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Signal estimation in the presence of background noise is a common problem in several scientific
disciplines. An “on/off” measurement is performed when the background itself is not known, being
estimated from a background control sample. The “frequentist” and Bayesian approaches for signal
estimation in on/off measurements are reviewed and compared, focusing on the weakness of the former
and on the advantages of the latter in correctly addressing the Poissonian nature of the problem. In this
work, we devise a novel reconstruction method, Bayesian analysis including single-event likelihoods
(dubbed BASiL), for estimating the signal rate based on the Bayesian formalism. It uses information on
event-by-event individual parameters and their distribution for the signal and background population.
Events are thereby weighted according to their likelihood of being a signal or a background event
and background suppression can be achieved without performing fixed fiducial cuts. Throughout the
work, we maintain a general notation that allows us to apply the method generically and provides a
performance test using real data and simulations of observations with the MAGIC telescopes, as a
demonstration of the performance for Cherenkov telescopes. BASiL allows one to estimate the signal
more precisely, avoiding loss of exposure due to signal extraction cuts. We expect its applicability to be
straightforward in similar cases.

DOI: 10.1103/PhysRevD.103.123001

I. INTRODUCTION

In some experiments, where besides the signal the
background is unknown, the signal itself can be obtained
by a so-called on/off measurement: a background-control
(off) region, which is supposedly void of any signal, is
defined to estimate the background rate b. The “on source”
measurement instead provides an estimate of the signal rate
s plus b, with the latter term supposed to be equal to that in
the off region. A normalization factor α between the on and
off exposure is normally introduced. If, for instance, the on
and off regions have the same acceptance, then α is defined
as the ratio of the effective observation time in the two
regions: α ¼ ton=toff .

1 The measurement of the number of
events in the on and off region results in independent
positive count numbers Non and Noff . If one exactly knew
the signal flux s, the number of signal events Ns in the on

measurement would be a random variable following a
Poisson distribution2

pðNsjsÞ ¼
ðξ · sÞNse−ξ·s

Ns!
; s ≥ 0; ð1Þ

where

ξ ¼ teff · Aeff

is the exposure, with teff being the effective observation
time and Aeff the effective area of the telescope. For
simplicity of notation, throughout the paper we will
assume ξ ¼ 1 and we will refer to s and b as the signal
and background rate, respectively. A summary of the
variables used and their description can be found in Table I.

*giacomo.damico@uib.no
1A more detailed definition and discussion of α can be found in

Ref. [1].

2The generic symbol pðÞ is used to indicate all probability
density functions (PDFs) and probability mass functions (PMFs)
(the former applies to continuous variables and the latter to
discrete variables). Note that the order of arguments is irrelevant
being pðx; yjIÞ the “joint PDF (or PMF) of x and y under
condition I.”
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The difficulty in estimating the signal rate s lies in the
uncertainties connected to the determination of the number
of signal events Ns from the measured counts Non and Noff ,
especially in the case of small signal-to-noise ratio (SNR).
It is also important to underline that, because of the
Poissonian nature of the problem [see Eq. (1)], both s
and Ns must be non-negative.
Assuming flat priors pðsÞ and pðbÞ (with s > 0 and

b > 0) and by applying the Bayes theorem, we get that the
PDF for the signal rate s is

pðsjNon; Noff ; αÞ ¼
R
dbpðNon; Noff js; b; αÞpðbÞpðsÞR

dsdbpðNon; Noff ; s; b; αÞ
∝
Z

dbpðNon; Noff js; b; αÞ: ð2Þ

Thus the PDF of the signal rate s is proportional to the
likelihood function in which the background rate b is
integrated out, leaving a marginal distribution of s.
The likelihood function can be expressed in the follow-

ing way:

pðNon;Noff js;b;αÞ ¼ pðNonjs;αbÞ ·pðNoff jbÞ

¼ ðsþ αbÞNon

Non!
e−ðsþαbÞ ·

bNoff

Noff!
e−b; ð3Þ

where we have made use of the independence of the
measured values Non and Noff and of the fact that both
values come from a Poisson process with rate given
respectively by sþ αb and b.
Using the binomial identity,3 we can factorize the

likelihood in Eq. (3) in two Poisson distributions, one
for Ns with expected value s and one for Non þ Noff − Ns
with expected value bð1þ αÞ,

pðNon; Noff js; b; αÞ

∝
XNon

Ns¼0

ðNon þ Noff − NsÞ!
ð1þ 1=αÞ−NsðNon − NsÞ!

·
sNs

Ns!
e−s

×
ðbð1þ αÞÞNonþNoff−Ns

ðNon þ Noff − NsÞ!
e−bð1þαÞ: ð4Þ

Here, factors that depend merely on Non and Noff have
been ignored.
The integral in Eq. (2) is now straightforward

pðsjNon;Noff ;αÞ∝
XNon

Ns¼0

ðNonþNoff −NsÞ!
ð1þ1=αÞ−NsðNon−NsÞ!

·
sNs

Ns!
e−s:

ð5Þ

Note that now s and Ns are both random variables, which
can have only non-negative values, in agreement with the
Poissonian nature of the problem under study.
We take into account the following identities:

pðsjNon; Noff ; αÞ ¼
XNon

Ns¼0

pðNsjNon; Noff ; αÞ · pðsjNsÞ ð6Þ

and

pðsjNsÞ ¼ ξ
ðs · ξÞNs

Ns!
e−ξ·s: ð7Þ

The former results from marginalizing over the variable Ns.
The latter is obtained from applying the Bayesian theorem
with constant priors to the likelihood in Eq. (1). Recalling
that ξ ¼ 1, we can now compare Eqs. (5) and (6) to obtain
the PMF of the variable Ns

pðNsjNon; Noff ;αÞ ∝
ðNon þ Noff − NsÞ!

ð1þ 1=αÞ−NsðNon − NsÞ!
: ð8Þ

Equation (8) allows one then to define the most probable
value (the mode) as an estimation of the number of signal
events. This procedure was in fact previously outlined
by Loredo [see Eq. (5.13) of Ref. [2] ] already in 1992.

TABLE I. Summary of the variables with their description considered in an on/off measurement and used throughout the paper.

Variable Description Property Probability distribution

Non Number of events in the on region Measured
Noff Number of events in the off region Measured
α Exposure in the on region over the one in the off regions Measured
b Expected rate of occurrences of background events in the off regions Unknown Eq. (4) in which s is integrated out
s Expected rate of occurrences of signal events in the on region Unknown Eq. (5)
Ns Number of signal events in the on region Unknown Eq. (8)

3For reasons that will be clear in a while, the bound variable in
the binomial identity is called Ns, i.e.,

ðsþ αbÞNon ¼
XNon

Ns¼0

Non!

