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Abstract

Fluid motion and wave patterns have fascinated humans for centuries if not millen-

nia. Water waves have been studied out of curiosity such as observing the ripples

created by a stone dropped in a pond as well as practical need. Designing a break-

water to shield a harbor from incoming waves and predicting sediment erosion at a

beach are typical engineering problems which arise in the protection of the coast,

and require advanced knowledge of the underlying wave motion.

One fundamental problem in the study of water waves is the transition of the

waves from large or intermediate depth to shallower waters, and the subsequent

breaking. While this situation has been studied from various angles by a large number

of authors, many issues remain unresolved, and there is not a single mathematical

theory which has been found to work generally in all cases that arise.

In the present thesis, we focus on the shoaling of waves on plane slopes in differ-

ent cases. The properties of these waves are described mathematically and compared

with measurements and observations. It is found that if an appropriate model equa-

tion is used for the description of the wave properties, then it is possible to obtain

good comparisons between these models and laboratory experiments, field measure-

ments and observations. In some cases, shear flows are a dominant factor while in

other cases, capillarity or the steepness of the bed slope are the most important

features.

In the first three papers, the shallow-water equations on a shoaling beach are

considered. Following the method of Carrier and Greenspan (1958), exact solutions

are found and compared with field observations (Paper C). The method of Carrier

and Greenspan is extended to flows which may include background shear flows such

as for example caused by wind set-up and the required return flow at the coast

(Paper A, Paper B)

A laboratory study of the run-up of a solitary wave is given in Paper D. These

experiments were set to produce a collapsing breaker on a slope of moderate steepness

(1:20), and the breaking wave was dominated by capillarity. The flow field under the

collapsing breaker is studied, and a qualitative analysis of this flow is explained using

the Navier-Stokes equations.

In Paper E, breaking of an undular bore is considered. The KdV equation is used

in the context of background shear, and the unset of breaking is found by analyzing

the underlying flow field. The results are compared with an experiment conducted



viii Abstract

by Favre (1935), and the comparison suggest that the KdV theory may be used to

give an approximate prediction of the incipient of wave breaking of the leading wave

in the bore.

In paper F, a field campaign is conducted in order to study shoaling waves in the

surf zone. Measured Eulerian and Lagrangian orbital velocities are obtained and the

correlated relation to wave-by-wave variations in mean-water level, wave height and

incipient wave breaking are considered. By using buoyant traces, Lagrangian mass

transport at the free surface is studied and it is shown that the KdV equation gives

good predictions of the particle motions relative to the mean-water level.



Outline

This thesis is organized in two parts.

Part I contains general background theory on fluid mechanics and shallow-water

waves, and some technical aspects which were not detailed in publications.

Part II contains the scientific results and the contribution consists of the following

six scientific papers:

Paper A M. Bjørnestad and H. Kalisch, Shallow Water Dynamics on Linear

Shear Flows and Plane Beaches, Physics of Fluids 29 (2017), 073602.

Paper B M. Bjørnestad, Run-up of long waves on background shear currents,

Wave Motion 96 (2020), 102551.

Paper C M. Bjørnestad and H. Kalisch, Extreme wave runup on a steep coastal

profile, AIP Advances 10 (2020), 105205.

Paper D M. Bjørnestad, H. Kalisch, M. Abid, C. Kharif and M. Brun, Wave

Breaking in Undular Bores with Shear Flows. Water Waves (2021),

1–18.

Paper E W.Y. Wong, M. Bjørnestad, C. Lin, M.J. Kao, H. Kalisch, P. Guyenne,

V. Roeber, and J.M. Yuan, Internal flow properties in a capillary bore,

Physics of Fluids 31 (2019), 113602.

Paper F M. Bjørnestad, M. Buckley, H. Kalisch, M. Streßer, J. Horstmann, H.G.

Frøysa, O.E. Ige, M. Cysewski and R. Carrasco-Alvarez, Lagrangian

Measurements of Orbital Velocities in the Surf Zone, Geophysical Re-

search Letters, revision submitted (2021).
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Chapter 1

Introduction

General background theory on surface water waves will be introduced. Conservation

laws of mass and momentum will be described, and we will see how different assump-

tions and boundary conditions will lead to the surface wave problem. Considering

linear wave theory, a solution can be found and by that the dispersion relation is ob-

tained. Lastly, brief descriptions of particle paths and surface tension will be given.

In this chapter, we will follow the theory written in [21] and [33].

1.1 Conservation laws

The conservation laws of mass and linear momentum are commonly used in descrip-

tions of fluid dynamics. A brief introduction to these principles will be given here.

Within a material control volume V (t), the law of conservation of mass states that

d

dt

∫

V (t)

ρ dV = 0,

where ρ(x, t) is the fluid density at the position x = [x, y, z] at time t. If we consider

a fixed control volume V , the equation representing conservation of mass is expressed

such that the change of mass inside the volume equals the mass flux crossing the

boundary surface A, that is

d

dt

∫

V

ρ dV = −
∫

A

ρu · n dA,

where n is the outward normal vector to the surface A. The vector u(x, t) denotes the

fluid velocity vector including the components [u1, u2, u3] representing the velocities

in x-, y- and z-directions, respectively. Using the Leibniz rule and applying the Gauss

divergence theorem, the equation can be rewritten as

∫

V

∂ρ

∂t
+∇ · (ρu) dV = 0,
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and as the integrand must vanish at every point (x, t) since the volume boundaries

can be chosen arbitrary, this equation requires that

∂ρ

∂t
+∇ · (ρu) = 0.

With the relation ∇ · (ρu) = ρ∇ · u + u · ∇ρ and the operator D
Dt = ∂

∂t + u · ∇, the

equation can be written as
1

ρ

Dρ

Dt
+∇ · u = 0.

By assuming that the density remains constant, for an incompressible fluid the ma-

terial derivative of the density will be zero and the equation becomes

∇ · u = 0. (1.1)

This equation is called the equation of continuity.

The law of conservation of momentum is based on Newton’s second law and

states that the rate of change of the momentum in a control volume V equals the

sum of the external forces acting on the volume. The momentum equation in integral

form is written as
∫

V

∂

∂t
(ρu) dV +

∫

A

ρu(u · n) dA =

∫

V

ρg dV +

∫

A

F dA.

The terms on the left-hand side represents the rate of change of momentum inside

V and the flux of momentum across the material surface A. The external forces are

divided into a body force g per unit mass and a surface force F per unit area acting

on the volume boundary. The vector F is given by F = ni · σij , where σij is the

stress tensor. This tensor is conveniently divided into a normal stress −pδij , where

p is the pressure in the fluid and δij is the identity matrix, and the shear stress τij .

Applying the Gauss theorem, the momentum balance becomes
∫

V

∂

∂t
(ρu) +∇ · (ρuu) dV =

∫

V

ρg +∇ · (−pδij + τij) dV.

The stress tensor τij for a Newtonian fluid is a linear function of ∂ui

∂xj
, so τij = 2µdij

when dij =
(
∂uj

∂xi
+ ∂ui

∂xj

)
, see [21] for more details. Note that

∂

∂t
(ρu) +∇ · (ρuu) = ρ

∂u

∂t
+ u

[
∂ρ

∂t
+∇ · (ρu)

]
+ ρu · ∇u = ρ

Du

Dt
,

and since the control volume can be chosen arbitrary, the integrand must be zero

for every point (x, t), that is

ρ
Du

Dt
= ρg−∇p+ µ∇2u. (1.2)

In the above equation the shear stress has been rewritten to the net viscous force as

µ∇2u where µ is a coefficient given from the thermodynamic state. The equation is

named Navier-Stokes equation for an incompressible Newtonian fluid.
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Recall that Du
Dt = ∂u

∂t +u ·∇u is called the total derivative or material derivative,

or sometimes called the Lagrangian acceleration. The latter label is due to the second

term called convective (or advective) and is the rate of change of u that occurs as

the fluid particles move from one position (x, t) to another, while the first term is a

local rate of change of u at the position x.

1.2 Potential flow and boundary conditions

Let us consider surface gravity waves propagating at an air-water interface where

the gravity force is the main restoring force. The gravitational field is assumed to be

constant and considered to be the only body force acting on the fluid volume. The

gravity force is conservative and can be expressed in terms of a potential function

as g = ∇Φ. With positive z-axis pointing vertically upwards, Φ can be written as

−gz where g is the acceleration of gravity. By the assumption of an incompressible

and inviscid flow, the conservation of mass and linear momentum can be expressed

as (Euler eqs.)

∇ · u = 0, (1.3)

∂u

∂t
+ (u · ∇) u = −1

ρ
∇p− gk, (1.4)

where k is the unit vector in the z-direction.

If the flow is irrotational, that is curl u = 0, the flow velocity vector can be

defined as a potential vector as u = ∇φ, and equation (1.3) turns into the Laplac’s

equation ∆φ = 0. Following the theory in [Stoker, Whitham], integration of eq.(1.4)

with respect to x, leads us to Bernoulli’s law:

φt +
1

2
(∇φ)2 +

p− p0

ρ
+ gz = C(t), (1.5)

where C(t) is an integration constant that is not depending on x and p0 is an

arbitrary constant different from C(t). Without any essential loss of generality, C(t)

may be included in a new potential function and in that way ignored.

Let us define the air-water interface by f(x, y, z, t) = 0 and the free surface to be

z = η(x, y, t), where η(x, y, t) denotes the vertical elevation of the free surface. By

assuming that the fluid can neither cross or leave the interface, a surface boundary

condition can be stated as (n · u)z=η = n ·Uinterface, where n is the surface normal

and Uinterface is the velocity of the interface itself which is assumed to be Uinterface =

ηtk. A second boundary condition at the free surface can be obtained by considering

the interface to have no mass, which means that the force in the fluids just above

and underneath the surface must be equal. This means that the pressure should be

the same on the two sides of the boundary. Note that in the present case the surface

tension is neglected. The motion of the air will change the pressure, but the changes

are small enough to be neglected and it is therefore reasonable to let the constant p0

to be the atmospheric pressure. This boundary condition is known as the dynamic
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condition. The third boundary condition is located at the bottom which is defined as

a solid fixed boundary. The undisturbed water-surface is at z = 0 and the distance

to the sea bed is defined as h(x, y). No fluid can cross the boundary, and this give

us the last condition as n · u = 0. The three boundary conditions are then given as

ηt + φxηx + φyηy = φz at z = η(x, y, t), (1.6)

φt +
1

2
(φ2
x + φ2

y + φ2
z) + gη = 0 at z = η(x, y, t), (1.7)

φz + φxhx + φyhy = 0 at z = −h(x, y). (1.8)

1.3 Linear waves over a constant depth

For propagating water waves with the properties of small amplitude, the problem

presented in the last section may be linearized in order to obtain a solution of

the problem and to derive the dispersion relation. The basis for this limitation is

that the wave amplitude a must be much smaller then the wavelength λ, and the

quantities of the velocity components, as well as the surface elevation η(x, y, t) and

their derivatives, should be small.

Let us consider the case where the surface waves propagate in a one-dimensional

x-direction only and that the depth is constant denoted by h0, see Figure 1.1. The

Figure 1.1: Definition sketch the surface elevation η(x, t) and the constant water

depth h0.

Laplace equation and the boundary condition (1.8) are already linear equations if

the bottom is uniform. The two boundary conditions at the free surface can be

linearized by neglecting the non-linear terms to obtain ηt = φz and φt + gη = 0 at

z = η(x, t). Combining these to equations, η(x, t) can be eliminated and the linear

problem becomes

φxx + φzz = 0 at z = −h0 < z < 0, (1.9)

φtt + gφz = 0 at z = 0, (1.10)

φz = 0 at z = −h0, (1.11)
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where the free surface boundary conditions are applied at z = 0 rather then at

z = η(x, t). Even with linear boundary conditions, this problem is not fully defined

without an appropriate initial condition for the surface shape. According to [21],

it is reasonable to choose a sinusoidal wave with the amplitude a and with phase

(kx− ωt), where k is the wave number and ω is the angular frequency. Along with

the boundary condition, this choice of the surface as η = a cos(kx − ωt) leads to a

velocity potential with a separated solution in the form

φ = Z(z) sin(kx− ωt).

Substitution of the expression for φ into the Laplace equation gives us Z ′′−k2Z = 0,

and due to the linearized free surface boundary conditions and (1.11), the coefficient

is given by

Z(z) =
aω

k

cosh k(z + h0)

sinh kh0
.

With the obtained potential function, the velocity components are found by u = ∇φ,

as

u = aω
cosh k(z + h0)

sinh kh0
cos(kx− ωt), (1.12)

w = aω
sinh k(z + h0)

sinh kh0
sin(kx− ωt). (1.13)

The remaining boundary condition (1.10) together with the expressions for η and φ

defines the angular frequency ω as a function of the wave number k as

ω2 = gk tanh(kh0).

This equation is called the dispersion relation. Recall that k = 2π/λ, where λ is the

wavelength, and that the phase speed is defined by c = ω/k. In terms of the phase

speed, the dispersion relation can be rewritten as

c =

√
g

k
tanh(kh0), (1.14)

and this relation shows that the phase speed depends on the wavelength λ = 2π
k i.e.,

the waves are dispersive.

1.4 Particle paths

In general, the water particles move in orbitals when a surface gravity wave passes.

The Lagrangian coordinates are based on the movement of a fluid particle and should

be used in this description. As an initial condition at t = 0, let (x0, z0) be a particle

position when the particle is at rest, and let the functions ξ(t) and ζ(t) be the x- and

z-coordinate, respectively. Each path is identified by the center of the orbit (x0, z0),

and the path is in Lagrangian form as ξ(x0, z0, t) and ζ(x0, z0, t). The position of
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Figure 1.2: Definition sketch of an orbital particle path whose the average position

is (x0, z0) and the ξ(t) and ζ(t) is the time-dependent displacement.

a fluid particle is then given by (x0 + ξ, z0 + ζ), see Figure 1.2, and the velocity

components of the particle is given by the differential equations

∂ξ

∂t
= u(ξ(t), ζ(t), t),

∂ζ

∂t
= w(ξ(t), ζ(t), t).

In the case of linear waves described in the last section, the particle excursion (ξ, ζ) is

small when the amplitude is much smaller then the wavelength, and the Lagrangian

velocity is nearly equal to the fluid velocity at the average position (x0, z0) at that

instant. In this case, the velocity components are approximated by ∂ξ
∂t = u(x0, z0, t)

and ∂ζ
∂t = w(x0, z0, t). Integrating (1.12) and (1.13) in time, the particle position is

ξ = − a cosh k(z0 + h0)

sinh kh0
sin(kx0 − ωt),

ζ = a
sinh k(z0 + h0)

sinh kh0
cos(kx0 − ωt).

Combining these two equations by the elimination of (kx0−ωt), gives us an equation

representing an ellipse, written as

ξ2

[
a cosh k(z0+h0)

sinh kh0

]2 +
ζ2

[
a sinh k(z0+h0)

sinh kh0

]2 = 1.

1.5 Surface tension

So far surface tension has been neglected. In this section,surface tension is considered

as an additional restoring force. Wave where the shape of the free surface and the

fluid velocity field are affected by the capillary effects are called capillary waves.

The surface tension τ is the tensile force per unit length of a line on the interface

and depends on the temperature and the fluids content, see [21]. With a nonzero

surface tension, there will be a pressure difference (or a jump) across the curved
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interface. The pressure difference, at the surface is pz=η − p0 where pz=η denotes

the pressure just inside the interface and p0 is the atmospheric pressure. From the

force balance, it is found that the pressure difference is equal to the curvature times

the surface tension parameter τ . By definition the curvature at one point at some

Figure 1.3: A drawing of the free surface elevation η(x, t) and a circle with radius r

which tangential touching the point (a, b) at the surface to illustrate a definition of

the curvature as 1/r.

continuous curve is 1/r where r is the radius of a circle that is tangential to that

point, see Figure 1.3. Considering a free surface η(x, t), the curvature 1/r is given

by the definition

1

r
=

∂2η
∂x2

[
1 +

(
∂η
∂x

)2
]3/2

,

and the pressure difference can be expressed as

p0 − pz=η = τ
∂2η
∂x2

[
1 +

(
∂η
∂x

)2
]3/2

.

In the case where the slope ∂η/∂x is small, the dispersion relation can be found

by changing the dynamic boundary condition according to the pressure balance in

the above equation. Setting p0 to be zero together with the assumption of linear

waves, the pressure becomes p = −τ∂2η/∂x2 at z = 0. Using a linear version of the

Bernoulli equation (1.5), the dynamic condition turns into

∂φ

∂t
=
τ

ρ

∂2η

∂x2
− gη at z = 0.

Following the same steps as in Section 1.3, the dispersion relation is found to be

ω =

(
k

(
g +

σk2

ρ

)
tanh kh0

)1/2

.
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Chapter 2

Shallow-water waves

In order to use mathematical modelling for predictions and understanding of water

waves properties, we often make assumptions. In the present work, we focus on

shallow-water waves where shallow-water theory and Boussinesq theory are used.

The shallow-water theory results in hyperbolic equations [22] and is suitable for the

studying of non-dispersive long waves. The Boussinesq theory is a better approach

when the waves are a bit shorter and the dispersion effects are more dominant, see

[38].

In this chapter we initially outline the shallow water theory where the shallow-

water equations are derived from the Benney equations. Using the control volume

approach, the shallow-water equations with the inclusion of non-uniform bathymetry

will be derived, and a description of how Carrier and Greenspan [19] manage to solve

these equations will be given. The inclusion of background shear flows over a flat

bed and a sloping beach are described and we will see how the Riemann invariant

can be obtained. The Boussinesq theory and the KdV equation are the focus in the

last section in this chapter.

2.1 Shallow water theory

In the theory of nonlinear long waves in shallow water, following the theory in

[21, 33], the wavelength λ is assumed to be much larger than the undisturbed water

depth h0, see [21]. That is, a wave is regarded as a shallow-water wave if λ
h0
>> 1,

or equivalent written in terms of the wave number k = 2π
λ as kh0 → 0. With this

assumption, the dispersion relation found by applying linear wave theory indicates

that the equation (1.14) reduces to c =
√
gh0 which shows that the waves are non-

dispersive. As explained in [26, 33], combining nonlinear theory with the long wave

assumption, the propagation speed is assumed to be c =
√
g(h0 + η), where η(x, t)

is the free-surface elevation.

In order to derive the shallow-water equations we start with the case of two-

dimensional flows over a constant depth. If no assumptions are made, the Euler
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equations (1.3) and (1.4) can be written as

ux + wz = 0,

Du

Dt
= ut + uux + wuz = −1

ρ
px,

Dw

Dt
= wt + uwx + wwz = −1

ρ
pz − g,

where the velocity components are u(x, z, t) and w(x, z, t), the pressure is denoted

p(x, z, t) and g is the constant of gravity. The shallow-water approximation entails

the assumption that the vertical acceleration is small compared to the horizontal

acceleration. Thus, the material derivative of w can be neglected and the vertical

component of the momentum balance becomes

− 1

ρ
pz − g = 0.

By integrating from z to η with respect to z implies the hydrostatic law

p− p0 = ρg(η − z), (2.1)

which agrees with the dynamic boundary condition at the free surface. Excluding

the pressure from the horizontal momentum equation, gives us the following system

of equations:

ux + wz = 0, (2.2)

ut + uux + wuz + gηx = 0. (2.3)

As explained in [25], the free surface boundary condition can be used to arrive at

the Benney equations from equation (2.2) and (2.3). Recall Figure 1.1 where the

water equilibrium is located at z = 0 and that there is a constant depth h0. The

surface boundary condition stating that (n · u)z=η = n ·Uinterface. With the defined

air-water interface f(x, z, t) = η(x, t) − z, where η(x, t) is the surface elevation,

the boundary condition at z = η(x, t) can be written as w = ηt + ηxu. Using this

boundary condition and integrating equation (2.2) over the water depth, that is from

−h0 to η(x, t) with respect to z, the first Benney equation is obtained as

ηt +
∂

∂x

∫ η

−h0

u dz = 0.

The second Benney equation is the same as equation (2.3), and the third is obtained

by a combination of the integration
∫ z
−h0

ux + wz dz = 0 and the bottom boundary

condition. At z = −h0 the vertical velocity component equals zero and the integral

equation becomes

w = −
∫ z

−h0

ux dz.
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Note that these Benney equations are also called shallow-water equations for shear

flows since the velocity components are depending on both x and z. By assuming

that the horizontal velocity is independent of z, the Benney equations are reduced

to the classical shallow-water equations

ηt + [u(η + h0)]x =0,

ut + uux + gηx =0.

2.2 Influence of bathymetry

The shallow-water equations on non-uniform bathymetry will be derived by using the

control volume approach directly. This derivation is based on the detailed description

in [10]. Consider long waves propagating towards the beach only in the x-direction.

The sloping beach is given by b(x) and the total water depth is H(x, t) = η(x, t) +

h(x), where η(x, t) is the surface elevation and h(x) = −b(x) is the undisturbed

water depth where the x-axis is located at the undisturbed level, see Figure 2.1. The

Figure 2.1: A sketch for illustration of the surface elevation η(x, t) on the sloping

beach denoted b(x) when b(x) = −αx, where z = 0 at the undisturbed level and

h(x) is the undisturbed water depth.

flow is considered to be irrotational, inviscid, homogeneous and incompressible, and

the flow velocity in the x-direction is u = u(x, t). The control volume is given by

constant width
∫
dy = B, height from −h(x) to η(x, t) and the interval between x1

and x2. Similar to the previous chapter, the conservation of mass written in integral

form is

d

dt

∫ x2

x1

∫ η

−h
ρB dzdx+

[∫ η

−h
ρu(x, t)B dz

]x2

x1

= 0,

where ρ denotes the constant density. As before, since the boundaries x1 and x2 are

arbitrary, and the integrand must vanish at every point (x, z, t), the above equation

turns into

ηt + [u(η + h)]x = 0. (2.4)
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In integral form, the conservation law of linear momentum can be written as

d

dt

∫ x2

x1

∫ η

−h
ρuB dxdz +

[∫ η

−h
ρu2B dz

]x2

x1

+

[∫ η

−h
ρg(η − z)B dz

]x2

x1

= −
∫ x2

x1

bxρg(η + h)B dx,

where the first two terms are the change of momentum with respect to time and the

flux of momentum through the interval. The third term represents the pressure force

where the pressure is assumed to be hydrostatic and the term on the right-hand side

is the bottom force. With an inclined bottom profile, there will be a pressure from

the seabed into the flow in the negative x-direction which opposes the flow. Again,

since the interval between x1 and x2 is arbitrary, the momentum balance equation

can be written in differential form as

(uH)t + (u2H)x + ( 1
2gH

2)x = −bxgH.

Rewriting the above equation using equation (2.4) gives us the second shallow-water

equation:

ut + uux + gηx = 0. (2.5)

2.3 The method of Carrier and Greenspan

Carrier and Greenspan (1958), obtained explicit solutions to the non-linear shallow-

water equations on a uniform sloping beach. In this section, a brief description will

be given of their methodology [19] of how to reduce the two non-linear equations to

one linear equation which can be solved exactly. The sloping beach will from now

on be defined as b(x) = αx. The balance equations of mass and momentum found

in the last section are

ηt + [u(η + h)]x = 0,

ut + uux + gηx = 0,

and we will see how these are transformed into a linear equation. Initially, the non-

linear shallow-water equations are converted into non-dimensional equations by sub-

stituting the non-dimensional variables u∗ = u
u0

, η∗ = η
αl0

, h∗ = h
αl0

, x∗ = x
l0

and

t∗ = t
T , where T =

√
l0/αg, u0 =

√
gl0α and the l0 is a characteristic length. By

this scaling, the equations become

u∗t∗ + u∗u∗x∗ + η∗x∗ = 0, (2.6)

η∗t∗ + [u∗(η∗ − x∗)]x∗ = 0. (2.7)

The first step in the Carrier and Greenspan methodology is the important step to

rewrite these equations in characteristic form. In order to do that, it is convenient
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to use the expression to the phase speed c =
√
g(η + h) which was found in the

combination of non-linear theory and the shallow-water approximation. The phase

speed is assumed to be c 6= 0 and the non-dimensional variable is given by c∗ = c/u0.

The equations can now be written in terms of u(x, t) and c(x, t) as

ut + uux + 2ccx + 1 = 0,

2ct + cux + 2ucx = 0,

where the stars for simplicity have been disregarded and will continue to be from

now on. This substitution is a good choice since one c was eliminated from the latter

equation. With this system of equations, the characteristics form can be obtained

by adding and subtracting the two equations, resulting in

{
∂

∂t
+ (u+ c)

∂

∂x

}
(u+ 2c+ t) = 0, (2.8)

{
∂

∂t
+ (u− c) ∂

∂x

}
(u− 2c+ t) = 0. (2.9)

The above equations can be seen in the view of the method of characteristic, see for

example [1, 26, 32], and can be expressed as

{
u+ 2c+ t = constant along curves C+ : dx

dt = u+ c

u− 2c+ t = constant along curves C− : dx
dt = u− c.

To make sense of this, let us consider a curve C+ and that this curve satisfies
dx
dt = u+c in the (x, t)-plane. The material derivative of the function u+2c+ t along

this curve is

D

Dt
(u+ 2c+ t) =

∂

∂t
(u+ 2c+ t) + (u+ c)

∂

∂x
(u+ 2c+ t),

and by consulting eq.(2.8), we see that D
Dt (u+ 2c+ t) = 0. This function u+ 2c+ t

is called Riemann invariant and must remain constant at every point along the

characteristic curve C+ which satisfies the characteristics speed dx
dt = u+c. Equation

(2.9) have the same properties. There will be a set of characteristic curves where C+

and C− are distinct since c 6= 0. The Riemann invariants can be chosen to be equal

any arbitrary function as long as it is constant along the characteristic curves, so

α = u+ 2c+ t,

−β = u− 2c+ t,

where α and β are named characteristics variables.

In order to reduce the non-linear equations (2.8) and (2.9) to a linear system of

equations, a convenient tool is the hodograph transformation, which is to invert the

roles of the independent variables with the dependent variables. For a two-by-two

systems of non-linear equation written in the form ut+ f(u)x = 0, where u = [η, u]T
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and with a Jacobian matrix only depending on u, the system is reducible, and a

hodograph transformation will resolve it to a linear system of equations. However,

in the case presented here, reviewing equation (2.6) and (2.7), the Jacobian matrix is

depending on both u and x. Therefore, an explicit hodograph transformation will not

reduce the system. As an alternative, Carrier and Greenspan did the transformation

using the characteristics variables as the dependent variables instead of η(x, t) and

c(x, t). That is to transform α = α(x, t) and β = β(x, t) to x = x(α, β) and t =

t(α, β), and the Jacobian ∂(x,t)
∂(α,β) should be nonzero. Applying this proper hodograph

transformation on our system of equation, leads to

xβ − (u+ c)tβ = 0,

xα − (u− c)tα = 0.

By rewriting them in terms of the characteristic variables, we can see that the

equations still are non-linear in t. An addition step is required in order to obtain

linearity. In order to do a change of variables, we define new independent variables

as

α− β = λ,

α+ β = σ,

and with some calculations, the system of equations become

xσ − utσ + ctλ = 0, (2.10)

xλ + ctσ − utλ = 0. (2.11)

Using the relations u + t = λ
2 and c = σ

4 , reveals that the equations are non-linear

because of the terms utσ and utλ. However, by assuming that x(σ, λ) and t(σ, λ) are

smooth functions, which means that xσλ = xλσ and tσλ = tλσ, and by differentiating

the equation (2.10) and (2.11), the obtained equation is

uλtσ − uσtλ − cλtλ + cσtσ = c(tλλ − tσσ),

where x has been eliminated. Once again, using the relations u+ t = λ
2 and c = σ

4 ,

the equation is written in linear form as

σ (tλλ − tσσ)− 3tσ = 0.

This is a linear second-order differential equation, and it can be solved for t(σ, λ)

by the method of separation of variables. However, it would not be easy to find a

solution of x(σ, λ) since only the differentiated functions of x are appearing in the

equations (2.10) and (2.11). Therefore, in order to deal with this difficultly, rewriting

the equation in terms of u(σ, λ) as

σ(uσσ − uλλ) + 3uσ = 0,
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for then to introduce a potential function

u(σ, λ) =
1

σ
φσ(σ, λ),

gives us the equation

(σφσ)σ − σφλλ = 0.

The solution of φ(σ, λ) can be found be the method of separation, and with this

potential function at hand, integration of equation (2.10) gives us an expression of

x(σ, λ) written as

x =
φλ
4
− σ2

16
− u2

2
.

The remaining variables are then given by

u =
1

σ
φσ, η =

φλ
4
− u2

2
, t =

λ

2
− u.

Various improvements of the method have been provided [4, 5, 23, 29] since the work

done by Carrier and Greenspan in 1958.

2.4 Background shear flows

So far the flow has been assumed to be irrotational. Near shore there might be a

wind blowing towards the coast, underlying currents will be created [37] and there

will be a required return flow [34] which might be in the form of an undertow. This

was just one example of a creation of underlying currents, but currents can occur in

numerous ways and such shear currents have an influence on the wave properties.

