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Abstract: Background: Oral squamous cell carcinoma (OSCC) is increasing at an alarming rate par-
ticularly in low-income countries. This urges for research into noninvasive, user-friendly diagnostic
tools that can be used in limited-resource settings. This study aims to test and validate the feasibility
of e-nose technology for detecting OSCC in the limited-resource settings of the Sudanese population.
Methods: Two e-nose devices (Aeonose™, eNose Company, Zutphen, The Netherlands) were used
to collect breath samples from OSCC (n = 49) and control (n = 35) patients. Patients were divided into
a training group for building an artificial neural network (ANN) model and a blinded control group
for model validation. The Statistical Package for the Social Sciences (SPSS) software was used for the
analysis of baseline characteristics and regression. Aethena proprietary software was used for data
analysis using artificial neural networks based on patterns of volatile organic compounds. Results: A
diagnostic accuracy of 81% was observed, with 88% sensitivity and 71% specificity. Conclusions: This
study demonstrates that e-nose is an efficient tool for OSCC detection in limited-resource settings,
where it offers a valuable cost-effective strategy to tackle the burden posed by OSCC.

Keywords: electronic nose; cancer; oral; diagnosis; screening; toombak

1. Introduction

Disease-associated odor is an old phenomenon, which was first mentioned by Hip-
pocrates of Kos (460–370 BC), who described “fetor oris” and “fetor hepaticus”. The interest
for this phenomenon developed over time throughout Antoine Lavoisier studies in the
18th century [1,2]. Modern era of breathomics started in 1970s with the pioneering research
of Linus Pauling on analyzing urine vapor utilizing gas chromatography [3]

Gas chromatography-mass spectrometry (GC-MS) is the gold-standard platform that
identifies individual volatile organic compounds (VOCs) according to their physical fea-
tures when compared to a reference library. Unfortunately, its clinical use is not feasible
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since it is not real-time, needs a long time for sample processing, relies on non-portable de-
vices, and needs constant calibration for specific analytes. Other MS-hybrid methodologies
were also proved to be useful [4,5].

Electronic noses are devices that also allow detection and identification of various
volatile compounds or odors based on gas sensor arrays to simulate the function of the
human olfactory system [6]. Concomitant with rapid developments in sensor technology,
there is a plethora of electronic noses (e-noses) technologies that appeared lately [7], dis-
playing different sensor chemistries [8–13]. As such, sensor arrays used in e-noses include
many types of electrochemical sensors and different types of sensor-coating materials
which are classified according to additive doping materials, the type and nature of the
chemical interactions, the reversibility of the chemical reactions and running temperature.
Those includes electrochemical (EC), metal oxide semiconductor (MOS), nondispersive
infrared sensors (NDIR), thermal sensor, and photoionization sensor (PID) [14]. The most
widely used class of gas sensors are MOSs. The selectivity of these sensors can be changed
using different noble metals or by changing the operating temperature. They are very
sensitive, robust, humidity resistant, and durable, although they can suffer from drift over
time [7,15].

In addition to sensors, there are different transducers recording devices according
to what they measure as output from the sensor, e.g., electrical measurement or optical
measurement [10]. The output signal of a sensor in a gas sensor arrays, represents com-
ponents of a vector, which is normally processed by feature extraction first, followed by
preprocessing and normalization; then explanatory techniques are applied [8,16,17]. The
measurement data from sensor arrays are multidimensional, therefore dimensionality
reduction and classification methods are used to furthermore process the data [8]. The
cross-reactive sensor arrays are usually coupled with a pattern recognition algorithm to
detect VOC fingerprint patterns resulted from the combination of signals produced by
different sensors [18].

E-nose technology can use exhaled breath VOC pattern analysis in order to detect
specific pathological conditions in different hosts [6,19,20] and to create a prediction model.
These VOCs are products of different metabolic processes, including cancer metabolism,
that dissolve in the bloodstream and enter the respiratory tract through alveoli [21]. It
has been demonstrated that specific VOCs for head and neck squamous cell carcinoma
(HNSCC), including a subset of oral squamous cell carcinoma (OSCC), can be detected
with e-nose technology using pattern recognition in which a-specific sensors are combined
with machine learning [22]. Using an artificial neural network (ANN) technique, these
individual patterns can be transferred to a model for diagnosing HNSCC, including OSCC.

