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Abstract Sedimentary ice-rafted debris (IRD) provides critical information about the climate
sensitivity and dynamics of ice sheets. In recent decades, high-resolution investigations have revelated
ice rafting events in response to rapid warming: such reconstructions help us constrain the near-

future stability of our planet's fast-changing cryosphere. However, similar efforts require laborious and
destructive analytical procedures to separate and count IRD. Computed tomography (CT) holds great
promise to overcome these impediments to progress by enabling the micrometer-scale (max. ~21 pm)
visualization of individual IRD grains. This study demonstrates the potential of this emerging approach
by (a) validating CT counts in synthetic sediment archives (phantoms) spiked with a known number

of grains, (b) replicating published IRD stratigraphies, and (c) improving sampling resolution. Our
results show that semi-automated CT counting of grains in the often analyzed 150-500 pm size fraction
reproduces grain numbers and tracks manually counted trends. We also find that differences between
manual and CT-counted data are explained by image processing artifacts, offsets in sampling resolution,
and bioturbation. By acquiring these promising results using basic image processing tools, we argue
that our work advances and broadens the applicability of ultra-high resolution IRD counting with CT to
deepen our understanding of ice sheet-climate interactions on human-relevant timescales.

Plain Language Summary Chunks of ice regularly break off glaciers floating in the ocean.
These icebergs contain rock fragments and mineral grains picked up during the journey from land to
water. As icebergs drift into warmer waters and melt, this rubble sinks to the bottom and settles on the
ocean floor. Detection of these particles in marine sediments thus provides evidence that glacial ice
reached down to sea level. The flux of this ice-rafted debris (IRD) gives researchers information about
the past behavior of glaciers. As our planet warms, melting glaciers have become important drivers of
sea-level rise. IRD studies can therefore help us better adapt to rising sea levels. But to do so on timescales
relevant for humans, researchers have to extract thousands of samples from meters of sediment and sieve
out IRD grains before manually counting them. Faster approaches would greatly ease the workload.

In this study, we present a promising way to do so with the help of a medical technique: computed
tomography (CT). Our findings show it is possible to semi-automatically count sand-sized grains from
CT imagery without touching or destroying samples. We also show that this can be done with simple
processing steps accessible to non-experts.

1. Introduction

Along glaciated margins, the calving and rafting of melting icebergs from marine-terminating glaciers deliver
ice-rafted debris (IRD) to the open ocean (Ruddiman, 1977). The presence and concentration of IRD grains
in marine sediment sequences provide critical information about ice sheet dynamics (Andrews, 2000). Over
the past decades, such investigations have revealed enigmatic phases of millennial-scale ice sheet instabil-
ity—notably Heinrich (H) events, Dansgaard-Oeschger (D-O) cycles, and Bond events (Bond et al., 1992;
Dansgaard et al., 1993; Heinrich, 1988)—which have attracted significant research activity. Greater spatial
coverage and a higher sampling resolution of IRD reconstructions allow us to better understand the pattern,
pace, and causes of these extreme events to better assess future ice sheet stability (e.g., Hemming, 2004).

Such efforts are, however, hampered by the time-consuming laboratory work that is required to separate
IRD grains from background sediments, and subsequently count individual particles. Typical steps include
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multiple rounds of manually weighing, and sieving material into different grain size fractions (see e.g., En-
cyclopedia of Marine Geosciences, 2016 and references therein). In addition, size requirements often limit
the sampling resolution of records, while the counting of split samples due to time constraints may intro-
duce uncertainty (e.g., Van der Plas & Tobi, 1965). Evidently, (semi)-automated non-destructive approaches
have significant potential to advance the field by (a) reducing analysis time, (b) improving sampling resolu-
tion, and (c) preserving valuable core material for other analyses. Over the past decades, researchers have
proposed various approaches to do so, and key examples include the use of semi-automated particle size
counting or the investigation of X-Ray images (Andrews et al., 1997; Becker et al., 2018; Ekblom Johansson
et al., 2020; Grobe, 1987; Jennings et al., 2018). However, while the semi-automated approach (e.g., Becker
et al., 2018) is destructive and requires a series of manual steps, others only target the coarsest size fraction
or rely on 2-D imagery (e.g., Grobe, 1987) so that counts cannot be reported per weight or volume as is cus-
tomary in the literature.

