r + 1. A TNN then can be understood

as a concatenation of tournaments of size r + 1 consisting of consecutive neighbors (see

Figure 4.2, for an illustration).

In the following, the storage process of a sequence s ∈ S with L component is explained,

where s = s1s2 · · · sL; for st ∈ A, t = 1, 2, . . . , L, and |A| = l and S is the set of all

sequences to be stored. We suppose that the clusters are labeled from 1 to c. A unique

sequence of neurons must be assigned to the sequence using function f = (f1, · · · , fc),
where fi, i = (t− 1 mod c) + 1, maps a component st, to the neuron nij in cluster i:

fi : {st} → {nij|1 ≤ j ≤ l, }, 1 ≤ i ≤ c,

accordingly,

f(s) = (f1(s1), f2(s2), · · · , fc(sc), · · · , f(L−1 mod c)+1(sL)).
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Figure 4.2: A chain of eight tournaments, T3(8), of size r + 1 = 4, storing sequences of
length 20. The colored nodes represent clusters, and directed edges represent available
connections between nodes inside the clusters. This figure is taken from paper III which
is based on [Jiang et al., 2016, Fig. 5].

Learning proceeds by connecting neuron nij to neuron ni′j′ at passage π in the following

manner:

nij → ni′j′ , if:

{
fi(s(i+(π−1)c)) = nij

fi′(si′+(π−1)c) = ni′j′
and, 1 ≤ δi(i

′) ≤ r

where δi(i
′) = (i′ − i) mod c, and 1 ≤ π ≤ bL

c
c.

Altogether, for a given s ∈ S, if the previous conditions are satisfied for passage π such

that nij → ni′j′ , we define Ns,π(nij, ni′j′) = 1, as a result of which nij is connected to

ni′j′ , in sequence s, alternatively, we define Ns,π(nij, ni′j′) = 0. For instance, for depicted

sequence s in Figure 4.2, the associated neuron to s3 is connected to the associated

neurons to s4, s5 and s6 in passage π = 1, but not to the associated neurons to s12, s13,

and s14, (in passage π = 2), or s20 (in passage π = 3). So the neighboring connections

are defined in accordance with both s and π values. The network possesses the following

connections by the end of learning process,

W = {ω(ij)(i′j′)| if ∃ s ∈ S, and ∃ π ∈ [1 : bL
c
c] s.t. Ns,π(nij, ni′j′) = 1}

where ω(ij)(i′j′) is a directed edge from nij to ni′j′ and 1 ≤ i, i′ ≤ c, 1 ≤ j, j′ ≤ l.
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The retrieval process may commence with any subsequence of r consecutive components

of a previously stored sequence s. If the given subsequence is not from the beginning

of the sequence, the extra information of the associated clusters is required. The first

three components of the sequence s, i.e. s1, s2, and s3, are shown with solid circles

in Figure 4.2 to represent the given part of sequence, and the rest of components that

should be retrieved by the retrieval process with dashed circles. The retrieval procedure

is sequential employing a Winner-Takes-All decision at each cluster where the activation

of a component relies on the connections from r previous clusters.



Chapter 5

Summary of Papers

The studies included in this thesis propose neural auto-associative models for the storage

and retrieval of messages and sequences. In the following, a summary of the papers is

provided.

5.1 Paper I

The first paper, entitled “Clique-based neural associative memories with local coding

and precoding” is published in Neural computation (2016), MIT press.

This paper focuses on improving storage capacity and retrieval performance of clique-

based neural associative memories (introduced by Gripon and Berrou [2011]) in the

presence of partial erasures by applying local coding and pre-coding techniques. The

increase in the retrieval capacity in both techniques is verified through simulations.

The local coding proposed in this study keeps the number of neurons in the associa-

tive memory fixed, but turns each sub-pattern to a codeword by adding some redun-

dancy before learning the pattern. The codewords are then mapped into the neurons

in clusters (see part b) in Figure 5.1). By using the local-coding, the edge set W re-

mains unchanged, but in the retrieval, the distance between codewords within clusters

enhances the performance at the local level. Different codes with possibly distinct al-

phabets and codebook sizes for each cluster can be considered in local coding. In the

pre-coding technique proposed in this paper, first, a general coding (or a pre-coding) is

applied to each pattern. Then, based on the CBNN learning process, the codeword is

split into sub-codewords that are mapped to a neuron in the corresponding cluster and

memorized (see Figure 5.1 part c)). Pre-coding prevents two near patterns from being
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members of the learning set by maximizing the minimum pairwise distance in the learn-

ing set which enhances error-tolerance of the memory. Since patterns are transformed to

codewords, pre-coding requires changes in the network structure, and therefore it does

not preserve the associated cliques with the learning set in the uncoded network. In

summary, local coding limits the possible matching set in the clusters, and pre-coding

forces patterns to be well separated and consequently increases distance in cliques. It

is noteworthy that we can consider a general framework that includes all the three sce-

narios depicted in Figure 5.1. In this way, a pattern is mapped into a codeword via a

pre-coding first. The codeword is split into appropriate sub-patterns where a local cod-

ing is used to increase the distance between the neurons. Finally, the associated clique is

formed by connecting the active neurons. Pre-coding and local coding could be unitary

code (no function on the input) or be an arbitrary code.

A preliminary version of local coding method was presented at CWIT [Mofrad et al.,

2015] where a more efficient retrieval algorithm is proposed that improves the memory

resistance in partial erasures. As illustrated in Figure 5.2, the algorithm benefits from

local coding in the local decision stage (or local check) since it is based on the erasure

tolerance of the local coding technique (and to a certain extent pre-coding). The pre-

coding that alters the connections and cliques’ distances, is beneficial in the iterative

part of the algorithm (or the global dynamics stage) and the last phase of searching for

cliques. Therefore, a more reliable memory is achievable by combining both techniques

together.

To demonstrate that the local coding and pre-coding techniques can benefit from various

coding techniques, two error correcting codes are used in the simulation. The algebraic

Reed-Solomon (RS) code [Reed and Solomon, 1960] is resorted to as the first option.

RS is widely used for data storage and is able to detect and correct combinations of

errors and erasures. We also used as a second option self-dual additive codes over field

GF (4) that have many interesting properties such as simple-graph representation [see,

Danielsen, 2008, for instance]. The simple graph representation of these codes can be

further used in the design of neuro-inspired memories with features like retrieval with

message-passing on the simple graphs. It is noteworthy that, unlike self-dual additive

codes over GF (4), usually graph-based codes with bipartite representations are used in

neuro-inspired memories [see, Berrou and Gripon, 2010; Salavati, 2014, for instance].

Retrieval results in presence of partial erasures yield dramatically better error-tolerance

using either local coding or pre-coding techniques which suggests a combined version

in the case where more data protection is needed. Moreover, the results suggest that

the local coding can better handle higher erasure probabilities while pre-coding is more

appropriate for larger sizes of the learning set.
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Figure 5.1: An illustration of learning binary pattern p = 0100000110001100, in a CBNN
structure with three scenarios; a) the original CBNN, b) local coding, and c) pre-coding.
In a) the pattern is split into 4 sub-patterns, which are mapped into the neurons in
the c = 4 clusters. The learning is to connect these nodes and make a clique. In b)
each sub-pattern pi is encoded to a codeword g(pi) and then mapped into the associated
neuron. The structure of the network and the associated clique do not change in the
local coding, but the address of each neuron is changed since a codeword is mapped into
a neuron instead of a raw sub-pattern (shown with larger node sizes). The pre-coding
converts the pattern p to a codeword g(p) first, and then splits it into sub-patterns and
maps it into a clique. As shown in c) the pre-coding changes the structure of the network
and the clique which is depicted with more clusters and more neurons per cluster.

5.2 Paper II

The second paper, entitled “Nested-Clique Network Model of Neural Associative Mem-

ory”, published in Neural Computation (2017), MIT press.

Paper II generalizes the CBNN architecture by associating a nested-clique to each pattern

instead of a clique. The nested-clique structure can be viewed as a two-layer network
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Figure 5.2: An illustration of the retrieval algorithm of a partially erased pattern p̂.
In a) the algorithm first splits the clusters into unerrored Cu and errored Ce sets and
initializes T (i) sets in the errored clusters that contain possible candidates (or winners).
The local check is searching for T (i) sets with one member and decodes the erasure at the
cluster level. In b) the algorithm starts iterative retrieval by removing candidates that
are not connected to all active neurons in Cu clusters (green clusters). The algorithm
stops iterations if all the T (i) sets have more than one component and the edges from
Cu can not further reduce the size of candidates. In this case, the algorithm searches
for a clique in the candidates in T (i) sets for i ∈ Ce. In c) a case with two alternative
cliques is presented and therefore no unique retrieval is found. The algorithm updates
the components when |T (i)| = 1 (cluster 2 and 3 in part d)) and then maps the active
neurons to the closest match.

where two clique-based auto-association networks are intertwined. The nested-clique

structure enhances the error tolerance of the network and provides the network with one

more controlling parameter; the configuration of clusters within superclusters.

A nested-clique neural network splits the neurons into c = c1×c2 clusters and groups the

clusters into c1 superclusters of size c2. The original clique-based model can be considered

as a special case when c1 = 1 and c2 = c. To store a pattern, the first step of mapping a

pattern to the associated neurons is similar to the clique-based structure. The channels

of allowed connections between clusters can be defined by a Cartesian product between a

c2-clique of clusters and a c1-clique of superclusters (see part a) in Figure 5.3). Therefore,

to make a nested-clique, the learning proceeds by establishing connections between active
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neurons in each of superclusters (see yellow short connections in part b) of Figure 5.3),

and also forming c2 cliques among equivalent clusters in different superclusters (see long

connections between the three superclusters in part b) of Figure 5.3). The Cartesian

product can explain some of the properties of the nested-clique neural networks such as

the unique topology of c1-cliques-of-c2-cliques and c2-cliques-of-c2-cliques (commutative

operation).

short connections long connections

Cartesian Producta) b)

Figure 5.3: a) represents the configuration of clusters using a Cartesian product opera-
tion between a clique of 4 clusters and a clique of 3 superclusters. The short connections
and long connections indicate which active neurons must be connected. In b) the struc-
ture of the network and a learnt pattern in the form of nested-cliques in a network with
48 neurons, split into 3 superclusters each with 4 clusters of 4 neurons, are depicted. In
each supercluster a clique of size 4 is established by short connections; also activated
neurons in the equivalent clusters (same colours) are connected with long connections
to form cliques of size 3. Therefore, the patterns are stored as 3-cliques-of-4-cliques or
K3[K4].

Retrieval is basically similar to the clique-based version. The difference is at the second

stage where cliques are constructed to kick out neurons from candidate sets in which the

algorithm must consider both short and long connections. Using both short and long

connections in the retrieval process is beneficial and conveys the information between

clusters that are not connected directly.

When it comes to comparing the CBNN model and the nested-clique, it is noteworthy

that a nested-clique network can be obtained from a CBNN (or a set of CBNN) net-

work(s) by adding extra connections. In this case, the nested-clique network would be

stronger and more robust against erasure. From the other side, a nested-clique network

can be realised from a CBNN network by removing some connections and degenerating
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a clique-based network. The nested-clique network is less robust to erasure in such a

case. Therefore, in order to achieve a a fair comparison, the nested-clique structure and

the original clique-based model are simulated under similar amounts of available mem-

ory or equivalently the number of possible connections. The nested-clique network shows

better error-tolerance in both cases of fixing capacity or erasure rate, but its diversity,

i.e. the number of learnt patterns, is lower than the original network. The reason is

that nested-clique structure requires more clusters and neurons to use equal number of

connections as clique-based and therefore the nested-clique model learns longer patterns

whilst its diversity (due to fixed capacity) is smaller. In consequence, for a fixed amount

of memory used, if the concern is the total information that network is able to memo-

rize and then retrieve in presence of partial-erasure, nested-clique is superior. On the

other hand, since clique-based network memorizes smaller patterns, it can learn and re-

call more patterns than the nested-clique structure and must be chosen when diversity

is the concern.

Several comparisons between different nested-clique scenarios for a fixed number of neu-

rons are also reported. The results suggest avoiding very small sizes of clusters in general,

and determining the number of superclusters based on other conditions, say fixed erasure

rate, or fixed capacity.

5.3 Paper III

The third paper, entitled “On Neural Associative Memory Structures: Storage and Re-

trieval of Sequences in a Chain of Tournaments”, accepted to be published in Neural

Computation, MIT press.

Paper III addresses the storage and retrieval of sequences in sparse binary neural net-

works. Feedback Tournament-Based Neural Network (Feedback TNN) is the proposed

storage architecture that is a more general form of TNN [Jiang et al., 2016] that was

addressed in section 4.2. The required algorithms for storage and retrieval in Feed-

back TNN together with two higher performance retrieval algorithms, Cache-Winner

and Explore-Winner are proposed. The Feedback TNN structure and new retrieval al-

gorithms contribute to the field of aut-associative memories and offer appreciable gains,

highlighted by simulations.

In Feedback TNN structure, the components of a sequence are associated forward and

backward respectively to the following and previous components in the sequence (see part

a) of Figure 5.5). This re-configuration of connections in the chain of tournaments assists
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Figure 5.4: A chain of tournament structure with feedback connections is illustrated in
part a) where the first two connections of each tournament are clockwise and the last
connection is counterclockwise. Forward and Backward retrieval processes are illustrated
respectively in part b) and c) when a segment of 3 components are given. This figure is
a modified version of Figures 5 and 6 in Paper II.

backward retrieval, and therefore any large-enough segment of a sequence is sufficient to

retrieve the whole sequence. In this case, a pre-matching process is necessary to locate the

clusters on which the given sequence segment was originally stored. Feedback-Forward

and Feedback-Backward retrieval algorithms are addressing the retrieval in Feedback

TNN, which are compatible with original TNN, as a particular case. As depicted in part

b) of Figure 5.5 for Feedback-Forward, the first step that uses rfwd is relevant for TNN.

The Backward algorithm initiates a candidate set of size l for each component and builds

a sub-graph with the next rfwd = r components; in part c) of Figure 5.5, simply the

second step which uses rfwd is applicable for TNN. Therefore, despite that the Feedback-

Backward retrieval is proposed for Feedback TNN structure, it is well-functioning with

the original TNN, as a special case with zero feedback connections.

Cache-Winner and Explore-Winner are the two retrieval algorithms introduced to in-

crease the retrieval performance. In Cache-Winner, a large part of the ambiguities that

can occur at retrieval of a component is removed by taking up possible and abandoned

paths from the results of previous steps, temporarily stored in a cache memory. In case

an error is detected during retrieval, the Cache-Winner revisits the cache memory and

changes some previous randomly selected components. Explore-Winner, on the other

hand, anticipates what might happen in future steps before making a decision at the
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current step of retrieval. In this way, the randomness in decisions is reduced by con-

sidering the consequences of each decision. Therefore, while Cache-Winner algorithm

tries to resolve the mistake decisions when realizing them, Explore-Winner tries to avoid

mistakes as early as possible.

a) b)

Figure 5.5: The mechanisms of using temporary cache memory and exploration tech-
nique are illustrated in parts a) and b) respectively. In a) the component si represents
the situation where no candidate with the full score is found. This detects an error in the
retrieval of the previous r = 3 components. The cache memory is used to revise the pre-
vious random decisions and try another neuron to be activated. In b) the component si
represents the situation where more than one full score node (winner) is found for acti-
vation in cluster i. The exploration technique tries to eliminate the number of randomly
chosen components among the winners by investigating the results of each candidate se-
lection, and by eliminating inappropriate choices. This figure is a modified version of
Figures 3 and 4 in Paper III.