While significant improvement has been made in the detection and treatment of most
malignancies, the prognosis of OSCC has remained relatively unchanged [23,24]. In Sudan,
OC is the sixteenth most common cancer [25], with an incidence of 775 cases per year [26],
most cases presenting at stages III or IV [27].

Full diagnosis of OSCC requires a specialized setting where clinical examination is
followed by contrast-enhanced computerized tomography (CT) and/or magnetic resonance
imaging (MRI) in addition to the histopathological examination of biopsies, which is
essential for proper diagnosis [28]. Current diagnostic tools for OSCC are invasive and
expensive, posing difficulties in Sudan, where the specialized diagnostic centers are sparse
and located in the main cities only.

There, devices based on electronic nose (e-nose) technology could meet the need for
low-cost, easy-to-use tools for diagnosis of OSCC at early stages, which could substantially
prolong life expectancy and reduce the costs of treatment. The main advantage of the e-nose
is its user-friendly design. This portable handheld device does not require specialized
facilities or personnel. The e-nose could provide results in just 15 min after the patient
starts exhaling through the device and if the device is connected to an internet network.
However, the e-nose is not intended to replace the histopathological examination of oral
biopsies, which should still be the gold standard for the final diagnosis and staging of
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OSCC [29]. It is conceived that it will help to reduce the workload demanded by the
still invasive and time-consuming conventional biopsy procedure by better selection of
malignant suspicious cases since it is well recognized that conventional oral examination
(COE) is not predictive of histological diagnosis of oral lesions OSCC [30]. Add to that
the inter- and intra-observer reliability in reporting [31], utilization of e-nose methodology
is meant to be used in addition to COE for better selection of cases for biopsies, which
will be of value particularly in the limited-resource settings of low-income countries such
as Sudan.

The present study aimed to test the feasibility of e-nose technology for detecting OSCC
in the limited-resource settings of the Sudanese population. Similar studies testing the
feasibility of e-nose have been carried out on Western populations [32]. However, there are
significant differences between the Sudanese and a Western population, not only in terms
of the type of the tobacco consumed [33,34] but also in the availability of resources and
health-care networks, differences justifying the present study.

2. Materials and Methods
2.1. Study Cohort

This study was conducted at Khartoum Teaching Dental Hospital in Khartoum, Sudan
(tertiary care referral hospital), from July 2016 through October 2018. The study protocol
(no. 2016/4) was approved by the Medical Ethics Committee at the Ministry of Health,
Sudan, and all methods were performed in accordance with the relevant guidelines and
regulations. Inclusion criteria were consecutive patients who had histologically confirmed
primary OSCC (C00–C06) during that period and healthy non-cancer controls, who con-
sented to participate in the study. As far as possible, the healthy controls were selected
among age- and sex-matched individuals who visited the out-patient clinic of the same hos-
pital for routine dental treatments. Exclusion criteria were being younger than 18 years of
age, having any previous or current cancer diagnosis, any treatment for the current tumor
or a history of cancer, and other histological types of lesions/tumors than OSCC. Six cases
later confirmed histologically as adenocarcinoma (two), oral cavity aspergillosis (two), and
verrucous hyperplasia (two) were excluded from further analysis. Tumor characteristics
and medical history were collected from the clinical records. TNM stage was registered ac-
cording to version 7.0 of the American Joint Committee on Cancer Guidelines. Information
on current smokeless tobacco (toombak) use, smoking habits, and history of smoking was
collected and reported in pack-years, with calculations for toombak consumption adjusted
according to the average of manually prepared portions in Sudan [35]. Nonsmoking was
defined as no smoking during the previous month. Fasting was defined as ingesting no
food for the last 3 h and just water or clear tea without additives for the last hour.

To obtain a reliable model valid for ANN analysis using Aethena software, the sample
size was calculated using the software PASS 2020, v20.0.3 (SPSS Inc., Chicago, IL, USA).
The minimum number of n = 62 would give a power of 0.9 (alpha 0.15 and beta 0.099).