This study explores the potential of 3-D X-Ray computed tomography (CT) to overcome the aforesaid limita-
tions. This approach distinguishes grains from host sediment based on density differences. Recent increases
in resolution and sampling size have shown great promise to detect and count barely visible particles in
sediment volumes (e.g., Fouinat et al., 2017; Hodell et al., 2017; Rethe et al., 2018). Here, we advance the
ability of CT to semi-automatically detect and count IRD particles by (a) designing an experiment based
on synthetic sediment records spiked with varying, but known, number of particles of the often-targeted
150-500 pm size fraction, (b) validating our experimental findings by comparing CT and manual particle
counts on published conventionally analyzed IRD records, and (c) demonstrating that high-resolution CT
counts capture high-frequency variability that is not captured by standard manual sampling protocols.

2. Materials and Methods
2.1. Experimental Design

To explore the capability of CT to detect and count IRD particles within a sediment matrix, we designed a
controlled experiment using synthetic sediment archives (phantoms). For this purpose, we filled 20 stand-
ard 8 cm?® plastic cubes with a matrix of pelagic sediment and a calculated number of grains, sieved into the
150-500 pm fraction (Figure 1a). This particular fraction was chosen as it (a) falls within an often-analyzed
IRD size range, see for example (Bond et al., 1992): >150 pum, (Heinrich, 1988): 180-3,000 um, (Hansen
et al., 2015; Kanfoush et al., 2000; Murphy et al., 2002; Passchier, 2011): 150 pm to 2 mm, and (Patterson
et al., 2014; St. John & Krissek, 1999): 250 pum to 2 mm, (b) excludes smaller (silt-sized) grains that may not
have been ice-rafted but transported by other processes like bottom currents (e.g., Hemming, 2004; Rud-
diman, 1977), and (c) can be confidently resolved from our ~21 pum resolution scans (see Section 2.3). In
light of the above, we would like to emphasize that our CT-based counting method can be applied on any
user-determined size fraction larger than the smallest voxel (3-D pixel) size that can be obtained with the
applied scanner (see Section 2.3). Finally, to cover a broad range of IRD concentrations identified in pub-
lished reconstructions, we added approximately 25, 100, 500, 1,000, and 2000 grains per gram of dry weight
(g1 dry sediment).

Counting three extracts of a known weight in triplicate, with the help of a Leica MZ6 optical microscope un-
der 40x magnification, allowed us to establish a robust relation between weight and particle counts whilst
quantifying the human counting error. To assess the effect of lithological differences on our results, we cre-
ated four sets of phantoms that were each spiked with bedrock types that are commonly found in major IRD
source areas: quartz (density of 2.65 g/cm?), basalt (density of 3.0 g/cm®), dolomite (density of 2.8 g/cm?),
and a 1:1:1 mixture of these materials (e.g., Bond et al., 1992; Jullien et al., 2006). For this purpose, we re-
spectively relied on commercial quartz sand, basaltic floodplain sediments from northern Iceland (van der
Bilt, Barr, et al., 2021), and a dolomite laboratory standard (see Figure S1). The mineralogy of each material
was ascertained using a Bruker D8 ADVANCE ECO X-ray diffractometer, equipped with a 1.5418 A Copper
(Cu) source operated at 40 kV/25 mA (see Figure S2). As outlined above, we consider 150 ym to 2 mm
grains as IRD-sized and consequently only added material retained on a 150 um mesh, while also sieving
out clasts larger than 2 mm. To assess the ability of CT data to reproduce sample grain size distributions,
we determined the particle size distribution (PSD—as a normalized volume %) of each IRD-sized lithology
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Figure 1. Imagery that highlights key steps of our experimental approach. (a) Close-up of one of the created synthetic records—phantoms. (b) A raw 0.25 cm?
2-D cross-section (orthoslice) from one of our phantoms—note how dense radiopaque (light) clastic particles stand out. (c) Thresholded particles following
iterative segmentation (see Section 2.4). The histogram on the right shows the applied CT greyscale value thresholds. (d) Restoration of fuzzy object boundaries
(see Section 2.4). (e) Separation of adjoining particles. (f) Individually classified (colored) clastic particles in a 1 cm? 3-D visualization of one of our phantoms
used for subsequent digital sieving and counting.