If the waves are long compared to the water depth, it is reasonable to use a shear

profile that is linear [36] and that the current is unaffected by the wave motion. In

this way, the choice of constant vorticity may give a good description of the influence

on wave dynamics [2, 35] and it simplifies the mathematical problems.

In the previous section we saw how Carrier and Greenspan first found the Rie-

mann invariants and then used these to carry out a hodograph transformation. In

this section we will elaborate on the problem by finding the Riemann invariants

when a background shear flow is present. This is written in Paper A, but in this

section we intend to give a more in depth description. First the case of water waves

propagating over a flat seabed will be considered. A description on how the Rie-

mann invariants can be obtained when a shear flow is present over a flat bed will be

shown in detail. Then the case where the waves propagating towards a sloping beach

over a shear current is presented, and we will see how the Riemann invariants are

obtained with the advantage of the flat seabed scenario. Lastly, brief explanation on

how the analogy to the gas dynamics equations can be used to obtain the Riemann

invariants when both shear flow and sloping beach are included in the shallow-water

equations.
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2.4.1 Shear flows over a flat seabed

Consider long waves propagating over a flat seabed where a background linear shear

current is present. The x-axis is placed at the sea bottom and water depth is defined

as H(x, t) = η(x, t)+h0, where η(x, t) is the surface excursion and h0 is the constant

undisturbed depth. The waves are only travelling in the x-direction and the flow is

considered to be homogeneous, inviscid and incompressible. Let us use the expression

−Γ0 + Γ1z, where −Γ0 and Γ1 are constants, to describe a background shear flow

with a constant clockwise vorticity. In the x-direction, the velocity component will

then consist of the depth average flow u(x, t) and the uniform shear flow described

as −Γ0 + Γ1z. Including this new expression of the horizontal velocity component,

the shallow-water equation with the presents of shear flow over a flat bed can be

derived in a similar way as in the last section, providing

Ht +

(
−Γ0H +

Γ1

2
H2 + uH

)

x

= 0,

ut +

(
−Γ0u+

1

2
u2 + gH

)

x

= 0.

Note that in the case of flat bed there is no need to include a bottom force in the

momentum balance. The equations can be written in non-dimensional form in line of

non-dimensional variables u∗ = u
u0

, η∗ = η
h0

, x∗ = x
h0

, t∗ = t
T , Γ∗0 = Γ0

u0
, Γ∗1 = Γ1

1/T ,

where T =
√
h0/g and u0 =

√
gh0, as non-dimensional form

H∗t∗ +
(
− Γ∗0H

∗ +
Γ∗1
2
H∗2 + u∗H∗

)
x∗

= 0, (2.12)

u∗t∗ +
(
− Γ∗0u

∗ +
1

2
u∗2 +H∗

)
x∗

= 0. (2.13)

As in the last section where the Carrier and Greenspan methodology was followed, let

us substitute the phase speed c =
√
gH with the non-dimensional variable c∗ = c

u0

into the equations. By adding and subtracting the two equations, gives

{
∂

∂t
+ (u− Γ0 + c)

∂

∂x

}
(u+ 2c) = −2Γ1c

2cx, (2.14)

{
∂

∂t
+ (u− Γ0 − c)

∂

∂x

}
(u− 2c) = 2Γ1c

2cx. (2.15)

The stars will be omitted from now on. The above equations are not written in

characteristic form since the term 2Γ1c
2cx is not included in the structure on the

left-hand side. With this term incorporated, the Riemann invariants could have been

found directly, but in this case, it is a dead end.

By defining u = [u1, u2]
T

= [H,u]
T

, the equation (2.12) and (2.13) can be

rewritten as

ut + f(u)x = 0, (2.16)
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and with the relation f(u)x = f ′(u)ux, the Jacobian is found to be

f ′(u) =

[−Γ0 + Γ1u1 + u2 u1

1 −Γ0 + u2

]
.

We can see that this non-linear system is reducible since the Jacobian only depends

on u. As stated in [1, 22], the Riemann invariants exists since the system is re-

ducible. In order to find the Riemann invariants, we will follow the theory in [1, 22].

Assume that the Jacobian has eigenvalues ξi, where i = 1, 2, with the correspond-

ing eigenvectors ri which is linear independent, then f ′(u)ri = ξiri. With the matrix

R = [r1, r2] , and the diagonal matrix Λ whose diagonal elements are the two cor-

responding eigenvalues, the right eigenproblem can be written as f ′(u)R = RΛ.

First the eigenvalues of the Jacobian are obtained by the characteristic polynomial

det((f ′(u) − ξI) = 0 and there after the eigenvectors are found by the equation

f ′(u)ri = ξiri. The eigenvalues are

ξ1 = u2 − Γ0 +
1

2
Γ1u1 +

1

2

√
(Γ1u1)2 + 4u1,

ξ2 = u2 − Γ0 +
1

2
Γ1u1 −

1

2

√
(Γ1u1)2 + 4u1,

and the corresponding eigenvectors are

r1 =

[
Γ1u1 + 1

2

√
(Γ1u1)2 + 4u1

2

]
,

r2 =

[
Γ1u1 − 1

2

√
(Γ1u1)2 + 4u1

2

]
.

Note that the system of equations is strictly hyperbolic since the eigenvalues are

real and distinct. Since the determinant of the matrix R is nonzero, the inverse

of R exists [27] and by multiplying with R−1, the left eigenproblem appears as

R−1f ′(u) = ΛR−1. If we define a matrix L such as

R−1 = L =

[
l1
T

l2
T

]
,

the matrix equation becomes Lf ′(u) = ΛL. The inverse matrix of R is

R−1 =
1√

(Γ1u1)2 + 4u1

[
2 −Γ1u1 + 1

2

√
(Γ1u1)2 + 4u1

−2 Γ1u1 + 1
2

√
(Γ1u1)2 + 4u1

]
,

which means that the left eigenvectors are

l1 =

[
2

−Γ1u1 + 1
2

√
(Γ1u1)2 + 4u1

]
,

l2 =

[
2

−Γ1u1 − 1
2

√
(Γ1u1)2 + 4u1

]
.
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The corresponding left eigenproblem written in index notation is lTi f ′(u) = ξil
T
i , and

by multiplying equation (2.16) by lTi , it becomes

lTi ut + ξil
T
i ux = 0. (2.17)

We want to write this equation in characteristic form. For such a purpose, we intro-

duce an auxiliary function µ(u) that satisfies

∇ωi(u) =
[
∂ωi

∂u1
, ∂ωi

∂u2

]
= µi(u)lTi . (2.18)

In this way, equation (2.17) becomes

∇ωi(u)ut + ξi∇ωi(u)ux = 0,

which can be written in characteristic form as

{
∂

∂t
+ ξi

∂

∂x

}
ωi(u) = 0.

Recall that with the equation written in this form, ξi is the characteristic speed and

the function ωi(u) is the Riemann invariant. At this point, the stage is set to find

the two Riemann invariant ω1 and ω2, nevertheless it is not straight forward. Let us

first concentrate on finding the first one. By the equation (2.18), we have that

∂ω1

∂u1
= µ1(u) 2, (2.19)

∂ω1

∂u2
= µ1(u) (−Γ1u1 +

1

2

√
(Γ1u1)2 + 4u1). (2.20)

The problem here is that we do not know what µ1(u) is nor the derivatives of ω1. In

order to handle this difficulty, we assume that the second order partial derivatives

of ωi(u) exist and are continuous functions for every u1, u2 ∈ R, such that

∂2ωi
∂u1∂u2

=
∂2ωi
∂u2∂u1

. (2.21)

The auxiliary function µ1(u) must satisfy this relation, and with some consideration

we choose it to be

µ1(u) = Γ1 +
1

u1

√
(Γ1u1)2 + 4u1.

With this particular function, equation (2.19) and (2.20) can be written as

∂ω1

∂u1
= 2(Γ1 +

1

u1

√
(Γ1u1)2 + 4u1),

∂ω1

∂u2
= 4,
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and we can see that the required relation in equation (2.21) is fulfilled. Integrating

these two equations, we obtain

ω1 = 2Γ1u1 + 2
√

(Γ1u1)2 + 4u1 +
8

Γ1
sinh−1

(
Γ1
√
u1

2

)
+K(u2)

ω1 = 4u2 +K(u1),

where K(u2) and K(u1) are the constants of integration, and from this we can see

that the first Riemann invariant can be as following

ω1 = u2 − Γ0 +
1

2
Γ1u1 +

1

2

√
(Γ1u1)2 + 4u1 +

2

Γ1
sinh−1

(
Γ1
√
u1

2

)
.

Here, adjustment as dividing by 4 and subtracting Γ0 have been done to simplify

later work. By choosing µ2(u) as

µ2(u) = Γ1 −
1

u1

√
(Γ1u1)2 + 4u1,

we can proceed in a similar way to find ω2(u), and that gives

ω2 = u2 − Γ0 +
1

2
Γ1u1 −

1

2

√
(Γ1u1)2 + 4u1 −

2

Γ1
sinh−1

(
Γ1
√
u1

2

)
.

To summarize, instead of the pre-characteristic structure in equation (2.14) and

(2.15), we are now able to write the equations in characteristic form as
{
∂

∂t
+ ξ1

∂

∂x

}
ω1 = 0,

{
∂

∂t
+ ξ2

∂

∂x

}
ω2 = 0,

where the characteristic speed are

ξ1 = u− Γ0 +
1

2
Γ1H +

1

2

√
(Γ1H)2 + 4H,

ξ2 = u− Γ0 +
1

2
Γ1H −

1

2

√
(Γ1H)2 + 4H,

and the Riemann invariants are

ω1 = u− Γ0 +
1

2
Γ1H +

1

2

√
(Γ1H)2 + 4H +

2

Γ1
sinh−1

(
Γ1

√
H

2

)
, (2.22)

ω2 = u− Γ0 +
1

2
Γ1H −

1

2

√
(Γ1H)2 + 4H − 2

Γ1
sinh−1

(
Γ1

√
H

2

)
. (2.23)

2.4.2 Shear flows on a sloping beach

Let us consider long waves propagating towards a uniform beach profile just as

described in Section 2.2 and illustrated in Figure 2.1. In addition, a linear background
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shear current is present and is presented as U(x, z) = Γ1

(
h
2 + z

)
with Γ1 as a

constant. The horizontal velocity component is V (x, z, t) = U(x, z) + u(x, t), where

u(x, t) is the average depth flow velocity. We will derive the shallow-water equation

using the control volume approach and the volume width, height and length are the

same as in Section 2.2. The equation of conservation of mass is then

d

dt

∫ x2

x1

H(x, t) dx+

[∫ η(x,t)

−h(x)

V (x, z, t) dz

]x2

x1

= 0,

where H(x, t) = η(x, t) +h(x) is the total depth and h(x) = −αx is the undisturbed

depth. As before, the interval boundaries x1 and x2 can be chosen arbitrary and

therefore the integrand must vanish at every point and the equation becomes

ηt +
(Γ1

2
η (h+ η) + uH

)
x

= 0. (2.24)

The only force that is action on the volume is the hydrostatic pressure force and the

bottom force, so, the momentum balance equation in integral form is

d

dt

∫ x2

x1

∫ η

−h
V dzdx+

[∫ η

−h
V 2 dz

]x2

x1

+

[∫ η

−h
g(η − z) dz

]x2

x1

= −
∫ x2

x1

αg(η + h) dx.

Since the integrand that must vanish pointwise and with some calculations, the

equation reads
(

Γ1

2

(
hη + η2

)
+ uH

)

t

+ Γ2
1

(
h2

4
H +

h

2

(
η2 − h2

)
+

1

3

(
η3 + h3

))

x

+ Γ1

((
hH + η2 − h2

)
u+ u2H +

g

2
H2
)
x

= −αgH.
Before continuing, this equation can be simplified using equation (2.24) to removing

terms. That is, removing the terms given by Γ1

2 h times equation (2.24) and following

it up doing the same with the factors u and Γ1η. This leads to

ut +

(
Γ1

2
h

(
Γ1

4
h− u

)
+
u2

2
+ gη

)

x

= 0

Nondimensionalizing the two equations using the non-dimensional variables u∗ = u
u0

,

η∗ = η
αl0

, x∗ = x
l0

, t∗ = t
T , Γ∗1 = Γ1

1/T , where T =
√
l0/αg, u0 =

√
gl0α and l0 is a

characteristic length, gives

η∗t∗ +
(αΓ∗1

2
η∗ (η∗ − x∗) + u∗(η∗ − x∗)

)
x∗

= 0, (2.25)

u∗t∗ +
(αΓ∗1

2
x∗
(
u∗ +

αΓ∗1
4
x∗
)

+
u∗2

2
+ η∗

)
x∗

= 0. (2.26)
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To simplify the reading, the stars will be omitted in the following. Inserting the

dimensionless phase speed c =
√

(η − x) into the equations prior to adding and

subtracting the two equations, we obtain
{
∂

∂t
+ (u+

αΓ1

2
x+ c)

∂

∂x

}(
u+

αΓ1

2
x+ 2c+ t

)
= −2αΓ1c

2cx, (2.27)

{
∂

∂t
+ (u+

αΓ1

2
x− c) ∂

∂x

}(
u+

αΓ1

2
x− 2c+ t

)
= 2αΓ1c

2cx. (2.28)

Here, we have the same situation as in the flat bed case. The term 2αΓ1c
2cx on

the left-hand side are not included in the structure on the right-hand side, and it

is not easy to see how that could be done. This means that the equations are not

in characteristic form and the Riemann invariants are not found. In the attempt

to do so, we go back to equation (2.25) and (2.26) and rewrite them as the vector

equation ut + f(u, x)x = 0 where u = [η, u]
T

. As have been considered before,

the Jacobian matrix f ′(u, x) is depending on both u and x, which means that the

system of equations is non-reducible. Recall that a hodograph transformation would

not transform the system into a linear system if it was non-reducible. In addition, it

is not clear that the Riemann invariants will exist in this case. On the other hand,

the eigenvalues to Jacobian matrix f ′(u, x) is found to be

ξ1 = u+
αΓ1

2

(
x+ c2

)
+
c

2

√
(αΓ1c)2 + 4,

ξ2 = u+
αΓ1

2

(
x+ c2

)
− c

2

√
(αΓ1c)2 + 4.

Therefore at this point, let us start by studying and comparing the pre-characteristic

form of equations (2.14) and (2.15) in the flat bed case with the equaions (2.27) and

(2.28) in the present case. In addition, with the similarities of the known eigenvalues

in both cases, the Riemann invariants found in the flat bed case are setting the

stage to do a qualified guess on how the Riemann invariants could be defined in the

present case. We choose them to be

ω1 = u+
αΓ1

2

(
x+ c2

)
+

1

2
c
√

(αΓ1c)2 + 4 +
2

αΓ1
sinh−1

(
αΓ1c

2

)
+ t,

ω2 = u+
αΓ1

2

(
x+ c2

)
− 1

2
c
√

(αΓ1c)2 + 4− 2

αΓ1
sinh−1

(
αΓ1c

2

)
+ t.

In order to check if this choice will fit the characteristic form, we start by writing

the left-hand side of {
∂

∂t
+ ξ1

∂

∂x

}
ω1 = 0,

{
∂

∂t
+ ξ2

∂

∂x

}
ω2 = 0.

To see that both equations are equal to zero, we rearrange the equations such that we

can use the equations (2.25) and (2.26) to cancel out every term in the equations. In

this way we know that ω1 and ω2 are Riemann invariants to our system of equations.
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An exact solution to these non-linear equations is obtained in Paper A, and the

shoaling process and the combined effect of α and Γ1 are discussed. To be able to

separate this combined effect obtained in Paper A, we tackled the same scenario with

a different angle. Deriving the Benney equations in the context of constant vorticity,

the equations could be written in the standard form of barotropic gas dynamics. With

this analogy, the difficulty of finding the Riemann invariants could be overcome in

a more general way. With an exact solution obtained, a separate study of the slope

angle and the constant vorticity is presented. Going back to assuming irrotational

flow, in Paper C a exact solution is compared with observations done in the field.

2.5 Boussinesq system and the Korteweg-deVries equa-

tion

In order to derive the KdV equation, we go back to the case of irrotational flow so

that a velocity potential exists which satisfies the Laplace equation

φxx + φzz = 0. (2.29)

where z now measures the vertical distance from the flat bottom and φz = 0 at

z = 0. The following derivation is based on [38]. The velocity potential is expanded

in an asymptotic series as

φ =

∞∑

n=0

zn fn(x, t). (2.30)

We then substitute equation (2.30) into equation (2.29):

∞∑

n=0

zn
∂2fn(x, t)

∂x2
+
∞∑

n=2

n(n− 1)zn−2fn(x, t) = 0. (2.31)

Equation (2.31) is rewritten by factoring out zn and rearranging the summation,

gives us

∞∑

n=0

zn
[∂2fn(x, t)

∂x2
+ (n+ 2)(n+ 1)fn+2(x, t)

]
= 0.

Then we obtain the relation

fn+2 =
−1

(n+ 2)(n+ 1)

∂2fn
∂x2

.

The solution to this relation function is

f2n =
−1

2n(2n− 1)

∂2f2n−2

∂x2

=
−1

2n(2n− 1)

∂2

∂x2

( −1

(2n− 2)(2n− 3)

∂2f2n−4

∂x2

)

=
1

2n(2n− 1)(2n− 2)(2n− 3)

∂4f2n−4

∂x4
= ... =

(−1)n

(2n)!

∂2nf0

∂x2n
,
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where only the even terms are kept due to the boundary conditions at the flat bed.

Then, equation (2.30) appears in the form

φ =
∞∑

n=0

(−1)n
z2n

(2n)!

∂2nf

∂x2n
, (2.32)

where f = f0. We then substitute into the free surface boundary conditions. First,

the variables are normalized in the following way

x′ = lx, z′ = h0z, t′ =
lt

c0
, η′ = aη, φ′ =

glaφ

c0
.

Note that the original variables are primed. By introducing the dimensionless pa-

rameters α = a/h0 and β = h2
0/l

2, the Laplace equation then becomes

β
∂2φ

∂x2
+
∂2φ

∂z2
= 0,

and the boundary conditions are transformed into

φz = 0, z = 0,

ηt + αφxηx −
1

β
φz = 0, Y = 1 + αη,

η + φt +
1

2
αφ2

x +
1

2

α

β
φ2
z = 0, Y = 1 + αη.

Rewriting the expansion for φ in non-dimensional variables gives

φ =
∞∑

n=0

(−1)n
z2n

(2n)!

∂2nf

∂x2n
βn.

This expression is substituted into the first boundary condition and we see that

ηt + α
∂

∂x

( ∞∑

n=0

(−1)n
z2n

(2n)!

∂2nf

∂x2n
βn
)
ηx −

1

β

∂

∂z

( ∞∑

n=0

(−1)n
z2n

(2n)!

∂2nf

∂x2n
βn
)

= ηt + α
( ∞∑

n=0

(−1)n
z2n

(2n)!

∂2n+1f

∂x2n+1
βn
)
ηx −

1

β

( ∞∑

n=1

(−1)n
z2n−1

(2n− 1)!

∂2nf

∂x2n
βn
)

= 0.

That leads to

ηt +
(
(1 +αη)fx

)
x
−
[1
6

(1 +αη)3fxxxx +
1

2
α(1 +αη)2fxxxηx

]
β+O(β2) = 0, (2.33)

and the dynamic boundary condition becomes

η + ft +
1

2
αf2

x −
1

2
(1 + αη)2

[
fxxt + αfxfxxx − αf2

xx

]
β +O(β2) = 0. (2.34)

All terms of O(β) for equation (2.33) and equation (2.34) are kept, but terms of

O(αβ) are omitted. The dynamic boundary condition is differentiated with respect
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to x. We obtain the Boussinesq equations in the form

ηt +
[
(1 + αη)w

]
x

+O(αβ, β2) = 0,

wt + αwwx + ηx −
1

2
βwxxt +O(αβ, β2) = 0,

(2.35)

where w = fx is the first term in the expansion of the horizontal velocity. By just

keeping the lowest order terms of equation (2.35), we obtain

ηt + wx +O(α, β) = 0,

wt + ηx +O(α, β) = 0.

The KdV-equation is uni-directional equal, and we are only interested in the right-

going solutions which satisfies

w = η, ηt + ηx = 0.

A solution of (2.35) to first order in α and β has the form

w = η + αA+ βB +O(α2 + β2),

where A and B are functions of η and various derivatives. Inserting into equation

(2.35) yields

ηt + ηx + α
[
Ax + 2ηηx

]
+ β

[
Bx −

1

6
ηxxx

]
+O(α2 + β2) =0,

ηt + ηx + α
[
At + ηηx

]
+ β

[
Bt −

1

2
ηxxt

]
+O(α2 + β2) =0.

The two equations are consistent only if A = − 1
4η

2 and B = 1
3ηxx. Inserting into

the upper equation gives the Korteweg-deVries equation

ηt + ηx +
3

2
αηηx +

1

6
βηxxx +O(α2 + β2) = 0.

In dimensional form the equation is

ηt + c0ηx +
3

2

c0
h0
ηηx +

1

6
h2

0ηxxx = 0.

Nondimensionalizing in a different way, where h0 is the unit of distance and
√

h0

g is

the unit of time, gives the normalized KdV equation

ηt + ηx +
3

2
ηηx +

1

6
ηxxx = 0.

In Paper E, we consider the incipient of breaking of a travelling undular bore

such as initiated in [9, 17]. A comparison between the laboratory study conducted

by Favre [24] and the KdV equation in the context of shear flows is presented. In

particular, the inclusion of vorticity leads to an improvement in the comparison. The
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derivation of the KdV equation with the inclusion of a linear shear and the exact

solitary wave solution are given in [30]. Assuming irrotational flows, with exact

numerical solutions of the KdV equation, the velocity field can be found as in [3],

and particle path can be computed as shown in [16] This is used in Paper F to make

comparisons between Lagrangian particle path measured in the field and numerical

particle paths estimated by the KdV equation, as well as the velocity in the fluid

column. Numerical Boussinesq theory [28] was also used in Paper D in order to do

a comparison with the features of a collapsing breaker.
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Chapter 3

Velocities in the surf zone

A field campaign was conducted in September 2019 at a beach on the island of Sylt

located north-west in Germany. In this section a more detailed description of the

design and experimental procedure as well as the post processes and data analysis

will be given. The purpose of initiating a field campaign at a beach was to study

orbital velocities of buoyant tracers at the free surface and the flow velocities down

in the water column. The goal was to figure out how the cross-shore mass transport

in the surf zone is related to wave-by-wave variations in mean-water level, set-down

and wave groups [8, 18, 20] We also looked at the influence of the wave height and

incipient wave breaking on mass transport.

3.1 Field campaign

Together with a team from Institute of Coastal Ocean Dynamics at Geesthacht in

Germany (see [12] or Paper F for more details), a field campaign was organized and

completed in September 2019. Several measurements and footage were obtained,

therefore in order to to get an overview of what was done, a brief explanation is as

follows.

When it was low tide at the beach, we mounted an array of 6 vertical poles

down into the sand where the direction of the array was pointing towards the wave

direction of incoming waves. Pole 1 was placed about 80 m away from the shoreline

while pole 6 was placed about 20 m away from shore, see left image in Figure 3.1.

At those poles, pressure gauges were attached close to the seabed. The reason to

measure the pressure in the fluid was to gain data in order to extract the free surface

elevation at a later stage in the process. At pole 2, in addition to the pressure gage,

an Acoustic Doppler Velocimeter (ADV) was mounted to measure the Eulerian flow

velocities in the water column.

The main focus of the field campaign was to be able to track buoyant surface trac-

ers in order to construct 3D orbital paths. In our opinion, oranges were a good choice

of tracers because of their physical properties and they are naturally biodegradable.
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Figure 3.1: Left image: Shows six poles which are planted in the sand and lined up in

the direction of the incoming waves. There is also a person holding a checkerboard as

a calibration target to the stereo calibration. Right image: This image is to illustrate

the ridge behind the beach and the distance from the shoreline. There is a person at

the beach to illustrate the distance to the cameras. In the lower right corner, a part

of the camera lens is displayed pointing in the direction of the field of view which is

approximately 150 m from the camera. The sea conditions shown in the image were

not ideal.

To locate the oranges and track their motion, two cameras were placed at the about

20 m high ridge behind the beach, see right image in Figure 3.1, and with 35 m in

between one another to establish a two-camera stereo imaging system. Such as de-

scribe in [6, 7] where stereo observations of the wave motions were the described,

we primarily used the stereo system to locating the oranges. The pair of cameras

were pointing in the direction of the three most seaward poles and the field of views

(FOVs) were approximately 150 m from the location of the cameras. The two cam-

eras were triggered simultaneously and were acquired at 30 frames/second. In this

way, when the wave field conditions in the surf zone were suitable for our approach,

a swimmer employed oranges within the FOVs, and the stereo system could resolve

their surface motion. In addition to tracing the oranges, the stereo camera system

could also be used as an optical pole wave gauge at each pole in the FOVs.
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To get more information on the field conditions and locations of different mea-

surements, GPS measurements were done of the sloping beach and of almost all

positions of the experimental set-up. A drone was also employed and gave us a val-

ued overview of the beach and surf zone area. Supplementary, before we arrived Sylt,

a buoy had been placed about 1km offshore to provide measurements of significant

wave height, peak period and peak direction. For more details about the names, type

and properties of different apparatuses, see [12] (Paper F).

Figure 3.2: This is a single photo captured by the north camera (Camera 2) placed

to the right on top of the ridge behind the beach. The five outermost poles can be

seen together with three floating oranges. Two of the oranges are located to the left

of pole 2, while one orange is located on top of the wave between pole 1 and pole 2.

3.2 Orbital orange paths

With footage of oranges floating around at the wavy water surface 150 m from the

cameras, see Figure 3.2 and Figure 3.3, the process to obtain cross-shore orbital

paths will be described in this section. It is a detailed and time-consuming process,
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Figure 3.3: To get a better view of the three oranges in Figure 3.2 a zoomed in

version is shown here. Also pole 2 is displayed and the attached pattern is visible.

therefore the focus here is to give a short explanation to every step in the process.

The first step is to calibrate the stereo imaging system. While the cameras were

positioned and mounted as during the recording of tracers, images of a checkerboard

pattern as a calibration target were captured. At low tide, a checkerboard was carried

around in different angels covering both FOVs simultaneously, see Figure 3.4. A

selected sub-sample from this footage were then used as an input to the MATLAB

toolbox named Stereo Camera Calibrator [31]. With an appropriate collection of

frames, the toolbox provides a calculation of the intrinsic and extrinsic parameters

to both cameras. Along with the extrinsic parameters, a 3D world-coordinate system

is defined to have the origin at Camera 1 (the camera to the south) with the x-axis

pointing towards Camera 2 (the camera to the north).

On the left side in Figure 3.4, there is a column with some of the pair of frames

used in the calibration. Adding or removing different frames with a variation of an-

gles, focus and positions of the checkerboard could either improve or weaken the

calibration results. Therefore, to obtain the best result possible, after new images

were added or removed, the calibration result was examined. As an initial consider-

ation of the calibration results, as seen to the left in Figure 3.5, due to the extrinsic

parameters one could inspect the relative positions of the checkerboard locations
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Figure 3.4: A pair of frames taken at the same time stamp by the south camera

(Camera 1) and the north camera (Camera 2). The checkerboard had to be carried

around covering the frames while it at the same time stayed in both FOVs. To the

left, a column of image pair used in the calibration is shown. The green color shows

detected points as a part of the calibration procedure.

Figure 3.5: Left panel: A visualization of the positions of the two cameras and all

the checkerboard locations. Right panel: A bar graph shows the mean reprojection

error per image pair, and the dashed horizontal line is the overall mean error. Note,

only a sub-sample of 30 image pair are displayed.

and the two cameras to see if it matches the expectations. The right panel in Figure

3.5 shows the reprojection errors in pixels for each image pair and an overall mean

error. The reprojection error is the distance between a detected point of a corner

at the checkerboard (see the green pattern in Figure 3.4) and a recalculation of the
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same corner by the stereo calibration application. In this way, high-error image pairs

can be identified and removed, and then the calibration process should be restarted.

If the first indications seem sufficient, measured GPS-positions were used to com-

pare matching distances such as between two poles or between the two mounted

cameras. Also, in the vertical direction, a known pattern at each pole was a valued

tool to check the calibration. After it turned out that also these indications were

good, a more thorough validation was necessary. At pole 1, two time series were es-

timated in the same time window by using one of the cameras as an optical wave

gauge (pole graduations) and by using the stereo imaging system. The root mean

squared (RMS) difference of the obtained time series was calculated to validate the

calibration results and was found to be less than 0.015 m.

