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Abstract

In this thesis, we review spatial discretization methods for parabolic problems, with
applications to Richards’ equation. In particular, we discretize Richards’ equation
after Kirchhoff transform with the MPFA-L-method in space, backward Euler in
time and L-scheme for linearization. Then, we apply the techniques in [5] to prove
a convergence rate estimate. We also compare the spatial discretization techniques
numerically on different grids. Moreover, we do numerical experiments involving
the fully discretized Richards’ equation, verifying our theoretical findings. All the
numerical experiments are done using our code, implemented with Python and
Numpy, see https://github.com/trulsmoholt/masterthesis.
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Introduction

Understanding porous media and how fluid flows through it has many useful ap-
plications, for example predicting the spread of some contaminant in an aquifer.
Other examples include CO2-storage, geothermal energy extraction and brain mod-
elling. One way of understanding the processes involved in porous media flow is to
describe it using partial differential equations, which may be time dependent, non-
linear, degenerate and almost always impossible to solve analytically. We therefore,
want numerical algorithms that solve these PDEs approximately, and at the same
time, respect important properties of the equations/problems we consider, such as
mass conservation.

In this thesis, we focus on numerical techniques for solving Richards’ equation,
introduced in [20], in two spatial dimensions, i.e., we want to find the pressure
head ψ such that

∂θ(ψ)

∂t
−∇ · (κ(θ(ψ))(∇ψ + ez)) = f, (0.1)

with boundary and initial conditions. The above equation models groundwater
flow in partially saturated reservoirs. The non-linear functions θ(·) and κ(·) are
determined experimentally and corresponds to saturation and hydraulic conductiv-
ity respectively, see [24] for a commonly used example. The vector ez corresponds
to the gravitational force which we will neglect in this thesis, and f represents any
sources or sinks.

Equation (0.1) is time dependent, parabolic, involves two non-linearities and
possibly degenerate. We discretize in time with an implicit method, and get a
non-linear elliptic PDE in each time step. This is then linearized with a robust
linearization scheme, the L-scheme [12, 17], leading to a sequence of linear elliptic
PDEs in each time step. Next, we approximate the solution to these linear elliptic
PDEs with a spatial discretization, which will be the main focus of this thesis.

When solving (0.1) we are often additionally interested in transport phenom-
ena, which means that some solute u is transported with the fluid flux, q

∂u

∂t
−∇ · (qu) = 0. (0.2)

7
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We therefore want our approximate solution of (0.1) to render an approximate
flux field which is locally mass conservative, that is important when solving (0.2).
Whether or not the approximated flux field is locally mass conservative is a prop-
erty of the spatial discretization. It turns out that the linear Lagrange finite
element method, which we will cover in section 2.1.4, does not in general have
this property. There are, however, a class of finite element methods called mixed
finite element methods, which conserve mass locally, but have the disadvantage
of having more unknowns, and are not discussed further in this thesis. We are
therefore interested in finite volume methods, as they are designed to be locally
mass conservative.

There are also other properties that we want our spatial discretization tech-
niques to have. Among these are monotonicity, which means that the discretization
does not allow for unphysical oscillations in the approximated solution. Another
desirable property is the ability to handle complex geometries, i.e., grids that are
not orthogonal, and that consists of general quadrilaterals (rough grids). More-
over, a computationally efficient method is desirable, and therefore, methods with
smaller stencils are preferred. In [14], the authors show that it if you have a
locally mass conservative method, with a small stencil (nine-point cell stencil in
two spatial dimensions), that can handle rough grids, you cannot guarantee un-
conditional monotonicity. There are therefore always a trade-off between various
desirable properties when choosing a spatial discretization method for (0.1). If we,
for example, only model groundwater flow in one kind of soil on a easy domain,
we could use an orthogonal grid, and our discretization would be efficient and
unconditionally monotone.

The MPFA (Multi-Point Flux Approximation) L-method, introduced in [2], is a
finite volume method, and will be the main focus of this thesis. It is a compromise
between all the properties we want, with a cell stencil usually consisting of only
seven points, good monotonicity properties and ability to handle rough grids. We
introduce it in section 2.2.3, and provide numerical experiments in chapter 5.

Convergence rate estimates for finite volume methods does not come ”out of
the box”, as they do with finite element methods, at least not for non-orthogonal
grids. In [22], A. F. Stephansen shows convergence for the MPFA-L-Method by
formulating it as a mimetic finite difference method. Another approach, that was
successfully applied in [8] for the MPFA-L-method on a triangular mesh, is to show
equivalence with a mixed finite element method. In [10], Klausen and Winther
used the same approach for the MPFA-O-method on a quadrilateral grid. In this
thesis, we will show equivalence between the MPFA-L-method on a parallelogram
mesh, and a modified linear Lagrange finite element method with triangular ele-
ments. After equivalence is obtained, we use the finite element framework to prove
convergence. Our approach is similar to the one used in [5].

After convergence for the MPFA-L-method is achieved, we will see how it can
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be applied to obtain a convergence rate estimate for the fully discretized Richards’
equation. To achieve this, we use the techniques found in [12] for proving conver-
gence of the linearization scheme, and the techniques in [19, 16] for convergence
of the time discretization. In the end, we reach an L2 error estimate, which we
confirm by numerical experiments in section 5.3.

Outline

In chapter one 1, we give a brief introduction to flow in porous media. Highlighting
the physical principles that leads to Richards’ equation (1.9).

In chapter two 2, we cover some of the numerical approximation techniques one
may use to solve Richards’ equation, with an emphasis on spatial discretization
methods. We start by introducing function spaces, followed by the weak formula-
tion and its well posedness. Then, we introduce the finite element method, how
it could be implemented, and the ideas behind proving its convergence. Further,
we introduce finite volume methods, then we cover some common finite volume
methods; two-point flux approximation, MPFA-O-method and MPFA-L-method.
We give a short introduction to time discretization, specifically implicit backward
Euler. We end the chapter by discussing iterative methods for solving non-linear
problems.

In chapter three 3, we introduce a way of handling boundary conditions for the
MPFA-L-method, and show its equivalence with a modified finite element method.
Then, we apply standard finite element theory to show convergence for an elliptic
problem.

In chapter four 4, we discuss the Kirchhoff transform of Richards’ equation,
removing the non-linearity in the constitutive law. Next, we prove convergence
of a fully discretized and linearized scheme to solve the Kirchhoff transformed
Richards’ equation.

In chapter five 5, we present some of the code written for this thesis, and do
numerical experiments involving elliptic and time-dependent equations on rough
grids.
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Chapter 1

Flow in Porous Media

In this chapter we introduce the basic concepts of flow in porous media, briefly
covering the modelling choices and physics that leads to Richards’ equation. The
theory in this chapter is to a large extent adapted from [13] and UIB’s Porous
media course.

1.1 The Representative Elementary Volume

A porous medium consists of a solid matrix and some void filled with fluid of one
or more phases. In single phase flow, all the pores are filled with one fluid, in
two-phase flow however, we have fluid-fluid interfaces in the void. In porous media
research, one has come to the realization that the solid matrix is too complex to
model. Instead, one takes averages of variables over a reasonable length scale, i.e.,
the representative elementary volume (REV). An important characterization of a
porous medium is the porosity φ, which is defined as

φ :=
volume of voids in REV

volume of REV
.

Another important quantity is the saturation Sα of phase α, this is defined

Sα :=
volume of α in REV

volume of voids in REV
.

In single phase flow, the saturation is irrelevant as the saturation is always one.
Also note that the volumetric content of phase α in the REV, θα, is given by
θα = Sαφ.

11
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1.2 Darcy’s Law

In 1856, Henri Darcy performed a famous experiment where he studied the flow
of water through sand. To understand his experiment we must first define some
variables for measuring water content. First, we assume that the external gravita-
tional force on some fluid is balanced by the pressure gradient force, also known as
hydrostatic equilibrium. This gives us that the pressure at height z above datum
developed by a water column of height h above datum is given by

pabs(z) = patm + ρg(h− z).

here ρ is the density and g is the gravitational acceleration. If we define the gauge
pressure p by p := pabs − patm we get an expression for p:

p = ρg(h− z).

This can be rearranged to give an expression for the height, which we from now
on refer to as hydraulic head :

h =
p

ρg
+ z. (1.1)

A manometer is a tube with one end in the reservoir and one in open atmosphere,
the water level in this tube is then p

ρg
. The volumetric flow of water is denoted

by qd. Darcy’s experiment is shown in figure 1.1, where water is poured through a
cylinder filled with sand. The cylinder has length L and has cross sectional area
A. His observations are given by the equation called Darcy’s law:

qd = −κA(h2 − h1)

L
.

Where κ is a positive coefficient of proportionality. Let q denote the volumetric
flow-rate per area:

q :=
qd
A

= −κh2 − h1

L
,

we will refer to this as the flux of hydraulic potential. We can now state the
differential version of Darcy’s law. Taking the limit as L→ 0 we get

q = −κ∇h. (1.2)

We call κ the hydraulic conductivity and note that it in general is a rank two tensor,
a matrix. The hydraulic conductivity also has the property that it is symmetric.
This is because there are, at every point in the reservoir, two orthogonal directions;
one with maximum, and one with minimum hydraulic conductivity. Thus, the
matrix, κ, is diagonalizable by a orthogonal matrix.
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Manometer

Datum,

Figure 1.1: The Darcy experiment

The conductivity matrix, κ, is also positive definite, this is because there is
never flux towards higher pressure. With further experiments, similar to the one
already described, we can understand what makes up κ. Dimensionality analysis
shows that it is a function of viscosity µ, density of the fluid ρ, gravity g and
permeability k,

κ =
kρg

µ
. (1.3)

The permeability, which is a property of the soil in the reservoir, is also a rank
two tensor which is symmetric positive definite and it is in general a function of
spatial coordinates, i.e., heterogeneous.

If we define the pressure head ψ as ψ := p
ρg

, we can combine (1.1), (1.2) and

(1.3) to get another variant of Darcy’s law;

q = −kρg
µ
∇(ψ + z) (1.4)

which will be useful later.
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1.3 Mass Conservation

Darcy’s law is not enough if we want to determine the pressure or flow in a reservoir,
but we can use the principle of mass conservation to add one more equation. The
idea is that for every enclosed region in the reservoir, the change of mass inside
the region is balanced by the mass flux into the region and the production of mass
inside the region.
We end up with the mass balance equation, let Ω be our domain, then:∫

ω

∂(ρφ)

∂t
dV = −

∫
∂ω

n · ρq dS +

∫
ω

fdV ∀ω ⊆ Ω with ω being a volume,

where n is an outward pointing normal vector to ω and f corresponds to sources
and/or a sinks. We can use the divergence theorem on the surface integral to get∫

ω

∂(ρφ)

∂t
+∇ · (ρq)− fdV = 0.

Since this is true for all enclosed regions ω ⊂ Ω, it also holds for the expressions
inside the integral yielding the mass conservation PDE

∂(ρφ)

∂t
+∇ · (ρq) = f.

This, together with Darcy’s law (1.2) and appropriate boundary and initial con-
ditions close the system

q = −κ∇h, x ∈ Ω, t > 0

∂(ρφ)

∂t
+∇ · (ρq) = f(x, t), x ∈ Ω, t > 0

h(x, t) = g(x, t), x ∈ ∂Ω, t > 0

h(x, t) = f(x), x ∈ Ω, t = 0

(1.5)

Now we have a model for single-phase flow. As it is stated now, it is a linear
parabolic equation, but for incompressible fluid and matrix it becomes an elliptic
equation. One often writes the density as a function of pressure, it then becomes
non-linear. See chapter two of [13] for a more detailed discussion of (1.5) and
modelling options.

1.4 Two-phase Flow and Richards’ Equation

We restrict our discussion to two phases for simplicity, but the theory can be
extended to more phases. In two-phase systems one has a wetting phase and a



1.4. TWO-PHASE FLOW AND RICHARDS’ EQUATION 15

non-wetting phase, denoted by the subscripts w and n respectively.
When we introduce more phases, we continue with the equations we already in-
troduced, i.e., we assume that Darcy’s law (1.4) holds for both phases. Let the
subscript α denote the phase, then we have Darcy’s law for each phase

qα = −kr,αkρg
µ

∇(ψα + z), (1.6)

where the coefficient kr,α is known as relative permeability and it has to be deduced
from experimental observation.

We also assume conservation of mass for each phase:

∂(Sαραφ)

∂t
+∇ · (ρqα) = fα. (1.7)

Here, we assume that there is no mass transfer between the phases. If we combine
equations (1.6) and (1.7), they give us 2 equations, but we have four unknowns
ψw, ψn, Sw and Sn. We, therefore, introduce the algebraic relation

Sw + Sn = 1

and the physical relation
pn − pw = pc (1.8)

where pc is called capillary pressure. As with the relative permeability, pc also
needs to be determined experimentally. With initial and boundary conditions we
again have a closed system.

A common simplification is to assume that the capillary pressure and the rela-
tive permeability are functions of the saturation, and that the relative permeability
is isotropic (a scalar).

Another simplification that is used, especially in groundwater hydrology, is that
the non-wetting phase (air) always have pn = patm = 0. For this assumption to
hold it is important that the air always is connected to the surface. Now, equation
(1.8) simplifies to

−pw = −ψwρg = pc(Sw).

Experiments show that the capillary pressure is a monotone decreasing function
of saturation, therefore we can invert it. Equation (1.8) now becomes:

p−1
c (ψwρg) = Sw.

Finally, we can multiply the above equation by the porosity to get an expression
for the water content θw:

θw = θw(ψw) = φp−1
c (ψwρg).
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Combining this with the two-phase Darcy law (1.6) and mass balance (1.7) we get
Richards’ equation

∂θ(ψ)

∂t
−∇ · (κ(θ(ψ))(∇ψ + ez)) = f (1.9)

where θ = θw. Note that the density is eliminated, this is because it is assumed to
be constant for water. The hydraulic conductivity is parametrized as a function
of water content through experiments and can be written kr,αkρg

µ
= κ(θ).

Richards’ equation contains two non-linearities, θ and κ, which make the anal-
ysis and numerical simulation more challenging as we will see. They may also
cause the equation to degenerate, i.e., the parabolic equation may ”collapse” into
an elliptic PDE (see figure 1.2 ) or even an ODE when the saturation is so low
that there is no flow.
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Datum,

Single phase flow, linear elliptic equation

Saturated zone

Water table, not known a priori

Unsaturated zone

Two phase flow, parabolic non-linear equation

Surface

Figure 1.2: A sketch of the degeneracy of Richards’ equation
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Chapter 2

Numerical Approximation
Techniques

In this chapter, we first discuss two important frameworks for spatial discretization
of PDEs, followed by a brief introduction of time discretization, and at the end,
an introduction to linearization. The focus will be on two dimensional elliptic and
parabolic equations, but the concepts covered can easily be generalized to three
dimensions. After reading this chapter, the reader hopefully has some idea of how
to implement a few different methods for solving the Poisson equation, the heat
equation and maybe even Richards’ equation, and some of their properties.

2.1 The Finite Element Method

The finite element method was first developed in the 1940s by Richard Courant for
problems in solid mechanics. As computers became better in the 1960s the method
increased in popularity [21]. Today there are several general purpose finite element
programs being used for a wide range of problems.

In this section we will introduce the finite element method and state the most
important results about stability and convergence. We will concentrate on solving
the Poisson equation: Let Ω ⊂ Rn be some open and bounded domain, find u such
that

−∇ ·K∇u(x) = f(x),

u(x) = 0,

x ∈ Ω,

x ∈ ∂Ω.
(2.1)

For this equation to be well defined we require that u has double derivatives in
Ω, but it is easy to come across physical examples where this does not make
sense. This is some of the motivation for the Poisson equation in the variational
formulation. Another motivation is that it allows for a general framework for
computing the solution, as we will soon see. But first, let us introduce some

19
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spaces of functions and their properties.

2.1.1 Function Spaces

When discussing PDEs and the numerical schemes to solve them it is important
to have a precise notion of what kind of functions we are looking for and their
properties. The function spaces discussed here are all normed vector spaces. From
now on we assume that Ω ⊂ Rd is a bounded domain.