in triplicate using a Mastersizer 3000. Samples were measured for 20 s at a stirring speed of 2,500 rpm with
ultrasound applied for 40 s before measurement.

The matrix of our phantoms derives from a pelagic multi-core (GS15-198-62MC-F) retrieved off the Iceland
Plateau (70°01'N 13°33'W) at 1423 m water depth (Jansen, 2015). To avoid introducing noise to the experi-
ment, all IRD-sized particles were removed a-priori by sieving the sediment through a 63 um mesh. Further,
treatment with 1M acetic acid at 50°C (until reaction ceased) dissolved in-situ calcite shells. To each sample
box, we added approximately 6 g of matrix mixed with 5 ml water to emulate the properties of natural ma-
rine sediments (see data). In addition to the aforementioned known number of IRD-sized grains, phantoms
were spiked with ~600 foraminifera shells of arbitrary species larger than 150 pm from the Norwegian Sea
(H. Halfidason, pers. comm.) to assess whether ubiquitous calcite shells introduce noise to CT IRD counts.
The potential error margin related to loss of material during mixing and transfer of material was estimated
at 0.31 g (20 = 0.61 g), by weighing the box after finalizing it. Finally, we ascertained the Dry Bulk Density
(DBD) of our phantoms after Dean Jr (1974) to convert CT-counted particles per scanned volume to parti-
cles per gram of dry weight similar to most studies.

2.2. Natural Marine Sediment Cores

To further test the potential of CT-based IRD-sized particle detection, we applied the insights gained from
our phantom experiment on two published manually sieved and counted IRD stratigraphies. These encom-
pass two segments of North Atlantic calypso cores that were extracted on-board the R/V G.O. Sars (Dokken
& Cruise-Members, 2016): (a) the 454-488.5 cm segment from core GS16-204-22CC-A (58° 2.830'N, 47°
2.360"W: 3,160 m water depth), which was previously investigated by Griem et al. (2019), and (b) the 231-
281 cm section of GS16-204-18CC (60° 1.840'N, 40° 33.450'W: 2,220 m water depth) (Rutledal et al., 2020).
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Both segments were counted at 2 cm intervals and selected because they have been analyzed using stand-
ardized IRD wet sieving and counting methods (see Griem et al., 2019), show distinct variability, focus on
the 150-500 pm size range as our experiment (Section 2.1), and the number of counted particles falls within
the range of our experimental design (<2,000 IRD g=! dry sediment). To optimize scanning resolution by
minimizing the distance between source and detector, we extracted 2 cm wide u-channels from both sedi-
ment cores for CT scanning. As further detailed in Section 3.2, we manually recounted the 267.5-277.5 cm
section of the u-channel taken from core GS16-204-18CC at 0.5 cm intervals using the same protocol applied
by Griem et al. (2019). As with our phantoms (see Section 2.1), we relied on DBD measurements after Dean
Jr (1974) to convert CT-derived counts per scanned volume to particles per gram dry weight. To this end, we
extracted one sample near the top and bottom of the homogenous scanned section from GS16-204-22CC,
while extracting four samples from the investigated segment of GS16-204-18CC due to a lithological change
at 259 cm core depth as reported in Dokken and Cruise-Members (2016).

