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Abstract

In this thesis we introduce stochastic sampling to the automatic machine

learning framework called Automatic Gradient Tree Boosting (AGTBoost)

(Lunde & Kleppe, 2020). This framework is based on a method for automating

Gradient Tree Boosting through the introduction of an information criterion

for reduction in generalization error (Lunde, Kleppe, & Skaug, 2020). We

show that by uniformly drawing a sample of the training observations at each

boosting step with a constant sample rate, we can improve the performance

of AGTBoost with the cost of making it less automatic. The problem here is

that the sampling rates need to be manually selected, and therefore we also

introduce the concept of dynamic sampling in the gradient boosting setting,

where the sampling rate is selected at each boosting step dependent on a

pre-defined sampling scheme. We show that this decrease the variance in

performance over different datasets, reducing the need for manual tuning, while

still producing strong results relative with the non-dynamic sampling.
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1 Introduction

The exploitation of big data, with hype terms like machine learning and ar-

tificial intelligence has been viral for many years, and while this is typically

described as a field where one enables computers to learn without explicit pro-

gramming, any machine learning practitioner can tell that the development of

effective and accurate machine learning pipelines is a tedious endeavor, and

more or less requires expert knowledge. Further, with more experience one can

always take things one step further, and even though one can aim at perfect,

one always has to settle for good enough.

Analyzing a new data set, one both has to select the right algorithm or

algorithms and optimize this by tuning the given parameters, and hopefully

find some local optimum where the algorithm performs at an acceptable level.

Even with expert knowledge, one can not know which algorithm is favorable

for a given task, and by all means one has to carefully tune the one selected

and find a decent parameter setting, which in most cases even after tuning

only will be sub-optimal. This is a time demanding process, and the need

for special skills and manual programming different from one algorithm to

another creates a tall entry barrier for those who want to utilize the range of

possibilities of machine learning. In particular this is true for deep learning,

arguably the most powerful and versatile method, where one must chose the

right network architecture, parameters, training procedure and regularization

methods, but to a large degree this is also the case with conventional machine

learning methods.

With automated machine learning, one tries to overcome these problems

and create algorithms or entire pipelines, including data cleaning and prepro-

cessing, algorithm selection and algorithm tuning, that are more or less auto-
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matic, hopefully providing better models than those created and optimized by

hand.

Thornton et al. (2013) created one of the first and most prominent fully

automated machine learning pipeline with AUTO-WEKA based on the WEKA

framework Hall (2009), where the both algorithm and parameters settings are

selected automatically. After that, Feurer et. al (2015) created auto-sklearn,

a similar method based on the scikit-learn framework (Pedregosa et al., 2011)

for python. In later years many big tech companies have also joined the race

with giants like Microsoft, Amazon and Google providing their own cloud

based tools for automatic machine learning where parts of the work-flow is

automated, making machine learning and in particular neural networks more

accessible to more or less anyone. Common for these frameworks are that they

to some extend automates both the algorithm selection and parameter tuning.

For the individual algorithm, frameworks exists where the automation part

extends to parameter tuning only, or where the need for preset parameters are

eliminated so that the algorithm itself becomes automatic.

One powerful machine learning algorithm is Gradient Boosting, indepen-

dently introduced by Friedman (1999) and Mason et al. (1999). The technique

was motivated as being a gradient descent method in function space, capable

of fitting generic non-parametric predictive models. Gradient boosting has

been particularly successful when applied to trees, in which case it fits ad-

ditive tree models. Friedman devised a special enhancement for this case,

known as MART (Multiple Additive Regression Trees), or GBRT (Gradient

Boosted Regression Trees). More recently, new implementations of Gradient

Tree Boosting has come to stage and quickly gained popularity, such as XG-

Boost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017) and catboost

(Prokhorenkova, Gusev, Vorobev, Dorogush, & Gulin, 2017). These has em-
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pirically proven itself to be highly effective for a vast array of classification and

regression problems, and has become vastly popular, in particular for machine

learning competitions. However, with large flexibility of the underlying algo-

rithm, these implementations comes with a large range of parameters available

for tuning, and requires expert knowledge to be well optimized.

Stefan Coors et al. (2018) created a automated version of XGBoost, namely

AutoXGBoost, based also on Bayesian optimization, which performed decent

against other automated machine learning architectures, without ever reaching

top shelf.

All of the methods H2O, AUTO-Weka, auto-sklearn and AutoXGboost

exploits Bayesian optimization, a procedure where different combinations of

algorithms and parameters setting are sequentially evaluated in a guided man-

ner such that it finds a minimum in relatively few iterations (Snoek, Larochelle,

& Adams, 2012). Compared to a manual random or gridded search, Bayesian

optimization may find better minimums in substantially shorter time, but one

cannot avoid the need to train and evaluate a range of different models.

Lunde et al. (2020) took another approach to automating gradient tree

boosting, by introducing an information criterion for the reduction in gener-

alization loss caused by splitting a node in a tree in the boosting procedure,

that serves as a substitute for the most vital hyperparameters. This makes it

optimizable in one run without manual tuning which compared to the afore-

mentioned methods means that one can drastically reduce the time spent in

optimizing the model. However, one of the drawbacks with AGTBoost is that

some important features present in the previous named GTB implementations

such as the possibility of row and column subsampling, L1 and L2 regulariza-

tion are not yet implemented (Lunde & Kleppe, 2020).

In this thesis we will try and improve on the current implementation of
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AGTBoost by developing a method for automatic stochastic row subsampling

in the AGTBoost setting and implement and test this. We will first review the

theory needed to understand how and why AGTBoost works as well as it does

and how we can combine this with the possibility of row subsampling, before

we test our implementation against the current implementation of AGTBoost

as well as XGBoost and the automatic implementation of XGBoost, AutoXG-

Boost.
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2 Supervised Learning

In all statistical or machine learning, the goal is to learn some pattern from a

data set that also generalize to the full population of which this data set is a

sample. In general, the underlying distribution of the population is unknown,

and we want to extract information about this distribution from the data set

we have at hand, so that we can infer something about the distribution or new

data points from the same population, that thus share the same distribution.

Formally, we can say that given a data set D = (X,Y), where X is an Rn·m-

matrix containing the m explanatory variables of the n data points, and Y

is an Rn·1-vector containing the response values from the same data points,

consisting of n data points (xi, yi), where xi is an m-vector, and yi is a single

value, we assume that there exist some inherent relationship between X and

Y, and more specifically between each xi and yi,

yi = f(xi) + ε (1)

that is true for the entire population of which D is a sample. The matrix

X is also referred to the design matrix, and is a set of covariates, that are

also called predictors or independent variables, where the vector Y on the

other hand are referred to as the dependent variable. The term ε represents

a random error independent of X, with mean 0, and is an aggregation term

for everything affecting Y that is not encapsulated in X. The function f

represents the systematic part of the relationship between yi and xi, and is

the pattern we seek to recognize. Our goal is to find f or an approximation of

f , f̂ , that fulfills the purpose of inferring information about the distribution of

each (xi, yi) in a best possible way. What information wee seek and what best
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possible means and how this is measured is dependent on the specific problem

at hand, the user and the area of usage.

In supervised learning we are, as the name suggest, in some sense supervis-

ing the learning process, by having access to the true response values Y of D.

We use this to form f̂ in a way such that the fitted values Ŷ = f̂(X) resembles

Y. In general, we reduce the task of finding f to finding the f̂ that minimizes

the expected error between the fitted values Ŷ and the true response values,

Y, for a chosen error measuring function known as a loss function. This is a

function that maps any values for one or more variables into a single measure

of loss or error. When having estimated Ŷ, we feed these and Y into the

chosen loss function, which outputs a single comparable loss value.

So if we let xi ∈ Rm be an unseen data point with m features, and yi ∈ R

be the corresponding response value, the goal of supervised learning is to find

a function f̂ that minimizes the expected error for the estimated value ŷi given

the true response value

f̂ = arg min
f
Exi,yi [l(yi, f(xi))], (2)

measured by some loss function l(., .) over the joint distribution of all (x, y).