Definition 1 (Lebesgue spaces, Lp(Ω)). For p ∈ [1,∞) let Lp(Ω) be the space of
functions where ‖u‖p = (

∫
Ω
updx)1/p <∞.

Remark 1. Note that the Lp(Ω) norm induces equivalence relations on the set of
functions. Two functions in Lp(Ω) are equal if they only differ on a set of measure
zero.

An important concept when discussing normed vector spaces are that they
intuitively do not have any points missing, this is formally defined as spaces where
every Cauchy sequence converges. This is known as complete normed vector spaces
or Banach spaces.

Theorem 2.1.1 (Riesz-Fischer Theorem [6] chapter 8). Each Lp(Ω) space is a
Banach space.

Remark 2. The space L2(Ω) is a inner product space, with inner product

〈u, v〉L2 =

∫
Ω

uv dx.

Banach spaces with an inner product, that induces the norm

〈u, u〉
1
2 = ‖u‖ ,

are called Hilbert spaces.

Before we continue the study of function spaces we develop some convenient
notation for derivatives.

Definition 2 (multi-index notation). Let α be an ordered n-tuple. We call this
a multi-index and denote the length |α| =

∑n
i=1 αi. For φ ∈ C∞(Ω) we define

Dαφ = ( ∂
∂x1

)α1( ∂
∂x2

)α2 ...( ∂
∂xn

)αnφ

We would also like a more general notion of derivative than the one presented
in a basic calculus book.
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Definition 3 (weak derivative). Let L1
loc(Ω) = { f ∈ L1(K) : ∀K ⊂ Ω where K is compact }.

Let f ∈ L1
loc(Ω). If there exists g ∈ L1

loc(Ω) such that∫
Ω

gφdx = (−1)|α|
∫

Ω

fDαφdx ∀φ ∈ C∞(Ω)

with φ = 0 on ∂Ω we say that g is the weak derivative of f and denote it by Dα
wf .

We can now define a class of subspaces of the Lp spaces known as the Sobolev
spaces.

Definition 4 (Sobolev space). Let k be a non-negative integer, define the Sobolev
norm as

‖u‖Wk,p(Ω) :=

∑
|α|≤k

∥∥Dα
wu
∥∥p
Lp(Ω)

1/p

.

We then define the Sobolev spaces as

W k,p(Ω) = { f ∈ L1
loc(Ω) : ‖f‖Wk,p <∞ } .

Theorem 2.1.2. The Sobolev spaces W k,p(Ω) are Banach spaces.

Proof. Let {ui}∞i=0 ⊆ W k,p(Ω) be a Cauchy sequence. This implies that for all
α, |α| ≤ k we have a Cauchy sequence in Lp(Ω):

‖uj − ui‖Wk,p = (
∑
|α|≤k

∥∥Dα
wuj −Dα

wui
∥∥p
Lp(Ω)

)1/p < ε ∀i, j ≥ N

=⇒
∥∥Dα

wuj −Dα
wui
∥∥
Lp(Ω)

< ε.

By theorem (2.1.1), every LP (Ω) space is a Banach space. Therefore, for each
|α| ≤ k, Dα

wui converges to some limit, uα ∈ Lp(Ω), as i → ∞. In particular
ui → u in Lp(Ω), so the limit in the ‖·‖Wk,p(Ω) norm, u, is well defined. Now we

need to show that {uα}α, are in fact the weak derivatives of u, i.e., Dα
wu = uα. In

other words, that the limit of ui in the ‖·‖Wk,p(Ω) norm, u, is in fact in W k,p(Ω).
By the definition of weak derivative we have:∫

Ω

Dα
wuiφdx = (−1)|α|

∫
Ω

uiD
αφdx.

Let 1 = 1
q
+ 1
p
, applying Hölder’s inequality on both sides we get the two inequalities∫

Ω

(Dα
wui − uα)φdx ≤

∥∥Dα
wui − uα

∥∥
Lp
‖φ‖Lq ,∫

Ω

(ui − u)Dαφdx ≤ ‖ui − u‖Lp
∥∥Dαφ

∥∥
Lq
.



22 CHAPTER 2. NUMERICAL APPROXIMATION TECHNIQUES

Taking the limit, the right hand side goes to zero, and by the fact that we can
move the limit out of the integral

lim
i→∞

∫
Ω

Dα
wuiφdx =

∫
Ω

uαφdx,

lim
i→∞

∫
Ω

uiD
αφdx =

∫
Ω

uDαφdx.

Now, we can put the two equations together with the definition of the weak deriva-
tive: ∫

Ω

uαφdx = lim
i→∞

∫
Ω

Dα
wuiφdx = lim

i→∞
(−1)|α|

∫
Ω

uiD
αφdx =

∫
Ω

uDαφdx.

We have shown Dα
wu = uα, and therefore, that u ∈ W k,p(Ω).

Definition 5. We rename the L2(Ω) based Sobolev spaces as

Hk(Ω) = W k,2(Ω),

with the norm of Hk(Ω) being written in the more compact form ‖·‖Ω,k or just
‖·‖k, and the inner product defined as follows:

〈u, v〉k =
∑
|α|≤k

∫
Ω

Dα
wuD

α
wvdx.

In Sobolev spaces it is not obvious that a function is well defined on a lower
dimensional subset of Ω, because two functions may map elements of this zero
measure subset to different values and still be of the same equivalence class. This
is important to settle if we want to solve boundary value problems. The following
results holds for general Lp(Ω) based Sobolev spaces, but we will only state them
for the Hilbert space H1(Ω).

Definition 6. We denote by Hk
0 (Ω) the closure of C∞c (Ω) in Hk(Ω), where C∞c (Ω)

is the space of infinitely differentiable functions with compact support.

Theorem 2.1.3 (Trace theorem, (Evans [7], chapter 5)). Assume U is bounded
and ∂U is C1. Then there exists a bounded, linear operator

T : H1(U)→ L2(∂U)

Such that

1. Tu = u|∂u if u ∈ H1 ∩ C(U)



2.1. THE FINITE ELEMENT METHOD 23

2. ‖Tu‖Lp(∂U) ≤ ‖u‖H1(U)

We call Tu the trace of u. Note that the theorem does not state that T is
surjective.

Theorem 2.1.4. (Trace-zero functions in W 1,p,(Evans [7], chapter 5)) Suppose
U is as in the previous theorem and u ∈ W 1,p(U), then

u ∈ H1
0 (U)⇔ Tu = 0 on ∂U

Remark 3. We often denote the image of T as:

H
1
2 (Ω) = T (H1(Ω))

And define the norm
‖f‖

H
1
2 (Ω)

= inf
w∈H1(Ω), Tw=f

‖w‖1

Now we have the theory we need to study elliptic boundary value problems
and their weak solutions.

2.1.2 The Variational Problem

We obtain the variational formulation of (2.1) by multiplying (2.1) with a
function v in a suitable space V called the test space, integrating over Ω and using
integration by parts/divergence theorem,

−
∫

Ω

v∇ ·K∇u dx = −
∫
∂Ω

vK∇u · n dx+

∫
Ω

(∇v)TK∇u dx =

∫
Ω

vf dx.

If we choose v such that v = 0 on ∂Ω, then the integral over the boundary vanishes.
The new formulation reads: Find u such that∫

Ω

(∇v)TK∇u dx =

∫
Ω

vf dx ∀v ∈ V. (2.2)

A good choice of the test space V is V = H1
0 (Ω). We also choose this as the

solution space. We see that if u is a solution to (2.1), it also solves (2.2). But a
solution to (2.2) does not necessarily solve (2.1), that is why it is also called the
weak formulation.

The variational problems that we will look at, will all have the form: Find u
such that

a(u, v) = b(v) ∀v ∈ V, (2.3)

where a(·, ·) is a bilinear form on V and b(·) is a linear functional on V . To be
precise we define a famous concept from functional analysis:
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Definition 7 (dual space). Let V be a normed vector space, then we define it’s
dual space as the space of functions from V to R that are linear and continuous,
also called linear functionals. We denote it by V

′
. This is a normed vector space

with the norm:

‖v‖V ′ = sup
u∈V
{|v(u)| : ‖u‖V = 1} .

In general, a variational formulation can be seen as finding the element in a
Banach space that is mapped to an element in its dual space by some map.

Boundary Conditions

Let ∂Ω = ΓD
⋃

ΓN with ΓD
⋂

ΓN = ∅, then (2.1) with more complex boundary
conditions can be written as: Find û(x) such that

−∇ ·K∇û(x) = f(x),

û(x) = gD,

K∇û(x) = gN ,

x ∈ Ω,

x ∈ ΓD,

x ∈ ΓN .

(2.4)

To make a variational formulation of (2.4) we first define the test space:

V =
{
v ∈ H1(Ω) : T (v) = 0 on ΓD

}
.

Next, we define the bilinear form:

a(u, v) :=

∫
Ω

∇uK∇v dx.

Further, assume there exists an element w of H1(Ω) that are mapped by the
trace operator such that Dirichlet boundary conditions are met: T (w) = gD. Let
û = u+ w, where u ∈ H1

0 (Ω), we can use integration by parts as before:

a(u+ w, v) =

∫
Ω

(∇u+∇w)TK∇v dx =

∫
Ω

fv dx−
∫
∂Ω

K∇(u+ w) · nv dx.

Using the linearity of a(·, ·) and inserting boundary conditions we get:

a(u, v) = b(v) =

∫
Ω

fv dx−
∫

Ω

(∇w)TK∇v dx−
∫

ΓN

gNv dx. (2.5)

Hence both Dirichlet and Neumann boundary conditions are incorporated into the
right hand side. For homogeneous Dirichlet boundary conditions, the second term
on the right hand side of (2.5) vanishes.
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2.1.3 Existence and Uniqueness

We still need to show that (2.5) has an unique solution. First, we define some
important properties that a variational problem should have in order to have a
unique solution. Let (V, ‖·‖V ) be a Hilbert space.

Definition 8. Let a(·, ·) : V × V → R be a bilinear form. We say that:

� a(·, ·) is coercive with respect to V , or elliptic if there exists a constant
Cc ∈ R such that Cc ‖u‖2

V ≤ a(u, u) ∀u ∈ V ,

� a(·, ·) is bounded or continuous if there exists a constant CB such that
|a(u, v)| ≤ CB ‖u‖V ‖v‖V ∀u, v ∈ V .

In order to prove existence and uniqueness, we must first state some important
results about the underlying space V . The following theory can be found in its
entirety in the first four chapters of Cheney [6]

Theorem 2.1.5 ([6] page 64). If Y is a closed subspace of the Hilbert space X,
then

X = Y ⊗ Y ⊥,
where Y ⊥ = {x ∈ X : 〈x, y〉 = 0 ∀y ∈ Y } is the orthogonal complement of Y . In
other words, an element in X can always be written as the sum of an element Y
and an element in Y ⊥.

Theorem 2.1.6 (Riesz representation theorem). Every continuous linear func-
tional, φ(x), defined on a Hilbert space X can be written φ(x) = 〈x, v〉 by a uniquely
determined v ∈ X.

Proof. Let φ ∈ X ′, define Y = {x ∈ X : φ(x) = 0}. Take a non-zero element in
the orthogonal complement u ∈ Y ⊥ such that φ(u) = 1, (if this does not exist
then X = Y and φ(x) = 〈x, 0〉, this is ensured by theorem 2.1.5). Now, we can
write every vector in X as a linear combination of a vector in Y and the vector u.
x = x − φ(x)u + φ(x)u for any x ∈ X. Using this, we can find an expression for
the inner product of x with a scaled version of u〈
x, u
‖u‖2

〉
=
〈
x− φ(x)u, u

‖u‖2

〉
+
〈
φ(x)u, u

‖u‖2

〉
. The first part of the sum vanishes

as x− φ(u)x ∈ Y . So we end up with〈
x, u
‖u‖

〉
= φ(x) 〈u,u〉‖u‖2 = φ(x).

Theorem 2.1.7 (Banach fixed point theorem). Let X be a Banach space and
F : X → X an operator where ‖Fx− Fy‖X ≤ θ ‖x− y‖X for some θ ∈ (0, 1), we
call this a contraction.
Then for all x ∈ X the sequence [x, Fx, F 2x, ...] converges to a point x∗ ∈ X called
the fixed point of F .
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See page 177 of [6] for a proof.

Theorem 2.1.8 (Lax-Milgram). Suppose that a(·, ·) : V × V → R is a bilinear,
bounded and coercive form and that b(·) : V → R is a bounded, linear functional.
Then the variational problem has a unique solution u ∈ V , such that

a(u, v) = b(v) (2.6)

for all v ∈ V .

Remark 4. If a(·, ·) also is symmetric, it defines an inner product on V giving a
complete space. We can then use Riesz representation theorem 2.1.6 to show that
it has an unique solution.

Proof of Lax Milgram theorem 2.1.8.
For each w denote the map a(w, v) = aw(v), this is a linear continuous functional,
and follows from the assumptions on a. By Riesz representation theorem 2.1.6
aw(·) uniquely determines an element Aw ∈ V such that aw(v) = 〈Aw, v〉. The
map

A :V → V

w 7→ Aw,

� is linear: 〈A(x+ y), v〉 = ax+y(v) = a(x + y, v) = ax(v) + ay(v) = 〈Ax, v〉 +
〈Ay, v〉. Since this holds for all v ∈ V , we have A(x+ y) = Ax+ Ay.

� is bounded: ‖Ax‖ = ‖ax‖ = sup {a(x, v) : ‖v‖ = 1} ≤ CB ‖x‖.

We can also use Riesz representation theorem on the right hand side: b(·) = 〈f, ·〉.
Now we have a reformulation of (2.6):
Find u such that

Au = f. (2.7)

Now we need to show that (2.7) has an unique solution, and for that we need the
Banach fixed point theorem. Let ε > 0, we define the operator

T : V → V

u 7→ u− ε(Au− f).

If T has a fixed point u∗, then u∗−ε(Au∗−f) = u∗ ⇒ Au∗ = f and we have solved
(2.7) and proved the theorem. We just need to show that T is a contraction. First,
let u1, u2 ∈ V , and subtract what they are mapped to by T , then we get

‖Tu1 − Tu2‖2 = ‖u− ε(Au)‖2 ,
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where u = u1 − u2, we used the linearity of A,

= ‖u‖2 − 2ε 〈u,Au〉+ ε2 〈Au,Au〉 .

Now, we can use that a(u, u) = 〈Au, u〉, and that 〈Au,Au〉 = au(Au) = a(u,Au):

‖Tu1 − Tu2‖2 = ‖u‖2 − 2εa(u, u) + ε2a(u,Au).

Next, we use the coercivity and boundedness of a(·, ·). We also use the boundedness
of A

‖Tu1 − Tu2‖2 ≤ ‖u‖2 − 2εCc ‖u‖2 + ε2C2
B ‖u‖

2 .

This leads to the inequality the inequality

‖Tu1 − Tu2‖2 ≤ ‖u1 − u2‖2 (1− 2ε+ ε2).

We choose ε such that T becomes a contraction: ε < 2Cc
C2
b
⇒ (1− 2ε+ ε2) < 1. By

the Banach fixed point theorem we have existence and uniqueness of a solution.

Remark 5. The solution, u, to our variational problem depends on the data b(·).
To see this we use the coercivity:

‖u‖2 ≤ a(u, u)

Cc
=
b(u)

Cc
.

Now, we have proved that (2.3) has a unique solution for suitable a and b. The
variational form of Poisson equation (2.2) satisfies this:

Example 1 (Well posedness of variational form of Poisson equation). Let a(u, v) =∫
Ω
∇u · ∇v dx. Then we have that:

� a(·, ·) is Coercive with respect to ‖·‖H1
0
:

‖u‖2
H1

0
= ‖u‖2

L2 +
∑
|α|=1

∥∥Dαu
∥∥2

L2

= ‖u‖2
L2 + a(u, u)

≤ (CΩ + 1)a(u, u),

where we used the Poincaré inequality in the last step.