2.3. CT Scanning

Fundamentally, CT can resolve objects based on differences in X-ray absorption: X-ray photons penetrate
light (black; radiolucent) materials with ease, while radiation is absorbed by dense (white; radiopaque)
matter like bone (Rontgen, 1896), or clastic particles (Figure 1b). The degree of X-ray attenuation is captured
by grayscale values, who typically reflect material density (higher is denser). By rotating objects or an X-ray
source and detector, CT scanners generate large numbers of 2-D radiographs known as orthoslices from var-
ious angles. These images can be reconstructed to create 3-D visualizations or reconstructions (e.g., Kalen-
der, 2011). In contrast with more established 2-D X-Ray-based IRD detection approaches (e.g., Grobe, 1987),
this allows characterization and counting of particles per volume.

For this study, CT scanning was performed using a ProCon CT-ALPHA-CORE system located at the Earth
Surface Sediment Laboratory (EARTHLAB) of the University of Bergen that is customized for whole-core
(max. 150 cm) analysis (see e.g., van der Bilt et al., 2018). This one-of-its-kind 16-bit scanner is fitted with
a 240 kV microfocus X-ray source and 9 MP detector that move vertically while the scanned object rotates.
All presented scans were scanned at 800 HA and 100 kV with an exposure time of 334 ms to generate 1,600
projections per rotation. This relatively high current helps us minimize the imprint of photoelectric effect
(Duliu, 1999). A physical 0.5 mm Cu filter was applied to reduce beam hardening effects (see Brooks & Di
Chiro, 1976), as well as ring artifact correction and median filtering. Using 2 cm wide u-channels and boxes
allowed us to optimize scanning resolution by minimizing the distance between source and detector, pro-
ducing imagery at ~21 um isotropic voxel size.

2.4. CT Processing

After scanning, CT projections were reconstructed for 3-D visualization with the Fraunhofer Volex X-ray
Office software. To further minimize the imprint of CT artifacts like beam hardening or edge effects (e.g.,
Barrett & Keat, 2004; Section 2.4), we cropped ~1 cm? volumes near the center of scanned boxes and 1 cm
wide sections of the u-channels. This step was performed in duplicate (henceforth referred to as samples A
and B) to assess the representativeness of these 3-D cutouts. All subsequent image analyses were executed
using version 9.1.1 of Thermo Scientific Avizo. To broaden the applicability of our approach, we relied on
basic image processing techniques that are accessible to most geoscientists (see Figure S3). All applied tools
and modules are highlighted in italics below and briefly described to help users execute the same steps in
other often-used image processing suites like ImageJ or VGStudio Max. We first manually adjusted the
visualized CT density range using the Colormap editor to highlight clastic particles such as IRD grains from
background host sediments. This simple approach fundamentally relies on the subtle but measurable densi-
ty differences between both materials and the shape of the clastic particles; as can be seen in Figure 1c, the
porous (water-soaked) matrix is significantly lighter (darker) than dense (white) clasts. We then assigned a
single value (1) to the designated CT density range using the Interactive Threshold segmentation tool. As can
be seen in Figure 1b, this binary image does not adequately resolve the edge of clasts—a prerequisite when
counting specific size fractions for IRD analysis. The observed noise is introduced by partial volume effects:
the inter-voxel blurring of CT greyscale values along the steep density gradient between different materials
(e.g., Glover & Pelc, 1980; Schliiter et al., 2010). To overcome this issue, we restored object boundaries with
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Figure 2. Comparing laser diffraction (Mastersizer: line) and computed tomography (CT)-derived (binned bars) particle size distributions (PSDs) for ice-rafted
debris-sized grains of each bedrock type used to spike our phantoms: basalt (a), quartz (b), and dolomite (c). Mastersizer data are expressed as a normalized
volume (%), while CT data are calculated as normalized counts (%). See Section 2.1 for additional details.