ðNon − NsÞ!Ns!
sNsðαbÞNon−Ns :
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The main goal of this work is to extend Eq. (8) by including
the information of the individual events without limiting
ourselves with a “global” method that makes use only of
the number Non and Noff . To do so, we will first use
Monte Carlo (MC) simulations to compare the Bayesian
approach [summarized in Eq. (5)] with the frequentist
approach in Sec. II. We will also discuss why the former is
preferable in this problem. Then in Sec. III, we will explain
how to introduce single-event information in Eq. (8), and in
Sec. IV we will investigate the effects on the precision in
the estimation of the number of the signal rate, using as
an example real data and simulations from the MAGIC
imaging atmospheric Cherenkov telescopes (IACTs).

II. COMPARISON BETWEEN FREQUENTIST
AND BAYESIAN APPROACH

In the previous section, we estimated the signal rate
using a Bayesian approach. In literature, however, the
on/off measurement problem is often solved in the fre-
quentist approach.
In the frequentist approach [3–5], the background rate b,

that is a nuisance parameter in the Bayesian approach,
is not integrated out as done in Eq. (2). Instead from the
likelihood in Eq. (3) one defines the following test statistic
(usually referred to as the likelihood ratio):

λðsÞ≡ pðNon; Noff js; b ¼ b̂; αÞ
pðNon; Noff js ¼ Non − αNoff ; b ¼ Noff ; αÞ

; ð9Þ

where4

b̂ ¼ N þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 þ 4ð1þ αÞsNoff

p
2ð1þ αÞ : ð10Þ

is the value of b that maximizes the likelihood in Eq. (3)
for a given s, and N ≡ Non þ Noff − ð1þ 1=αÞs.
The advantage of Eq. (9) is that according to Wilks’s

theorem [6], the function −2 log λðsÞ has an approximate χ2

distribution with 1 degree of freedom, which can be used to
extract confidence intervals. For example if we want the
68% confidence interval we impose −2 log λðsÞ ¼ 1 and
it can be shown [3] that for a large number of counts Non
and Noff this condition is satisfied when5

s ¼ ðNon − αNoffÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Non þ α2Noff

q
: ð11Þ

By imposing −2 log λðsÞ ¼ 3.84 one can get 95% upper
limits, as it is done in Ref. [4], although with ad hoc

adjustments. These ad hoc adjustments are not surprising
because the maximum likelihood approach described so far
suffers from the following problems [2]:

(i) It only works well with counts number large enough.
It is not suitable for low count numbers [3], while the
Bayesian approach has no limitations on that.

(ii) Only information about confidence intervals can be
extracted. Legitimate questions such as “what is the
probability of having Ns signal events in a sample of
Non events?” cannot be answered [this is indeed
possible in theBayesian approach as shown inEq. (8)].

(iii) The frequentist result of Eq. (11) does not exclude
negative rate, but a Poisson process conflicts with
negative rate.6

To overcome the above issues ad hoc adjustments are
required.7 Another advantage of the Bayesian approach
is that, once we have the PDF of the signal rate, all
information is encoded in pðsjNon; Noff ; αÞ defined in
Eq. (6). From this equation, we can obtain the mode that
maximizes pðsjNon; Noff ; αÞ, i.e., the most probable value,
or the 68% credible interval8 ½sleft; sright� with sleft and sright
such that

Z
sright

sleft

pðsjNon; Noff ; αÞds ¼ 0.68; with

pðsleftjNon; Noff ; αÞ ¼ pðsrightjNon; Noff ; αÞ: ð12Þ

If this last condition cannot be fulfilled9 then sleft ¼ 0
and upper limits (ULs) on the signal rate can be computed.
The 95% UL s95 can be intuitively defined by

Z
s95

0

pðsjNon; Noff ; αÞds ¼ 0.95: ð13Þ

These definitions in the Bayesian formalism of credible
interval and UL were already explored in the context of
on/off measurements in γ-ray astronomy by the author of
Ref. [7]. Although in the work in Ref. [7] Jeffreys (and
not constant) priors10 were assumed.
In Fig. 1 we show the comparison between the frequent-

ist and Bayesian approach in estimating the signal rate. One
can notice that −2 log λðsÞ, defined in Eq. (9), always has
the minimum value at s ¼ Non − αNoff . Only for large

4Note that when the null hypothesis is assumed (s ¼ 0), then
N ¼ Non þ Noff , b̂ ¼ αN=ð1þ αÞ and Eq. (9) gives Eq. (17) of
Ref. [3] for computing the detection significance.

5The factor after “�” in Eq. (11) is derived from the variance of
the linear combination of independent random variables.

6One can argue that in the frequentist approach these negative
rates are in the end put equal to zero and a negative flux will not
be claimed. But while this comes naturally in the Bayesian
approach, in the frequentist approach instead this needs to be
done by “hand” with the introduction of ad hoc adjustments.

7The word “adjustments” is present in Ref. [4] 7 times.
8Not to be confused with the frequentist confidence interval.
9When dealing with low excess events the Bayesian credible

intervals can be highly asymmetric around the estimated
signal rate, as shown for instance in the right plots of Fig. 1
where sleft ¼ 0.

10See for instance Ref. [8] for a review of the problem
regarding the choice of the priors.
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number of counts (see upper plots of Fig. 1) −2 logλðsÞ¼1

when s ¼ ðNon − αNoffÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Non þ α2Noff

p
. It is also inter-

esting to notice that confidence and credible intervals agree
for a large number of counts and when we are not close to
the border s ¼ 0. For low count numbers and when we are
close to the border of the parameter space the frequentist

approach has the problems previously discussed for which
one needs ad hoc adjustments.
We ran MC simulations to compare the results obtained

with the two approaches. In each MC simulation Non
is generated by the sum of two Poisson random numbers
with expected count s and αb, respectively. Noff is instead

FIG. 2. Left: inferred signal from the Bayesian approach (x axis) and the frequentist approach (y axis) using MC simulations. Right:
95% UL obtained in the Bayesian approach (x axis) from Eq. (13) and in the frequentist approach (y axis) following the prescription in
Ref. [4] using MC simulations; color coding indicates the value of Non − αNoff . MC simulations were produced assuming s ¼ 0,
b ¼ 200, and α ¼ 0.5.