� a(·, ·) is Bounded with respect to ‖·‖H1
0
:

|a(u, v)| ≤
∣∣∣∣∫

Ω

∇u · ∇vdx
∣∣∣∣ ≤ ∫

Ω

|∇u · ∇v|dx

=

∫
Ω

|
∑
|α|=1

DαuDαv|dx =
∑
|α|=1

∥∥DαuDαv
∥∥
L1 ≤

∑
|α|=1

∥∥Dαu
∥∥
L2

∥∥Dαv
∥∥
L2

≤ ‖u‖H1
0
‖v‖H1

0
,

where we used the Cauchy-Schwarz inequality on the second line.
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� b(·) is in the dual space of H1
0 if f ∈ L2(Ω):

|b(v)| = |
∫

Ω

fvdx| ≤ ‖f‖L2 ‖v‖L2

⇒ ‖b‖H1′
0

= sup

{
|b(v)|
‖v‖

}
≤ ‖f‖L2

Hence, (2.2) is well posed and we get a solution u ∈ H1
0 (Ω).

2.1.4 Galerkin FEM

Now we want to discretize the variational equation (2.3), we do this by replacing
the test space V by a finite dimensional subspace Vh. This is called the Galerkin
method. The discretization now reads: Find uh ∈ Vh such that

a(uh, vh) = b(vh) (2.8)

for all vh in Vh. Since a(·, ·) is bilinear and b(·) is linear, it is easy to see that
if (2.8) holds for the basis functions of Vh, it holds for all elements in Vh. In the
finite element method (FEM), the finite dimensional subspace is determined by the
triangulation. In this thesis, we only consider problems in two spatial dimensions,
so let Ω ⊂ R2.

Definition 9 (two dimensional triangulation, page 56 of Knabner [11]). Let τh be
a partition Ω into closed triangles K including the boundary ∂Ω, with the following
properties:

(T1) Ω =
⋃
K∈τh K .

(T2) For K, K ′ ∈ τh, K 6= K ′

int(K)
⋂

int(K ′) = ∅,

where int(K) denotes the interior of K.

(T3) If K 6= K ′, but K
⋂
K ′ 6= ∅, then K

⋂
K ′ is either a point or a common

edge of K and K ′.

The above definition sets some rules on how we can divide our domain into
triangles, often called elements. Now that we have a triangulation, we now define
our finite dimensional subspace, Vh.
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Definition 10 (Linear ansatz space). Let P1(K) be the space of linear polynomials
in two variables on K ⊂ R2, we define the ansatz space

Vh :=
{
uh ∈ C(Ω) : uh|K ∈ P1(K) ∀K ∈ τh, u|ΓD = 0

}
,

of piecewise linear functions on each K.

Remark 6. Our local ansatz space PK = {v|K : v ∈ Vh} is such that PK =
P1(K) ⊂ H1(K)

⋂
C(K). This together with (T3), which ensures continuity

between elements, makes Vh a conformal finite element method, i.e., Vh ⊂
V = H1

0 (Ω)

Remark 7 (Nodes). We will refer to the corners of the triangles in τh as nodes.
For more advanced element types one can have nodes also on the edges or interiors
of the triangles.

Remark 8. In general, finite elements are defined by an element K(∈ τh), the
local ansatz space PK and degrees of freedom ΣK. In all Lagrange finite element
methods ΣK corresponds the evaluation of functions in PK at the nodes of the
element.

A choice of basis for Vh could then be the hat functions. Let φi be the basis
function corresponding to the node xi, it is defined by:

φi(xj) = δij =

{
1, i = j
0, i 6= j

, φi ∈ Vh.

There are no basis functions defined for the nodes at the Dirichlet boundary.

0.00 0.25 0.50 0.75 0.00

0.25

0.00

0.25

0.50

0.75

1.00

Figure 2.1: A hat function.
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To see how the computation works in practice, we write the solution to our
Galerkin problem as a linear combination of the basis functions of Vh, i.e., uh =∑

i ûiφi. The Galerkin problem (2.8) can be written

Find ûh =

û1
...
ûn

 ∈ Rn such that
n∑
i=1

ûia(φi, φj) = b(φj). (2.9)

So we get a system of linear equations Aûh = b, where Ai,j = a(φi, φj) and
bj = b(φj). The matrix, A, has as many rows and columns as there are nodes
(the Dirichlet nodes can be removed, depending on implementation). If we solve
(2.2), our variational problem, and also matrix, will be symmetric. The matrix is
then often called a stiffness matrix. These names originated from mechanics and
structural analysis, where the solution represents displacement and the force func-
tion represents load. The stiffness matrix is also sparse, which is a very important
property when designing algorithms to solve it.

With the setup described in this subsection, the degrees of freedom are the
same as the dimension of Vh. If we in definition 10 instead had chosen a space of
quadratic polynomials on each element, we had gained three degrees of freedom
on each element. In this thesis we focus on linear finite elements because we
do not gain anything from increasing regularity, as the solutions to problems in
porous media flow are not expected to be very regular. Also, the finite volume
methods we will discuss later, in particular the MPFA-L-Method, are not higher
order methods.

2.1.5 Implementation

Here we explain the most important parts of the algorithm for discretizing elliptic
PDE’s with linear Lagrange finite elements. We consider the homogenous elliptic
model problem (2.2) in two dimensions, with K = I and zero Dirichlet boundary
conditions. The procedure goes as follows:

1. Make a triangulation of the domain. This can be done in a number of
different ways, see chapter 4 of Knabner [11]. If we have N nodes, our
triangulation would be stored as a N×2 array of floats, being the coordinates
of the nodes. And a E×3 array of ints being the elements, where each entry
is the index of a coordinate in the coordinate matrix, E is the number of
elements.

2. Allocate space for the N ×N stiffness matrix A and the N ×1 source vector
b.
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3. Define the basis functions on a reference element, this is also called the shape
functions, see figure 2.2 and (2.10). Also, compute the gradients of the shape
functions.

N1(x, y) = 1− x− y
N2(x, y) = x

N3(x, y) = y

(2.10)

Figure 2.2: The map F from element K to the reference element K̂.

4. Loop through the elements. For each element K compute the affine linear
map that maps it to the reference element. That means we want to find
B ∈ R2×2 and d ∈ R2 such that

F : K → K̂

x 7→ Bx+ d.

To achieve this we set up a system of equations inspired by figure 2.2x1 y1 1
x2 y2 1
x3 y3 1

b1,1 b2,1

b1,2 b2,2

d1 d2

 =

0 0
1 0
0 1

 . (2.11)

So for each element we solve (2.11) for B and d, that means computing an
inverse of a three by three matrix and a matrix product. Note that this only
needs to be done once per element and could be done in a preprocessing step.

Now that we have T , we do the following on the element:

(a) Use the map and the shape functions to evaluate a(φi, φj)|K for 1 ≤
i, j ≤ 3. Note that for u : K → R we get by the chain rule:

∇T
x̂u(F−1(x̂)) = ∇T

xu(F−1(x̂))∇T
x̂F
−1(x̂) = ∇T

xu(F−1(x̂))B−1.
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This gives an expression for the derivative on an element expressed as
a derivative in the reference element coordinate system:

∇xu(F−1(x̂)) = BT∇x̂u(F−1(x̂)).

Now we can compute the product of the gradients of the basis functions
on an element:

a(φi, φj)|K =

∫
K

(∇φi)T∇φjdx

=

∫
K̂

(∇xφi(F
−1(x̂)))T∇xφj(F

−1(x̂))|Det(J(F−1))|dx̂

=

∫
K̂

(BT∇x̂φi(F
−1(x̂)))TBTB∇x̂φj(F

−1(x̂))|Det(B−1)|dx̂

=

∫
K̂

(∇x̂Ni(x̂))TBTB∇x̂Nj(x̂)|Det(B−1)|dx̂

=
1

2
(∇x̂Ni(x̂))TBTB∇x̂Nj(x̂)

1

|Det(B)|
(2.12)

So for each element we evaluate the last line of (2.12) for all (9) combi-
nations of i and j on the element and add this to Ai,j. This approach is
called element-based assembling, and Ai,j =

∑
K∈N (i) a(φi, φj)|K , where

N (i) is the set of all elements that contain node i.

(b) In almost the same way we compute b(φi)|K and add this to bi. As in
(2.12), we compute the integral on the reference element:

b(φi)|K =

∫
K̂

f(F−1(x̂))φi(F
−1(x̂))

1

Det(B)
dx̂

=

∫
K̂

f̂(x̂)Ni(F
−1(x̂))

1

Det(B)
dx̂

≈ 1

Det(B)

∑
k

ωkf̂(p̂k)Ni(p̂k)

Where f̂ := f(F−1(x̂)) and {(ωk, p̂k)}k defines a quadrature rule. This
can be chosen in different ways, for higher order finite elements this
may even affect the convergence behaviour. But for linear Lagrange
elements, the trapezoidal rule works fine, i.e., using three points per
element with appropriate weights.

5. Loop through the Dirichlet boundary nodes xj at the boundary and set
Aj,i = δij, bj = 0. This fixes the value of u at the Dirichlet boundary to
zero.



2.1. THE FINITE ELEMENT METHOD 33

Remark 9. If we have inhomogeneous Dirichlet boundary conditions this is in
practice done the same way as in the homogenous case, eliminating the degrees of
freedom on the boundary. For Neumann conditions one has to evaluate integrals
along the boundary as in (2.5), using one-dimensional elements.

2.1.6 Convergence

In this subsection, we review the most important concepts regarding the conver-
gence of FEM. For a detailed discussion see [11]. The starting point of convergence
rate estimates for the finite element method already described are Cèa’s lemma:

Theorem 2.1.9 (Cèa’s lemma). Let u solve the variational problem (2.3) and
uh solve the corresponding Galerkin approximation (2.8), where the bilinear form
a(·, ·) is bounded and coercive. Then we have:

‖u− uh‖V ≤
Cb
Cc

min {‖u− vh‖ : vh ∈ Vh} .

Proof. By the coercivity and linearity of a(·, ·) we have:

Cc ‖u− uh‖2
V ≤ a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh).

The last term equals zero, since both u and uh solves the variational problem in
Vh: vh − uh = v ∈ Vh and a(u− uh, v) = a(u, v)− a(uh, v) = b(v)− b(v) = 0, this
is called Galerkin orthogality. Then, we use the boundedness of a(·, ·):

Cc ‖u− uh‖2
V ≤ a(u− uh, u− uh) ≤ Cb ‖u− uh‖V ‖u− vh‖V .

We divide by Cc and ‖u− uh‖V and take the infimum over vh ∈ Vh:

‖u− uh‖V ≤
Cb
Cc

inf {‖u− vh‖V : vh ∈ Vh} .

By (Cheney [6], page 64, theorem 2), as Vh is closed and convex subspace of a
Hilbert space, there exist an unique element of Vh closest to u and minimum is
attained.

Hence the solution to Galerkin problem is the best in the subspace Vh up to a
constant. We can therefore study convergence rate estimates for a suitable com-
parison element in Vh. In one dimension it is easy to picture what this comparison
element might be, see figure 2.3. A direct proof with techniques from calculus is
possible in this case.
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Figure 2.3: The unique linear interpolation of a function in one dimension.

The idea for more dimensions are the same, to be precise we define the intero-
lation operator.

Definition 11 (Global interpolation operator).

Ih : C(Ω)→ Vh

v 7→
∑
i

v(ni)φi
(2.13)

Where {ni}i are the nodes and {φi}i the corresponding basis functions.

Remark 10. The global interpolator operator (2.13) maps from continuous func-
tions, so we need to make sure our solution is continuous. By the Sobolev embed-
ding theorem (Evans [7],page 286), we are okay if our space dimension is such that
Ω ⊂ Rd for d ≤ 3, and u ∈ Hk(Ω) for k ≥ 2.

We remind the reader of the notation ‖·‖1 = ‖·‖H1(Ω), and similarly for the
semi-norms. In the setting of the model problem (2.2), we hope to reach an
estimate

‖u− uh‖1 ≤ C ‖u− Ih(u)‖1 ≤ C∗hk|u|k+1, (2.14)

where h is the maximum diameter of the elements in the triangulation, and k is
the polynomial degree on the ansatz space. This bound is indeed attainable if we
make sure the triangles in our triangulation have maximum angle less than π. In
chapter 3.4 of Knabner [11], there is a detailed proof of (2.14).
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Note that this means that our linear finite element method has a linear conver-
gence in the ‖·‖1 norm, if our variational problem admits a solution with sufficient
regularity. We tie these observations together in a theorem:

Theorem 2.1.10 (energy norm estimate, Knabner [11] page 144). Consider a
finite element discretization as described by (2.9) in Rd for d ≤ 3 on a family of
triangulations with an uniform upper bound on the maximal angle. Suppose we
have a linear ansatz space as in definition 10, then

‖u− uh‖1 ≤ Ch|u|2.

The above is called an energy norm estimate due to the equivalence of ‖·‖2
1

and a(·, ·) in case of a symmetric bilinear form, in structural mechanics a(·, ·)
corresponds to the potential energy.

Often we are happy with a convergence rate estimate in the ‖·‖0 norm, which
does not measure an error in the approximation of the derivative. We then expect
a better convergence rate, as can be shown by the Aubin-Nitsche technique. This
involves considering the dual problem of our variational problem (2.2): a(v, uf ) =
〈f, v〉0, and assume some uniqueness and stability of the solution uf of this.

Theorem 2.1.11 (L2 estimate). Suppose the situation of theorem 2.1.10 and as-
sume there exists a unique solution to the adjoint problem with |uf | ≤ C ‖f‖0, then
there exist a constant C∗ such that:

‖u− uh‖0 ≤ C∗h ‖u− uh‖1 .

See [11] for a proof. When it comes to the assumption on the dual problem,
this is satisfied for our elliptic model problem 2.1. If we put the last two theorems
together we obtain quadratic convergence in the L2 norm.

Remark 11. In this chapter we have only discussed the convergence behaviour of
the solution to the Galerkin problem (2.8). In practice, one often only solves this
approximately. For example the term b(vh) =

∫
Ω
fvh dx is impossible to evaluate

exactly depending on f . We will later see error estimates with this taken into
account.

2.2 The Finite Volume Method

Finite volume methods are designed such that the conservation law we solve hold
everywhere in the domain. Consider our elliptic model problem (2.1): Find u such
that

−∇ ·K∇u(x) = f(x) x ∈ Ω

u(x) = 0 x ∈ ∂Ω.
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First we divide our domain Ω into convex quadrilaterals (control volumes, cells),
{Ωi}i. Then we integrate our equation over Ωi and apply the divergence theorem:∫

Ωi

−∇ ·K∇udx = −
∫
∂Ωi

K∇u · n̂ds =

∫
Ωi

fdx. (2.15)

The above equation equates the fluxes through the boundary of a control volume,
with the source or sinks inside the control volume. The finite volume methods are
discrete versions of this. Let Ei,j be the edge between cells i and j, we approximate
the flux through Ei,j, from cell i to cell j,

qEi,j = −
∫
Ei,j

K∇u · n̂ds

by a linear combination of ui at neighbouring cell centers (geometric center of a
cell)

qEi,j ≈ q̃Ei,j =
∑
k

tki,ju
k.

Where the transmissibility tki,j has the property
∑

k t
k
i,j = 0. Note that with this

notation, we have qEi,j = −qEj,i .
We also approximate the integral on the right side,

∫
Ωi
fdx, with some quadra-

ture rule. In porous media flow, the space discretization used, usually has a trunca-
tion error of at most second order. This is because the solution has low regularity
due to heterogeneous permeability. The upshot is that we use the midpoint rule
for evaluating the right hand side, as this also has a second order truncation error.
Hence we evaluate f at the cell center and multiply by the area of Ωi. We then
end up with a system of equations∑

j∈Si

q̃Ei,j = |Ωi|f(xi), (2.16)

where Si is the set of indices of neighbouring cells. The system of equations (2.16)
ensures local mass conservation. It can also be written in matrix form as

AV ũh = f .

We will discuss different ways of constructing the transmissibility coefficients, as
they result in very different discretizations.

The motivation for using finite volume methods for problems in porous media,
for example Richards’ equation, is that the flux appears explicitly in our discretiza-
tion. If one, for example, wants to simulate the spread of some contaminant by
groundwater flow, one can easily obtain a local mass conservative flux field using
the finite volume method. This flux field can then be used in the desired transport
equation.
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We always make sure that our control volumes are inside our domain, with the
boundary of our domain aligning the edges of our grid. To set our boundary con-
ditions we thus need to specify the flux across the boundary. If we have Neumann
boundary conditions, this is usually straightforward. One way of implementing
no-flow boundary conditions is to make a strip of cells outside our domain with
zero permeability.