a combination of dilation and erosion using the Closing module as shown in Figure 1d. Next, the Separate
Objects module was applied to make sure that adjoining or coagulating particles are split as can be seen in
Figure le. Following the above steps to detect and resolve particles, we individually characterized them for
analysis with the Label Analysis module (Figure 1f) based on their unique barycentric coordinates (Bary-
Center). During this step, the equivalent diameter and shape properties of each object were also calculated
using the EqDiameter and Shape_Va3D measures, respectively. We used the Shape_Va3D measurement
to account for the fact that non-spherical objects may pass through a sieve mesh that is larger than their
equivalent diameter if oriented toward their smallest projection (see e.g., Retsch, 2009). To do so, we nor-
malized our 150 um size threshold (see Sections 2.1 and 2.2) against the degree of non-sphericity reflected
by Shape_Va3D values > 1. Digital sieving was performed using the Sieve Analysis module before summing
up particle counts for each phantom and at 1 mm depth intervals in scanned core sections. Finally, we per-
formed basic geostatistical analyses like re-sampling, correlation, and linear regression using version 16 of
the StataSE software.

3. Results and Discussion
3.1. Experimental Findings
3.1.1. Particle Size Analysis

The correct identification of a known number of particles within a specific size range is of fundamental
importance to this study. Therefore, we compared normalized CT particle counts on all phantoms spiked
with ~1,000 grains (>150 um) per g~! dry sediment to laser diffraction-derived sample PSDs of pure extracts
of each lithology used to spike these synthetic archives (Section 2.1). Both approaches rely on the equiva-
lent diameter of a sphere with the same volume as a measure for particle size. CT counts were corrected
with the Shape_Va3D measure to account for the possibility that non-spherical objects may pass through a
sieve mesh that is larger than their equivalent diameter (see Section 2.4 and Figure S3). As can be seen in
Figure 2, binned CT and laser-derived PSDs are rather similar. These findings (a) strengthen our confidence
that the CT processing steps applied in this study accurately constrain the distribution of size fractions
commonly targeted for IRD analysis—a prerequisite for automatic counting, (b) open doors for future ven-
ture into non-destructive CT-based particle size analysis, and (c) highlight differences between PSDs of
the lithologies used to spike our phantoms to help contextualize possible counting offsets in the following
paragraphs.

3.1.2. Lithic Grain Counting

As shown in Figure 3, all linear regression fits between manual and CT counts in our phantoms are highly
significant (R? = 0.96-0.99, p = 0.00), regardless of the lithology of added grains. Besides demonstrating
the potential of CT scanning to automatically count IRD-sized particles, these findings also allay concerns
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Figure 3. Linear regression fits (and summary statistics) between manual and computed tomography (CT) counts of ice-rafted debris-sized (150-500 um)
particles in synthetic sediment records (phantoms) spiked with basalt (a), quartz (b), dolomite (c), and a 1:1:1 mixture of each (d). See Section 2.1 for additional

details.

that calcite shells introduce noise: the high reproducibility of lower counts in particular show that the ~600
foraminifera shells added to each phantom were not CT-counted. We attribute this to partial volume effects:
while the density of calcium carbonate (2.7 g/cm?) is near-identical to that of the rock types of added grains
(2.65-3 g/cm?), voxel blurring with air-filled, water-filled, or matrix-filled chambers of foraminiferal tests
yield a lower density (Section 2.4).

Our experimental findings compare favorably with previous efforts to (semi)-automatically count particles.
Fouinat et al. (2017), for example, applied a similar CT-based approach to count larger mm-scale particles
in a silty matrix, but derive a poorer fit (R* = 0.66, p = 0.015). We argue that this weaker correspondence can
be primarily attributed to a lower scanning resolution of 0.25 mm versus 21 um in our study (Section 2.3).
Becker et al. (2018) employed an approach based on automated microscopy to derive a marginally lower
goodness-of-fit (R? = 0.94). However, this approach still requires destructive (lower resolution) sampling
and time-consuming wet sieving.

However, while our experimental findings are promising, systematic offsets exist between manual and CT
counts. While highly significant, the slopes of all fits deviate from a 1:1 relation: as seen in Figure 3, these
offsets often exceed calculated counting errors (Sections 2.1 and 2.4) for all lithologies, but especially for
quartz. Here, we tentatively attribute these errors to a number of analytical sources. First, differences in
the PSD of lithic grains. Assuming a unimodal distribution (to estimate the proportion of sieved-out par-
ticles <150 um—see Section 2.1), a significant percentage of grains may be included or excluded when
object boundaries (and thus diameters) are incorrectly resolved during CT processing (see Section 2.4 and
Figures 1c-1e). This source of error may well explain why offsets are largest for quartz as (a) the median
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Figure 4. A comparison of manual and computed tomography (CT)-derived counts of ice-rafted debris-sized particles in two marine sediment segments.