The simulation results confirm the similarity in performance of Feedback TNN and the

original TNN memory for sequence retrieval in either forward or backward directions.

Both Cache-Winner and Explore-Winner reduce the random selections in the retrieval

process and thereby the number of errors. This is reported as the number of cases in

average that a retrieval algorithm picks the final component randomly from the candidate

set. Therefore, in terms of achieving accurate sequence retrieval, both Cache-Winner

and Explore-Winner retrievals are superior to the Winner, which randomly chooses from

candidate set when the winner is not unique, and continues without further evaluations

even when realizing a mistake in the previous retrieval steps. A comparison between

retrieval error rate for different learning set sizes shows that retrieval performance with

the Explore-Winner when using higher number of exploration steps is superior to the

rest of scenarios. For higher density, Cache-Winner deals with larger cache memory

which adds extra complexity. Similarly, Explore-Winner requires more computations
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by exploring longer distances, and therefore finding an optimal exploration distance

is a trade-off between time and accuracy. The simulation running time for different

scenarios confirms that for reasonable density and consequently error values (retrieval

error less than 0.1), the running time Cache-Winner and Explore-Winner remains at

the same level of Winner. The source code for simulations in this paper is available at

https://github.com/Asieh-A-Mofrad/Tournament-Based-Sequence-Storage.
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Chapter 6

Future Research

Some of the research directions worth investigating in future studies are listed here:

• Both local-coding and precoding techniques that improve the clique-based model in

Paper I can equally be used in the nested-clique model, Paper II, and tournament-

based model, Paper III, to enhance the storage capacity and error tolerance in

these structures.

• Parts of the motivation behind using self-dual additive codes over field GF (4) in

Paper I and nested-clique structures in Paper II, were to both benefit from the

simple graph representation of these codes, and to develop neural-inspired net-

works that can be potentially significantly enhanced by overlaying with quantum

graph state structures [see Danielsen, 2008, and references therein for self-dual

additive codes and their graph representations]. Therefore, one direction could

be to employ the graphical representation of these codes in the design of clique-

based neural associative memories, and introduce more advanced (in comparison

with Winner-Takes-All algorithm) message-passing algorithms for retrieval. An-

other direction worth investigating is whether a quantum associative memory [see,

e.g., Ventura and Martinez, 2000] version of these (classic) associative memories

is feasible. Note that the self-dual half-rate additive codes have directed graph

representation [Danielsen and Parker, 2011] that might be interesting to use for

sequences.

• In Paper II, the nested-clique structure can be extended to other types of nested

structures such as Cartesian product of a clique (of clusters) and a cycle (of su-

perclusters). For larger networks, the nested-clique structure can be extended to

more layers, e.g. Kc1 [Kc2 [Kc3 ]]. It is noteworthy that the nested-clique structure

which is analogous to the Cartesian product of graphs is suggested partly for its
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simplicity. Study of other nested-clique structures or other graph operations (say

Inner product) could be an interesting research topic in its own right. Moreover,

mathematical investigations of the optimal configuration of parameters could im-

prove the design criteria. For instance, one could investigate the optimal number

of nested layers (components in the graph multiplication) and the size of each clus-

ter when either fixed amount of memory (number of connections) or fixed amount

of neurons are available.

• The double-layered structure introduced by Jiang et al. [2016] combines a

tournament-based hetro-association as the lower layer and a clique-based auto-

associative memory as the upper layer. A hierarchical structure, similar to the

double-layered structure, can be considered by adding an extra connectivity level

to the Feedback TNN (Paper III). The mathematical part of this study also could

be enhanced, for instance by finding the optimum distance of exploration for a

specific density or retrieval error.

• It is possible to bridge between clique-based associative memories and some ma-

chine learning schemes with episodic memories that model the formation of equiv-

alence relations in brain [Mofrad et al., 2020, 2021]. The problem of finding al-

ternative stimulus configurations for which some attribute of a response remains

invariant has been studied in many fields and under different names, including the

field of psychology under the term stimulus equivalent [Sidman and Tailby, 1982;

Stevens, 1951]. A stimulus equivalence class is formalized through relations in

mathematical equivalence sets i.e. reflexivity (A = A), symmetry (if A = B then

B = A), and transitivity (if A = B and B = C, then A = C). From another an-

gle, formation of each equivalence class resembles construction of a clique between

different categories and learning these associations nicely fit into those models

which further can be used for modeling some language models based on relational

frames [Berrou and Kim-Dufor, 2018; Hayes et al., 2021]. The most challenging

part, however, might be to figure out the best way to use the binary clique-based

neural network in the projective simulation agents’ episodic memory [Briegel and

De las Cuevas, 2012; Mautner et al., 2015] which has non-binary connections (uses

Hebb’s rule).

• Projective Simulation model is designed for both classic and quantum mechan-

ics [see,e.g., Briegel and De las Cuevas, 2012; Paparo et al., 2014]. Further research

can address quantum versions of self-dual codes and projective simulation in order

to propose quantum associative memories [see, e.g., Ventura and Martinez, 2000]

or more generally, quantum machine learning [for quantum machine learning see,

Biamonte et al., 2017; Dunjko and Briegel, 2018, for instance].
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Techniques from coding theory are able to improve the efficiency of neu-
roinspired and neural associativememories by forcing some construction
and constraints on the network. In this letter, the approach is to embed
coding techniques into neural associative memory in order to increase
their performance in the presence of partial erasures. The motivation
comes from recent work by Gripon, Berrou, and coauthors, which revis-
itedWillshaw networks and presented a neural network with interacting
neurons that partitioned into clusters. The model introduced stores pat-
terns as small-size cliques that canbe retrieved in spite of partial error.We
focus on improving the success of retrieval by applying two techniques:
doing a local coding in each cluster and then applying a precoding step.
Weuse a slightly different decoding scheme,which is appropriate for par-
tial erasures and converges faster. Although the ideas of local coding and
precoding are not new, the way we apply them is different. Simulations
show an increase in the pattern retrieval capacity for both techniques.
Moreover, we use self-dual additive codes over field GF(4), which have
very interesting properties and a simple-graph representation.

1 Introduction

Neural associativememory is capable ofmemorizing (learning) a set of pat-
terns and retrieving the full matching pattern from a given noisy fragment

Neural Computation 28, 1553–1573 (2016) c© 2016 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00856
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of it. This functionality is similar to communication over a noisy channel.
Channel coding concerns reliable and efficient retrieval of a set of patterns
(code words in coding theory terminology) from a noisy version that the
receiver receives. For digital error correcting codes, generally a subset of
all possible pattern configurations is chosen for transmission. Coding tech-
niques concern choosing this subset so that the receiver, which knows the
allowed patterns (code words), can figure out whether the received pat-
tern is an allowed one and, in the case of nonallowed patterns, finds the
closest allowed pattern (i.e., decodes the received word to the most likely
code word sent). Therefore, codes are carefully constructed to have high
efficiency in the sense that the noise distance between pairs of code words
is as large as possible given the size of the code set. On the other hand,
neural associative memories are generally able to memorize any set of
randomly chosen patterns, and as a consequence, they are not optimized
for noise distance. Researchers who have applied coding theory to neural
associative memories include Hopfield (2008), Berrou and Gripon (2010),
Gripon (2011), Salavati (2014), and Berrou, Dufor, Gripon, and Jiang (2014).
One approach in this context is to focus on learning patterns that have
some sort of inherent redundancy; in another approach, the network is de-
signed to be able to memorize any random set of patterns. For instance,
Berrou and Gripon (2010) achieved considerable improvements in the pat-
tern retrieval capacity of Hopfield networks by using Walsh-Hadamard
sequences. Salavati, Kumar, Shokrollahi, and Gerstner (2011) proposed a
neural association mechanism that employs binary neurons to memorize
patterns belonging to another family of low-correlation sequences, called
Gold sequences. These are discussed in Boguslawski, Gripon, Seguin, and
Heitzmann (2014) and some strategies to store nonuniform patterns, such
as by adding random bits and usingHuffman coding, is a data compression
technique.

Dividing a learned pattern into subpatterns can be shown to be useful in
several ways (see Berrou & Gripon, 2010; Hopfield, 2008; Gripon & Berrou,
2011; Salavati & Karbasi, 2012; and for more details, Gripon, 2011, and
Salavati, 2014). This approachalso limits the allowedpattern configurations.

We follow the neural structure introduced in Gripon and Berrou (2011).
These neural structures (called the GB model hereafter), which are based
onWillshaw networks (Willshaw, Buneman, & Longuet-Higgins, 1969), are
formed by dividing a neural network with n neurons into c clusters of size
n/c each. The patterns are then chosen so that only one neuron in each
cluster is active for a given pattern. Therefore, a pattern can be considered
a random vector of length c log(n/c), where the log(n/c) part specifies the
index of the active neuron in a given cluster. To memorize a pattern, one
then forms edges between active neurons and makes a clique (complete
subgraphs) of order c. The decoding process is then to retrieve the erased
nodes of the clique using edges stored during learning. It is worth men-
tioning that Hopfield (2008) developed a model of an associative memory
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within a biological setting. In this model, neurons (n) are partitioned into a
number of categories (say, c) with n/c possible values. A pattern then gets
a single value in each category—the cluster counterpart to the GB model—
and like the GB model, learning a new pattern is achieved by establishing
edges between active neurons. Although the topology and learning part
are similar, the retrieval part is different. There are other major differences
that may be interesting to study because the Hopfield model focuses more
on the biological aspects, whereas the GB model arises from coding tech-
niques. For instance, for about the same number of neurons, the number
of categories in the simulations is much larger than the number of clus-
ters, and consequently the number of neurons in each Hopfield category
is much less than in GB clusters. As an example, compare 50 categories,
each with 20 neurons, versus 4 clusters, each with 256 neurons. In the Hop-
field model, the pattern set is generated by randomly choosing a neuron in
each category according to a power law distribution (p(n) ∼ 1

n1/2 ), while in
the GB model, active neurons in clusters are independent and identically
distributed (i.i.d.). As mentioned previously, nonuniform distributions are
also considered for the GB model (Boguslawski et al., 2014). Moreover,
the Hamming distance between two patterns in the Hopfield model is
defined as the number of neurons in which they differ, while in the GB
model, the Hamming distance is the number of clique edges in which
two patterns differ, which means that distance is far better for the latter
case.

The GB-basedmodels proposed in this letter focus on improving storage
performance and making memory more resistant in the presence of partial
erasure. Both local coding and precoding are techniques used to enhance
pattern retrieval capacity and have been used in neural associative mem-
ory. For instance, clustering the neurons and applying the rule that just one
neuron in each cluster is allowed to be active is itself a local coding (Hop-
field, 2008; Gripon & Berrou, 2011). Another example is a two-level neural
associative model in Salavati and Karbasi (2012) in which the pattern neu-
rons are divided into clusters and each cluster is a bipartite graph—inspired
from graph-based codes like LDPC (low-density parity check) codes, where
subpatterns should form a subspace—a code in coding terminology. The
second level may enforce constraints in the same subpattern space—just
local coding—or in a totally different space—a combination of local coding
and precoding.

The local coding construction proposed in this letter does not affect the
number of neurons but adds redundancy to the patterns and then learns
code words assigned to each subpattern in the neural network. Part of this
workwas presented at the 14th CanadianWorkshop on Information Theory
(Mofrad, Ferdosi, Parker, & Tadayon, 2015), and here we improve on the
decoding algorithm introduced there tomake it suitable for partial erasures.
This reduces the size of the neurons involved in the retrieval process, and
thus they converge faster, especially in the context of iterative decoding.
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The precoding technique is a more straightforward way to improve
the pattern retrieval capacity, and there is an argument that working with
structured patterns is biologically meaningful and that sensory inputs to
the brain are preprocessed before actually being stored (Salavati et al., 2011;
Salavati, 2014; Berrou et al., 2014).

The precoding technique that we consider simply encodes the patterns
and then splits the corresponding code words and memorizes each part in
a cluster. We perform experiments in the presence of partial erasure and
compare local coding and precoding models. These two schemes can then
be combined if one needs more data protection.

For simulation, we select two error-correcting codes. The algebraic Reed-
Solomon (RS) code is a maximum-distance-separable (MDS) linear code
(MDS means that for a fixed code word length n and pattern length k,
MDS codes have the greatest error-correcting and -detecting capabilities).
RS codes arewidely used for data storage and are suitable for erasure errors
(Reed & Solomon, 1960).

The second class of error-correcting code that we select is the self-dual
additive codes over GF(4) (see Danielsen, 2008). These codes can be repre-
sented as simple graphs and have many interesting features. As far as we
know, the graph-based codes that have been used in neuroinspired mem-
ories in the literature have bipartite representation (see Salavati, 2014, and
Berrou&Gripon, 2010). In this letter,wedonot consider the graphical repre-
sentation of these codes; we just consider them as a second error-correcting
code because these codes havemore flexible parameters suited to the design
of the network. In future work, we shall apply message-passing algorithms
to the simple graphs representing these GF(4)-additive codes to improve
decoding performance.

The rest of the letter is as follows. Section 2 reviews the basics and
the clique-based networks introduced by Gripon and Berrou—notations
from Gripon and Berrou (2011) mostly. Section 3 is devoted to the local
coding scheme and precodingmodel. In section 4, we explain our decoding
algorithm using an example. Section 5 contains the simulation results and
a comparison of neural networks both with and without local coding. The
results for local coding and precoding are also compared and discussed.
Section 6 concludes. The detailed decoding algorithm is provided in the
appendix.

2 GB Model of Neural Networks

Gripon and Berrou introduced a model where, by splitting a network of
n neurons into c clusters of size l = n/c, any alphabet (say, A) with cardi-
nality |A| = l can be depicted. The model allows for different size alpha-
bets and clusters, but for simplicity, it is considered fixed with l = 2κ , so
as to ease working with binary patterns. Each binary pattern of length



Clique-Based Neural Associative Memories 1557

Figure 1: Learning process in a network with 64 neurons, which split into four
clusters of 16 neurons each. Red edges represent the binary pattern 0000, 1011,
0101, 0010, which is learned as a clique.