The true relation f is of course typically unknown, as this is what we seek to

approximate, so in practice (2) is reduced to finding the empirical error over

the training set, the set of data used for training,

f̂ = arg min
f

1

n

n∑
i=1

l(yi, f(xi)). (3)

The goal however, is still to find a function that generalizes to the full

data population, specifically unseen data, and that minimize the error over
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2.1 Learning Model and Model selection

that data. When on contrary using the empirical error over the same data

for training and evaluation, we expect that the error over unseen data, the

generalization error, will be higher than the error over the seen data, the

training error. Due to the training loss being an optimistic estimate of the

generalization error, this gap is called optimism, and because of the optimism,

minimizing the training loss is not equivalent with optimizing the model for

generalization. Further, the function f̂ discussed in this section is normally

an optimized function from a pre-selected model class and learning algorithm

with a range of inherent constraints and limitation, so having optimized f̂ ,

how do one know that our model is good generally speaking?

2.1 Learning Model and Model selection

To solve a learning problem, we want to find the solution to Equation (3). In

theory, f can take any functional form, and to search trough the entire function

space is both conceptually and computationally infeasible. This means that

in order find a solution, we need to restrict the set of possible functions to

a subset of the full hypothesis space. The restriction is done by defining of

which model class f belongs, meaning that we assume some general form or

structure of f . Now, having restricted f to a predefined model class, the

learning problem is effectively turned into a feasible optimization problem,

where we now in general minimize the empirical error over the training set

given the predefined model class. We must also define a learning algorithm

suited for solving this optimization problem. This learning algorithm takes as

input the dataset D and outputs the fitted model f̂ , and is the machine aspect

of the machine learning problem. If we let f = f(·; θ) where the function f of

a predefined model class are specified by a finite set of parameters θ that we
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2.1 Learning Model and Model selection

optimize, what we do specifically is finding

θ̂ = arg min
θ
l(Y, f(X; θ)). (4)

But optimizing one algorithm is rarely sufficient to achieve a satisfying

model, or in any case knowing to have achieved a satisfying model, and as we

know that this optimization is done over training data, even that one algorithm

is rarely optimized for generalization purposes which is the real target. There

are also no one model class that performs best or even sufficient for all datasets,

so one wants to optimize a range of different models and compare the lot to

select the best one. A standard way of going about this issue is to hold out

a subset of the data available as a validation set, and evaluate the models

on this validation data which is unseen at training time. As this can be

largely impacted by the way the validation set is sampled, it is common to

do cross validation, where validation and training sets are sampled from the

data multiple times, each time optimizing the models on the training data

and evaluating on validation data. The evaluation are then averaged over the

multiple different optimizations before the best algorithm for the current data

are selected and trained on the full data set.

Another obvious way to find the best model in regards to generalization

is to estimate the generalization error directly by estimating the optimism

and adding in to the training error. Several methods exists for this purpose,

of which two of the most known are Akaike Information Criterion (Akaike,

1998) and Schwarz Information Criterion or Bayesian Information Criterion

(Schwarz, 1978). In the next section we will discuss these methods after an

elaboration on the term optimism.

12



2.2 Optimism

2.2 Optimism

Still considering a the design matrix X and the corresponding response vector

Y, and letting f(x; θ) be the function for modeling Y given X with a set of

parameters θ, with θ̂ = θ̂(Dn) being the parameters learned from the training

data Dn, we draw a new data point (x0, y0) with the same distribution as each

(xi, yi) ∈ Dn. Then we have

ErrD = Ex0,y0 [l(y
0, f(x0; θ̂))] (5)

is the generalization error, the expected loss value for the true response y0 and

the predicted value from the fitted model, f(x0; θ̂) for the given loss function.

In accordance with Lunde et al. (2020) we use

Err = Eθ̂Ex0,y0 [l(y
0, f(x0; θ̂))] (6)

As a measure of this generalization error. Fitting the function f(xi; θ) to the

training data means we are adapting θ to achieve the best possible fit for our

model over that exact data as in Equation (3). This means that the training

loss,

err =
1

n

n∑
i=1

l(yi, f(xi; θ̂)), (7)

the averaged loss over this same data used for training, will be overly optimistic

as an estimate of the generalization error, and thus the name optimism. We

define here this optimism as

op = Err − err. (8)
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2.2 Optimism

Now, what is interesting for us is the expected optimism over the training set

which we denote

C = Ey(op) (9)

The definition of the optimism gives us the relation

Err = err + C (10)

So if one can estimate the optimism, one can use it to evaluate a model di-

rectly through the training loss by adding the optimism to get an estimate of

the generalization error. This is also the main contribution of Lunde et al.

(2020) which forms the basis for Automatic Gradient Tree Boosting, and will

be elaborated in Section 2.3 and Section 5.2. By this approach, the super-

vised learning problem is changed from minimizing the empirical loss over the

training data to minimizing the sum of the training loss and the estimated

optimism.

One can show that the expected optimism over the training set in general

can be expressed by two times the covariance between yi and ŷi averaged over

the training set,

C =
2

n

n∑
i=1

Cov(ŷi, yi) (11)

(Hastie, Tibshirani, & Friedman, 2009, p. 229). This implies that the more

each yi, the true response value of the training data, impact the predicted

values ŷi, the larger the optimism, as cov(yi, ŷi) will be larger the more yi

affects ŷi. In the next subsection we will take a look at how this optimism can

be estimated.
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2.3 Estimating the optimism

2.3 Estimating the optimism

As mentioned previously, one can deal with the optimism of the training error

by estimating the generalization error as a sum of the training error and some

estimate of the optimism. One usual way of doing this is to estimate the

optimism by some complexity term indicating how complex the function f is.

The idea behind this is that the more complex a model is, the more flexible

it will become and the stronger it will adapt to the training data. We know

from Equation (11) that the optimism is driven by how much the training data

impacts the predicted values, and therefore also by the complexity of f . It is

not obvious however how to define or measure the complexity and flexibility

of a model.

In terms of learning models we separate between parametric models, where

we assume the functional form of f and the parameter set is fixed, and non-

parametric functions where we do not make such assumptions, and where the

parameter set can grow with the size and properties of the training data, and

thus the models are free to learn in principle any functional form from the

training data. When dealing with parametric models, the straight forward

way to measure complexity is by counting the number of parameters.

When ŷi is obtained by a linear fit with d coefficients from d inputs or basis

functions, the right hand side of Equation (11) simplifies (Hastie et al., 2009,

p 229), for instance for the model of type Y = f(X) + ε, in which case

N∑
i=1

Cov(ŷi, yi) = dσ2
ε . (12)

Now, combining Equation (12) with (11) and (10) we get an estimate of the

generalization error
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2.3 Estimating the optimism

Êrr = err + 2 · d
N
σ2
ε (13)

that increase with increase in inputs or basis functions and decrease with in-

creasing number of training observations. The AIC which is similar to this,

but formally operates with the log-likelihood of the training data as opposed

to the training loss err, exploits the relationship

−2 · E[logPrη̂(Y )] ≈ − 2

N
· E(

N∑
i=1

logPrη̂(yi)) + 2 · d
N

(14)

which holds asymptotically as N → ∞ (Hastie et al., 2009, p 230). Here,

logPrη(Y ) is the log-likelihood of Y under the distribution η and η̂ is the

maximum likelihood estimate of η. The right hand term of this is the AIC,

and when using this to compare models trained on the same data, the N term

is simply a scaling term, so one chose the model where

AIC = −2 · E(
N∑
i=1

logPrη̂(yi)) + 2 · 2 (15)

is minimized. When comparing models of the same model class with different

parameter tuning and noise variance σ̂ε, Hastie et al. (2009, p 231) defines

AIC(a) = err(θ) + 2 · d(θ)

N
σ̂ε (16)

where θ is the tuning of the parameter set. We select the model f(·; θ̂) with

the tuning θ̂ that minimize the AIC.
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2.3 Estimating the optimism

However, Equation (12) only holds for linear models where the parameters

are not chosen adaptively, meaning that AIC can not be utilized for non-

parametric model classes. Here, one rather has to indirectly estimate the

effective number of parameters. In the case of AGTBoost, we will see how this

is done in Section 5.2, but before that we need to understand the base learner,

the tree part, of AGTBoost.
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3 Tree Based Methods

We will in this section describe tree methods, which is the base learner class

of gradient tree boosting. In particular we will discuss the classification and

regression trees, CART, as this simple three method variant is used as the

base learner of XGBoost and is similar to the base learner of AGTBoost.

Tree algorithms work by segmenting the predictor space, that is the set of

possible values for xi, in non-overlapping regions R1, R2, ...Rj, and then making

predictions or inference based on the distribution of the data in each region.

An example of a decision tree segmentation can be seen in Figure 3.1.