The next step is to locate and track several surface tracers. We chose smooth

non-breaking waves where the orange was visible most of the time. That is, we tried

to avoid waves were the orange got non-visible because of shadows, foam or it went

behind the wave crest. To get the 3D world coordinate of the position to an orange

tracer, it is important that the orange is visible in both camera views at the same time

stamp. In Figure 3.6, an orange is dropped between pole 1 and pole 2 and is visible in

both field of views. With a frame rate of 30 frames per second, the pixel positions of

the oranges were found and registered manually for each camera. After the tracer had

been followed, the pixel positions together with the calibration parameters were used

as an input to a triangulation function in MATLAB to calculate the corresponding

3D world coordinates. The specific MATLAB script to display images and how to

register pixel position from the image were provided by Dr. Marc Buckley, and the

triangulation function is provided by MATLAB, while the rest of the methods and

calculations had to be created during the process.

Figure 3.6: In a pair of frames from the same time stamp, one can see a swimmer

who has dropped an orange in the wave field in between pole 1 and pole 2.

At this point, a typical tracer particle path would be presented as in Figure 3.7.

In order to find the cross-shore mass transport, this coordinate system is impractical
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due to the independence of the reality at the beach. As an initial step to create a

new and more appropriate coordinate system, consulting images provided by the

drone together with the peak direction data recorded by the offshore buoy, gave

us a good basis for assuming that the direction of the incoming travelling waves is

parallel to the line of poles. Which means that, we assume that the wave crests are

perpendicular to the poles and that this will not have a large impact considering

the long-shore drift. Of course, the wave direction as well as the long-shore drift

varies from wave to wave, but the variations were small. In fact, the poles were

installed with an angle of 281◦, while the peak direction measured by the buoy was

approximately 284◦.

Figure 3.7: An orange path is plotted in the 3D world coordinate system defined

by the calibration toolbox. The path is in different colors in order to see the or-

anges displacement. The initial position represents dark blue and the final position

represents dark red.

Moreover, how to create a horizontal axis out in the field, or similar, how to create

a vertical axis? Conveniently, at pole 2 and pole 3 there were brackets attached with

measured GPS-positions. To find a 3D point in world coordinates, one needs to find

the same location in both FOVs. For example, the 3D point a which is located at

the bracket at pole 3, see the illustrative drawing in Figure 3.8, can be obtained by

finding the pixel positions in both camera FOVs and then being triangulated into

one 3D point in the world coordinate system defined by the calibration. Reviewing

the GPS-measurements at the brackets located at a and d, the bracket at pole 2 is

vertically 15 cm higher up than the bracket at pole 3. Therefore, in terms of finding a

horizontal vector between a and b, the pattern at pole 2 were used to approximately

find the pixel positions below the bracket at point d. The location of point b was

checked and approved by confirming the distances between a, b and d. In this way

the horizontal vector
−→
ab was created and the basis for the new coordinate system was

set. With the estimated 3D world points at a, b, c and d, the corresponding vectors

leads us to the necessary vertical vector −→cs. This vertical vector can by found by the
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Figure 3.8: Illustrative drawing of pole 2 and pole 3 standing at the sloping beach.

The square boxes indicate the brackets, and the solid blue lines shows the horizontal

and vertical directions. Pole 2 is excessively skewed to visualize the difference between

the pole and the vertical direction found between point c and s. Following the green

line, a red cross is located where the new origin will take place approximately at the

bottom at pole 2.

relation
−→cs = k

−→
ab −−→ac, (3.1)

where k denotes a constant. As the two vectors −→cs and
−→
ab must be orthogonal and

satisfy the criteria
−→cs · −→ab = 0,

an expression of k can be calculated and substituted into equation (3.1). The last

axis is obtained by taking the cross product between the horizontal and vertical

vector. The three orthogonal vectors are then normalized and rearranged so that

the origin is placed at the bottom of pole 2, the x-axis is pointing along the poles

towards the beach, the y-axis is pointing in the long-shore direction and the z-axis

is pointing vertically upwards. In order to see the cross-shore mass transport, the

surface tracer path is projected onto the xz-plane. For illustrative purposes of the

new coordinate system, see Figure 3.9, which shows an original orange path and the

projected orange path.

Finally, each projected position of the tracer describe by the coordinate system

given by the calibration toolbox are transformed into the new coordinates described

above. Let P
S←B

be the change-of-coordinates matrix consisting of the normalized

and orthogonal vectors defined at the bottom of pole 2. Let [x]S denote a position

vector x described by the coordinate system given by the calibration and let [x]B
be the corresponding position described in the new coordinates, then, according to
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Figure 3.9: This is a plot in the 3D world coordinate system defined by the calibration

toolbox. The black squares indicate brackets, and the turquoise stars indicate other

points located by the stereo imaging system. The original orange path is shown in

red and the projected path is shown in yellow. The blue dashed curve shows the

direction of the line of poles through one point at each pole. The direction of the

horizontal vector found between pole 2 and 3 is plotted with a green dashed curve.

The pink cross indicates where the new origin is placed at the seabed at pole 2, and

the black solid lines demonstrate the three orthogonal basis corresponding to the

new coordinate system.

[27],

[x]S = P
S←B

[x]B

or, equally

P
B←S

[x]S = [x]B

gives us each tracer positions described by the new coordinate system. In Figure

3.10, an orange path is projected onto the xz-plane in the new coordinate system.

3.3 Data analysis

Measurements from the pressure gauges and the ADV were obtained during the field

campaign, and several tracer paths were found and estimated in the post-process.

The recorded pressure signal was transformed into the free-surface elevation (see

more details in [S]), and since it had been recorded over a period of 10 minutes,

an average free-surface could be calculated. The ADV measurement provided the

Eulerian velocity in the water column in approximately the same directions as the
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Figure 3.10: Projected orange path plotted in the coordinate system given by the

origin placed at the bottom of pole 2, x-axis pointing shoreward along the poles, y-

axis pointing in the long-shore direction and the z-axis pointing vertically upwards.

Note that the same orbital orange path is plotted in Figure 3.7 and in Figure 3.9

.

axis in our new coordinate system. With this data available, a time series of the

flow velocity in the x-direction could therefore be analyzed. However, in this section,

a more detailed description of the analysis of tracer paths, also called Lagrangian

trajectories will be given, and we will see that the time series of the free-surface

elevation and the Eulerian velocity can be evaluated in a similar way.

Before initiating orange tracking by hand, the wave field should satisfy some

criteria. By studying the footage, we looked for a period of time where the waves

were non-steep and long-crested, with long wavelengths and with almost no spilling

or breaking waves present. In addition, at least one orange had to be in both FOVs

at the same time stamps. A wave was classified as non-breaking if there was no sign

of spilling nor plunging before the propagating wave reached pole 3. To demonstrate,

let us concentrate on a one minute and 14 seconds long orange tracking period where

an orange was located near the array of poles in between pole 1 and pole 3. The

orange is pinpointed by hand in both FOVs followed up by a triangulation, cleaning

of outliers, projected and transformed into the new coordinate system. Figure 3.11

shows Lagrangian trajectories found by tracking one single orange over this period.

Here every wave is examined and registered if breaking or spilling is occurring or not.

As can be seen in the figure, there are several gaps because sometimes the tracer is

not visible in both cameras. This is mainly because the orange is hidden behind the

waves if the wave height is too high. Overall, the orbital paths give a quite messy

impression when several are plotted in one figure. Therefore, an idea to look at it

differently could be to plot the tracer elevation as a time series. This is done in

Figure 3.12 where the green circles denotes every orange position plotted in Figure

3.11. Note that normally a time series is constructed by data where the recording
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position is fixed over time, while here the orange moves around spatially. With

Figure 3.11: Lagrangian trajectories found by tracking one orange over a one minute

and 14 second period. The green circles represent projected locations of the orange

and shows the cross-shore orbital paths.

Figure 3.12: The tracer elevation is plotted over the time period in order to get

a better view of the orange paths and the wave field. The green circles represents

the same tracer positions as in Figure 3.11, respectively. The black solid curve is an

interpolation of the obtained positions.

the interpolated black solid curve, it is easier to see the tracer elevation, and since

the orange is floating at the surface, the black curve is also indicating the surface

elevation where the orange is located.

Nevertheless, it is not clear how to identify each orbital path corresponding to

each wave in order to calculate the cross-shore mass transport and the Lagrangian

velocity. For the purpose of doing that, a zero-crossing analysis is a good option in
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this case. With the average tracer elevation removed, the orbital paths, or equivalent

the wave field, can be segmented into wave-by-wave by using the time stamps where

the elevation crossing zero. A wave could be defined either by up-crossing or down-

crossing, see Figure 3.13 for a down-crossing segmentation of the interpolated curve

plotted in Figure 3.12. The black stars indicates where the curve is zero, and the

orbital trajectories corresponding to the surface waves are described in different

colors.

By this segmentation, the wave period and wave height (distance from trough

to crest) can be found for each wave. As an illustration to make sense of the term

wave-by-wave mean-water level, a black horizontal line is plotted at each wave in

Figure 3.13 as an indication of the value of the mean-water level. For example, the

blue wave to the left has an increased mean-water level (local set-up), while the

blue wave to the right has a decreased mean-water level (local set-down). However,

the wave-by-wave set-up and set-down calculated from a one minute and 14 seconds

tracking period is not sufficient and should be estimated by using the pressure gauge

measurements instead.

Figure 3.13: A down-crossing segmentation of the interpolated curve shown in Figure

3.12. The black stars represents where the curve intercept the axis and the value is

zero. The orbital trajectories corresponding to the water waves are given in different

colors. The horizontal black lines indicate the mean-water level corresponding to a

single wave.

With the interception time stamps given by the black stars in Figure 3.13, a

similar plot showing the cross-shore mass transport can be created, see Figure 3.14.

Note that in Figure 3.13, every interception point is given by a black star, while

conveniently in Figure 3.14 only the initial and final time respective to an orbital

path is denoted by a black star. Here, the particle drift during one wave cycle in the

x-direction can be seen. This also gives us the net cross-shore displacement which

together with the wave period gives us the Lagrangian velocity.

In this way of analysing orbital trajectories, for then to add more paths and
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Figure 3.14: For each segmented orbital path, the particle drifts in the x-direction

are plotted over the same time period. As before the green circles represents the

orange positions, while the black solid curve is an interpolated curve between the

positions. Here the black stars only represent the initial and final time to each wave

cycle.

excluding the breaking waves, the correlation between the (Lagrangian) wave height

and the Lagrangian velocity could be examined. Correlation between the Lagrangian

velocity and the wave-by-wave mean-water level were also calculated. Although here,

the local mean-water level is calculated by doing a zero-crossing segmentation on

the free surface elevation obtained from the pressure data instead. As mentioned

before, the pressure signal was recorded over a longer time period and therefore the

estimation of the free-surface equilibrium state (when the free surface is at rest)

is more precise. Conducting zero-crossing analyses on both time series obtained by

the pressure gauge measurements and ADV measurements recorded at pole 2, gave

us the mean-water level, the wave height and the cross-shore Eulerian flow velocity

in the water column. With this done, a study of the relation between the Eulerian

velocity with both the variation of mean-water level and the wave height could be

done, as well as the impact of incipient wave breaking.
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Long waves in shallow water propagating over a background shear flow towards a sloping beach
are being investigated. The classical shallow-water equations are extended to incorporate both a
background shear flow and a linear beach profile, resulting in a non-reducible hyperbolic system.
Nevertheless, it is shown how several changes of variables based on the hodograph transform may
be used to transform the system into a linear equation which may be solved exactly using the
method of separation of variables. This method can be used to investigate the run-up of a long
wave on a planar beach including the development of the waterline. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4994593]

I. INTRODUCTION

While many classical results in the theory of surface water
waves have been obtained in the context of irrotational flow,
the assumption of zero vorticity is not always justified. Indeed,
it is well known that vorticity may have a strong effect on the
properties of surface waves, and there is now a growing lit-
erature on the effect of vorticity on the properties of surface
waves. In mathematical studies focused on the influence of
vorticity on the dynamics of a free surface, some simplifying
assumptions are usually made. Examples of cases which have
proved to be mathematically tractable include compactly sup-
ported vorticity, such as point vortices or vortex patches,11,17

the interaction of horizontal and vertical vorticity,7 and the
creation of vorticity through singular flow such as a hydraulic
jump.15

One important case which is particularly amenable to both
analytic and numerical methods is the propagation of waves
over a linear shear current. As noted in the classical paper,18

there is a scale separation between long surface waves and
typical shear profiles, which justifies the assumption that the
shear is unaffected by the wave motion to the order of accuracy
afforded by the model, and moreover, the precise profile of the
shear flow may be approximated with a linear shear. Previous
works on this topic include the construction of periodic travel-
ing waves over shear flows in the Euler equations,9 numerical
investigations,20 and the investigation of the pressure profile
in asymptotic models.1,21

In the present work, we consider the case where a back-
ground shear current interacts with a sloping beach. In par-
ticular, suppose the seabed is given by h(x) = −αx, and a
background shear flow U(x, z) is imposed (see Fig. 1). Such
a situation may arise in the case of an onshore wind (blowing
from the ocean and onto the land) which induces a surface
current at and near the surface which is directed towards the
beach.22 Depending on the strength of the wind forcing and
the beach geometry, the resulting return flow may be in the
form of an undertow, and mass conservation requires that the
average ∫ 0

−h U(x, z) dz be equal to zero. To a first approxima-
tion, the situation may be described by the imposed linear

shear flow U(x, z) = Γ1

(
h
2 + z

)
which has the property that

∫ 0
−h U(x, z) dz = 0.

As shown in the Appendix, for long surface waves, small
angles α, and relatively small amplitudes, a set of shallow-
water equations may be derived from first principles. The
system has the form

ηt +
(
Γ1

2
η (η − αx) + u (η − αx)

)

x
= 0, (1)

ut +

(
αΓ1

2
x

(
u +

αΓ1

4
x

)
+

u2

2
+ gη

)

x

= 0, (2)

where η(x, t) describes the deflection of the free surface at
a point x and a time t, and u(x, t) represents the horizon-
tal fluid velocity. The coefficient αΓ1 represents the strength
of the interaction between the sloping seabed and the shear
flow. Note that this system is hyperbolic, but the inclusion of
non-trivial bathymetry makes the system irreducible. Never-
theless, it will be shown in the body of this paper that it is
possible to employ a hodograph transform which aids in the
construction of exact solutions of the system and in particu-
lar allows us to make predictions of the development of the
waterline.

The idea of exchanging the roles of dependent and inde-
pendent variables originated in the theory of gas dynamics10

and has been used in various special cases in hyperbolic equa-
tions, including the shallow-water equations. However, it was
not until the work of Carrier and Greenspan5 that it became
possible to find exact solutions for the shallow-water equations
in the case of non-constant bathymetry. Indeed, the real novelty
of the work of Carrier and Greenspan lay in the fact that they
succeeded in applying the hodograph transform in the case of a
non-uniform environment. In particular, they obtained explicit
solutions to the non-linear shallow-water equations on a linear
beach profile, but without vorticity.

There are a few important variations on the method of
Carrier and Greenspan. In particular, more general initial data
were considered in Ref. 6, and physical properties such as
mass and momentum fluxes related to the possible run-up of a
tsunami were mapped out. Some generalizations of the method
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FIG. 1. Sloping beach given by h(x) = −αx and imposed shear flow U(x, z).

with regards to the shape of the beach profile were made in
Ref. 12, where a convex bottom topography of the type h(x)
= x4/3 was considered. Also, three-dimensional effects were
included in recent work,16 where a general approach was put
forward to study the problem in a bay of arbitrary cross sec-
tion. The work laid down in Ref. 3 makes use of analysis
techniques to estimate the Jacobian function associated with
an arbitrary bottom profile and thus shows that at least in
theory, the restriction to planar or convex beaches is not nec-
essary. One problematic issue with the approach of Carrier
and Greenspan is that it is difficult to treat the boundary-
value problem. For example, if wave and velocity data are
known at a fixed location, it is not straightforward to prescribe
these as boundary data and study the shoaling and run-up
of the resulting shorewards propagating waves. This prob-
lem was investigated in-depth in Ref. 2, where it was shown
how the boundary-value can be solved in the context of planar
beaches.

As we stated above, the main purpose of the current work
is to extend the Carrier-Greenspan approach to the case where
background vorticity can be included in the flow. The need
for such an extension arises from the fact that the propaga-
tion of water waves in coastal areas is often affected by the
influence of currents. A typical situation in which long waves
enter a region of shear flow near a beach is the case of the
leading part of a swell approaching a beach where a back-
ground shear flow has been set up independently by a sea
breeze. The wind causes a shear flow directed towards the
beach, and the return flow leads to an undertow, resulting in
a shear profile such as that shown in Fig. 1. In particular, as
explained in Ref. 18, if the leading waves of the swell are
long compared to the fluid depth, a shear profile with a certain
mean vorticity may be used in place of the exact distribution of
vorticity.

Some recent studies have indicated the importance of a
near-shore shear current from different perspectives. In partic-
ular, in Ref. 22, it was argued that such a current, which can be
induced by an onshore wind, will have a significant effect on
the mean-water level at the beach and may therefore enhance
wave run-up under various conditions.

The plan of the current paper is as follows. In Sec. II, we
consider the case of a shear flow over a flat bed. While the
inclusion of background vorticity into shallow-water models
is known (see Ref. 13, for instance), it is not obvious how to
find closed-form expressions for the Riemann invariants in this
case. In Sec. III, we treat the case of a shear flow over a linear
beach and use intuition gained from the Riemann invariants in

the flat bed case to aid in the construction of the hodograph
transform in the more difficult case of non-constant
bathymetry. Finally, in Sec. IV, we explain how the equa-
tions may be solved exactly. We include a few plots where we
compare cases with different strengths of background vorticity,
and we close with a brief discussion on the effect of back-
ground vorticity on the run-up and mean-water level. Finally,
the equations with both shear flow and an uneven bottom are
derived in the Appendix.

II. SHEAR FLOW OVER A FLAT BED

We first look at the case of a shear flow over a flat bed as
this case will give us important clues on how to proceed in the
more difficult case of a shear flow over a sloping bed. A sketch
of the geometry is shown in Fig. 2. In particular, the total depth
is H(x, t) = η(x, t) + h0, where h0 is the constant undisturbed
depth. The vertical shear current is assumed to be of the form
U(z) = −Γ0 + Γ1z, which yields a background vorticity −Γ1.
Without loss of generality, we may assume that the density is
constant and consider a domain of unit width in the transverse
direction. The shallow-water equations for a flat bed are as
follows:

Ht +
(
− Γ0H +

Γ1

2
H2 + uH

)
x
= 0, (3)

ut +
(
− Γ0u +

1
2

u2 + gH
)

x
= 0. (4)

In order to express the equations in non-dimensional variables,
we introduce the following scaling: u∗ = u

u0
, η∗ = η

h0
, x∗

= x
h0

, t∗ = t
T , Γ∗0 =

Γ0
u0

, Γ∗1 =
Γ1

1/T , where T =
√

h0/g , u0

=
√

gh0 . The equations are then written in non-dimensional
form as

H∗t∗ +
(
− Γ∗0H∗ +

Γ∗1
2

H∗2 + u∗H∗
)

x∗
= 0,

u∗t∗ +
(
− Γ∗0u∗ +

1
2

u∗2 + H∗
)

x∗
= 0.

As is customary in shallow-water theory, the propagating
speed of a wave is taken as c =

√
gH (in non-dimensional vari-

ables c∗ =
√

H∗, where c∗ = c
u0

). Note that for easier reading,
the stars on the non-dimensional variables will be omitted from
now on. Adding and subtracting the two equations above, and
using the speed c as an unknown, the equations can be written
in so-called pre-characteristic form as

{
∂

∂t
+ (u − Γ0 + c)

∂

∂x

}
(u + 2c) = −2Γ1c2cx,

{
∂

∂t
+ (u − Γ0 − c)

∂

∂x

}
(u − 2c) = 2Γ1c2cx.

FIG. 2. Background shear flow for constant depth.
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This form may be useful in some situations connected to
numerical integration of the equations but is included here
mainly as a stepping stone toward a similar set of equations
in the case of the sloping bottom. In the current context, it is
actually more advantageous to put the equations into proper
characteristic form. However, since it is not easy to see how
to eschew the 2Γ1c2cx-terms on the right hand side, we will
use a different approach to put the equations in characteristic
form.

In vector notation, we can write Eqs. (3) and (4) as

ut + f(u)x = 0, (5)

where u = [H, u]T . Further, f(u)x = f ′(u)ux, where f ′(u) is
the Jacobian matrix

f ′(u) =

[−Γ0 + Γ1H + u H
1 −Γ0 + u

]
.

The eigenvalues are

ξ1 = u − Γ0 +
1
2
Γ1H +

1
2

√
(Γ1H)2 + 4H,

ξ2 = u − Γ0 +
1
2
Γ1H − 1

2

√
(Γ1H)2 + 4H.

These eigenvalues are real and distinct, which means that the
system is strictly hyperbolic. Since the Jacobian matrix only
depends on u, and not x or t, the system is reducible, and
Riemann invariants exist according to the standard theory.10

However, finding exact expressions for the Riemann invariants
is in general highly non-trivial.

In order to find the Riemann invariants ω1 and ω2, it will
be convenient to define an eigenproblem Lf ′(u) = L with the
left eigenvectors

l1 =


2

−Γ1H +
√

(Γ1H)2 + 4H

,

l2 =


2

−Γ1H −
√

(Γ1H)2 + 4H

.

Inserting the left eigenproblem in Eq. (5), we can express
Eq. (5) as

lTi ut + ξilTi ux = 0, (6)

where i = 1, 2. If we now introduce the auxiliary function µ(u)
satisfying

∇ωi(u) =
[
∂ωi

∂H
,
∂ωi

∂u

]
= µi(u)lTi , (7)

Eq. (6) can be written as

∇ωi(u)ut + ξi ∇ωi(u)ux = 0,

which is the same as
{
∂

∂t
+ ξi

∂

∂x

}
ωi(u) = 0.

The characteristic form in the latter equation shows that ωi(u)
is constant along the characteristics dx

dt = ξi(u). The challeng-
ing part of this procedure is to find an expression for µi(u). To
be able to proceed further, we start by assuming that µi(u) is

chosen such that the relation ∂2ωi
∂H∂u =

∂2ωi
∂u∂H is satisfied. First,

to calculate µ1(u), Eq. (7) gives us

∂ω1

∂H
= 2µ1(u),

∂ω1

∂u
= µ1(u)

(
− Γ1H +

√
(Γ1H)2 + 4H

)
,

and if we let

µ1(u) = Γ1 +
1
H

√
(Γ1H)2 + 4H,

the assumption will be satisfied. Integration gives us

ω1 = 2Γ1H + 2
√

(Γ1H)2 + 4H +
8
Γ1

sinh
−1 *,

Γ1
√

H
2

+- + K1(u),

ω1 = 4u + K2(H),

where K1(H) and K2(u) are the constants of integration. By
combining these, we obtain the first Riemann invariant

ω1 = u−Γ0 +
1
2
Γ1H +

1
2

√
(Γ1H)2 + 4H +

2
Γ1

sinh
−1 *,

Γ1
√

H
2

+- ,

where we also have divided by 4 and subtracted by Γ0 to
simplify further work.

We can obtain the second Riemann invariant in a similar
way. With the expression for the parameter µ2 given by

µ2(u) = Γ1 − 1
H

√
(Γ1H)2 + 4H ,

we get

ω2 = u−Γ0 +
1
2
Γ1H− 1

2

√
(Γ1H)2 + 4H− 2

Γ1
sinh−1 *,

Γ1
√

H
2

+- .

With these expressions in hand, Eqs. (3) and (4) can then be
rewritten in characteristic form as

{
∂

∂t
+ ξ1

∂

∂x

}
ω1 = 0,

{
∂

∂t
+ ξ2

∂

∂x

}
ω2 = 0.

However, the equations are still nonlinear. Since one purpose of
the present study is to obtain exact representations of solutions
of Eqs. (3) and (4), it will be convenient to perform yet another
transformation to put the equations in linear form.

Switching dependent and independent variables via a
hodograph transform from ω1 = ω1(x, t) and ω2 = ω2(x, t)
to x = x(ω1,ω2) and t = t(ω1,ω2) results in

xω2 − ξ1tω2 = 0, (8)

xω1 − ξ2tω1 = 0. (9)

As long as the Jacobian matrix remains non-singular, linearity
has been achieved and the equations can now be solved. We
will come back to the solution in Sec. IV A.

III. SHEAR FLOW ON A SLOPING BED

We will now consider the geometry in Fig. 1 with the
total depth H(x, t) = η(x, t) + h(x). The vertical shear current
is assumed to be of the form U(x, z) = Γ1

(
h
2 + z

)
with the

vorticity−Γ1. Note that the x-axis is now assumed to be aligned
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with the undisturbed free surface as this normalization is more
convenient in the current setting.

To put Eqs. (1) and (2) into non-dimensional form, we
introduce new variables u∗ = u

u0
, η∗ = η

αl0
, x∗ = x

l0
, t∗

= t
T , Γ∗1 =

Γ1
1/T , where T =

√
l0/αg , u0 =

√
gl0α , and l0 is

a characteristic length. The equations then appear as

η∗t∗ +
(αΓ∗1

2
η∗

(
η∗ − x∗

)
+ u∗(η∗ − x∗)

)
x∗
= 0, (10)

u∗t∗ +
(αΓ∗1

2
x∗

(
u∗ +

αΓ∗1
4

x∗
)

+
u∗2

2
+ η∗

)
x∗
= 0. (11)

As in Sec. II for the sake of readability, the stars will
be disregarded in what follows. In an attempt to write the
equations in characteristic form, one may insert the prop-
agation speed in non-dimensional form c =

√
(η − x) and

then add and subtract them to obtain the pre-characteristic
form
{
∂

∂t
+ (u +

αΓ1

2
x + c)

∂

∂x

}(
u +

αΓ1

2
x + 2c + t

)
= −2αΓ1c2cx,

{
∂

∂t
+ (u +

αΓ1

2
x − c)

∂

∂x

} (
u +

αΓ1

2
x − 2c + t

)
= 2αΓ1c2cx.

To be able to solve these equations, the difficulty lies in finding
the Riemann invariants. We can write Eqs. (10) and (11) as ut

+ f(u, x)x = 0, where u =
[
η, u

]T . The Jacobian matrix f ′(u, x)
has the following eigenvalues:

ξ1 = u +
αΓ1

2

(
x + c2

)
+

c
2

√
(αΓ1c)2 + 4,

ξ2 = u +
αΓ1

2

(
x + c2

)
− c

2

√
(αΓ1c)2 + 4.

Since the Jacobian matrix now depends on x, the system is
not reducible, and it is not clear whether Riemann invari-
ants can be found. In particular, we cannot proceed in the
same way as in Sec. II. However, when carefully com-
bining the pre-characteristic form and the eigenvalues with
the corresponding equations for the flat bed case, a bit of
informed guessing points to defining the Riemann invariants
as

ω1 = u +
αΓ1

2

(
x + c2

)
+

1
2

c
√

(αΓ1c)2 + 4

+
2
αΓ1

sinh−1
(
αΓ1c

2

)
+ t,

ω2 = u +
αΓ1

2

(
x + c2

)
− 1

2
c
√

(αΓ1c)2 + 4

− 2
αΓ1

sinh−1
(
αΓ1c

2

)
+ t.

As it turns out, if these expressions are substituted into
Eqs. (10) and (11), the characteristic form

{
∂

∂t
+ ξ1

∂

∂x

}
ω1 = 0,

{
∂

∂t
+ ξ2

∂

∂x

}
ω2 = 0

appears. These two equations are still nonlinear in t, so we
continue by performing a hodograph transformation, chang-
ing ω1 = ω1(x, t) and ω2 = ω2(x, t) to x = x(ω1,ω2) and t
= t(ω1,ω2), which results in the equations

xω2 − ξ1tω2 = 0,

xω1 − ξ2tω1 = 0.

In contrast to the flat bed case, the equations are still nonlin-
ear at this stage. Therefore, another step is required, and we
introduce new variables ω1 + ω2 = λ and ω1 − ω2 = σ. This
change of variables gives us

xλ − Atλ + Btσ = 0,

xσ − Atσ + Btλ = 0,
(12)

where to simplify we have defined A = u + αΓ1
2

(
x + c2

)
and

B = c
2

√
(αΓ1c)2 + 4. Further, differentiating these equations

and using the identities xσλ = xλσ and tσλ = tλσ leads to

Aλtσ − Aσtλ − Bλtλ + Bσtσ = B (tλλ − tσσ) . (13)

In order to find expressions for the derivatives of A and B with
respect to σ and λ, we start by writing the variables λ and σ
as

λ

2
= u +

αΓ1

2

(
x + c2

)
+ t, (14)

σ

2
=

c
2

√
(αΓ1c)2 + 4 +

2
αΓ1

sinh−1
(
αΓ1c

2

)
. (15)

It is easy to see from Eq. (14) that Aσ = −tσ and Aλ =
1
2 −

tλ. To calculate Bλ and Bσ , we start by differentiating B to
find

Bσ =
(αΓ1c)2 + 2√
(αΓ1c)2 + 4

cσ , Bλ =
(αΓ1c)2 + 2√
(αΓ1c)2 + 4

cλ,

where cσ and cλ are unknown. We can find an expression for
these by differentiating Eq. (15) implicitly with respect to σ
and λ, yielding

1
2
= cσ

√
(αΓ1c)2 + 4, 0 = cλ

√
(αΓ1c)2 + 4. (16)

Since the root cannot be zero, cλ has to be zero. Thus, with
these calculations, Eq. (13) becomes

(
(αΓ1c)2 + 3

(αΓ1c)2 + 4

)
tσ =

c
2

√
(αΓ1c)2 + 4 (tλλ − tσσ) . (17)

Unfortunately, the c is only given implicitly as a function of
σ in Eq. (15). However, notice that in Eq. (15) both terms
are increasing and monotone, so the relation can be inverted.
Since we seek an expression for cσσ , we start by differentiating
Eq. (15) twice and get

0 = cσσ

√
(αΓ1c)2 + 4 +

(αΓ1cσ)2c√
(αΓ1c)2 + 4

.

