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Abstract

We document all APN functions over F2n for n = 8,9 that can be obtained by adding a small

number of quadratic terms with coefficients belonging to a certain subfield of F2n to one of the

representatives from the known infinite APN families for n = 8 and n = 9. We discover one

new APN function over F28 , and find significantly shorter representatives of several already

known APN instances over F28 and F29 . We also introduce some theoretical simplifications

that allow us to speed up the search (up to EA-equivalence) when the function to which terms

are added is a monomial, and we document the running times of all of our searches. We

conclude that this is a very promising approach that is worth exploiting further.
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Chapter 1

Introduction

This thesis is dedicated to the class of almost perfect nonlinear (APN) functions, and some

computational methods for searching for and classifying such functions. The study of APN

functions is motivated, first and foremost, by their practical applications in the design of block

ciphers in cryptography: APN functions provide the best possible security against the so-called

differential attack, and so they allow us to design secure encryption algorithms. In general,

strong encryption is crucial to the privacy of personal data, and this is the reason that methods

of encryption have been a fundamental topic of study for a long time; for example, one of the

most well-known block ciphers, the Data Encryption Standard (DES) was designed already in

the late 70’s (see e.g. [40]).

Finding APN functions is computationally difficult, and many search procedures and the-

oretical methods have been developed for doing so. One of the most basic but also most

promising computational methods for searching for i.a. APN functions is called polynomial

expansion; it is the main subject of this thesis.

Polynomial expansion has previously been used to find many CCZ-inequivalent instances

of APN functions. Indeed, the first known examples of APN functions CCZ-inequivalent to

monomials were discovered by a computational search of this type [26]. Later, the earliest

known lists of CCZ-inequivalent APN representatives over F2n for n ≤ 8 were also obtained

in a similar fashion [6]. Recently, polynomial expansion was used as an auxiliary tool in the

construction of an infinite family of APN quadrinomials [17]; in fact, this family generalized

the APN binomial x3 + βx36 from [26] to an infinite construction (a problem that had been

open since the publication of [26]).

In this thesis, we computationally investigate how far polynomial expansion can be pushed

and what classes of APN functions can be obtained using it. We introduce some theoretical



2 Introduction

simplifications that can be used to reduce the number of functions that have to be considered

in a polynomial expansion search (up to EA-equivalence) when the initial function to which

terms are added is a monomial. We run instances of polynomial expansion over F28 and

F29 and carefully document the results in terms of running time and the number of functions

that can be found in this way. We find one completely new APN function over F28 . All the

remaining functions that we find are CCZ-equivalent to known APN instances, but in many

cases, the functions that we find have a significantly shorter representation than the currently

known representatives from the same equivalence class. Furthermore, the previously known

instances were found using complicated computational methods, e.g. [45], whereas our results

rely on a simple computational principle. This shows that polynomial expansion is still a very

promising technique for searching for APN functions, and it is worth investigating further.

In this thesis, we summarize the most important results of the search. The complete

data from our experiments is available online at https://boolean.h.uib.no/mediawiki/

index.php/APN_functions_obtained_via_polynomial_expansion_in_small_dimensions.

This thesis is organized as follows. In Chapter 2, we introduce the concept of APN func-

tions, and present some related notions, definitions, and results that will be used throughout

the rest of the text. In Chapter 3, we discuss the principle of polynomial expansion in some

detail and describe the setup of our computational experiments. In Chapter 4, we give a de-

tailed summary and discussion of our computational results. Finally, Chapter 5 provides a

brief summary of our work and points out some directions for future study.

https://boolean.h.uib.no/mediawiki/index.php/APN_functions_obtained_via_polynomial_expansion_in_small_dimensions
https://boolean.h.uib.no/mediawiki/index.php/APN_functions_obtained_via_polynomial_expansion_in_small_dimensions


Chapter 2

Background

In this section, we discuss the background needed for the rest of the thesis. We introduce

the notions of vectorial Boolean functions, their cryptographic properties, APN functions, and

other important concepts, and we make a brief survey of important results in the area.

2.1 Vectorial Boolean functions

Let F2 denote the finite field with two elements. Let Fn
2 denote the vector space of dimension

n over F2 (for some natural number n), and let F2n denote the finite field of extension degree n

over F2. For any two natural numbers n,m such that m | n, let Trn
m be the trace function from

the finite field F2n to the finite field F2m; we recall that the trace is defined as

Trn
m(x) =

n/m−1

∑
i=0

x2mi
.

When m = 1, we will write Trn as shorthand for Trn
1.

An (n,m)-function (or vectorial Boolean function) is any function F from Fn
2 to Fm

2 .

An (n,m)-function is a natural object which is why it occurs in many different areas in

computer science and mathematics. The reason that these functions are so natural is that an

(n,m)-function can be seen as a transformation of 0’s and 1’s. More precisely, an (n,m)-

function takes a sequence of n bits as input, and produces a sequence of m bits as output.

Since any data can be represented in binary, this means that any operation on any kind of data

can be expressed as an (n,m)-function.

We will now look at the particular case when m = 1 which is one of the most important

and well-studied subclasses of (n,m)-functions. We call an (n,1)-function an n-dimensional

Boolean function. There are many ways to represent such a function, and the simplest way
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is to represent it as a truth table (TT). A truth table lists the output value for every possible

input. In this case, the output is either a 0 or a 1, and this can be interpreted as false or true,

respectively. An example of a truth table of a (3,1)-function is given in Table 1.1. We thus

have e.g. f (0,1,0) = 1, and f (1,0,0) = 1.

x1 x2 x3 f (x1,x2,x3)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

Table 1.1: Truth table of a (3,1)-function

As mentioned above, a Boolean function can only give one single bit as an output value.

But for many practical applications (including the design of cryptographic primitives), having

one bit as output is not enough. This is why we go back to the general case of (n,m)-functions

for arbitrary values of m. One possible way to express functions having multiple bits as output

is to combine the outputs of several Boolean functions into a vector; for this reason, (n,m)-

functions with m > 1 are commonly called vectorial Boolean functions. Just like in the case

of a Boolean function, we can use a TT to represent a vectorial Boolean function. We can

see an example of such a function in Table 1.2, where we have 3 input and 2 output bits. To

express this, we can define two Boolean functions, f1 and f2, that express the outputs of F : F3
2

→F2
2 as a vector of two bits:

F(x1,x2,x3) = ( f1(x1,x2,x3), f2(x1,x2,x3))

As we can see in the TT (Table 1.2), the output is a vector of two bits. The first bit is the

output of f1, and f2 gives the second output bit. Although this TT only consists of a vector of

two bits, we can combine as many Boolean functions as we need into a multi-bit output vector.
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Thus, any (n,m)-function F can be expressed as a vector

F(x1, . . . ,xn) = ( f1(x1, . . . ,xn), . . . , fm(x1, . . . ,xn)).

The functions f1, f2, . . . , fm are called the coordinates, or coordinate functions of the

function F . All non-zero linear combinations of the coordinate functions of a function F

are called the component functions of F . Since any linear combination of the m coordinate

functions can be identified with a vector from Fm
2 , the component functions of F are denoted by

Fb for b ∈ Fm
2 with 0 6= b. The component functions are needed in the definition of nonlinearity

which we will discuss in a later section.

x1 x2 x3 f (x1,x2,x3)

0 0 0 (0,0)

0 0 1 (0,1)

0 1 0 (1,1)

0 1 1 (1,0)

1 0 0 (1,1)

1 0 1 (1,0)

1 1 0 (0,0)

1 1 1 (0,1)

Table 1.2: Truth table of a (3,2)-function

Even though the TT is the simplest way to specify (n,m)-functions, it also has a lot of

drawbacks that make other representations preferable. The TT of an (n,m)-function consists

of 2n entries, with each entry having m bits. The size of the TT increases exponentially with n,

and it quickly becomes very large even for small values of n; we also need a lot of memory to

store it. For example, for n = 20 we would need a table with 220 = 1048576 entries. Another

shortcoming is that the TT reveals very little about the structure of the function. Because

of this, other representations of vectorial Boolean functions can be more useful. One such

representation is the algebraic normal form.