The set of splitting rules that defines the segmentation can be visualized

as a tree, as can be seen in Figure 3.2. At the very top, we have the so called

root node. All data are passed to this node and evaluated in regards to its

attributes, and a splitting rule is decided and split made. Each outcome of

the split results in a branch springing out of the node. Each of these branches

then leads to another node, which can be either a new decision node or a

terminal node or leaf node. A decision node is simply a node where a split

decision is made, thus a decision node also has two or more child nodes, of

which the decision node is the parent node. Say the node is a decision node,

then the data in that leaf, the observations in the part of the predictor space

corresponding with the branch leading to that node, are yet again split based

on another rule. There will then be new branches based on that last splitting

rule, and so on until every branch leads to a leaf node. At the leaf or terminal

node, the data in the region which possesses all the attributes corresponding

to the decision rules forming the branches that lead up to that leaf node are

assigned to that region, and prediction or inference are made based on the

distribution of all the data in that region. Predictions springing from a leaf
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Figure 3.1: Segmentation of predictor space produced by a decision tree trained on
the Iris dataset, with Sepal Length and Sepal Width as explanatory variables and
Species as response variable. The coloring of each region indicates what prediction
is made on data points with the corresponding length and width values, and each
points indicates an observation in the training data. The decision tree is made with
the R-Package rpart() (Terry Therneau, 2019)
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node is typically simple such as a constant, a single class or probability. For

regression, the constant prediction is often the mean of the data contained in

that region, and for classification the prediction can typically be the majority

class or in case of binary classification the proportions of the classes.

Since considering every partitioning of the predictor space is infeasible, in

fact learning a tree model is NP-Complete (Hyafil & Rivest, 1976), the splitting

is in practice done sequentially in a greedy manner, the same way as the tree is

built up. Starting in a root node where the full dataset is evaluated, we make

the best possible split in that point. Considering all predictor variables and

all possible values of each variable, we find the point that optimize the target

function from the prediction made given that split. In each child node we

do the same, but now only considering the data passed to that specific node.

The splitting is continued recursively as long as it is still possible to further

improve the target value, and no stopping criteria is reached. If the target

function is a loss function over the training instances it will, if we assume

no identical xi’s, always be possible to improve this until all leaves consist a

single observation and all predictions are identical with the response values.

Since the decision tree is so flexible, being able to perfectly fit a training set,

it is also prone to overfitting, and thus one may specify some stopping criteria

such as a maximum number of leaf nodes or maximum depth of a tree or a

minimum number of observations in a leaf node. Other regularization methods

are also possible. After the splitting, we have what we call the decision tree.

Based on this tree and more specifically the data partitioning rules, we make

a prediction for all observations that falls in the same leaf or subset, based on

the distribution of the training data in that subset.

Three methods can be utilized for both regression and classification pur-

poses.
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Figure 3.2: The same segmentation as in Figure 3.1, here depicted with the splits
as a tree. The decision tree is trained on the Iris dataset, with Sepal Length and
Width as explanatory variables and Species as response variable. The coloring of
each leaf indicates what the majority class in each leaf is, and thus which class the
decision tree would predict for a new observation in that leaf. The decision tree is
produced with rpart() (Terry Therneau, 2019), and the plot is made with R-Package
rpart.plot() (Milborrow, 2021)
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3.1 Classification and Regression Trees

3.1 Classification and Regression Trees

One specific algorithm for creating a decision tree is the Classification and

regression Trees (CART) proposed by Breiman et al. (1984). Here, all decision

nodes are binary meaning that there are always two branches connected to the

node, and the tree splits the data recursively in two halves. Each split is made

to minimize a measure of impurity for the two child nodes, but the measure

varies depending on which type of regression or classification we are doing.

3.1.1 Regression Trees

In regression problems, the response variable is as we know of a quantitative

nature, meaning it takes on numerical values. The task is to predict values as

close to the true values as possible. For regression trees in the CART frame-

work, this translates into using residual sum of squares to measure the impu-

rity of a node. The idea is to split the predictor space into B non-overlapping

regions, R1, R2, ..., RM to minimize the residual sum of squares(RSS)

m∑
m=1

∑
i∈Rm

(yi − ŷRm)2 (17)

over all leaf nodes. Here, ŷRm is the constant prediction made for the ob-

servations that fall in region Rm. Since we have to take a greedy recursive

approach starting from the top node, in contrast to optimizing (17) directly,

we evaluate at every node all possible split points and select the split where

the two child nodes has the lowest possible RSS, without considering possible

splits further down the tree. If we denote the split point at feature j by sj,

when splitting node t containing the set of instances It we seek to find the
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3.1 Classification and Regression Trees

(j, sj) that minimize

∑
i:xi∈IL(j,sj)

(yi − ŷIl)2 +
∑

i:xi∈Ir(j,sj)

(yi − ŷIR)2. (18)

Here, IL(j, sj) = {i ∈ It : xij ≥ sj} and IR(j, sj) = {i ∈ It : xij > sj} are the

instances from node t falling in the left and right child node respectively. All

splits made from node t and below are only relevant for the instances falling

into node t, so we have to only consider It when evaluating splits.

This process is done recursively until no reduction in RSS is possible.

As noted above this is only true when each leaf node contains one training

instance, so normally one constraints the tree with a stopping criterion. When

reaching the stopping criterion, the recursive splitting is stopped and we make

a constant prediction, cm for each region m,

f̂(X) =
M∑
m=1

cmI(x ∈ Rm) (19)

which minimize the RSS of the predicted and the response values of the train-

ing observations falling in that region.

3.1.2 Classification Trees

A classification tree is much the same as a regression tree. Of course in the

classification setting we are interested in our tree predicting a class rather than

a value, so the classification tree is made to predict to which class an instance

belongs. There are different ways to measure the impurity of a classification

tree, and Breiman et al. (1984, p 103) suggest two in the CART framework.
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First is the cross entropy, where one select regions to minimize

−
M∑
m=1

K∑
k=1

pmk log pmk (20)

Where p̂mk is the fraction of training instances of class k in region m. Later

they also suggested minimizing the Gini index

M∑
m=1

K∑
k=1

pmk(1− pmk). (21)

Both of these favors regions with class fractions close to 1 and 0, which

translates into homogeneous regions in terms of classes represented. Of course,

just as the regression tree, we are not actually minimizing these measures, but

instead locally minimizing the cross entropy or Gini index in the two child

nodes resulting from a split. The resulting prediction of a classification tree is

simply arg maxk p̂mk, which is the majority class of the leaf node. However,

we are often interested in the probability of an instance belonging to a specific

class, but it is technically trivial to instead return the fractions pmk which

approach the probability as n goes to infinity.

3.2 Regularization

As we have noticed, decision trees are prone to over-fitting, and as long as

all training instances can be separated in terms of its features, the CART

algorithm presented will always result in a perfect fit to the training data in

case no stopping criterion is present. A stopping criterion can be of different

forms, but the goal is always to reduce the number of splits while at the same

time keeping the most important. There are at least tree usual stopping criteria
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that sets a absolute limit on the tree. One is to set a maximum depth on the

tree, such that there are a maximal number of subsequent splits. Another is to

set a maximum number of leaf nodes, which obviously will create deeper but

narrower trees. A third is to set a minimum number of instances in each leaf

node, such that no split will be made to create nodes with a smaller instance

set that the minimum.

All three of these criteria limits the structure directly in some manner, and

does not consider the actual reduction in impurity caused by a split. One

other stopping criterion or rather splitting criterion that does consider this

is a minimum reduction in impurity to execute a split. The problem with

this is that it is possible for a split that causes only a slight reduction to

enable later splits that causes large reductions. Therefore, another possibility

is to first build a large tree without restrictions, and than after the tree is

built, consider each split and the subtree resulting from that split to see if the

split causes a reduction in impurity dominant to the negative effect of a more

complex tree. If that is not the case, one removes the subtree from the tree

and continue the process for all subtrees. This process is called pruning.

3.3 Ups and downs with trees

Trees are conceptually very simple, they are easily comprehensible and the

decision making down to the splitting criteria is something that may resemble

human decision making in many cases and that easily can be visualized and

interpreted in a practical manner. However, a tree does not have the same

predictive accuracy as other simple regression and classification approaches

such as linear and Logistic Regression, K-Nearest Neighbors, Support Vector

Machines, Neural Networks and more. Second, decision trees have high varia-
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3.3 Ups and downs with trees

tion, meaning that changes in data used for training, however small, can have

big impact on a single decision tree. In Section 4 we will explore boosting, a

method that deals with both of these limitations.
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4 Gradient Boosting

In this section we will discuss ensemble methods, and in particular boosting

and a variant of this called gradient boosting. Ensemble methods are methods

to combine outputs from multiple learners with the hope that the ”committee”

of learners are more powerful than each of the individual learners. Considering

trees in particular, two of the downsides are as noted low predictive power and

high variance. Combining multiple trees into an ensemble can possibly deal

with both of these downsides (James, Witten, Hastie, & Tibshirani, 2013,

p. 316).