κ is then assigned to a unique neuron or, equivalently, a character of
alphabet A,

f : {0, 1}κ → [|1; l|],

where [|1; l|] is the subset of integers between 1 and l.
The learning process is simply to store patterns of length k = cκ as cliques

of size c where a unique neuron is selected from each individual cluster.
More formally, consider learning pattern m,

C : m = m1m2 · · ·mc → ( f (m1), f (m2), . . . , f (mc)),

where each mi ∈ {0, 1}κ , 1 ≤ i ≤ c is a binary pattern of size κ . The active
neurons, f (mi), connect together by edges to make a clique, as in Figure 1.
The value of each neuron is considered binary; if a node is within a clique
for a given pattern, its value is 1, and 0 otherwise. IfW(m) denotes the set
of edges of the clique for pattern m, then the edges after learning a set of
patterns,M, will be

W =
⋃
m∈M

W(m).

Retrieving or recalling part of a learned pattern is done in two steps
and can be iterative. The algorithm finds the most probable active neuron
in each cluster. Aboudib, Gripon, and Jiang (2014) and Jiang (2014) pro-
vide a detailed study of the retrieval algorithm. For instance, the different
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approaches of global winners-take-all (GWsTA) and global losers-kicked-
out (GLsKO) both improve the retrieval performance. Our decoding is
designed for partial erasures and reduces computations.

3 Local Coding Technique and a Precoding Clique-Based Model

As mentioned in section 1, the GB model inherently has a local coding in
which the allowed subpatterns are those with exactly a 1 in their binary
representation (a kind of constant weight code in each cluster). However,
our idea for local coding is to map a code word instead of a subpattern
to each neuron. The English language is a good example to explain our
local coding technique. Consider the set of learning patterns consisting of
meaningful sentences with a fixed length (i.e., each with the same number
of words—for instance, as a sample, this quote from Nelson Mandela as
a pattern to be memorized: “A winner is a dreamer who never gives up.”
The network we choose has nine clusters, and there is a one-to-one map
between all possible words (subpatterns) and the neurons in each cluster.
A partial erasure then is like “A w-n–r i- - dr— w-o n–er giv-s up” and
the local retrieval deals with the spelling of the words and meaningful
words—well-separated code words in the model—and in the higher level,
the grammar or themeaning of the sentence is checked—clique connections
in the model. The local coding technique in this example is implemented in
terms of the words that are allowed in the sentence; that is, codewords in
the model are allowed words in this example.

Local codes can be chosen from different alphabets, rates, andminimum
Hamming distances, and it is possible to consider different codes with
different code book sizes for each cluster. The Hamming distance between
two words of the same length, or code words, is the number of positions
with different symbols. The minimum distance of a code1 is the lowest
Hamming distance between any two code words in the code. If we choose
a code with high minimum distance and a partial erasure happens, then
the minimum distance of a local code may eliminate that erasure and the
ordinary decoding of GB neural networks can be done more efficiently.

More formally, consider that the goal is to learn patterns of type
m = m1m2, . . . ,mc where each mi, 1 ≤ i ≤ c is a nonbinary pattern of size
κ . Components of mi can be binary as well, but we choose them from the
finite field GF(2p) and use an algebraic Reed-Solomon (RS) code, which
is a maximum-distance-separable (MDS) linear code and has the best pos-
sible minimum distance. Therefore, a neural network of c clusters, each
with l = 2pκ neurons, can represent patterns like m. Recall that if no local
coding is done, then each subpattern mi maps to neuron f (mi) in the ith
cluster,

1Minimum distance is a very important parameter in designing block codes.
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Figure 2: Each neuron in the cluster is assigned to a subpattern before local
coding (left) and to a code word of Hamming code (7, 4) after local coding
(right).

m = m1m2 · · ·mc → ( f (m1), f (m2), . . . , f (mc)),

where f : GF(2p)κ → [|1; l|].
Linear codes, like RS codes, have a generator matrix whose rows form

a basis for them. So code words of a code C with generator matrix G have
code words like g(mi) = miG for each subpattern mi. Then m maps to mg =
g(m1)g(m2), . . . , g(mc) and f : C → [|1; l|] maps a code word to a neuron
and in general:

m = m1m2, . . . ,mc → ( f (g(m1)), f (g(m2)), . . . , f (g(mc))).

As a toy example let l = 16 and the local code be a Hamming code (7,
4) (Hamming, 1950); a binary subpattern mi = (m1

i m
2
i m

3
i m

4
i ) is coded into

g(mi) = (p1p2m
1
i p3m

2
i m

3
i m

4
i ) where p1 = m1

i + m2
i + m4

i , p2 = m1
i + m3

i + m4
i ,

and p3 = m2
i + m3

i + m4
i , where all additions are modulo 2. Then G is:

G =

⎛
⎜⎜⎝
1 1 1 0 0 0 0
1 0 0 1 1 0 0
0 1 0 1 0 1 0
1 1 0 1 0 0 1

⎞
⎟⎟⎠ , (3.1)

and it can be seen easily that g(mi) = miG. See Figure 2 for the local coding
scheme using Hamming code (7, 4).

3.1 Precoding Clique-Based Neural Networks. We recruit another
example from language to explain the precoding technique to make a



1560 A. Mofrad, M. Parker, Z. Ferdosi, and M. Tadayon

comparison between local coding and precoding easier. Consider the pat-
terns after precoding to be a set of meaningful words—code words in the
model—with the same number of syllables—the number of clusters in the
network. A syllable, which may or may not have a meaning, is made up of
phonemes, and each neuron represents a syllable. Because a phoneme is the
smallest unit of sound that distinguishes one word from another, we can
consider phonemes as the alphabet used in the precoding. For instance to
memorize “astronomical,” /æs.tr@.nA.mI.k@l/, we need five clusters, and in
each cluster we have a one-to-one map between all syllables and neurons.2

On recall, a clue like /æ-.t-@.--.m-.k@l/may be given. Although there is not a
meaning (a particular minimum distance), syllables are not a random com-
bination of phonemes, and some degree of regularity holds that facilitates
erasure correcting in clusters. The edges established to make cliques in this
example can represent the spelling or meaning, for instance. In this exam-
ple, the role of cliques is more important, and the distance between cliques
is greater.

We compare local coding with precoding in section 5 by results from
simulations.

4 Recalling from a Partially Erased Pattern

We receive a partially erased pattern from which erased symbols must be
retrieved. Equivalently, in clique-based models, we must find a clique that
contains the provided symbols as active neurons—neurons whose value is
1. As the given part of a learned pattern is assumed correct, then recalling
is simply a matter of finding a match from memorized patterns. To avoid
unnecessary computation, we introduce a decoding algorithm suitable for
retrieving partial erasures. We explain the two-level retrieval algorithm by
examples from the English language provided in section 3; a formal version
of the algorithm can be found in the appendix.

Suppose that, from the partially erased sentence “A w-n— i- - dr—–
w-o n–er giv-s up,” the memory tries to recall the complete sentence. The
first step is a local search within the clusters for all possible words that
match. If there is a unique option, like “A” in the first cluster and “gives”
“up” in the last but one cluster—we suppose there are no other words
that match “giv-s up”—the corresponding neuron is active and all edges
contained in the learned edge set W with one end point at these active
neurons are established. Suppose for the second cluster there are candidate
words (neurons): {‘window,’ ‘winner,’ ‘winter,’ ‘winrar,’ ‘wonder’}, and
also for the third cluster: {‘id,’ ‘if,’ ‘in,’ ‘is,’ ‘it’}; fourth cluster: {‘A,’ ‘I’};

2The length of syllables is not important in this example, but as the length is fixed in
the model, one can consider a fixed 3 phoneme for all neurons and add an empty sign to
those syllables with fewer phonemes.
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fifth cluster: {‘dragoon,’ ‘dreamed,’ ‘dreamer,’ ‘driving,’ ‘drunken’}; sixth
cluster: {‘who,’ ‘woo’}; and the seventh cluster: {‘nagger,’ ‘nailer,’ ‘never,’
‘number’}. A better minimum distance in local coding reduces the size of
these candidate sets. The second level then checks the degree of each word.
Starting from the second cluster, suppose the degree of ‘wonder’ is zero, the
degreeof ‘window’ and ‘winrar’ is 1, and thedegreeof ‘winner’ and ‘winter’
is 3. So from the sentence (cliques) information, we know that just two valid
words remain at the second position (cluster). The word candidates are:
{‘winner’,‘winter’}. By the same argument suppose new sets update as fol-
lows: third cluster: {‘if,’ ‘is’}; fourth cluster: {‘A’}; fifth cluster: {‘dreamer,’
‘drunken’}; sixth cluster: {‘who’}; and the seventh cluster: {‘never’}. So the
active neurons in the fourth, sixth, and seventh clusters are found, and the
algorithmrepeats by establishing edges from these threeneurons and check-
ing the degree of each to remove the ones whose degree is less than 6. This
recallmay be successfully finished after one or twomore iterations. But con-
sider the case where we end up with the sentence, “A winner is a dr—who
never gives up” and both remaining candidates, ‘dreamer’ and ‘drunken,’
have degree 8. In this case, recall fails. These kinds of failure would happen
because there is no rule that forbids too similar sentences from being mem-
bers of the learning set. More formally, subpatterns are chosen randomly,
and although the clique form plays the role of grammar or meaning, for
instance, sentences that are too close may still cause problems. In compari-
son, such a problem will not happen with the precoding technique because
the learning set patterns have a high pairwise minimum distance.

Overall, a good local coding limits the possible matching set.3 On the
other hand, a precoding forces patterns to be well separated. The best
strategy is to use both techniques together to have a more reliable memory.

For the last example, let the pattern set be all sentences of length c, with
at least dp different words between any pair of sentences, and at least dl
different letters between any twowords in the same position. The condition
is strict, but the greater dp and dp can bemade, themore reliable the retrieval
will be.

5 Simulation Results

To see the performance of the proposed associative memory with local cod-
ing, we first consider a network of 4096 neurons that are clustered in 8 sets,
eachwith 512 neurons. For local coding, the [7, 3, 5]8 RS code is used; that is,
with this code, any subpattern of length 3 where its components are taken
fromGF(8)maps to a codeword of length 7 so that theminimumHamming
distance of the new set of code words is 5. By fixing the learning set size,

3For instance ‘who’ and ‘woo’ haveHammingdistance 1, and in a good coding scheme,
both cannot be code words simultaneously.
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Figure 3: Comparison of performance of an uncoded associative memory of
eight clusters, each with 512 neurons (blue curve), with the coded version (red
curve) where local coding uses the [7, 3, 5]8 RS code for |M| = 50,000.

we see the results for different partial erasure probabilities in Figure 3; the
retrieval performance when erasure probability is fixed and learning set
size is growing is shown in Figure 4.4

Figures 5 and 6 prosent the same comparison in a network of 512 neurons
that are clustered in eight sets, each with 64 neurons when the local coding
is the (6, 26, 4) hexacode (see Conway & Sloane, 1988, for instance). The
hexacode is a self-dual GF(4) additive code and so can be represented by a
simple graph. Its generator matrix corresponding to graph (b) is (see Figure
7):5

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

ω 1 1 1 0 0
1 ω 1 0 1 0
1 1 ω 0 0 1
1 0 0 ω 1 1
0 1 0 1 ω 1
0 0 1 1 1 ω

⎞
⎟⎟⎟⎟⎟⎟⎠

4As can be seen, the performance obtained with the proposed local coding is dra-
matically better than the uncoded performance. The main cost of this performance is an
increased word length (three symbols in GF(8) to seven symbols in the same field) for
each node.

5The generator matrix is obtained from the adjacency matrix of the graph b, by setting
all the diagonal entries to ω.
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Figure 4: Comparison of performance for an uncoded associative memory of
eight clusters, each with 512 neurons (blue curve), with the coded version
where local coding uses the [7, 3, 5]8 RS code (red curve). The erasure rate for
each symbol is 0.7. The largest data set here is 100,000.

Figure 5: Comparison of performance of an uncoded associative memory of
eight clusters, each with 64 neurons (blue curve), with the coded version where
local coding uses the hexacode (6, 26, 4) for |M| = 4000.
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Figure 6: Comparison of performance for an uncoded associative memory of
eight clusters, each with 64 neurons (blue curve), with the coded version where
local coding uses the hexacode (6, 26, 4). The erasure rate for each symbol
is 0.6.

Figure 7: Two graph representations of the hexacode (Danielsen, 2008).

As opposed to the RS code, the number of neurons using local coding
with the hexacode does not change. The length of each subpattern remains
fixed, but the field changes from GF(2) to GF(4).6

6The hexacode is an additive code: a binary vector mi (subpattern for local coding)
generates all 26 code words by miG (i.e., mi is taken over GF(2), not GF(4)).
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Figure 8: Comparison of performance of an uncoded associative memory of
four clusters, each with 64 neurons (blue curve), with the local coded version
where local coding uses the hexacode (6, 26, 4) (red curve) and is precodedwith
the (12, 212, 6) code (green curve) for |M| = 3000.

As mentioned in section 1, we propose using self-dual GF(4) additive
codes because their parameters are more flexible. Moreover, we also intend
to use such codes in our future work because of their graphical represen-
tations. In particular, it is known that nested-clique graphs represent many
of the strongest GF(4) additive codes in terms of pairwise distance and op-
timum edge sparsity and are therefore good candidates for using to build
nested-clique neural networks. The ideawould be to embed a self-dual code
inside each neuron and benefit from this graph code during the retrieval
process.

For the precoding technique, we choose a (12, 212, 6) self-dual GF(4)
additive code (the dodecacode) (Calderbank, Rains, Shor, & Sloane, 1998).
This code maps any binary pattern of size 12 to a code word of size 12 in
GF(4) with minimum distance 6. We have c = 4 clusters, each with l = 64
neurons, and the length of each subpattern is 3. This is compared to an
uncoded version as well as to a local coding version. For the local coding,
we use the hexacode again, but the number of clusters is set to be 4.

Figures 8 and 9 confirm the expectation that precoding improves the
capability ofmemorizing a larger set of patterns and recalling successfully in
the presence of stronger partial erasure. FromFigure 8,we see thatwhen the
erasure rate is smaller than 0.4, the precoding technique gives better results.
But in the case of higher erasure probability, local coding outperforms. This
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Figure 9: A comparison of the performance for an uncoded associativememory
of four clusters, each with 64 neurons (blue curve), with the local coded version
where local coding uses the hexacode (6, 26, 4) (red curve) and precoded with
the (12, 212, 6) code (green curve). The erasure rate for each symbol is 0.4.

is justified by the following argument: after the first check,whenever partial
erasure is low, the number of clusters with an active neuron is large. So the
precoding technique is able to benefitmore from itsminimumdistance than
that associated with the distance between cliques. On the other hand, when
erasure probability is higher, the ability of local retrieval is more important,
which is what the local coding model was designed for.

Then to compare storage capacity, we fix erasure at 0.4, where both
techniques showed a similar error rate in retrieval. Figure 9 shows that
when the learning set is smaller, the local coding technique performs better,
while for larger learning sets, the precoding technique outperforms. Again,
this result is as expected. For a fairly small learning set the number of
edges is smaller, and the cliques are more likely to have a higher minimum
distance, so the role of local coding is more important. In contrast, when the
number of edges is increased by increasing the size of the learning set, the
role of precoding and minimum distance among the cliques becomes more
important.