FIG. 1. Comparison for different values of Non and Noff between −2 log λðsÞ (red line) defined in Eq. (9) and pðsjNon; Noff ; αÞ (blue
line) and pðNsjNon; Noff ; αÞ (black points), defined respectively in Eqs. (5) and (8). For the last distribution the x axis does not show the
signal rate but the discrete variable Ns. The last two probability distributions have been rescaled for comparison with −2 log λðsÞ.
Vertical dashed lines are for s ¼ EðsÞ � kσs (k ¼ �f0; 1; 2g), where EðsÞ ¼ Non − αNoff and σs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Non þ α2Noff

p
.
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generated from a Poisson distribution with expected count
b. OnceNon andNoff are obtained the inferred signal and its
uncertainty are computed according to Eq. (11) for the
frequentist approach. In the Bayesian approach instead, the
estimated signal is given by the most probable value, with
uncertainty corresponding to the 68% credible interval
defined in Eq. (12), i.e., ðsright − sleftÞ=2.
Additionally, in the left plot of Fig. 2 one can see that, as

long as Non − αNoff > 0, there is a perfect agreement
between the two approaches in estimating the signal rate.
However, this is no longer true forNon − αNoff < 0. In such
case the Bayesian approach correctly (given the Poissonian
nature of the problem) estimates a signal rate equal to zero.
Similar considerations can be made for the 95% UL
estimation shown in the right plot of Fig. 2, where
both approaches are in good agreement: as long as
Non − αNoff > 0 a slight overestimation of the UL value
is observed for the frequentist approach [4] relative to
the Bayesian one, while the opposite is true for
Non − αNoff < 0.
In Fig. 3 we show the 68% confidence/credibility band

(y axis of the plot) around the estimated signal rate (x axis
of the plot) for both approaches, in which one can see that
there is a good agreement between the results yielded by
the frequentist and Bayesian approach.

III. PROBABILITY DENSITY FUNCTION OF THE
SIGNAL RATE INCLUDING SINGLE-EVENT

OBSERVABLES

In Eq. (8), we have defined the PMF of the number of
signal events based on the number of events in the on and
off regions. It is common to select these events based on
signal extraction cuts on one or more event variables to
increase the SNR. A very common example of this in

astronomy is a cut performed in a region around the source,
so that all events outside such region are ignored. A more
advanced example is the implementation of some classi-
fication algorithm11 which yields for each event a discrimi-
nating variable that can be used for the background
suppression.
A disadvantage of cutting data is that also a fraction of

the signal events will be excluded, which translates to a
reduced exposure on the target. Moreover, normally after
the selection, all events surviving a specific set of cuts are
treated as equally probable signal (or background) events,
regardless their “distance” from the cuts. We aim instead to
fully exploit the information on how single-event variables
distribute for a signal or a background population. Our goal
is to show how by replacing a fixed signal extraction cut
with a statistical weighting of the events according to
specific information (that is, not excluding any event
a priori), we obtain a more precise signal estimation.
We call this novel method BASiL.
We start by including the information about the

variables x, which we have observed for each event, in
the inference of the signal rate s. The variable x might be a
single observable (like a discriminating variable obtained
by a classification algorithm) or a set of observables.
Including x⃗ ¼ fx1;…;xNon

g, Eq. (2) becomes

pðsjx⃗;Non;Noff ;αÞ∝
Z

∞

0

dbpðx⃗;Non;Noff js;b;αÞ: ð14Þ

Using now the chain rule of probabilities, we write the
likelihood in the following way:

pðx⃗; Non; Noff js; b; αÞ
¼ pðx⃗jNon; s; αbÞ · pðNonjs; αbÞ · pðNoff jbÞ: ð15Þ

The last two factors are Poisson distributions with expected
counts sþ αb and b, respectively. The first factor is the
probability of observing the variables x⃗ in a sample of Non
events with an assumed signal rate s and background rate
αb. Given that all measured events are independent from
each other, this probability is

pðx⃗jNon; s;αbÞ

¼
YNon

i¼1

½pðxijγÞ ·pðγjs;αbÞ þpðxijγ̄Þ ·pðγ̄js;αbÞ�; ð16Þ

where the term

FIG. 3. Inferred signal (x axis) and its uncertainty (y axis)
from MC simulations in which s ¼ 20, b ¼ 5, and α ¼ 1. In the
Bayesian approach (filled circles) the inferred signal is the
mode of the signal PDF [see Eq. (5)] with uncertainty given by
ðsright − sleftÞ=2 [see Eq. (12)]. In the frequentist approach
(empty circles) the inferred signal is given by Non − αNoff

with uncertainty
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Non þ α2Noff

p
.

11This is the case of the gamma-hadron separation for imaging
Cherenkov telescopes, where each event is given a score
called “hadronness” in MAGIC [9] or sometimes referred to
as “gammaness” in the Cherenkov Telescope Array experiment.
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pðγjs; αbÞ ¼ 1 − pðγ̄js; αbÞ ¼ s
sþ αb

ð17Þ

is the prior probability that one event is a signal event γ.
We denote everything that is not signal as γ̄.
The terms pðxjγÞ and pðxjγ̄Þ are the PDFs of observing

the variables x from a signal or background population,
respectively. In the Bayesian formalism, they can also be
referred to as the likelihood functions of being a gamma or
background event respectively, having observed the vari-
ables x for that particular event. Depending on the kind of
variable or problem under study, these likelihoods can be
estimated from MC simulations, a different dataset, or be
based on a theoretical model. One needs also to ensure that
these likelihoods are normalized,

Z
X
pðxjγÞdx ¼

Z
X
pðxjγ̄Þdx ¼ 1; ð18Þ

with X being the (multidimensional) parameter space in
which the variables x are defined. The kind of likelihood in
Eq. (15) is known in literature [10] as “marked” Poisson
process, i.e., a Poisson process where each count is marked
with a property (the variables x in our case) distributed
according to a given PDF.
Equation (15) can now be rewritten as (for a full

derivation see Appendix A)

pðx⃗; Non; Noff js; b; αÞ

∝
XNon

Ns¼0

ðNon þ Noff − NsÞ!
ðNon − NsÞ!ð1þ 1=αÞ−Ns

Cðx⃗; NsÞ
ðNon
Ns
Þ

×
sNs

Ns!
e−s ·

ðbð1þ αÞÞNonþNoff−Ns

ðNon þ Noff − NsÞ!
e−bð1þαÞ; ð19Þ

where the function C represents the combinatorial term

Cðx⃗; NsÞ ¼
X
A∈FNs

Y
i∈A

pðxijγÞ ·
Y
j∈Ac

pðxjjγ̄Þ ð20Þ

with FNs
being the set of all subsets of Ns integer numbers

that can be selected from f1;…; Nong.
At this point, like done in Sec. I, we can easily

marginalize the nuisance parameter b and obtain the final
result for the PDF of the signal rate s,

pðsjx⃗; Non; Noff ; αÞ ∝
Z

dbpðx⃗; Non; Noff js; b; αÞ

∝
XNon

Ns¼0

ðNon þ Noff − NsÞ!
ðNon − NsÞ!ð1þ 1=αÞ−Ns

×
Cðx⃗; NsÞ
ðNon
Ns
Þ

sNs

Ns!
e−s: ð21Þ

Again one can recognize in this last expression the
marginalization in Eq. (6), so that we can identify

pðNsjx⃗; Non; Noff ; αÞ

∝
ðNon þ Noff − NsÞ!