4.1 Ensemble Methods

The general idea of ensemble methods is to train multiple base learners and

combining the weighted outputs into one output. This can be described as an

additive expansion of the form

f̂(x) =
M∑
m=1

cmTm(x) (22)

where Tm(x) represents a base learner and cm some constant that represents

the weight we assign to the output of each base learner. The cm can be different

for each learner, but a natural approach is to simply average the output leaving

cm = 1
M

. The problem of (3) then turns into finding the combination of base

learners which output minimize the empirical training loss. Optimizing (3)

Ensemble methods perform extremely well in a variety of problem domains,

have desirable statistical properties, and scale well computationally (Seni &

Elder, 2010), and trees are some of the most used base learners. Finding the

combination of learners that optimize the ensemble is infeasible even if we
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restrict the individual learners, so we need a strategy to find a good ensemble.

One of the possible strategies for building an ensemble is called boosting, which

will be discussed in the next subsection.

4.2 Boosting

One way of building an ensemble is by a method called boosting. The basic

approach is to sequentially train a set of learners, with each learner considering

the output of the ensemble of previously trained learners, adding the current

learner to the ensemble before training the next one. Boosting can in theory

be applied with any base learner, with trees being very popular. The main idea

of boosting is the same as that of ensemble methods in general, to combine

the output of multiple base learners into one ensemble, efficiently making a

strong learner of weak ones. If we let F (xi; θ) be a function mapping xi to yi

that we want to approximate, Friedman et al. (2002) show that the boosting

procedure fits an additive model of the form

F (K)(xi; θ̂) =
K∑
k=1

βkfk(xi; θ̂k) (23)

Where fk(xi; θ̂k) is the individual base learner. Each base learner is a function

of xi with a given structure optimized with the set of parameters θ̂k, at boosting

step k, and βk is the expansion coefficient at step k weighting the k’th base

learner.

Boosting is a forward stage-wise additive technique, meaning it essentially

consists of creating multiple learners in a consecutive order, all fit by, in gen-

eral, minimizing a loss function over the training data set, where each learner

takes into consideration both the output of the previous learners and the re-
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4.2 Boosting

sponse values Y (Hastie et al., 2009, page. 342). In this way, the ensemble

of weak learners are boosted into a strong learner which is the full ensem-

ble. Our goal of boosting is to minimize the generalization error for the final

ensemble by minimizing the training loss value for some loss function. To

solve this optimally, each weak learner fi should be fitted considering all other

learners in the ensemble, both former and future. As this problem in general

is intractable, boosting is generally done in a sequential, greedy manner. In

particular f0 is trained in conventional manner to considering (X,Y), and fk

is trained considering (X,Y) and the ensemble consisting of the k − 1 first

learners. So if we suppose we have an ensemble model with trees, fk−1, where

k− 1 trees already have been selected, the theoretical objective of fk, the k’th

and next tree in boosting reduces to

f̂k(x) = arg min
fk

Ex,y[l(y, f
(k−1))(x) + βkfk(x))]. (24)

Combining all these weak base learners in the end gives an ensemble of

weak decision rules, combined into one more complex. The learner fk may in

principle be any function, but in practice this is often a simple, weak learner.

In general, having a learner fk(X; θ), the full boosting procedure is

Algorithm 1 Boosting

1. Initialize f0(X)

2. For b = 1 to B:

(a) Compute arg minθ l(y, f
k−1(X) + βkfk(X; θ))

(b) Set fk(x) = fk−1 + βkfk

Boosting emerged first when Shapire (1990) constructed the theoretical
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4.2 Boosting

idea of boosting. This initial contribution to boosting then opened the doors

for maybe the most influential boosting Algorithm, the Adaptive Boosting

algorithm for classification, AdaBoost (Freund, Schapire, et al., 1996). It is

adaptive in the way that it adaptively reweights the training data with a

distribution D based on the previous classifier’s classifications, or in particu-

lar misclassifications. AdaBoost then uses the weights of the data points to

construct a new classifier and determine the size of its vote based on the mis-

classification rate. AdaBoost typically uses small classification tree or simply

tree stumps as base-learners and at the time dramatically outperformed the

single tree and other single base-learners (Ridgeway, 1999), (Meir & Rätsch,

2003), as well as performing well, and more often than not better, than other

ensemble methods (Breiman, 1996b), (Dietterich, 2000). The AdaBoost algo-

rithm is a simple boosting algorithm that very much resembles those of the

most popular boosting implementations of today.

Schapire et al. (1998) gave an upper bound for the generalization error of

an voting classifier such as AdaBoost, and proved that this does not depend on

the number of classifiers combined, but on the distribution of the confidence

on of the classification results from the classifiers, which is called the ”margin”,

together with the size of the training data as well as the complexity of the base

learners. Since AdaBoost produce a good margin distribution, they claimed

this could explain the success of the method. Breiman (1997) gave the math-

ematical explanation, and showed that what AdaBoost is doing is optimizing

this margin distribution. He claimed however that this could not be the full or

true explanation, as he was able to produce an algorithm with a better margin

distribution which performed worse. Reyzin and Schapire (2006) later found

that the poorer performance by AdaBoost could be explained by the higher

complexity of the base learners in Breiman’s algorithm.
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4.2 Boosting

Algorithm 2 AdaBoost (Freund et al., 1996)

Input:

� design matrix X ∈ RN ·M and response vector Y ∈ RN ·1

� weak learning algorithm f(X; θ)

� number of iterations K

Initialize D1(i) = 1/n for all i Do for k = 1, 2, ..., K:

1. fit f to (X,Y) given Dk

2. get back hypothesis hk : ŷ = f̂(X; θ̂)

3. calculate the error of hk: ηk =
∑

i:ht(xi)6=yi Dk(i). If ηk > 1/2, then set K
= k-1 and abort loop.

4. set βk = ηk/(1− ηk).

5. Update distribution Dk: Dk+1(i) = Dk(i)
Zk
·

{
βk if hk(xi) = yi

1 otherwise

Output the final hypothesis hfin(x) = argy∈Y max
∑

k:hk(x)=y
log 1

βt
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4.3 Gradient Descent

The findings of Breiman, that AdaBoost success was due to the optimiza-

tion of an objective function, namely the margins, led to Friedman (1999)

and Mason et al. (1999) independently developed a generalization of this ob-

jective function optimizing boosting, Gradient Tree Boosting. To understand

why it is called ”Gradient” Tree Boosting, we will first explain the concept of

Gradient Descent, before exploring how this is used in a boosting setting.

4.3 Gradient Descent

To solve Equation (24), we need some optimization method. Gradient descent

is a method where the idea is to find the direction of the gradient of some

function g you want to minimize, and then take a step in that direction. If we

let g = g(X; θ) be an objective function of X with a set of parameters θ that we

want to minimize. The idea is then to calculate the gradient of g with respect

to θ, ∂θg(X; θ), and then updating the parameters θ in the negative direction

of the gradient. We then recalculate the gradient with respect to the updated

parameters and take another step and so on. As the gradient ∂θg(X; θ) points

in the direction of the steepest ascent, the direction of steepest descent is given

by −∂θg(X; θ). Moving in this direction will eventually cause the gradient in

that same direction to be non-negative, meaning one can no longer improve

the loss by moving on that line. At that point, one should again find the

gradient at the new point and do a new minimization in the new steepest

descending direction. Usually, one however does not want to move all the way

to the minimum at each line of descent, as any movement from the starting

point may change the direction of the gradient. The standard procedure is to

move in the direction of the gradient only by some small step size λ that we

call the learning rate, thus we have formally θ = θ − λ · ∂θg(X; θ).
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4.3 Gradient Descent

To motivate the need for stochastic sampling in Gradient Tree Boosting,

we will conceptualize Gradient Descent as finding a route from an arbitrary

point to the, at least locally, lowest point on a height map. Starting out on

the given point, we move in the direction where the height decreases most

rapidly, we do this for a given step length or until we reach the minimum

along that line of direction, before we reassess the slope in all directions and

find a new steepest descending one. If we now imagine this height map in a

multidimensional setting, having as many dimensions as our design matrix X,

we can think of the value of the loss function over unseen data in a given point

on the multidimensional map as the true height of the terrain. The height

curves of the map correspond to the value levels of the objective function, and

the distance between the curves indicates the gradient. One must not confuse

the height indicated by the height curves with the real height of the terrain

the map represents, as any selection of data from a population will have a

distribution not identical to the entire population. By altering the selection of

training data, the height curves are somewhat altered, but as the training data

comes from the same distribution as unseen data, the map to some degree still

represent the true curvatures of the terrain. However, the smaller the size of

the training data, the more it will differ from the true population.