By inserting cσ from Eq. (16), we obtain the expression

cσσ = − (αΓ1)2c

4((αΓ1c)2 + 4)2
.

With some calculations, Eq. (17) then becomes

ctcc + 3tc = 4c((αΓ1c)2 + 4)tλλ, (18)

which is a linear equation and can now be solved exactly.
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IV. EXACT SOLUTIONS OF THE EQUATIONS
A. Flat bed

One way to solve Eqs. (8) and (9) is to introduce new
variables in the same way as shown above for the case of the
sloping bed. Thus, introducing the variables λ = ω1 + ω2 and
σ = ω1 − ω2, the equations can be written as

xλ − (u − Γ0 + 1
2Γ1H)tλ +

1
2

√
(Γ1H)2 + 4H tσ = 0,

xσ − (u − Γ0 + 1
2Γ1H)tσ +

1
2

√
(Γ1H)2 + 4H tλ = 0.

(19)

Moreover remembering the expressions for ω1 and ω2 from
Sec. II, λ and σ appear as

λ

2
= u − Γ0 +

Γ1

2
H ,

σ

2
=

1
2

√
(Γ1H)2 + 4H +

2
Γ1

sinh−1 *,
Γ1
√

H
2

+- .
(20)

Inverting the relation19 results in the following linear equation
for t(H, λ):

HtHH + 2tH = (Γ2
1H + 4)tλλ. (21)

Before we solve this equation, notice that it is problematic to
calculate x(H, λ) without introducing a “potential” function
for t(H, λ), i.e.,

t =
1

Γ2
1H + 4

φH . (22)

However, if this potential is used, Eq. (19) gives us an
expression for x(H, λ), viz.,

x =
λ

2
t − 1

2
φλ.

Equation (21) can now be written due to Eq. (22) as

H(Γ2
1H + 4)φHH + 4φH =

(
Γ2

1H + 4
)
φλλ.

This equation can be solved using separation of variables, and
the solution has the general form

φ(H, λ) = cos(ωλ)e−iΓ1ωH [−ωH(iΓ1 − 2ω)F1

+ (iΓ1ωH − 1)F2] ,

where

F1 = 1F1

(
2iω + 2Γ1

Γ1
, 3, 2iΓ1ωH

)
,

F2 = 1F1

(
2iω + Γ1

Γ1
, 2, 2iΓ1ωH

)

are given in terms of the generalized hypergeometric function
1F1.14 Finally, the principal unknowns can be expressed in
terms of λ and H as u = λ

2 + Γ0 − Γ1
2 H and η = H − h0.

B. Sloping bed

We now look at the more interesting case of exact solu-
tions in the presence of the inclined bottom profile. To be able
to solve for x(c, λ), we will also here make use of a “poten-
tial” function. Instead of introducing the potential function for
t(c, λ) directly, we rather start by defining

W (c, λ) = u(c, λ) +
αΓ1

2

(
x + c2

)
. (23)

Combining the new function W (c, λ) with Eq. (14), we can
rewrite Eq. (18) and obtain

cWcc + 3Wc = 4c
(
(αΓ1c)2 + 4

)
Wλλ. (24)

If we now define the function φ(c, λ) by

W (c, λ) =
1

c
(
(αΓ1c)2 + 4

) φc(c, λ),

FIG. 3. Free surface evolution with and without vorticity. The parameters are
Rmax = 0.2, αΓ1 = 0.1, and ω = 1. The four plots are shown at time t1 =

π
4 ,

t2 =
5π
12 , t3 =

7π
12 , and t4 =

3π
4 . The nonzero vorticity has the effect of

introducing a slight setdown on the left-hand side.
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FIG. 4. Solution of a wave running up on a sloping beach. The left panel shows a solution with Rmax = 0.1 and αΓ1 = 0.25. The right panel shows a solution
with Rmax = 0.2 and αΓ1 = 0.25. The solutions are plotted at t1 =

π
4 , t2 =

5π
12 , t3 =

7π
12 , and t4 =

3π
4 .

then Eq. (24) becomes

cφcc +
4 − (αΓ1c)2

4 + (αΓ1c)2
φc = 4c

(
(αΓ1c)2 + 4

)
φλλ. (25)

We seek a solution in the form φ(c, λ) = f (c)g(λ), and thus
separating the variables gives two equations of the form

c
(
(αΓ1c)2 + 4

)
f ′′(c) +

(
4 − (αΓ1c)2

)
f ′(c)

+ 4ω2c
(
(αΓ1c)2 + 4

)2
f (c) = 0,

g′′(λ) + ω2g(λ) = 0,

where ω is a constant. The solution φ(c, λ) should be bounded
as c→ 0, and the corresponding solution of Eq. (25) is

φ(c, λ) = Rmax cos(ωλ)e−iαΓ1ωc2 [
−ωc2(iαΓ1 − 2ω)F1

+ (iαΓ1ωc2 − 1)F2

]
,

where F1 and F2 are defined in terms of the generalized
hypergeometric functions 1F1, evaluated with the following
arguments:

F1 = 1F1

(
2iω + 2αΓ1

αΓ1
, 3, 2iαΓ1ωc2

)
,

F2 = 1F1

(
2iω + αΓ1

αΓ1
, 2, 2iαΓ1ωc2

)
.

The constant Rmax can be chosen arbitrarily and denotes
the maximum run-up height on the beach. Using the func-
tion W (c, λ), an expression for t(c, λ) can be obtained from
Eq. (14),

t =
λ

2
−W .

Further, an expression for x(c, λ) can be obtained from
Eq. (12). Inserting t(c, λ) from Eqs. (14) and (23) results in

xc = −WWc − c
(
(αΓ1c)2 + 4

) (
1
2
−Wλ

)
,

and in terms of the function φ, it becomes

x = −W2

2
− c2

8

(
(αΓ1c)2 + 8

)
+ φλ.

The equation for the propagation speed gives us the free surface
elevation as η(c, λ) = c2 + x(c, λ), and an expression for the
velocity component u(c, λ) is found from Eq. (23) to be

u = W − αΓ1

2

(
x + c2

)
.

While these formulae give representations of solutions of
(1) and (2), it is not completely straightforward to understand
these solutions in (x, t)-coordinates. Indeed, in order to plot
these exact solutions in terms of (x, t)-coordinates, a numer-
ical approach is needed. A direct approach has been outlined
for the problem without a shear flow,4 but it is unclear whether
this method will work in the current situation with non-zero
vorticity. Therefore, let us briefly outline the numerical imple-
mentation. First, expressions for φ, W, t, x, η, and u, which are
all functions of (c, λ), are used to fill arrays of numbers as c
and λ run through certain prescribed sets of values. In order to
plot the free surface elevation as η = η(x, t), we use the two
matrices for t(c, λ) and x(c, λ) as independent variables and

FIG. 5. Solution of a wave running up on a sloping beach. The left panel shows a solution with Rmax = 0.25 and αΓ1 = 0.25. The right panel shows a solution
with Rmax = 0.25 and αΓ1 = 0.50. The solution is plotted at t1 =

π
4 , t2 =

5π
12 , t3 =

7π
12 , and t4 =

3π
4 .
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tag the indices corresponding to certain values of x and t (to a
prescribed tolerance). Then, we use these same indices in the
matrix for η in order to find η as a function of x and t. With this
simple scheme, plots of η(x, t) are possible. The visualization
of the horizontal fluid velocity u = u(x, t) can be done in a sim-
ilar way. The solution is single-valued so long as the Jacobian
∂(x,t)
∂(c,λ) is nonzero. Therefore, the constants Rmax, α, Γ1, ω, and
the arrays of (c, λ) are all chosen so that a single-value solution
is obtained.

C. Discussion

The plots shown in Figs. 3–5 indicate how a background
shear flow may affect the solutions of the shallow-water
equations. Some of these effects are analyzed presently. Fig-
ure 3 focuses on the comparison between the solutions found
here with small αΓ1 (solid curves) and solutions found using
the method of Carrier and Greenspan (dashed curves). It can
be seen that the main effect of the background vorticity is
to induce a small setdown on the left-hand side (a minor
downward deflection of the mean-water level). Note also that
the construction laid down here depends on non-zero Γ1, so
that the good agreement with the Carrier-Greenspan solutions
validates our method.

Figure 4 shows two solutions with the same value of αΓ1,
but with different amplitudes. We observe significant ampli-
fication of the wave as it moves up the slope. For example,
comparing the amplitude at location x = �0.8 to the run-up
amplitude reveals a magnification factor of about 2.75 for these
waves in both cases.

Figure 5 focuses on the comparison of different strengths
of vorticity. Here, it can be seen that while the run-up and
run-down on the beach are identical, the amplitude of the
wave on the left-hand side is smaller in the case of larger
vorticity. Note that in these cases (as discussed in Sec. III),
the parameter αΓ1 serves to measure the combined effect of
the strength of the slope and the vorticity since this parame-
ter appears prominently in the non-dimensional version of the
equations.

In order to get more precise information on the influence
of the vorticity on the amplification, we have run several more
cases with varying values of αΓ1 and Rmax. Notice that in the
current analysis, it is the run-up height Rmax which is chosen,
and the offshore wave amplitude Aw is measured. From a prac-
tical point of view, it would be more sensible to measure the
wave amplitude Aw so as to predict the run-up height Rmax,
and Tables I and II serve this purpose.

We note that the amplification factor depends on the back-
ground shear, in the sense that it grows with increasing vor-
ticity. However, it appears that the main influence of the shear
is the introduction of the offshore setdown mentioned above.

TABLE I. Run-up height Rmax as a function of αΓ1 and wave amplitude A4 .
Values for Rmax = 0.1 and Rmax = 0.15.

αΓ1 A4 Rmax αΓ1 A4 Rmax

0.00 0.0403 0.10 0.00 0.0604 0.15
0.25 0.0396 0.10 0.25 0.0597 0.15
0.50 0.0355 0.10 0.50 0.0560 0.15

TABLE II. Run-up height Rmax as a function ofαΓ1 and wave amplitude A4 .
Values for Rmax = 0.2 and Rmax = 0.25.

αΓ1 A4 Rmax αΓ1 A4 Rmax

0.00 0.0806 0.20 0.00 0.1008 0.25
0.25 0.0796 0.20 0.25 0.1000 0.25
0.50 0.0765 0.20 0.50 0.0967 0.25

Again in the current mathematical description, the average
water level at the shore is fixed to be zero so that the current
situation corresponds to a shear-induced increase of the water
level on the beach and in particular near the waterline. This
finding is in line with the prediction of wind setup found, for
example, in Ref. 22.
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APPENDIX: DERIVATION OF THE SHALLOW-WATER
EQUATIONS

For the sake of completeness, the shallow-water equa-
tions with a background shear flow over a sloping beach will
be derived. This derivation complements other already exist-
ing asymptotic models with background shear, such as those
presented in Refs. 1, 8, and 19. For a one dimensional flow, we
consider the velocity component to be V (x, z, t) = U(z) + u(x, t),
where the linear shear current is given by U(x, z) = Γ1

(
h
2 + z

)

with Γ1 being constant. For an incompressible and inviscid
fluid, the equation for conservation of mass for the con-
trol interval delimited by x1 and x2 on the x-axis is written
as

d
dt

∫ x2

x1

H(x, t) dx +

[∫ η(x,t)

−h(x)
V (x, z, t) dz

]x2

x1

= 0,

where H(x, t) = η(x, t) + h(x) is the total depth. Integrating in
z yields

∫ x2

x1

ηt +
(
Γ1

2

(
hη + η2

)
+ uH

)

x
dx = 0.

Since x1 and x2 are arbitrary, the integrand must vanish
identically so that we get the local mass balance equation

ηt +
(
Γ1

2
η (h + η) + uH

)

x
= 0. (A1)

Next, we will consider the momentum balance in the x-
direction. Recall that the only forces acting on the control
volume are the pressure force and that the shallow-water
approximation entails the assumption that the pressure
is hydrostatic. The conservation of momentum is written
as

d
dt

∫ x2

x1

∫ η

−h
V dzdx +

[∫ η

−h
V2 dz

]x2

x1

+

[∫ η

−h
g(η − z) dz

]x2

x1

= −
∫ x2

x1

αg(η + h) dx, (A2)

where the second term on the left is the momentum flux through
the lateral boundaries of the control volume at x1 and x2, and
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the third term on the left is the pressure force on these lateral
boundaries. The term on the rights represents the pressure force
in the negative x-direction due to the inclined bottom profile.
The integral in the second term can be calculated to be

∫ η

−h
V2 dz = Γ2

1

(
h2

4
H +

h
2

(
η2 − h2

)
+

1
3

(
η3 + h3

))

+ Γ1

(
hH + η2 − h2

)
u + u2H.

Again, the integrand must vanish pointwise, so Eq. (A2)
requires that

(
Γ1

2

(
hη + η2

)
+ uH

)

t

+

(
Γ2

1

(
h2

4
H +

h
2

(
η2 − h2

)
+

1
3

(
η3 + h3

))

+ Γ1

(
hH + η2 − h2

)
u + u2H +

g
2

H2
)

x
= −αgH .

This equation can be simplified significantly by combining it
with Eq. (A1). Removing terms of the form [ Γ1

2 h · Eq. (A1)],
[u · Eq. (A1)], and [Γ1η · Eq. (A1)], the equation becomes

utH +
Γ2

1

4
hhxH − Γ1

2
(hxu + hux) H + uuxH = −gηxH .

Dividing through by H(x, t) reveals that this equation is
equivalent to

ut +

(
Γ1

2
h
(
Γ1

4
h − u

)
+

u2

2
+ gη

)

x
= 0.

In particular, in the case of a linear bottom profile, the
momentum equation (2) appears.
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a b s t r a c t

Long waves in shallow water propagating over a background shear current towards
a sloping beach are investigated, and exact solutions are found using a hodograph
transform and separation of variables. Inspired by the work of Carrier and Greenspan on
steady waves over a uniform beach profile in the irrotational setting, we study waves
which propagate over a background shear current.

The shallow-water equations are obtained from the nonlinear Benney equations, and
exact solutions are found with help of the hodograph transformation in conjunction with
several further changes of variables. The hodograph transformation is effected by finding
the Riemann invariants after the equations are written in the standard form of barotropic
gas dynamics.

In the current work, the background flow features zero mass flux, as would be
required by a real flow at a beach. Moreover, in contrast with previous work, the present
approach allows separate study of the influence of the strength of the shear current and
the slope of the bottom profile. This enables us to provide an estimate of the run-up as
a function of the shear flow while keeping the bottom slope constant.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In coastal seas, strong currents are often observed. Such currents will vary by depth and can for instance be established
by tides, oceanic circulation, bottom friction, wind or wave breaking. The influence of background shear on water wave
dynamics is known to be significant [1,2]. Several studies describing this kind of wave–current interaction have been
done, see for example [3–8].

In the long-wave approximation it is reasonable to assume a background shear profile with linear variation in the
vertical. As describe in [9], this assumption is justified when the surface waves are long compared with the water depth.
Furthermore, it is convenient to consider the interaction between waves and a pre-existing current and to assume that
the background current will be unaffected by the motion of the waves.

In particular, such a background current can be induced by the influence of a landward wind and the required return
flow creates an undertow [10] which is flowing in the direction opposing the wave propagation. In the case of storm
surge models, the variations of the mean-water level is a result of a combination of different processes where the most
significant component is the wind set-up [11]. Therefore, it will be important to gain a better understanding about the
role the wind stress-created current has on the shoaling process and the development of the waterline (run-up).

In the present work we enforce a background shear flow to have a zero net mass flux while long waves are propagating
towards a linear beach profile. We derive the Benney equations from the classical Euler equations, followed by a reduction
to the shallow water equations. These equations will then be solved exactly by a modification of Carrier and Greenspan’s
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Fig. 1. Definition sketch of a plane sloping beach. The seabed is defined by b(x) = θx, and the water height is h(x, t). The horizontal run-up is
denoted by Rx and the vertical run-up is denoted by Rz . A shear flow with zero net mass flux is indicated on the left.

method [12]. The purpose of this work is twofold. First, this new approach will provide a more general way to solve
the non-reducible shallow water equations by the use of the gas-dynamic analogy. Secondly, in contrast with [13], a
more precise description in which role and impact the slope profile and the strength of vorticity have on the water wave
dynamic and the water level near shore. In fact, studying different slopes indicates a natural scaling under which the
equation is invariant.

In 1958, Carrier and Greenspan [12] solved the run-up problem of an irrotational flow on a linear beach where the
exact solution gave a prediction of long waves at the beach. Our work is a modification of this model by including a
background shear flow with zero net mass flux. An important step in the Carrier and Greenspan’s methodology is to find
the Riemann invariants for the system of equations. To overcome this difficulty, we will take the advantage of using the
similarity between the shallow-water equations and the gas-dynamics equations as described in [14,15]. This analogy able
us to use known methods from the gas-dynamics theory to find the Riemann invariants. Compared to the work in [13],
this approach provides a more general way to solve the non-linear and non-reducible Benney equations.

There have been important generalizations of the method of Carrier and Greenspan. In particular, an approximate
analytical solution of the boundary-value problem for the nonlinear shallow-water equations in the context of plane
beaches were obtained in [16]. Based on the same method, initial conditions were used to study tsunami run-up
and run-down in [17,18]. The final solution to the important problem of boundary and initial conditions was recently
given in [19,20]. Moreover, the Carrier and Greenspan technique can also be generalized to apply to more complicated
bathymetries than planar beaches. Applications of the method to base of arbitrary form and different beach profiles can
be found in [21,22].

A recent paper [13] provided exact solutions to the shallow-water equations where a shear current and a beach profile
were included. Here, a parameter αΓ , where α is the slope steepness and Γ is the strength of the constant vorticity, is
used to predict the wind set-up and indeed confirms that an increase of αΓ , increases the wind set-up near shore. To
obtain more precise description of the different roles of the constants α and Γ , we let them be separated during our
current work.

The plan of the paper is as follows. In Section 2, the derivation of the Benney equations is presented and then followed
by how to find the Riemann invariants through the gas-dynamic theory. It is shown how they can be used in a proper
hodograph transformation together with changes of variables to obtain a single linear differential equation. The purpose
of Section 3 is to provide an exact solution of the problem and to graphically present different approaches. In Section 4,
our method and the results will be discussed.

2. Background shear flow on a sloping beach

The flow of an inviscid and incompressible fluid with a free surface can be described by the Euler equations with the
kinematic and dynamic boundary conditions at the surface. In addition, the equation of mass conservation needs to be
satisfied. If the fluid velocity is denoted by u = [u, w], where the horizontal component is denoted u = u (x, z, t) and the
vertical component is denoted w = w (x, z, t), the mass conservation for an incompressible fluid is ∇ ·u = 0. We consider
long waves propagating only in the x-direction over a bottom described by z = b(x). We assume that the undisturbed
free surface is aligned with the x-axis and that b(0) = 0. In this way the waterline meets the bottom in the origin if no
perturbation is present. The surface perturbation is denoted by η(x, t), and the total water height is h(x, t) = η(x, t)−b(x)
as indicated in Fig. 1.

In order to derive the Benney equations, let us start with the kinematic condition at the free surface defined as
(n · u)z=h+b = n · Uinterface, where Uinterface is the velocity of the surface and n is the surface normal. The condition can be
rewritten as

w = ht + (h+ b)xu at z = h+ b.
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Integrating the equation of conservation of mass over the depth from b(x) to h(x, t) + b(x), and applying the equation
above, gives us

ht +
∂

∂x

∫ h+b

b
u dx = 0. (1)

With the assumption of long waves, the vertical momentum equation implies the hydrostatic law Pz = −ρg where P
is the pressure, ρ is the fluid density and g is the constant of gravity. By this assumption, the x-component momentum
balance is described by

ut + uux + wuz = −g(h+ b)x. (2)

The third equation can be found by the integration
∫ z
b ux + wz dz = 0 written as

w = −

∫ z

b
ux dz + w |z=b . (3)

The three derived equations (1), (2) and (3) are called the Benney equations.
The horizontal velocity profile is defined with a shear current with zero net mass flux such that 1

h

∫ h+b
b udz = U . By

this definition we choose an appropriate expression for the background shear flow so that

u(x, z, t) = U(x, t)+Ω

(
z −

(
b(x)+

h(x, t)
2

))
has the depth-averaged velocity U(x, t). Here the strength of the vorticity is denoted Ω and we are only interested in
the case where Ω > 0. Note that the approximation of u(x, z, t) is justified if we consider long waves in shallow water.
Together with this velocity profile and the second kinematic condition n · u = 0 at z = b(x), also written as w|z=b= ubx,
Eq. (3) can be rewritten as

w = −

(
Ux −Ω

(
b+

h
2

)
x

)
(z − b)+ bx

(
U −Ω

h
2

)
.

Substituting the expression for u(x, z, t) and the above expression for w(x, z, t) into Eqs. (1) and (2), gives us the shallow
water equations

ht + (Uh)x = 0, (4)

Ut + UUx +
Ω2

4
hhx + g (h+ b)x = 0. (5)

Before we continue, it is convenient to define the slope as b(x) = θx and thereby the surface elevation is described by
η(x, t) = h(x, t)+ θx. If we now use Eq. (4) to rewrite Eq. (5) as the equation

(hU)t +
(
hU2

+ p(h)
)
x = −ghθ, (6)

where p(h) = 1
2gh

2
+

1
12Ω

2h3, can we see the similarity to the gas-dynamic equations for a barotropic gas if we consider
P(h) as the ‘pressure’ and h as the ‘density’. With this analogy, the characteristic speed and the Riemann invariants for
our system of equations can be found in a more general way. In the common gas theory, see such as [14] and [15], if we
let c2 = dp

dh , the eigenvalues are given as λ1,2 = U ± c and the two Riemann invariants will have the form

ω1,2 = U ±

∫
c(h)
h

dh+ gθ t.

The last term on the right hand side is added due to the bathymetry. We are now able to write the system of equations
in characteristic form as{

∂

∂t
+ λ1,2

∂

∂x

}
ω1,2 = 0,

where

λ1,2 = U ±
1
2

√
Ω2h2 + 4gh

and

ω1,2 = U ±

[
1
2

√
Ω2h2 + 4gh+

g
Ω

ln
(√

Ω2h2 + 4gh+Ωh+
2g
Ω

)]
+ gθ t.

We will now implement an appropriate hodograph transformation, which is to interchange the dependent variables
with the independent variables. Let us first name α and β as characteristics variables and define them as α = ω1 and
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β = ω2. Instead of using U and h as our dependent variables in the transformation, we transform α = α(x, t) and
β = β(x, t) to x = x(α, β) and t = t(α, β). Assuming a non-zero Jacobian ∂(x,t)

∂(α,β) , our equations become

xβ − λ1tβ = 0,
xα − λ2tα = 0,

which are still nonlinear in t. In order to obtain linearity, we define new independent variables as λ = α+β and σ = α−β ,
and the above equations become

xλ − Utλ +
1
2

√
Ω2h2 + 4gh tσ = 0, (7)

xσ − Utσ +
1
2

√
Ω2h2 + 4gh tλ = 0. (8)

Assuming that xσλ = xλσ and tσλ = tλσ , the two equations reduce to the following equation

2Uσ tλ − 2Uλtσ − tσ
(√

Ω2h2 + 4gh
)
σ
+ tλ

(√
Ω2h2 + 4gh

)
λ
= (tσσ − tλλ)

√
Ω2h2 + 4gh

and with the expressions for the new independent variables,
λ

2
= U + gθ t, (9)

σ

2
=

1
2

√
Ω2h2 + 4gh+

g
Ω

ln
(√

Ω2h2 + 4gh+Ωh+
2g
Ω

)
, (10)

we can write it as follows
Ω2h+ 3g
Ω2h+ 4g

tσ =
1
2
(tλλ − tσσ )

√
Ω2h2 + 4gh. (11)

Here, h is only given implicitly as a function of σ in Eq. (10), but since the terms in Eq. (10) are both monotone and
increasing, the relation can be inverted. The expression for hσσ can be found using Eq. (10) to obtain

hσσ =
2g(

Ω2h+ 4g
)2 ,

and in this way, Eq. (11) turns into the linear equation

2th + hthh =
(
Ω2h+ 4g

)
tλλ.

3. Exact solution

To find a proper exact solution, it is more convenient to rewrite the equation using Eq. (9), such that

2Uh + hUhh =
(
Ω2h+ 4g

)
Uλλ,

for then to introduce a ’potential function’ as

U =
1

Ω2h+ 4g
φh,

and end up with the following equation

4gφh + h
(
Ω2h+ 4g

)
φhh =

(
Ω2h+ 4g

)2
φλλ.

This second order differential equation can be solved by the method of separation of variables. We seek a solution which
is bounded as h → 0 and therefore by this method we choose the following solution

φ (h, λ) = A cos(kλ) exp−ikΩh [−(iΩ − 2gk)ΩhH1 + (ikΩh− 1)H2] ,

where H1 and H2 are defined in terms of the generalized hypergeometric function F 1
1 with the following arguments

H1 = F 1
1

(
2ikg + 2Ω

Ω
, 3, 2ikΩh

)
, H2 = F 1

1

(
2ikg +Ω

Ω
, 2, 2ikΩh

)
.

Here, both A and k are constants which cannot be chosen completely arbitrary. Regarding several changes of variables,
the solution is single-valued as long as the Jacobian ∂(x,t)

∂(h,λ) is nonzero. Therefore both A and k, as well as the constants θ
and Ω , should be chosen such that the Jacobian is nonzero. In terms of the expression for φ, we proceed by finding the
final expressions for x, t, and η depending on the variables h and λ. It now becomes clear why it is necessary to introduce
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Fig. 2. The surface evolution with an increasing slope steepness. The parameters are A = 0.5, k = 1 and Ω = 0.5 s−1 . The solid curves represent
the maximum run-up at time t1 =

π
4gθ and the dashed curves represent the minimum run-up at t2 =

3π
4gθ .

the ’potential function’, because with this approach we can simply choose to integrate Eq. (8) to find an expression for x
as

x =
1

2gθ

[
−U2

−
1
4

(
Ω2h+ 8g

)
h+ φλ

]
. (12)

By Eq. (9), t(h, λ) can be expressed as

t =
1

2gθ
(λ− 2U)

and as mentioned before the surface elevation is expressed as η = h + θx. The exact solution is plotted in Fig. 2 and in
Fig. 3.

4. Discussion

To get more precise information about the run-up length Rx and the run-up height Rz , see Fig. 1, we let h → 0 in
Eq. (12). The U2-term goes to A2 cos2(kλ) and the φλ-term goes to −Ak sin(kλ), which means that the maximum run-up
length has the expression Rx =

Ak
2gθ . With this expression found, the run-up height follows as Rz =

Ak
2g . This simple

approach shows that neither the run-up height nor the run-up length explicitly depends on the strength of the vorticity.
This make sense due to our mathematical description where the still water level is fixed to be zero at the shore. However,
if we make a comparison between the run-up and the wave height further offshore, it becomes clear that the run-up is
implicitly depending on the strength of the vorticity since the offshore wave height is decreasing with an increasing
vorticity Ω , see Table 1. In this way, we can state that the background shear flow has an impact on the run-up.

In Fig. 2 the free surface elevation with the parameters A = 0.5, k = 1 and Ω = 0.5 s−1 is plotted at the times for
maximum and minimum run-up. With the steepness of the beach profile changing between the three different plots, we
can consider the impact of the slope on the wave dynamics. Let us denote the first wave as the crest closest to the beach
regardless of the run-up wave and then denote the second wave to be to the left of the first wave and so on. Note that
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Fig. 3. The curves are plotted with the parameters A = 0.5, θ = 0.1 and k = 1 at the maximum run-up time t =
π

4gθ . Solid curve with Ω = 0,
dashed curve with Ω = 0.5 s−1 and dashed–dotted curve with Ω = 1 s−1 .