ðNon − NsÞ!ð1þ 1=αÞ−Ns

Cðx⃗; NsÞ
ðNon
Ns
Þ : ð22Þ

Given that the combinatorial term C, defined in Eq. (20),
is the novelty of this method, it is worth elaborating its role
by providing an example. Let us assume Non ¼ 3 events in
our on region and that we have also measured x1, x2, x3
respectively for each event, with x a variable whose
distribution is pðxjγÞ for a signal population and pðxjγ̄Þ
for a background population. Thus, when Ns ¼ 0, 1, 2, 3
the combinatorial term will be respectively12

Cðx⃗; 0Þ ¼ pðx1jγ̄Þ · pðx2jγ̄Þ · pðx3jγ̄Þ;
Cðx⃗; 1Þ ¼ pðx1jγÞ · pðx2jγ̄Þ · pðx3jγ̄Þ

þ pðx1jγ̄Þ · pðx2jγÞ · pðx3jγ̄Þ
þ pðx1jγ̄Þ · pðx2jγ̄Þ · pðx3jγÞ;

Cðx⃗; 2Þ ¼ pðx1jγÞ · pðx2jγÞ · pðx3jγ̄Þ
þ pðx1jγÞ · pðx2jγ̄Þ · pðx3jγÞ
þ pðx1jγ̄Þ · pðx2jγÞ · pðx3jγÞ;

Cðx⃗; 3Þ ¼ pðx1jγÞ · pðx2jγÞ · pðx3jγÞ:
From the above example it is clear how the combinatorial

term is made up to account for all the possible combination
of excess events among the total Non events that can give
the observed values x⃗. If, for instance,

pðxijγÞ ¼ l · pðxijγ̄Þ ∀ i ∈ f1;…; Nong;
i.e., all events are l time more likely to be a signal event,
then

Cðx⃗; NsÞ ∝
�
Non

Ns

�
lNs

and

pðNsjx⃗; Non; Noff ; αÞ ∝
ðNon þ Noff − NsÞ!

ðNon − NsÞ!ð1þ 1=αÞ−Ns
· lNs :

ð23Þ
By taking into account the information that all events are l
times more likely to be a signal event, we have updated
the PMF of the number of signal events introducing a
factor lNs. Its maximum values are obtained forNs ¼ Non if
l > 1, and forNs ¼ 0 if l < 1. For l ¼ 1we do not gain any

12In Appendix B, a general algorithm is shown for efficiently
obtaining the term Cðx⃗; NsÞ, given the list of likelihoods pðxijγÞ
and pðxjjγ̄Þ as input.
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information from the observed variable x, and we recover
the result previously obtained in Sec. I.
With the introduction of the combinatorial term in

Eq. (22) we have devised the method to include event-by-
event information for the computation of Ns. The power of
this method clearly depends on the specifics of the datasets
in which it is applied, and in turn, it depends on (i) the event
parameters that are used, (ii) how they distribute for the
signal and background population, and (iii) how performing
is the signal extraction method that relies on a fixed
fiducial cut. However, in order to be predictive and define
a framework to assess the performance of the BASiL
method, we apply it to a specific case, that of gamma-ray
observation. For this purpose, we analyze real data from the
MAGIC Collaboration.13 Results reported in Ref. [12] will
be used as a benchmark case.

IV. THE CASE OF IMAGING ATMOSPHERIC
CHERENKOV TELESCOPES

IACTs image the Cherenkov light emitted in the atmos-
phere by extended atmospheric showers generated by cosmic
gamma rays (or cosmic rays) when entering the atmosphere.
An irreducible background survives all possible image
selection criteria and the signal estimation is performed
through an on/off comparison based, in which the off sample
is taken from a region in the sky where no signal is expected.
For steady pointlike sources two variables are generally
further used to suppress the background: the squared14

angular distance from the source θ2 and a particle identi-
fication variable, which in the case of MAGIC is computed
by means of a random forest (RF) algorithm, and is dubbed
hadronness (h) [9]. The RF event classifier takes the image
parameters of the event as input and returns a value between
0 and 1. The smaller the value, the more the event looks like
a gamma-ray event. The θ2 parameter, related to the instru-
ment point spread function depends on the telescope optics
and mechanics and mostly on the shower physics and image
reconstruction (see Ref. [13]). Therefore, the individual-
event variables to consider are

x ¼ ðθ2; h; EÞ:

Because the distributions of θ2 and h are energy dependent,
we have also included the estimated energy E.15

The likelihoods of being a signal pðxjγÞ or a background
pðxjγ̄Þ event can be factorized into three terms,

pðxjγÞ ¼ pðhjE; I; γÞ · pðθ2jE; I; γÞ · pðEjI; γÞ;
pðxjγ̄Þ ¼ pðhjE; I; γ̄Þ · pðθ2jE; I; γ̄Þ · pðEjI; γ̄Þ; ð24Þ
where I stands for the conditions under which the obser-
vation has been performed (e.g., zenith angle, atmospheric
opacity, etc.). As the correlation between θ2 and h ranges
between zero and 0.2, approximately, we can consider the
two variables as independent. The same is not valid for the
correlation between h, θ2, and energy, which forces us to
take into account the energy dependence of the distribution
of θ2 and h and apply the method in sufficiently small
energy bins.16

We therefore focus on individual energy bins where
the flux is assumed to be constant, so that pðEjI; γÞ and
pðEjI; γ̄Þ are uniform. This means that the factor
pðEjI; γÞ ¼ pðEjI; γ̄Þ is the same for all likelihoods in
Eqs. (24) and can be therefore ignored. Thus, to get the
likelihood for each event of being a signal or background
event one needs to only compute the distribution in θ2

and hadronness respectively from a signal and background
population.
A sample of background events can be obtained by

performing observations on regions of the sky (off regions)
where no signal contamination is observed and with similar
conditions I as the “on” sample, as explained in Sec. I.
Obtaining a signal sample from the on region is less
straightforward, because in the on region both a signal
and an irreducible background contribution are present.
For this reason in IACTs one has to rely on MC simulations
of signal events to study the parameter distribution of a
signal sample. Nonetheless, for a bright enough source like
the Crab Nebula,17 a very pure sample of γ-ray signal events
can be extracted from the on measurement, which allows
us to study its properties. Data are taken in the so-called
wobble18 mode [14], which yields Non and Noff counts,
then the excess is obtained by subtracting from the Non
counts the (relative small) background count αNoff and the
procedure is repeated for different cuts in hadronness or θ2.
Figure 4 shows the distribution in x ¼ ðh; θ2Þ of the

signal excess from the Crab Nebula sample, MC-simulated
signal, and background events. For brevity, we show
only events with estimated energy between 189 and
300 GeV. Following the same prescription and using the13See Ref. [11].