2.2. Study Design

Before each measurement, patients were instructed to inhale and exhale through a
disposable mouthpiece in the e-nose for 5 min. This mouthpiece contains a high-efficiency
particulate arrestance (HEPA) filter, which protects the device from contamination, e.g., by
bacteria and viruses. Patients were instructed to close their lips over the mouthpiece, and a
nose clip was used to prevent nasal air passage (Figure 1).
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Figure 1. Taking a measurement from a patient using Aeonose device.

Test runs of in- and exhalations were performed so that the patient could get ac-
quainted with the device. Participants were breathing through a carbon filter to limit the
possibility that environmental VOCs would tamper with the measurement. For the first
2 min, their lungs were rinsed with clean filtered air that passed through the carbon filter
without passing the sensors and dead air space was removed. Afterwards, a valve was
opened to allow exhaled air to interact with the sensors. The total measurement cycle
lasted about 15 min, during which time the patient in- and exhaled through the device
for 5 min. The remaining time was used to measure any low-concentrated VOCs inside
the Tenax tube and to regenerate the sensors with clean filtered air (for details see van
Hooren) [36].

Patients did not receive individual diagnostic results from the e-nose analysis. The
results of these measurements did not influence the regular diagnostic work-up or treat-
ment of the participants. All measurements were performed in the same room by the
same operators.

2.3. Materials

The e-nose device (Aeonose™, The eNose Company, Zutphen, The Netherlands)
contains micro hotplate metal-oxide-based sensors (AS-MLV sensors, Applied Sensors
GmbH), which are heated and cooled in 32 steps with accurate regulation of temperature
between 260 and 340 ◦C during the measurements. The change in the sensors’ conductivity
follows the temperature-dependent reaction of VOCs from breathing air (redox reactions)
and produces a unique VOC pattern, as previously described [36,37]. The measurement
takes, in total, about 15 min, including 5 min spent on respiration with the patient holding
the device (Figure 1). The next 10 min are used for sensor regeneration and detecting
possible low-concentrated VOCs. For a more detailed discussion on this point-of-care
device, see van Hooren et al., 2016 [36]. Two Aeonose™ devices (serial numbers 257 and
372) were used in this study to reduce any possible device-related confounding factors.

2.4. Statistical Analysis

Baseline group differences were determined using independent sample t-test, Fisher’s
exact test, or Mann–Whitney U test according to data characteristics. Logistic regression
has been also performed on the data including other clinical parameters such as gender,
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age, smoking (total pack-year), and toombak. All statistical analyses were performed using
IBM Statistical Package for the Social Sciences (SPSS) for Windows, Version 25.0 (IBM Corp.,
Armonk, NY, USA). Logistic regression was done using forward-stepwise (conditional)
method. The subject group (patient or control) was assigned as the dependent variable,
while age, gender, toombak use, and smoking were assigned as independent variables.
All categorical data were coded as 0 and 1. The predicted probability produced from
each step in the model was used to generate the receiver operating characteristic curve, or
ROC curves.

During one measurement, 64 times 36 data points were recorded for each of the three
sensors. A Tucker3-like solution for tensor decomposition was used to compress these
data points of temperature, measurement cycle, and sensors [36]. In brief, the raw data
points are normalized, per participant, between 0 and 1. Then spikes were removed by
peak shaving. Fourier transformation was applied to compensate for the clean air signal,
and then Fourier back transform was applied. Following that, the e-power was applied to
all data points. NOx-sensor was only selected. Feature extraction was done to end up with
only 19 element vector per participant. The resulted vectors were normalized between −1
and +1 (Supplementary Materials 1).

The compressed data were pre-marked as either benign or malign and used to train the
Artificial Neural Network (ANN). Data compression and ANN have been integrated into a
proprietary software package (Aethena, The eNose Company, Zutphen, The Netherlands).
A resilient backpropagating ANN training was executed for a number of data scaling op-
tions, resulting in multiple ANN options for separating benign from malignant conditions.
The following parameters were used to train the ANN: Max Epoch: 5000, Max Retries:
25, Max Same Error: 30, Max Error Inc: 15, Minimal Error: 0.0005, Learn Rate: 0.0010,
Alpha: 0.0500, Topology: 17 × 7. Data were cross-validated by the Leave-10%-Out method.
This method prevents to a large extent the fitting of data on artefacts instead of on breath
profile classifiers.