The algebraic normal form (ANF) of f : Fn
2 →Fm

2 is a polynomial in n variables, taking

values in Fm
2 :

f (x1,x2, . . . ,xn) = a0 +a1x1 +a2x2 +a3x1x2 + · · ·+a2n−1x1x2 . . .xn
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with the coefficients a0,a1, . . . ,a2n−1 being in Fm
2 .

To see how the indices of the coefficients (for example, a3) correspond to the terms (for

example x1x2), we need to introduce some auxiliary notation. We know that we have n vari-

ables x1,x2, . . . ,xn and so every term of f (x1,x2, . . . ,xn) can be identified with a binary vector

in n bits. For instance, if n = 5, the vector (0,0,1,0,1) would correspond to the term x1x3. This

vector can also be interpreted as the binary expansion of an integer; more precisely (0,0,1,0,1)

is the binary representation of 5, and so a5 is the coefficient in front of the term x1x3.

The function from Table 1.1 has the ANF f (x1,x2,x3) = x1 + x2 + x3.

The algebraic degree can be obtained easily from the ANF and it is important that the

degree is high in order to resist higher-order differential attacks [22, 36]. The algebraic degree

of a function F is the size of the largest term with a non-zero coefficient in its ANF, and is

denoted by deg(F). Thus, it is trivial to compute the algebraic degree if we know the ANF.

This is in contrast to the TT representation where there is no obvious way to compute the

algebraic degree. Besides the cryptographic significance related to the higher-order differential

attacks, the algebraic degree is also important because it allows us to define affine, linear and

quadratic functions, and is also an invariant under EA-equivalence.

Although the ANF can have up to 2n terms with non-zero coefficients, on average a lot of

the terms have zero coefficients, which leads to a more compact representation than the TT.

Even though it is often needed to find functions of high algebraic degree, quadratic functions

can be very useful in a number of contexts as well. It is frequently easier to search for functions

of lower algebraic degree computationally, or to prove properties of such functions.

An (n,m)-function of algebraic degree 1 is called affine, and has the property

F(x)+F(y)+F(z) = F(x+ y+ z)

for any x,y,z ∈Fn
2. A function F is called linear if F is affine and satisfies F(0) = 0. We thus

have

F(x)+F(y) = F(x+ y)

for any x,y ∈Fn
2. We can see that an affine function is just a linear function plus a constant,

and all linear functions are affine, but not vice-versa. Since cryptographically strong functions

should not have any apparent structure or property that can be exploited, affine functions are
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generally not suitable for cryptographic use by themselves.

When a function has algebraic degree 2 it is called a quadratic function. These functions

play an important role in the study of APN functions. This is because most of the known

instances of APN functions are quadratic, or CCZ-equivalent to quadratic.

Any (n,n)-function can be uniquely represented as a univariate polynomial over F2n of the

form

F(x) =
2n−1

∑
i=0

aixi,

with coefficients ai ∈ F2n . This is called the univariate representation, and is often used in-

stead of the ANF. This is because some known APN functions have a very simple univariate

representation and almost all of the infinite families of APN functions are given in this repre-

sentation. For instance, the Gold function F(x) = x3 is APN over F2n for any natural number

n. Here, an advantage is that the univariate representation is simple, with only one term, while

the size of its ANF and TT increases with the dimension n. Another advantage we get from

this representation besides the fact that it is more compact is that we can easily compute the

algebraic degree. In contrast to this there is no easy way to do this from the TT. More pre-

cisely, the algebraic degree of F(x) = ∑aixi is the largest binary weight of an exponent i with

a non-zero coefficient ai in the univariate representation of F .

Another representation that is used in the study of vectorial Boolean functions is the bi-

variate representation, which can be used when the dimension n is even. It has similar

advantages to the univariate representation, but since we do not use this in our research we do

not go into details.

Another way to represent vectorial Boolean functions is using the values of their Walsh

transform. The Walsh transform of an (n,m)-function F is the function WF : F2n ×F2m → Z

defined by

WF(a,b) = ∑
x∈F2n

(−1)Trm(bF(x))+Trn(ax),

where Trn is the trace from F2n to F2.

The values of the Walsh transform for all possible choices of a and b are called the Walsh

coefficients of F . The multiset of all of the Walsh coefficients of a function F is called the

Walsh spectrum of F . The multiset of all of their absolute values is called the extended

Walsh spectrum of F .
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Many important properties of vectorial Boolean functions (including some of their cryp-

tographic parameters) can be expressed using the Walsh transform. What is more, the Walsh

transform is invertible; that is, if we know the values of the Walsh transform WF(a,b) for all

a,b, then we can uniquely reconstruct the function F . In this way, a table of all the values of

the Walsh transform is yet another possible representation of (n,m)-functions.

2.2 Cryptographic properties

In cryptography, it is important to have functions that are secure and can resist various crypt-

analyic techniques. There are many different types of attacks but two of the most powerful

ones against block ciphers are the differential cryptanalysis and linear cryptanalysis. Differ-

ent types of attacks exploit different types of weaknesses in the functions, and the security of

the entire cipher depends on the properties of the functions used in it. If the function has a

bad cryptographic quality, the attacker can exploit patterns and regularities in the behavior of

the function and might be able to crack the cipher. So identifying (n,m)-functions with high

cryptographic security is crucial in the design and analysis of cryptographic primitives. For

instance, if we measure the differential uniformity of a function, we know how well it resists

differential cryptanalysis. A typical goal of research in this area is then to find instances of

functions having good values of various such cryptographic properties.

2.2.1 Differential uniformity

One of the most important cryptographic properties of a function is the differential uniformity.

As mentioned above, it measures the resistance of the function to differential cryptanalysis.

Differential cryptanalysis is one of the most powerful known attacks that can be employed

against block ciphers [3]. The basic idea behind differential cryptanalysis is to consider pairs

of inputs (x1,x2) to the function, and study how the difference in the outputs b=F(x2)−F(x1)

depends on the difference in the inputs a = x2 − x1. If for a fixed input difference a, a certain

output difference b is much more likely than any other output difference, the function behaves

predictably in some sense, and it may be vulnerable to differential attacks.

In order to prevent this, we would like the output differences b among all pairs of inputs

(x1,x2) with a fixed input difference a = x2 − x1 to be as uniformly distributed as possible. In

order to measure this, we introduce the notion of the derivative.



2.2 Cryptographic properties 9

Let F be an (n,n)-function for some natural number n. The derivative DaF of F in direc-

tion a ∈ F2n is the (n,n)-function

DaF(x) = F(a+ x)−F(x).

Clearly, the value of the derivative DaF(x) expresses the difference between the outputs of F

at a+ x and x; that is, it expresses the output difference for two inputs with difference a.

Note that in the case of binary finite fields and vector spaces, addition and subtraction are

the same operation. Therefore, the derivative is usually written as

DaF(x) = F(a+ x)+F(x)

instead of DaF(x) = F(a+ x)−F(x) as we wrote above.

Having introduced the derivative, we can define the numbers δF(a,b) that describe how

many input pairs with difference a give an output pair with difference b. Formally, we let

δF(a,b) = #{x ∈ F2n : DaF(x) = b}.

As discussed above, we want the values of δF(a,b) for any fixed value of a ∈ F2n to be as

uniformly distributed as possible; in other words, we want δF(a,b) to be as small as possible

for any choice of a and b. Note that a = 0 is an exception, since if the difference between x1

and x2 is 0, then x1 = x2, and so F(x1) = F(x2); so if the input difference is 0, then the output

difference is always 0 as well. This motivates the definition of the differential uniformity δF

of F as the largest value of δF(a,b) over all meaningful choices of a and b; that is,

δF = max{δF(a,b) : a,b ∈ F2n ,a 6= 0}.

A related notion is that of the differential spectrum of F , which is simply the multiset of

all possible values of δF(a,b). In other words, the differential spectrum of an (n,n)-function

F is the multiset {δF(a,b) : a ∈ F2n,b ∈ F2n}.