Note that in all simulations, the learning part is done independent of
whether local coding is done. Indeed the symbols in the patterns are con-
sidered independent and identically distributed random variables. If we do
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local coding, the set of edges is exactly the same, but precoding changes the
shape of cliques, soW is no longer the same.

As the data set is chosen randomly, we repeat the experiment 100 times
and compute the average to have more reliable results (i.e., choose 100
random patterns from the learning set as the input and partially erase it).
Again, for any erasure probability, the symbols to be erased are chosen
randomly, so we partially erased each pattern by 100 different randomly
chosen erasure vectors. We then tried retrieving the chosen pattern, and if
the pattern is completely retrieved, the algorithm is successful; otherwise,
it fails. Finally, the ratio can be computed for each data set and an average
taken over 100 different erasure vectors.

6 Conclusion

Someapplications of coding techniques in neuroinspired associativememo-
ries have been discussed, andwe have shown that both the local coding and
precodingmodels based on the GBmodel have excellent error performance
in the presence of partial erasures. The results are somewhat theoretical,
but due to their structure and ability to retrieve patterns from a partial clue,
such memories have potential application to content-addressable memo-
ries and search engine algorithms. Our simulation results suggest that the
local codingmodel is better suited to the case where the erasure probability
is high or the learning set is quite small. In contrast, the precoding model
seems to be more suited to the situation where the erasure probability is
not that high or the size of the learning set is rather large. We present a
new version of the decoding algorithm, which reduces the computational
complexity and is suitable for partial erasures.

It is not necessary that the local coding be nonbinary or use extension
fields over GF(2p). We chose RS codes because they are suitable for storage
and erasure-type errors.We also considered self-dualGF(4) additive codes,
as we shall exploit their graph representations in future work.

Appendix: Detailed Version of the Recalling Algorithm for a Partially
Erased Pattern

The detailed version of the recalling algorithm is provided here. It assumes
the neural network has local coding, but it can also be used for an uncoded
version, similar to a precoding model as well. We assume that the same
code C is used in all clusters.

Consider that a noisy version of a learned pattern,

mg = (
m11

m12
· · ·m1t

∣∣m21
m22

· · ·m2t

∣∣ · · · ∣∣mc1
mc2

· · ·mct

)
,
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is m̂g = (m̂11
m̂12

· · · m̂1t
|m̂21

m̂22
· · · m̂2t

| · · · |m̂c1
m̂c2

· · · m̂ct
), where symbol mir

is given—m̂ir
= mir

—or is erased—m̂ir
= e—and t is the length of the code

word, so t > κ if we have local coding and t = κ otherwise.
We also assign m̂i = mi iff all themir

are known and m̂i = e iff at least, for
one r, m̂ir

= e.
To begin, we separate clusters into two sets,Cu andCe, for unerrored and

errored components, respectively:

Cu = {i : m̂i = mi} andCe = {i : m̂i = e}, 1 ≤ i ≤ c.

Each neuron is shown with ni j, 1 ≤ i ≤ n, 1 ≤ j ≤ l, which is equivalent
to a unique value in {0, 1, 2, . . . , l − 1}. So ni j is a node in the graphical
representation ofmi. For a specific j in cluster i, we assign ni j = f (mi). Note
that mi is a code word here.

Also for i ∈ Ce, we define and initialize sets T(i) = {ni j|m̂ir
= mir

or m̂ir
=

e; ∀ j, r}. As we will see, these sets play an important role in reducing com-
putational complexity.

Once we construct all T(i) sets, a local check is done as follows. For all
i ∈ Ce, if T(i) = {ni j} for some j, then

• LetCu = Cu ∪ {i} andCe = Ce \ {i}.
• Correct m̂i by putting m̂i = f−1(ni j).

Indeed as the ni j correspond to codewords of a code, some erasureswere
corrected by this local check.

Values of the neurons are defined as

v(ni j) =
{
1 if i ∈ Cu and ni j = f (mi),

0 otherwise.
(A.1)

We establish all edges contained in the learned edge set W, so that at least
one node for each edge has value 1. More formally, we initialize the edge
set w = {(ni j,ni′ j′ ) ∈ W |v(ni j) = 1 or v(ni′ j′ ) = 1}, where 1 ≤ i, i′ ≤ c, 1 ≤ j,
j′ ≤ l.

Now we can start iterative retrieval (see algorithm 1). If the first part of
the algorithm (until line 32) retrieves the original pattern, it stops; if there
are several candidate neurons in each cluster Ce, we search in W for edges
with end nodes in the T(i) that make a clique of size |Ce|. This happens
when the partial erasure is high and distributed so the active neuron in
most clusters is unknown. Note that the definition of w is changed for the
second part of the recalling (line 34).
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Clique-based neural associative memories introduced by Gripon and
Berrou (GB), have been shown to have good performance, and in our
previous work we improved the learning capacity and retrieval rate by
local coding and precoding in the presence of partial erasures. We now
take a step forward and consider nested-clique graph structures for the
network. The GB model stores patterns as small cliques, and we here
replace these by nested cliques. Simulation results show that the nested-
clique structure enhances the clique-based model.

1 Introduction

There has been much recent activity regarding the design of sparse neural
networks in general and neuro-inspired associative memories in particular.
Sparse neural networks may refer to several categories. Gripon, Heusel,
Löwe, and Vermet (2015) studied models of associative memories with
sparse information, that is, patterns in the learning set are random strings
of 0s and 1s with about log n 1s, only. We built our model on top of the
clique-based model of Gripon, Berrou, and coauthors (GB model; Gripon &
Berrou, 2011), where the assumption of the GB model is that for n neurons,
there are c clusters of neurons with 1 ≤ c ≤ logn and each pattern in the
learning set has exactly one active neuron per cluster.1 We have obtained
very good results by applying precoding and local coding schemes on top
of the GB model (Mofrad, Parker, Ferdosi, & Tadayon, 2016).

Hopfield (2008) discussed a similar cluster-based network but from a bio-
logical perspective. In this model, neurons (n) are partitioned into a number
of categories (say, c)—the cluster counterpart to the GB model—with n/c
possible values. A pattern activates a single neuron in each category, and
like the GB model, learning the pattern is achieved by establishing edges
between the activated neurons. The number of neurons in each Hopfield

1In graph theory, a clique defines as a complete subgraph.

Neural Computation 29, 1681–1695 (2017) c© 2017 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00964
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category is much less than in GB clusters for about the same number of neu-
rons. As an example, compare 50 categories, each with 20 neurons versus
4 clusters, each with 256 neurons.

Although the topology and learning rule are similar, the retrieval part
and learning set distribution are different. In the Hopfield model, the pattern
set is generated by randomly choosing a neuron in each category, according
to a power law distribution (p(n) ∼ 1

n1/2 ), while in the GB model, active neu-
rons in clusters are independent and identically distributed (i.i.d.). More-
over, the Hamming distance between two patterns in the Hopfield model
is defined as the number of neurons in which they differ, while in the GB
model, the Hamming distance is the number of edges in which two patterns
differ, which means that distance is far better for the latter case. A precise
and detailed comparison of these two models might be an interesting issue
to study; however, it goes beyond the framework of this letter.

Sparse patterns lead to sparse network connections, and much research
has been done on sparse networks where the patterns are chosen randomly.
In these models, synaptic connections exist only between neighboring neu-
rons. Random dilution of connections in Hopfield networks has been stud-
ied in detail (see Gardner, 1989, for instance). However, cortical connectivity
is better modeled by networks consisting of several modules with dense in-
ternal connections and sparse intermodular connections, so much attention
has been given to the Hopfield model in the context of small-world (Boh-
land & Minai, 2001) and scale-free (Stauffer, Aharony, da Fontoura Costa, &
Adler, 2003) models (see also Hilgetag & Goulas, 2016, for an investigation
about the human brain from the network perspective). The GB model is
a sparse model, but to the best of our knowledge, it does not yet fit into
this model of dense internal connections and sparse intermodular connec-
tions. The nested-clique model proposed in this letter benefits from the idea
of a single active neuron in the subclusters, with dense internal connec-
tions between active neurons in a cluster and sparse connections between
clusters.

On top of the GB model, several extensions has been done, including
further sparse organization (Aliabadi, Berrou, Gripon, & Jiang, 2014); that
is, a sparse pattern is mapped to a unique neuron of a smaller set of clus-
ters. Replacing nonoriented connections with directed ones in a way that
the network can store sequential information in a tournament-based neural
network (Jiang, Gripon, Berrou, & Rabbat, 2016) is another extension.2 A
double-layered structure introduced in Jiang et al. (2016) is a good com-
bination of a tournament-based hetroassociation as the lower layer and
an upper layer in the form of clique-based autoassociative similar to the
sparse networks. The nested-clique model can be considered as a two-layer

2In graph theory, a tournament is a directed graph obtained by assigning a direction
for each edge in a complete (sub)graph
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network as well, where each layer is a clique-based autoassociative network
and layers intertwine with each other.

Although not pursued in this letter, part of the motivation for this work
is to develop neural-inspired networks that can be potentially significantly
enhanced by overlaying with quantum networks that exploit quantum
nonlocality and entanglement. Moreover, since the best zero-dimensional
quantum codes often appear to have a nested-clique structure that is also
optimally edge sparse (Danielsen & Parker, 2004), it would then be possible
to overlay the results of nested-clique associative memories with quan-
tum graph state structures so as to enhance performance by exploiting
nonlocality, superposition, and entanglement.3

The rest of the letter is as follow. Section 2 reviews the basics and the
clique-based networks introduced by Gripon and Berrou using mostly
notations from Gripon and Berrou (2011). Section 3 is devoted to the
nested-clique scheme and a brief review and comparison of the local cod-
ing and precoding model. Section 4 contains the simulation results and a
comparison of clique-based versus nested-clique-based networks. Section 5
concludes.

2 Clique-Based Model of Associative Memory

In the design of neural networks, a neuron is a mathematical function
that models a biological neuron that receives a weighted input sum and
computes its output state by a nonlinear transform. The main task of neural
association is to choose the graph weights wi j so that the network is able
to memorize M binary patterns of length k. We are mostly interested in
autoassociation: retrieving a memorized pattern from its noisy version. For
a neural associative memory design, we have to determine the topology
of the neural network, the learning process (updating weights between
neurons), and the recalling algorithm.

In the model that Gripon and Berrou introduced, by splitting the network
of n neurons into c clusters of size l = n/c—supposing l is a power of 2 and
κ = log2(l)—any alphabet (say, A) with cardinality |A| = l can be depicted
by neurons in each cluster. Each binary pattern of length k = cκ is then
assigned to a unique set of neurons or, equivalently, to a set of characters of
alphabet A:

m = m1m2 · · ·mc → ( f (m1), f (m2), . . . , f (mc))

where f : {0, 1}κ → A.

3However, it remains to find and construct such nested-clique structures for larger
graphs, an interesting problem in graph theory, that is, to what extent they exist as the
number of graph nodes grows.
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Figure 1: Learning process in a network with 64 neurons, split into four clusters
of 16 neurons each. Red edges represent the binary pattern m = (0011, 1011,

0101, 1110), which is learned as a clique.

The learning process is simply to connect the selected neurons together
by edges to make a clique. The value of each neuron is considered binary;
if a neuron is within a clique for a given pattern, its value is set to 1 and
set to 0 otherwise. The weights of the edges in the network are all 1, and
the learning process provides a set of edges W . This learning type (based
on the Willshaw model) does not depend on the number of patterns that
use neurons i and j, but on whether there is any pattern mμ with mμ

i m
μ

j = 1
(clipped synapses) (see Figure 1 as an example).

The recall phase or retrieving part of a partially erased learned pattern,
m̂, involves finding the most probable active neuron in each cluster and
in general finding a match from the memorized patterns. Equivalently, in
clique-based models, we must find a clique that contains the provided
symbols as active neurons—neurons whose value is 1. Since we assume
partial erasure-type error, the retrieval algorithm is slightly different from
algorithms provided for GB neural networks and its variants. The detailed
version of algorithm is provided in Mofrad et al. (2016) as an appendix.

The recall procedure, like general clique-based neural network models,
consists of two steps: the global dynamics that establishes or eliminates
connections based on provided information from erased pattern, m̂, and
a local decision that has been made to activate neurons. The winner-take-
all rule activates neurons with the highest activity (or maximum degree)
while the losers kicked-out rule (LsKO) eliminates active neurons with less
activity using a threshold filter (see Jiang, 2014).

The modified version of the algorithm we used introduces a candidate
set, T(i), in each cluster, i, where partial erasure happens. The neurons in
a candidate set will not be activated as long as their chances for being the
final unique active neuron are equal. These candidate sets will be updated
through retrieval by kicking out neurons that, based on dynamics of the
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network, cannot be the final candidate for activation. It is worth mentioning
that the idea behind this elimination is similar to the LsKO algorithm, but
we apply the principle on candidate neurons, not active neurons, and so
the elimination rule becomes different. We summarize the recall method in
algorithm 1; the complete version is in Mofrad et al. (2016).

Some important parameters of a memory are diversity, capacity, and
efficiency. Based on Gripon and Berrou (2011), diversity is the number of
learned patterns, capacity is the maximum amount of data learned in bits,
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and efficiency is the ratio between capacity and the amount of information
used by the network when M = Mmax (Mmax is an upper bound for the
number of learned patterns). Since the maximum number of edges in the
clique-based model is Q = (c−1)n2

2c and the edges are binary, this amount of
available memory ideally allows the storage of

Mmax = (c − 1)n2

2ck
= (c − 1)n2

2c2 log2(
n
c )

(2.1)

binary patterns, where k = cκ = c log2(l), and l = n
c .

3 Extension of a Clique-Based Network to a Nested-Clique Network

Suppose the network of n neurons splits into c1 × c2 clusters, each of size
l = n

c1×c2
, where l is set to be a power of 2 and κ = log2(l). These clusters

split into c1 superclusters of size c2. Each binary pattern m of length k =
c1 × c2 × κ maps to

m = (m11m12 · · ·m1c2
;m21m22 · · ·m2c2

; · · ·mc11mc12 · · ·mc1c2
)

−→ ( f (m11) f (m12) · · · f (m1c2
); f (m21) f (m22) · · · f (m2c2

);
· · · f (mc11) f (mc12) · · · f (mc1c2

)),

where f is again a map from subpatterns of length κ to a unique neuron

f : {0, 1}κ → A.

The learning process for pattern m is then to establish edges between
active neurons in each of the c2 clusters in c1 superclusters; the edges will
be

( f (mis), f (mit )), for 1 ≤ i ≤ c1 and 1 ≤ s �= t ≤ c2.

We call these edges “short connections.” Similarly, active neurons in equiv-
alent clusters of different superclusters connected with edges will be called
“long connections”:

( f (mis), f (mjs)), for 1 ≤ i �= j ≤ c1 and 1 ≤ s ≤ c2.