14Signal events spread around the region of interest and for a
pointlike source they distribute according to a two-dimensional
Gaussian distribution. Such a two-dimensional Gaussian in the θx
and θy space will correspond to an exponential function for the
distribution of θ2 ¼ θ2x þ θ2y.

15In principle one could also consider the time of arrival of
individual events t as element of x. While this may be useful in
some scenarios, t can be neglected if we consider small enough
time bins or similar conditions throughout the entire observation
that allows us to integrate out the time in our analysis.

16If one wants to extrapolate the method to an unbinned
analysis, a signal flux pðEjI; γÞ has to be assumed
beforehand.

17The Crab Nebula is the brightest steady TeV gamma-ray
emitter in the sky. It is a pulsar wind nebula which is used as a
standard calibration for IACTs [12].

18In a wobble mode the source is placed with a certain offset
with respect to the camera center during the observation. It allows
simultaneous signal and background estimation.
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same dataset, a similar analysis is performed for θ2 which
yields the distributions in the left plot of Fig. 4.
A few important facts appear from the plots in Fig. 4:

(i) there is a mismatch between Monte Carlo data and real
data, (ii) such difference is larger in hadronness than θ2,
especially at very low hadronness values, where several
signal events are not classified as gammas with sufficient
degree of confidence, and (iii) the signal selection based
on θ2 is efficient with a cut at about 0.02°, that entails
75% of the signal, while an optimal cut in hadronness is
more complex to define, because it depends more strongly
on the energy.
The optimization of the SNR can be done in several

ways. The MAGIC collaboration elaborated a set of cuts
specific for each energy bin, according to an “efficiency”
parameter ϵ defined as the fraction of Monte Carlo signal
events surviving a certain cut. In the following, we
elaborate on this, and compare the outcome with the novel
method which we propose.
Assuming a signal rate s and background rate b, MAGIC

observations are simulated following these steps:
(i) Generate Ns and Nbkg from a Poisson distribution

with expected value respectively s and α · b, and
define the number of counts in the on region as

Non ¼ Ns þ Nbkg:

(ii) Generate Noff , the total number of events in the off
region, from a Poisson distribution with expected
value b.

(iii) Generate θ2 values for the events in the on region by
randomly picking up Ns values from the signal
distributions (blue histogram in the left plot of Fig. 4)
and Nbkg values from the background distributions
(green histogram in the left plot of Fig. 4).

(iv) Generate θ2 values for the events in the off region by
randomly picking up Noff values from the back-
ground distributions (green histogram in the left plot
of Fig. 4).

(v) Finally, the same is done for generating hadronness
values for the on and off measurements using this
time the right plot of Fig. 4.

Having an on and off measurement, we get an estimation
ŝ of the signal rate using only the information about the
total counts Non and Noff and the single-event variables
x ¼ ðh; θ2Þ. This estimation is done using two different
approaches, referred to as the “standard” and “BASiL”
approach:
(1) The estimated signal rate is obtained from

ŝ ¼ Non − αNoff ;

where Non and Noff are the numbers of events
surviving the cut in θ2 and/or hadronness for the
on and off measurement, respectively. Cut values
are obtained assuming a given γ-ray efficiency ϵ
computed from the signal distributions (see blue
histograms of Fig. 4). Being the most common
way of suppressing the background and estimating
s, we will refer to this approach as the standard
one.

(2) In the BASiL approach ŝ is instead defined from the
mode of the PMF19 defined in Eq. (22), where x can
be either θ2 and hadronness, or only one of them.
The combinatorial term in Eq. (20) will be obtained
using signal and background likelihood values from
the signal distributions (blue histograms in Fig. 4)
and background distribution (green histograms
in Fig. 4).

It is important to stress that in both approaches the values
of s, b, Ns, and Nbkg are not taken into account: only
observed quantities (counts in the on and off regions, θ2

and hadronness) are considered for signal-rate estimation.

FIG. 4. Distribution in θ2 (left) and hadronness (right) for simulated (red) and observed (blue) signal excess and for background events
(green) in the energy range 189–300 GeV. These distributions are obtained from Figs. 1 and 15 of Ref. [12]. For all histograms 105

events were generated and divided in 50 bins. All distributions (colored areas in the figure) are normalized to 1. For a discussion on the
origin and effect of the MC/data discrepancies see Ref. [12].

19One could have also used the signal-rate PDF defined in
Eq. (21), but such choice would not change the results since the
distributions for s and Ns share the same mode (one is simply
derived from the other by including Poisson statistics).
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More importantly, for this study we ignore the mismatch
between the “real”-γ and the MC-γ distributions (respec-
tively the blue and red histograms of Fig. 4). In
Appendix D the study on how such mismatch between
the MC and real data affects the estimation is shown. The
conclusion is that this mismatch induces a bias in the
estimation that leads one to underestimate the number of
excess events.
At this point we defined the signal-estimation precision

and bias respectively as the standard deviation and mean
value of the rescaled distribution of ŝ, i.e.,

prec ¼ σ

�
ŝ − s · ϵ
s · ϵ

�
; ð25Þ

bias ¼
�
ŝ − s · ϵ
s · ϵ

�
: ð26Þ

Note that the efficiency cut is ϵ ¼ 1 in the BASiL approach,
since no cut is applied on the data in this case. For a fair
comparison in the standard approach ŝ is put equal to zero
whenever Non − αNoff < 0. In Fig. 5 an example of such
distribution is shown, where the signal rate is estimated
using the standard (black histogram) and BASiL approach
(blue histogram).