Now, imagine that you have moved to some valley, a local minima in the

objective function sense, where the height increases in all directions from the

point. However, there is a even lower valley next to it, separated by a hill

between. If we use the full training set when calculating the gradient, we will

never reach this lower valley, but if we select only a subset of the training set,

the height map changes, and the smaller the subset, the larger the change.

Now, if we are lucky, we select a subset such that the hill between the two

valleys disappears on the map, and there is a route with a decreasing height
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into the lower valley.

This strategy is known as Mini-Batch Gradient Descent or Stochastic Gra-

dient Descent, as the selection of the subset is done in a stochastic manner.

This strategy induces some randomness into the Gradient Descent, and in that

way has a regularizing effect on the Gradient Descent (Wilson & Martinez,

2003).

4.4 Gradient Tree Boosting

We now try to unite the idea of gradient descent with the one of boosting,

and focus on boosting with CARTs as defined in Section 3.1 as base learners.

There are many reasons why trees and in particular CARTs are well suited for

gradient boosting purposes (Hastie et al., 2009, p 351). First, it is very flexible

in terms of complexity, which range from the very simple tree stump model

with only one split and to a complete fit of the training data. Traditionally,

this means that the user will have to pre-define the allowed complexity in

terms of the regularization parameters from Section 3.2. The upside is that

this still leaves room for tuning complexity in accordance with the data in

question. Further, we will see later that it is possible to automate the selection

of complexity for the individual tree which means that we leave space for

the algorithm to learn an optimized complexity. Furthermore, trees naturally

incorporate both continuous and categorical variables including missing values,

and it is not sensitive to transformations of the data such as scaling. Feature

selection is done inherently, which mean it is insensitive to irrelevant features.

Trees are also natural good handlers of outliers, as the outliers has little effect

on the splitting procedure and only local effect on the leaf weights. It turns

out also that the expected reduction in training loss from the additional tree
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in an ensemble can be approximated by something that is very much related

to the weights of the three, which we will explore further in Section 4.5.

In gradient boosting, we are not doing gradient descent in parameter space

as in Section 4.3, but rather in function space. Decision trees partitions the

predictor space into T regions, R1, R2, ..., RT represented by a set of leaf nodes

L, assigning the same constant value wt for all instances present in a particular

region. With regression trees as base learners, we have that boosting fits an

additive model of the form

fK(x) =
K∑
k=1

fk(x) =
K∑
k=1

Tk∑
t=1

wtkI(x ∈ Rtk) (25)

(Friedman, 1999). Where fK is the ensemble of K trees which is to be seen as

the current approximation of f in our model yi = f(xi) + ε at stage K. The

indexes t and k indicates that we are in the t-th leaf and k’th tree. At each

step of the boosting procedure, a k’th tree are fit to the loss function given

the approximation of f consisting of the first k − 1 trees, F k−1(x) such that

f̂k(x) = arg min
fk

Ex,y[l(y, f
(k−1))(x) + fk(x))]. (26)

If we denote the current approximation of f at any point in boosting as F (x),

which is the ensemble consisting of the already fitted trees, we can view every

additional boosting step as a step in minimizing

φ((F (x))) = Ey(l(y, F (x))|x). (27)

From gradient descent we know that the direction of steepest descent in this
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optimization problem is

g(x) =
∂φF (x)

∂F (x)
. (28)

Now, the idea of gradient boosting is that having the ensemble fk−1(x) =∑k−1
m=1 fm(x), then analogous to gradient descent, let

fk(x) = −pkgk(x) = −pk
∂φfk−1(x)

∂F k−1(x)
(29)

Where pk is the step size. gk(x) is here the unconstrained gradient, but the

problem with using this is that it can only be evaluated at each xi and that

it does not generalize to other points. Therefore, we rather want to constrain

the step direction to be in the form of a CART, and thus find the CART that

is closest to gk(x). A solution to this is to do this in the squared error sense,

and find fk(x) such that

θk = arg min
θk

N∑
i=1

(−gk(xi)− f(xi; θk)) (30)

This is the same objective as for fitting a single tree for least squared loss,

with yi substituted by −gk(xi). This is exactly what Friedman (1999) does,

and the full algorithm for gradient boosting is then

4.5 Extreme Gradient Boosting

One of the most favored gradient tree boosting methods of the last couple

of years have been the one created by Chen and Guestrin (2016), Extreme

Gradient Boosting, or XGBoost. In this section we will present the XGBoost

algorithm as this acts as a basis for parts of the Stochastic Automatic Gradient

Tree Boosting.
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Algorithm 3 Gradient Tree Boosting

1. Initialize f0(x) = arg minf(xi)
∑N

i=1 L(yi, f(xi))

2. for k = 1 to K:

� For i = 1, 2, ..., N compute

rik = −
[
∂l(yi, f(xi)

∂f(xi)

]
f=fk−1

(31)

� Fit a regression tree to the targets rim giving terminal regions
Rjk, j = 1, 2, ..., Jk.

� For j = 1, 2, ..., Jk compute

γjk = arg min γ
∑
xi∈Rjk

l(yi, fk−1(xi) + γ) (32)

� Update fk(x) = fm−1(x) +
∑Jk

j=1 γjkI(x ∈ Rjk)

3. Output ˆf(x) = fK(x)
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In XGBoost, Chen and Guestrin implements for CART a approximation-

based boosting strategy originally proposed by Friedman et al. (2002). We

still want to minimize (24), but we want to approximate this with the training

data empirical counterpart, and do a second order taylor expansion around

ŷ = fk−1(x) to gain analytical tractability

l̂(y, ŷ + fk(x)) = l(y, ŷ) + g(y, ŷ)fk(x) +
1

2
h(y, ŷ)f 2

k (x). (33)

Here, g(y, ŷ) = ∂
∂ŷ
l(y, ŷ) and h(y, ŷ) = ∂2

∂(ŷ)2
l(y, ŷ) are first and second order

gradient statistics on the loss function. Now, (24), the theoretical objective to

be optimized at the k’th boosting iteration is replaced with

1

n

n∑
i=1

l(yi, ŷ
k−1
i + fk(xi)) ≈

1

n

n∑
i=1

(
l(yi, ŷ

k−1
i ) + gikfk(xi) +

1

2
hikfk(xi)

2

)
=

1

n

n∑
i=1

l(yi, ŷ
k−1
i ) +

1

n

∑
t∈Lk

(
∑
i∈Itk

gikwtk +
1

2
hikw

2
tk) =: lk(qk, wk)

(34)

where

gik = g(yi, f
k−1(xi))andhik = h(yi, f

k−1(xi)). (35)

For a given feature mapping qk the weight estimates ŵk minimizing lk(qk, wk)

are given by

ŵtk = −Gtk

Htk

, Gtk =
∑
i∈Itk

gik, Htk =
∑
i∈Itk

hik (36)

where Itk is the instance set of leaf t. Using the weights (36), the improvement

in training loss is given by

lk(qk, ŵ)− 1

n

n∑
i=1

l(y, ŷk−1i ) = − 1

2n

Tk∑
t=1

G2
tk

Htk

(37)
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Now, as mentioned in Section 3, finding the optimal tree structure would

mean considering every possible tree structure, which leads to combinatorial

explosion, and the splitting is therefore done in a greedy fashion (Chen &

Guestrin, 2016): In the above procedure, Rt(j, sj) is the difference in training

Algorithm 4 Extreme Gradient Boosting

1. Predict a constant value over all features, ŵ = −
∑n

i=1
gik
hik

2. For each leaf node t: For every feature j, compute the training loss
reduction

Rt(j, sj) =
1

2n

(
(
∑

i∈IL(j,sj)
gik)

2∑
i∈IL(j,sj)

hik
+

(
∑

i∈IR(j,sj)
gik)

2∑
i∈IR(j,sj)

hik
−

(
∑

i∈Itk gik)
2∑

i∈Itk hik

)
(38)

Where IL(j, sj) = i ∈ Itk : xij =< sj and IR(j, sj) = i ∈ Itk : xij > sj.
Select the split, s and sj where (38) is maximized creating two new
leaves from t.