This makes a c1-cliques-of-c2-cliques or Kc1
[Kc2

] (see Figure 2).
Different values ofn, l, c1, and c2 affect the memory retrieval performance,

but there is no difference between a network with c1 = a, c2 = b and learning
patterns as a-cliques-of-b-cliques and a network with c1 = b, c2 = a and
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Figure 2: The learning process in a network with 64 neurons split into 4 su-
perclusters, each with 4 clusters of 4 neurons. The 4-cliques-of-4-cliques re-
flect the pattern m = (11, 01, 10, 00; 00, 10, 01, 11; 10, 00, 11, 11; 01, 11, 00, 01).
In each supercluster, a clique of size 4 (in black) is established by short connec-
tions; activated neurons in the equivalent clusters (same colors) are connected
with long connections and form a clique of size 4. Altogether the patterns are
represented as a 4-cliques-of-4-cliques or K4[K4].

learning patterns as b-cliques-of-a-cliques. It can easily be verified that after
the learning process, both topologies are the same, and one can rearrange
the clusters to have c2 superclusters, each with c1 clusters. It is equivalent
to the learning pattern

m′ = (m11m21 · · ·mc11;m12m22 · · ·mc12; · · ·m1c2
m2c2

· · ·mc1c2
)

instead of m, which produces exactly the same connections, but short con-
nections become long connections and vice versa. From the information-
theoretic view, there is no difference between learning a set of patterns like
m′ instead of the original set of patterns. However, since in general, short
connections are preferable to long connections, we choose c2 ≥ c1 hereafter.

Retrieval is basically the same as the clique-based version. The only
difference is in the neuron removal from candidate sets, which is pointed
out as *nested in algorithm 1. The if condition would be changed to
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We can use the same argument for memory parameters when the
network is a nested clique. The maximum number of possible edges is

Q′ = n2(c1+c2−2)

2c1×c2
, which gives an upper bound for diversity,

M′
max = n2(c1 + c2 − 2)

2(c1 × c2)k
= n2(c1 + c2 − 2)

2(c1 × c2)
2 log2(

n
c1×c2

)
, (3.1)

where k = c1 × c2 × κ = c1 × c2 log2(l), and l = n
c1×c2

.
Note that the clique-based model can be considered a special case of the

nested-clique model where c1 = 1 and c2 = c. It can be easily seen that in
this case, Q′ = Q and M′

max = Mmax.
To compare the current work with local coding and precoding methods,

which we applied in previous work (Mofrad et al., 2016), we need a brief
review of those. Consider that a set of patterns of length cκ is learned to a GB
network with c × 2κ neurons; c clusters of size l = 2κ . Local coding converts
each subpattern of length κ to a code word of size κ ′ from a chosen code
with appropriate Hamming distance. The only difference with an uncoded
GB is to project a code word to a neuron instead of a random subpattern.
The learning process produces the same edge set W , but in retrieval, the
distance between code words enhances the performance at the local level
(i.e., within clusters). By the precoding technique, a set of patterns, each
of length cκ , maps to a set of code words of a chosen code where code
word length N > cκ . Therefore, if we choose a proper code such that N

c is a
natural number, then we can learn code words in a GB network of c × 2(N /c)

neurons. As can be seen in precoding, n and l are not preserved like local
coding, but for the same number of clusters, the number of edges (or Q),
remains equal.

Precoding enhances local retrieval compared to the uncoded version of
GB, but it is weaker than the local coding model. The main performance
gain of precoding comes from generating a higher distance between cliques
associated with different patterns, so precoding is suitable when a higher
density is required. Both local coding and precoding manipulate the data
to be learned not the network topology.

The nested-clique model is an extension of the GB model, and as we
mentioned, GB can be considered a special case of the nested-clique model.
We can look at the nested-clique technique in three ways. First, consider
c2 parallel GB memories with c = c1 and l = 2κ such that c2 individual sets
of random patterns of size d are learned to them. If we consider them as
superclusters and add edges to equivalent clusters (long edges), we achieve
a nested-clique memory for which new edges act as the second source for
association, and retrieval is enhanced in comparison to the parallel scenario.
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So although we have longer patterns, the new patterns can be seen as a
combination of smaller (meaningful) patterns.4

As the second angle, we can consider a GB network with c clusters each
of size l and a given c2, where l

c2
is a power of 2. To achieve a nested-clique

version, instead of the mapping f : {0, 1}κ → A where κ = log2(l), a new
map can be used that activates c2 neurons in each cluster instead of just
one: f ′ : {0, 1}κ ′ → A′ where κ ′ = log2(

l
c2

) and |A′| = l
c2

. So by adding edges
between active neurons in each cluster (short connections) and connecting
active neurons of equivalent clusters, the association within each cluster is
higher, and therefore the retrieval rate will be enhanced.

Note that in both arguments, we add some new connections and indeed
involve each subpattern in two cliques, (two constraints in coding theory
terminology), which leads to higher performance. The idea of using two
encodings of the same message in order to gain some benefit is not new in
coding theory (see Turbo codes, for instance, in Berrou & Glavieux, 1996,
and for neural networks, see Jiang et al., 2016).

In the above arguments, we added edges to the GB network to make
a nested-clique with better performance; as another possibility, one may
degenerate a clique-based network to achieve a nested-clique network.
Consider a GB network with c1 × c2 clusters, so each pattern is projected
to a (c1 × c2)-clique with

(c1×c2 )(c1×c2−1)

2 connections. If we partition cliques
into c1 superclusters of c2 cliques and take off the connections between
nonequivalent clusters, we will achieve a nested-clique structure. This time,
since we lose connections and therefore information, the recall performance
would be weaker. Degenerated cliques are addressed in Jiang et al. (2016)
where it was shown that (in Jiang’s Figure 3) the retrieval performance in the
presence of partial erasure decreases for degenerated cliques as expected.

From the three different ways to achieve a nested-clique network from
a GB network, it can be seen that the number of connections plays a key
role. To make a fair comparison of the two structures, we fixed the amount
of available memory, or the number of edges, and compared nested-clique
and clique-based versions in the simulation part.

4 Simulation Results

To see the retrieval performance of the proposed associative memory and
compare clique-based and nested-clique-based scenarios, we fixed the num-
ber of connections or the available memory Q for both scenarios. The

4For example, each cluster may represent a “word,” and each supercluster represents a
meaningful sentence, which is a combination of c1 words. If we have c2 such memories and
the long connections represent similar word classes (all are nouns or verbs, for example),
then we have an extra knowledge, which assists in recalling the sentences in superclusters.
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Figure 3: Number of clusters for the red curve is c = 16. Each subpattern is of
length κ = 6, so there are 64 neurons per cluster with pattern length 96. For
the blue curve, the parameters are c1 = 8, c2 = 8, and κ = 5, so the number
of neurons per cluster is 32 and the pattern length is 320. See Table 1 for a
comparison of parameters.

symbols in the patterns are considered i.i.d. random variables. Because
the data set is chosen randomly, we repeat the experiment 2500 times and
compute the average to have more reliable results (i.e., we randomly choose
2500 patterns from the learning set as the input and partially erase them).
We then tried retrieving the chosen pattern. If the pattern is completely
retrieved, the algorithm is successful; otherwise, it fails. Both pattern error
rate, which is the rate of unsuccessful retrieval, and bit error rate, which
refers to the probability of one bit being erased after retrieval, are evaluated.

The first comparison is done for similar amounts of learned data (in bits)
for different erasure rates, (see Figure 3), and then a comparison is made
based on different amounts of learned data when the erasure rate is fixed
to 0.6 (see Figure 4). The network parameters are provided in Table 1 for
Figure 3 and in Table 2 for Figure 4.

In Figure 3, the number of possible edges for the GB model with c = 16
and l = 64 is 4.9 × 105. For the nested-clique structure with c1 = 8, c2 = 8,
and l = 32, we have 4.6 × 105 possible edges, and the memory used (Q)
for both is approximately the same. Since the length of patterns is longer
(about three times) in nested-clique models, we choose higher diversity
(about 3 times) for the GB model to have the same capacity and efficiency
to compare the retrieval performance in different erasure rates. In Table 1,
parameters are compared when the erasure rate is 0.6. With these parame-
ters, we see that the retrieval pattern error rate in a nested clique is 6 times
less than the GB model, and for the bit error rate, this value becomes even
better—53 times less. Note that the bit error rate in the worse case equals
the erasure rate while the pattern error rate in the worst case equals 1.
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Figure 4: The number of clusters for the red curve is c = 16. Each subpattern is
of length κ = 6, so there are 64 neurons per cluster with pattern length 96. For
the blue curve, the parameters are c1 = 8, c2 = 8, and κ = 5, so the number of
neurons per cluster is 32 and the pattern length is 320. The erasure probability
is fixed at 0.6, and retrieval for different capacity is depicted. See Table 2 for a
comparison of parameters.

Table 1: Comparison of Performance between the GB Model and the Nested
Clique for the Same Capacity.

Model GB Nested Clique Ratio

Memory used (Q) 4.9 × 105 4.6 × 105 ≈ 1
Neurons (n) 1024 2048 ×2
Pattern length 96 320 ×3
Pattern error rate 0.79 0.13 ÷6
Bit error rate 0.48 0.009 ÷53
Diversity 2600 730 ÷3.5
Capacity 249,600 233,600 ≈ 1
Efficiency 0.51 0.51 ≈ 1

Note: In the GB model c = 16 and κ = 6; in the nested-clique
model c1 = 8, c2 = 8, and κ = 5 where the erasure rate is fixed
to 0.6.

In Figure 4 for the same networks and memory used (Q), we fixed the
erasure rate to 0.6 and compare the two networks by the capacity factor, so
diversity, capacity, and efficiency are not the same here. In Table 2 we fixed
the pattern error rate to see to what extent networks can learn and recall
with a pattern error rate less than 0.1. The GB model has a higher diversity
2.6 times more, but since the pattern length is smaller, the capacity in the
nested clique is still better (1.3 times more than GB). As a consequence,
the efficiency of the nested clique outperforms GB. So if the concern is the
total information that the network is able to memorize and then retrieve in
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Table 2: Comparison of Performance between the GB Model and the Nested
Clique for the Same Capacity.

Model GB Nested Clique Ratio

Memory used (Q) 4.9 × 105 4.6 × 105 ≈ 1
Neurons (n) 1024 2048 ×2
Pattern length 96 320 ×3
Pattern error rate 0.102 0.1 1
Bit error rate .06 0.002 ÷30
Diversity 1740 666 ÷2.6
Capacity 167,040 213,120 ×1.3
Efficiency 0.34 0.46 ×1.35

Note: In the GB model, c = 16 and κ = 6. In the nested-clique
model, c1 = 8, c2 = 8, and κ = 5, where the erasure rate is fixed
to 0.6 and the pattern error rate equals 0.1, which is acceptable.

the presence of partial erasure, the nested clique is better, but if diversity
is the most important parameter, since GB memorizes smaller patterns,
it can learn and recall more patterns within a fixed amount of memory
used (Q).

Moreover, a comparison between different nested-clique scenarios for
a fixed number of neurons was considered. In Figures 5 and 6 for n =
1024, four nested-clique configurations are compared. For the same capacity
(80,640 bits) in Figure 5, we see that the nested-clique model with c1 =
8, c2 = 8, and l = 16 does not have good results compared to the other
three configurations. The reason might be the very small size of clusters.
Depending on which parameter is more favorable, one might choose a
different configuration. As we can see in Table 3, the c1 = 2, c2 = 4 model
has better diversity than c1 = 4, c2 = 4, which is better than c1 = 4, c2 = 8.
However, the pattern retrieval rate and efficiency is in the reverse order.
Since we care about capacity and the retrieval rate, the best configuration
in this simulation will be c1 = 4, c2 = 8.

For the fixed erasure rate 0.5 in Figure 6, we see that the larger cluster
size results in a better retrieval error. We fixed the acceptable retrieval error
rate to 0.05 in Table 4.

The c1 = 2, c2 = 4 model has better diversity than c1 = 4, c2 = 4, but
both have the same capacity. Since the number of possible connections
in c1 = 4, c2 = 4 is fewer, the efficiency is better. So for the same amount of
information, one can choose between better diversity or better efficiency by
choosing c1 = 2, c2 = 4 or c1 = 4, c2 = 4. c1 = 4, c2 = 8 has good efficiency
compared to the c1 = 2, c2 = 4 and c1 = 4, c2 = 4; however, it has less diver-
sity and capacity. This scenario is able to learn longer patterns instead. The
last scenario, c1 = 8, c2 = 8, can learn long patterns; however, its diversity,
capacity, and efficiency are not comparable to the other configurations. One
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Figure 5: A comparison of different nested-clique scenarios by changing c1 and
c2 while the number of neurons are fixed.

Figure 6: A comparison of different nested-clique scenarios with a fixed number
of neurons with the erasure probability set to 0.5.

might choose based on which parameter is more important; however, the
c1 = 2, c2 = 4 configuration shows better capacity and diversity under the
conditions of an erasure rate of 0.5 and a retrieval pattern rate of 0.05.

5 Conclusion

The nested-clique neural associative memory introduced in this letter is an
extension of the clique-based (GB) mode. We have compared the retrieval
capability of the two networks in the presence of partial erasures. It is possi-
ble to achieve a nested-clique network from a GB (or a set of GB) network(s)
by adding extra connections, which makes the network stronger and more
robust against erasure. It is also possible to remove some connections and
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Table 3: Comparison between Different Nested-Clique Scenarios for Fixed
Number of Neurons and Capacity When the Erasure Rate Is Fixed to 0.6.

Model c1 = 2, c2 = 4 c1 = 4, c2 = 4 c1 = 4, c2 = 8 c1 = 8, c2 = 8

Memory used (Q) 2.6 × 105 2 × 105 1.6 × 105 1.1 × 105

Neurons (n) 1024 1024 1024 1024
Pattern length 56 96 160 256
Pattern error rate 0.129 0.0748 0.0876 0.998
Bit error rate 0.0706 0.024 0.0063 0.362
Diversity 1440 840 504 315
Capacity 80,640 80,640 80,640 80,640
Efficiency 0.31 0.41 0.5 0.73

Table 4: A Comparison of Different Nested-Clique Scenarios with a Fixed Num-
ber of Neurons Where the Erasure Rate Is Fixed to 0.5 and the Accepted Retrieval
Pattern Error Rate Is Set to 0.05.