For (a) GS16-204-22CC and (b) GS16-204-18CC. Highlighted uncertainty intervals (gray) are based on the average offset in CT-derived grain counts between
replicate 3-D samples A and B (see Section 2.4). Horizontal bars on manual count symbols mark the 0.5 cm sampling width (see Section 2.2). Red numerals
indicate the stratigraphic position of marked features in the scanned core segments—(a) the NAAZ II tephra marker (Rutledal et al., 2020), (b) a cm-scale drop
stone, and (c) a visible lithological transition (Dokken & Cruise-Members, 2016). At the base of each panel, we show CT visualizations of scanned 1 cm? core
segments: 2-D ortho slices (lower: &) and 3-D visualizations of individually classified 150-500 um grains (upper: *).

PSD of this lithology sits closest to our 150 pum cutoff (Figure 3b) so that small errors generate large count
uncertainties, and (b) density differences with host sediments are smallest, which complicates our efforts
to accurately resolve object boundaries based on CT greyscale values (see Section 2.4). In addition, image
processing may also impact CT particle counts by erroneously splitting irregularly shaped grains into multi-
ple objects with the Separation module (see Figure 1e). This source of error may help explain the observed
overestimation of basaltic grains by CT counting (Figure 3a). This notion is supported by (a) visual evidence
of the irregular shape of these particles (see Figure S1), and (b) their comparatively large size (Figure 2a),
which increases the probability that erroneously split particles are included in the counted >150 um frac-
tion. The applied Closing module (see Section 2.4) might also have exacerbated this effect as it may expand
the size of particles by smoothing uneven surfaces or filling in hollow particles (see Figures 1c and 1d).

3.2. Application on Manually Counted Natural Sediment Archives

Ascan be seen in Figure 4, our CT-based approach to count 150-500 um particles capture the main IRD peaks
resolved by the manually sieved and counted stratigraphies published for both cores in Griem et al. (2019)
and Rutledal et al. (2020). The strength of this relation is confirmed by positive Spearman p values of 0.75
(n = 18, p = 0.0003) for core GS16-204-22CC and 0.63 (n = 25, p = 0.0007) for core GS16-204-18CC (Fig-
ures S4a and S4b)—all calculated on evenly (0.5 cm) resampled data. These findings clearly demonstrate
the potential of our CT-based approach to semi-automatically detect the 150-500 pm-sized particles that are
typically targeted in IRD studies, even at comparatively low concentrations (max. 1,800 grains/gr).