A. Signal-estimation precision and bias
for different efficiency cut

We first study the evolution of the bias and precision
defined in Eqs. (25) and (26) for different efficiency cuts
considering only θ2 or hadronness as single-event variable.
For this study we assume a background intensity, in the on
region αb ¼ 1000 and a SNR of 10%, i.e., s ¼ 100. We
then simulate observations following the steps previously
described where in one case events have only θ2 as an
observed variable and only hadronness in the other case.
Figure 6 reports the results.
It is worth noticing that in the hadronness case,

starting from 100% efficiency, the precision in the standard
approach improves immediately reaching its best value
when the efficiency is about 80%–90%. The same improve-
ment happens also in the θ2 case, but it is smoother with a
minimum around 70%–80%. An explanation of this effect
can be easily found in Fig. 4, where it is clear that cutting in
hadronness allows one to suppress more background than
performing a similar cut (i.e., with the same efficiency)
in θ2. At low efficiency values the precision is dominated

FIG. 5. Distribution of ðŝ − s · ϵÞ=ðs · ϵÞ, with ŝ the estimated
signal rate obtained from Non − αNoff in the standard approach
(black) and from the mode of the distribution in Eq. (22) in the
BASiL approach (blue). In the standard approach Non and Noff
are the number of events surviving the efficiency cut applied on
the data. Efficiency is 95% and 75% respectively for hadronness
and θ2, which translates in a total efficiency ϵ ¼ 67.6% (see main
text, Sec. IV for details). In the BASiL approach no cut is applied
on the data, i.e., ϵ ¼ 1. Values of s and b used in the simulations
are 102 and 3 × 103, respectively, with α ¼ 1=3.

FIG. 6. Comparison between the standard (black) and BASiL (blue) approach for the evolution of the precision (full line) and bias
(dashed line) in the signal-rate estimation assuming different gamma-ray efficiency cut in θ2 (left) and hadronness (right). Note that for
the BASiL approach the precision and bias do not depend on the efficiency, being ϵ ¼ 1 in such case. Nonetheless, for a visual
comparison these values are shown as horizontal lines. The definition of precision and bias can be found in Eqs. (25) and (26),
respectively. Observations are simulated assuming s ¼ 102 and αb ¼ 103, with α ¼ 1=3.
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by the Poisson statistic of the excess number and therefore
its evolution follows

prec ∼ 1=
ffiffiffiffiffiffi
Ns

p
∝ 1=

ffiffiffi
ϵ

p
:

In the BASiL approach instead the precision does not
depend on the efficiency and it is about 15% better than the
best precision we can achieve in the standard approach. The
bias in the signal estimation is very close to zero, apart from
small fluctuations, in both approaches. As discussed in
Appendix D, the most important source of bias is due to the
nonperfect agreement between the real and simulated signal
distribution.
We therefore conclude that the BASiL method, by

including the likelihood of each event of being a signal
or background, estimates the signal rate more precisely,
while keeping the bias comparably low: for a SNR of 10%
the improvement in precision is about ∼15% in both
hadronness and θ2.

B. Signal-estimation precision and bias for different
signal to background ratio

In the previous section we fixed the SNR to 10% and let
the efficiency cut vary. We now want to do the opposite,
i.e., study the precision and bias by varying the SNR. For
this purpose we fixed the efficiency cut in hadronness and
θ2 to 90% and 75%, respectively, these values being the
recommended ones [12] and the ones that, as one can see
in Fig. 6, maximize the precision power of the standard
approach. In the BASiL approach (in which ϵ ¼ 1) this
time both hadronness and θ2 will be considered when
computing the single-event likelihoods of being a signal or
a background event. Figure 7 displays the precision and
bias for different values of SNR. As expected, in both
approaches both values get worse as we decrease the signal
(in the MC simulations the background is kept fixed to

αb ¼ 100). Such worsening is, however, less pronounced
in the new approach, where the precision is about 20%
better for a SNR of 1%. If the strength of the signal is
instead equal to the background noise, i.e., SNR = 100%,
then the improvement of the BASiL method relative to the
standard one is ∼13% (see right plot of Fig. 7). One can
also notice that at low values of SNR the bias increases: this
is due to the fact that for weak signal rates estimates ŝ that
are close or equal to zero20 become more frequent, and
this inevitably shifts the mean value of the distribution of
ðŝ − s · ϵÞ=ðs · ϵÞ through positive values.
We conclude that the BASiL method is capable of

estimating the signal rate more precisely, without having
to select data. This is due to the introduction of the
combinatorial term defined in Eq. (20), which takes into
account the likelihood of each event being a signal or
background event.

C. A spectral energy distribution

After having evaluated the performance of the method by
using MC simulations of events observed by the MAGIC
telescopes, we now apply the method on a real dataset. For
this purpose we used the data released by the MAGIC
Collaboration [15], which includes 40 min of Crab Nebula
observations chosen from the sample used for the perfor-
mance evaluation in Ref. [12]. This dataset includes
only events recorded at low zenith angles (<30°) and
under good atmospheric conditions. All data were taken in
the wobble mode with the standard offset of 0.4°. Off
counts were obtained using three simultaneous off regions
within the same field of view and with the same offset from

FIG. 7. Left: comparison between the standard (black) and BASiL (blue) approach for the evolution of the precision (full line) and bias
(dashed line) assuming different SNR. In the standard approach the efficiency cut is fixed to 90% for hadronness and 75% for θ2. Right:
improvement for different SNR of the precision in the BASiL approach relative to the standard one. The definition of precision and bias
can be found in Eqs. (25) and (26), respectively. Observations are simulated assuming αb ¼ 100, with α ¼ 1=3.

20Recall that for a fair comparison between the two ap-
proaches, in the standard approach ŝ is put equal to zero whenever
Non − αNoff < 0.
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the camera center as the on region. Overall effective
observation time is 39.2 min.
The standard data analysis (whose results are shown in

black in Fig. 8) has been performed using the MAGIC
Analysis and Reconstruction Software MARS [16] where a
hadronness and θ2 cut according to a high γ-ray efficiency
(90% and 75% respectively) is applied. For the BASiL
analysis instead no cut is applied on the dataset. Only a
global θ2 < 0.08 deg2 is considered to define four iden-
tical nonoverlapping regions from the center of the camera:
one for the on region and three for the off regions. The
resulting signal rate per energy bin is reported in Table II. It
is worth comparing the signal estimation by using the
BASiL approach (last column of Table II) with the one we
would have obtained by simply performing the difference
between the total counts in the on and off regions, i.e.,
Non − αNoff (fourth column of Table II). One can notice
that the BASiL approach manages to decrease by half the
uncertainty in the signal estimation. This is in agreement
with the result reported in Fig. 6, where the precision of the
BASiL method (∼20%) is about half the one obtained in
the standard approach by not cutting data in hadronness
or θ2 (∼40%).