Dirichlet boundary conditions are not always so natural for the equations we
consider, that is, knowing the pressure or the saturation on a thin line in a two
dimensional domain. This is reflected in the finite volume framework, where a
common approach is to make ghost cells outside our domain where the potential
is known, see figure 2.4. We can make these ghost cells as small as we like, and
this approach is easy to implement. On the other hand, if we insist that we only
know the potential at ∂Ω, there exist techniques for determining the flux across the
boundary as well. In section 3.1 demonstrate an approach for the MPFA-L-method
where this is achieved.

Known potential

Ghost cell

Unknown  
potential

Interior cell

Figure 2.4: Ghost cell outside the boundary.

We will focus on discretizing the interior of the domain in the following sections.

2.2.1 Two-Point flux Approximation

The simplest way of constructing tki,j is also the most popular in the industry. As
the name suggests, we only use the potential value at two points, x0 and x1, which
are the cell center of two neighbouring cells, to compute the numerical flux q̃E0,1

between them.
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Figure 2.5: The two-point flux approximation (TPFA) setup.

Let v1 be the vector from cell center x1 to the midpoint of the edge between
the cells, x. Then we approximate the flux out of cell 0 into cell 1 by:

q̃E0,1,0 = −nT0K0
v0

‖v0‖
(u(x)− u(x0)) (2.17)

or as

q̃E0,1,1 = −nT1K1
v1

‖v1‖
(u(x1)− u(x)) (2.18)

where ni is the normal vector pointing out of cell i with length equal to ∂Ω.
In figure 2.5 we have n1 = −n0, and they are in general not aligned with v1 or
v0. Because we require flux continuity we have that

q̃E0,1,0 = q̃E0,1,1 = t0u(x0) + t1u(x1)

where, as before, t0 + t1 = 0 ⇒ t0 = −t1, and the subscript on t is dropped
for readability. We now have three equations and three unknowns, u(x), t0 and
t1. To simplify, we introduce the quantity Ti := nTi Ki

vi
‖vi‖ to represent the cell

transmissivity. So first we solve for u(x):

T0(u(x)− u(x0)) = T1(u(x1)− u(x))⇒ u(x) =
T0u(x0) + T1u(x1)

T0 + T1

.
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Next, we insert this into the expression for the numerical flux:

q̃E0,1,0 =− T0(u(x)− u(x0))

=− T0

(
T0u(x0) + T1u(x1)

T0 + T1

− u(x0)

)
=− T0

(
T0u(x0) + T1u(x1)− u(x0)T0 − u(x0)T1

T0 + T1

)
=− T0

(
T1u(x1)− u(x0)T1

T0 + T1

)
=
u(x0)− u(x1)

1
T1 + 1

T0

.

Now, we have solved the equations for the transmissivity coefficients:

q̃E0,1,0 = t0u(x0) + t1u(x1)

u(x0)− u(x1)
1
T1 + 1

T0

= t0u(x0) + t1u(x1)

⇒ t0 =
1

1
T1 + 1

T0

.

Hence, the transmissibility is the harmonic mean of the transmissivities. This
kind of mean appears naturally when one wants to find the permeability of flow
through layers of different permeability.

One way of looking at this discretization, is that we assume the potential to
be a linear function of one variable, with its gradient pointing in the vi direction
between the cell center and the edge in figure 2.5. So for each edge, we have
two linear functions on each side, which gives us four degrees of freedom. Two of
them are used to respect the cell center potential values, the other two are used on
potential and flux continuity across the edge. With these assumptions, expressions
(2.17) and (2.18) are exact. And we only have to solve for the transmissibility
coefficients.

Two-point flux approximation has the advantage of being fast to assemble and
simple to code. It yields a pleasant five-point stencil for two dimensional prob-
lems. However, there is one big disadvantage with two-point flux approximation:
Computing the flux with only two points is not consistent when the grid is not
aligned with the principal directions of K. If our grid is aligned with K, we have
that

n2 ·Kn1 = 0 (2.19)

for a uniform parallelogram mesh with the normal vectors n1 and n2. We then
call the grid K-orthogonal. In the setting of figure 2.5, our grid would not be
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K-orthogonal as the control volumes are not parallelograms. All meshes with or-
thogonal control volumes are K-orthogonal if the permeability is isotropic. In
figure 5.6 we observe the failed convergence of the TPFA-method for a parallelo-
gram mesh. Analytical expressions of the error resulting from a grid that is not
K-orthogonal, can be found in [25].

2.2.2 MPFA-O-Method

The O-method is a multi-point flux approximation method, these types of methods
were developed to make control volume methods converge for grids that are not
K-orthogonal. It is described in detail in [1], we only give a brief introduction.
Consider the control volumes in 2.6.

Figure 2.6: The solid lines are the edges of the control volumes, the dashed lines
are the dual mesh connecting the cell centers, going through the midpoints of each
edge. The solid circles are cell centers, the white circles are interaction points, and
the volumes enclosed by the dotted lines are referred to as interaction regions.

For each interaction point, that means where four control volumes intersect,
we consider an interaction region. This is the polygon drawn by the dual mesh
around the interaction point.
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Figure 2.7: The four subcells in the interaction region corresponding to cells
1, 2, 3, 4 and interaction point 5. Here, R5 = {1, 2, 3, 4}.

In each interaction region there are four half edges. Our goal is to obtain an
expression

q̃Eni,j =
∑
k∈Rn

tk,ni,j u
k ≈

∫
Ei,j

−n̂TjK∇u ds i, j ∈ Rn (2.20)

for the flux through each half edge En
i,j in the interaction region corresponding

to interaction point n (figure 2.7). Where Rn is the index set of the four cells
neighbouring interaction point n.

We assume for now that the potential is linear in each of the four sub cells in the
interaction region, figure 2.7. This gives 4 · 3 = 12 degrees of freedom. The linear
potential must of course equal the cell center values of the potential in the cell
centres, this removes four degrees of freedom. We also require flux continuity on
the four half edges in the interaction region, this removes an additional four degrees
of freedom. The last four degrees of freedom are spent on potential continuity on
the midpoints of the edges.

The linear potential in each sub cell is now well defined given values at the cell
center, provided the assumptions on flux and potential continuity. We can now
use this to compute the four by four matrix of transmissibility coefficients for each
of the four half edges. In the situation of figure 2.7 and equation (2.20) it would
look like

T 5 =


t1,51,2 t2,51,2 t3,51,2 t4,51,2

t1,52,3 t2,52,3 t3,52,3 t4,52,3

t1,54,3 t2,54,3 t3,54,3 t4,54,3

t1,51,4 t2,51,4 t3,51,4 t4,51,4

 , (2.21)
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where each row corresponds to the flux over some half edge, and each column cor-
responds to some cell center. Computing (2.21) involves inverting a four by four
matrix with coefficients depending on the mesh and permeability, see [1] for de-
tails. Finally, we assemble the system of equations (2.16) with the transmissibility
coefficients. Note that we write the flux over the jth edge of cell i, q̃i,j as the flux
over the two half edges: ∑

j∈Si

(q̃Ê1
i,j

+ q̃Ê2
i,j

) = |Ωi|f(xi), (2.22)

where the half edge fluxes Ê1
i,j and Ê1

i,j are related to some interaction point, i.e.,

Ê1
i,j = En

i,j for some n, see (2.20). Hence, computing the transmissibility coeffi-
cients and assembling them into the discretization matrix, requires two different
indexing systems.

Next, we see that the interaction regions of the two half edges sharing same
edge overlaps, so that we get a six-point flux stencil. In other words, for each j
in (2.22), the union of the two interaction regions used to compute q̃E1

i,j
and q̃E2

i,j

consists of six points. Taking the union of the four flux stencils connected to a
cell, we observe that the O-method yields a nine-point potential stencil∑

k∈Mi

t̂kuk = |Ωi|f(xi),

whereMi is the set of nine indices corresponding to cell i and its eight neighbouring
cells.

The O-method is consistent for non K-orthogonal grids, and reduces to the two-
point flux approximation when the grid is K-orthogonal. This happens because
the systems of equations to be solved for the transmissibility coefficients in each
interaction region, becomes diagonal. This is because nTK∇u can be expressed
as two points when u is a linear function given by three points which forms two
K-orthogonal vectors.

In [15], Nordbotten and Keilegavlen describes a framework of MPFA methods
where the O-method we introduced is a special case. They consider the problem of
finding the four linear potential functions in each interaction region that minimizes
the potential discontinuity across the edges. This should be minimized given the
three constraints:

1. the potentials respect cell center potential values,

2. the flux models the constitute law, that is, consistency of Darcy’s law,

3. flux continuity across the half edges.
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Other methods, with the potential continuity at other places than the edge mid-
point, have also been proposed. An early example is the nine-point finite difference
scheme of J.L Yanosik and T.A McCracken [26], which has continuity at the mid-
points of the half edges, this is also known as the O(0.5) method.

With our implementation of MPFA-O-method, one needs for each interaction
region to assemble four, four by four, matrices. Compute the inverse of one of
them, and do two matrix multiplications and one subtraction. All of this could
be done in parallel. However, for our implementation, it slows matrix assembly
down a lot compared to two-point flux approximation. Another drawback of the
O-method is the monotonicity properties: One can risk having positive entries off
the main diagonal of the discretization matrix for difficult meshes. This may lead
to unphysical oscillations in the solution and violation of the maximum principle
of elliptic PDEs. For two-point flux approximation we avoid this issue altogether,
as the signs of the five-point stencil always are one plus and four negatives. Even
for the linear finite element method, this issue is avoided if one imposes some max-
imum angle condition, see [Knabner,[11]] page 175. When solving for example the
Richards’ equation, violating the maximum principle can lead to air bubbles being
formed spontaneously in the saturated region. For a discussion on monotonicity
see [14].

2.2.3 MPFA-L-Method

The L-method is the Ferrari of
discretization techniques for
porous media flow problems, while
conformal finite elements is the
Volvo.

Professor Jan Martin Nordbotten

Like the O-method, the L-method is also a multi-point flux approximation
method. It was introduced in [2], where the authors demonstrate improved mono-
tonicity properties with numerical experiments. This method is similar to the
O-method, in that it goes through the half edges and uses information from the
same interaction regions. But instead of using four points for the flux across each
half edge, we use three, with two half edges between them.

As in the O-method, we assume linear potential in each cell, this gives us
3 · 3 = 9 degrees of freedom. Three are eliminated because we respect the cell
center value of the potential, this leaves six degrees of freedom. We use two, one
at each edge, for flux continuity. The last four are used for full potential continuity
at the two edges.
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We have two choices of flux stencil for each half edge, see figure 2.8. We
compute the transmissibility coefficients for both, then we choose the one ”best”
aligned with the flow: Let ti1 be the ith transmissibility coefficient of 41, then

if |t11| < |t22|
choose 41 else

choose 42.

(2.23)

(a) 41 (b) 42

Figure 2.8: The two choices of which cell centers to use for computing the flux
over the half edge in red. We call the interaction regions (the dotted lines) for
L-triangles, as they related to three cell centers.

A cheap intuition behind (2.23) is that if |t11| < |t22|, it is more likely that
sgn(t11) = sgn(t41) than sgn(t22) = sgn(t32) due to the fact that

∑
ti = 0. Choosing

L-triangle as in (2.23) increases the chances that we get the same sign of ti on
the same side of the half edge, thus increasing the chance that we get a monotone
discretization. See [4] for a more detailed geometric intuition of choosing L-triangle
in the case of homogenous permeability.

To compute transmissibility coefficients in a given L-triangle, we use the as-
sumptions on flux and potential continuity, to construct a linear system. The
coefficients depends on mesh and permeability in the three cells. As with the
O-method, we end up with a system assembled from the fluxes over the half edges:∑

j∈Si

(q̃Ê1
i,j

+ q̃Ê2
i,j

) = |Ωi|f(xi)

4∑
j=1

(
3∑

k=1

tk,ai,j u
k +

3∑
k=1

tk,bi,j u
k) = |Ωi|f(xi),
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where a and b corresponds to the two interaction points sharing edge Ei,j. Thus,
the flux stencil across each edge always consists of four points.

Remark 12. In the L-method, we need to construct and solve a matrix equation
twice for each half edge to compute the transmissibility coefficients, as there are
always two choices. In contrast, the O-method only needs this done once for each
interaction point, and its four half edges.

In figure 2.9, we see the criterion in practice for a homogenous medium: In
figure 2.9a all L-triangles are used by two half edges, and they are chosen in the
same way throughout the domain. In figure 2.9b there are some triangles that
overlap, this is due to the fact that some L-triangles are used by only one half
edge.

0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00 1.25

0.0
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0.4

0.6

0.8
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(a) Parallelogram grid, all triangles are chosen similarly.

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
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0.4

0.6

0.8

1.0

(b) Complicated grid, note that some of the L-triangles overlap.

Figure 2.9: Examples of L-triangles (in red) in a domain with homogenous perme-
ability tensor.
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The observation in figure 2.9a can be stated as a theorem:

Theorem 2.2.1 (Cao, Y., Helmig, R. and Wohlmuth, B.I. (2009),[5]). For homo-
geneous media and uniform parallelogram grids, the MPFA L-method has a seven-
point cell stencil for the discretization of each interior cell, i.e., the discretization
of each cell is a seven-point stencil including the center cell and the six closest
potential cells, as shown in 2.9a.

In the case of a parallelogram grid with heterogeneous permeability, it may
also happen that one gets overlapping L-triangles. This is the case even if the
permeability only changes as a scalar in the domain. In figure 2.10 the L-triangles
are shown for a random, scalar permeability. Let Km,n be the permeability of the
mth cell in y direction and nth cell in x direction. Then the random permeability
used in figure 2.10 given by

Kn,m = (ex̂ − 1)2, (2.24)

where x̂ is a random sample drawn from a uniform distribution over [0, 1). We see
that two of the L-triangles overlap. This is due to some combination of permeabil-
ity at four neighbouring cells. Also note that the permeability is not so low that
it causes numerical rounding errors, as minm,nKm,n = 0.0017 in figure 2.10.
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Figure 2.10: L-triangles on a random permeability.

For homogenous media the L-method becomes simpler. We continue with a
useful theorem which we will use later:
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Lemma 2.2.2 (Cao, Y., Helmig, R. and Wohlmuth, B.I. (2009),[4]). Assume that
the permeability K is homogeneous on Ω, then the flux through each half edge e,
computed by the L-method, can be written as

q̃e = −K∇u · ne, (2.25)

where ne is the scaled normal vector to the half edge e, having the same length as
e. u is a linear scalar field uniquely given by the potential values at the three cell
centers chosen by the L-method.

Figure 2.11: Simplified L-triangle, the original L-triangle i shown in figure 2.8b or
2.12. The vector ν1 is perpendicular to the edge between x1 and x2, with the same
length as the edge it is perpendicular to. Same for ν2, with x2 and x3.

Moreover, the gradient ∇u, is given by:

∇u = − 1

2F
[(u1 − u2)ν2 + (u3 − u2)ν1], (2.26)

where F is the area of the simplified L-triangle with corners x1, x2 and x4, see figure
2.11. An expression like (2.26) can be obtained for the other choice of L-triangle
as well.
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Figure 2.12: Original L-triangle with notations in proof.

Proof. It is enough to check that the jump [∇u] is zero on e1 and e2 on the original
L-triangle in figure 2.12. Let te1 and ne1be the tangent and normal vector to e1.
Since we require potential continuity on each half edge, we get:

[∇u · te1 ] = 0. (2.27)

Using the fact that K is symmetric and homogenous, we obtain:

[K∇u · ne1 ] = [∇u ·KTne1 ] = [∇u ·Kne1 ] = 0. (2.28)

Where we used flux continuity across each half edge in the last equality. Since K
is positive definite, we have that Kne1 and te1 are independent, thus [∇u] = 0 on
e1. Same arguments holds for e2. Hence ∇u is constant on the original L-triangle
and the desired result follows.

Remark 13. The above lemma suggests that we can obtain the transmissibility
coefficients without solving a system of equations for each half edge. This simplifies
implementation, but it is only possible for homogenous media.