However, while certainly encouraging, the presented results also reveal substantial disparities. These can
partly be explained by differences in sampling resolution: grains were CT-counted at 0.1 cm intervals, while
0.5 cm wide samples were taken every 2 cm for manual counts—smoothing out high-frequency (mm-
scale) variability. As can be seen in Figure 4b, comparison with the higher 0.5 cm sampling resolution
of the 267.5-277.5 cm section of our CT-scanned u-channel from core GS16-204-18CC greatly improves
agreement. Indeed, correlation of both datasets using the most similar CT-derived grain numbers within
the 0.5 cm sampling width of manual samples yields a Spearman p of 0.96 (n = 18, p = 0.0000: also see
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Figure S4c)—a result that equals the robustness of our experimental findings (see Section 3.1.2). In addi-
tion, our scanned u-channel from GS16-204-22C contains two features that are also highlighted using the
applied segmentation approach (see Section 2.4) due to their highly similar density: the basaltic component
of a NAAZ II tephra deposit and a large drop stone (see Figure 4a: a and b). The latter is not CT-counted as
its size falls outside our specified 150-500 um grain range (see Section 2.1), but its size simply leaves less
space for other particles within the 0.1 cr?® sample slice—creating a distinct minimum in counted particles.
The tephra is captured by a sharp peak in the CT-counted IRD record. To remedy this, the characteristi-
cally high concentration of particles (ash shards) in tephra deposits may be highlighted using down-core
variations in CT grayscale values as outlined by van der Bilt, Cederstrom, et al. (2021). The structural offset
between CT and manual counts, which particularly affects GS16-204-18CC as seen in Figure 4b and is more
difficult to account for. As both cores were counted by the same researcher and derive from the same area
(see Section 2.1), we preclude differences in human counting error and lithology-specific analytical errors
(see Section 3.1.2) as plausible explanations. Because the bedrock geology of proximal IRD source areas
in the region is dominated by quartz-rich metamorphic bedrock types (Dawes, 2009), it is worth noting
that the offset between evenly sampled CT and manual counts in GS16-204-22CC is identical (28%) to the
difference found in our quartz-spiked phantoms (Figure 3b). But why this mismatch far greater in GS16-
204-18CC, where our CT-based approach captures just 40% of manually counted grains (Figure 4b)? We
argue that the dissimilarity between both datasets may be attributed to disturbance introduced by biotur-
bation. In recent years, numerous researchers have harnessed various imaging techniques to demonstrate
that burrowing may modify the sediment structure and blur IRD signals (e.g., Dorador et al., 2014; Hodell
et al., 2017). Indeed, Rutledal et al. (2020) relied on the same threshold-based segmentation routine pre-
sented in Section 2.4 to highlight the presence of burrows filled with air or water in GS16-204-18CC and
GS16-204-22CC. As can be seen in Figure S5, these features appear particularly extensive in the section of
GS16-204-18CC scanned for this study. Closer inspection of the X-Ray images shown in Figure S5, using his-
togram equalization of CT imagery as suggested by Miguez-Salas et al. (2019), also highlights the presence
of infilled burrows. Because these features are distributed vertically (depth: z) as well as horizontally (width:
y) along split core surfaces—as can be seen in Fig. s5 — bioturbation redistributes IRD grains in both these
directions. As there is a 1-2 cm y-offset between the manual sampling locations and scanned CT u-channels
in the investigated section of core GS16-204-18CC, this reworking process may help explain the offsets be-
tween manual and CT-derived count profiles. To test this, we compared our CT data from GS16-204-18CC to
the higher-resolution (0.5 cm) manual counts performed on the same scanned u-channel (see Section 2.2).
As can be seen in Figure 4b, the offset between these data is significantly smaller and rather similar (39%)
to the difference found between counts and scans in our quartz-spiked phantoms (28%). Following from the
above, we argue that our work supports other recent CT-derived evidence that bioturbation can extensively
rework IRD profiles.

4. Conclusions

This study underscores the potential of CT scanning for semi-automated and non-destructive counting of
IRD-sized grains in sediment archives. Notwithstanding analytical errors that we ascribe to image process-
ing artifacts, our experimental findings show that CT numbers capture more than 95% of grain count var-
iability in homogenous phantoms. Also, by spiking each of these synthetic samples with a known number
of foraminiferal tests, we allay concerns that (often-ubiquitous) calcite shells of a similar size and density
affect CT IRD counts. Despite evidence of bioturbation and differences in sampling resolution, CT-derived
counts strongly correlate (o = 0.63-0.75) with manual IRD profiles in both scanned core sections. Moreover,
quadrupling our manual counting resolution on CT-scanned u-channels minimizes offsets between both
datasets (o = 0.96). This somewhat surprising result suggests that mm-scale CT variations capture a signal
rather than noise and highlights how bioturbation may rework IRD profiles. Importantly, all our results
were acquired using basic image processing techniques that can be quickly mastered by most geologists.
Following from the above, we argue that the presented CT-based counting approach significantly benefit
IRD investigations by preserving material, improving sampling resolution, and optimizing lab workflows.
By enabling faster detection of higher-frequency IRD events, these advances have significant potential to
deepen our understanding of climate-ice sheet interactions on human-relevant timescales.
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