3. Repeat step 2 until some tree complexity criterion is reached.

loss reduction (37) between a three where t is a leaf node and the same tree,

where t is a split node, with two child nodes L(t) and R(t).

4.6 Regularization in Gradient Tree Boosting

4.6.1 Learning Rate

One way to prevent overfitting of the individual base learner to cause overfit-

ting of the ensemble is the learning rate λ. The learning rate in boosting is

analogous to the step size in gradient descent. The best way to do gradient

descent would be to continuously evaluating the gradient and moving in the

direction of steepest descent by letting the step size go to 0, but one also has
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4.6 Regularization in Gradient Tree Boosting

to take into account the increased computational demands caused by a small

learning rate. With a learning rate close to 0, the impact of each base learner

is negligible, and the learning process takes a relatively longer time, and with

a learning rate of 1, there is no scaling. Reduced learning rate is however

associated with better performance, at the cost of increased computational

complexity.

4.6.2 Ensemble complexity

In the algorithms above, we have assumed an ensemble of K trees. This K has

to be set by the user, and is the last way of regularization that will be presented

here is to regularize the ensemble complexity. The most usual way of doing so

is to set a max limit on the number of boosting iterations. This reduces the

complexity of the ensemble at the same time as reducing the computational

cost. The optimal K will be dependent on the data in question, so a usual

way to select it is by cross-validation.
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5 Automatic Gradient Tree Boosting

Lunde, Kleppe and Skaug (2020) proposed a information theoretic approach

to automatically tune the complexity of a GTB ensemble. More specifically,

they introduce an upper bound for the reduction in generalization-loss from

adding another split to the single tree. This approximation is utilized for

model selection without hyperparameter tuning, which decrease the need for

user input, and relative with cross validated XGBoost drastically reduce time

spent on selecting a model with tuned parameters (Lunde et al., 2020).

They recognize that for all nodes in the single tree, the evaluation of

whether to make a new split or stop the tree splitting at a node is independent

of all other splits and nodes in the tree, and identical, with the only difference

being a different subset of the training data. Thus one only has to consider

the data passed to the node in question, and the split or no-split decision can

be made independently.

We know that in XGBoost, the decision of whether or not to split a node is

made based on a minimization of a regularized objective function evaluated on

the training data. A node is split at the point where it reduces the objective

function maximally, and the splitting process is continued as long as there

can be made a reduction in this objective function and until some complexity

threshold is reached. The goal of the process is of course to minimize the

generalization loss, for which we know this objective function, which includes

the training loss, to be an optimistic estimate.

With the information criterion approach of Lunde et al. (2020), one rather

finds an approximation of the optimism of the training loss reduction from a

node relative to the generalization loss reduction. One can then correct for

optimism in the training loss reduction, and find an approximation of the gen-
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eralization loss reduction, which in order can be used for decisions on when and

how to split a node and when to stop boosting iterations. Specifically, Lunde

et al. finds an upper bound of the optimism. The algorithm implementing

these results are called Automatic Gradient Tree Boosting or AGTBoost.

As said, the goal idea behind AGTBoost is to find approximations for the

generalization-loss counterparts of the measures of reduction in training loss

Rt and Rt(j), where

Rt(j) = max
sj

Rt(j, sj), j = 1, ...,m (39)

is the reduction in training loss conditional on feature j and

Rt = max
j∈(1,...,m)

Rt(j) (40)

is the unconditional reduction in training loss. The generalization-loss coun-

terparts are denoted R0
t (j) and R0

t respectively. This should further be done

in a way that excludes the need for manual tuning of hyperparameters.

If we recognize that the split/no-split decision at every node is identical,

except for different subsets of the training data being passed to each node,

we notice that at every node, we need to consider the two options of no-split,

leaving the node a root tree, consisting of a single node, and the do-split,

making it a stump tree, with two leaf nodes. Denoting the optimism of the

root model Croot and the stump model Cstump, we have that

Ey0,x0 [R
0(j)] = Ex,y[R(j)] + Croot − Cstump. (41)

And under the assumption that the features split over are independent of the

response y, Lunde et al. shows that the three terms on the right hand side
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of (41) may be estimated efficiently for each candidate split and allow for

correction of the training loss reduction for optimism, this will be elaborated

in Section 5.2.

In turn, this allows for some changes in the gradient tree boosting algo-

rithm. First, instead of K iterations of boosting, where K is selected as a

hyperparameter set before training, AGTBoost stops boosting at the moment

when

R̃δ = δ(2− δ)R1 + δ(Croot,1 − C̃stump,1) > 0. (42)

in words the moment when there is no reduction in generalization-loss from

splitting the top node of a new tree.

Second, the estimated generalization-loss also forms a natural stopping

criteria for node splitting in the individual tree. Instead of splitting up until

some regularization criterion is reached, the splitting of the single node at level

t is stopped when

R̃0
t < 0. (43)

Meaning that when (43) is true for all current leaf nodes, the tree building for

the individual tree is complete.

Combined, these two criteria for stopping of node splitting and tree boost-

ing removes the need of several hyperparameters that else would need to be

manually tuned, and we get the vanilla algorithm of AGTBoost.

5.1 Global Subset

Later, Lunde and Kleppe (2020) introduce a slight change to Algorithm 5.

Instead of continuing the splitting process of the single tree until no more

splits can be made with an reduction in generalization-loss, one can for each
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Algorithm 5 Automatic Gradient Tree Boosting Algorithm (Lunde et al.,
2020)

Input: - A training set Dn = (xi, yi)
n
i=1 - A differentiable loss function l(., .) -

A learning rate δ ∈ (0, 1]

1. Initialize model with a constant value: f 0(x) = argη min
∑n

i=1 l(yi, η)

2. while the inequality (42) evaluate to false

(a) Compute derivatives (35) given Dn

(b) Determine the structure qk by iteratively selecting the binary split
that maximizes (38) until the inequality (43) evaluates to true for
all leaf nodes t

(c) Determine leaf weights (36), given qk

(d) Scale the tree with the learning rate f (k)(x) = δwqk(x)

(e) Update the model Set fk(x) = fk−1 + fk

end while

3. Output the model: Return f (k)
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candidate split evaluate the expected generalization loss of splitting the root

node of a next tree with that of making the candidate split. If the expected

reduction is larger for the root split, one stops the splitting process, and move

on to the next tree. The effects of this implementation is that earlier trees

seems to grow much shallower, leaving space for later trees to learn (Lunde &

Kleppe, 2020).

5.2 Information Criterion

The main solution for automating the Gradient Tree Boosting in Lunde et al.

(2020) is the introduction of an information criterion as an approximation of

the optimism in Gradient Tree Boosting. As seen, by using an information

criterion for approximating optimism, one can add this to the training loss in

the training procedure to estimate the generalization loss directly and utilize

this for model selection. What Lunde et al. does is directly compare the

approximated generalization loss before and after any candidate split in the

tree building process to find the generalization loss reduction and evaluate

whether there is any gain from splitting any leaf node of the current tree or if

the splitting should stop at that point. This also facilitates the identification of

when to stop adding new trees to the ensemble, as there is no gain in splitting

the root node in the next tree, and the boosting is thus stopped.

The optimism of the model f , C, is by definition

C ≈ E[l(y0, f(x0; θ̂))]− E[l(y1, f(x1; θ̂))]. (44)

Here, (x1, y1) is an instance of the training data and (x0, y0) is an unseen data

point drawn from the underlying distribution of the training data. In general,
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5.2 Information Criterion

this optimism can be approximated by

C̃ = tr(E(∇2
θl(t, f(x; θ0))]Cov(θ̂)) ≈ C (45)

where θ0 is the set of parameters that minimize (2) and the approximation

θ̂ is not at the boundary of parameter space (Anderson & Burnham, 2004,

Eqn. 7.32), (Lunde & Kleppe, 2020).

Now, as mentioned in Section 5, in tree building we only need to consider

the decision of whether to split or not split the single node given only the data

passed to that node (Lunde et al., 2020), as this decision is independent on all

other splits made. If (41), the expected reduction in generalization loss caused

from making the split is positive, we split the node. To estimate (41), we use

Equation (37) to find the expected reduction in training loss when splitting on

feature j. We then need to find Croot, and since there by definition are no split

points in Croot, this can be estimated by (45) over the subset of data contained

in the particular leaf.