Since we have 2n inputs x ∈ F2n and 2n possible output difference b ∈ F2n , we would

ideally like δF(a,b) to be equal to 1 for any choice of a and b (so that we would obtain

δF = 1). Unfortunately, this is not possible, since if DaF(x) = b for some a,b,x ∈ F2n , then

DaF(a+ x) = b as well. This means that the smallest possible value of δF is 2 for any (n,n)-
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function F .

Functions attaining this best possible value do exist, and are called almost perfect nonlin-

ear. More formally, we say that an (n,n)-function F is almost perfect nonlinear (APN) if

δF = 2. Clearly, the differential spectrum of an APN function will only contain the values 0

and 2.

2.2.2 Nonlinearity

Another very important cryptographic property is the nonlinearity. This is a parameter which

shows how well a function performs against linear cryptanalysis [38].

The basic idea behind linear cryptanalysis is as follows. Consider a cryptographic cipher

having a vectorial Boolean function as part of its design. The attacker constructs a second

cipher which is exactly the same as the original one, but he replaces the function targeted by

the attack with an affine (or even linear) function. Linear and affine functions are never used

for cryptographic purposes by themselves because they are predictable. So if we build a cipher

around an affine function, it is likely to be cracked very easily. Thus, the attacker is able to

crack the modified cipher where he has replaced the original function with an affine function.

This is not terribly useful by itself because this is a different cipher; but if the original function

happens to be close to the affine function that the attacker used, then he could be able to get

information about the original cipher.

In order to measure how close two functions are to one another, we use the notion of

Hamming distance. Recall that the Hamming distance is defined as

dH(F,G) = #{x ∈ Fn
2 : F(x) 6= G(x)}.

If the Hamming distance between two functions is low, we will consider the functions as

being close to one another. Using the Hamming distance, one can define a cryptographic pa-

rameter called nonlinearity which measures how well a given function can resist linear crypt-

analysis.

In order to define the nonlinearity of (n,n)-functions we first need to define it for Boolean

functions. The nonlinearity of a Boolean function f : Fn
2 → F2 is the minimum Hamming

distance between f and any affine Boolean function on the same number of variables.

Having defined nonlinearity for Boolean functions we can now extend it to vectorial
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Boolean functions. In the case of an (n,n)-function F , linear cryptanalysis can be success-

ful even if F is far away from all affine (n,n)-functions, provided that one of its component

functions is close to an affine (n,1)-function. For this reason, the nonlinearity NL(F) of a vec-

torial Boolean function F is defined as the minimum nonlinearity across all of its component

functions; in other words, we define

NL(F) = min{dH(Fb, l) : b ∈ F2n,b 6= 0, l ∈ An},

where An is the set of all affine (n,1)-functions.

We want the nonlinearity to be as high as possible. Unlike in the case of differential uniformity

where we can see that δF is at least 2 for any F , here it is not obvious how high the nonlinearity

can be.

However, we do know (see e.g. [19]) that the nonlinearity of any (n,n)-function F satisfies

NL(F)≤ 2n−1 −2(n−1)/2. (2.1)

The almost bent (AB) functions are the ones that achieve this upper bound with equality

and provide the best resistance against linear cryptanalysis. From equation (2.1) we can see

that AB functions only exist for odd values of n.

Recall that APN functions are optimal against differential cryptanalysis. It can also be

shown that any AB function is APN, so AB functions provide the best resistance to both dif-

ferential and linear attacks. Even though any AB function is APN [21], not every APN function

is AB. We do know, however, that any quadratic APN function is AB when the dimension n is

odd [20].

2.3 Equivalence relations

Classifying (n,m)-functions can be a difficult problem since the number of such functions

grows exponentially as n increases and becomes too large to manage even for small values

of n. Equivalence relations can be used to reduce the number of functions that have to be

considered, provided that these equivalence relations preserve the cryptographic properties

of the functions that we are interested in. Equivalence relations on (n,n)-functions can be

defined in different ways. In our case, we are interested in equivalence relations that preserve,
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for instance, the differential uniformity and the nonlinearity of the functions. Furthermore,

it is typically better to use more general equivalence relations because this leads to a greater

reduction in the number of equivalence classes that have to be studied.

Differential uniformity and nonlinearity are invariant under i.a. affine, EA-, and CCZ-

equivalence. Some other important properties are not invariant under EA- and CCZ-

equivalence, however. For instance, CCZ-equivalence does not preserve the algebraic degree;

EA-equivalence, on the other hand, does. Equivalence relations can also be used to derive new

functions from known ones.

In the following section, we introduce some of the most commonly used equivalence rela-

tions on vectorial Boolean functions, namely: linear and affine equivalence; EA-equivalence;

CCZ-equivalence; and cyclotomic equivalence (in the case of power functions).

2.3.1 Linear and affine equivalence

One of the simplest notions of equivalence that can be defined on (n,m)-functions is the so-

called linear equivalence. We say that two (n,n)-functions F and G are linear-equivalent if

there exist linear permutations L1 and L2 of F2n such that

L1 ◦F ◦L2 = G. (2.2)

While being very simple, linear equivalence is not commonly used in the study of crypto-

graphic functions because we know more general equivalence relations that still preserve the

properties of interest. One of these more general relations is the so-called affine equivalence,

which is defined in the same way as linear equivalence, except that the permutations L1 and

L2 in (2.2) are allowed to be affine (instead of just linear). More formally, we say that two

(n,n)-functions F and G are affine equivalent if there exist affine permutations A1,A2 of F2n

such that

A1 ◦F ◦A2 = G. (2.3)

2.3.2 EA-equivalence

However, there are even more general equivalence relations that are used in the study of APN

functions. For instance, affine equivalence can be generalized into extended affine equivalence
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(or EA-equivalence, for short), which is one of the most commonly used equivalence relations

in this area. The only difference between affine equivalence and EA-equivalence is that we

allow an affine function (not necessarily a permutation) to be added to F . More precisely, we

say that F and G are EA-equivalent if there exist affine permutations A1, A2 of F2n , and an

affine (n,n)-function A such that

A1 ◦F ◦A2 +A = G.

It is not difficult to see that EA-equivalence preserves the differential uniformity, the non-

linearity, and the algebraic degree (among other properties) of (n,n)-functions (see e.g. [19]).

For a long time, EA-equivalence was the standard equivalence relation used for classifying

APN functions because it was the most general known equivalence relation that preserves

differential uniformity; however, we now know that CCZ-equivalence is strictly more gen-

eral than EA-equivalence (even if combined with taking inverses of permutations) while still

preserving the differential uniformity and nonlinearity [16], and so APN functions are now

typically classified up to CCZ-equivalence.

Despite this, we know that EA-equivalence coincides with CCZ-equivalence in some

particular cases. Most importantly, we know that two quadratic APN functions are CCZ-

equivalent if and only if they are EA-equivalent [42]. Since most of the APN functions that

we currently know are quadratic (or CCZ-equivalent to quadratic), this makes EA-equivalence

almost as important for the classification of APN functions as CCZ-equivalence. On the other

hand, EA-equivalence is somewhat easier to work with than CCZ-equivalence, and for this

reason it remains one of the most frequently used relations on vectorial Boolean functions.

2.3.3 CCZ-equivalence

The most general known equivalence relation on (n,n)-functions that preserves differ-

ential uniformity and nonlinearity is the Carlet-Charpin-Zinoviev equivalence (CCZ-

equivalence). This is why it is the most frequently used one in the study of APN functions. We

say that two vectorial Boolean functions F and G are CCZ-equivalent if there exists an affine

permutation that maps the graph {(x,F(x)) : x ∈ F2n} of F to the graph {(x,G(x)) : x ∈ F2n}

of G.

It can be seen that EA-equivalence is a special case of CCZ-equivalence, but CCZ-
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equivalence is strictly more general (even if combined with taking inverses of permutations)

[16].

An important difference between CCZ-equivalence and EA-equivalence is that CCZ-

equivalence does not preserve the algebraic degree or bijectivity. This allows us, for instance,

to construct APN functions of higher algebraic degree by exploring the CCZ-equivalence class

of quadratic APN functions.