Table 1
The table shows the wave height at four fixed positions x with three different strength of vorticity. For all the calculated
wave heights the required constants are set as A = 0.5, k = 1 and θ = 0.1.
x [m] Ω [s−1

]

0 0.5 1

−1.151 0.01867 0.01866 0.01864
−3.356 0.01482 0.01480 0.01475
−6.815 0.01253 0.01251 0.01242
−11.531 0.01103 0.01099 0.01086

the first wave in all three plots has the same wave height. The same occurs for the second and the third wave. At the
same time, note that the length between the intersection points of the first wave in the first plot is twice the length of
the first wave in the second plot and three times the length of the first wave in the third plot. The same structure occurs
also for the second and third wave. This tells us that there is a symmetry in the scaling. In fact, by looking closer at Eq.
(6), it is clear that the equation is invariant under the scaling x → δx, t → δt and θ → δθ .

The three solutions shown in Fig. 3 are all plotted with the same parameters A = 0.5, θ = 0.1 and k = 1 at the
maximum run-up time t = π

4gθ , but with different strength of vorticity. Here, it appears that the main effect of an increase
in the strength of the vorticity results in a larger set-down further offshore. As the water level near shore is fixed, note
that due to the uniform shear flow there is a set-up close to shore which has been shown and explained as a wind induced
set-up in [11].
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ABSTRACT
It is shown that very steep coastal profiles can give rise to unexpectedly large wave events at the coast. We combine insight from exact
solutions of a simplified mathematical model with photographs from observations at the Norwegian coast near the city of Haugesund. The
results suggest that even under moderate wave conditions, very large run-up can occur at the shore.
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I. INTRODUCTION
In the present work, we are interested in the interaction of

ocean waves with steep offshore topography such as encountered in
some areas at the Norwegian coast. If surface waves propagate on
such a steep bottom slope, they experience only slight amplification
until very close to shore. However, just before they reach the beach
face, the waves receive a large boost in amplitude, which can lead
to an explosive run-up on the shore. As this large run-up may seem
wholly unexpected to the casual observer, it may create a potentially
hazardous situation.

It is well known that the Norwegian coast, especially in the
south and the west, features a multitude of fjords.1 These rocky
cliffs often continue past the waterline, and may drop to several
hundred meters depth, cutting through the continental shelf as sub-
marine valleys. This landscape was formed by glaciers during the
last ice age. Indeed, it is well known that fjords developed due to
glaciers’ capability of eroding below sea level,1,2 leaving deep sub-
merged valleys when the ice age came to a close and melting was
completed.

In some cases, these valleys are offshore of the present shore-
line, and there are some places today where coastal platforms give
way to very steep seaward slopes carved by these thick glaciers. In
fact, it is not unusual to see 200 m or 300 m drops of the sea bed over
a distance of a few hundredmeters. These steeply sloping shores typ-
ically consist of bedrock, which has been smoothed by the glacial ice
and is rather immune to erosion and littoral processes. In fact, wide
stretches of the coast have not been filled with mud and other sedi-
ments, and the rocks remain exposed. As a result, this coast is gen-
erally classified as the primary coast,1 similar to the coasts in other

places around the word such as New Zealand and the northernmost
part of the East Coast of the United States.2

Further offshore, the Norwegian coast features very irregular
bathymetry, which dissipates much of the incoming wave energy
through wave focusing, shoaling, and local breaking.3–5 However,
some long waves of moderate amplitude and steepness are able to
pass the rugged offshore topography relatively unscathed and reach
the coast. If these long waves hit an area with sharply sloping coastal
profiles, even waves of relatively small amplitude can lead to large
run-up. In what follows, in Sec. II, we report observations of waves
made at a site with a sharp, nearly 1:1 drop from the water line.
In Sec. III, we detail a mathematical model capable of predicting
large run-up from a moderate-sized offshore wavefield in the case
of bathymetry featuring a steep slope such as seen at the observation
site. The results are discussed in Sec. IV.

II. OBSERVATIONS
Observations were made at a site near the Norwegian city of

Haugesund. As shown in Fig. 1, the bathymetry near the coast fea-
tures a steep drop to about 200 m right from the waterline. Indeed,
it can be seen in the schematic of a cross section of the site in Fig. 2
that the slope is very steep, about 1:1. Due to the very steep slope,
it is common for waves to exhibit surging breaking, such as defined
in Refs. 6–8. However, as waves of slightly larger amplitude quickly
shoal on the steep slope, they sometimes reach the point of plung-
ing almost as soon as they can be made out as a large wave. One
such example is shown in Fig. 3. Under the rough conditions pre-
vailing when the photos in Fig. 3 were taken, energetic waves crash
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FIG. 1. Bathymetric chart of the sea bed near the Bleivika lighthouse. The depth
contours run nearly parallel to the shore and feature a steep drop from the
shoreline to about 200 m depth. Kartverket©. Used with permission from The
Norwegian Mapping Authority.

into the rocks, creating large areas of turbulent flow. The accom-
panying foam and spray immediately alert the observer to the fact
that wave conditions are serious, and caution must be exercised.
On the other hand, the conditions in Fig. 4 were mostly calm with
little visible swell, and only a small chop due to a moderate local
wind. A few small patches of foam are visible, which appear to be
remnants of previous waves interacting with the jagged rocks, or

FIG. 2. Schematic of the sea bed near Stemmevika.

white-capping due to local wind gusts. The smaller swell waves were
just lapping the shore, and the limited foam and absence of spray do
not signal any danger. As a slightly larger swell wave approaches and
shoals, the subsequent wave run-up appears to be extreme against
the backdrop of otherwise benign wave and weather conditions. An
example of such an explosive run-up is shown in Fig. 4, and one may
argue that the flooding of the rocks may happen unexpectedly to a
non-initiated observer.

A. Observations on January 16th, 2020
Observations were made from a location near the lighthouse

Bleivika indicated by a star on the map in Fig. 1. We used an
Olymp Mark III E camera to shoot 4 K video clips. Individual
frames from those clips are shown in the figures below. Wave con-
ditions were monitored using operational wave forecasts from two
sources. First, the NOAA site9 gave an estimate of the significant
waveheight and the peak period for the general area using an oper-
ational version of Wavewatch III. On this day, the significant wave-
height was in the range 2 m–2.5 m, and the peak wave period was
about 10 s.

Under local conditions, a forecast provided by the Bar-
entsWatch Center10 was consulted. Near the coast, the waves had
already encountered several shoals, and the waveheight and wave
periods were somewhat smaller. The wind speed was above 9 m/s,
therefore, there was a significant wind sea component in addition
to swell. Most waves were surging breakers, but some waves were
steep enough to break before reaching the shore. Figure 3 shows a
wave developing along the steep sloping bottom. It can be seen that
the waveheight develops quickly, and in this case, the wave is large
enough for the wave to plunge before it hits the rocky shore. This
situation would not pose a danger to the casual observer since wave
conditions were not calm.

B. Observations on January 29th, 2020
In this case, the wave forecasts from NOAA and Barentswatch

Center estimated the local significant waveheight to be just above
1 m, with a maximum waveheight of about 2 m. Visually, conditions
were rather calm, as also borne out from a study shown in Fig. 4.
However, there was swell from a distant storm, and the peak wave
period was about 13 s (i.e., wavelength of ∼260 m based on linear
wave theory). The authors were at the site for about 90 min, and the
visually measured wave period was on the average about 9 s–13 s,
though some waves were as short as 6 s, and some waves were longer
than 13 s.

The rock, which can be seen in Fig. 4 stayed dry for the most
part, though in the 90 min we were present, it was flooded 3 times.
In fact, as far as we can tell, what typically seemed to happen was
that a group of waves arrived, which had slightly higher than nor-
mal waveheight, and the rock was flooded not by the first, but by
the second and/or third wave in the group. After such an incident,
the conditions went back to normal. Indeed, it is well known that
swell will organize into wave groups (see Refs. 11–13 and references
therein), so the situation above would have to be expected. As men-
tioned above, in the 90-min observational period, there were three
waves that flooded the rock, two of these in one wave group, and
one in another wave group.
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FIG. 3. This figure shows four snapshots of wave conditions at 59.48○ N, 13.44○ E on January 16th, 2020. Upper left: t = 105 s, upper right: t = 115 s, lower left: t = 120 s,
lower right: t = 124 s.

Figure 4 shows a wave crest at t = 15 s (relative time in the
video), an approximately flat surface at t = 18 s, and the wave trough
at t = 21 s. This was a relatively unspectacular wave with a small
waveheight hitting the rock. The next wave (not shown) already has

a larger amplitude, but stops short of the rock. Finally, 25 s later, at
t = 46 s the third wave crest hits the rock, flooding the top of the rock
almost entirely. Using tide tabulations, and a local elevationmap, the
run-up can be estimated to be about 3.8 m.

FIG. 4. This figure shows four snapshots of wave conditions at 59.48○ N, 13.44○ E on January 29th, 2020. Upper left: wave trough at t = 15 s, upper right: mean water level
at t = 18 s, lower left: wave crest at t = 21 s, lower right: wave crest at t = 46 s.
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FIG. 5. Offshore wavefield and run-up on a 1:1 slope for two different offshore wave conditions. In the left panel, we have offshore amplitude 0.459 m and run-up 2.548 m. In
the right panel, we have offshore amplitude 0.918 m and run-up 5.097 m.

III. MATHEMATICAL MODEL
In the following, it will be shown that a comparatively simple

mathematical model can be used to understand how relatively small
waves can lead to significant and unexpected run-up if encountering
a steep slope. For this purpose, we will use the shallow-water system

ht + (uh)x = 0, (1)

ut + uux + g(h + b)x = 0, (2)

where h(x, t) is the total depth of the fluid, u(x, t) is the aver-
age horizontal velocity, g is the gravitational acceleration, and
b(x) is the bottom profile. In the present case, we define the
bathymetry by b(x) = θx. The surface elevation is then given by
η(x, t) = h(x, t) + θx.

This system is able to describe long waves in shallow water, and
it is possible to find exact solutions in the presence of non-constant
bathymetry, which enable us to make predictions of the develop-
ment of the waterline. Exact solutions of 2 × 2 systems of conserva-
tion laws are classically obtained using a hodograph transformation,
where dependent and independent variables are interchanged.14 In
the presence of bathymetry, it is somewhat more difficult to find
the requisite change of variables than in the case of constant coeffi-
cients. Nevertheless, an appropriate hodograph transformation was
found by Carrier and Greenspan,15 and there have been a number
of works seeking to extend and generalize that idea (see Refs. 16–21
and references therein).

In the present situation, it is important that the system be solved
in dimensional coordinates in order to understand the influence of
the steep bottom slope. For the convenience of the reader, the con-
struction of the exact solutions is explained in the Appendix. As
demonstrated in the Appendix, the independent variables λ and σ
are introduced through a hodograph transformation. These vari-
ables do not have a clear physical meaning. However, using the sep-
aration of variables, an exact solution can be specified with the help
of a “potential” ϕ defined in terms of the velocity u by the relation
u = 1

σ ϕσ . In terms of the potential, the solution has the form

ϕ(σ, λ) = A
k
J0(kσ) cos(kλ). (3)

Here, J0 is the zeroth-order Bessel function of the first kind, and A
and k are arbitrary constants. Using the potential ϕ, an expression

for x(σ, λ) is found in the form

x = 1
2gθ

(1
2
ϕλ − u2 − σ2

8
), (4)

and t(σ, λ) can be expressed as

t = 1
2gθ

(λ − 2u). (5)

The surface elevation η = h + θx is given by

η = 1
2g

(1
2
ϕλ − u2). (6)

Note that in contrast to the solution provided in Ref. 15, the slope θ
appears explicitly in the final solution.

This solution can now be used to investigate the run-up for var-
ious wave conditions. In Fig. 5, an exact solution is plotted with a
steep slope of θ = 1. In the left panel, we choose A = 100 m2

s2 and
k = 0.04 s

m (we emphasize that even though A and k feature units,
there is no clear physical meaning assigned to these constants) in
the solution to obtain an offshore amplitude 0.459 m, and run-up
2.548m. The steepness is defined as 2πa/L, where L is the wavelength
and a is the amplitude. In the right panel, we chose A = 200 m2

s2
and k = 0.04 s

m to plot an offshore amplitude of 0.918 m with a
steepness of 0.0059 and a run-up of 5.097 m. In Table I, the run-
up for four different offshore amplitudes for waves with a period
T = 8 s is recorded. The values of A used in the table are 50 m2

s2 ,
100 m2

s2 , and 200 m2

s2 , 300
m2

s2 . The 8 s period is found by choosing

TABLE I. Run-up for four different offshore amplitudes for waves with period T = 8 s
and varying steepness. The amplification factor between the offshore amplitude and
the run-up is 5.5.

Amplitude (offsh.) (m) Steepness (offsh.) Period (s) Run-up (m)

0.229 0.0015 8 1.274
0.459 0.0029 8 2.548
0.918 0.0059 8 5.097
1.377 0.0088 8 7.645
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k = 0.04 s
m . The amplification factor between the offshore amplitude

and run-up is 5.5.

IV. DISCUSSION
In this work, the run-up of waves on a steep slope has been

studied through field observations at the Norwegian coast and
a mathematical model. The observations presented here point to
the possibility that extreme wave run-up may occur during other-
wise benign conditions. The effect of the large run-up is further
enhanced by the more moderate slope of the coast above the water-
line (see Fig. 2), leading to a large area of flooding, such as shown
in Fig. 4.

The mathematical model used here also shows that unusually
large run-up can be realized on a steep slope by small offshore
amplitudes. Indeed, it is evident from Table I that a moderate rise
in the offshore amplitude from 0.459 m to 0.918 m may lead to a
difference of more than 2.5 m in the run-up height. A still mod-
erate wave amplitude of 1.377 m can lead to a run-up height of
7.648 m.

In summary, both observations and the shallow-water theory
show that large run-up may occur under otherwise inconspicuous
conditions. The two approaches do not give a perfect quantitative
match because of the inherent quantitative uncertainty in the obser-
vations, and because some of the shorter waves observed are only
shallow-water waves once they enter the coastal slope. Nevertheless,
both observation and mathematical theory clearly show large ampli-
fication of the waves as they approach the shore, and it is clear that
an observer focusing on offshore conditions may be taken by sur-
prise as moderate waves experience such strong amplification and
subsequent explosive run-up on the shore.

In the present work, we have focused on a very steep 1:1 slope
where the bathymetry has a decisive effect on the wave evolution and
the resulting run-up. It appears that in many previous studies on
extreme wave events in shallow water, a gently sloping bottom was
assumed. This is the case, in particular, in studies on the so-called
sneaker waves, which are generally taken to be large run-up events
on gentle beaches.22–24 On the other hand, there are some studies
on unusually large waves, or freak waves in shallow water, but not
near the shore. For example, in Refs. 18 and 23, the authors describe
freak wave occurrences in the nearshore zone, and in Refs. 25 and 26,
the authors look at wave interaction phenomena as a possible route
to freak wave development. In Ref. 27, laboratory experiments and
numerical simulations are used to explain the occurrence of freak
waves. In the situation considered in these works, even though the
waves are in shallow water, the bathymetry does not exert a major
effect on the fashion in which large wave events develop.

In contrast, a strong influence of the bathymetry on the wave
conditions was found in Ref. 28, where resonant behavior due to
irregular underwater topography was considered, and also in Refs.
29 and 30. However, the slopes considered in these works were
still much gentler than the steep 1:1 bathymetry considered in the
present work. On the other hand, the run-up on a vertical wall, such
as a sea cliff were studied in Refs. 31 and 32.

There is a large literature on rogue or freak waves (see
Refs. 33–39 and the references therein). It is not clear whether the
present phenomenon should be classified as a freak wave event since
at least in theory it can be predicted if measurements of the offshore

wavefield are available. Indeed, it would be interesting to conduct
field measurements at this or a similar site, such as reported in the
in-depth study.40 However, under the conditions in this case such as
the extreme slope, the slippery rocks, and small tidal range, it appears
challenging to obtain reliable measurements.
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APPENDIX: EXACT SOLUTIONS
FOR THE SHALLOW-WATER EQUATIONS

The shallow-water equations (1) and (2) are to be solved on
a domain such as indicated in Fig. 6. As suggested in Ref. 41, a
gas dynamics analogy may be used to find the eigenvalues and
the Riemann invariants for the shallow-water system. Using (1) to
rewrite (2) as

(hu)t + (hu2 + p(h))
x
= −ghθ, (A1)

where p(h) = 1
2 gh

2, a similarity to the gas-dynamic equations for a
barotropic gas can be seen if we consider P(h) as the “pressure” and
h as the “density.” For more details, the reader may refer to Ref. 14.
Indeed, with this analogy, the eigenvalues are λ1,2 = u ± c and the
Riemann invariants can be found to be

α = u + ∫ c(h)
h

dh + gθt, (A2)

β = u −∫ c(h)
h

dh + gθt, (A3)

where c is defined by c2 = dp
dh . The last term on the right-hand side

is due to the bathymetry. The system can then be written in terms of
the characteristic variables α = u+2

√
gh+gθt and β = u−2√gh+gθt

as

{ ∂

∂t
+ (u +√

gh) ∂

∂x
}(u + 2

√
gh + gθt) = 0, (A4)

FIG. 6. Definition sketch for the mathematical model, including the slope b(x) and
the water depth h(x, t) = η(x, t) − b(x).
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{ ∂

∂t
+ (u −√

gh) ∂

∂x
}(u − 2

√
gh + gθt) = 0. (A5)

The hodograph transform can be effected by the implicit differ-
entiation of the equations (A4) and (A5) and using the dependent
variables x = x(α, β) and t = t(α, β), instead of α = α(x, t) and
β = β(x, t). Assuming a non-zero Jacobian ∂(x,t)

∂(α,β) , the equations (A4)
and (A5) become

xβ − λ1tβ = 0, (A6)

xα − λ2tα = 0. (A7)

In order to obtain a linear set of equation, we define new inde-
pendent variables λ = α + β and σ = α − β. The systems then
appear as

xλ − utλ +
√
gh tσ = 0, (A8)

xσ − utσ +
√
gh tλ = 0. (A9)

Assuming that xσλ = xλσ and tσλ = tλσ , the two equations reduce to

uσ tλ − uλtσ − (√gh)
σ
tσ + (√gh)

λ
tλ = √

gh (tσσ − tλλ). (A10)

Using the expressions for the new independent variables yields

λ
2
= u + gθt, (A11)

σ
4
= √

gh. (A12)

By using (A11) and (A12), expressions for uσ , uλ, (√gh)
σ
, and

(√gh)
λ
can be found and (A10) turns into the linear wave equation

σ(tλλ − tσσ) − 3tσ = 0. (A13)

Using the expression (A11) for λ together with an appropriate
potential function u = 1

σ ϕσ , the Eq. (A13) can be rewritten as

(σϕσ)σ − σϕλλ = 0. (A14)

Using the separation of variables, we are able to find an exact solu-
tion, which is bounded as σ → 0. This solution can be written
as

ϕ(σ, λ) = A
k
J0(kσ) cos(kλ), (A15)

where J0 are the Bessel function of the first kind of order zero, and A
and k are constants.

With this solution in hand, an expression for x(σ, λ) is found in
the form

x = 1
2gθ

(1
2
ϕλ − u2 − σ2

8
), (A16)

and t(σ, λ) can be expressed as t = 1
2gθ (λ − 2u). The surface elevation

η = h + θx is then given by η = 1
2g ( 1

2ϕλ − u2).
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ABSTRACT
In this work, a detailed description of the internal flow field in a collapsing bore generated on a slope in a wave flume is given. It is found
that in the case at hand, just prior to breaking, the shape of the free surface and the flow field below are dominated by capillary effects. While
numerical approximations are able to predict the development of the free surface as it shoals on the laboratory beach, the internal flow field is
poorly predicted by standard numerical models.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5124038., s

I. INTRODUCTION

Wave breaking is an important and ubiquitous phenomenon
which happens virtually in all flows involving a free surface. As
clearly brought out by a number of review articles and mono-
graphs,3,6,18,29,31,38,39,42,43 wave breaking has been a major focus of
wave and ocean research for a long time. While it is well understood
that wave breaking is central for the study of the energy budget of
the oceans and air-sea interaction, it is also noted in the above works
that the nature of wave breaking remains poorly understood. Indeed,
wave breaking is a classical multiple-scale problem which exhibits
a number of complicating factors in the flow such as circulation,
turbulence, capillarity, and intermittency.

Wave breaking happens in many shapes and forms, and differ-
ent types of breakings require a variety of methods for study. The
object of the present paper is the study of a collapsing breaker on a
moderate slope. Collapsing breakers appear on the margin between
plunging and surging breakers, as found in the work by Galvin.22

Possibly because of their relatively rare occurrence, studies of col-
lapsing breakers are few and far between. Indeed, collapsing breakers
are not explicitly mentioned in Ref. 25, where the authors define a
detailed classification of breaking waves on a planar beach in terms

of a single parameter S0 based on the bottom slope, waveheight, and
wavelength.

The focus of the present work is twofold. On the one hand,
using new experiments performed in a wave flume at National
Chung Hsing University in Taiwan, we aim to give a detailed
description of the internal flow including velocity, Lagrangian accel-
eration, and pressure fields in the prebreaking stage of a capillarity-
dominated collapsing breaker. In particular, we aim to describe
details of the fluid flow below the free surface in order to identify
a number of indicators for the onset of wave breaking.

Second, the internal flow field is compared with the results
of numerical simulations using a Boussinesq model.48 It is found
that this numerical model has certain challenges when it comes to
describing the internal flow field in a flow of this kind.

In order to create a collapsing breaker, a solitary wave of a cer-
tain waveheight is initiated with a wavemaker at one end of the wave
flume. The wave propagates through the tank and starts deforming
as it comes upon the slope located at the point x = 0. As the wave
steepens, the wavefront starts to resemble a bore rushing onto the
slope and eventually collapses without spilling or overturning. In
this laboratory scale experiment, in the final stage before the bore
collapses, the flow near the free surface is dominated by capillary
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effects, which leads to interesting pressure anomalies. The shape of
the bore just before breaking takes a dolphin head-like appearance,
resembling similar profiles found in the context of capillary jumps
such as discussed in Refs. 20 and 37. The shape of the wavefront is
also similar to a spilling breaker in the presence of strong capillarity,
such as discussed in Refs. 18 and 19.

The collapsing of the breaker is eventually indicated by the
development of negative vertical velocity components which are
necessitated by the acceleration due to the pressure anomalies result-
ing from strong capillarity. As the bore collapses, its internal flow
structure resembles a plunging breaker (see, for example, Ref. 49)
even though the free surface is still intact in the early stages of wave
breaking. Eventually, as the toe of the capillary region gets ever more
acute, it acts essentially as a hydrofoil, spoiling the free surface and
creating a vortical motion in the breaking bore. The dynamics of the
ensuing eddy motion could possibly be described numerically, but
this is beyond the scope of the present article. Indeed, it is not clear
whether existing point-vortex models such as, for example, those
used in Ref. 15 will be able to capture the surface and eddy motion
to a satisfactory degree of accuracy.

The disposition of the paper is as follows. In Sec. II, the exper-
imental apparatus and setup are described. In Sec. III, the details of
the flow field in a collapsing breaker are presented. Section IV con-
tains a comparison with a numerical Boussinesq solver. Section V
contains a brief conclusion.

II. EXPERIMENTAL TECHNIQUES
A. Experimental apparatus

The experiments were conducted in a wave flume located at the
Department of Civil Engineering, National ChungHsing University,
Taiwan. The internal dimensions of the wave flume are 14.00m long,
0.25 m wide, and 0.50 m deep. The bottom and two sidewalls of the
wave flume were made of tempered glass to allow optical access. A
piston-type wavemaker driven by a servo-motor is mounted at one
end of the wave flume. The method proposed by Goring in Ref. 23
for generating the solitary wave is used. As shown in Refs. 33–36,
highly repeatable solitary waves can be produced by this wavemaker.

A sloping beachmade of tempered glass with a slope of 1:20 was
installed in the wave flume. This is a moderately steep slope, much
more gentle than the steep slopes used in Refs. 28 and 52. The toe
of the sloping beach was fixed 6.48 m away from the wave paddle at
rest. A Cartesian coordinate system with the origin (x, y) = (0, 0) cm
being located at the toe of the sloping beach is used. The x-axis is

oriented in the horizontal direction and measured positive onshore
from the toe. The y-axis is oriented in the vertical direction andmea-
sured positive upward from the horizontal bottom. The schematic
diagram of the experimental setup and coordinate system is shown
in Fig. 1.

The free surface elevation was measured using two ultrasonic
wave gauges. The first gauge located at x =−150 cmwas used tomea-
sure the time series of free surface elevation η0 and the waveheight
H0 for the incident solitary wave propagating over the horizontal
bottom with a still water depth of h0. A voltage signal output from
this wave gauge was employed to trigger the camera for capturing
the images. Furthermore, the second gauge is placed at the toe at
x = 0 cm to precisely identify the time, t = 0 s, at which the wave
crest exactly reaches the toe. As shown in Fig. 1, η(x, t) is the instan-
taneous wave profile and h(x) is the still-water depth at a specified
location over the sloping beach.

B. Flow visualization and velocity measurements
The structure of the prebreaking, breaking, and postbreak-

ing waves was explored using flow visualization techniques (FVT)
and high-speed particle image velocimetry (HSPIV) measure-
ments. Titanium dioxide (TiO2) was used for the seeding parti-
cles. These seeding particles have a refractive index of 2.6 and
a mean diameter of 1.8 μm, together with mean specific gravity
and settling velocity (estimated by Stoke’s law) equal to 3.547 and
4.5 × 10−4 cm/s, respectively. The fall velocity is very small and
thus ignored as compared with the typical velocity of interest in this
study. An argon-ion laser head (Innova-300, Coherent Inc.) with a
maximum power of 4 W was used as a light source. A fan-shaped
laser light sheet (1.5 mm thick) was formed while the laser beam
was guided by three reflection mirrors and then passed through the
cylindrical lens. The light sheet, located 8 cm away from the glass
sidewall, was eventually projected upward through the glass bottom
of the wave flume to illuminate the seeding particles suspended uni-
formly in the water column. A high-speed digital camera (Phantom
M310, Vision Research) with a maximum framing rate of 3260 Hz
under the largest resolution of 1280 × 800 pixels was used to cap-
ture the images of both the free surface profile and the flow structure
underneath the free surface.

The flow visualization images were captured by using a particle-
trajectory photography method, with a high exposure time to allow
the path-line of the particles to be captured. The framing rate and
the exposure time of the high-speed camera for taking flow visu-
alization images were 500 Hz and 1900 μs. On the other hand, to

FIG. 1. Schematic diagram showing the coordinate system, the incident solitary wave, and the position of the field of view (FOV1).
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ensure high time-resolved HSPIV measurements, the framing rate
was 2000 Hz, much higher than FVT, and the exposure time was
490 μs, smaller than FVT. The images of flow fields with the illu-
minated moving seeding particles were recorded continuously by
using the high-speed camera. The free surface profile of the shoaling
solitary waves, η(x, t), was extracted from the images of the HSPIV
measurements. The time interval in between each such image was
very short, and a high-resolution record of η(x, t) could be obtained.
Furthermore, due to the mirror effect of the interface between the
air and water, the particles on the free surface were illuminated by
the laser light sheet and can be clearly identified.

One field of view (FOV1) was employed in this study. As shown
in Fig. 1, the FOV1 was located between x = 270.76 cm and x
= 276.34 cm, y = 13.18 cm and y = 16.66 cm. The width and height
of FOV1 were 5.58 cm and 3.48 cm, respectively. The resolution was
4.356 × 10−3 cm/pixel. A cross-correlation calculation was used to
determine the velocity vector from the images in which the bright-
ness of the seeding particles had been intensified by using the Lapla-
cian edge-enhancement technique.1 The multipass PIV algorithm
was then employed to calculate the instantaneous velocity field from
three correlated images. The calculation is started from an interro-
gation window size of 64 × 64 pixels and ending with a window size
of 8 × 8 pixels with a 50% overlap. Consequently, spurious vectors
were removed by employing both global-range and median filters.
Missing vectors are then interpolated to complete the whole velocity
vector field.

C. Experimental conditions
An incident solitary wave with waveheight H0 = 1.12 cm was

created on water of an undisturbed depth of h0 = 14 cm so that the
ratio H′

0 = H0/h0 was equal to 0.08. The wave conditions are listed
in Table I. Ten repeated runs were conducted for the HSPIV mea-
surements. An ensemble average of all runs was used to describe the
spatial or temporal variation of the velocity fields.

In order to obtain a collapsing breaker, the classification of
Grilli et al.25 was used. In that work, the authors define the
parameter

S0 = sL0
h0

,

where s = tan θ is the slope, h0 is the undisturbed depth prior to
the sloping bottom, and L0 is the wavelength. Following Ref. 25,
the wavelength in Boussinesq’s solitary wave theory is measured at
the point of maximal slope on the wave profile, which leads to the
relation

L0 = 2h0√
3H′

0/4arctanh
√
3
3

.

With this definition of L0, S0 is given in terms of the slope s and
relative waveheight H′

0 by

TABLE I. Experimental conditions.