However, estimating Cstump is not so straight forward. Given a split feature

j and a splitting point sj this could be calculated (45) as the two resulting child

nodes can be treated as two root nodes with the respective proportion of the

training data according to the split sj. the problem is that the optimization

over which feature j and which point sj to split at also induce some optimism

into the model, and thus Equation (45) can not handle this directly.

The solution proposed by (Lunde et al., 2020) is to first consider the opti-

mism of the stump model Cstump(j) evaluated on a single fixed feature j, where

the j-th column of the training data design matrix xj = x.,j is assumed to be

independent of the response y. Then letting ui = i/n where f(·; ŵl(ui), ŵr(ui)),

i = 1, ..., n − 1 is the tree stump with observations x1:i,j in the left node and
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5.2 Information Criterion

xi:n,j in the right node, the distribution of the difference in training and gen-

eralization as a function of i converges to what can be expressed by the joint

distribution of C̃root(1 + S(τ(u)) as

n[Ey0,x0 [l̂(y
0, f(x0; ŵl(ui), ŵr(ui)))−l̂(y, f(x; ŵl(ui), ŵr(ui)))]

D−−−→
n→∞

nC̃root(1+S(τ(u))).

(46)

Here, S(τ(u)) is a stochastic process with dynamics given by

dS(τ) = 2(1− S(τ))dt+ 2
√

2S(τ)dW (τ) (47)

where W (τ) is a Wiener process. The time τ follows τ = 1
2

log u(1−e)
e(1−u) where

u = min[1 − ε,max(ε, i
n
)], 0 < ε << 1. We notice that S(τ(u)) is a function

of the splitting point of the feature j. If we suppose that x.j contains a + 1

distinct values, there are a different possible split points for this feature, we

can solve this by taking the expected maximum of [C̃root(1 + Sτk)]
a
k=1.

Now we have an upwards biased approximation to Cstump(j),

C̃stump(j) = C̃root(1 + E[ max
1≤k≤a

S(τk)]) (48)

that converges to Cstump(j) as n→∞ (Lunde et al., 2020).

If we then let

B(X) = max1=<j=<mBj(x.j), Bj(x.j) = max1<=k<=aSj(τk). (49)

and take the expectation of the maximum over both j and k, we get an upwards

biased approximation of Cstump optimized over multiple features. B(X) is here

defined by a specification of the Cox-Ingersoll-Ross process (Cox, Ingersoll,

& Ross, 1985). This is then approximated using the Gumbel distribution
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(Gombay & Horvath, 1990) (Lunde & Kleppe, 2020). To make this generally

applicable to the node t to which the fraction of data passed is πt, we let

C̃stump = πtC̃root(1 + E[B(x)). (50)

By the assumption that the Bjs are independent, Croot is shown to be cal-

culable using the sandwich estimator (Huber et al., 1967) and the empirical

Hessian matrix (Lunde et al., 2020).
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6 Stochastic Automatic Gradient Tree Boost-

ing

AGTBoost as described by (Lunde & Kleppe, 2020) has some limitations com-

pared to the most popular implementations of GTB. The one that is explored

further in this thesis is the lack of subsampling, which is an important tech-

nique that has a regularizing effect and is known to improve performance

(Friedman, 2002).

6.1 Sampling in Boosting

One problem of the single decision tree is that it suffers from high variance

(James et al., 2013, p. 316). This implies that when fitting trees on different

parts of the same data, the produced decision trees can differ substantially

based on the observations selected for training. Breiman (1996a) introduced

a concept that reduces this problem, namely bagging or bootstrap aggrega-

tion. This concept is similar to boosting in the way that is aggregates multiple

learners in order to make a prediction. For each fitted learner, a new bootstrap

sample is drawn from the training data, injecting randomness into the proce-

dure. This reduces the variance in the final learner, which now is an ensemble,

and improves the performance. Friedman (2002) took concept of subsampling

the training data into boosting, specifically by drawing a subsample of size

α ∈ (0, 1] without replacement at each iteration of the boosting procedure.

This is referred to as Stochastic Gradient Boosting. Friedman indicated that

stochastic gradient boosting may outperform deterministic gradient boosting,

where α = 1, depending on the specific problem and the sample size α. A

lower sample size increases variance in each individual learner, but this also
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reduce the correlation between the learners which may cause an averaging ef-

fect, and in that way lower the variance of the full ensemble. In addition to

this, subsampling in boosting is also helpful in the way that it reduces compu-

tational cost at each boosting iteration. The most popular implementations

of Gradient Decision Tree Boosting today also allows for subsampling between

tree building.

6.2 Creating the algorithm

The main focus of this thesis is the introduction of stochastic (sub)sampling in

the boosting process of AGTBoost. As seen in (Friedman, 2002), row and col-

umn subsampling in each boosting iteration, training the individual trees on

more or less varying data, can reduce the variance and increase the predictive

quality of the ensemble. We seek to introduce row sub-sampling in the AGT-

Boost procedure. In doing so, we seek to find an alternative to Algorithm

5. On the superficial level, the stochastic automatic gradient tree boosting

algorithm is similar to Algorithm 5 with some obvious changes.

We sample a subset Dζ from which we calculate a initial prediction, and

for each tree that are built in the boosting process, we sample a new subset

from which we built the trees. When evaluating (42), we evaluate R̃delta the

reduction in generalization loss for the entire training set. However, the evalu-

ation of optimism for each tree is done considering only the data points in the

subset Dζ . We know from Section 2.2 that optimism is an averaged measure,

and by considering the optimism for the subset only, we over-estimate the

optimism. This is easily seen considering that there are no optimism in the

expected training loss reduction for the data points not in the subset selected

for training that specific tree, and thus if we included the optimism from these
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Algorithm 6 Stochastic Automatic Gradient Tree Boosting
Input:

� A training set Dn = (xi, yi)
n
i=1

� A differentiable loss function l(., .)

� A learning rate δ ∈ (0, 1]

� A sampling rate s ∈ (0, 1]

1. Sample a subset D0
ζ ⊆ Dn with ζ = s · n observations

2. Initialize model with a constant value: f 0(x) = argη min
∑ζ

i=1 l(yi, η)

3. while the inequality (42) evaluate to false

(a) Sample a new subset D
(k)
ζ ⊆ Dn

(b) Compute derivatives (35) given Dζ

(c) Determine the structure qk by iteratively selecting the binary split
that maximizes (38) until the inequality (43) evaluates to true for
all leaf nodes t

(d) Determine leaf weights (36), given qk

(e) Scale the tree with the learning rate f (k)(x) = δwqk(x)

(f) Update the model Set fk(x) = fk−1 + fk

end while

4. Output the model: Return f (k)
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6.2 Creating the algorithm

points in the averaged measure of the optimism, it would decrease. Consider-

ing (11), we see that the optimism of the expected reduction in training loss

for the full training data is the optimism of the subset scaled by the sampling

rate. If we denote the optimism of the expected reduction in training loss from

the root and the stump model Cζ
root and Cζ

root respectively, we now seek the

point in the boosting process where

R̃δ = δ(2− δ)R1 + sδ(Cζ
root,1 − C̃

ζ
stump,1) > 0. (51)

There are however two obvious problems with this approach. First, when

using a subsample of the training data for training the tree, we must consider

the possibility that we select a subsample in which there is no possible reduc-

tion in generalization loss while this is still possible for the entire training set.

Second, we note that it is possible that even if there is no possible reduction

in generalization loss from the tree model fk(x) trained on the subsample Dζ
n,

it may exist a possible reduction in generalization loss from the tree model

fk+1(x) given fk(x). To cope with both of these problems, we do not want

to use (51) directly to identify the stopping point of the boosting procedure.

Ideally, we want to consider (51) for every possible subset and every possible

combination of subsets of Dn. With decreasing sampling rate and increasing

data size, this quickly becomes infeasible. We therefore introduce a function

P (s) which decides how many trees we allow to train without a reduction in

the estimated generalization loss for the ensemble before we stop the boosting

procedure.

In clear opposition to the goal of AGTBoost, namely to have a gradient

tree boosting algorithm free of tuning necessity, we now have two parameters

to tune, the sampling rate s and the function P (s, n). The function P (s, n)
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6.3 Sampling induced variance

is the easiest to tune considering the natural stopping point (51). The only

purpose of this function is to reduce computation time and complexity, and to

ensure the best possible tree ensemble, this should be set as high as possible to

maximize predictive power of the ensemble, and as low as possible to minimize

training time. With decreasing sampling rate, the trees will have a lower

covariance, and thus it is natural to have P (s, n) decreasing in s, and with a

value of 0 in s = 1. P(s) The optimal sampling rate S however, is dependent

on all the number of observations and variables in the data, how the response

variable is distributed and other properties. Thus, this must be tuned in a

much more careful way.