Model c1 = 2, c2 = 4 c1 = 4, c2 = 4 c1 = 4, c2 = 8 c1 = 8, c2 = 8

Memory used (Q) 2.6 × 105 2 × 105 1.6 × 105 1.1 × 105

Neurons (n) 1024 1024 1024 1024
Pattern length 56 96 160 256
Pattern error rate 0.046 0.05 0.05 0.004
Bit error rate 0.006 0.0025 0.0012 0.0
Diversity 1920 1120 504 105
Capacity 107,520 107,520 80,640 26,880
Efficiency 0.41 0.55 0.504 0.244

degenerate a clique-based network to achieve a nested-clique network; in
such a case, the nested-clique network is less robust against erasure. For
a fair comparison in simulation, we fixed the number of connections and
capacity and saw that the nested-clique structure outperforms the clique-
based model. The nested-clique model in this case is able to learn longer
patterns while its diversity (due to fixed capacity) is smaller. Both local
coding and precoding techniques that improve the clique-based model can
be used in the nested-clique model in the same manner if one needs to
store more information and protect it from strong erasures. Local coding is
especially helpful in the case that the erasure rate and diversity are both
high. It is worth mentioning that one may consider other types of nested
graphs—for instance, Kc1

[Cc2
], which has a cycle in the lower layer. More-

over, for larger networks one expects to extend the nested-clique structure
to more layers (e.g., Kc1

[Kc2
[Kc3

]]).
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Abstract

Associative memories enjoy many interesting properties in terms of error correction
capabilities, robustness to noise, storage capacity and retrieval performance and their
usage spans over a large set of applications. In this article, we investigate and extend
Tournament-Based Neural Networks, originally proposed by Jiang et al. (2016), which
is a novel sequence storage associative memory architecture with high memory effi-
ciency and accurate sequence retrieval. We propose a more general method for learning
the sequences which we call Feedback Tournament-Based Neural Networks. The re-
trieval process is also extended to both directions: forward and backward, i.e. any
large-enough segment of a sequence can produce the whole sequence. Furthermore,
two retrieval algorithms, Cache-Winner and Explore-Winner are introduced to increase
the retrieval performance. Through simulation results, we shed light on the strengths
and weaknesses of each algorithm.



1 Introduction
Neural associative memory is a type of neural networks which is capable of memoriz-
ing (learning) a set of patterns and retrieving them from their corresponding noisy or
incomplete versions. The term association refers to the linkage of two or more pieces
of information. Hopfield neural network (Hopfield, 1982) was among the first designed
artificial neural network with auto-associative memories which is able to retrieve infor-
mation given only some partial clues as well as reconstruct perturbed patterns. Hopfield
neural networks have some drawbacks such as being biologically implausible, due to
the fully connected structure, low efficiency and spurious memories (see, e.g., Hoff-
mann, 2019, and references therein). To improve Hopfield network many variants of
it have been proposed in the literature (see, e.g. Maurer et al., 2005; Berrou & Gripon,
2010; Krotov & Hopfield, 2016; Kim et al., 2017). Due to the sparse coding in the
brain (for sparse coding see, e.g, Olshausen & Field, 2004; Rinkus, 2010), sparse as-
sociative memories are considered more biologically plausible models (Gripon et al.,
2016; Hoffmann, 2019).

Gripon & Berrou (2011) proposed novel sparse neuro-inspired associative mem-
ories that organize neurons into clusters and memorize patterns using the concept of
cliques (see also, Hopfield, 2008, for another clique-based network model of associa-
tive memory). This model, also referred to as GB model or Clustered Cliques Networks
(CCNs), has fundament in information theory (Gripon & Berrou, 2012) and bears sim-
ilarity to the Willshaw-type model (Willshaw et al., 1969) where sparse patterns and
binary connections are considered. These models have been further developed in the lit-
erature (e.g. Aliabadi et al., 2014; Boguslawski et al., 2014; Jarollahi et al., 2014, 2015;
Jiang et al., 2015, 2016; Mofrad et al., 2015, 2016; Mofrad & Parker, 2017; Berrou &
Kim-Dufor, 2018), and used in many applications, such as solving feature correspon-
dence problems (Aboudib et al., 2016), devising low-power content-addressable mem-
ory (Jarollahi et al., 2015), oriented edge detection in image (Danilo et al., 2015), im-
age classification with Convolutional Neural Networks (Hacene et al., 2019), finding all
matches of a probe in a database (Hacene et al., 2017), to mention a few. Furthermore,
they were implemented on a general purpose graphical processing unit (GPU) (Yao
et al., 2014), in 65-nm CMOS (Larras et al., 2018), and in distributed smart sensors
architectures (Larras & Frappé, 2020). Therefore, CCN models can be referred to as an
important brain-inspired memory system (Berrou et al., 2014) that became a basis for a
wide range of research in associative memory models.

Learning and retrieval of temporal sequences in neural networks is a fundamen-
tal property of human intelligence which is studied through different approaches (see,
e.g., Brea et al., 2011; Hawkins et al., 2009; Maurer et al., 2005; Jiang et al., 2016).
Tournament-based Neural Network (TNN) (Jiang et al., 2016) is an extension of the
clique-based approach to associative memories which have oriented connections, and
therefore the ability to store sequential information (see also, Marques et al., 2017, for
an implementation on the GPU). The novel structure of TNN is not only a sequence stor-
age with high memory efficiency, but also a more compatible model with the neuronal
signal propagation in the brain via oriented connections (see also Hawkins et al., 2009;
Hawkins & Ahmad, 2016, for biologically plausible memory sequence structures).

In this paper, we improve the TNN architecture by proposing a more general struc-
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ture, named Feedback TNN, as well as more accurate retrieval algorithms. The original
TNN can be considered as a special case of Feedback TNN, with zero feedback con-
nections. For retrieval, obviously, a less number of random selections during retrieval
results into less component and sequence error at the end. The Cache-Winner retrieval
revisits and changes some previous randomly selected components, in case an error is
detected during retrieval. On the other hand, Explore-Winner reduces the randomness
in decisions by considering the consequences of each decision. The idea behind the
Cache-Winner technique can be illustrated in simple terms by drawing analogy with
human decision making: imagine a person who makes a decision fast and then, if he
realizes a mistake, tries to resolve it by manipulation of past decisions. On the other
hand, Explore-Winner has the analogy with a rather careful decision-maker who inves-
tigates the consequences of all possible decisions at the time and then makes the best
possible decision. In terms of achieving accurate sequence retrieval, both proposed re-
trieval techniques are superior to the Winner, which literally makes a random decision
in the case of equal chance situations, and continues without further actions even when
realizing a mistake later.

It is also known that the brain is able to follow the previously stored sequences,
from any given point forward, and somewhat, also backwards (see, e.g. Hawkins &
Blakeslee, 2007). The other contribution of this paper is introducing Feedback-Backward
retrieval method which makes our model more biologically plausible. Using Feedback-
Backward retrieval, the model gains the capability of retrieval of the whole sequence,
given a sub-sequence, no matter its location. The Feedback-Backward retrieval is more
compatible with the Feedback TNN, but works well with the original TNN as shown
in the results. Backward retrieval, therefore, adds more capabilities to these types of
sequence storage structures, and makes them more similar to brain functioning.

The paper is organized as follows: in section 2 we briefly survey the CCN and TNN
structures. In section 3, different learning and retrieval algorithms are explained. The
simulation results are provided in section 4, and afterwards, in section 5, discussion and
concluding remarks are presented.

2 Background
In this section, first the clustered clique-based neural network structure is described
in section 2.1. These types of networks are able to store and retrieve the fixed length
patterns. Next, in section 2.2, tournament-based neural networks which have the ability
to store and retrieve sequences is surveyed.

2.1 Clustered Clique Networks (CCNs)
In Clustered Clique Networks (CCNs) the way the neurons are organized within clus-
ters, and the sparsity of the encoding used for storing patterns in cliques, result into
large storage diversity, i.e. number of storable patterns, high capacity, i.e. the amount
of storable information, and strong robustness against erasures and errors (Gripon &
Berrou, 2011; Jarollahi et al., 2015; Gripon et al., 2016).
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Formally, the structure of CCNs consists of n neurons divided into c clusters with
possibility of different sizes. The input patterns are formed from a pre-defined alphabet
A where the number of neurons in each cluster matches the size of used alphabet |A|.
For simplicity all clusters are considered to have the same number of neurons, say
l = n/c, and therefore the same alphabet size |A| = l. The jth neuron in the ith cluster
is denoted by nij and it has an associated value, v(nij), equals one if it is activated, and
zero otherwise; where 1 ≤ i ≤ c and 1 ≤ j ≤ l. Let P be the set of patterns to be
stored where pattern p ∈ P contains c sub-patterns, i.e. p = p1p2 · · · pc; for pi ∈ A.

The learning process starts by assigning a unique set of neurons -one per cluster- to
each p ∈ P:

p = p1p2 · · · pc → (f(p1), f(p2), · · · , f(pc))
where f : {pi} → {nij|1 ≤ j ≤ l}.

Learning proceeds by activation of the selected neurons, i.e. v(nij) = 1, and forming a
clique by connecting the selected c active neurons to each other through binary edges.
As a result, the learning process generates a set of binary edges

W = {ω(ij)(i′j′)| if i 6= i′ and ∃ p ∈ P s.t. f(pi) = nij and f(pi′) = ni′j′},

where ω(ij)(i′j′) is an edge between nij and ni′j′ .
The edge ω(ij)(i′j′) belongs to W independently from the number of patterns that use
both nij and ni′j′ neurons, but only if there exists such a pattern. Figure 1 illustrates the
storing process in clique-based networks.
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Figure 1: The learning process of three patterns, in a network with c = 4 clusters and
l = 16 neurons per cluster. Node ni,j refers to the jth neuron in the ith cluster. Each
clique represents one of the three (4, 1, 8, 12), (10, 2, 8, 1), and (10, 12, 6, 11) patterns
with yellow, green, and purple respectively. Coloured nodes refer to the activation of
neurons for at least one pattern. The red nodes, n1,11 and n3,9, belong to two patterns.
Note that it is not possible to retrieve the patterns by finding a unique clique using only
one of these red nodes.

The recall or retrieval phase of a possibly distorted version of a learnt pattern, p̂, is
based on finding the closest match from P . Depending on the type of distortion, var-
ious retrieval methods might be used (see, Aboudib et al., 2014), however, in general
the recall procedure consists of local and global phases. The local phase aims to find
the most probable neurons in different clusters, using information from p̂ or incoming
connections from previously activated neurons, and activate them, i.e. v(nij) = 1. The
global phase is to recall the established edges inW that have an end in activated neu-
rons. This procedure alternate between global and local retrieval to gradually complete
the clique and therefore the pattern.

It is noteworthy that other sparse structures were presented by Aliabadi et al. (2014),
according to which, c � χ where χ = n/l denotes the number of clusters and c was
used to denote a smaller set of clusters for which a sparse pattern is mapped into. Re-
trieval, in this case, would be more complicated and various scenarios could be consid-
ered (see, e.g., Aboudib et al., 2014; Jiang, 2014). For instance, the winner-take-all rule
activates neurons with the highest activity (or maximum score), whilst Losers Kicked-
Out rule (LsKO) eliminates active neurons with less activity using a threshold filter (see
Jiang, 2014, for details).
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2.2 Tournament-Based Neural Network (TNN)
An extension of the CCNs (Jiang et al., 2016) is proposed by using directed edges
between clusters in such a way that the network can store sequential information in a
tournament-based1 neural network. In a chain of tournaments of order c and degree r,
denoted by Tr(c), each node is directed clockwise to its r consecutive neighbors; see
Figure 2 with c = 8 and r = 3 for a sample chain of tournaments. A TNN can then be
seen as a concatenation of tournaments of size r + 1.

Figure 2: An illustration of a chain of tournaments, T3(8), for storing sequences of
length 20. The eight clusters are represented by colored circles, and each arrow rep-
resents a set of possible connections between nodes within the clusters. The clusters
construct eight tournaments of size r + 1 = 4. For instance, clusters that have been
shown with 1, 2, 3, 4 make one tournament starting from cluster 1, and clusters labeled
with 7, 8, 1, 2 involve in another tournament starting from cluster 7. A sequence of
length 20 and the assigned clusters for each component si are represented around the
network. Given the first r components (s1, s2, s3) with solid circles, the retrieval algo-
rithm could retrieve the rest sequentially using the tournament connections. This figure
is based on (Jiang et al., 2016, Fig. 5).

In order to store a set of sequences, S , in a chain of tournaments, we suppose that
each sequence s ∈ S contains L component, i.e. s = s1s2 · · · sL; for st ∈ A, t =
1, 2, . . . , L, and |A| = l.

By labeling clusters from 1 to c, the learning process could be explained as follows.
First a unique sequence of neurons must be assigned to each s ∈ S by using function

1In graph theory, by assigning direction to all edges of a complete graph, a tournament can be
achieved.
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f = (f1, · · · , fc), where fi, i = (t − 1 mod c) + 1, maps a component st, to a unique
neuron nij in cluster i:

fi : {st} → {nij|1 ≤ j ≤ l, }, 1 ≤ i ≤ c,

therefore,

f(s) = (f1(s1), f2(s2), · · · , fc(sc), · · · , f(L−1 mod c)+1(sL))

Learning continues by connecting neuron nij to neuron ni′j′ at passage π as follows

nij → ni′j′ , if:
{
fi(s(i+(π−1)c)) = nij
fi′(si′+(π−1)c) = ni′j′

and, 1 ≤ δi(i
′) ≤ r (1)

where δi(i′) = (i′ − i) mod c, and 1 ≤ π ≤ bL
c
c.

In general, for s ∈ S , if the above conditions are satisfied for a given π such that
nij → ni′j′ , we set Ns,π(nij, ni′j′) = 1, which means that nij is connected to ni′j′ , in
sequence s, otherwise we set Ns,π(nij, ni′j′) = 0. In Figure 2, s2 is connected to s3 in
passage π = 1, but not to s11 (in passage π = 2), and s19 (in passage π = 3) in the same
sequence s, for instance. So the neighboring connections are defined based on both s
and π values.

At the end of learning or storing process, the network has the following connections:

W = {ω(ij)(i′j′)| if ∃ s ∈ S, and ∃ π ∈ [1 : bL
c
c] s.t. Ns,π(nij, ni′j′) = 1} (2)

where ω(ij)(i′j′) is a directed edge from nij to ni′j′ and 1 ≤ i, i′ ≤ c, 1 ≤ j, j′ ≤ l (see
Algorithm 1 for the learning process).

A stored sequence retrieval process could start with any subsequence of r consec-
utive components and the activation of a component in the following cluster relies on
the connections of r previous clusters. If the given subsequence is not the first r com-
ponents of the sequence, the retrieval algorithm requires the information of the location
of clusters. In Figure 2, the first three components s1, s2, and s3 are shown with solid
circles, and the components to be retrieved are shown with dashed circles.

The proposed retrieval procedure is sequential using a Winner-Takes-All (WTA)
decision at each step. For brevity, we call this retrieval Winner in the rest of paper (see
Algorithm 2).

3 Structures and Algorithms
The original learning and retrieval algorithms for TNN that were proposed by (Jiang
et al., 2016) are reported in section 3.1. In sections 3.1.1 and 3.1.2, the newly proposed
retrieval algorithms Winner-Cache and Winner-Explore are provided respectively. Feed-
back TNN structure along with its corresponding learning and retrieval algorithms,
Feedback-Forward and Feedback-Backward, are presented in section 3.2. Finally, the
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error types that are used for evaluation of structures are addressed at the end of this
section (section 3.3).

3.1 Learning and Retrieval Algorithms in TNN
TNN structure, which is explained in section 2.2, is summarized by Algorithm 1 and
Algorithm 2 for the learning and retrieval phases respectively.