To exclude possible block size device dependencies, no more than 5 consecutive
measurements of healthy controls or patients with OSCC were allowed. Meaning that,
e.g., a sixth consecutive OSCC patient measured is excluded when building the ANN for
that specific model. This continues till a healthy control sample is measured. All patients
excluded due to block size dependency were used to create the blinded group.

The ANN model calculates a value between −1 and 1 for each patient, corresponding
with the diagnosis for that patient. These data result in a ROC-curve for each ANN
showing accuracy values that can be obtained by that specific model. These calculations
were performed for each model separately and resulted in data on sensitivity, specificity,
the area under the curve (AUC), and overall accuracy. The flow of data processing is
described step by step in the Supplementary Materials 2.

3. Results
3.1. Cohort Characteristics

A total of 84 patients with histologically confirmed OSCC and healthy controls (age
range: 21–82; mean = 50.6 years; and median = 50.5 years) were included in the study.
The collection of breath samples did not result in any adverse effects. Healthy controls
were younger and reported more toombak consumption and/or smoking behavior than
OSCC patients (Table 1). The localization of OSCC lesions was predominantly lower buccal
or labial (51%); only 14.3% were localized on the tongue. Of all OSCC patients, 69.3%
presented with locoregional lymph node metastases at the time of diagnosis. Only 4% of
the OSCC cases presented at early stages; nearly all OSCC patients (85.8%) presented at a
late stage.
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Table 1. Demographic and clinical characteristics of the cohort.

Cohort Demographics

Non-OSCC Patients OSCC Patients

Number of individuals
35 49

82.9% males (29) 49% males (24)
17.1% females (6) 51% females (25)

Age * Males 48.4 years (24–68 years) 55.6 years (21–82 years)
Females 33.5 years (27–64 years) 52.2 years (27–80 years)

Tobacco history and mean pack-years (PY) * 65 35

Clinical findings for OSCC patients

Tumor location Number of cases
Tumor stage

Stage Number (%)

Buccal lower 26.5% (13) I 2% (1)
Labial lower 24.5% (12) II 2% (1)

Tongue 14.3% (7) III 22.5% (11)
Palate 8.2% (4) IV 63.3% (31)

Other sites 12.2% (6) Missing staging: 10.2% (5)
Missing sites data 14.3% (7)

* Statistically significant differences; p < 0.05, Mann–Whitney U test.

3.2. Feasibility Analysis of E-Nose Measurements

A scatterplot of individual predicted values as calculated by ANN on the basis of e-
nose measurements is presented in Figure 2. In order to obtain a high sensitivity combined
with an acceptable specificity, the threshold was set to −0.21. Individual predicted values
above this threshold were classified as positive, and the values below this threshold were
classified as negative primary OSCC. Substantial variances in individual predicted values
were observed; approximately 80% of the predictive values were located between −0.5
and 0.5.
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We obtained a sensitivity (SE) of 88% with a corresponding specificity (SP) of 71%.
Furthermore, a positive predictive value (PPV) of 81% was calculated with a corresponding
negative predictive value of 81%. The overall diagnostic accuracy was calculated to be 81%.
The corresponding ROC curve with an area under the curve (AUC) of 0.86 is presented in
Figure 3. Logistic regression performed on the data revealed that including gender, age,
smoking (total pack-year), and toombak use increased the predictive probability of the
e-nose test measurements to 92.9% (Figure 4).
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3.3. Blinded Control Group

Some cases were automatically (following the mentioned block size device dependen-
cies rules) assigned to a blinded group by the Aenose software for the validation of the
model. Ten patients with OSCC and 17 healthy controls were assigned by the software
to this group. The results are as follows: true positive, n = 8; true negative, n = 13; false
positive, n = 4; and false-negative, n = 2, leading to a PPV of 67% and an NPV of 87%.
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This shows a sensitivity of 80%, a specificity of 77%, and an accuracy of 79%, which aligns
with the values obtained on the validation set. Logistic regression performed on the data
for the blind set showed that after the inclusion of the same covariates, i.e., gender, age,
smoking (total pack-year), and toombak use, the predictive probability of the e-nose test
measurements to 86.9% (Figure 5).
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smoking (total pack-year), and toombak use (green line; the area under the green curve is 0.92) are
compared to the best fit for cross-validation when only the e-nose test values are analyzed (red line).