To conclude; the L-method is the most sophisticated method in that it adjusts
to the anisotropy locally. It has the best monotonicity properties, it is consistent
for non K-orthogonal grids, but it is more complicated to implement than the
O-method.

2.3 Time Discretization

We start by considering the most famous parabolic equation, namely the heat
equation. Let u = u(x, t), given appropriate boundary and initial conditions, find
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u such that 
∂tu−∇ ·K∇u = f,

u = 0,

−K∇u = gN ,

u = u0,

in Ω× (0, T ],

on ∂ΓD × (0, T ],

on ∂ΓN × (0, T ),

on Ω× {t = 0} .

(2.29)

The well-posedness of (2.29) is discussed in chapter seven of [7], it requires a more
detailed discussion of Sobolev spaces and Bochner spaces, i.e., spaces containing
functions from the real numbers to some Sobolev space.

We expect low regularity in time, so there is not much to be gained by using
a higher order discretization in time. Next, we need to decide whether we should
use an explicit or an implicit scheme. The obvious choice is the implicit backward
Euler, as it is stable for large time step sizes. This can be understood intuitively
by considering the parabolic nature of the equation, the signals propagate through
the domain instantaneously. A careful analysis of time discretizations of parabolic
equations is done in ([11], chapter 7). There, it is shown that fully explicit schemes
only are stable for time step sizes proportional to the square of the diameter of
the space discretization, whereas fully implicit schemes are stable for all time step
sizes.

Let {tn}n be a sequence of N + 1 uniformly distributed numbers from 0 to T
and let τ = T

N
be the time step size. Then we state the semi-discrete version of

(2.29) by exchanging the time derivative by a difference quotient ∂tu = un−un−1

τ
.

We end up with: Given un−1 and fn, find un such that

un − τ∇ ·K∇un = τfn + un−1,

un = 0,

K∇u = gN ,

u0 = u0,

x ∈ Ω,

x ∈ ∂ΓD,

x ∈ ∂ΓN ,

x ∈ Ω.

(2.30)

The above equation shows that this time discretization is implicit, i.e., we cannot
solve (2.30) for un with simple algebraic manipulation, instead, we have an elliptic
problem (2.30) for each time step. This has almost the same structure as the
elliptic model problem (2.1) we solved in the previous chapters, the difference
being the un term.

Finite element approach

We are now ready to fit this problem into our finite element framework from chapter
2. The variational formulation of (2.30) is achieved as before by multiplying by
test functions in H1

0 (Ω): Given un−1 ∈ V , fn ∈ V ′, find un ∈ V such that

〈un, v〉0 + τ 〈K∇un,∇v〉0 = τ 〈fn, v〉0 +
〈
un−1, v

〉
0
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for all v in V . If we exchange V with a finite dimensional subspace Vh, and write
unh =

∑d
i=1 û

n
i φi, as in the Galerkin FEM section 2.1.4, we end up with the system:

Find ûn ∈ Rd such that

(B + τA)ûn = τfn +Bûn−1, (2.31)

where the stiffness matrix, A, is as before, that is Aj,i :=
∫

Ω
(∇φi)T∇φjdx. The

matrix B is often called the mass matrix and is defined as Bj,i :=
∫

Ω
φiφjdx.

Finite volume approach

As before, we divide our domain Ω into d control volumes {Ωi}i. Either, one can
write the heat equation (2.29) in conservation form on each control volume

∂t

∫
Ωi

u dx−
∫
∂Ωi

K∇u · n̂ dx =

∫
Ωi

f dx, (2.32)

and discretize the first term with backward Euler, or one can make sure the semi-
discrete heat equation (2.29) holds for each control volume and use the divergence
theorem. Both ways, we end up with∫

Ωi

un dx− τ
∫
∂Ωi

K∇un · n̂ dx = τ

∫
Ωi

fn dx+

∫
Ωi

un−1 dx,

if we, as discussed earlier, use the midpoint rule to evaluate the integrals, we get∫
Ωi

un(xi) dx− τ
∫
∂Ωi

K∇un · n̂ dx = τ

∫
Ωi

fn(xi) dx+

∫
Ωi

un−1(xi) dx.

As in the previous section we end up with a system of equations, where superscript
V is just to distinct between FVM and FEM. Find ũ ∈ Rd, such that

(BV + τAV )ũn = τfn +BV ũn−1

The matrix AV is as in chapter 3, with the fluxes through the edges of cell i
described by the jth row of AV . The matrix BV is diagonal with the entry i being
the volumes of the volume of cell i. That is, for two dimensional problems, the
entries of BV are the areas of the control volumes. In contrast, the B matrix from
the finite element method, is in general not diagonal.

2.4 Linearization

We have seen that the heat equation leads to a sequence of linear systems. In
the same way, we expect that our non-linear Richards’ equation (1.9) leads to a
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system of non-linear equations. We start by discussing this in a general setting:
Find x ∈ U such that

f(x) = 0 where f : U ⊂ Rn → Rn. (2.33)

The solution of (2.33) is called a root, it is almost always found using an iterative
method.

A common iterative scheme to solve (2.33) is the Newton’s method. LetDf(xj−1)−1 :
Rn → Rn be the Jacobian of f(xj−1), then the newton iteration is given by:

xj = xj−1 −Df(xj−1)−1f(xj−1).

In one dimension a convergence proof i easily obtained by techniques from calculus,
the following theorem is found in slightly more detail in (Cheney[6], chapter 3):

Theorem 2.4.1. Let f ′′ < 2 with f(x) = 0 and f ′(x) > δ ∀x ∈ Bε(x), then the
Newton method is locally quadratic convergent: For x0 ∈ Bε(x) we have

|xj+1 − x| ≤
1

δ
|xj − x|2 < |xj − x|.

Proof. Define ej := xj − x. Then we have by Taylor expansion

0 = f(x) = f(xj − ej) = f(xj)− f ′(xj)ej +
f ′′(ψ)e2

j

2
. (2.34)

For some ψ between xj and x. Further, we get by the definition of the newton
method:

ej+1 = xj+1 − x = xj −
f(xj)

f ′(xj)
− x

= ej −
f(xj)

f ′(xj)

=
ejf
′(xj)− f(xj)

f ′(xj)

(2.35)

By the Taylor expansion around xj, (2.34), we get

f ′(xj) =
f(xj)

ej
+
f ′′(ψ)ej

2
.

Inserting this into (2.35), we get the equality

ej+1 =
e2
jf
′′(ψ)

2f ′(xj)
.
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The assumptions on f ′ and f ′′ combined with |e0| < δ give us the estimate

|e1| ≤
2

2δ
|e0|2 < |e0|

The above equation implies x1 ∈ Bε(x), and by induction we get

|ej+1| < |ej|,

and the quadratic convergence

|ej+1| ≤
1

δ
|ej|2

For a similar result in more dimensions see (Knabner [11], chapter 8). One
apparent drawback of this method is that it is only locally convergent, i.e., one
needs to start the iteration in a neighbourhood of the root where the Jacobian is
well defined. In practice one often solves the system

Df(xj−1)δj = −f(xj−1),

and then update the current iterate: xj = xj−1 + δj. Typically, the matrix
Df(xj−1), needs to be computed and assembled for every iteration. This may be
computationally expensive. So Newton’s method may be slow despite its quadratic
convergence, if it even converges.

A simpler approach is to exchange the Jacobian with a diagonal matrix LI
such that

Lδj = −f(xj−1). (2.36)

This is called the L-scheme, and will be the method we use for linearization in this
thesis. In one dimension it is easy to prove convergence:

Theorem 2.4.2. Let f ∈ C(R) and L > supx∈R f
′(x), then the L-scheme con-

verges linearly for all x0 ∈ R.

Proof. Define ej := ej − x, then we get

ej+1 = xj −
f(xj)

L
− x = ej −

f(xj)

L
.

We use the same trick as before with the Taylor expansion around the root

0 = f(x) = f(xj − ej) = f(ej)− f ′(ψ)ej ⇒ ej =
f(xj)

f ′(ψ)
.

Using this and the assumption on L, we get the estimate:

|ej+1| =
∣∣∣∣ej (1− f ′(ψ)f(xj)

f(xj)L

)∣∣∣∣ ≤ |ej| ∣∣∣∣1− f ′(ψ)

L

∣∣∣∣ < |ej|.
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In practice we need to stop the linearization scheme at some point, and we
decide on a stopping criterion. A common choice is, and the one we will use, is

|xj − xj−1| < TOL1 + TOL2|xj−1|, (2.37)

Where TOL1 and TOL2 is some constants chosen to be smaller than the error
expected from spatial discretization, in our numerical experiments, we set both to
be 10−8. See (Storvik, [23]) for a discussion of the L-scheme and how to choose the
L parameter in a smart way. One can also study other linearization approaches
with different properties. In (List and Radu, [12]) the authors compare different
iterative linearization methods for the Richards equation and propose a method
that combines the Newton method and the L-scheme with desirable convergence
rate and robustness.
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Chapter 3

Convergence of the
MPFA-L-Method

In this chapter we show equivalence between a modified MPFA-L method and
a modified Lagrange finite element method, for linear time dependent problems
discretized in time with backward Euler (2.30). That is, we prove equivalence
between the two discretizations of the equation: Let x ∈ Ω ⊂ R2, find u(x) such
that 

u−∇ ·K∇u = f,

u = 0,

−KKK∇u = gN ,

in Ω

on ∂ΓD

on ∂ΓN ,

(3.1)

where K is homogeneous, in addition to being symmetric positive definite. Once
equivalence is obtained, we prove convergence for the finite element method using
techniques from section 2.1.6.

After reading this chapter, the reader should be convinced that the finite el-
ement method covered in section 2.1 is almost the same as the L-method for
homogeneous media. Moreover, that the L-method can be used as a locally mass
conservative flux recovery algorithm on the modified finite element solution. See
section 5.2 for a comparison of the MPFA-L method and normal linear Lagrange
finite element method.

We saw in the section about the MPFA-L method that the interaction regions
(L-triangles) may form a triangulation of our domain. With this observation in
mind, modifications are made to both methods so that we obtain equivalence.
This entire chapter is adapted from (Cao, Y., Helmig, R. and Wohlmuth, B.I.
(2009),[5]), where, convergence is proved for the Poisson equation, i.e., without
the first term u.

55
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Figure 3.1: Control volumes in solid lines and interaction regions in dashed lines
at the boundary.

3.1 Boundary Conditions for the MPFA-L-Method

First of all, we assume that we have a uniform parallelogram grid, as in 2.9a. As we
saw in the previous chapter, one gets with the finite volume method the following
relation for all control volumes Ωi:∫

Ωi

u dx−
∫
∂Ωi

K∇u · n̂nn dx =

∫
Ωi

f dx. (3.2)

The MPFA-L method deals with the second term, approximating the constitutive
law. The other two terms are common to all control volume methods solving time
dependent problems or (3.1).

On the interior control volumes, we use the original MPFA-L method already
covered. On the Neumann boundaries we need a modification. This is to be
expected, as control volume methods handle flux at the boundary in a very simple
way; specifying it the same way we deal with with the source term, adding it to the
load vector. In finite element methods however, we have degrees of freedom on the
boundary, one dimensional elements. We will also make a special treatment of the
Dirichlet boundary, in a way that is equivalent to the finite element method. In [5]
they claim that this is a very natural way of dealing with the Dirichlet boundary
conditions, and a good practical alternative to other ways of enforcing Dirichlet
boundaries in the MPFA-L method.
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Figure 3.2: Control volume along top boundary.

Consider the control volume y1y6y4y3. For the Neumann boundary conditions,
we split the control volume into two, y1y6y9y8 as Ω2 and y8y9y4y3 as Ω1, see figure
3.2 or 3.1. We therefore get one equation each for u3 and ui as the potential at
x3 and xi. For the fluxes on Ω2 we have six interaction triangles and a normal
seven-point stencil. For the Ω1 we compute the flux through y3y8 using 4x1x3x2,
the flux through y8y10 using 4x1xix3, for y10y9 and y9y4 the L triangle 4xix4x3 is
used. Finally the Neumann boundary condition is used at the edge y4x3 and x3y3.
We are not able to eliminate the unknown value at x3 and it remains a degree of
freedom, which makes sense if we want equivalence with finite element method.

In the case of Dirichlet boundary conditions, we compute the fluxes into
y1y6y4y3 using seven L-triangles, as can be seen in figure 3.1. The flux over the
edge y3y1 are computed as the sum of the flux over y3y8, y8y2 and y2y1 using the
L-triangles 4x1x3x2, 4x1xix3 and 4x1x7xi respectively. Similarly for the edge
y6y4. For y1y6 we only use the two big L-triangles at the bottom, 4xix7x6 and
4xix6x5.

The flux over y4y3, at the boundary, we compute by balancing with the other
fluxes out of the small control volume Ω1, see figure 3.3. Let q̃yiyj be the flux
through edge yiyj, out of the volume Ω1. Then we get the expression for the flux
through the Dirichlet boundary:

q̃y3y4 = −(q̃y3y8 + q̃y10y8 + q̃y9y10 + q̃y4y9) +

∫
Ω1

f dx. (3.3)

The fluxes on the right hand side of (3.3) are computed as for the Neumann case.

On the corners, special treatment is needed. Our modified MPFA-L method is
modified to become equivalent to the finite element method here. This is done by
splitting the corner control volume into four smaller cells, where mass conservation
does not necessarily hold, see [5] for details.
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Figure 3.3: The fluxes on the Dirichlet boundary.

3.2 Modified Finite Element Method

In this section we introduce a finite element method for solving (3.1). By theorem
2.2.1 the L-triangles form a triangulation {τh}, we will use linear Lagrange elements
on this triangulation. The only modifications we need to make are to the mass
matrix and the load vector, we let the stiffness matrix stay the same as before. That
is, we do not touch the discretization of the constitutive law. We do want however,
to define an interpolation operator such that the inner products that make up the
mass matrix and load vector, become mass conservative in each control volume.

We need some notation so that we can distinguish between the cell centers in
the interior, at cell centers along the boundary and the nodes at the boundary.
In addition, corner cells need special treatment. Let N ∗h be a set of indices corre-
sponding to all interior nodes of {τh}, which are also the cell centers of the control
volume mesh. This index set contains two disjoint sets N ∗h = N b

h

⋃
N i
h, where

superscript i denotes the cell centers of the interior cells and b the boundary cells.
The index set N b

h are further subdivided as we see in figure 3.4. The nodes at the
boundary is indexed by the set NN

h

⋃
ND
h , where N and D represent Neumann

and Dirichlet boundary nodes, these are further subdivided as illustrated in figure
3.4.
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Figure 3.4: A paralellogram mesh with finite element triangles in dotted lines and
control volumes in solid lines. In this case we have a pure Neumann problem. The
special notation at the nodes is used in [5].

As before we denote by Vh the linear ansatz space as in definition 10:

Vh =
{
uh ∈ C(Ω) : uh|K ∈ P1(K) ∀K ∈ τh, u|ΓD = 0

}
similarly φi is the standard nodal basis function, where i ∈ Nh \ ND

h . In addition
to our global interpolation operator, definition 11, we define an operator that maps
functions vh ∈ Vh to functions that are piecewise constant on the control volumes.
This piecewise function are equal to vh at the nodes of the triangulation. This is
an example of mass lumping, see [3] for more examples.

Definition 12 (Piecewise global interpolator). Let Îh be an operator that maps
from the test space to functions that are piecewise constant on control volumes.

Îh : Vh → L2(Ω)
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And

Îhvh =
∑

i∈Nh\N dh

vh(xi)Îhφi(x)

Where

Îhφi(x) =

{
1 if x ∈ Di

0 otherwise
(3.4)

In interior cells, i ∈ N i
h, we have Di = Ωi, i.e., the support of (3.4) is the control

volume corresponding to φi. If we are close or on the boundary the situation is
more complicated:

� i ∈ N e
h : In this case the function vanishes for the quarter of the parallelogram

closest to the boundary,i.e., Di = Ω2 from figure 3.2

� i ∈ NN,e
h In this case of the Neumann boundary node Îhφi(x) vanishes outside

the quarter of the control volume closest to the edge,i.e., Di = Ω1 in figure
3.2

� On the corners there are special definitions, see [5].