Algorithm 1: Learning in TNN
input : c, k, r, L & S
initialization

l = 2k,

Generate directed graph G with n = c× l nodes structured in c clusters of size

l.

Assign clusters indices from 1 to L cyclically (similar to Figure 2)

begin

for s ∈ S do

Activate the corresponding neurons to the sequence components;

Connect each active neuron to the consecutive r active neurons.

output: G

Algorithm 2: Winner Retrieval in TNN
input : G & [s1 : sr]

initialization

Activate r neurons in the first r clusters using [s1 : sr]

begin

for i ∈ [r + 1 : L] do
Establish the output edges from previous r active neurons in the

sequence;

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
activate one of the candidate nodes randomly as winner and record

it as si;

output: s[s1:sr] // Retrieved sequence given [s1 : sr]
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For retrieval, the first r components of a previously learnt sequence, [s1 : sr] and the
learnt graph, G, are given and the complete sequence starting with [s1 : sr] is expected.

In Algorithm 2, first each of the given r components are mapped to their related
neurons in the first r clusters. Note that each component value is a number from 0 to
l − 1. Then, the retrieval algorithm establishes the output edges from these r active
neurons. The neurons in the destination cluster with highest input score will form the
candidate set for the next component of the sequence. If there is just one candidate it
will be added to the retrieved sequence and activated for retrieving the next component.
Otherwise, the component must be chosen randomly among the candidates.

3.1.1 Winner-Cache Retrieval in TNN

In the case of Winner-Cache algorithm, the learning phase is similar, but the retrieval
is more advanced. As reported in Algorithm 3, a temporary cache memory is used in
the cases where random selection among winners results into an error which is detected
later (see Figure 3 for an illustration).

Figure 3: The mechanism of using temporary cache memory in the Winner-Cache re-
trieval is illustrated. The component si, with yellow color, represents the point in the
retrieval where none of the nodes in cluster i has a score equal to r = 3 from last three
previous activated neurons. This means that si−1, si−2, and si−3 do not belong to any of
previously stored sequences. Starting from cache memory in cluster i − 3 for compo-
nent si−3, if there is an alternative candidate to be activated, we change the component,
and start retrieving the sequence from that point. If in si−3 the cache memory is empty,
the algorithm checks for si−2 and then si−1. At the end, if there is no alternative, or
using the alternatives does not help, the candidate set for component si will be one of
the winners, i.e. a node with maximum score.

The Cache-Winner algorithm proceeds as follows: whenever there is no unique
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candidate, the component is chosen randomly among the candidates and other candi-
dates will be recorded temporarily (up to assignment of the next r components). If
the algorithm can not find a candidate connected to all the previous r active neurons,
the algorithm starts retrieval from the earliest non-empty cache memory by randomly
choosing another member. For the sake of brevity, we refer to this retrieval as Cache in
the rest of paper.
Algorithm 3: Winner-Cache Retrieval in TNN.
input : G & [s1 : sr]

initialization

Activate r neurons in the first r clusters using [s1 : sr]

begin

i = r

while i < L do

i+ = 1

Establish the output edges from last r active neurons in the sequence;

Create a candidate set of nodes with maximum score in cluster i.

if maximum score < r then
search in the cache data of last r neurons ([i− r : i− 1]), find the

first non-empty cache (j) and select a new member randomly.

Update the cache by removing the new member and start retrieval

from that point (j) again by putting i = j.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
activate one of the candidate nodes randomly as winner and record

it as si;

Put the remaining members of the candidate set into a temporary

cache;

keep the cached data until the next r neurons are assigned.

output: s[s1:sr] // Retrieved sequence given [s1 : sr]

3.1.2 Winner-Explore Retrieval for TNN

At this juncture, we introduce a retrieval technique which performs exploration within
the forthcoming clusters to find a more accurate solution. As reported in Algorithm 4,
whenever the candidate set in a cluster is not unique, by using the previous activated
neurons, we produce possible candidates in the next clusters and consequently try to
eliminate the current candidates by exploring the connections to the generated candidate
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sets (see Figure 4 for an illustration). The maximum number of clusters that can be
investigated (rexplore) is upper bounded by r − 1. However, as will be discussed in
section 4.1.1 one could limit the retrieval algorithm to explore shorter distances. For
instance setting rexplore < c− r in order to reach each cluster at most once for a specific
component. Exploration involves searching for candidate sets in the following clusters
and then trying to eliminate the number of candidates in the current cluster. The two
techniques for this part are called Forward technique and Clique technique. In Forward
technique, any candidate which is not connected to at least one node in the following
clusters will be deleted from candidate set. Therefore, it is possible to find a unique
candidate by reducing the size of candidate set. Clique technique is more advanced
since it removes the candidates that are not in a tournament of largest possible size. We
use term Clique for this technique to differentiate this technique from the learning on
chain of tournaments.

Figure 4: Using exploration technique to eliminate the number of components that
are chosen randomly among the winners in Winner-Explore retrieval algorithm is il-
lustrated. Suppose that by using the edges from r = 3 previous nodes equivalent to
si−3, si−2, and si−1 to find si component, more than one option is found for the candi-
date set in cluster i. In this case, rexplore = r − 1 = 2 previous components, i.e. si−2
and si−1 are used to create a candidate set in cluster i + 1. In the Forward technique,
the algorithm checks which candidates for component i are connected to at least one
of the nodes in the candidate set in cluster i + 1 (using links labeled with 1). If there
is still more than one option, a candidate set in cluster i + 2 will be constructed using
si−1. Again, using Forward technique, the connections between candidates in cluster i
and the candidate sets in the following i+ 1 and i+ 2 clusters are used to eliminate the
options (labeled with 1 and 2). If still no unique option is available, Clique technique
will be used which searches for the possible cliques of size 3 (using all the links labeled
with 1, 2, and 3). Since rexplore = 2, if there is no unique candidate in cluster i within
the cliques, the process stops and the winner will be chosen randomly.

11



The retrieval process, as reported in Algorithm 4, searches for a candidate set in
one cluster at each iteration: first by using the Forward technique, and then applying
Clique technique. In the case of a non-unique option, algorithm proceeds by adding a
new candidate set in the following cluster, and so on. The search for unique candidate
stops whenever a unique option is found or all the clusters for exploration are taken into
computation.
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Algorithm 4: Winner-Explore Retrieval in TNN
input : G & [s1 : sr], rexplore

initialization

Activate r neurons in the first r clusters using [s1 : sr]

begin

for i ∈ [r + 1 : L] do

Establish the output edges from last r active neurons in the sequence;

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then

for j ∈ [1 : rexplore] do
Create a candidate set in cluster i+ j using the r − j activated

nodes prior to i;

Construct a sub-graph of G with nodes of candidate sets in

cluster i up to cluster i+ j;

Update the candidate set in cluster i by keeping nodes with

maximum output edges in sub-graph

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as

si. // Forward technique worked.

else if len(candidate set) > 1 then
Find all tournaments in the sub-graph including nodes from

candidate set in cluster i with size j + 1;

Update the candidate set in cluster i so that only candidates

in such tournaments remain;

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as

si. // Clique technique worked.

else if len(candidate set) == 0 or j == r − 1 then
Return the last non-empty candidate set as the final

candidate set for cluster i;

output: s[s1:sr] // Retrieved sequence given [s1 : sr]
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3.2 Feedback TNN Structure
In this structure, the learning phase sets tournaments with forward and backward con-
nections. Each node in a tournament of size r + 1, has rfwd links to the forthcoming
clusters and receives rfbk links from the forthcoming [rfwd + 1 : r] active neurons,
where 0 ≥ rfbk ≥ rfwd and r = rfwd + rfbk (see Figure 5).The original TNN can be
seen as a Feedback TNN with zero feedback links (rfbk = 0).

Figure 5: In the chain of tournament structure with feedback connections, the first
rfwd connections of each tournament are clockwise and the next rfbk connections are
counterclockwise. In this illustration, rfwd = 2 and rfbk = 1.

For storing sequence s ∈ S , where s = s1s2 · · · sL, the clockwise connections in
the network will be as follows:

nij → ni′j′ , if:
{
fi(si+(π−1)c) = nij
fi′(si′+(π−1)c) = ni′j′

and, 1 ≤ δi(i
′) ≤ rfwd, (3)

and for counterclockwise connections:

nij ← ni′j′ , if:
{
fi(si+(π−1)c) = nij
fi′(si′+(π−1)c) = ni′j′

and, rfwd ≤ δi(i
′) ≤ r (4)

where 1 ≤ π ≤ bL
c
c. In general, for s ∈ S , if the above conditions are satis-

fied for a given π such that nij → ni′j′ , we set Ns,π(nij, ni′j′) = 1. Similarly we
set Ns,π(ni′j′ , nij) = 1, if nij ← ni′j′ ; otherwise we set Ns,π(nij, ni′j′) = 0, and
Ns,π(ni′j′ , nij) = 0.

At the end of learning or storing process, the network has the following connections:

W = {ω(ij)(i′j′)| if ∃ s ∈ S, and ∃ π ∈ [1 : bL
c
c] s.t. Ns,π(nij, ni′j′) = 1} (5)

where ω(ij)(i′j′) is a directed edge from nij to ni′j′ and 1 ≤ i, i′ ≤ c, 1 ≤ j, j′ ≤ l
(see Algorithm 5 for the learning process). In Figure 5, activated neurons in cluster i
are connected to the activated neurons in clusters i + 1 and i + 2 clockwise, whereas
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activated neurons in cluster i + 3 are connected to the activated neurons in cluster i
counterclockwise.
Algorithm 5: Learning in Feedback TNN
input : c, k, r, rfwd, L & S
initialization

l = 2k, rfbk = r − rfwd

Generate directed graph G with n = c× l nodes structured in c clusters of size

l.

Assign clusters indices from 1 to L cyclically (see Figure 5 for labeling)

begin

for s ∈ S do

Activate the corresponding neurons to the sequence;

Connect each active neuron (say in cluster i) to the active neurons in

the next rfwd clusters ([i+ 1 : i+ rfwd]);

Connect each active neuron to the previous rfbk active neurons in

clusters [i− r : i− rfwd − 1];

output: G

3.2.1 Retrieval in Feedback TNN

Here we introduce two retrieval algorithms, Feedback-Forward (Algorithm 6) and Feedback-
Backward (Algorithm 7), which can retrieve a complete sequence from any given seg-
ment. To do so, we need a pre-matching process to find the clusters on which the given
sequence segment was stored (see Figure 6 for an illustration of Feedback-Forward and
Feedback-Backward processes).
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(a) For Forward retrieval in Feedback TNN,
first a candidate set in cluster i is created using
the connections from active neuron in clusters
i − 1 and i − 2 (since rfwd = 2). If there is a
unique winner candidate, the algorithm stops,
otherwise a sub-graph is constructed with the
candidate set and the active neuron in cluster
i − 3 (since rfbk = 1). The candidate set will
be updated by keeping nodes with maximum
score.

(b) For Backward retrieval in Feedback TNN,
first a candidate set in cluster i is created using
the connections from active neuron at cluster
i+3 (since rfbk = 1). If there is a unique win-
ner candidate, the algorithm stops, otherwise a
sub-graph is constructed with the candidate set
and the active neurons in clusters i+1 and i+2
(since rfwd = 2). The candidate set will be up-
dated by keeping nodes with maximum score.

Figure 6: Consider the structure in Figure 5 where rfwd = 2 and rfbk = 1. Given a
segment of r = 3 components, Forward and Backward retrieval processes are illustrated
respectively in (a) and (b).

Feedback-Forward algorithm (hereafter Forward) retrieves the sequence given the
first r components of it. This retrieval is performed in two phases: first, by using the
rfwd connections, and then if the winning candidate is not unique, the rfbk connections
are used to eliminate the number of candidates, as reported in Algorithm 6.

Feedback-Backward algorithm (hereafter Backward), retrieves the sequence given
the last r components of a sequence. As reported in Algorithm 7, the algorithm first
uses the rfbk input edges to make an initial candidate set, and then the output edges
from the candidate set is used to eliminate the number of candidates.
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Algorithm 6: Feedback-Forward Retrieval in Feedback TNN
input : G & [s1 : sr]

initialization

Activate r neurons in the first r clusters using [s1 : sr]

Assign clusters indices from 1 to L cyclically

begin

for i ∈ [r + 1 : L] do
Establish the output edges from previous rfwd active neurons in the

sequence;

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
A sub-graph of G with nodes from candidate set in cluster i, and

previous rfbk active neurons in clusters [i− r : i− rfwd] is

constructed;

The new candidate set for cluster i is updated by keeping the nodes

which have maximum output edges in the sub-graph;

Select one node from the updated candidate set as winner and

record it as si;

output: s[s1:sr] // Retrieved sequence given [s1 : sr]
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Algorithm 7: Feedback-Backward retrieval in Feedback TNN.
input : G & [sL−r+1 : sL]

initialization

Activate r neurons in the related r clusters using [sL−r+1 : sL]

Assign clusters indices from 1 to L cyclically

begin

for i ∈ [L− r : 1;−1] do
Establish the output edges from rfdk active neurons in clusters

[i+ rfwd : i+ r];

Create a candidate set of nodes with maximum score in cluster i.

if len(candidate set) == 1 then
activate the only candidate node as winner and record it as si

else if len(candidate set) > 1 then
A sub-graph of G with nodes from candidate set in cluster i, and the

next rfwd active neurons is constructed;

The new candidate set for cluster i is updated by keeping the nodes

with maximum score (maximum output edges) in the sub-graph;

Select one node from the updated candidate set as winner and

record it as si;

output: s[sL−r+1:sL] // Retrieved sequence given [sL−r+1 : sL]

Note that Winner (Algorithm 2) can be seen as a special case of Forward (Algo-
rithm 6) when rfwd = r and rfbk = 0. In Figure 6a, only the first step that uses rfwd is
applicable. On the other hand, in the case of the original TNN, the Backward algorithm
starts with a candidate set of size l and makes a sub-graph with the given rfwd = r
components, since rfbk = 0 and there is no input connection. In Figure 6b, only the
second step that uses rfwd is applicable.

3.3 Error Types
Based on the argument of Jiang et al. (2016), two different error types could be distin-
guished; an error type that is due to prior retrieval errors in simulation, and an error type
that is structural and which is caused by an excessive network density. The structural
error type could happen even if all the previous r components are given correctly.

Component Error Rate (CER) and Sequence Error Rate (SER) address the simu-
lation error; CER is defined as the ratio of the number of incorrect components over
the number of total retrieved components, whereas SER is defined as the number of
sequences that are failed to be retrieved correctly over the total number of sequences.
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Structural Component Error Rate (S-CER) and Structural Sequence Error Rate (S-
SER) address the structural error. According to Jiang et al. (2016), the S-CER can
be estimated as the error rate at a single retrieval step when the provided previous r
components are correct.