One of the most remarkable constructive applications of CCZ-equivalence is a result due

to Dillon in which he constructs an APN permutation in dimension 6 [7]. Much like in the

case of algebraic degree, CCZ-equivalence does not preserve bijectivity, and so it is possible

to take some known APN function (which is not a permutation itself), and to search for per-

mutations in its CCZ-equivalence class. Since CCZ-equivalence does preserve APN-ness, all

such functions are automatically APN themselves. This is essentially what Dillon and his col-

laborators did; and to date, this is the only known APN permutation on an even number of

variables. Finding APN permutations in 8, 10, etc. variables (or showing that such do not ex-

ist) is arguably the most important open problem in the study of APN functions at the moment.

2.3.4 Testing equivalence relations

Since CCZ-equivalence preserves differential uniformity (and hence APN-ness), APN func-

tions are typically classified up to CCZ-equivalence. This makes the study of APN functions

simpler because we have fewer functions to consider. On the other hand, finding new APN

functions becomes more difficult in a sense, since for every new APN function that we find,

we have to verify that it is not CCZ-equivalent to any of the known ones. Thus, in order to find

new APN functions and constructions, we need a way to test whether two given functions are

CCZ-equivalent.

Unfortunately, the definition of CCZ-equivalence does not suggest any meaningful way

to check whether some given functions F and G are CCZ-equivalent besides conducting an

exhaustive search over all possible affine permutations. It turns out that testing the CCZ-

equivalence between two functions is a very hard computational problem; and, to date, the

only known way to do so relies on the isomorphism between linear codes.

Given an (n,n)-function F , we can associate with it a linear code CF . In order to do so, we
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first define a matrix MF associated with F as

MF =


1 1 1 1 · · · 1

0 1 α α2 · · · α2n−2

F(0) F(1) F(α) F(α2) · · · F(α2n−2)

 ,

where α is a primitive element of F2n . We then use MF as a parity-check matrix to define the

code CF . We then know that two (n,n)-functions F and G are CCZ-equivalent if and only if

the codes CF and CG are isomorphic [6, 28].

The benefit of this is that the problem of the isomorphism of linear codes has been studied

for a long time, and algorithms for solving it have already been developed. In particular, the

Magma algebra system [4] that we use for our computations has a built-in implementation of

such an algorithm. In this way, implementing a CCZ-equivalence test in Magma amounts to

constructing the matrix MF , defining the code CF , and then running this built-in implementa-

tion.

Unfortunately, this approach has several problems. On the one hand, it requires a lot of

memory, and performing the test is only possible for dimensions up to n = 10 (or n = 11

in some cases). Furthermore, if the implementation runs out of memory, it outputs “false”,

which is precisely the same output that it produces if the functions being tested are CCZ-

inequivalent. This means that the test can give false negatives (especially in large dimensions),

which is definitely something that we would like to avoid. Finally, the running times in larger

dimensions can be rather long, although this is typically not such a big problem (at least, when

compared to the false negatives).

In practice, we can often substitute a test for CCZ-equivalence with one for EA-

equivalence. This is because two quadratic APN functions are CCZ-equivalent if and only

if they are EA-equivalent [42], and because most of the known APN instances and construc-

tions of APN functions are quadratic.

We can test EA-equivalence using linear codes [28]. The idea of the algorithm is the same

as that for CCZ-equivalence, but it also has the same problem of the large memory consump-

tion and the false negatives. We know two more algorithms for testing EA-equivalence without

going through linear codes. In both cases, invariants are used to obtain restrictions and reduce

the size of the search space when trying to find the equivalence between the functions. The

first one is introduced in [32]. This approach is efficient for APN functions in even dimensions
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n. Another algorithm testing EA-equivalence for quadratic functions is developed by Canteaut

et al. [18]. This algorithm uses a similar approach, and is based on an invariant called the Ja-

cobian matrix to restrict the search space. This approach only works for quadratic functions,

but is effective for dimensions of any parity.

2.3.5 Cyclotomic equivalence

One very special equivalence notion that can be used for power functions is cyclotomic equiv-

alence. Despite the fact that it is very specialized, it is extremely useful because it is simple to

test.

If we have two (n,n)-power functions F(x) = xa and G(x) = xb where a,b,n are some

natural numbers, then F and G are cyclotomic equivalent if there exists a natural number k

such that

2k ·a ≡ b (mod 2n −1),

or

2k ·a−1 ≡ b (mod 2n −1),

where a−1 is the multiplicative inverse of a modulo 2n −1 (if it exists).

To check whether two functions are CCZ-equivalent is difficult to do, both theoretically and

computationally. But in the case of cyclotomic equivalence this is very easy. If two power

functions are CCZ-equivalent they are necessarily cyclotomic equivalent as well [43]. So in

the particular case of power functions, CCZ-equivalence reduces to cyclotomic equivalence.

Thus, all that we have to do in that case is to solve a small number of modular equations; and

if there is no solution, then the functions in question are inequivalent.

Although cyclotomic equivalence can only be applied to monomial functions and it seems

that this makes it too restrictive to be of use, monomial functions are some of the most impor-

tant APN functions in a number of ways. To begin with, monomial APN functions are the first

examples of APN functions and of infinite constructions of APN functions. At the moment,

the only known infinite APN families that are not quadratic consist of monomials.
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2.4 Invariants

Invariants are properties or values that are preserved under equivalence. Suppose that P is a

property that can be computed for any function F . If this P is an invariant for CCZ-equivalence,

for instance, this means that for two functions F and G that are CCZ-equivalent the value of

P(F) and the value of P(G) must necessarily be the same.

The differential uniformity is a well known CCZ invariant, which means that if F and G

are CCZ-equivalent then the differential uniformity of F is equal to the differential uniformity

of G. Therefore, if F is APN, then G is APN. This is the reason that CCZ-equivalence can be

used for classifying APN functions.

Invariants offer a good way to show that two functions are inequivalent in some cases.

Using invariants, we can prove that two functions are inequivalent, but we can never prove that

they are equivalent. To prove that two functions are equivalent we have to use a special kind

of test.

Another nice thing about invariants is that since they are concrete values (for instance,

numbers), we can precompute their values for some given functions. Although this might

take awhile, we can compute a table containing the values of some given invariant for all the

known APN functions. Then, if we want to compare some given function for equivalence

against the known ones, we can compute its value of the invariant, and then compare it to all

the precomputed values in the table. If the value does not match anything in the table, then

the function is definitely new; and if it does match some of the values in the table, then we

only have to conduct further equivalence tests with those functions from among the known

ones that have the same value of the invariant. This speeds up testing the equivalence for new

functions.

As mentioned earlier, differential uniformity and nonlinearity are invariants under CCZ-

equivalence. However, APN functions and AB functions have fixed values of both of these.

APN functions have by definition differential uniformity equal to 2, and AB functions have

a nonlinearity equal to 2n−1 − 2(n−1)/2. So in the study of APN functions and AB functions,

these invariants cannot be used to distinguish between inequivalent functions.

Invariants based on combinatorial designs that are associated with the functions are intro-

duced in [27]. They are called the Γ-rank, ∆-rank and the multiplier group. They can be easily

computed in Magma.
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According to the survey in [33] for all the known at the time 491 APN functions in dimen-

sion n = 7, the Γ-rank can take 14 distinct values, the ∆-rank can take 6 distinct values and

the order of the multiplier group can take 5. Together, they can take 20 triplets of values. This

means that these invariants can be rather useful for proving inequivalence of functions.

The extended Walsh spectrum is also an invariant, but it can only take e.g. 6 distinct values

across all the more than 20 000 known APN functions in dimensions n = 8, so it is not a good

invariant for the purpose of distinguishing inequivalent functions. On the positive side, it can

be computed very quickly, and it can be useful in other ways.

Another invariant is the orthoderivative, which is a function πF that can be associated with

any quadratic APN function F . The EA-equivalence class of the orthoderivative is an invariant

under EA-equivalence, and computing and comparing the Walsh spectrum and differential

spectrum of the orthoderivative is almost as good as an EA-equivalence test in practice [18].