Let ÎΓN = Îh|ΓN be the trace of the piecewise interpolation operator on the
Neumann boundary. The finite element method we end up with reads as follows:
Find uh ∈ Vh such that

〈
Îhuh, Îhvh

〉
0,Ω

+ 〈K∇uh,∇vh〉0,Ω =
〈
f, Îhvh

〉
0,Ω

+
〈
g, ÎΓNvh

〉
0,ΓN

, (3.5)

for all vh ∈ Vh. The key takeaway here is the local support of the inner products,
this will make the mass matrix diagonal.
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x1 x2

x3 x4 x5

x6 x7

Ω4

T

e

Figure 3.5: The support of φ4, the coloured area corresponds to one triangle
(element) in the support of φ4.
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E

E
E

e

x2

x4 x5

x7

nE

ne

T1

T2

Figure 3.6: Notation in the proof

Now we can state the equivalence theorem:

Theorem 3.2.1. The modified finite element method (3.5) and the modified MPFA-
L method are equivalent on uniform parallelogram grid for the time discretized heat
equation,i.e., (3.1), on homogeneous media.

Proof. We do the proof in four steps:

1. First, we show the equivalence for the interior, so let Ωi be an interior control
volume and φi be the corresponding basis function evaluating to one at the
centre of Ωi, where i ∈ N i

h. We test (3.5) with vh = φi:〈
Îhuh, Îhφi

〉
0,Ω

+ 〈K∇uh,∇φi〉0,Ω =
〈
f, Îhφi

〉
0,Ω
. (3.6)

Let T ∈ τh
⋂

supp(φi) be one of the elements in the triangulation that makes
up the support of φi. S = T

⋂
Ωi is a part of the control volume that lies in
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some element, and E ⊂ S
⋂
∂Ωi are the half edges of Ωi. e are the interior

edges of τh inside the support of φi, see fig 3.6 and 3.5. ne is the unit normal
on e with fixed and arbitrary orientation, and nnnE is the unit normal on E
pointing out of Ωi. Let Te,0 and Te,1 be the two elements having e as a
common edge, with the numbering corresponding to the orientation of ne.
Since uh and φi are piecewise linear and K is constant on each triangle T ,
we have:

〈K∇uh,∇φi〉0 =

∫
supp(φi)

(K∇uh)T∇φi dx =
∑

T∈supp(φi)

∫
T

(K∇uh)T∇φi dx

=
∑

T∈supp(φi)

(∫
∂T

(KKK∇uh)Tnφi ds−
∫
T

∇ ·K∇uhφi dx
)

=
∑

T∈supp(φi)

∫
∂T

(K∇uh)Tnφi ds

=
∑

e∈supp(φi)

∫
e

(
(K∇uh)Tne|Te,0 − (K∇uh)Tne|Te,1

)
φi ds

=
∑

e∈supp(φi)

(
(K∇uh)Tne|Te,0 − (K∇uh)Tne|Te,1

) |e|
2

=
∑

S∈supp(φ)

∫
∂S

(K∇uh)Tn ds−
∑
E∈∂Ωi

∫
E

(K∇uh)TnE ds

=
∑

S∈supp(φ)

∫
S

∇ ·K∇uh ds−
∑
E∈∂Ωi

∫
E

(KKK∇uh)TnE ds

= −
∑
E∈∂Ωi

(KKK∇uh)TnE|E|.

(3.7)
Note that this last sum is a sum of integrals over the half edges of Ωi. Further,
we have that 〈

Îhuh, Îhφi

〉
0

=

∫
Ω

ÎhuhÎhφi dx =

∫
Ωi

uh(xi) dx (3.8)

and 〈
f, Îhφi

〉
0

=

∫
Ωi

f dx. (3.9)

Combining equation (3.7), (3.8) and (3.9) we get that (3.6) is equivalent to:∫
Ωi

uh(xi) dx−
∑
E∈∂Ωi

(KKK∇uh)TnE|E| =
∫

Ωi

f dx.
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We know from theorem 2.2.2 that the flux over each half edge in the L-
method is given uniquely by the potential values of the three cell centers in
the L-triangle. Since the L-triangles and the elements are the same, ∇uh cor-
responds to the gradient used in the L-method, see equation (2.25). Hence,
if ũh is the solution to (3.1) with the original L-method in the interior, then
ũh(xi) = uh(xi) for xi ∈ N i

h.

2. For a control volume bordering the Neumann boundary, first let i ∈ N e
h ,

we have: 〈
Îhuh, Îhφi

〉
0,Ω

+ 〈K∇uh,∇φi〉0,Ω =
〈
f, Îhφi

〉
0,Ω
. (3.10)

With similar computations and reasoning as for (3.7) we get:

〈K∇uh,∇φi〉0,Ω = −
∑

E∈∂Ωi,2

(KKK∇uh)TnE|E|,

where Ωi,2 is as Ω2 in figure 3.2. As Îh is carefully defined close to the
Neumann boundary, we get that (3.10) is equivalent to:∫

Ωi,2

uh(xi) dx−
∑

E∈∂Ωi,2

(KKK∇uh)TnE|E| =
∫

Ωi,2

f(xi) dx. (3.11)

Next, let j ∈ NN,e
h ,i.e., the index of a node on the boundary. Then we have〈

Îhuh, Îhφj

〉
0,Ω

+ 〈K∇uh,∇φj〉0,Ω =
〈
f, Îhφj

〉
0,Ω

+
〈
g, ÎΓNφj

〉
0,ΓN

. (3.12)

Similarly as in (3.7) we have

〈K∇uh,∇φj〉0 =

∫
supp(φj)

(K∇uh)T∇φj dx =
∑

T∈supp(φj)

∫
T

(K∇uh)T∇φj dx

=
∑

T∈supp(φj)

(∫
∂T

(K∇uh)Tnφj ds−
∫
T

∇ ·K∇uhφj dx
)

=
∑

T∈supp(φj)

∫
∂T

(K∇uh)Tnφj ds.

(3.13)
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But because φj 6= 0 on supp(φj)
⋂

ΓN , we get∑
T∈supp(φj)

∫
∂T

(K∇uh)Tnφj ds =
∑

e∈supp(φj)

∫
e

(
(K∇uh)Tne|Te,0 − (K∇uh)Tne|Te,1

)
φj ds

+

∫
ΓN

⋂
supp(φj)

(K∇uh)Tnφj ds

=
∑

e∈supp(φj)

(
(K∇uh)Tne|Te,0 − (K∇uh)Tne|Te,1

) |e|
2
ds

+ (K∇uh)Tn|EΓN | ds

= −
∑

E∈∂Ωj\ΓN

(K∇uh)TnE|E|

(3.14)
Combining (3.13) and (3.14) and using the definition of Îh, definition 11, we
get that (3.12) is equivalent to:∫

Ωj,1

uh(xi) dx−
∑

E∈∂Ωj,1

(K∇uh)TnE|E| =
∫

Ωj,1

f(xi) dx. (3.15)

Where Ωj,1 is as Ω1 in figure 3.2. Now, (3.11) and (3.15) are exactly the
L-method for the Neumann boundary, as described earlier, see figure 3.1.

3. For a control volume near the Dirichlet boundary, let first i ∈ N e
h ,i.e., the

cell center. Then, our modified finite element method〈
Îhuh, Îhφj

〉
0,Ω

+ 〈K∇uh,∇φj〉0,Ω =
〈
f, Îhφj

〉
0,Ω

is equivalent to∫
Ωi,2

uh(xi) dx−
∑

E∈∂Ωi,2

(KKK∇uh)TnE|E| =
∫

Ωi,2

f dx,

with the same reasoning as in (3.7), (3.8) and (3.9). As Ωi = Ωi,1

⋃
Ωi,2 and

Ωi,1

⋂
Ωi,2 = ∅, see figure 3.2, we have:

−
∑

E∈Ωi\ΓD

(KKK∇uh)TnE|E|+
∑

E∈Ωi,1\ΓD

(KKK∇uh)TnE|E|+
∫

Ωi,1

f dx =

∫
Ωi

f dx.

We recognize the second and third terms in the above equation as the flux
across the Dirchlet boundary in the modified L method, see (3.3).

4. See [5] for equivalence on the corner cells.
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Remark 14. There may be ways of extending the theorem above to inhomogeneous
permeabilities, as long as the L-triangles form a triangulation. This includes using
a special quadrature rule for integrating the bilinear form, or proving equivalence
with a nonconforming finite element method with discontinuous basis functions.

3.3 Convergence Rate Estimates

Our modified finite element method only approximates the bi-linear and linear
form, and we need to take this into account when proving a convergence rate
estimate. The following lemma is an extension of Cèa’s lemma 2.1.9, it is useful
for estimating the error when our bi-linear and linear form is not exact.

Lemma 3.3.1 (First Lemma of Strang, page 155 [11]). Suppose there exists some
α > 0 such that for all h > 0 and vh ∈ Vh

α ‖vh‖2
1 ≤ ah(vh, vh)

and let a be continuous in V × V . Then there exist some constant C independent
of Vh such that

‖u− uh‖1 ≤ C

{
inf
vh∈Vh

{
‖u− vh‖1 + sup

wh∈Vh

|a(vh, wh)− ah(vh, wh)|
‖wh‖1

}
+ sup

wh∈Vh

|l(wh)− lh(wh)|
‖wh‖1

} (3.16)

From (3.5) we see that we have a bi-linear form

ah(uh, vh) =
〈
Îhuh, Îhvh

〉
0,Ω

+ 〈K∇uh,∇vh〉0,Ω .

And the linear form:

bh(vh) =
〈
F, Îhvh

〉
0,Ω

+
〈
g, ÎΓNvh

〉
0.ΓN

.

To apply the first Lemma of Strang 3.3.1, we first show that ah(·, ·) is coercive.
We write out the Sobolev norm

‖uh‖2
1 = 〈∇uh,∇uh〉0 + ‖uh‖2

0 .
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Using the Poincaré inequality on the second term:

‖uh‖2
1 ≤ 〈∇uh,∇uh〉0 + CΩ 〈∇uh,∇uh〉0

≤
(

1 + CΩ

τ ‖K‖

)
τ 〈K∇uh,∇uh〉0

≤
(

1 + CΩ

τ ‖K‖

)(
τ 〈K∇uh,∇uh〉0 +

〈
Îhuh, Îhuh

〉
0

)
=

1

α
ah(uh, uh),

we obtain coercivity with α = τ ‖K‖ /(1 + CΩ), where CΩ is some constant de-
pending on the domain and the boundary conditions.

Another important piece that must be in place for a convergence proof is the
piecewise interpolation error:

Lemma 3.3.2. For the previously defined piecewise global interpolator Îh, defini-
tion 12, we have the estimate:∥∥∥Îhuh − uh∥∥∥

0,Ω
≤ Ch|uh|1,Ω ∀uh ∈ Vh,

for some constant C independent of the mesh diameter.

Proof. ∥∥∥Îhuh − uh∥∥∥2

0
=
∑
i∈N ∗h

∥∥∥Îhuh − uh∥∥∥2

0,Ωi

=
∑
i∈N ∗h

∫
Ωi

(uh(xi)− uh(x))2 dx

=
∑
i∈N ∗h

∫
Ωi

h2

(
uh(xi)− uh(x)

h

)2

dx

≤
∑
i∈N ∗h

∫
Ωi

h2(∇uh)T∇uh dx

= Ch2|∇uh|21.

We are now ready to state the H1 error estimate for the modified finite element
method and thus the MPFA-L method.

Theorem 3.3.3. Let u solve (3.1) and uh be the solution resulting from MPFA-L
, then there exists a positive constant C independent of the mesh diameter, h, such
that

‖u− uh‖1 ≤ Ch(‖u‖2 + ‖f‖0 + ‖g‖ 1
2
,ΓN

). (3.17)
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Proof. The hypothesis in Strang’s lemma 3.3.1 on continuity and coercivity are
fulfilled. Let C be a generic positive constant. We start by controlling the second
term on the right hand side in (3.16), the truncation error in the bi-linear form:

sup
wh∈Vh

|a(vh, wh)− ah(vh, wh)|
‖wh‖1

= sup
wh∈Vh

| 〈vh, wh〉+ τ 〈K∇vh,∇wh〉 −
〈
Îhvh, Îhwh

〉
− τ 〈K∇vh,∇wh〉 |

‖wh‖1

= sup
wh∈Vh

| 〈vh, wh〉 −
〈
Îhvh, wh

〉
+
〈
Îhvh, wh

〉
−
〈
Îhvh, Îhwh

〉
|

‖wh‖1

= sup
wh∈Vh

|
〈
Îhvh − vh, wh

〉
+
〈
Îhvh, Îhwh − wh

〉
|

‖wh‖1

.

We see from the above computations, that the truncation error in the bi-linear
form, only has a contribution from the mass lumping. By Cauchy Schwarz in-
equality and lemma 3.3.2 we get:

≤ sup
wh∈Vh

Ch|vh|1 ‖wh‖0 +
∥∥∥Îhvh∥∥∥

0
Ch|wh|1

‖wh‖1

≤ sup
wh∈Vh

Ch|vh|1 ‖wh‖0 +
∥∥∥Îhvh∥∥∥

0
Ch|wh|1

‖wh‖1

+
Ch ‖vh‖0 ‖wh‖0 +

∥∥∥Îhvh∥∥∥
0
Ch ‖wh‖0

‖wh‖1

≤ Ch
(
‖vh‖0 +

∥∥∥Îhvh∥∥∥
0

)
.

The third term in (3.16), the linear form, can be controlled similarly:

sup
wh∈Vh

l(wh)− lh(wh)
‖wh‖1

= sup
wh∈Vh

〈
f, wh − Îhwh

〉
0,Ω

+
〈
g, wh − ÎΓNwh

〉
0,ΓN

‖wh‖1

≤ sup
wh∈Vh

‖f‖0Ch ‖wh‖1 + ‖g‖ 1
2
,ΓN

∥∥∥wh − ÎΓNwh

∥∥∥
− 1

2
,ΓN

‖wh‖1

.

(3.18)

Now, we want to bound
∥∥∥w − ÎΓNwh

∥∥∥
− 1

2
,ΓN

by ‖wh‖1. Let vh be a piecewise

constant function on the boundary in each Neumann boundary triangle. Then we



3.3. CONVERGENCE RATE ESTIMATES 69

have: ∥∥∥wh − ÎΓNwh

∥∥∥
− 1

2
,ΓN

= sup
06=v∈H

1
2 (Ω)

〈
wh − ÎΓNwh, v

〉
ΓN

‖v‖ 1
2
,ΓN

= sup
06=v∈H

1
2 (Ω)

〈
wh − ÎΓNwh, v − vh

〉
ΓN

‖v‖ 1
2
,ΓN

,

as
∫

ΓN
(wh − ÎΓNwh) dx = 0. Now, we can use Cauchy Schwarz inequality:

∥∥∥wh − ÎΓNwh

∥∥∥
− 1

2
,ΓN
≤ sup

06=v∈H
1
2 (Ω)

∥∥∥wh − ÎΓNwh

∥∥∥
0,ΓN
‖v − vh‖0,ΓN

‖v‖ 1
2
,ΓN

. (3.19)

By the inequality
‖v − vh‖0,ΓN

≤ Ch
1
2 ‖v‖ 1

2
,ΓN

, (3.20)

we can bound the right hand side of (3.19):∥∥∥wh − ÎΓNwh

∥∥∥
− 1

2
,ΓN
≤ Ch

1
2

∥∥∥wh − ÎΓNwh

∥∥∥
0,ΓN

.

Using (3.20) again, we get∥∥∥wh − ÎΓNwh

∥∥∥
− 1

2
,ΓN
≤ Ch ‖wh‖ 1

2
,ΓN
≤ Ch ‖wh‖1 .

Where the last inequality is due to the definition of the H
1
2 norm. Inserting this

into (3.18), gives us a bound on the truncation error of our linear form:

sup
wh∈Vh

l(wh)− lh(wh)
‖wh‖1

≤ Ch(‖f‖0 + ‖g‖ 1
2
,ΓN

).

Hence, from (3.16), we have the error estimate:

‖u− uh‖1 ≤ inf
vh∈Vh

{
‖u− vh‖1 + Ch

(
‖vh‖0 +

∥∥∥Îhvh∥∥∥
0

+ ‖f‖0 + ‖g‖ 1
2
,ΓN

)}
.