H0 (cm) h0 (cm) H0/h0

1.12 14.0 0.080

S0 = 1.521
s√
H′

0

.

Grilli et al.25 observed the following breaker types:

● spilling: S0 < 0.025,● plunging: 0.025 < S0 < 0.3, and● surging: 0.3 < S0 < 0.37.

In the present case, we are using a slope of 1:20 so that s = 0.05.
Since the relative waveheight is H′

0 = 0.08, the parameter value for
the current experiment is S0 = 0.269. Thus, the waveform used here
is in the range of plunging breakers, but close to surging accord-
ing to the classification above. As noted by Galvin,22 some waves
fall between plunging and surging and can be classified as collapsing
breakers, and this is the case here.

III. DESCRIPTION OF THE FLOW
A. Wave generation and propagation

A solitary wave was generated in the wave flume by executing
a quarter stroke with the piston wavemaker. The early stage of the
evolution of the solitary wave was checked against a potential flow
solver,24,26 where the solitary wave was generated numerically using
a variant of Tanaka’s method (see Refs. 14 and 51). The resulting
time series can be seen in Fig. 2. Note that in both time series, there
is a nearly perfect match between experimental data and numerical
simulation.

B. Details of the wave breaking process
As the wave passes the toe of the sloping bottom, it starts to

feel the upward slope and the wave starts to steepen. The slope
provides a force in the direction opposing the wave motion, which
eventually stops the motion. The reflection then leads to a rundown
and backward motion. The rundown is not in focus in the present
study.

As the wave collapses on the beach, there is little air entrain-
ment. Moreover, the width of the tank is relatively small at 25 cm.
With these restrictions, we notice that the flow is not being able to

FIG. 2. Comparison of time series for solitary waves. The circles indicate the time
series measured at two measuring stations in the wave flume. Blue: x = −150 cm.
Black: x = 0. The solid curves indicate time series at two points in the numerical
domain.
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form three-dimensional turbulent structures even in the postbreak-
ing stage. In a sense, the flow is what one might call quasilaminar.

Next, we describe the details of the prebreaking development.
From Fig. 3, it can be seen that fluid velocities near the top of the
surging wave become larger. The wavefront gets steeper as more and
more fluid concentrates behind the surging wavefront, creating a
bulging “dolphin head” shape. A study of the individual terms in the
Lagrangian acceleration, i.e., the terms ∂u

∂t , u
∂u
∂x , and v

∂u
∂y , shows that

the large velocities in Fig. 3 are not due to acceleration of fluid par-
ticles, but rather due to convective effects and concentration of fast

FIG. 3. Fluid particle velocities in FOV 1 at three times close to breaking: t
= 2.639 s, t = 2.652 s, and t = 2.669 s (top to bottom). For reference, the long-wave
speed is c0 ∼ 38 cm/s.

FIG. 4. Lagrangian accelerations at time t = 2.666 s. Fluid particles near the head
of the wave experience a reduction in the horizontal velocity, while fluid particles
near the toe of the wave experience horizontal acceleration in the direction of wave
propagation. For comparison, the gravitational acceleration is g = 981 cm/s2.

particles behind the wavefront. In fact, consulting Fig. 4 shows that
there is a fairly strong deceleration of particles behind the wavefront.
As will be explained later, this deceleration is due to a large excess
pressure just behind the wavefront due to capillary effects. The same
capillary effects also contribute to acceleration of fluid particles in
the free surface (cf. Fig. 5).

The onset of breaking may be defined as the first time the verti-
cal velocity component of a particle behind the wavefront is negative.
In Fig. 7, it can be seen that the vertical velocity component of par-
ticles in a larger and larger region starts to turn negative. This incip-
ient downward motion constitutes the beginning of the creation of
an internal circulation behind the wavefront.

In Fig. 5, particles in the free surface are being followed (man-
ually), and it can be seen that these particles are accelerating while
the free surface is decelerating. This feature seems to be common
in waves approaching breaking. For example, similar behavior was
found recently in deep-water waves which approach the breaking
point.30 It is also interesting to view these data in light of recent
work7 where a universal breaking criterion was put forward. This
criterion can be formulated in terms of the horizontal component of
the fluid particle velocity at the crest u and the velocity of the crest
itself c, and it states that a wavetrain is liable to feature wave break-
ing if the ratio B = u/c exceeds the threshold 0.85–0.86, which is in
contrast to the usual convective criterion (see Ref. 12 and references
therein) which places the critical value at about 1. In the present case,
as the wave enters the slope, it forms a steep front so that there is no
well defined wave crest. Nevertheless, using the data shown in Fig. 5,
we may compare the front velocity to the horizontal component of
the particle velocity. A representative result is shown in Table II.
Note that the value B ∼ 0.87 is achieved about 0.003 s before the
wave starts to break (cf. Fig. 7).

Finally, let us explain the role of capillarity in the prebreak-
ing development of the wave. The horizontal momentum balance
is written in terms of the horizontal component of the velocity field
u and the stress vector σx as

ρ
Du
Dt

= ∇ ⋅ σx,
where D

Dt represents the material (Lagrangian) derivative and ρ is
the fluid density. Given that the fluid velocity near the wavefront is
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FIG. 5. Comparison between front velocity and fluid particle velocities. The blue curves in the right panel show the velocity of the free surface at a number of fixed vertical
locations which are indicated as straight lines in the left panel. The ordering of the blue curves in the right panel by height corresponds to the same ordering as that in the left
panel. In particular, the highest vertical location features the highest front velocity. The free surface in the left panel is indicated at a time step of 0.005 s, from t = 2.611 s to
t = 2.676 s. As the front steepens, the front velocity decreases slightly over time. The red curves show the horizontal component of the velocities of fluid particles inside the
free surface. The red curves in the left panel show the approximate position of fluid particles and are ordered from the top to the bottom. The ordering is indicated by arabic
numerals in the right panel. The horizontal particle velocities increase over time.

similar to the velocity of the wave itself, we do not expect boundary
layer effects to be dominant at the free surface so that themomentum
balance reduces to

Du
Dt

= −px
ρ
,

where p is the fluid pressure. Now from Fig. 4 which shows the
Lagrangian acceleration in the x direction, we see that Du

Dt is negative
in the upper part of the wave. Thus, according to the above formula,
the pressure p increases in the direction of wave propagation in the
upper part of the wave. In contrast, in the lower part of the wave (red
part), the Lagrangian acceleration Du

Dt is positive so that the pressure
decreases in the direction of wave propagation.

These findings can be explained by looking at the free surface
condition with capillarity. Indeed, the balance of forces is written in
terms of the fluid pressure p, the atmospheric pressure pa, the free
surface excursion η, and the capillary parameter τ as

p − pa = −τ ∂2η/∂x2
[1 + (∂η/∂x)2]3/2 .

This formula clearly shows that near the head of the wave, where the
free surface is convex, the fluid pressure is above atmospheric (i.e.,
the gauge pressure p − pa is positive), while near the bottom of the
wave, the fluid pressure is below atmospheric since the free surface
is concave.

Thus, as indicated in Fig. 6, there is an acceleration of fluid par-
ticles on the free surface, while particles behind the leading front of

TABLE II. Breaking onset parameter B = u/c as a function of time t.

t (s) 2.656 2.661 2.666 2.671 2.676

B 0.75 0.77 0.78 0.84 0.87

the wave are decelerated. Moreover, together, these pressure condi-
tions also lead to acceleration of fluid particles near the middle of the
leading front in the negative y-direction. After carefully analyzing
the data using HSPIV method, it was indeed found that the internal
velocity field under the head of the wave develops negative vertical
velocity components (see Fig. 7).

IV. COMPARISON WITH THE BOUSSINESQ MODEL
As there are no closed-form solutions of solitary waves propa-

gating and breaking on a slope, the experimental data will be com-
pared to simulations done with a Boussinesq model. There are some
theoretical works providing nearly closed-form solutions for stand-
ing waves on a slope (see Refs. 10, 13, and 50), but in the present
situation, numerical simulation is the only reasonable choice.

FIG. 6. This schematic explains the acceleration experienced by various fluid parti-
cles. Due to the curvature of the free surface, there is an excess pressure near the
head of the wave and a pressure deficit near the toe of the wave. These pressure
differentials cause fluid particles to be accelerated in different directions.

Phys. Fluids 31, 113602 (2019); doi: 10.1063/1.5124038 31, 113602-5

© Author(s) 2019



Physics of Fluids ARTICLE scitation.org/journal/phf

FIG. 7. Vertical velocity behind a wavefront in a solitary wave shoaling on a 1:20
slope. Incipient breaking stage at t = 2.679 s.

A. Model description
The Boussinesq Ocean and Surf Zone (BOSZ)model is a phase-

resolving Boussinesq-type model for the computation of nearshore
waves, wave-driven currents, infragravity oscillations, and ship wake
waves (see, for example, Refs. 16, 32, 46, and 47). The governing
equations are based on a conserved variable formulation of Ref. 41.
The numerical solution handles the nonlinear shallow water part
of the governing equations with a finite-volume scheme based on
a total-variation diminishing (TVD) reconstruction method of up to
5th order and a Riemann solver. This combination ensures robust
and accurate computation of fast flows over irregular terrain includ-
ing moving boundaries (wet/dry cell interfaces). The frequency dis-
persion terms are based on a central-difference scheme of second
order. Time integration is carried out with an adaptive Runge-
Kutta time-stepping scheme, allowing up to 4th order accuracy.
For most computations, such as this test case, a 2nd order time
integration is sufficient; however, some problems with more dis-
persive waves require at least a 3rd order integration scheme. Due
to the presence of space-time derivatives of the evolution vari-
ables in the momentum equations, systems of equations have to
be solved to extract the flow speed at the end of each time step.
The two systems are directionally independent of each other with

data-dependencies arising only in the x- or the y-directions, respec-
tively. The bottom friction is accounted for through the widely
used Manning-Strickler formula based on a roughness coefficient,
which represents the surface property of the experimental layout.
Here, we choose n = 0.012s/m1/3 to match the smooth laboratory
slope.

The input waves are generated at the left boundary in various
forms. For the present case, the solitary wave was generated in two
ways: (a) with an analytical solution at the boundary and (b) by
feeding a time series from the wave gauge through the boundary.
The flow velocity at the boundary is set by long wave theory in the
form u = η

√
g/h0. As shown in Fig. 8, both methods have led to

near-perfect replication of the input wave conditions.

B. Reduction of dispersion based on the free-surface
Froude number

As the flow depth becomes very shallow on the slope, wave
breaking has to be incorporated locally into the Boussinesq model.
As Boussinesqmodels do not have an inherent wave-breakingmech-
anism, a numerical criterion needs to be used in order to maintain
stability. The strategy used here is based on the free surface Froude-
number Fr, which can be determined from the free surface flow
velocities. The governing equations allow for calculation of the flow
velocity at any position in the water column based on the horizon-
tal velocities and under the assumption of a predescribed quadratic
velocity profile used in the derivation of the Boussinesq system.

We know that for Fr > 1, the flow becomes supercritical and
bores can develop. Therefore, if the free surface Froude-number
exceeds 1.0, the dispersion terms are locally and momentarily set to
zero, i.e., the solution reduces to the hyperbolic nonlinear shallow-
water equations in the cells around the wave breaking front. The
local Froude number at the free surface is determined by

Frloc = √
u2y=η/√g(h0 + η),

where the velocity at the free surface is given by the quadratic pro-
file, which arises from the Taylor series expansion of the horizontal
velocity which is usually employed in Boussinesq type models.41

Since the model code checks for the Fr-number criterion at each
time step, the solution at the wavefront can dynamically switch

FIG. 8. Comparison between the numer-
ical solution from BOSZ and the exper-
imental data for the free surface eleva-
tion at the two wave gauges (−150 cm
and 0 cm, respectively; see Fig. 1 for the
layout).
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between the full Boussinesq-type solution and the hydrostatic non-
linear shallow-water equations. Similar methods for the detection
and treatment of wave breaking were tested in Refs. 4, 5, 9, and
27 and compared to data from Refs. 21, 50, and 55. In particular,
this is in contrast to the typical wave steepening observed in hyper-
bolic models.44 One may also use the quadratic ansatz used in many
Boussinesq models to reconstruct the velocity profile at any point
in the fluid column (see Ref. 11, for example), though better results
would be expected using higher-order reconstructions (see Ref. 54)
or full Euler or Navier-Stokes equations.26,8

C. Comparison
Considering the results over the small PIV window, the BOSZ

model computes the shape of the collapsing bore reasonably well.
Particular snapshots show very good agreement (see Fig. 9). The
wave steepness depends mostly on the grid spacing. Δx = 0.50 cm
shows good agreement, whereas Δx = 0.75 cm and Δx = 0.25 cm
lead to a slightly gentler and steeper bore front. In more detail, note

that within FOV1 shown in Fig. 9, the BOSZ code essentially solves
a shallow-water system due to the breaking criterion switching off
the dispersive parts. While the numerical solver does not feature
molecular viscosity, it features numerical dissipation, and it appears
that with a grid size of Δx = 0.75 cm, there is just the right amount
of dissipation to slow the hyperbolic steepening so that very good
agreement with the experimental data is obtained (see the leftmost
curve in the lower panel of Fig. 9). On the other hand, the numer-
ical model does not incorporate capillarity, which is the reason for
the poor agreement with the experimental data in the rightmost
curve in the lower panel of Fig. 9. With decreasing grid size, Δx
= 0.5 cm and Δx = 0.25 cm, the numerical dissipation weakens and
more pronounced hyperbolic steepening is observed in the numer-
ical solutions. This choice yields a simulation which is closer to the
hyperbolic nature of the equations to be solved, but the comparison
with the experimental data is not as good (see the leftmost curves in
upper and middle panels of Fig. 9). However, this choice leads to a
better comparison with the capillary region further up the slope as
can be seen in the rightmost curves in the upper and middle panels

FIG. 9. Comparison of the free surface envelope from
experimental data with the numerical computation from the
BOSZ code. Upper panel: Δx = 0.25 cm; middle panel: Δx
= 0.50 cm; lower panel: Δx = 0.75 cm. The blue curves
represent solutions from BOSZ, and the red curves show
the free surface derived from video images of experimental
data. The code is able to give overall correct answers for
the wave transformation and runup. Details in the structure
of the wavefront and wave toe differ from the data, probably
due to the lack of capillarity in the governing equations of
BOSZ.
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FIG. 10. Reconstruction of the velocity
field from the numerical solution of the
BOSZ model with grid size Δx = 0.5 cm.

of Fig. 9. The velocity field can be reconstructed using the quadratic
ansatz inherent in the Boussinesq model. An example is shown in
Fig. 10. As can be seen in this Fig. 10, the intricate features of the
velocity field due to capillarity at the bore front are not captured by
the Boussinesq model. This is to be expected as capillarity is not part
of the Boussinesq model since it is generally a long-wave model.

D. Wave runup
The measured maximum run-up height for 14 cm still water

depth and waveheight to water depth ratio being 0.08 is R
= 3.154 cm. With n = 0.012s/m1/3, the computed maximum runup
agrees exactly with the measured runup of 3.154 cm. The com-
puted maximum runup is the highest cell on the straight slope that
was wet at any time during the computation. This corresponds to a
minimum water depth of 0.001 cm.

V. CONCLUSION
In a certain sense, one may view collapsing breakers as a hybrid

between a plunging and a surging breaker. In a surging breaker, the
steep slope provides a strong force in the negative x-direction (i.e.,
in the direction opposed to the propagation of the wave). This force
is indeed strong enough to slow the wave, eventually arresting the
wave motion without breaking.

In a spilling breaker, the slope is comparatively gentler, the
force in the negative x-direction comparatively smaller, and the
waveheight comparatively larger. As a result, the fluid motion in the
lower half of the wave is inhibited while the force distributed through
the fluid from the sloping bottom is not strong enough to arrest the
fluid motion in the upper half of the wave. Thus, the upper half of
the wave overtakes the lower half, leading to the well known forma-
tion of a jet. As the leading part of the jet feels gravity and starts to
fall, a reconnection with the lower part of the wave is formed, and
wave breaking ensues.

The collapsing breaker appears to represent a balance where the
pressure forces provided by the slope are strong enough to slow the
fluid motion in the whole of the wave, but not strong enough to pre-
vent it from breaking. As a result, one may observe something which
resembles an “internal plunging breaker.” This observation is most
apparent when looking at camera footage from the PIV system, but
can also be observed in Fig. 7.

Since a delicate balance between the bottom slope and the wave-
height is required, collapsing breakers are not widely observed in the
field. Nevertheless, there are accounts of collapsing breakers in the
literature. For example, a photograph of a collapsing breaker is given
on page 56 in Ref. 45. The importance of capillarity is usually gauged
by looking at the Bond number ρgL2/τ, for a length scale L. For large
breakers such as the one shown in Ref. 45, the Bond number is large,
and capillarity is not expected to play a decisive role.

On the other hand, the distinctive features of a collapsing
breaker at the laboratory scale such as those discussed in the present
paper are provided by capillarity. As shown in Fig. 4, the Lagrangian
acceleration in the x direction is negative near the head of the wave
and positive in the lower part. Using the horizontal momentum bal-
ance, this finding can be explained by capillary effects on the fluid
pressure. In particular, capillarity contributes to excess pressure at
the leading edge of the wave and a pressure deficit at the wave toe.
Such pressure anomalies can sometimes be achieved in the presence
of strong shear (cf. Ref. 2), but in the present case, capillarity appears
to be the dominant effect.

The shape of the free surface of the collapsing breaker can be
reasonably well approximated with a Boussinesq model. The BOSZ
model used in this study was able to predict the main features of
the free surface profile. On the other hand, the omission of capil-
lary effects and the reliance of a quadratic velocity profile limit the
applicability of the Boussinesq model to simulate the internal flow
structure of the collapsing breaker at a laboratory scale.

From an operational point of view, capillarity has not been
shown to be a major factor in coastal dynamics or the develop-
ment of beach morphology, but it may be important in small-scale
wave breaking, for example, in small parasitic breakers riding on
the top of larger waves (see Ref. 40 and the references contained
therein) or in smaller breakers occurring in the uprush on the
beach.

The wave breaking in the experiment reported in here has
been shown to occur at values of the breaking onset parameter B as
defined in Ref. 7 which are close to the values indicated in Refs. 7 and
17. As the breaking criterion defined in these papers has been tested
in deep and intermediate depths, it will be interesting to conduct fur-
ther work exploring the relation between the breaking onset parame-
ter B and the details of the wave breaking process in a larger number
of cases in shallow water, and, in particular, in flows dominated by
capillarity.
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It should be noted that capillarity also comes to the fore in
breaking waves at small scales in various other settings. For example,
wave breaking in a two-phase flow in circular pipes has been studied
recently in Ref. 53. Another interesting further problem will be to
understand the generation of vorticity in the wave breaking process
and the ensuing eddy motion.

ACKNOWLEDGMENTS
This research was supported in part by the Research Council

of Norway and the European Union’s Horizon 2020 research and
innovation programme. P.G. was supported in part by the National
Science Foundation, USA (Grant No. DMS-1615480). V.R. acknowl-
edges financial support from the Isite program Energy and Envi-
ronment Solutions (E2S), the Communauté d’Agglomération Pays
Basque (CAPB), and the Communauté Région Nouvelle Aquitaine
(CRNA) for the chair position HPC-Waves. J.-M.Y. was supported
in part by the Ministry of Science and Technology, Taiwan (Grant
Nos. MOST 106-2115-M-126-003 and MOST 107-2115-M-126-
004). W.-Y.W., C.L., and M.-J.K. were supported in part by the
Ministry of Science and Technology, Taiwan (Nos. 105-2221-E-005-
033-MY3 and 106-2221-E-005-045-MY3).

REFERENCES
1R. J. Adrian and J. Westerweel, Particle Image Velocimetry (Cambridge Univer-
sity Press, New York, 2011).
2A. Ali and H. Kalisch, “Reconstruction of the pressure in long-wave models with
constant vorticity,” Eur. J. Mech., B: Fluids 37, 187–194 (2013).
3A. Babanin, Breaking and Dissipation of Ocean Surface Waves (Cambridge
University Press, 2011).
4P. Bacigaluppi, M. Ricchiuto, and P. Bonneton, “Upwind stabilized finite ele-
ment modelling of non-hydrostatic wave breaking and run-up,” hal-00990002,
2014.
5P. Bacigaluppi, M. Ricchiuto, and P. Bonneton, “Implementation and evaluation
of breaking detection criteria for a hybrid Boussinesq model,” Water Waves (to be
published); e-print arXiv:1902.03021 (2019).
6M. L. Banner and D. H. Peregrine, “Wave breaking in deep water,” Annu. Rev.
Fluid Mech. 25, 373–397 (1993).
7X. Barthelemy,M. L. Banner,W. L. Peirson, F. Fedele, M. Allis, and F. Dias, “On a
unified breaking onset threshold for gravity waves in deep and intermediate depth
water,” J. Fluid Mech. 841, 463–488 (2018).
8A. Berchet, B. Simon, A. Beaudoin, P. Lubin, G. Rousseaux, and S. Huberson,
“Flow fields and particle trajectories beneath a tidal bore: A numerical study,” Int.
J. Sediment. Res. 33, 351–370 (2018).
9M. Bjørkavåg and H. Kalisch, “Wave breaking in Boussinesq models for undular
bores,” Phys. Lett. A 375, 1570–1578 (2011).
10M. Bjørnestad and H. Kalisch, “Shallow water dynamics on linear shear flows
and plane beaches,” Phys. Fluids 29, 073602 (2017).
11H. Borluk andH. Kalisch, “Particle dynamics in the KdV approximation,”Wave
Motion 49, 691–709 (2012).
12M. K. Brun and H. Kalisch, “Convective wave breaking in the KdV equation,”
Anal. Math. Phys. 8, 57–75 (2018).
13G. F. Carrier andH. P. Greenspan, “Water waves of finite amplitude on a sloping
beach,” J. Fluid Mech. 4, 97–109 (1958).
14W. Craig, P. Guyenne, J. Hammack, D. Henderson, and C. Sulem, “Solitary
water wave interactions,” Phys. Fluids 18, 057106 (2006).
15C. W. Curtis and H. Kalisch, “Vortex dynamics in nonlinear free surface flows,”
Phys. Fluids 29, 032101 (2017).
16C. G. David, V. Roeber, N. Goseberg, and T. Schlurmann, “Generation and
propagation of ship-borne waves—Solutions from a Boussinesq-type model,”
Coastal Eng. 127, 170–187 (2017).

17M. Derakhti, M. L. Banner, and J. T. Kirby, “Predicting the breaking strength
of gravity water waves in deep and intermediate depth,” J. Fluid Mech. 848, R2
(2018).
18J. H. Duncan, “Spilling breakers,” Annu. Rev. Fluid Mech. 33, 519–547 (2001).
19J. H. Duncan, V. Philomin,M. Behres, and J. Kimmel, “The formation of spilling
breaking water waves,” Phys. Fluids 6, 2558–2560 (1994).
20N. Ebuchi, H. Kawamura, and Y. Toba, “Fine structure of laboratory wind-wave
surfaces studied using an optical method,” Boundary-LayerMeteorol. 39, 133–151
(1987).
21H. Favre, Ondes de Translation (Dunod, Paris, 1935).
22C. J. Galvin, “Breaker type classification on three laboratory beaches,” J. Geo-
phys. Res. 73, 3651–3659, https://doi.org/10.1029/jb073i012p03651 (1968).
23D. G. Goring, “Tsunami: The propagation of long waves onto a shelf,” Teach-
nical Report No. KH-R-38, W. M. Keck Laboratory of Hydraulics and Water
Resources, California Institute of Technology, Pasadena, California, USA, 1978.
24S. T. Grilli, P. Guyenne, and F. Dias, “A fully non-linear model for three-
dimensional overturning waves over an arbitrary bottom,” Int. J. Numer. Methods
Fluids 35, 829–867 (2001).
25S. T. Grilli, I. A. Svendsen, and R. Subramanya, “Breaking criterion and charac-
teristics for solitary waves on slopes,” J. Waterw., Port, Coastal Ocean Eng. 123,
102–112 (1997).
26P. Guyenne and S. Grilli, “Numerical study of three-dimensional overturning
waves in shallow water,” J. Fluid Mech. 547, 361–388 (2006).
27S. Hatland and H. Kalisch, “Wave breaking in undular bores generated by a
moving bottom,” Phys. Fluids 31, 033601 (2019).
28A. Jensen, G. K. Pedersen, and D. J. Wood, “An experimental study of wave
run-up at a steep beach,” J. Fluid Mech. 486, 161–188 (2003).
29H. Kalisch, M. Ricchiuto, P. Bonneton, M. Colin, and P. Lubin, “Introduction
to the special issue on breaking waves,” Eur. J. Mech., B: Fluids 73, 1–5 (2019).
30A. Khait and L. Shemer, “On the kinematic criterion for the inception of
breaking in surface gravity waves: Fully nonlinear numerical simulations and
experimental verification,” Phys. Fluids 30, 057103 (2018).
31K. T. Kiger and J. H. Duncan, “Air entrainment mechanisms in plunging jets
and breaking waves,” Annu. Rev. Fluid Mech. 44, 563–596 (2012).
32N. Li, Y. Yamazaki, V. Roeber, K. F. Cheung, and G. Chock, “Probabilistic map-
ping of storm-induced coastal inundation for climate change adaptation,” Coastal
Eng. 133, 126–141 (2018).
33C. Lin, P. H. Yeh, S. C. Hseih, Y. N. Shih, L. F. Lo, and C. P. Tsai, “Prebreaking
internal velocity field induced by a solitary wave propagating over a 1:10 slope,”
Oceanic Eng. 80, 1–12 (2014).
34C. Lin, P. H. Yeh, M.-J. Kao, M. H. Yu, S. C. Hseih, S. C. Chang, T. R. Wu, and
C. P. Tsai, “Velocity fields in near-bottom and boundary layer flows in pre-
breaking zone of solitary wave propagating over a 1:10 slope,” J. Waterw., Port,
Coastal, Ocean Eng. 141, 04014038 (2015).
35C. Lin, M.-J. Kao, G. W. Tzeng, W.-Y. Wong, J. Yang, R. V. Raikar, T. R. Wu,
and P. L. F. Liu, “Study on flow fields of boundary-layer separation and hydraulic
jump during rundown motion of shoaling solitary wave,” J. Earthquake Tsunami
9, 1540002 (2015).
36C. Lin, S. M. Yu, W.-Y. Wong, G. W. Tzeng, J.-W. Kao, P. H. Yeh, R. V. Raikar,
J. Yang, and C. P. Tsai, “Velocity characteristics in boundary layer flow caused by
solitary wave traveling over horizontal bottom,” Exp. Therm. Fluid Sci. 76, 238–
252 (2016).
37M. S. Longuet-Higgins, “Capillary jumps on deep water,” J. Phys. Oceanogr. 26,
1957–1965 (1996).
38P. Lubin and H. Chanson, “Are breaking waves, bores, surges and jumps the
same flow?,” Environ. Fluid Mech. 17, 47–77 (2017).
39W.K.Melville, “The role of surface-wave breaking in air-sea interaction,” Annu.
Rev. Fluid Mech. 28, 279–321 (1996).
40S. Murashige and W. Choi, “A numerical study on parasitic capillary
waves using unsteady conformal mapping,” J. Comput. Phys. 328, 234–257
(2017).
41O. Nwogu, “Alternative form of Boussinesq equations for nearshore wave
propagation,” J. Waterw., Port, Coastal Ocean Eng. 119, 618–638 (1993).
42D. H. Peregrine, “Breaking waves on beaches,” Annu. Rev. Fluid Mech. 15,
149–178 (1983).

Phys. Fluids 31, 113602 (2019); doi: 10.1063/1.5124038 31, 113602-9

© Author(s) 2019



Physics of Fluids ARTICLE scitation.org/journal/phf

43M. Perlin, W. Choi, and Z. Tian, “Breaking waves in deep an intermediate
waters,” Annu. Rev. Fluid Mech. 45, 115–145 (2013).
44Y. Pomeau, M. Le Berre, P. Guyenne, and S. Grilli, “Wave-breaking and
generic singularities of nonlinear hyperbolic equations,” Nonlinearity 21, T61–
T79 (2008).
45F. Raichlen,Waves (MIT Press, Cambridge, MA, 2012).
46V. Roeber and J. D. Bricker, “Destructive tsunami-like wave generated by surf
beat over a coral reef during Typhoon Haiyan,” Nat. Commun. 6, 7854 (2015).
47V. Roeber and K. F. Cheung, “Boussinesq-type model for energetic breaking
waves in fringing reef environments,” Coastal Eng. 70, 1–20 (2012).
48V. Roeber, K. F. Cheung, and M. H. Kobayashi, “Shock-capturing Boussinesq-
type model for nearshore wave processes,” Coastal Eng. 57, 407 (2010).
49Y.-M. Scolan and P.-M. Guilcher, “Wave kinematics in a two-dimensional
plunging breaker,” Water Waves (published online).