Combined with the exposure of the telescopes the values
in the last column of Table II are then used to compute
the spectral energy distribution (SED) points in Fig. 8.
An advantage of the BASiL approach when estimating the
source flux is its capability of providing a PDF contour plot
associated with each energy bin (see Fig. 8). In this way
not only error bars for each flux point are drawn, but a full
PDF [corresponding to the PDF in Eq. (21)] is visualized,
which encodes all information we have regarding the signal
estimation for that energy bin.
In Fig. 9 we report the relative uncertainties in the flux

estimation using the standard (in black) and BASiL (in
blue) approach. The former is computed from

FIG. 8. SED in estimated energy of the Crab Nebula (in blue)
obtained by processing 0.66 h of data released by the MAGIC
Collaboration with the BASiL method. For comparison also the
results (in black) obtained from the same data sample using the
standard analysis procedure are reported in which efficiency cuts
are applied. The blue bars of the data points are the credible
interval obtained from Eq. (12), in which also uncertainties from
the exposure are taken into account. “Violin” plots around each
blue point represent the flux PDF. The obtained results are also
compared to the Crab Nebula SED (in orange) from Ref. [12] in
terms of the relative flux difference.

TABLE II. Estimated signal rate in each energy bin used for
computing the Crab Nebula SED reported in Fig. 8. The signal
rate in the last column is estimated from the mode of the signal
PDF defined in Eq. (21), while its uncertainties are computed
using the credible interval defined in Eq. (12). From the second
to the fourth column we report the counts Non and Noff in the
on and off regions, respectively, along with their difference
Non − αNoff �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Non þ α2Noff

p
, i.e., the signal-rate estimation in

the frequentist approach.

E (GeV) Non Noff

Signal
(freq.)

Signal
(BASiL)

63–100 1714 4494 216� 47 204� 23
100–158 933 2349 150� 35 187� 18
158–251 622 1327 180� 28 185� 16
251–398 439 846 157� 23 174� 14
398–631 335 593 137� 20 114� 11
631–1000 215 435 70� 16 77.7þ9.6

−8.9
1000–1585 132 256 47� 13 41.8þ7.0

−6.3
1585–2512 95 203 27� 11 21.6þ5.1

−4.5
2512–3981 56 140 9.3� 8.5 8.6þ3.4

−2.7
3981–6310 30 83 2.3� 6.3 3.9þ2.3

−1.6

FIG. 9. Relative uncertainty in the flux estimation from Fig. 8
for the standard (black) and BASiL (blue) approach.
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Non þ α2Noff

p
Non − αNoff

; ð27Þ

with Non and Noff the number of events surviving the θ2

and hadronness cuts in the on and off regions, respectively.
The latter instead is obtained from

ðsright − sleftÞ=2
s�

; ð28Þ
where s� is the mode of the signal PDF and sright, sleft are
defined in Eq. (12). Uncertainties due to the exposure
computation are added in quadrature, although they are
negligible relative to the uncertainties in Eqs. (27) and (28).
As one can see from Fig. 9, relative uncertainties in the flux
estimation are smaller in the BASiL approach, especially at
higher energies where the signal rate is weaker. In light of
the analysis performed in the previous sections using MC
simulations, this is totally expected and confirms our
conclusion.

V. CONCLUSION AND OUTLOOK

In this paper we introduced a novel method for estimating
the signal rate in experiments with imprecisely measured
background. Common examples are astronomical measure-
ments at high energies, in which messengers (e.g., γ rays,
neutrinos) are detected on an event-by-event basis, but can
equally successfully be applied in particle experiments. The
BASiLmethod, aswe dubbed it, relies on theBayesian, rather
than the more common frequentist approach. Its main feature
is that it weights events according to their individual like-
lihood of being signal or background, considering all the
information available. This weighting is best summarized by
the PMF of the number of signal events in Eq. (22), in which
the novelty of themethod, i.e., the combinatorial termdefined
inEq. (20), shows up.By doing so, BASiL avoids cutting data
according to some (or a combination of) variable to suppress
the background,which inevitably discards a part of the signal.
Moreover, the new method, while yielding results consistent
with the standard data analysis method (see Sec. IVC for a
comparison on the example of Crab Nebula), improves the
precision of the signal estimation, as demonstrated in Fig. 9.
A convenient additional feature is a PDF contour associated

with each individual flux point. The improvement is particu-
larly noteworthy in cases of small signal rates (see Sec. IV).
Therefore, we expect BASiL to be especially useful for
analysis of data from measurements of short transients or
weak signals. Furthermore, certain investigations, such as
searches for dark matter (see, e.g., [17–19]) or signatures of
Lorentz invariance violation (LIV, see, e.g., [20–23]), base
their analyses on characteristics of individual events (e.g.,
energy, detection time). Depending on the values of these
individual characteristics, each event contributes differently
to the sensitivity of the analysis. For example, in LIV
searches, higher energy events contribute more to the sensi-
tivity than events of lower energies. Standard data analysis
methods, which rely on cuts to suppress the background,
inevitably cut some signal events from the data sample, quite
possibly the ones that would have contributed to the analysis
sensitivity the most. Incorporating BASiL into analysis
methods could be achieved by folding each event’s contri-
bution with its likelihood of being a signal or background
event. In this way, every single event would contribute with a
certainweight, increasing the analysis sensitivity. At the same
time, theweights would ensure that the gain in sensitivity was
not artificially created.

The corresponding data in Flexible Image Transport
System format are publicly available [15].
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APPENDIX A: DERIVATION OF EQ. (19)

Below one finds the derivation of Eq. (19),

pðx⃗; Non; Noff js; b; αÞ ¼ pðx⃗jNon; s; αbÞ · pðNonjs; αbÞ · pðNoff jbÞ

¼
YNon

i¼1

�
pðxijγÞ

s
sþ αb

þ pðxijγ̄Þ
αb

sþ αb

�
·
ðsþ αbÞNon

Non!
e−s−αb ·

bNoff

Noff!
e−b

¼
XNon

Ns¼0

X
A∈FNs

Y
i∈A

pðxijγÞ ·
Y
j∈Ac

pðxjjγ̄Þ ·
sNsðαbÞNon−Ns

ðsþ αbÞNon
·
ðsþ αbÞNon

Non!
e−s−αb ·

bNoff

Noff!
e−b
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¼
XNon

Ns¼0

Cðx⃗; NsÞ ·
sNsðαbÞNon−Ns

Non!
e−s−αb ·

bNoff

Noff!
e−b

¼ αNon=Noff!