(3.21)
If we let vh = Ihu ∈ Vh, in (3.21), where Ih : C(Ω)→ Vh is the global interpolation
operator, we get the inequality:

‖u− uh‖1 ≤ ‖u− Ihu‖1 + Ch
(
‖Ihu‖0 +

∥∥∥ÎhIhu∥∥∥
0

+ ‖f‖0 + ‖g‖ 1
2
,ΓN

)
. (3.22)

As discussed earlier, in section 2.1.6 about convergence of finite element method,
we have the estimate:

‖u− Ihu‖1 ≤ Ch|u|2.
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If we insert this into (3.22), we get:

‖u− uh‖1 ≤ Ch
(
|u|2 + ‖Ihu‖0 +

∥∥∥ÎhIhu∥∥∥
0

+ ‖f‖0 + ‖g‖ 1
2
,ΓN

)
.

As Ihu, Îhu → u as h → 0, we can control the first three terms inside the paren-
thesis by the H2 norm of u, and we get the desired result:

‖u− uh‖1 ≤ Ch
(
‖u‖2 + ‖f‖0 + ‖g‖ 1

2
,ΓN

)
. (3.23)

In this chapter we have introduced a way to handle Dirichlet and Neumann
boundary conditions for the MPFA-L method, and showed convergence when ap-
plied to (3.1). The convergence was obtained with showing equivalence to a mod-
ified linear Lagrange finite element method.

Remark 15. In our convergence rate estimate, we showed that ‖u− uh‖1 de-
creases proportional to the mesh diameter, h. In [5], the authors show, using the
Aubin-Nitsche technique, an estimate where ‖u− uh‖0 decreases proportional to
the square of the mesh diameter. We expect similar results can be shown here, as
the equations are similar.



Chapter 4

Convergence of the
MPFA-L-Method for Richards’
Equation

In this chapter, we use the results from chapter three to prove a convergence
rate estimate of the backward Euler, L-scheme and MPFA-L-method applied to
Richards’ equation. We start by considering the Richards’ equation without the
gravity term in an isotropic medium: Find ψ = ψ(x, t) such that

∂tθ(ψ)−∇ · (κ(θ(ψ))∇ψ) = f,

ψ = 0,

−κ(θ(ψ))∇ψ = gN ,

ψ = u0,

in Ω× (0, T ]

on ∂ΓD × (0, T ]

on ∂ΓN × (0, T )

on Ω× {t = 0}

(4.1)

This equation has a non linearity in the flux, q = −κ(θ(ψ))∇ψ, which makes it
hard to apply our results, as they require a homogeneous medium. To remedy this
we use the Kirchhoff transform

K : R→ R+

ψ 7→
∫ ψ

0

κ(θ(φ)) dφ = u.

We assume that the functions θ(·) and κ(·) are Lipschitz continuous, monotone
increasing functions, see Van Genuchten [24] for an example. The Kirchhoff trans-
form, K, therefore has an inverse, K−1. We define

b(u) := θ(K−1(u))

k(u) := κ(θ(K−1(u))).

71
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Further, assume that the hydraulic conductivity is bounded below and above

0 < κm ≤ κ(θ) ≤ κM ,

and that the water content is a Lipschitz continuous function of pressure

supψ|θ(ψ)| ≤ Lθ.

Then b(·) is also Lipschitz continuous

sup
u
|b′(u)| =

∣∣∣∣θ′(K−1(u))
1

K′(K−1(u))

∣∣∣∣ =

∣∣∣∣θ′(K−1(u))
1

κ(K−1(u))

∣∣∣∣ ≤ LB.

We note that we in fact remove the non linearity in the constitutive law; by
the chain rule, we get

∇u = κ(θ(ψ))∇ψ.

We can write the Richards’ equation (4.1) in the transformed variable u to get:
Find u = u(x, t) such that

∂tb(u)−∇ · ∇u = f,

u = 0,

−∇u = gN ,

u = u0,

in Ω× (0, T ]

on ∂ΓD × (0, T ]

on ∂ΓN × (0, T )

on Ω× {t = 0} .

(4.2)

We start by discretizing (4.2) with the MPFA-L method, we divide our domain into
d quadrilaterals (control volumes). Writing (2.32) in vector form we find ũh ∈ Rd

such that:
∂tBBB

V b(ũh) +AAAV ũh = qqqV .

We can then discretize in time using backward Euler. Given ũn−1
h , qqqn ∈ Rd we

should then find ũnh ∈ Rd such that:

BBBV b(ũh)
n + τAAAV ũnh = τqqqV n +BBBV b(ũh)

n−1. (4.3)

Now, we to linearize (4.3) with the L-scheme. We see from (2.36) that the applying
this linearization leads to the equation: Given ũn,j−1

h , ũn−1
h ∈ Rd find ũn,jh ∈ Rd such

that

LBBBV (ũn,jh − ũ
n,j−1
h ) + τAAAũn,jh = −BBBV θ(ũn,j−1

h ) + τqqqV n +BBBV θ(ũn−1
h ), (4.4)

We set ũn,0h = ũn−1
h and solve the above equation until we reach the stopping

criterion (2.37) each time step. See listing 5.2 for the code. Note that (4.4) is
equivalent to a finite element discretization, this is what we will use to prove
convergence.
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MPFA-L discretization Modified finite element discretization

Equivalence, theorem 3.01

(A)

(B)

(C)

Figure 4.1

To prove convergence we need some assumptions:

A-1 The domain Ω ⊂ R2 is bounded and have a Lipschitz continuos boundary,
i.e., it is locally the graph of a Lipschitz continuous function.

A-2 b ∈ C1 is non-decreasing and Lipschitz continuous, with Lipschitz constant
LB.

A-3 b(u0) is essentially bounded in Ω and u0 ∈ L2(Ω).

Theorem 4.0.1. Assume A 1-3, let h denote the diameter of the control vol-
umes, τ denote the time step length and j the linearization iterate. Then for (4.2)
discretized in space with MPFA-L-method on a parallelogram grid, backward Euler
in time and L-scheme linearization, we have the estimate

∥∥ũn,jh − u(tn)
∥∥

0
≤ C

h+ τ +

(√
L

L+ 2τ
CΩ

)j
 . (4.5)

From the above, it is clear that the approximated solution at tn converges as h, τ →
0 and j →∞.
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Proof. As the MPFA-L method and the modified finite element method are equiv-
alent, we prove the convergence of our finite element solution, un,jh . The proof will
be done in three steps, see figure 4.1. We have by the triangle inequality∥∥u(tn)− un,jh

∥∥
0
≤ ‖u(tn)− un‖0 +

∥∥un − un,j∥∥
0

+
∥∥un,j − un,jh ∥∥0

,

where j denotes the linearization iterate.

� The third term is the error of solving the elliptic problem (C) in figure 4.1,
or

un,j − τ

L
∇ · ∇un,j =

Lun,j−1 + τfn − b(un,j−1) + b(un−1)

L
. (4.6)

By theorem 3.3.3 we have the error estimate∥∥un,jh − un,j∥∥1
≤ C

(∥∥un,j∥∥
2

+

∥∥∥∥Lun,j−1 + τfn − b(un,j−1) + b(un−1)

L

∥∥∥∥
0

+ ‖g‖ 1
2
,ΓN

)
.

The terms on the right hand side involving un,j un−1 and un,j−1 are bounded
independently of the mesh. They are also bounded independently of τ , given
sufficient regularity assumptions, see [16] theorem 1 for a stability estimate,
hence

∥∥un,jh − un,j∥∥0
≤ C3h.

� To bound the second term, ‖un,j − un‖0, we will use techniques found in
(Radu, List, [12]). First, we subtract the variational form of (B) from the
variational form of (C) in figure 4.1: For any v ∈ H1

0 and j > 1〈
b(un,j−1)− b(un), v

〉
0

+ τ
〈
∇(un,j − un),∇v

〉
0

+ L
〈
un,j − un,j−1, v

〉
0

= 0.
(4.7)

Let en,j := un,j − un, then test (4.7) with en,j:〈
b(un,j−1)− b(un), en,j

〉
0

+ τ
∥∥∇en,j∥∥

0
+ L

〈
un,j − un,j−1, en,j

〉
0

= 0.

Now, we use the relation 〈b− a, b〉0 = 1
2
‖b‖2 + 1

2
‖b− a‖2 − 1

2
‖a‖2 and some

simple algebraic manipulation to obtain〈
b(un,j−1)− b(un), en,j−1

〉
0

+ τ
∥∥∇en,j∥∥

0
+
L

2

∥∥en,j∥∥2

0
+
L

2

∥∥en,j − en,j−1
∥∥2

0

≤ L

2

∥∥en,j−1
∥∥2

0
−
〈
b(un,j−1)− b(un), en,j − en,j−1

〉
0
.

Next, we use Cauchy Schwarz inequality on the first term, and Young’s
inequality on the last term∥∥b(un,j−1)− b(un)

∥∥∥∥en,j−1
∥∥

0
+ τ

∥∥∇en,j∥∥
0

+
L

2

∥∥en,j∥∥2

0
+
L

2

∥∥en,j − en,j−1
∥∥2

0

≤ L

2

∥∥en,j−1
∥∥2

0
+

1

2L

∥∥b(un,j−1)− b(un)
∥∥2

0
+
L

2

∥∥en,j − en,j−1
∥∥2

0
.
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We cancel the last term on the right side against the last term on the left
side. Since b(·) is Lipschitz continuous with ‖b(x)− b(y)‖ ≤ LB ‖x− y‖, we
have

1

LB

∥∥b(un,j−1)− b(un)
∥∥2

0
+ τ

∥∥∇en,j∥∥
0

+
L

2

∥∥en,j∥∥2

0

≤ L

2

∥∥en,j−1
∥∥2

0
+

1

2L

∥∥b(un,j−1)− b(un)
∥∥2

0
.

Using the Poincaré inequality we obtain(
L

2
+

τ

CΩ

)∥∥en,j∥∥2

0
≤ L

2

∥∥en,j−1
∥∥2

0
+

(
1

2L
− 1

LB

)∥∥b(un,j−1)− b(un)
∥∥2

0
.

Since LB < 2L we reach the convergence estimate∥∥en,j∥∥2

0
≤ L

L+ 2τ
CΩ

∥∥en,j−1
∥∥2

0
.

We can use recursion to obtain the estimate

∥∥en,j∥∥
0
≤

(√
L

L+ 2τ
CΩ

)j ∥∥en,1∥∥
0
. (4.8)

To bound ‖en,1‖0 = ‖un,1 − un−1‖0, we subtract the variational form of (B),
in figure 4.1, at time step n− 1〈

b(un−1), v
〉

0
+ τ

〈
∇un−1,∇v

〉
0

= τ
〈
fn−1, v

〉
0

+
〈
b(un−2), v

〉
0
,

from the variational form of (C), in figure 4.1, with j = 1

L
〈
un,1 − un−1, v

〉
0

+ τ
〈
∇un,1,∇v

〉
0

= τ 〈fn, v〉0 .

Note that un,0 = un−1, so two terms cancel in the above equation. Next, we
test with v = en,1

L
〈
un,1 − un−1, un,1 − un−1

〉
0

+ τ
〈
∇en,1,∇en,1

〉
0
−
〈
b(un−1), en,1

〉
0

= τ
〈
fn − fn−1, en,1

〉
0
−
〈
b(un−2), en,1

〉
0
.

Using the Poincarè inequality, we get

(L+ CΩ)
∥∥en,1∥∥2

0
≤ τ

〈
0f

n − fn−1, en,1
〉

0
+
〈
b(un−1)− b(un−2), en,1

〉
0
.

Next, we apply the Cauchy Schwarz inequality on the right hand side and
divide by ‖en,1‖ to obtain

(L+ CΩ)
∥∥en,1∥∥

0
≤ τ

∥∥fn − fn−1
∥∥+

∥∥b(un−1)− b(un−2)
∥∥

0
.
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The last term on the right hand side is bounded by using the Lipschitz
continuity of b(·)

∥∥en,1∥∥
0
≤ τ ‖fn − fn−1‖0 + LB ‖un−1 − un−2‖0

(L+ CΩ)
.

By theorem 1 in [16], the terms involving un−1 and un−2 are bounded in-
dependent of τ . We can now rewrite (4.8) with a constant, C2, that is
independent of j and not increasing as τ decreases

∥∥en,j∥∥
0
≤

(√
L

L+ 2τ
CΩ

)j

C2.

� The first term ‖u(tn)− un‖ can be bounded by the techniques used in (Radu,
Pop and Knabner, [19]). We reach the estimate

‖un − u(tn)‖0 ≤ C1τ.

Using all of the above, we get

∥∥ũn,jh − u(tn)
∥∥

0
≤ C3h+C2

(√
L

L+ 2τ
CΩ

)j

+C1τ ≤ C

h+ τ +

(√
L

L+ 2τ
CΩ

)j
 ,

where C = C1 + C2 + C3.

We have showed convergence for Richards’ equation after Kirchhoff transform
(4.2), discretized in space by MPFA-L method, in time by backward Euler and
L-scheme for linearization. In section 5.3 we do numerical tests to confirm this.

Remark 16. We expect that a better convergence rate estimate

‖ũnh − u(tn)‖0 ≤ C

h2 + τ +

(√
L

L+ 2τ
CΩ

)j
 ,

with the square of the mesh diameter, is possible. This is because we use the ‖·‖1

estimate for the spatial discretization, but according to remark 15, there exists a
better ‖·‖0 estimate we could use instead in the above proof.



Chapter 5

Numerical Results

In this chapter we do several numerical experiments with the algorithms covered
in this thesis. We focus on convergence properties of the spatial discretizations,
and confirm the error estimates we have discussed so far. We also briefly discuss
the code used to do the experiments.

5.1 Computer Code

Most of the code used in this thesis can be found on
https://github.com/trulsmoholt/masterthesis, and is written in python and numpy.
It is primarily intended for educational purposes and for comparing convergence
rates of different spatial approximation techniques. An example of a very simple
use case can be seen in listing 5.1.

77
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1

2 from discretization.mesh import Mesh

3 from discretization.FVML import compute_matrix ,compute_vector

4 import numpy as np

5 import math

6

7 #Function to perturb mesh from unit square. Takes a 2d numpy

vector and returns a 2d numpy vector. This particular choice

makes a paralellogram mesh.

8 perturbation=lambda p: np.array([p[0] ,0.5*p[0]+p[1]])

9

10 #Number of grid points in x and y direction

11 nx=ny=10

12

13 mesh = Mesh(nx,ny,perturbation ,ghostboundary=True)

14 source = lambda x,y:math.sin(y)*math.cos(x)

15 boundary_condition = lambda x,y:0

16 tensor = np.eye (2)

17 permeability = np.ones((mesh.num_unknowns ,mesh.num_unknowns))

18

19 A = np.zeros ((mesh.num_unknowns ,mesh.num_unknowns))#stiffness

matrix

20 f = np.zeros(mesh.num_unknowns)#load vector

21

22 compute_matrix(mesh ,A,tensor ,permeability)

23 compute_vector(mesh ,f,source ,boundary_condition)

24

25 u = np.linalg.solve(A,f)

26 mesh.plot_vector(u)

27

Listing 5.1: Solving simple Poisson equation.

The code is centred around the mesh class, which contains information about
how the domain is discretized into quadrilaterals and its properties. This class
also contains public functions to make plots of different kinds and compute errors.
The spatial numerical methods implemented are: TPFA, MPFA-L, MPFA-O and
linear Lagrange finite elements. They all have the same call signature, as in 5.1
line 22 and 23. The control volume methods also has the option of taking a matrix
to store the flux stencils. One can use sparse matrices instead of dense numpy
matrices in 5.1, as long as the indexing signature is the same as in numpy, for
example scipy has a compatible sparse matrix library.