50C. E. Synolakis, “The runup of solitary waves,” J. Fluid Mech. 185, 523–545
(1987).
51M. Tanaka, “The stability of solitary waves,” Phys. Fluids 29, 650–655
(1986).
52C. P. Tsai, H. B. Chen, H. H. Hwung, and M. J. Huang, “Examination of empir-
ical formulas for wave shoaling and breaking on steep slopes,” Oceanic Eng. 32,
469–483 (2005).
53P. Vollestad, A. A. Ayati, and A. Jensen, “Microscale wave breaking in stratified
air-water pipe flow,” Phys. Fluids 31, 032101 (2019).
54G. Wei, J. T. Kirby, S. T. Grilli, and R. Subramanya, “A fully nonlinear Boussi-
nesq model for surface waves. Part 1. Highly nonlinear unsteady waves,” J. Fluid
Mech. 294, 71–92 (1995).
55D. L. Wilkinson and M. L. Banner, “Undular bores,” in 6th Australian
Hydraulics and Fluid Mechanics Conference, Adelaide, Australia.

Phys. Fluids 31, 113602 (2019); doi: 10.1063/1.5124038 31, 113602-10

© Author(s) 2019





Paper E

Wave Breaking in Undular Bores with

Shear Flows

M. Bjørnestad, H. Kalisch, M. Abid, C. Kharif and M. Brun

Water Waves (2021), 1–18.





Water Waves
https://doi.org/10.1007/s42286-020-00046-6

ORIG INAL ART ICLE

Wave Breaking in Undular Bores with Shear Flows

Maria Bjørnestad1 · Henrik Kalisch1 ·Malek Abid2 · Christian Kharif2 ·
Mats Brun3

Received: 27 April 2020 / Accepted: 16 November 2020
© The Author(s) 2021

Abstract
It is well known that weak hydraulic jumps and bores develop a growing number
of surface oscillations behind the bore front. Defining the bore strength as the ratio
of the head of the undular bore to the undisturbed depth, it was found in the classic
work of Favre (Ondes de Translation. Dunod, Paris, 1935) that the regime of laminar
flow is demarcated from the regime of partially turbulent flows by a sharply defined
value 0.281. This critical bore strength is characterized by the eventual breaking of
the leading wave of the bore front. Compared to the flow depth in the wave flume,
the waves developing behind the bore front are long and of small amplitude, and it
can be shown that the situation can be described approximately using the well known
Kortweg–de Vries equation. In the present contribution, it is shown that if a shear
flow is incorporated into the KdV equation, and a kinematic breaking criterion is used
to test whether the waves are spilling, then the critical bore strength can be found
theoretically within an error of less than ten percent.

Keywords Undular bore · Wave breaking · Shear flow · KdV equation

1 Introduction

A river bore is an upriver-propagating transition between different flow depths which
is generally caused by tidal forces. Similar flows can also be realized in controlled
environments such as wave flumes, and a number of studies have been conducted to
understand the main features of bores. In particular, in Favre’s work [21] a dedicated
series of laboratory experiments and matching theory based on the shallow-water
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Saint-Venant equations is described. Favre’s experimental results have been exam-
ined theoretically from a number of angles. For example, the initial formation of the
free-surface oscillations was explained from a physical perspective in [37,43], the
interaction of bores was considered in [9], and the breaking of the leading oscillations
in the bore was considered in [10,14,22,30]. Recent laboratory experiments revealing
intricate properties of undular bores are detailed in [34,35], and a numerical study of
the flow structure is given in [8].

Of particular interest in the present article is the critical bore strength dividing
the regime of laminar flow from the regime of partially turbulent flow. To explain
the situation, assume without loss of generality that the downstream flow depth is
the undisturbed depth in the wave flume, say h0, and the incident depth is a0 + h0.
Defining the bore strength by the ratio a0/h0, it was found in [21] that there are three
main bore types. If the bore strength is below 0.281, the flow is laminar, and since in
this case, none of the waves are breaking, this case is termed the purely undular bore.
If the ratio α = a0/h0 exceeds 0.281, then the leading wave behind the transition front
starts to break, and while the flow still features oscillations, there is some turbulence
associated with the breaking waves. If the ratio exceeds 0.75, a fully turbulent bore
appears.

The main purpose of the current paper is to demonstrate that the critical ratio found
by Favre [21] can also be predicted using fairly simple nonlinear model equations such
as the KdV equation in connection with a kinematic (or sometimes called convective)
breaking criterion which defines the onset of breaking as the point when the horizontal
component of the particle velocity exceeds the crest velocity. In effect, if we let the
fluid particle velocity at the leading wavecrest of the bore be U = U (x, η(x, t), t),
and the local phase velocity of the wavecrest be C , then the wave starts spilling when
U/C > 1. The kinematic wave breaking criterion is one of the simplest diagnostics
for predicting the onset of wave breaking (see [28,49] and the references therein), and
has been shown to work well in a number of situations [25,27,29].

To study an undular bore in the context of the KdV equation, one needs to be able
to pose a boundary-value problem where the incident-free surface level is imposed at,
say, the left end of the domain, and the undisturbed level is imposed at the right end
of the domain.1 (see Fig. 1, left panel). Such a model has been developed for instance
in [14,42]. One can then evaluate the free surface numerically, and reconstruct the
velocity field in the fluid column using the traditional asymptotic expansion of the
velocity potential as an asymptotic Taylor series in powers of the vertical coordinate
[51]. If the wave crest velocity is also evaluated numerically, then the convective
criterion can be tested as an indication of whether the wave starts breaking or not.

Previous studies using thiswave-breaking criterion in connectionwith aBoussinesq
system and the KdV equation gave good qualitative results, but were not quantitatively
convincing. In particular, the critical ratio was found to be a0/h0 ∼ 0.379 in [10] using
a Boussinesq system, and a0/h0 ∼ 0.353 in the context of the KdV equation [14].

A possible improvement on these results may be obtained from the inclusion of
vorticity into the description. Indeed, it is by now well known that vorticity can have a

1 While a river bore is generally propagating upstream, in the current work we use the convention that
upstream describes the end of the wave flume where the inflow if imposed, and that the bore is propagating
downstream.
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Fig. 1 Left panel: definition sketch for undular bore. The bore front propagates at velocity C . The arrows
indicate the vertical distribution of the horizontal velocity u(x, z, t) below the maximum surface displace-
ment. Right panel: the critical amplitude a0 dividing the purely undular case from the case where the
leading wave features wave breaking graphed against the undisturbed depth h0. The slope of the curves is
the non-dimensional critical bore strength. The value α = 0.281 was found in Favre’s experimental work
[21]. The value α = 0.379 was found in a previous work [10], the value α = 0.353 was found in [14], and
the value α = 0.307 is found in the present work

significant effect on the properties of surface waves (see for example [1,30,38,41,48]
and references therein). One simple configuration is the case of a linear shear flow
such as used in [48]. In particular in the case of long waves, this configuration is
expected to capture many features of more general flows (see [17]), and it is our aim
in the present work to determine whether the agreement with the experimental results
of Favre may be improved by incorporating a constant shear flow into the governing
equation. Indeed, the existence of vorticity in a similar situation was found in [26],
and a mathematical inquiry into Favre’s results also suggested that vorticity might
be present in such flows [30]. To get an idea of the strength of vorticity in Favre’s
experiments, we derive a KdV equation in the presence of a linear shear flow. We then
run a numerical simulation of an undular bore and try to match the wavelength of the
oscillations of the numerical approximation of theKdVequationwith the experimental
wavelengths reported by Favre. This procedure leads to an estimate for the vorticity
� which is then used in simulations aimed at finding the critical bore ratio by testing
the leading wave for incipient breaking. The approach outlined above yields a critical
bore strength a0/h0 ∼ 0.307 which is within 9% of the experimental ratio of 0.281.

The plan of the paper is as follows. In the next section, the experiments of Favre
are explained in some detail. Then in Sect. 3, the KdV equation with a shear flow
is explained. Section 4 contains some comments about the numerical approach, and
Sect. 5 describes the results of our numerical simulations. Finally, Sect. 6 contains
a brief discussion which puts our findings into context with respect to some recent
studies on breaking waves.

2 The Experiments of Favre

Favre (1935) conducted a series of experiments on undular bores in an open wave tank
at the Hydraulic Laboratory of Ecole Polytechnique Fédérale of Zurich. The wave
channel of rectangular cross section was 75.58 m long, 0.42 m wide and 0.40 m deep.
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Fig. 2 Definition sketch for the experimental setup of Favre

Some experiments were performed with a horizontal tank and some were performed
with a slightly inclined tank. Herein, we consider only experiments in the horizontal
wave tank. The tank was supplied by a water tower of constant water level through a
pipe C1. The water tower was supplied by fixed reservoirs located in the laboratory
attic through a pipeC2. A third pipeC3 was used to drain off the excess of water of the
tower. The water level of the tower remained constant as long as the flow from C2 was
larger than that of C1. The excess water was drained off via C3 to a reservoir located
in the laboratory basement, and then returned by pumps to the reservoirs located in
the attic. The water flow from C1 was adjusted by a valve operated by a servo-motor.
The pipe C2 included a device that allowed the determination of the flow from the
water tower. At the end of the tank was a sluice gate that allowed control of the water
discharge and full closing of the end of the tank. Beyond the sluice gate, the water
was discharged in the same reservoir in the basement as mentioned above. With this
setup, it was possible to tune the system so as to guarantee a constant inflow into the
wave tank and adjust the inflow to create bores of varying strength. A schematic of
the setup just described is shown in Fig. 2.

Three measuring and recording devices were used: (1) six vertical scales located
in the longitudinal axial plan of the tank and distributed along the tank every 12 m
were used for measuring the water level at rest or in motion. The accuracy was on the
order of one to two tenths of a millimeter. (2) To record the fluctuations of the free
surface at the six locations Favre used pressure head (Pitot) tubes whose meniscus
positions were recorded on sensitive paper exposed to light. An optical apparatus
consisting of a prism, a lens, an electric lamp and a mirror was used to record the
meniscus position. (3) The variations of the front of the undular bores were measured
differently. The measurements were based on photos taken with exposure time of
approximately 1/100 s.
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Preliminary experiments were conducted to calibrate the devices. Undular bores
were generated by a sudden variation of the flow at the upstream end of the tank. Favre
performed a series of 30 experiments on undular bores on still water, grouped in three
series corresponding to three different initial constant water depths (0.205 m, 0.155 m
and 0.1075 m). A spillway plate was placed at the downstream end of the tank whose
height was fixed to the desired depth, then the tank was filled through C1 until the
water overflowed the spillway plate. Water filling was stopped and 20 min later the
water level was stabilized at the height of the spillway plate.

The water flow was determined as a function of the valve displacement (see Figure
38 of Favre [21]). The water flowing into the tank generated an undular bore with a
front consisting of a series of undulations whose number increased with the distance of
propagation. To make the free surface easily visible, Favre sprinkled aluminum saw-
dust on the free surface and scattered confetti soaked with black ink. These measures
made the free surface clearly visible on photographs. Favre photographed 21 fronts
of undular bores: (1) 6 of the first series of experiments (nos. 2, 4, 6, 8, 10, 12; depth
0.205 m); (2) 6 of the third series of experiments (nos. 21, 22, 23, 24 , 26, 29; depth
0.1075 m); (3) 8 of the sixth series and one of the seventh series of experiments, which
correspond to inclined tank. In the present work, we consider two cases of the third
series of experiments, and the results of numerical simulations of experiments no. 22
and no. 23 are presented in Sect. 5.

The fronts of the undular bores were photographed when the crest of the first
undulation was located at 64.78 m and 64.60 m from the upstream end of the tank
for experiments no. 22 and no. 23, respectively. Recall that Favre introduced the bore
strength parameter a0/h0, where a0 was the mean height of the head of the undular
bore (see Figure 41 of Favre [21]) and h0 was the initial water depth where the first
crest of the undular bore was photographed. Bore strength values corresponding to
experiments no. 22 and no. 23 are given in Sect. 5. Favre found that for weak values
of bore strength the bore undulations were almost sinusoidal, whereas for high values
they became cnoidal (experiments nos. 22, 23, 24).

In experiments no. 22 and no. 23, no wave breaking was observed. In experiment
no. 24, the leading wave exhibited spilling breaking after traveling a considerable
distance. Experiments no. 26 and no. 29 featured wave breaking after the front of the
bore had traveled a shorter distance. Breaking and non-breaking cases can be clearly
identified by observing the maximum height of the leading wave. Experimental results
based on Favre’s data shown in Figure 49 of [21] are plotted in Fig. 3. It is apparent that
the maximum height of the leading wave increases with increasing bore strength, up to
a maximum of 2.06 times the incident depth a0. That maximum occurs in experiment
no. 24 which corresponds to a0/h0 = 0.281. As shown in these figures, experiments
with higher bore strength feature earlier breaking and much lower wave heights for
the leading wave.

As already stated above, the main purpose of the present work is to explore whether
the critical bore strength can be found using fairly simple wave models such as the
KdV equation. In the next section, the KdV equation will be derived in the presence
of a shear flow, and then numerical simulations will be presented which suggest that
the critical ratio can be found to within 9% error.
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Fig. 3 Wave height H1 of the leading wave—normalized by a0—as a function of the bore strength a0/h0.
The experimental data are taken from Figure 49 in [21]. Legend: o - undisturbed depth h0 = 0.205 m, � -
undisturbed depth h0 = 0.1075m

3 The KdV Equation in the Presence of Shear Flows

Consider a fluid contained in a long channel of unit width and depth h0. The surface
water-wave problem is generally described by the Euler equations with slip conditions
at the bottom, and kinematic and dynamic boundary conditions at the free surface. We
fix a coordinate system by aligning the x-axis with the undisturbed free surface, and
suppose the fluid domain extends along the entire x-axis. It is assumed that the fluid
is inviscid, incompressible and of unit density, the bottom of the channel is flat, and
the wave motion transverse to the x-axis can be neglected.

With the assumption of irrotational flow and using the incompressibility of the fluid,
the two-dimensional Euler equations can be written in terms of the Laplace equation
for a velocity potential φ, and the boundary conditions at the free surface are given in
terms of φ and the surface excursion η(x, t) by

ηt + φxηx − φz = 0, on z = η(x, t) ,

φt + 1
2

(
φ2
x + φ2

z

) + gη = 0, on z = η(x, t) ,

where g is the gravitational acceleration.
As is well known, this problem is difficult to treat both mathematically and numer-

ically, and in practical situations, an asymptotic approximation of the Euler equations
is often used. In the case at hand, we have long waves of small to moderate ampli-
tude on a shallow fluid, and it appears that theses waves fall approximately into the
Boussinesq scaling regime. Moreover, the waves travel only in one direction down the
length of the wave flume, so that an appropriate asymptotic model to be used is the
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KdV equation, given in dimensional form by

ηt + c0 ηx + 3
2
c0
h0

η ηx + 1
6c0h

2
0 ηxxx = 0.

Here, c0 = √
gh0 is the limiting long-wave speed, whereas already mentioned, where

g is the gravitational acceleration and h0 is the undisturbed depth.
The KdV equation features both nonlinearity and dispersion, and the balance of

these two effects gives rise to both solitary-wave solutions and periodic traveling
waves [31]. The equation is known to give a good description of the evolution of
unidirectional surface water waves in the case when the waves are long compared to
the undisturbed depth h0 of the fluid, the average amplitude of the waves is small when
compared to h0 and transverse effects are negligible [12,16,32]. In the derivation of
the KdV equation, the potential is written asymptotically as

φ = f − z2
2 fxx , (1)

where f (x, t) represents an approximation to the velocity potential evaluated at the
bottom. In addition, the assumption of wave propagation in the direction of increasing
x values (to the right) leads to the relation

fx = g
c0

{
η − 1

4h0
η2 + h20

3 ηxx

}
. (2)

Using (1) and (2) shows that the horizontal velocity can be expressed to second order
as

u(x, z, t) = φx (x, z, t) = g

c0

{
η − 1

4h0
η2 + h20

(
1

3
− z2

2

)
ηxx

}
.

That means if a solution η of the KdV equation is given either in closed form or
numerically, the horizontal particle velocity can always be found at any point in the
fluid column. For more details, the reader may consult [2,51]. In the case at hand, the
velocity is evaluated at the free surface so that the breaking criterion can be tested.
Using this approach, the authors of [14] found that the critical bore strength was
α = 0.353, improving earlier work where a Boussinesq model was used [10]. In the
present work, we will incorporate a background shear flow to further improve the
comparison.
In the presence of background vorticity, the horizontal velocity field may be defined
as U (x, z, t) = u(x, z, t) − (z + h0)� (see Fig. 4). Model equations of KdV and
Boussinesq type for surface waves in the presence of background shear can be derived
in a similar fashion as in the irrotational case. The reader may consult for example
[15,40,46,54]. Except for a minor modification, the equation to be used in the present
studywas derived in [40]. For background shear such as shown inFig. 4, the appropriate
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Fig. 4 Uniform shear flow with horizontal velocity U = u − (z + h0)� = ∂φ
∂x − (z + h0)�. In the figure,

� is negative

KdV equation is

ηt + C+
0

√
gh0ηx + C+

0 (3+�̃2)

1+(
C+
0

)2

√
gh0
h0

ηηx + C+
0 +�̃

3
(
1+(

C+
0

)2)h
2
0

√
gh0ηxxx = 0.

This equation is given in dimensional form,with the non-dimensional parameterC+
0 =

−�̃
2 +

√
�̃2

4 + 1 quantifying the strength of the background shear, and �̃ being the non-

dimensional vorticity scaled with �̃ = �√
g
h0

. The horizontal perturbation velocity field

can be found in a similar way as for the irrotational case, and is given by

u =
√
gh0
h0

{

−C−
0 η + C−

0 +�̃

2
(
1+(

C+
0

)2)
η2

h0
+ C+

0 +�̃

3
(
1+(

C+
0

)2)h
2
0ηxx

−C−
0
6 h20ηxx + C−

0
2 h20

(
1 + z

h0

)2
ηxx

}
,

where we have used C−
0 = −�̃

2 −
√

�̃2

4 + 1.

4 Non-Dimensionalization and Numerical Discretization

To prepare for the numerical discretization, it is convenient to scale the variables
appearing in the equation above as follows: x → x

h0
, z → z

h0
, t → t√

h0
g

, η →
η
h0

, u → u√
gh0

, � → �√
g
h0

. Using this scaling, the non-dimensional KdV equation

can be expressed as

ηt + C+
0 ηx + C+

0 (3+�2)

1+(
C+
0

)2 ηηx + C+
0 +�

3
(
1+(

C+
0

)2)ηxxx = 0. (3)
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The coefficients C+
0 and C−

0 are defined in the same way as in the last section. In the
scaled variables, the horizontal velocity field appears as

U (x, z, t) = −C−
0 η + C−

0 +�

2
(
1+(

C+
0

)2)η2 + C+
0 +�

3
(
1+(

C+
0

)2)ηxx

− C−
0
6 ηxx + C−

0
2 (1 + z)2ηxx − (z + 1)�.

It is well known that the KdV equation features exact solitary-wave solutions. If the
coefficients of the KdV equation are defined such as in (3), the solitary wave has the
form

η = η0 sech
2
(√

C+
0 (3+�2)η0

4
(
C+
0 +�

) (x − x0 − ct)

)
, (4)

with the phase speed c given in terms of the amplitude η0 by c = C+
0 + C+

0 (3+�2)η0

3(1+(C+
0 )2)

.

This exact solution will be used later to validate the implementation of the numerical
algorithm.

The numerical approximation of the solutions η(x, t) and U (x, η(x), t) is based
on a finite-difference method for the spatial derivatives and a hybrid Adam–
Bashforth/Crank–Nicolson time integration scheme, such as previously used in
[14,42]. The local phase velocity C of the leading wavecrest is computed approxi-
mately by following the crest evolution and using a second-order central difference
formula.

To define an appropriate numerical discretization, boundary conditions need to be
imposed. In the far field upstream and downstream of the bore, the surface elevation η

approaches the stipulated values α and 0, respectively. These boundary conditions are
exact up tomachine precision as long as the spatial domain is large enough. In addition,
a Neumann boundary condition needs to be specified in the far field downstream
(see for example [13]). Using a homogeneous Neumann boundary condition and the
Dirichlet conditions as indicated above yields the initial-boundary-value problem

ηt + C+
0 ηx + C+

0 (3+�2)

1+(
C+
0

)2 ηηx + C+
0 +�

3
(
1+(C+

0 )2
)ηxxx = 0, x ∈ [−l, l], t ≥ 0,

η(x, 0) = η0(x),

η(−l, t) = α,

η(l, t) = 0,

ηx (l, t) = 0.

The initial data are given by η0(x) = 1
2a0

[
1−tanh(kx)

]
,where k is amodel parameter

denoting the steepness of the initial bore slope. In an idealized setting, one may take
the limit as k approaches infinity, leading to the so-called dispersive shock problem
[20,23]. However in the present case, we take the finite value k = 1.

It will be expedient to rewrite the problem to obtain homogeneous boundary con-
ditions, and we define an auxiliary function ζ(x, t) ≡ η(x, t) − η0(x). Using ζ , the
problem can be reformulated as an inhomogeneous equation with a forcing given in
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terms of ζ andη0, butwith homogeneous boundary and initial conditions. The equation
for ζ can then be written as

ζt + C+
0 ζx + C+

0 (3+�2)

1+(C+
0 )2

(
1
2ζ

2 + η0ζ
)

x
+ C+

0 +�

3(1+(C+
0 )2)

ζxxx = −F, x ∈ [−l, l], t ≥ 0,

where

F ≡ C+
0 η′

0 + C+
0 (3+�2)

1+(C+
0 )2

η0η
′
0 + C+

0 +�

3(1+(C+
0 )2)

η′′′
0 ,

and homogeneous boundary and initial conditions are imposed. We discretize the
spatial domain [−l, l] using a finite set of points, {x j }Nj=0 ⊂ [−l, l], where x0 = −l
and xN = l, and δx = 2l/N is the distance between two neighboring grid points. The
time domain is also discretized uniformly by defining tn = nδt , where t0 is equal to
zero. With this notation, the approximate function value at time tn and grid point x j
is defined to be vnj ≈ ζ(x j , tn).

Regarding the spatial discretization, the first and third derivatives at a point x j are
approximated by the central difference formulas

ζx (x j , t) ≈ v j+1 − v j−1

2δx
(5)

and

ζxxx (x j , t) ≈ v j+2 − 2v j+1 + 2v j−1 − v j−2

2δx3
. (6)

Since we impose the Dirichlet conditions v0 = 0 and vN = 0, the equation can be
solved for the grid points {x j }N−1

j=1 , and that leaves us with just two points for which
the third derivative approximation is not valid. Given the Neumann condition and the
central difference approximation, we have (vN+1 − vN−1)/2δx = 0 which implies
vN+1 = vN−1. This enables us to use the third derivative approximation at the grid
point xN−1 in the form

ζxxx (xN−1, t) ≈ vN+1 − 2vN + 2vN−2 − vN−3

2δx3
= vN−1 + 2vN−2 − vN−3

2δx3
. (7)

As there is noNeumann condition on the left boundary,we employ a forward difference
formula to approximate the third derivative at the grid point x1 as follows:

ζxxx (x1, t) ≈ −v4 + 6v3 − 12v2 + 10v1 − 3v0
2δx3

. (8)
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Table 1 Discretization errors
and error ratios for numerical
approximations of the time
evolution of a solitary wave of
the KdV equation (3) with
� = −0.2 and η0 = 0.5

δt L2-error Ratio

0.100000 0.003953

0.050000 0.000975 4.052

0.025000 0.000242 4.031

0.012500 0.000059 4.052

0.006250 0.000019 3.235

0.003125 0.000014 1.318

These computations were run up to final time T = 1, and with a spatial
grid size of δx = 0.01

The difference formulas (5), (6), (7) and (8) applied at all grid points give rise to the
discrete differentiation matrices D1 and D3 as follows:

D1 = 1

2δx

⎛

⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

0 1 0 · · · 0
−1 0 1 0

...

0 −1 0 1 0
...

. . .

0 · · · 0 1
0 · · · −1 0

⎞

⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

, D3 = 1

2δx3

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

10 −12 6 −1 0 · · · 0
2 0 −2 1 0 · · · 0

−1 2 0 −2 1 0

0 −1 2
. . .

...
. . .

. . . 1
. . . 0 −2

0 · · · −1 2 1

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Applying a Crank–Nicolson method to the linear terms on the right-hand side of
the equation, and an Adams–Bashforth method to the nonlinear terms, the difference
equation for determining the vector vn+1 is given by

vn+1 − vn

δt
= − C+

0 (3+�2)

2(1+(C+
0 )2)

D1

[
3
(
1
2

(
vn

)2 + vn0
)

−
(
1
2

(
vn−1)2 + vn−1

0

) ]

− C+
0 +�

3(1+(C+
0 )2)

D3

(
vn+1 + vn

)
− 1

2C
+
0 D1

(
vn+1 + vn

)
− F,

where vn = (vn1 , v
n
2 , ..., v

n
N−1)

T , 0 = (η0(x1), η0(x2), ..., η0(xN−1))
T and F =

(F(x1), F(x2), ..., F(xN−1))
T . This n × n-system of equations can easily be solved

for vn+1, and then to advance the numerical approximation by one time step, only
three multiplications by sparse matrices are required.

The implementation is verified by using the well-known exact solitary-wave solu-
tion of the KdV equation which is given in the form (4). In Tables 1 and 2, the equation
is solved in the case � = −0.2 and with the amplitude η0 = 0.5 on the time interval
t ∈ [0, 1]. It can be clearly seen that the second-order convergence is achieved in the
spatial and the time discretization.
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Table 2 Discretization errors
and error ratios for numerical
approximations of the time
evolution of a solitary wave of
the KdV equation (3) with
� = −0.2 and η0 = 0.5

δx L2-error Ratio

0.800000 0.0971178

0.400000 0.0234826 4.136

0.020000 0.0057898 4.056

0.010000 0.0014419 4.015

0.005000 0.0003601 4.005

0.002500 0.0000899 4.004

0.001250 0.0000224 4.012

0.000625 0.0000055 4.042

These computations were run up to final time T = 1, and with a time
step of of δt = 0.001

565 570 575 580 585 590 595 600 605 610

x/h0

0

0.1

0.2

0.3

0.4

z/
h 0

H2 H1H3H4H5

λ3 λ2
λ1λ4

Fig. 5 Numerical approximation of the first five waves behind the borefront. The wave height and the
wavelength of the leading wave are denoted by H1 and λ1, respectively. For the second wave, the wave
height and wavelength are denoted by H2 and λ2, and so on

5 Simulations

To determine the critical bore ratio, the experiments of Favre are analyzed with regard
to the strength of vorticity in the flow. We focus on Favre’s experiments no. 22, no. 23
and no. 24 with bore strengths of a0

h0
= 0.1395, a0

h0
= 0.2307 and a0

h0
= 0.281,

respectively. A numerical domain [−610, 610] was used, and some experiments were
double checked on a larger domain to make sure that there was no detrimental effect of
numerical instabilities due to the treatment of the boundary conditions. A comparison
of the first five waves is made at a propagation distance of about 600 depths, similar
to the analysis in [30]. A plot of the surface elevation is shown in Fig. 5. Tables 3 and
4 show the wave heights and wavelengths of the five waves behind the bore front for
several values of the vorticity �. The experiments were generally checked by making
runs with smaller spatial and temporal grid sizes to make sure that numerical errors
did not contribute to the results.