4. Discussion

In this study, we reviewed the ability of a portable e-nose to discriminate with an
accuracy of 81% between patients diagnosed with OSCC and patients visiting the outpatient
clinic for other benign diseases in Sudan, a low-income country in Africa. Of note, the
predictability of the e-nose measurements was increased by including gender, age, smoking
(total pack-year), and toombak in the statistical model for data analysis, indicating that the
ability of e-nose to detect OSCC can be improved even more. Its potential as a diagnostic
tool should be further explored on bigger cohorts since more parameters included in the
analysis require a higher number of cases available for analysis.

In recent years, the use of VOCs as potential biomarkers for cancer, in general, and
HNSCC, in particular, has drawn increasing interest. Gas chromatography-mass spectrom-
etry (GS-MS) has been used in most of the recent research. This technique allows detection
of individual VOCs based on their molecular weight. The disadvantages of GS-MS are its
high cost, the need for specialized personnel to perform the analysis, and the lack of one
specific biomarker for OSCC. Bouza et al. [38] utilized GC-MS methodology and identi-
fied several VOCs such as ethanol, 2-propene-nitrile, and undecane dodecane, decanal,
benzaldehyde, 3,7-dimethyl undecane, 4,5-dimethyl nonane, 1-octene, and hexadecane
as potential biomarkers for the diagnosis of OSCC. Interestingly, they found that butyl
acetate was significantly correlated with the histological degree of differentiation. The
fact that GS-MS relies on the detection of one single biomarker limits its use as a reliable
screening instrument in a clinical setting, particularly in the resource-limited setting of
a low-income country such as Sudan. Furthermore, Hakim et al. found an electronic
nose containing nanoparticle-based sensors to be superior to GC-MS in distinguishing
between HNSCC, lung cancer patients, and healthy controls [39]. Leunis et al. utilized an
e-nose with metal-oxide based sensors and confirmed that the resistance patterns of VOCs
differed between patients diagnosed with HNSCC and a control group, with a sensitivity
of 90% and a corresponding specificity of 80% [32]. Shigeyama et al. [40] identified a sig-
nature of 12 VOCs extracted from saliva of OSCC patients as potential OSCC biomarkers.
Hartwig et al. [41] confirmed the absence of cancer-associated VOCs in the breath after
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therapy for HNSCC. However, all these studies on HNSCC including OSCC subsets have
been performed on Western populations, in which smoking and alcohol are the major
etiological factors and the tongue is the most common site [42]. The present study was
performed on a cohort containing a small subset of toombak-related OSCC lesions, as indi-
rectly also demonstrated by the preferential buccal and labial localization. Here, we present
results indicating that the e-nose might be feasible as a diagnostic tool for populations that
have different demographic characteristics and use other types of tobacco than Western
populations. The e-nose (Aeonose™) used in this study is a handheld and easy-to-use
detector. It can be used in areas where high-tech machinery and/or specialized health care
workers might not be available, e.g., in rural parts of low-income countries. Therefore, the
results of this study provide data to substantiate proposing this device as a feasible solution
for OSCC detection in resource-poor areas, such as the rural areas of Sudan, where cancer
diagnostic services are unavailable. In principle, to use this device, one would need only a
(portable) computer to download the data for calculation, which could be accomplished
anywhere in the world where these facilities are available. We believe therefore that in the
future, the e-nose might be used as a screening instrument in resource-limited areas where
OSCC poses a major burden of disease. We did not perform a special hygienic protocol that
would have interrupted the daily routine of the patient. The newer devices can connect
to the internet via Wi-Fi and run an unlimited number of validated models with a single
measurement. Once further developed and tested, these calibrated models can be easily
transferred to an unlimited number of electronic noses.

5. Conclusions

This study shows that e-nose is a feasible technology for detection of OSCC in the
Sudanese population, in a cohort with different demographic features than the Western
populations previously investigated. It provides further evidence for considering e-nose as
a potential tool for early detection of OSCC in resource-limited areas that lack health care
infrastructure.
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