The code also has implementations of mass matrix and the gravitation term.
Also included in the github are an example of how to solve Richards’ equation
using L-scheme linearization and backward Euler, see 5.2 for some of the code.
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1 u_l = u.copy() #linearization/L-scheme iterate

2 u_t = u.copy() #timestep iterate

3 F = u.copy() #source vector

4 A = np.zeros ((mesh.num_unknowns ,mesh.num_unknowns)) #stiffness matrix

5 B = mass_matrix(mesh)

6

7 #time iteration

8 for t in time_partition [1:]:

9 #empty source vector

10 F.fill (0)

11 #compute source vector

12 compute_vector(mesh ,F,lambda x,y: f(x,y,t),lambda x,y:u_exact(x,y,t))

13 #L-scheme iteration

14 while True:

15 #compute the heterogeneous hydraulic conductivity , kappa

16 conductivity = kappa(np.reshape(u_l , (mesh.cell_centers.shape[0],mesh

.cell_centers.shape [1]),order=’F’))

17 A.fill (0)#empty the stiffness matrix

18 compute_matrix(mesh , A, K,conductivity)#compute stiffnes matrix

19 lhs = L*B+tau*A

20 rhs = L*B@u_l + B@theta(u_t) - B@theta(u_l) + tau*F

21 u = np.linalg.solve(lhs ,rhs)

22 #check if L-scheme linearization has acceptable error

23 if np.linalg.norm(u-u_l)<=TOL+TOL*np.linalg.norm(u_l):

24 #quit linearization and do another time step

25 break

26 else:

27 #update linearization iterate

28 u_l = u

29 #update time step iterate

30 u_t = u

31 #update linearization iterate

32 u_l = u

Listing 5.2: Linearization and time stepping of Richards’ equation.

5.2 Elliptic Equation

The convergence tests in this section are similar to some of the tests done in chapter
three of [2]. We consider the elliptic model problem (2.1), find u = u(x) such that


∇ · q = f,

q = −K∇u,
u = u∂Ω,

in Ω

in Ω

on ∂Ω

(5.1)
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We set the solution
u = cosh(πx)cos(πy), (5.2)

set K to be the identity matrix and compute the Dirichlet boundary condition,
u∂Ω, and the source term f , from the equation above. The domain Ω will be
variations of half the unit square through the rest of this section.
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Figure 5.1: The solution (5.2) on half the unit square

As in [2] page 1340 we define the normalized discrete L2 norms:

‖u− uh‖0,h :=

(
1

V

∑
i

Vi(uh,i − ui)2

) 1
2

‖q − qh‖0,h :=

(
1

Q

∑
E

QE(qh,E − qE)2

) 1
2

,

where qE := −n̂ · q is the normal flow density over the edge E, with n̂ being
unit normal to the edge and q evaluated at the midpoint of the edge. qh,E is the
normal discrete flux over E defined similarly, with qh being the discrete normal
flow density. For a finite volume method, qh,E would be the flux across some edge
divided by the edge length. For the finite element method, we use the MPFA-L
flux stencil to recover the flux in the experiments where it is present. Let uh,i
denote the discrete potential at cell i, and ui is the potential evaluated at cell
i. For the finite element method, this would be the function value at the grid
points/nodes. QE is the volume associated with edge E, i.e., the sum of the two
volumes sharing edge E. V =

∑
i Vi and Q =

∑
aQE.
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We also define the discrete max norms

‖u− uh‖h,∞ := max
i
|uh,i − ui|

and

‖q − qh‖h,∞ := max
E
|qh,E − qE|

In the figures (5.12-5.15) in this section we see the potential and normal flow
density error in the ‖·‖0,h and ‖·‖0,∞ norms plotted against mesh diameter for
MPFA-L, MPFA-O, TPFA and the linear Lagrange finite element method without
mass lumping. More specifically, the y-axis is the log2 of the error, and the x-axis
is log2n, where n is the number of points in the x direction, and thus proportional
with the inverse of the mesh diameter. The slope of the graph in the plots are the
convergence rate.

We use ghost cell Dirichlet boundary conditions for the finite volume methods.
For the finite element method, we fix the potential at the cell centers of the ghost
cells, see figure 5.2. Therefore, the boundary modifications introduced in chapter
3 are not applied in these tests. We instead treat our entire domain as the interior.

5.2.1 Setup 1: Orthogonal Grid

We let Ω be half the unit square, [0, 1]× [0, 1
2
], and consider refinements of the grid

in figure 5.2. In figures 5.3 and 5.3 we see that all the methods converge with the
same quadratic rate. This fits well with the fact that all the methods covered in
this thesis are equivalent to the TPFA method for uniform grids.
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Figure 5.2: Unifrom rectangular mesh on half the unit square. The triangles (dot-
ted green lines) are used for the finite element solution and are spanned between
the cell centers of the control volumes (solid blue line). The ghost cell boundary
is included, so this mesh has nine degrees of freedom, i.e., the interior cells.
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Figure 5.3: Potential error on refinements of the uniform rectangular mesh 5.2.
Left: e = ‖u− uh‖h,0, right: e = ‖u− uh‖h,∞
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Figure 5.4: Normal flow density error on refinements of the uniform rectangular
mesh 5.2. Left: e = ‖q − qh‖h,0, right: e = ‖q − qh‖h,∞

5.2.2 Setup 2: Parallelogram Grid

In this setup, we perturb the half unit square by (x, y) 7→ (x−0.5y, y), and consider
a parallelogram grid as in figure 5.5. In figures 5.6 and 5.7 we observe that the
TPFA method does not converge, this makes sense as the grid is not K-orthogonal.
The other methods still have quadratic convergence for potential and flow density.
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Figure 5.5: Trapezoidal mesh, now every point is transformed by (x, y) 7→ (x −
0.5y, y)
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Figure 5.6: Pressure error on refinements of the mesh 5.5. Left: e = ‖u− uh‖h,0,
right: e = ‖u− uh‖h,∞
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Figure 5.7: Normal flow density error on refinements of the mesh 5.5. Left: e =
‖q − qh‖h,0, right: e = ‖q − qh‖h,∞

5.2.3 Setup 3: Rough Paralellogram Grid

Here, we perturb every interaction point in the parallelogram grid, that is, we
perturb the x and y coordinate by a number no bigger than h

5
, where h = 1

n
,

with n being the number of interaction points in y direction. See figure 5.8 for an
example. Remark that our finite volume methods do not handle control volumes
that are not convex, so there are limits to how much we can perturb.

In figures 5.9 and 5.10 the MPFA-L, MPFA-O and FEM still converges quadrat-
ically when we refine the rough grids. For the normal flow density however, the
convergence rate drops to about one. Also note that results for the MPFA-L-
method and FEM are different, this suggests that integrating the source term in
way that is not mass conservative, yields a slightly better potential error and a
slightly worse normal flow density error.
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Figure 5.8: Perturbed mesh, every point in the mesh is perturbed by a random
number which is O(h

5
), in both x and y direction.
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Figure 5.9: The pressure error of perturbed mesh. Left: e = ‖u− uh‖h,0, right:
e = ‖u− uh‖h,∞
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Figure 5.10: The normal flow density error of perturbed mesh. Left: e =
‖q − qh‖h,0, right: e = ‖q − qh‖h,∞

5.2.4 Setup 4: Aspect Ratio

In figure 5.11 we introduce grids with aspect ratio, i.e., grids with more points in
the y direction than the x direction, see figure 5.11 for a graphical explanation.
We still perturb the interaction points as before.

In figure 5.12 we observe that MPFA-L, MPFA-O and FEM has a convergence
rates for the potential of about 1.5 for the grid with aspect ratio 0.1. In figure
5.14 we see that the MPFA-O method fail to converge for the grid with aspect
ratio 0.01. Thus, the MPFA-L method performs best in this round of numerical
experiments.
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Figure 5.11: Perturbed mesh with aspect ratio 0.5, there are half as many points
in the x-direction as in the y-direction.
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Figure 5.12: The potential error of perturbed mesh with aspect ratio 0.1. Left:
e = ‖u− uh‖h,0, right: e = ‖u− uh‖h,∞
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Figure 5.13: The normal flow density error of perturbed mesh with aspect ratio
0.1. Left: e = ‖q − qh‖h,0, right: e = ‖q − qh‖h,∞
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Figure 5.14: The potential error of perturbed mesh with aspect ratio 0.01. Left:
e = ‖u− uh‖h,0, right: e = ‖u− uh‖h,∞



5.3. RICHARDS’ EQUATION 91

3 4 5 6 7
log2n

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

lo
g 2

e

L2 error

3 4 5 6 7
log2n

5

10

15

20

25

30

lo
g 2

e

max error

FEM O-method L-method TPFA-method

normal flow error

Figure 5.15: The normal flow density error of perturbed mesh with aspect ratio
0.01. Left: e = ‖q − qh‖h,0, right: e = ‖q − qh‖h,∞

Remark 17. Comparing the the linear Lagrange finite element method, with the
control volume methods on rough grids is a somewhat strange comparison. The cell
centres in 5.8 does not get as affected by the perturbations of the control volumes.

Remark 18. We have so far only considered homogeneous permeability, and have
therefore not demonstrated the ability of the control volume methods in handling
discontinuous permeability. For a comparison between MPFA-methods and the
linear Lagrange finite element method on a heterogeneous domain, we refer to
[9], where the authors demonstrate the importance of locally mass conservative
methods.

5.3 Richards’ Equation

In this section we test the convergence of backward Euler, L-scheme and MPFA-
L-method applied Richards’ equation. We are interested in how the error in the
numerical approximation changes with respect to time step length and mesh di-
ameter.
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5.3.1 Constant Hydraulic Conductivity

Here, we consider numerical experiments for (4.2), with Dirichlet boundary con-
ditions: Find u = u(x, t) such that

∂tb(u)−∇ · ∇u = f,

u = u|ΓD ,
u = u0,

in Ω× (0, T ]

on ∂ΓD × (0, T ]

on Ω× {t = 0}
(5.3)

We define

b(u) :=
1

1− u
, (5.4)

and compute the source term f , such that the solution becomes

u = −tx(1− x)y(1− y)− 1, (5.5)

which is the same equation and solution as they use in [18]. We let Ω be the unit
square transformed by (x, y) 7→ (x− 0.5y, y). The L-scheme linearization has the
parameters L := 1.5 and error tolerance TOL = 5e−8. We use a parallelogram grid
as in figure (5.16). In table 5.1 we observe quadratic convergence when the time
step length is set equal to the square of the mesh diameter, τ = h2. We observe
the same convergence rate in table 5.2, when τ = h. One would not expect this,
as the the time discretization has linear convergence rate. An explanation could
be that the solution (5.4) is linear in time, and even with the non-linearity b(·), is
approximated exactly by the backward Euler time discretization.
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Figure 5.17: The solution of (5.3) at T = 1, with the ghost Dirichlet boundary.
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Figure 5.16: Parallelogram grid, with ghost Dirichlet boundary cells.

mesh diameter, h time step length, τ discrete L2(Ω) error improvement
0.45069 0.20312 0.001695 -
0.22535 0.05078 0.000375 4.51623
0.11267 0.01270 0.000087 4.31530
0.05634 0.00317 0.000021 4.20040

Table 5.1: Convergence table for (5.3),(5.4) and (5.5). The time step length, τ , is
set proportional to the square of the mesh diameter, that is τ = h2.

mesh diameter, h time step length, τ discrete L2(Ω) error improvement
0.45069 0.45069 0.001694 -
0.22535 0.22535 0.000374 4.52868
0.11267 0.11267 0.000086 4.33993
0.05634 0.05634 0.000020 4.24067
0.02817 0.02817 0.000005 4.19727

Table 5.2: Convergence table for (5.3),(5.4) and (5.5). The time step length, τ , is
set proportional to the mesh diameter, that is τ = h.
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If we however construct a solution which is not linear in time

u = −t2x(1− x)y(1− y)− 1. (5.6)

And do the same experiment as described above, with the time step length τ = h,
we do not observe quadratic convergence, see table 5.3.

mesh diameter, h time step length, τ discrete L2(Ω) error improvement
0.45069 0.45069 0.001922 -
0.22535 0.22535 0.000471 4.08322
0.11267 0.11267 0.000125 3.76197
0.05634 0.05634 0.000036 3.43254
0.02817 0.02817 0.000012 2.97651

Table 5.3: Convergence table for (5.3),(5.4) and (5.6). The time step length, τ , is
set proportional to the mesh diameter, that is τ = h.

5.3.2 Non-Linear Hydraulic Conductivity

Here, we consider Richards’ equation (1.9) in pressure variable, find p = p(x, t)
such that 

∂tθ(p)−∇ · κ(θ(p))∇p = f,

p = p|ΓD ,
p = p0,

in Ω× (0, T ]

on ∂ΓD × (0, T ]

on Ω× {t = 0}
(5.7)

With Ω being the perturbed unit square as before (see figure 5.16), and T = 1.
We consider the Van Genuchten-Mualem parametrizations

θ(p) :=

{
(1 + (−αvGp)nvG)

−nvG−1

nvG , p ≤ 0
1, p > 0

, (5.8)

and

κ(θ) :=
κabs
µ

√
θ

(
1−

(
1− θ

nvG
nvG−1

)nvG−1

nvG

)2

, (5.9)

where the inverse of air suction αvG = 0.1844, the pore size distribution nvG = 3,
absolute permeability κabs = 0.03 and the viscosity µ = 1 are model parameters.
The source term f is computed such that the solution becomes

p = −3tx(1− x)y(1− y)− 1. (5.10)

We include the factor of three in the solution above, to make sure that we capture
more of the non-linearity, i.e., so low pressure that it affects the saturation. The
L-scheme linearization has the parameters L = 0.3 and TOL = 10−8.
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Figure 5.18: The Van Genuchten-Mualem non-linearities, (5.8) and (5.9).

In table 5.4, we see a quadratic convergence when τ = h2, as expected. In
table 5.5, we see a slowly decreasing convergence rate, but still well above linear,
when τ = h. We expect the trend towards lower convergence to continue for finer
refinements.

mesh diameter, h time step length, τ discrete L2(Ω) error improvement
0.45069 0.20312 0.005779 -
0.22535 0.05078 0.001443 4.00516
0.11267 0.01270 0.000350 4.12657
0.05634 0.00317 0.000086 4.06126

Table 5.4: Convergence table for (5.7),(5.10), (5.8) and (5.9). The time step length,
τ , is set proportional to the square of the mesh diameter, that is τ = h2.

mesh diameter, h time step length, τ discrete L2(Ω) error improvement
0.45069 0.45069 0.005802 -
0.22535 0.22535 0.001484 3.90847
0.11267 0.11267 0.000378 3.93106
0.05634 0.05634 0.000099 3.81519

Table 5.5: Convergence table for (5.7),(5.10), (5.8) and (5.9). The time step length,
τ , is set proportional to the mesh diameter, that is τ = h.

Referring to listing 5.2, we observe that we need to assemble the stiffness matrix
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and solve the elliptic problem for each linearization iteration when working with
non-linear hydraulic conductivity. This requires a lot more computational effort
than for the constant hydraulic conductivity in the previous section, where we only
invert the mass and stiffness matrix once.



Chapter 6

Conclusions

In this thesis, we have given an introduction to finite volume methods and finite
element methods and seen how they can be applied to the Richards’ equation.
Moreover, we introduced the techniques in [5] to prove convergence for the MPFA-
L-method by showing equivalence with a finite element method on a parallelogram
grid. Next, we used this technique to prove a convergence rate estimate for the
MPFA-L-method, backward Euler and L-scheme applied to Richards’ equation
after Kirchhoff transform. Unfortunately, the theory in [5] cannot be applied to
elliptic PDEs with heterogeneous permeability. This limitation makes it unsuitable
for proving convergence in the case of non-linear hydraulic conductivity.

We have also implemented the numerical methods covered in this thesis, and
done numerical experiments with our code. In section 5.2 we compared conver-
gence rates for the spatial discretization methods applied on a homogeneous ellip-
tic problem. We conclude that the MPFA-L-Method is the only control volume
method we covered, that handles rough grids with small aspect ratio (thin control
volumes), this was also observed in [2]. Moreover, we see that it has the same con-
vergence rate as the linear Lagrange finite element method for rough grids with
small anisotropy. This also confirms the link between the two methods, even when
the grid does not consist of parallelograms.

In section 5.3, we did numerical experiments regarding the convergence rate of
the MPFA-L-method, backward Euler and L-scheme applied to Richards’ equation
with, and without, non-linear hydraulic conductivity. We conclude that for suffi-
ciently many linearization iterations in each time step, the L2 convergence rate in
either case, is (h2 + τ). This aligns with our theoretical findings in chapter 4.
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