PS−CER = 1− (1− dr)l−1 (6)

where d is the network density which is the ratio of number of established connec-
tions during the storage process over all possible connections that the network structure
allows. The density is calculated (in Jiang et al., 2016, equation 7) as:

d = 1−
(
1− 1

l2

) |S|L
c

(7)

At the sequence level, S-SER is estimated (in Jiang et al., 2016, equation 9) as:

PS−SER = 1− (1− dr)(l−1)(L−r) (8)

Please note that the density in the Feedback TNN structure is the same as the density
of the original TNN structure (equation 7). This is due to the fact that the density is
calculated based on the probability of having a connection between two nodes, and in
the case of Feedback TNN just the directions of some connections are changed while
their number remains the same. Moreover, based on the definition of structural errors,
equations 6 and 8 are valid for Cache, Explore and Feedback TNN retrievals.

4 Simulation Results
In this section, the simulation results for different algorithms are presented in order to
show the robustness of storage and to compare different structures. Learning processes
for TNN and Feedback TNN structures (Algorithm 1 and Algorithm 5, respectively)
are considered when c = 20, k = 8, l = 28 = 256, r = 12, rfwd = 6, rfbk = r −
rfwd = 6, and L = 100. Regarding the retrieval, four scenarios; Winner (Algorithm 2),
Cache (Algorithm 3), Explore (Algorithm 4), Forward (Algorithm 6), and Backward
(Algorithm 7) are simulated and compared.

The sequences in the learning set are different in at least one of the first r compo-
nents. For instance, a learning set of size 1000 is a set of 1000 sequences that all are
different in at least one component in the 12 first components. To see if the memorized
sequences can be retrieved, 100 of the learnt sequences are randomly chosen from each
learning set. To reduce randomness effect, we fixed the 100 choices of sequences in the
learning set of each size (varies between 10 to 15000), in simulations for all the retrieval
algorithms.

4.1 TNN Retrieval Results
Figure 7 depicts the error rate for a range of learning set sizes, for different retrieval al-
gorithms, namely, Winner (Algorithm 2), Cache (Algorithm 3) , Explore with rexplore =
3, and rexplore = 7 (Algorithm 4). To illustrate the power of the algorithms with respect
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to the structure of the network, the calculated density and structured error are also plot-
ted. It is clear from the results that retrieval with the exploration when rexplore = 7
is far better than the rest of scenarios. For instance, when the learning set is com-
posed of 10000 sequences, each of size 100, the SER (Figure 7a) for the Winner is one,
which means that no sequence can be retrieved correctly with the original algorithm.
While this value is about 0.7 for the algorithm with cache memory and about 0.6 when
the exploration technique is used with rexplore = 3, and the SER for exploration with
rexplore = 7 is less than 0.2. This superiority of exploration algorithm can easily be
tracked in the CER results (Figure 7b). For instance, for the same learning set, the CER
for Winner is 0.75, for Cache it is 0.4, for Explore with rexplore = 3 it equals to 0.3, and
for Explore with rexplore = 7 it is near zero.

(a) Sequence error rate (SER) (b) Component error rate (CER)

(c) Running time ratio for Explore-r7 and
Cache over Winner.

Figure 7: Comparison between retrieval algorithms on the TNN structure; Winner (Al-
gorithm 2), Cache (Algorithm 3) , Explore with rexplore = 3, and rexplore = 7 (Algo-
rithm 4). The running time ratios of Explore (with rexplore = 7) and Cache over Winner
are reported in 7c.

In Figure 7a, the simulated error value for all retrieval methods are less than S-SER
which is obtained from equation 8. This can be explained by the fact that the S-SER
error estimation is based on the probability of having at least two nodes in a cluster that
all the previous r components are connected to. In this case, for the simplest version of
retrieval algorithms, Winner, one candidate will be chosen randomly. In other words,
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S-SER is an upper bound for SER and in the case that all the choices are unique (S-
SER = 0), there will be no error (SER = 0). Although there is no guarantee that
the randomly chosen candidate is the desired one, the SER value is slightly less than
the S-SER. Obviously, the more sophisticated retrieval algorithms, Cache and Explore,
reduce the random selections and therefore, the number of errors. The structure error
is a function of network density and as can be seen in Figure 7, higher density leads to
higher structure error.

For S-CER (Figure 7b), the argument is different and the simulated error values in
retrieval process are higher than S-CER. To calculate S-CER, the assumption is that the
previous retrieved components are correct and S-CER estimates the probability of hav-
ing at least two nodes that are fully connected to the previous r components. However,
in the simulation, the values of some of r previous components are faulty and as a result
the decision is not based on correct components. Therefore, in a sequence retrieval, er-
rors at each component could be propagated to the rest of retrieval and simulated error
CER will be higher than S-CER which assumes the r components are correct.

The reported results in Figure 7 suggest Explore retrieval with higher number of
steps. Cache algorithm is also promising, but for large learning sets it has a low speed.
When the network density increases, Cache retrieval process creates larger candidate
sets for each component and therefore larger cache memory, and the algorithm might
go through all the options to find the correct component. Explore, on the other hand,
must explore longer distances that is the source of complexity in Explore. Figure 7c
compares the simulation running time between Explore-r7 and Cache with Winner for
different learning set sizes. The running time up to a learning set size of 8000 for all
the three algorithms is the same, while Explore-r7 and Cache perform far better than
Winner; compare the low performance of Winner (SER = 0.52) with the performance
of Cache (SER = 0.08) and Explore-r7 (SER = 0.02). As another example, for
learning set size 10000, SER = 1 for Winner; while Explore-r7 has SER = 0.18 and
running time ratio 1.2, and Cache has SER = 0.86 and running time ratio 1.7.

This shows that for reasonable error values (say less than 0.1), the running time ratio
is at the same level of Winner in both cases. Interestingly, the running time for Cache
reaches a peak for a learning set of size 14000 and thereafter starts to decline for larger
learning sets as shown in Figure 7c. This can be explained by the excessive density so
that the probability of having full score candidate at each step increases and therefore
the algorithm can not detect an error which reduces the processing time for checking
the Cache memory.

In Figure 7b, only Explore algorithm with rexplore = 7 that investigates further
clusters shows lower error than S-CER until the density about 0.6 and learning set
of size 12000. We will have a closer look at the simulation results for the Explore
algorithm below.

4.1.1 More Investigation on Explore Retrieval Algorithm

In Explore retrieval, by starting from distance one, the algorithm uses Forward and
Clique techniques consecutively and increases the exploration distance until a unique
candidate is found or rexplore limit is met. Clique technique is more powerful but it
is more computationally expensive than Forward technique. Figure 8a shows that by
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using the Clique technique alone (red dashed line) the exploration performance does
not change, whilst Forward technique alone (blue dashed line) is far less effective than
the achieved results by exploration algorithm. This is an expected result since Clique
technique is endowed with Forward technique.

Figure 8b and 8c show the number of components that Forward and Clique tech-
niques successfully retrieved (unique winner), respectively in the course of retrieving
each sequence. The columns show the exploration distance and the rows show the size
of learning sets. It is noteworthy that the first column in Figures 8c is all zero since for
a distance one, a forward connection and a tournament of size 2 are the same, and the
Forward technique is prior to the Clique technique in Algorithm 6.

As reported in Figure 7b, the Winner handles the retrieval when the learning set
sizes are up to 7000. Until this point, no exploration is demanded. But with larger sizes
of learning set and whenever it comes to the exploration phase, most of the cases can be
retrieved with exploration of distance one. This, however, does not mean that the best
choice, in terms of time/accuracy trade off, is rexplore = 1. When the size of learning
sets gets higher, the Clique technique gets more involved. Because the higher sizes
of candidate sets in under exploration clusters increases the searching domain, which
results Forward technique to be failed in retrieval and Clique technique starts to retrieve.
Let us consider for instance the learning set sizes around 12000 − 13000 which is the
highest number of successful retrievals per sequence using Explore retrieval (Figure
7a). For these sizes the CER error is high, for example it is about 0.46 for learning
set of size 12000 and equals 0.85 when the learning set size is 13000 and therefore the
overall retrieval is not successful. Interestingly, the S-CER also beats CER at around
12000 (Figure 7b) which shows that high density can not be managed with exploration
technique as well.

For learning sets of size 11000, the CER for Explore-r7 is 0.074 (Figure 7b) while
without exploration technique the CER value equals one for learning set sizes larger
than 10000. Figure 8b and 8c show decrease in the successful cases at exploration
with higher distances, say 6 or 7 which suggests that extra exploration is not worth the
computation. We found rexplore = 7 as a suitable choice for this setting of parameters.
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(a) CER for Explore algorithm compared with the cases that either Forward
technique or Clique technique is used.

(b) Number of unique winner components
which are found at [1 : 7] exploration distances
using Forward technique.

(c) Number of unique winner components
which are found at [1 : 7] exploration distances
using Clique technique (with tournament sizes
[1 : 7] + 1)

Figure 8: Analysis of Explore retrieval; Forward technique vs. Clique technique and
the required exploration distance for finding a unique component. Results of learning
set sizes between 6000 and 15000 are depicted.

4.2 Feedback TNN Retrieval Results
Figure 9 shows the retrieval error of Feedback TNN learning when r = 12 & rfwd = 6
(Forward-r6 and Backward-r6) together with the retrieval error of original learning
method (TNN) with Winner and Backward-r0 retrievals when r = 12. We start the
Winner and Forward-r6 retrievals when the first r = 12 components are given, and
Backward-r6 and Backward-r0 when the last r = 12 components are given.

Figure 9a confirms that the sequence retrieval results in Feedback TNN can be as
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accurate as the original TNN memories. It is almost the same for CER (Figure 9b),
however the results for the original TNNs are slightly better. We can explain this as
a result of errors in recent previous rfwd = 6 components. Consider the case that the
algorithm finds a unique candidate for the current component based on last rfwd = 6
components, without considering the other rfbk = 6 links, and selects it as the only
winner, while it can be incorrect candidate due to some errors in previous steps. How-
ever, if the algorithm uses all the rfwd and rfbk links the candidate set might composed
of more components, which are not necessarily of full score. In this case, the final
candidate will be chosen randomly, and therefore there is a chance of correct compo-
nent selection. The above argument could similarly explain why CER for Backward-r0
are slightly better than Backward-r6. Note that the errors in Feedback TNN retrievals
might cause more random choices in retrieval of the rest of components (see section 4.3
for an analysis of randomly chosen components). Indeed, such errors do not increase
SER but CER could be affected as seen in Figure 9b.

(a) Sequence error rate (b) Component error rate

Figure 9: Comparison between the original TNN learning method and the learning in
Feedback TNN using Winner, Forward and Backward retrievals.

In summary, in Feedback TNN the retrieval is faster than TNN, the SER perfor-
mance is the same for both, but TNN could be slightly better in CER performance.

4.3 Randomness in Simulated Retrievals; an Overall Look
Figure 10 provides a general overview on the number of cases in average that retrieval
algorithms select the final component randomly from the candidate set. The success in
policy of reducing the number of cases with random decision in Cache and Explore re-
trievals to achieve better retrieval performance is clearly shown in the last three columns
related to these retrievals. For instance, when the learning set size equals 11000, nearly
50 components out of L − r = 88 are chosen randomly for Winner, as the original
retrieval algorithm, but it is about 20 for Cache, 15 for Explore with rexplore = 3, and
almost zero for Explore with rexplore = 7. The number of random choices for Feed-
back TNN structure, both Forward and Backward, is slightly higher than Winner and
Backward-r0. The argument is that the errors that appear due to the wrong unique
retrieval, produce more error afterwards in the sequence, and therefore more random
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winner retrieval cases in total. We also can observe a slightly higher number of random
winner selection in the Backward-r0. This could be related to the learning set genera-
tion in our simulations. The sequences in a learning set, are forced to be different in at
least one of the first r components. Therefore, the Winner can start the retrieval with
the unique sequence, while in the Backward-r0 more than one sequence can match with
the given last r components.

Figure 10: A comparison between number of random selection of winner candidate in
different scenarios.

5 Discussion and Concluding Remarks
In this study, two-fold contributions within the field of TNN structures were presented;
first, we proposed a more general learning and retrieval structure called Feedback TNN,
and second, we devised two more accurate retrieval algorithms in comparison with the
Winner algorithm.

In Feedback TNN, each segment of sequence of length r + 1 is mapped into a
tournament in r + 1 consecutive clusters where each neuron has rfbk input edges and
rfwd = r − rfbk output edges. The proposed retrieval for the Feedback TNN operates
in two phases, in a faster manner than TNN retrieval, and generates the same sequence
error rate while producing a slightly weaker component error rate.

The original TNN can be considered as a special case of Feedback TNN with zero
feedback connections. Using feedback connections, we obtained results of sequence
retrieval as precise as the original structure, with the possibility of faster retrieval. One
might also divide the r forward connections into two parts, say r1 and r2, and try to
retrieve the component using the most recent r1 active neurons, and if it is not possible
to uniquely retrieve, use the rest of r2 neurons. More generally, one can try to retrieve
by starting from the last active neuron and reduce the size of the candidate set (losers-
kicks-out), and adding more active neurons to the retrieval process, until either one
winner candidate remains or all the r active neurons are used.

By introducing Backward retrieval in this paper, we showed that it is possible to
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get a part of a sequence, no matter its location, and retrieve the rest. In this case,
the retrieval algorithm must be able to first locate a tournament matching the given
sub-sequence, and later retrieve the whole sequence from both directions. Backward
retrieval is compatible with both TNN and Feedback TNN structures, but Feedback
TNN with non-zero feedback links is preferable since the Backward retrieval algorithm
can start with a smaller size candidate set.

In order to improve the retrieval accuracy for a given network, we suggested two
algorithms with the overall strategy to limit the number of random selections during
retrieval. The Cache retrieval (Algorithm 3) uses a temporary cache memory for the
last r components to record the candidate set of winners whenever the chosen winner is
not unique. These cached alternatives are used whenever the algorithm detects an error
by observing no candidate having a full score. The reported results in section 4 confirm
the usefulness of this method. The more advanced, and successful, retrieval algorithm
(Algorithm 4) explores the forthcoming clusters to find a unique candidate in the cur-
rent cluster. This algorithm somehow investigates the consequence of choosing each
candidate by checking its connections to the possible future components and decides
more judiciously. This algorithm produces the best results.

Explore-Winner is a more reliable retrieval method than Cache-Winner since it lim-
its the number of random choices using the data in the forthcoming clusters, while
Cache-Winner tries to correct the errors by testing other possibilities. Cache-Winner
might be computationally expensive in higher densities where candidate sets of win-
ners are larger and therefore, larger sets are cached. Finding an optimal rexplore, for
exploration distance limit, as shown in section 4.1.1, is a trade-off between time and
accuracy. Although not reported in the simulations, both Cache-Winner and Explore-
Winner can be used in Feedback TNN and for Backward retrieval.

Similar to the double-layer structure proposed by Jiang et al. (2016), it is possible
to consider a hierarchical structure by adding an extra connectivity level. Moreover,
similar to the technique used in (Mofrad et al., 2016) a precoding could dramatically
increase the storage and retrieval capacity by forcing patterns to be well separated and
therefore reducing the common tournaments in different patterns.
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