With the numerical measurements of wavelengths and wave heights of the five
leading waves in hand, a comparison with the measurements from Favre’s experiment
can be conducted. For each value of� in Tables 3 and 4, an estimate of the relative error
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Table 3 Comparison of simulations with Favre’s experiment no. 22

� −0.10 −0.15 −0.20 −0.25 −0.30 −0.35 −0.40 Favre no. 22

H1 (mm) 29.4 29.4 29.4 29.4 29.5 29.5 29.5 28

H2 (mm) 28.6 28.6 28.6 28.6 28.7 28.7 28.7 27

H3 (mm) 27.8 27.8 27.8 27.9 27.9 27.7 28.0 28.5

H4 (mm) 27.0 27.0 27.0 27.1 27.1 27.2 27.2 27

H5 (mm) 26.3 26.3 26.3 26.3 26.4 26.4 26.5 26

λ1 (m) 1.24 1.21 1.19 1.15 1.12 1.09 1.06 1.10

λ2 (m) 1.12 1.09 1.06 1.03 1.00 0.98 0.95 1.04

λ3 (m) 1.04 1.01 0.99 0.97 0.95 0.91 0.90 0.94

λ4 (m) 1.00 0.97 0.94 0.91 0.90 0.87 0.84 0.92

The seven columns in the center display the simulated wave heights and wavelengths of the first five waves
behind the bore front for seven values of the vorticity �. The last column displays the corresponding
measurements in Favre’s experiment no. 22. Measurements were made at 600 depths

Table 4 Comparison of simulations with Favre’s experiment no. 23

� −0.10 −0.15 −0.20 −0.25 −0.30 −0.35 −0.40 Favre no. 23

H1 (mm) 49.4 49.4 49.5 49.6 49.7 49.8 50.0 49.5

H2 (mm) 48.7 48.7 48.8 48.9 49.0 49.1 49.2 47

H3 (mm) 48.0 48.0 48.0 48.1 48.2 48.3 48.5 47

H4 (mm) 47.2 47.3 47.4 47.5 47.6 47.7 47.8 44.5

H5 (mm) 46.6 46.6 46.7 46.8 46.9 47.7 47.1 42

λ1 (m) 1.09 1.06 1.03 1.01 0.98 0.96 0.94 0.94

λ2 (m) 0.98 0.96 0.92 0.90 0.89 0.87 0.85 0.92

λ3 (m) 0.92 0.89 0.88 0.86 0.83 0.81 0.78 0.91

λ4 (m) 0.87 0.85 0.83 0.81 0.80 0.77 0.75 0.84

The seven columns in the center display the simulated wave heights and wavelengths of the first five waves
behind the bore front for seven values of the vorticity �. The last column displays the corresponding
measurements in Favre’s experiment no. 23. Measurements were made at 600 depths

is calculated using the least-square method. The relative error for both the wavelength
and the wave height are first calculated separately and then added together. In this way,
for every value of �, the corresponding value of the relative error can be plotted as
shown in Fig. 6.With polynomial curve fitting, the best approximate values of� for the
experiments no. 22 and no. 23 are found to be �22 = −0.2749 and �23 = −0.2316,
respectively. An estimate of � in Favre’s experiment no. 24 with bore strength a0

h0
=

0.281 was also made to obtain an overall better estimate of � in the critical case. In
Fig. 7, the strength of vorticity is given in terms of the bore strength from Favre’s
experiments no. 22, no. 23 and no. 24. Using a straightforward regression analysis,
an estimate of the strength of vorticity in Favre’s experiment with a bore strength of
0.281 is found to be � = −0.2213.

By implementing this value in the numerical scheme, together with a range of
values of a0 around the critical ratio, and letting the waves travel a distance close to
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Fig. 6 Relative errors for different strengths of vorticity in Favre’s experiments no. 22 (left panel) and no. 23
(right panel)
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Fig. 7 This figure shows the relation between the bore strength a0/h0 and the strength of vorticity �. A
straight line fit is made using data from experiments no. 22, no. 23 and no. 24

600 depths, we could observe whether the waves will break or not. In Fig. 8, the crest
speed C and the horizontal velocity component at the free surface are plotted base on
a computation with � = −0.2213 and a0 = 0.307. The ratio between the crest speed
and the horizontal particle velocity reaches U/C ≥ 1 at about 600 depths, and this
means that the leading wave is starting to spill which limits the further growth of the
wave. Thus, with the inclusion of a background shear flow with constant vorticity the
critical ratio is found to be 0.307.

6 Discussion

As mentioned in the introduction, the kinematic wave breaking criterion is one of the
most commonly used criteria for the prediction of the onset of wave breaking. The
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Fig. 8 The solid curve represents the phase speed and the dashed curve represents the horizontal particle
velocity. The constant vorticity is � = −0.2213 and the bore strength is 0.307

criterion has been shown to pinpoint the commencement of wave breaking in various
situations. In particular, the criterion was shown to perform well in deep water in
[29,49], and in shallow water both on flat bathymetry [25] and on a sloping beach
[27,50]. In some situations where the kinematic breaking criterion performs poorly,
the problem can be ascribed to the difficulty of accurately finding the phase velocity
of the waves from measurements [45], and the directionality of the waves in three-
dimensional situations [53].

Some authors have attempted to use the kinematic criterion in connection with
numerical codes to determine whether to switch from a dispersive Boussinesq-type
scheme to a shallow-water scheme with numerical dissipation to capture energy loss
in breaking waves. It was suggested in [5] that this approach works best for wave
shoaling if the criterion is tightened by introducing a positive constant κ < 1, and to
define breaking onset as the first time thatU/C > κ . However, this approach requires
the determination of the constant κ . If an appropriate value for κ can be found, then
this breaking criterion can give excellent results [6,11,39].

Sharpening the kinematic criterion if used as a numerical switch makes sense as
the numerical dissipation needs time to have an effect on the waves. In fact, tightening
the kinematic criterion was already suggested earlier based on experimental evidence
[45], and more recently based on studies of wave breaking in large and intermediate
depth [7,18]. In these works, a new parameter B based on crest speed and local energy
flux and density was put forward as a diagnostic for the initiation of wave breaking.
In particular, as shown in [7], using this parameter reduces to a sharpened convective
criterionwhen evaluated at the free surface. In a nutshell, the sharpened criterion based
on the parameter B predicts wave breaking when B ∼ 0.87, though breaking may not
commence until B is actually close to 1. As already alluded to, the new criterion based
on the parameter B is based on a dynamic or energetic criterion based on evaluation
of energy flux and density, such as put forward for example in [44].
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To complete this brief review, one may add that geometric breaking criteria are
popular in some quarters. Geometric criteria are based on the shape and in particular
the steepness of the waves close to breaking, such as reviewed in [4]. Among them
the most used is the limiting wave steepness parameter s ≈ akmax, which can be
transformed into the kinematic limit u ≈ c. For a detailed review on geometric,
kinematic and dynamic criteria for breaking onset one can refer to [3].

To further improve comparison with experiments using the simple kinematic crite-
rion used in the current work, one might use fully nonlinear Boussinesq systems, such
as the Serre or Green–Naghdi equations [19,33] or higher-order KdV-type equations,
such as the higher-order regularized long wave equation used in [55]. One possible
obstacle with this approach is that the boundary-value problem must be shown to be
stable to small perturbations.
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Abstract13

[ Eulerian and Lagrangian measurements of orbital velocities in waves approaching a beach14

are analyzed with the goal of understanding the relative influence of wave-by-wave vari-15

ations in mean-water level, waveheight and incipient wave breaking on mass transport16

properties of waves in the surf zone. It is shown quantitatively that elevated local mean-17

water level correlates positively with increased Lagrangian mass transport at the free sur-18

face. Eulerian ADV measurements in the fluid column suggest that the depth-integrated19

wave-by-wave mass transport also correlates positively with the local mean-water level,20

and is only weakly linked to waveheight and wave-breaking events. ]21

Plain Language Summary22

A sea state is defined broadly by an average wave period and an average perceived23

(significant) waveheight, but waveheights and periods of individual waves may differ sig-24

nificantly from these average values. The differences between individual waves are ex-25

acerbated as the waves approach the shore and interact with the bottom topography in26

shallow water. In particular, the mean water level may vary from wave to wave. In the27

present study, particle tracers are used in connection with stereo imaging to study par-28

ticle trajectories in waves approaching a beach. Particle positions and trajectories are29

found using data analysis of individual camera frames. In addition, fluid velocities are30

measured directly using Acoustic Doppler Velocimetry. It is found that the most signif-31

icant factor in the overall horizontal fluid velocity and net transport of particles by an32

individual wave towards the beach is not the waveheight or period, but the local mean-33

water level, that is how the average wave elevation in a single wave is situated with re-34

spect to the sea bed.35

1 Introduction36

Mass transport induced by wave motion is a major factor in the formation of cir-37

culation patterns in the nearshore zone which in turn affect beach erosion and resedi-38

mentation (Inman & Brush, 1973; Masselink et al., 2014). It is generally thought that39

the main cause of nearshore circulation are energetic breaking waves which can lead to40

significant nearshore wave set-up (increased mean water level) and in connection with41

bathymetric features lead to undertow, edge waves and rip currents (Longuet-Higgins42

& Stewart, 1964; Putrevu & Svendsen, 1999; Svendsen, 2006; Castelle et al., 2016; Davidson-43

Arnott et al., 2019). It is also well known that localized variations in the mean-water44

level may develop in non-breaking waves through self-modulation of wave groups (Longuet-45

Higgins & Stewart, 1962), leading to bound infragravity waves which propagate in sync46

with the wave group. In bound infragravity waves, the trough of the envelope is gener-47

ally aligned with a wave set-up (higher mean water level), while the crest of the enve-48

lope is aligned with a wave set-down (Longuet-Higgins & Stewart, 1962). During the shoal-49

ing process, the alignment of the crests may change, and a phase shift between the wave50

group and the corresponding wave envelope may develop (List, 1992; Masselink, 1995;51

Janssen et al., 2003; Battjes et al., 2004; Inch et al., 2017). In addition, wave set-down52

through shoaling and the subsequent wave set-up in breaking waves may create low-frequency53

waves propagating sea-ward from the surf zone (Tucker, 1950; Longuet-Higgins & Stew-54

art, 1964; Buckley et al., 2018).55

Oscillations of the mean-water level at frequencies below the gravity-wave band are56

known to be important for a number of coastal processes such as beach and dune ero-57

sion (Russell, 1993; van Thiel de Vries et al., 2008) and can influence wave set-up, the58

structure of rip currents and storm surges (Castelle et al., 2016). Recent field studies also59

suggest the existence of low-frequency oscillations in currents (Elgar & Raubenheimer,60

2020) in the surfzone.61
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In recent work, the authors of (Calvert et al., 2019) showed how set-down in wave62

groups affect the orbital velocities in the fluid column. The main purpose of the present63

study is to highlight how oscillations in the mean-water level influence kinematic flow64

properties of waves and mass transport in the fluid column under field conditions. As65

opposed to time-averaged measurements over long periods, such as used for example in66

studies of sand transport (see (Russell, 1993; De Bakker, Brinkkemper, et al., 2016) and67

many other studies), in the present study measurements of instantaneous velocities are68

more appropriate as this allows us to study flow properties featured by individual waves69

in the surf zone. While laboratory studies in shallow water have confirmed some theo-70

retical predictions about infragravity wave formation and shoaling (Lin & Hwung, 2012)71

as well as particle motion in gravity waves (Chen et al., 2010; Umeyama, 2012) and wave72

groups (Calvert et al., 2019), wave-by-wave properties of orbital velocities and mass trans-73

port remain largely unexplored in the field.74

In order to illuminate the details of flow properties in individual waves under field75

conditions, a measurement campaign was conducted at a beach on the island of Sylt, lo-76

cated off the German North Sea Coast near the border with Denmark. Wave poles with77

graduation were mounted at low tide, together with pressure sensors and an Acoustic78

Doppler Velocimeter (ADV). In addition, oranges were used as surface tracers in con-79

nection with a two-camera stereo imaging system which was able to track the surface80

tracers. According to (Sharifi et al., 2007), oranges are slightly buoyant, and are about81

97% submerged in seawater. As a result, they are only marginally affected by wind drag82

while at the same time being easily visible due to their orange color. Moreover, these trac-83

ers are naturally bio-degradable.84

Analysis of the measurements showed strong variation in mean-water level between85

consecutive waves. A spectral analysis revealed that the infragravity signal had a well86

defined peak at 28.6s and a smaller sideband at 13.8s, and bound infragravity waves were87

dominant. As will be laid out presently, the changes in mean-water level from one wave88

to the next have major implications on the underlying fluid flow. Indeed, the local mean-89

water level has a pronounced effect on the orbital velocities in the fluid, and an elevated90

mean-water level leads to strong mass transport both at the free surface and also in the91

fluid column. In particular, it will be shown that the wave-by-wave variations in the mean92

water level have a stronger effect on flow properties in individual waves than changes in93

the waveheight or even the commencement of wave breaking.94

2 Field measurements95

The main measurement system in this study was a two-camera stereo imaging sys-96

tem, that was able to resolve the motions of buoyant surface tracers (oranges) at the wavy97

water surface within the surf zone. Additional supporting wind and wave data were ob-98

tained from a combination of both in situ and remote sensing measurement systems, in-99

cluding bottom-mounted pressure wave gauges, a bottom-mounted acoustic doppler ve-100

locimeter, optical bottom-mounted pole wave gauges, and drone imagery.101

2.1 Stereo imaging system102

A long-range, high resolution two-camera stereo imaging system was specifically103

developed for this study. A pair of 5MP, global shutter CMOS digital cameras (Victorem104

51B163-CX, IO Industries) were each fitted with a EF 200 mm f/2.8L lens. The two cam-105

eras were placed on the ridge overlooking the beach, at a distance of 35m from one an-106

other. The cameras were focused on a portion of water surface within the surf zone, lo-107

cated at a distance of approximately 150m from the cameras. They were triggered si-108

multaneously by a computer-controlled function generator (National Instruments PCIe109

6612). A sketch of the instrument set-up is provided in Figure 1. Stereo observations of110

the sea surface have been used previously with the purpose of describing wave motion111
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Figure 1. Experimental set-up: Six wave staffs were lined up in the direction of the incoming

wavefield. Two cameras (North cam and South cam) were mounted on solid foundations atop

dunes overlooking the beach. The two fields of view overlapped in a region including the first

three wave staffs. Pressure sensors (PG) were mounted near the base of each pole. An Acoustic

Doppler Velocimeter (ADV) was mounted at the sea bed near Pole 2.

offshore and in the surf zone (see (Benetazzo, 2006; de Vries et al., 2011; Benetazzo et112

al., 2012; Bergamasco et al., 2017) and references therein). Here, the cameras are used113

primarily for locating the orange tracers which simplifies the data analysis.114

2.2 Supporting measurements115

Six graduated aluminum poles were jetted into the sand of an intertidal sandbar116

at low tide. The array of poles was delineated at an angle of about 281◦ which made them117

approximately perpendicular to the crests of incoming waves, although there were some118

slight variations in the angles of the wave crests. The most seaward pole (Pole 1) was119

about 80m from the shore, and the closest pole (Pole 6) was about 20m from the shore-120

line. At the base of each pole, a pressure gauge measured absolute pressure at 10 Hz sam-121

pling frequency. The recorded pressure signal was subdivided into 7-10 minute data bursts122

and then transformed to surface excursion using the nonlinear, weakly dispersive method123

described in (Bonneton et al., 2018) (see also (Mouragues et al., 2019)). Since the grad-124

uated poles were within the field of view of the stereo cameras (acquiring at 30 frames/second),125

these were also used as optical wave gauges.126

At Pole 2, an upward looking, 6 MHz Nortek Vector Acoustic Doppler Velocime-127

ter (ADV) was deployed and measured Eulerian flow velocities at a sampling rate of 64128

Hz. The elevation of the sensors with respect to the local datum as well the beach pro-129

file in the intertidal region was measured using an RTK-PDGPS. The elevation of the130

dry beach was extracted from photogrammetric digital elevation model (DEM), that was131

computed from airborne drone imagery using a DJI Matrice 210 RTK quadcopter.132
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Figure 2. Upper left: Time series of free-surface elevation for non-breaking waves. The sur-

face excursion is reconstructed from pressure data collected by pressure gauge mounted at the

base of Pole 2. The black lines represent the average of the free surface elevation over the zero-

crossing period. Upper right: Lagrangian motion of a particle tracer in the same time window

as the free surface data in the left panel. The blue and yellow waves feature instantaneous wave

set-up and corresponding strong shoreward Lagrangian transport while the red wave features

set-down and backward drift. The black rectangle indicates the tracer position when tracking

commenced, and the solid black square indicates the final tracer position. There are some gaps

in the tracer positions in cases when the tracer was not visible in both cameras. Lower left: The

power spectral density as a function of frequency. Lower right: The blue dashed curve is the free-

surface elevation calculated from the pressure data measured by pressure gauge mounted at Pole

1 and with a lowpass Butterworth filter with a cutoff frequency of 0.075 Hz, the free-surface ele-

vation is plotted as the black curve. The red curve represents the local mean water level obtained

by zero-crossing analysis and the blue solid curve shows the wave envelope computed using the

Hilbert transform (Janssen et al., 2003).

2.3 Experimental Procedure133

Oranges were deployed by a swimmer near Pole 1. These tracers are slightly buoy-134

ant, so that they always stayed at the free surface, and were well visible in the image frames.135

Images were acquired at 30 frames/second from both cameras. The data used in this ar-136

ticle were acquired between 17:00 and 17:30 UTC on the 7th of September, 2019. The137

sea state was characterized by records from a buoy moored 1km offshore in depth of 10m138

which showed 1m significant waveheight and 7s peak period. The incoming wavefield had139

a peak direction of 284.17◦, and the mean wind speed was approximately 5 m/s from NNW.140
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2.4 Data analysis141

In order to obtain the intrinsic and extrinsic parameters for the two 200mm cam-142

eras, a stereo camera calibration was conducted with the Matlab toolbox Stereo Cam-143

era Calibrator. The calibration result was validated with distances estimated using both144

pole graduations and the stereo imaging system. The root mean squared (RMS) differ-145

ence for time series at Pole 1 obtained by pole graduation and by the stereo camera sys-146

tem is found to be less than 0.015m.147

Pairs of individual frames from camera footage were examined visually, and orange148

positions were recorded. A triangulation with the input of the stored pixel positions to-149

gether with the calibration parameters was then done to construct 3D world-coordinate150

points. In order to create an appropriate coordinate system, a reasonable assumption151

is to assume that the crests are perpendicular to the line of poles such as indicated in152

Figure 1. A horizontal vector was found by using two known GPS-positions at Pole 2153

and Pole 3, and with this a vertical vector along Pole 2 was found. With the described154

vectors, a 3D coordinate system can be created where the origin is placed at the bot-155

tom of Pole 2, the x-axis is pointing along the poles towards the beach, the y-axis is point-156

ing along the wave crests and the z-axis is pointing upwards. With the three orthogo-157

nal basis vectors, the orange positions are placed in the described coordinate system and158

then projected onto the xz-plane.159

Several Lagrangian trajectories are plotted together with free-surface elevation at160

the nearest wave pole in Figure 2. The full three-dimensional paths are plotted in the161

right panel, but for the purpose of analyzing the cross-shore movement, these paths are162

projected into the xz-plane. The waveheight of the waves can be gauged from the left163

panel of Figure 2. For example for the wave indicated with blue, the waveheight is H =164

0.48m. Since the distance between the poles is known, the wavelength can be calculated165

from the phase velocity and period to be 21.2m. For the wave indicated in red, the wave-166

height is H = 0.35m, and the wavelength is 17.6m. From Figure 2, it can be seen that167

the particle drift during one wave cycle is strongly correlated to the mean-water level168

in one wave. Indeed, the wave colored in green has a slight set-down, i.e. the mean level169

is η̄0 = −0.014m, and the net displacement of the tracer as shown in the right panel170

of Figure 2 is −0.30m. For the blue wave, the mean level is η̄0 = 0.117m, and the net171

cross-shore displacement is 1.23m. Similarly, the red wave features a negative mean level172

and a negative net displacement while the yellow wave features a positive mean level and173

a positive net displacement. The relation between mean water level and net drift will174

be quantified using a complete wave record below.175

In the lower left panel of Figure 2 the two spectral peaks at 28.6s and 13.8s are clearly176

visible. A representative 5-minute window of the wave record is shown in the lower right177

panel of Figure 2. The wave group structure is visible though it is somewhat irregular.178

Nevertheless, the wave envelope (shown in solid blue) has the property that the troughs179

are approximately aligned with the peaks of the mean-water level (shown in red), and180

the peaks are approximately aligned with the troughs of the mean-water level. This is181

what is expected from theoretical studies and laboratory experiments (Longuet-Higgins182

& Stewart, 1962; Calvert et al., 2019).183

3 Discussion184

In the present work, Lagrangian particle paths in individual waves in the surf zone185

were recorded. As shown in the previous section, the data acquisition methods and data186

processing procedures utilized in this study resulted in highly accurate measurements187

of the tracer positions. In order to better understand the observed in situ particle paths,188

comparisons with a theoretical wave model were performed. At present, only the cross-189

shore movement is analyzed, and the data points are projected as described above.190
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Figure 3. Comparison between measured particle trajectories using buoyant tracers, and

particle trajectories in the nonlinear KdV approximation for the blue wave (left panels) and red

wave (right panels) from Figure 2. The orange circles indicate the measured tracer positions. The

thin black solid lines represent numerically computed particle paths with the gray dot represent-

ing the initial tracer position used in the comparison, and the black dot representing the final

computed particle position. The gray thick lines represent the free surface in the KdV approx-

imation at the start of the comparison, and the black dashed lines represent the free surface in

the KdV approximation at the final time. Strong net shoreward transport throughout the fluid

column is observed in the left panel while slight seaward transport is observed in the right panel.

Typical wavelengths λ in the datasets considered here are in the range from 10 me-191

ters to about 40 meters, and waveheights H for non-breaking waves range from 0.2m to192

about 1m, though as can be seen in the upper left panel in Figure 4, most non-breaking193

waves in the record considered there have a waveheight below 0.7m. Given that the lo-194

cal water depth h0 was on the order of 2 meters, the Ursell number defined by U = Hλ2/h30195

at the measurement location is generally larger than 5, and for such values, nonlinear196

theory should be used (Dingemans, 1997). There are many numerical models used in coastal197

modeling of shoaling waves, most of which use some form of the Boussinesq equations198

(see for example (Roeber et al., 2010)). In the present case, we are interested in parti-199

cle motion and orbital velocities in the fluid at a fixed site and for waves traveling to-200

wards the shore, and we therefore choose the Korteweg-de Vries (KdV) equation201

ηt +
(
c0 + 3

2
c0
h0
η
)
ηx + 1

6c0h
2
0ηxxx = 0, (1)

where h0 is the local water depth, and c0 =
√
gh0 is the limiting long-wave speed. This202

equation is the simplest nonlinear shallow-water equation which also incorporates dis-203

persive effects. Assuming long-crested waves, a cross-section (such as along the measure-204

ment poles) of the free surface can be expressed for one period as205

η(x, t) = f2 − (f2 − f1)cn2
(

2K(m)
(
t
T − x

λ

)
,m
)
, (2)

where f1, f2 and f3 are three parameters that can be chosen arbitrarily, m is the ellip-206

tic modulus defined by m = f1−f2
f1−f3 , and K(m) is an elliptic integral1. The wavespeed207

1 K(m) and E(m) are the complete elliptic integrals of the first and second kind, (Lawden, 2013).
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c, the wavelength λ and period T are then given by208

c = c0

(
1 + f1+f2+f3

2h0

)
, λ = K(m)

√
16h3

0

3(f1−f3) , T = λ/c. (3)

In order to use these formulas in the current context to fit the wave-by-wave particle paths,209

it is convenient to take the waveheight H, the mean surface level η0 and the elliptic pa-210

rameter m as the defining parameters. These are related to f1, f2 and f3 via the equa-211

tions212

f3 = η0 −
HE(m)

mK(m)
, f1 = f3 +

H

m
, f2 = f1 −H. (4)

This representation may be found in (Dingemans, 1997) for the case η0 = 0. Due to213

the oscillations of the mean-water level, it is essential in the present context to allow for214

non-zero η0. Note that the depth h0 also appears in (3), but can be removed by dimen-215

sional analysis.216

The procedure used to obtain comparisons with the field data can be summarized217

as follows. First, individual waves are identified using a zero-crossing segmentation of218

the wave field such as shown in the left panel of Figure 2. Since the waveheight is known219

from the data, we have to fit the parameters m and η0. In order to fit these parameters,220

we first need to compute particle paths associated with the solution (2). Taking the func-221

tions ξ(t) and ζ(t) to describe the x-coordinate and z-coordinate, respectively, of a par-222

ticle originally located at a point (x, z) = (ξ0, ζ0) given from the tracer position, the223

particle motion is described by the differential equations224

∂ξ

∂t
= u

(
ξ(t), ζ(t), t

)
,

∂ζ

∂t
= v
(
ξ(t), ζ(t), t

)
, (5)

with initial conditions ξ(0) = ξ0 and ζ(0) = ζ0. As shown in (Borluk & Kalisch, 2012),225

the velocity field u, v can be written in terms of the free surface excursion η and var-226

ious derivatives, and these equations can be solved numerically. The optimal parame-227

ters m and η0 are then found by minimizing the error between the tracer positions and228

the numerical simulations of the particle paths.229

One feature which is clearly brought out by the black average bars in the upper230

left panel of Figure 2 and the mean-water level η0 computed for the waves shown in Fig-231

ure 3 (left) is that strong foreward transport coincides with elevated mean water level.232

In addition, the numerical approximations of particle paths further down in the fluid col-233

umn shown in Figure 3, suggest that the local mean-water level affects transport prop-234

erties not only near the free surface, but also farther down in the fluid column. Indeed,235

the two cases shown in Figure 3, clearly show the difference in average horizontal veloc-236

ities for a wave with set-down, and a wave with set-up. The large particle drift at all depths237

which can be seen in the numerical simulations of the wave with positive set-up (lower238

left panel of Figure 3) is a clear departure from the case of a breaking or pre-breaking239

wave which features strong forward transport near the free surface. Indeed, it has been240

observed in wave flume experiments and numerical simulations that wave breaking in-241

duces a slight backward drift at depths about halfway down from the surface (Harms &242

Schlurmann, 2005; Deike et al., 2017).243

In order to ensure that this strong mass transport throughout the fluid column is244

not a theoretical artifact, we analyzed data from ADV current measurements which are245

about 1m below the free surface. Usually, ADV measurements are taken near the bot-246

tom in order to study sediment transport and undertow. In the present case, the ADV247

was pointing upwards in order to capture the flow velocity in the center of the fluid col-248

umn.249

As mentioned above, time series of the free surface at poles 1, 2 and 3 were recon-250

structed from pressure gauge data using a nonlinear weakly dispersive approximation251
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Figure 4. Upper panels: Correlation between wave-by-wave values of mean free surface el-

evation η̄0 and mean Eulerian velocity including breaking waves (left, r=0.735), mean Eulerian

velocity exclusive of breaking waves (center r=0.734), mean Lagrangian velocity at the free sur-

face (right r=0.747). The red lines are the regression lines and the black dotted curves show

the 95 % confidence interval for the regression line estimate. Lower panels: Correlation between

waveheight and mean Eulerian velocity including breaking waves (left), mean Eulerian veloc-

ity exclusive of breaking waves (center), mean Lagrangian velocity at the free surface (right).

Gray dots indicate Eulerian measurements in non-breaking waves, magenta dots indicate Eu-

lerian measurements in waves which are spilling or breaking. Orange dots indicate Lagrangian

measurements of orange tracers at the free surface (non-breaking).

introduced in (Bonneton et al., 2018) and termed SNL (shallow non-linear) approxima-252

tion. Waves which were breaking or close to breaking were identified by visual inspec-253

tion and flagged for possible exclusion. Data based on a representative 7−1/2-minute254

wave record are evaluated in Figure 4. As indicated by the scatter plot relating wave-255

by-wave mean water level and forward transport in Figure 4, the correlation between av-256

erage Eulerian velocity ūE during one wave period and mean-water level η̄0 is strong.257

In contrast, the correlation between the average Eulerian velocity and the waveheight258

H is weak. These numbers are nearly unchanged if breaking waves are excluded from259

the computations. The upper right panel of Figure 4 shows the correlation between wave-260

by-wave mean water level and average Lagrangian drift ūL during one wave period. The261

strong correlation of about 0.75 between η̄0 and ūE represents quantitative confirmation262

of the dependence of the mass transport in the fluid column on the local mean-water level263

which was indicated in Figure 3 for a particular case.264

It is clear from the analysis provided here that short-term oscillations in the wave265

set-up may constitute a significant factor in shoreward mass transport. In contrast, the266

waveheights of the individual waves were not found to be a good indicator of shoreward267

mass transport either at the free surface or otherwise.268

In addition to affecting shoreward mass transport, it is possible that the observed269

oscillations of the mean-water level also constitute a mechanism for infragravity wave270

dissipation as the higher orbital velocities may facilitate wave breaking in waves with rel-271

atively smaller waveheight and wave celerity. Infragravity wave dissipation may be at-272
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tributed to bottom friction, transfer of energy to shorter waves through quadratic cou-273

pling, direct infragravity wave self-interaction resulting in steepening and the eventual274

breaking and bore formation (Battjes et al., 2004; Van Dongeren et al., 2007; Rijnsdorp275

et al., 2015; De Bakker, Tissier, & Ruessink, 2016).276

The close correlation between Lagrangian velocities at the free surface and oscil-277

lations of the mean water level observed here suggest that dissipation of infragravity waves278

may also be achieved by gravity-wave breaking and subsequent smearing out of the in-279

fragravity wave field by broken shorter waves. Indeed, the increased Lagrangian veloc-280

ity at the free surface can be easily seen to facilitate short wave breaking in view of the281

the kinematic criterion for wave breaking (see (Itay & Liberzon, 2017; Hatland & Kalisch,282

2019) and references therein). Unfortunately, the size of the FOV of the stereo camera283

system and the length of the array of wave poles and pressure sensors did not provide284

spatial extent to test this hypothesis. In fact, decay and reflection of infragravity waves285

is highly dependent on environmental characteristics such as beach slope, sand bar struc-286

ture, and many other factors (Bertin et al., 2018), and a precise understanding of this287

hypothesis will require future field campaigns on a variety of beach profiles and wave con-288

ditions as well as laboratory experiments.289
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