Another advantage of the orthoderivates is that they are fast to compute.

An orthoderivative of a quadratic (n,n)-function F is any non-zero (n,n)-function πF

such that for any a ∈ F2n we have

πF(a) · (F(x)+F(a+ x)+F(a)+F(0)) = 0

for all x ∈ F2n , with πF(0) = 0 and πF(a) 6= 0 for all 0 6= a ∈ F2n . Here, “·” denotes a scalar

product on F2n; we can take a ·b = Trn(ab) without loss of generality.

A quadratic function F has a uniquely defined orthoderivative if and only if F is APN.

Furthermore, we know that if F and G are EA-equivalent quadratic APN (n,n)-functions, then

their orthoderivatives πF and πG are EA-equivalent as well. This allows us to show that F

and G are not EA-equivalent to one another by examining the values of the invariants of πF

and πG (instead of those of F and G themselves). This makes invariants that are not very

useful for classifying APN functions by themselves (such as the extended Walsh spectrum, or

the differential uniformity) useful. For instance, we already remarked above that the Walsh

spectrum can take 6 distinct values for all known APN functions for n = 8. On the other

hand, the Walsh spectra and differential spectra (taken together) of the orthoderivatives of

all EA-inequivalent quadratic APN functions for n = 8 are distinct. If we consider only e.g.

the differential spectra, then collisions are very rare. In fact, the differential spectrum of the

orthoderivative is the main invariant that we use for the classification of the functions that we

find in our computational searches.
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Family Exponent Conditions Algebraic degree Source
Gold 2i +1 gcd(i,n) = 1 2 [29, 39]

Kasami 22i −2i +1 gcd(i,n) = 1 i+1 [30, 35]
Welch 2t +3 n = 2t +1 3 [24]
Niho 2t +2t/2 −1, t even n = 2t +1 (t +2)/2 [23]

2t +2(3t+1)/2 −1, t odd t +1
Inverse 22t −1 n = 2t +1 n−1 [2, 39]

Dobbertin 24i +23i +22i +2i −1 n = 5i i+3 [25]

Table 2.1: Known infinite families of APN power functions over F2n

2.5 Survey of the known APN functions

In this section, we give a brief survey of the known APN functions. The research that we

present in the remainder of this thesis concentrates on documenting the range of the CCZ-

inequivalent APN functions that can be obtained using a method called polynomial expansion,

and so it is important to have a good overview of the APN instances that are already known.

The known APN functions can be split into two main categories: infinite families, and

sporadic instances. The infinite families are theoretical constructions that allow us to find APN

functions for infinitely many dimensions by substituting parameters in a general formula. The

sporadic instances are APN functions that do not belong to any of the currently known infinite

families. Such instances are typically found by computational searches.

2.5.1 Infinite monomial APN families

A power function, or monomial function, is a function whose univariate representation is a

polynomial of the form F(x) = xd for some natural number d. An example of how nice such a

function can be is the Gold function F(x) = x3. It has, as we can see, a very simple representa-

tion which has only one term. This function is APN over all dimensions and it does not have

any parameters. Functions like this are called exceptional, i.e. an exceptional function is one

that is APN over infinitely many dimensions. In fact, the function x3 is part of a more general

construction known as the Gold family which is one of the families represented in Table 2.1.

Power APN functions are also some of the earliest known APN functions.

A summary of the known infinite families of APN monomials is given in Table 2.1. A

conjecture of Dobbertin states that any APN power function is CCZ-equivalent to one of the

instances from Table 2.1 [25].
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2.5.2 Infinite families of APN polynomials

While the infinite monomial APN families represent some of the earliest known and most

remarkable APN functions, we can find a lot more functions that have a univariate form con-

sisting of more than a single term. Many of these functions still have a pleasant univariate

form (consisting of a very small number of terms), but some of them exhibit properties that

none of the monomial functions do.

Currently, we know 14 infinite polynomial APN families, which are summarized in table

2.2.

2.5.3 Sporadic APN instances

Sporadic APN functions are the ones that have not yet been classified into an infinite family.

We know a lot of sporadic instances up to dimension n = 10. For instance, for n = 8 we know

more than 20 000 functions [1, 46].

These more than 20 000 instances show that the infinite families that we know are barely

“scratching the surface”. Sporadic instances are also worth investigating because they have

properties that none of the APN functions from the known infinite families do. Just to consider

the most interesting examples: the function discovered in [27] is the only known APN function

that is CCZ-inequivalent to both quadratic functions and monomials; and Dillon’s permutation

for n = 6 is the only known APN permutation on an even number of variables [7].

One method that has been successfully used for finding new sporadic instances of APN

functions is what we refer to as polynomial expansion. It has been historically used to find

some of the earliest known instances of APN polynomial functions, as well as to construct

some of the infinite families from Table 2.2 [C1-C2, C13]. Unfortunately, it has never been

documented how far polynomial expansion can be pushed computationally. The main goal

of this master thesis is to systematically and exhaustively catalogue the exact range of APN

functions (up to CCZ-equivalence) that can be obtained in small dimensions using this method.
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ID Functions Conditions Source

F1-
F2

x2s+1 +u2k−1x2ik+2mk+s
n = pk,gcd(k,3) = gcd(s,3k) =
1, p ∈ {3,4}, i = sk mod p,m = p−
i,n ≥ 12,u primitive in F∗

2n

[13]

F3 sxq+1 + x2i+1 +
xq(2i+1) + cx2iq+1 +
cqx2i+q

q = 2m,n = 2m, gcd(i,m) = 1,
c ∈ F2n,s ∈ F2n \Fq,X2i+1+cX2i

+
cqX + 1 has no solution x s.t.
xq+1 = 1

[10]

F4 x3 +a−1Trn(a3x9) a 6= 0 [14]
F5 x3 + a−1Trn

3(a
3x9 +

a6x18)
3|n, a 6= 0 [15]

F6 x3 + a−1Trn
3(a

6x18 +
a12x36)

3|n,a 6= 0 [15]

F7-
F9

ux2s+1 + u2k
x2−k+2k+s

+
vx2−k+1 +
wu2k+1x2s+2k+s

n = 3k,gcd(k,3) = gcd(s,3k) =
1,v,w ∈ F2k ,vw 6= 1,3|(k +
s),u primitive in F∗

2n

[5]

F10 (x+ x2m
)2k+1 + u′(ux+

u2m
x2m

)(2
k+1)2i

+ u(x +
x2m

)(ux+u2m
x2m

)

n = 2m,m ≥ 2 even,
gcd(k,m) = 1 and i ≥ 2
even, u primitive in F∗

2n,u′ ∈
F2m not a cube

[47]

F11 a2x22m+1+1 +
b2x2m+1+1 + ax22m+2 +
bx2m+2 +(c2 + c)x3

n = 3m,m odd,L(x) = ax22m
+

bx2m
+ cx satisfies the conditions

of Lemma 8 of [9]

[9]

F12 u(uqx + xqu)(xq + x) +
(uqx + xqu)22i+23i

+

a(uqx + xqu)22i
(xq +

x)2i
+b(xq + x)2i+1

q = 2m,n = 2m,gcd(i,m) = 1,
x2i+1 +ax+b has no roots in F2m

[41]

F13 x3 + a(x2i+1)2k
+

bx3·2m
+ c(x2i+m+2m

)2k
n = 2m = 10, (a,b,c) = (β ,1,0,0),
i = 3, k = 2, β primitive in F22

[17]

n = 2m, m odd, 3 - m, (a,b,c) =
(β ,β 2,1), β primitive in F22 ,
i ∈ {m − 2,m,2m − 1,(m − 2)−1

mod n}

Table 2.2: Known infinite families of quadratic APN polynomials over F2n
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Chapter 3

Polynomial expansion

One of the main goals of this thesis is to document how far polynomial expansion can be

pushed in the search of APN functions. In this chapter, we describe in detail the idea behind

polynomial expansion, the current state of knowledge on this topic, and the exact experimental

procedure that we follow in our work.