ð1þ αÞNonþNoff

XNon

Ns¼0

ðNon þ Noff − NsÞ!
ð1þ 1=αÞ−Ns

Cðx⃗; NsÞ
Non!=Ns!

·
sNs

Ns!
e−s ·

ðbð1þ αÞÞNonþNoff−Ns

ðNon þ Noff − NsÞ!
e−bð1þαÞ

∝
XNon

Ns¼0

ðNon þ Noff − NsÞ!
ðNon − NsÞ!ð1þ 1=αÞ−Ns

Cðx⃗; NsÞ
ðNon
Ns
Þ ·

sNs

Ns!
e−s ·

ðbð1þ αÞÞNonþNoff−Ns

ðNon þ Noff − NsÞ!
e−bð1þαÞ:

APPENDIX B: A GENERAL ALGORITHM FOR COMPUTING THE COMBINATORIAL TERM

In Sec. III we introduced the combinatorial term C defined in Eq. (20), providing an example on how to compute it when
we have Non ¼ 3 events in our on sample. We now want to show how the combinatorial term can be computed in a more
general case without limiting ourselves to small count numbers. Let us assume we know the likelihoods of being a signal
and a background event for each event i with i ¼ 1; 2;…; Non. The list of likelihoods

pðx1jγ̄Þ; pðx2jγ̄Þ;…; pðxNon
jγ̄Þ

and

pðx1jγÞ; pðx2jγÞ;…; pðxNon
jγÞ

FIG. 10. Comparison between the standard (black) and BASiL (blue) approach for the evolution of the precision (full line) and bias
(dashed line) in the signal-rate estimation assuming different gamma-ray efficiency cut in θ2 (left) and hadronness (right). Note that for
the BASiL approach the precision and bias do not depend on the efficiency, being ϵ ¼ 1 in such case. Nonetheless, for a visual
comparison these values are shown as horizontal lines. Energy ranges considered are 75–119 GeV (top) and 754–1194 GeV (bottom).
Observations are simulated assuming s ¼ 102 and αb ¼ 103, with α ¼ 1=3.
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can be respectively saved in two arrays. So that in
one array we have all background likelihoods and in the
other only signal likelihoods. It is important that the event
order in both arrays must be the same. At this point an
algorithm that takes as input these two arrays and
provides on output the combinatorial term can be easily
written as follows:
Algorithm 1. Combinatorial term.

input: array 1 of length n,
array 2 of length n

output: array C of length nþ 1

n < −length of array
C½nþ 1� < −½1; 0;…; 0�
FOR i ¼ 0 to n:

D½n� < −½0;C½0�; …;C½n − 1��
C < −array 1½i� � Cþ array 2½i� � D

RETURN C

Here array1,array2 have to be thought as the array
containing the list of background and signal likelihoods,
respectively. For instance, Cðx⃗; 2Þ can be found in the third
element of the array obtained in output from the algorithm
above defined. Note that it may be useful when dealing
with large count numbers to work with the logarithmic
values of the likelihoods.

APPENDIX C: PERFORMANCE ON DIFFERENT
REGIONS OF THE ENERGY SPECTRUM

We show in this Appendix the same analysis performed
and described in Sec. IV, but considering events simulated
at lower and higher energy ranges. We will focus in
particular on the same energy bins used in Ref. [12],
namely 75–119 and 754–1194 GeV. The most important
feature that emerges by considering these two lower and
higher energy bins is the fact that the signal/background
separation better performs at higher energies. Such differ-
ence between low and high energy bins is caused by the fact
that in IACTs the higher the energy of an event the larger
and better its camera image will be.
In Fig. 10 we report the precision and bias for different

efficiency cuts applied in θ2 and hadronness. Similar
conclusions made in Sec. IV for the medium energy bin
also apply here: (i) the BASiL approach is capable of
improving the signal-estimation precision by ∼15% in both
energy bins, and (ii) the bias is always below the precision
and close to zero. It is also worth noticing that, as expected,
the precision increases as we go higher in energy.
Finally the study on the signal-estimation precision and

bias for different SNR is reported in Fig. 11 where again
similar conclusions of Sec. IV apply. The improvement in

FIG. 11. Left: comparison between the standard (black) and BASiL (blue) approach for the evolution of the precision (full line) and
bias (dashed line) assuming different SNR. In the standard approach the efficiency cut is fixed to 90% for hadronness and 75% for θ2.
Right: improvement for different SNR of the precision in the BASiL approach relative to the standard one. Energy ranges considered are
75–119 GeV (top) and 754–1194 GeV (bottom). Observations are simulated assuming αb ¼ 100, with α ¼ 1=3.
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the precision of the new approach increases as the SNR
becomes smaller. Such improvement is more pronounced in
the lower energy bin (compare the upper and bottom right
plots of Fig. 11). This is due to the fact that in the higher
energy bin the distinction between signal and background
is more accurate and therefore signal-extraction cuts allow
one to remove almost all of the background while losing
very few signal events.
We conclude that the BASiL approach is capable of

increasing the precision of the signal estimation in all energy
ranges and that such improvement becomes more important
when the observations are background dominated.

APPENDIX D: EFFECT OF THE MISMATCH
BETWEEN MC AND REAL SIGNAL EVENTS

In Sec. IV we have studied the precision and bias in the
estimation of the signal rate by simulating on/off measure-
ments from the MAGIC telescopes. This estimation
was performed using the standard and BASiL approach,
in which the mismatch from the MC and the real-gamma
population (respectively the blue and red histograms of
Fig. 4) was ignored. We now want to study how such

mismatch can affect the signal estimation. In order to do so
we are going to repeat the analysis reported in Sec. IVA,
but this time when it comes to estimating Ns only the
distributions from MC-γ events are considered: the real-γ
distributions are only used in the simulation stage. The
results of this analysis are reported in Fig. 12. By
comparing this figure with Fig. 6, one can see that the
precision is approximately the same. The main difference,
as expected, comes from the bias which is no longer close
to zero in both approaches. The bias resulting from the
mismatch between MC and signal events increases as we
cut more events. It is also more pronounced for the
hadronness case: an explanation of this can be found in
Fig. 4, where one can see that the mismatch between MC
and signal events is more pronounced for the hadronness
case. The BASiL approach produces a bias that is roughly
equal to the one obtained in the standard approach by
performing a cut in θ2 and hadronness with an efficiency
around 50%–60% and 70%–80%, respectively. It is also
interesting to notice that such bias in both approaches is
negative (the excess is underestimated), but anyway smaller
in absolute value than the precision.
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