3.1 Basic notions

Due to the huge number of (n,n)-functions, conducting an exhaustive search for APN func-

tions over all of them is impossible. In practice, we can find sporadic APN instances by

performing exhaustive searches over very small subclasses of functions. There are many dif-

ferent ways to do this, and a natural idea is to take some given function F , and to examine

all functions that have a representation (under ANF, or as TT, or in some other form) that is

“close” to the representation of F in some sense.

For instance, we can take the TT of F , and then try to modify a few of its values in order to

obtain new functions. We could then check which of these functions are APN, and in this way

we can get new sporadic APN instances. Unfortunately, the approach of changing the TT of

known APN functions does not appear to be promising: some negative results were obtained

in [12] and [31], and in [11] it was shown that the number of modifications that need to be

applied to the TT is so big that an exhaustive search becomes infeasible. Similarly, we do not

know of any APN functions that have been obtained in this way using the ANF.

However, modifying the univariate representation of an APN function has been success-

fully used to construct many CCZ-inequivalent instances of APN functions, e.g. [6]. Further-

more, some APN instances found in this way have been generalized into infinite families [17],

and so this appears to be a very promising method of finding new APN functions.



24 Polynomial expansion

Unfortunately, there is currently no comprehensive documentation on how far polynomial

expansion has been pushed, and what exactly exhaustive searches have been conducted. This

is a significant problem since it means that researchers may keep repeating the same computa-

tional searches without finding new functions, which could significantly slow down progress

in this area. In this thesis, we aim not only to conduct more and more extensive experiments

using the polynomial expansion technique, but also to carefully document the exact state of

our progress so that redundant experiments of this type can be avoided in the future.

The basic idea of polynomial expansion is that we take some initial (n,n)-function F ,

represented as a univariate polynomial. We then try to add a small number of terms to it and

go over all possible combinations of coefficients and exponents. If we don’t get any functions

after adding one term, we then try to add two terms, three terms, four terms, and so forth, until

the computation becomes too slow. If it gets to the point that it is too slow, we can restrict the

coefficients to subfields of F2n .

One approach that we can use to reduce the complexity of the search is to restrict the expo-

nents to only quadratic ones. Although we will not be able to express any function of algebraic

degree greater than 2 in this way, we know that most of the known APN functions (with a sin-

gle exception [27]) are CCZ-equivalent to quadratic functions or monomials; furthermore,

non-quadratic APN functions tend to be rare, especially if we restrict the univariate represen-

tation to a small number of terms. While this does hypothethically mean that we might miss

a non-quadratic APN function, the advantange that we obtain by imposing this restriction is

significant. The number of exponents in a full search without restrictions is 2n − 1 so in the

case of n = 8 we have 255 exponents. But if we restrict this to only quadratic exponents we

will only have
(8

2

)
= 28 exponents in the search. By reducing the number of exponents, we

significantly speed up the search.

After computing the functions, we need to classify them up to CCZ-equivalence. Since we

have chosen to restrict the exponents to quadratics, we know that CCZ-equivalence is the same

as EA-equivalence, and so we use the differential spectrum of the orthoderivative to distinguish

between CCZ-inequivalent functions.
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3.2 Status quo

Even though researchers have found many sporadic APN functions through polynomial ex-

pansion, there are few documented results on the efficiency of this method, and it seems that

other computational methods have been preferred in the literature recently, e.g matrix repre-

sentations [46] or the switching construction [27].

One disadvtange of these methods is that they give functions with a very complicated univari-

ate representation, which makes it difficult to analyze the properties of these functions and

to generalize them into infinite families. In fact, one of the goals of this thesis is to find the

shortest possible representations of all classes of APN functions that can be obtained using

polynomial expansion in small dimensions.

3.3 Experimental setup

As discussed above, our primary approach is to search for quadratic APN functions with a

simple univariate representation over some finite fields F2n . In order to do this, we conduct

a number of experiments of the following type. We take some finite field F2n; in our experi-

ments, we consider n = 8,9. We do not consider dimensions less than 8 since we know that

the classification up to CCZ-equivalence of quadratic APN functions in those dimensions is

complete [27, 34, 37]. We try to take the search as far as possible (with respect to the number

of terms that we add), and we concentrate on dimensions n = 8 and n = 9 as being sufficiently

small to allow for multiple searches of this form. For n = 8,9, we take a starting function F . In

our case, we let F be a representative from the CCZ-classes of the known infinite families of

APN functions. Then we try to add terms to the function F . We restrict the exponents so that

we only look at quadratic ones. In dimension 8, we are able to add up to K = 6 terms before

the searches become too slow; and in dimension 9, we are able to go up to K = 4 in general;

with the help of the EA-equivalence trick that we describe in Section 3.4, we are able to push

this to K = 5 in the case when F is a monomial.

We also do not consider functions having all of their coefficients in F2 since these have

been completely classified up to CCZ-equivalence for n ≤ 9 [44].

Initially, we let the terms have coefficients from the entire field F2n . Once the searches

become too slow, we restrict the coefficients to a subfield F2m , and continue adding more
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terms. For n = 8, we can restrict to m = 1,2,4,8; and in dimension n = 9, we can restrict to

m = 1,3,9.

For every function obtained in this way, we check whether it is APN from the definition.

Finally, for those functions that are APN, we compute the differential spectra and the Walsh

spectra of their orthoderivatives, and we use them to split the functions into EA-equivalence

classes (and since they are quadratic, CCZ-equivalence reduces to EA-equivalence for them).

We do not perform any actual equivalence test on the functions (so, hypothetically, they might

represent even more CCZ-equivalence classes) but since, according to computational observa-

tions, the Walsh spectrum and differential spectrum of the orthoderivatives allow us to distin-

guish between any two CCZ-inequivalent quadratic APN functions (with the single exception

of some Gold functions in the case of odd dimensions), we believe that this should not be the

case.

3.4 Simplifying the search when the starting function is a

monomial

When expanding monomials we can use the following trick based on EA-equivalence to sig-

nificantly reduce the number of functions that we have to consider. In particular, this allows us

to push the expansion in dimension n = 9 to K = 5 terms for monomials, while in the general

case of polynomials, we stop at K = 4 due to the time complexity.

Suppose that our starting function is F(x) = xd for some exponent d, and we are adding

a term cxe for some coefficient c ∈ F2n and some exponent e to obtain an expanded function

G(x)= xd +cxe. If we compose G with the linear permutation L2(x)= xa for some 0 6= a∈F2n ,

then we obtain the EA-equivalent function

G′(x) = G◦L2(x) = adxd + caexe.

If we now compose G′ on the left with the linear permutation L1(x) = x/ad , then we obtain the

EA-equivalent function

G′′(x) = L1 ◦G◦L2(x) = xd + cae−dxe.

Comparing this with G(x), we see that the only difference is the coefficient of xe, which is
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multiplied by ae−d . Since we can do this for any non-zero a ∈ F2n , this means that when

selecting the coefficient c for the term cxe in the search, we can restrict to only one coefficient

from each set of the form

{cae−d : 0 6= a ∈ F2n}

without losing any functions up to EA-equivalence.

We can also use another similar trick that involves composing G(x) = xd +cxe with the lin-

ear permutations L1(x) = x2 and L2(x) = x2n−1
. Recall that x2n

= x for any x ∈ F2n . Composing

G with L1 and L2, we obtain the EA-equivalent function

L1 ◦G◦L2(x) = xd + c2xe.

Thus, we can raise the coefficient in front of the first term that we add to the second power

and obtain an EA-equivalent function. Since we can do this as many times as we want, we can

replace c with c2k
for any k; and so it is enough to consider one coefficient c from each set of

the form

{c2k
: k = 0,1, . . . ,n−1}

without losing any functions up to EA-equivalence.

Combining these two techniques, we can significantly reduce the number of choices for the

coefficient of the first term that we add to our starting function, and so we can greatly reduce

the complexity of the search.

Unfortunately, there does not appear to be any obvious way to extend these tricks to the

general case when we are expanding polynomials, or to restrict the coefficients of terms that

we add other than the first one.
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Chapter 4

Computational results

In this chapter, we summarize the computational results that we obtain in our work. A full list

of all the functions found by our searches is available online at https://boolean.h.uib.no/

mediawiki/index.php/APN_functions_obtained_via_polynomial_expansion_in_small_

dimensions. In Tables 4.1 in 4.2 we show the computation time for the polynomial expan-

sion experiments that we perform, while in Tables 4.3 and 4.4, we list the representatives that

we find from those classes of functions whose orthoderivative differential spectrum is different

from that of any representative form the known APN families.

In Tables 4.1 and 4.2, we indicate the subfield to which we restrict the coefficients in

the search using different colors. In the case of dimension n = 8, red means that we take

coefficients from the entire field, white means that we take coefficients from the subfield F24 ,

and green means that we take coefficients from the subfield F22 . In the case of dimension

n = 9, yellow means that we take coefficients from the entire field, and purple means that

we take coefficients from the subfield F23 . We recall that we do not consider functions all of

whose coefficients are in the prime field F2 because all such APN functions up to dimension

n = 9 have already been classified [44]. Finally, the colour gray means that we did not get any

functions from the computations.

By examining the tables, we can see that pushing these searches further would require a

significant amount of computation time: for instance, in dimension n= 8, running experiments

in the subfield F22 took about 27 hours, and for dimension n = 9, experiments in the subfield

F23 took 25 days to finish.

In dimension 9, we run experiments for expanding quadratic monomial APN functions

(that is, the Gold APN functions) up to 5 terms, while in the case of polynomial APN functions

we only go up to 4 terms. This is because the equivalence trick described in Section 3.4 in the

https://boolean.h.uib.no/mediawiki/index.php/APN_functions_obtained_via_polynomial_expansion_in_small_dimensions
https://boolean.h.uib.no/mediawiki/index.php/APN_functions_obtained_via_polynomial_expansion_in_small_dimensions
https://boolean.h.uib.no/mediawiki/index.php/APN_functions_obtained_via_polynomial_expansion_in_small_dimensions
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previous chapter only works for monomials; in the case of polynomials, we expect that the

running time would be too long. The cells of Table 4.2 corresponding to searches that we did

not run, are also colored in grey; to differentiate from searches that we did run but that did not

yield any functions, we denote them by “N” in the table.

The running times are given in hours. If the time is very short (for instance, in the range of

a few seconds to a few minutes), then we round it down to 0 hours.

Representatives from our searches that have differential spectra of the orthoderivative dif-

ferent from those of representatives from the known APN families are given in Tables 4.3 and

4.4. In both tables, the first column gives an index that can be used to refer to the function.

The second column gives a univariate representative found using our search; we tried to give

the simplest possible representative in all cases, meaning that we took the one with the fewest

terms, and the most restricted coefficients (that is, with coefficients in the smallest possible

subfield). The third column indicates which known APN function our representative is equiv-

alent to (in terms of having the same differential spectrum of the orthoderivative). In the case

of Table 4.3, “SW X” means that the representative has the same differential spectrum of the

orthoderivative as a function obtained from Edel and Pott’s switching construction in [27]; in

particular, we refer to Table 9 from [27], and e.g. “SW 19” means that our representative cor-

responds to the one on the 19-th row of Table 9. Similarly, “B X” means that the representative

has the same differential spectrum of the orthoderivative as a function obtained by Beierle and

Leander [1], and “Y X” means that the representative has the same differential spectrum of the

orthoderivative as a function obtained by Yu et al. [45]. In the case of Table 4.4, we have the

similar “B X”, which means that the representative has the same differential spectrum of the

orthoderivative as a function obtained by Beierle and Leander [1], and “I X” means that the

representative has the same differential spectrum of the orthoderivative as a function obtained

by Budaghyan et al. using the so-called isotopic shift construction from [8]. The penultimate

column gives the differential spectrum of the orthoderivative. Finally, the last column gives

the number of terms in the univariate representation of the previously known representative

with the same differential spectrum of the orthoderivative.

In dimension n = 8, we find 16 distinct orthoderivative differential spectra that are dif-

ferent from those of the known infinite APN families. Among these, the function with ID

8.7 can be seen to be CCZ-inequivalent to any known APN function over F28 based on the

value of its orthoderivative differential spectrum. The remaining 15 functions have the same
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differential spectrum of the orthoderivative as APN functions obtained from Edel and Pott’s

switching construction [27], the matrix construction of Yu et al. [46], and Beierle and Lean-

der’s self-equivalence method [1]. However, in a lot of cases, the functions that we find have

a much shorter univariate representation that the currently known representatives from these

constructions. For example, the function with ID 8.14 has the same differential spectrum of

the orthoderivative as a function of Beierle and Leander, but the representative given in [1]

consists of 36 terms and has the form

α
192x192 +α

37x160 +α
196x144 +α

5x136 +α
234x132 +α

119x130 +α
79x129+

α
155x128 +α

74x96 +α
171x80 +α

172x72 +α
116x68 +α

98x66 +α
127x65+

α
188x64 +α

8x48 +α
97x40 +α

161x36 +α
160x34 +α

59x33 +α
203x32+

α
129x24 +α

236x20 +α
180x18 +α

181x17 +α
118x16 +α

150x12 +α
118x10+

α
150x9 +α

161x8 +α192x6 +α
131x5 +α

47x4 +α
217x3 +α

219x2 +α
164x,

while the representative for 8.14 has the much simpler form

x144 +α
85x96 +a170x80 +α

85x65 +α
85x17 + x9 + x5.

Note also that all coefficients in the representation that we find are in F22 (in contrast to the

previously known representative).

It is interesting that a lot of the classes of APN functions obtained using complex compu-

tational methods (such as the ones of Edel and Pott, the generalized isotopic construction of

Budaghyan et al., the matrix method of Yu et al., and the self-equivalence of Beierle and Le-

ander) can be obtained in this much simpler way. Of course, we can see that not all of the

functions from e.g. the switching classes are represented among our searches; however, our

results suggests that polynomial expansion can still be useful for finding new classes of APN

functions, and it would be interesting to see how much further it can be pushed, and whether

more of the representatives given in e.g. [27] can be obtained using simpler methods like this.

For dimension n = 9, we find 19 distinct classes (according to the differential spectrum

of the orthoderivative) distinct from those of the known infinite APN families. All of these

functions have an orthoderivative differential spectrum matching one of the functions from

Budaghyan et al.’s isotopic shift method [9] or Beierle and Leander’s classes [1]; however, our

representatives are simpler than the known ones in some cases. In the case of the functions
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corresponding to [8], our representatives are not significantly shorter than the known ones.

However, in the case of the Beierle-Leander functions (with ID 9.17, 9.18 and 9.19), our

representatives are much shorter than the currently known ones; for example “B 31” has a

polynomial form consisting of 44 terms given by

α
474x384 +α

421x320 +α
96x288 +α

139x272 +α
313x264 +α

202x260 +α
245x258+

α
33x257 +α

87x256 +α
63x192 +α

194x160 +α
434x144 +α

362x136 +α
453x132+

α
275x130 +α

306x129 + x128 +α
428x96 +α

282x80 +α
431x72 +α

19x68 +α
298x66+

α
253x65 +α

144x64 +α
387x48 +α

234x40 +α
449x36 +α

131x34 +α
480x33+

α
353x32 +α

52x24 +α
399x20 +α

237x17 +α
192x16 +α

509x12 +α
230x10+

α
227x9 +α

261x8 +α
271x6 +α

8x5 +α
468x4 +α

403x3 +α
77x2 +α

492 ∗ x,

and our representative 9.17 has the form

x80 +α
73x66 + x17 +α

73x10 + x3.

Once again, note that all coefficients are in F23 .

Finally, we note that we find a completely new APN instance (which is CCZ-inequivalent

to any previously known function), represented by

F1(x) = α
170x132 +α

85x66 +α
85x18 + x3

over F28 .
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Dim 8 1 2 3 4 5 6

8.1 0 0 121 24.4 1.93 22.61

8.2 0 0 82.59 20.3 1428.87 26.63

8.4 0 2.3 0.74 55.78 1.11 9.99

8.5 0 2.19 0.58 33.66 0.57 3.99

8.6 0 2.24 0.6 36.67 0.58 4.18

8.7 0 2.8 0.64 37.69 0.5 3.68

8.8 0 2.14 0.55 32.96 0.57 4.09

8.9 0 2.08 0.35 14.73 0.17 0.88

8.10 0 6.22 1.3 74.67 1.22 8.58

Table 4.1: Computation times for the polynomial expansion experiments in dimension 8.

Dim 9 1 2 3 4 5

9.1 0 0.36 0.2 11.76 535.52

9.2 0 0.35 0.19 10.3 459.18

9.3 0 0.39 0.23 13 625.06

9.8 0 32.84 0.38 15.36 N

9.9 0 32.22 0.43 20.19 N

9.10 0 35.42 0.46 21.49 N

9.11 0 32.43 0.47 24.52 N

Table 4.2: Computation times for the polynomial expansion experiments in dimension 9.
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ID Representatives Eq Orthoderivative diff. spectrum Terms

8.1 α170x192 +α85x132 + x6 + x3 SW19 037872,222788,44068,6492,860 4

8.2 x66 +α85x33 + x18 + x9 + x3 SW11 038040,222461,44218,6513,836,1012 16

8.3 x66 +α85x33 +α17x9 +α102x6 + x3 SW13 038076,222311,44374,6495,824 16

8.4 α85x132 +α85x72 + x9 + x6 + x3 SW12 038160,222104,44536,6456,824 16

8.5 x66 + x12 +α85x6 + x3 SW6 038160,222164,44428,6492,836 4

8.6 x129 +α85x24 + x12 + x9 + x3 SW8 038184,222179,44338,6531,848 16

8.7 α170x132 +α85x66 +α85x18 + x3 new 038196,222008,44608,6456,812 -

8.8 α85x132 +α85x72 + x36 + x24 + x3 SW9 038256,222116,44230,6648,830 16

8.9 α85x192 + x72 + x33 + x24 + x9 +α153x6 SW17 038388,221723,44626,6507,836 16

8.10 α221x96 +α221x33 + x12 + x9 + x6 +α187 ∗ x3 SW 10 038439,221618,44671,6528,824 16

8.11 α238x144 + x132 +α51x96 +α119x48 + x33 + x9 SW16 038457,221552,44743,6510,818 16

8.12 α204x160 +α51x48 +α102x12 +α204x10 + x9 SW22 038844,220974,44764,6654,844 5

8.13 α160x132 +α10x72 + x48 +αx34 +α3x33 +α48x18 + x17 + x3 B 31 039150,220463,44920,6675,854,1012,126 36

8.14 x144 +α85x96 +α170x80 +α85x65 +α85x17 + x9 + x5 B 12668 039408,220072,44922,6798,870,1010 36

8.15 x66 +α170x40 + x18 +α85x5 + x3 Y 4346 039408,220218,44692,6838,8104,1012,128 5

8.16 x160 + x132 + x80 + x68 + x6 + x3 SW20 039692,219752,44756,6978,872,1026,124 6

Table 4.3: Representatives for n = 8 with orthoderivative differential spectra distinct from those of the
known APN families
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ID Representative Eq Orthoderivative diff. spectrum Terms

9.1 α365x257 + x96 + x68 +α219x33 + x5 I 4 0158529, 280829, 418144, 63283, 8469, 10294, 1284 5

9.2 α438x129 + x66 +α219x10 + x3 I 8 0159418, 279275, 418690, 63213, 8742, 10252, 1221, 1621 4

9.3 x136 + x24 + x17 +α73x10 + x3 I 3 0159684, 278687, 419089, 63136, 8777, 10147, 1284, 1428 5

9.4 x68 +α73x40 + x33 + x5 I 10 0159684, 279590, 417871, 63283, 8700, 10273, 12147, 1484 4

9.5 α73x136 +α146x66 +α219x10 + x3 I 16 0159908, 279086, 418081, 63353, 8721, 10336, 12105, 1421,
1621

4

9.6 x264 +α73x96 +α219x68 + x5 I 11 0160020, 279023, 417997, 63213, 8868, 10378, 12133 4

9.7 α219x136 + x10 + x3 I 12 0160657, 277910, 418312, 63360, 8952, 10273, 12147, 1421 4

9.8 x192 + x66 + x17 +α73x10 + x3 I 14 0162183, 276482, 417388, 63871, 81162, 10252, 12126,
14126, 1621, 2221

5

9.9 α73x192 + x136 +α365x129 + x17 + x3 I 5 0162708, 277175, 415498, 64270, 81260, 10252, 12168,
1484, 16126, 1842, 2242, 267

5

9.10 α73x129 +α292x66 + x10 + x3 I 9 0163009, 275537, 417283, 64116, 81071, 10168, 12231,
1428, 1684, 1863, 2042

4

9.11 x80 +α146x66 +α73x24 + x17 I 13 0163366, 275117, 417010, 64536, 8966, 10252, 1263, 14154,
1663, 1884, 2221

4

9.12 x129 +α73x66 + x17 + x10 +α365x3 I 6 0163996, 274802, 416380, 64368, 81449, 10231, 12126,
1484, 1642, 1884, 2042, 2221, 327

5

9.13 α73x136 +α219x66 +α438x10 + x3 I 15 0168994, 268712, 415141, 66279, 81659, 10336, 1221, 1421,
16105, 18147, 20189, 2421, 267

5

9.14 α438x129 + x66 +α219x17 + x3 I 2 0169428, 268040, 415561, 66034, 81533, 10420, 12126,
1421, 1684, 18189, 20126, 2263, 267

5

9.15 α365x80 +α292x24 +α219x17 + x3 I 17 0170079, 266297, 416737, 66160, 81407, 10420, 1221, 1442,
1663, 18210, 20133, 2263

4

9.16 x257 +α438x68 +α219x12 + x5 I 7 0171430, 264617, 416842, 65733, 81932, 10483, 12105,
1421, 16147, 18105, 20154, 2221, 2442

4

9.17 x80 +α73x66 + x17 +α73x10 + x3 B 31 0160440, 278834, 417514, 63388, 8777, 10483, 12126, 1449,
1621

44

9.18 α365x136 + x129 +α73x80 + x24 + x17 + x3 B 34 0164199, 276734, 413524, 64312, 82205, 12147, 16294,
18147, 2049, 2221

45

9.19 α73x320 + x96 +α219x68 + x40 + x33 + x5 B 35 0172557, 268355, 412201, 63871, 81638, 10735, 121470,
1449, 16147, 18441, 20147, 4221

45

Table 4.4: Representatives for n = 9 with orthoderivative differential spectra distinct from those of the
known APN families
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Chapter 5

Conclusion and future work

One of the main goals of this master thesis was to find out how far we could push polynomial

expansion in the search of APN functions. To this end, we have carefully documented the

exact configurations and running times of the experiments that we conducted for dimensions

n = 8 and n = 9. From this, we can see that pushing polynomial expansion further is possible,

but would require significant computational efforts.

On the other hand, we did obtain one new APN function for n = 8, and for both n = 8 and

n = 9, we observed that many of the known APN functions that were previously found using

complicated computational methods can also be obtained in this way. Furthermore, some of

the representative that we find are significantly simpler than the previously known ones which

were obtained using other methods. This suggests that polynomial expansion still has the

potential to provide us with new APN functions, and with simpler representatives of known

sporadic APN instances, and so it remains a viable method for investigating APN functions.

A natural continuation of our work would be to run more experiments and to see what

other classes of APN functions can be obtained in this much simpler way. In particular, we

have attempted to expand APN functions from the known infinite families of APN functions;

a straightforward further step would be to attempt to expand some of the other known APN

functions, or to start from other promising functions that are not themselves APN.

Another thing we can try to do is to find a way to speed up the search by using a technique

similar to the EA-equivalence trick for polynomial functions (although it is not obvious what

such a technique would look like).

We can also try to take a closer look at the representatives that we found (in particular,

the new APN function for n = 8), and see if they can be generalized into infinite families.

Although such a task is still far from easy, our shorter representations make this task more
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realistic than the previously known representations.
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