6.3 Sampling induced variance

One issue with stochastic compared to deterministic AGTBoost is that in

stochastic AGTBoost, when we sample a subsample of the training data at

random at each boosting iteration, we also randomize the tree built at each

iteration. This means that training multiple stochastic AGTBoost models on

the same training data is unlikely to produce the exact same ensemble. The

lower the sampling rate, the more different each ensemble will be to another.

This means that we can train multiple models on the same data having output

models with different predictive power. When evaluating methods, we also

have to take into consideration the variance of each method. Even though a

method is on average better than another, the average worse may be prefered

if the average best don’t produce as consistent as the worse.
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Figure 6.1: Mean squared error for each individual training of stochastic AGTBoost
with a constant sampling rate, with different maximal number of boosting iterations
with no reduction of generalization loss allowed. For each of the datasets in Table
3, 50 models for each maximum no reduction are fitted on the exact same train/test
split, thus all variance coming from the nature of the subsampling in training. The
lines indicates the relative averaged mean squared error over the 50 models for
each dataset. This is plotted for three different sampling rates, and it’s clear that
a higher maximum number of no reduction trees gives better mean accuracy and
lower variance, and that this effect is decreasing with increasing sampling rate.58
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Figure 6.2: Mean squared error for each individual training of stochastic AGTBoost
with a constant sampling rate, relative to the average mean squared error of deter-
ministic AGTBoost trained on the same data with the same train, test split. For
each of the datasets, the 50 models are trained at each sampling rate with the exact
same train, test split. All variation in performance for each datasets thus comes
from the algorithm. The datasets used are the 7 first datasets from Table 3.
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6.4 Dynamic Sampling

6.4 Dynamic Sampling

There is no obvious way for a particular dataset to decide the best sampling

rate without manual tuning. A normal sampling fraction is 1/2 (Hastie et

al., 2009, p. 365), but for many datasets it would be better with a smaller

fraction and for other a higher fraction. One other possibility is to use a

dynamic sampling rate. At first, this technique was proposed as a way of

tuning the sampling rate, with increasing sampling rate until the sample was

good enough, or representable, of the entire dataset (Provost, Jensen, & Oates,

1999), (John & Langley, 1996). Provost et al. proposes a general progressive

sampling method where the sample sizes are given by a sampling schedule

S = n0, n1, n2, n3, ..., nk (52)

where each ni is the number of samples used for training at the i’th stage of

training. Provost et al. defines ni as ni = n0 · ai, so that the sampling rate

changes with a rate of a at each stage, where John and Langley defines ni as

ni = n0 + (i · nδ) which Provost et al. calls arithmetic sampling. Lazarevic

et al. (2001) and Sadid et al. (2004) takes this into the boosting setting,

with something they call progressive boosting. Here, the sampling rate is

changed according to the sampling schedule in (52) at each iteration of the

boosting process. Inspired by this approach, we will in this thesis implement

the aforementioned progressive sampling techniques and some modified version

of these into the automatic gradient tree boosting. We will also propose two

other progressive techniques that we will implement. When implementing

progressive sampling into the AGTB setting, we have to take a couple of

things into consideration. First, progressive boosting as proposed updates the

sample size in each boosting iteration. This means that with in certain cases
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6.5 Sampling schemes

where a < 1 or nδ, there will be implied a maximum number of iterations, as

the sampling rate reaches 0.

As an alternative approach, we introduce another sampling schedule where

we do boosting with a given sampling rate until we no longer are capable

of improving our ensemble with the given sampling rate. At that point, we

update our sampling rate in an arithmetic or geometric fashion, and we keep

doing this for a given range of values. We also introduce two other approaches

with a random sampling rate where the sampling rate is randomly selected in

the allowed range. In the first approach, we randomly select a sampling rate

at each boosting iteration. For the other, we randomly select a sampling rate,

and continue boosting with this sampling rate until we no longer are able to

improve the ensemble. At that point, we randomly select a new sampling rate

and continue boosting. When we have tried a given number of sampling rates

without improvement, we stop the boosting process.

6.5 Sampling schemes

6.5.1 Random

The first sampling scheme we test is a random sampling scheme, where the

sampling rate is drawn uniformly at each boosting iteration. Since the sam-

pling rate is random, we allow for a relative high number of boosting iterations

without improvement, and the in this case namely 30. Letting the sampling

rate be random, we allow both for high sampling rates where we utilize all data

to find the best additional tree to the ensemble, at the same time allowing for

low sampling rates, which maximize the stochastic nature which we hope to

be useful.
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6.5.2 Half

The second sampling scheme we test is the Half-scheme. Here, we start out

at a relatively high sampling rate, close to or equal to one. When we are no

longer able to improve our ensemble, we half the sampling rate and continue

training, until we get to some predefined lower limit. The intuition behind this

scheme is to have a high sampling rate when we are far away from any minima

in the loss terrain, and lower and lower as we for each iteration are more likely

to get stuck in some local minimal, and want bigger jumps to find the best

directions. We denote this sampling scheme with Half(S) where S ∈ (0, 1] is

the starting sample rate.

6.5.3 Pulse

The third sampling scheme we test is the Pulse-scheme, where we start at a

sampling rate close to 1, and then decrease the sampling rate whenever we

are not able to improve the ensemble. If we however are able to improve the

ensemble at a lower sampling rate than 1, we reset the sampling rate to 1 and

start over. When we are not able to improve the ensemble for all sampling

rates down to a pre-defined lower limit, we stop the boosting process. By this

sample scheme, we allow for the same decreasing sampling rate strategy of

the Half scheme, but when improvement is made, we again try to find further

improvement at a high sampling rate, where we know the convergence to be

faster.

6.5.4 Switch

The last sampling scheme we test is a Switch-scheme. Here, we have two

sampling rates, in this case one high and one low, and when we are not able to
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improve the ensemble for one of them, we simply switch to the other. When we

are not able to improve the ensemble for any of the two, we stop the boosting

process. The idea behind this scheme is to train at a relatively high sampling

rate, but if for some reason we are not able to continue improvement, we

use a lower sampling rate to increase chances of getting out of local minima.

In contrast to the Pulse scheme however, we do not use multiple decreasing

sampling rates, which increases the time spent on training.

All of the Sampling schemes, except from the random one, comes from an

idea of initiating the boosting with a higher sampling rate and reducing it as

the generalization loss is reduced. The intuition behind this comes from the

idea of gradient descent, and the thought is that as the boosting progress, the

likelihood of finding a local minima increases, and the reduction in sampling

rate increases randomness and thus the chance of escaping these minima. As

one can see from Figure 6.3, most of the boosting iterations of all sample

schemes are done with the highest sampling rate, but continues with lower

sampling rates when the improvement stops on the higher one.

6.6 Implementation

The Stochastic Automatic Gradient Tree Boosting is implemented as part of

the gbt.train() function in the R-Package AGTBoost (Lunde, 2020), and is

available from http://github.com/eirikstad/agtboost. The implementa-

tion has introduced several new arguments for the function. Most impor-

tant it allows for input of a sampling rate or a list of sampling rates through

the argument sample rate. These sampling rates will be iterated through at

training time. A parameter step type is also introduced, and specifies how

the iteration should be carried out. For step type value ”std” it will per-
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6.6 Implementation
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Figure 6.3: Train, test and estimated generalization loss at each boosting iteration
for ensembles of each of the sampling schemes Switch, Half, Half(0.8) and Pulse,
plotted next to standard AGTBoost. The brightness of the points indicates which
sampling rate is used building the tree at the given boosting iteration.
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6.6 Implementation

Table 1: Sampling Arguments of gbt.train()
Argument Value Function Default
sample rate vector of or single float ∈ [0, 1) rate of row subsampling 1

step type ”std”, ”pulse” or ”repeat”
specifies how the sample
rates are iterated through

”std”

max max no red positive int
specifies how many iterations are
maximally allowed without improvement

10

Table 1: New arguments introduced to gbt.train() to facilitate sampling and the
different sampling schemes tested.

Sampling Scheme sample rate step type
Random 999 ”std”
Pulse seq(1,0.1,by=-0.1) ”pulse”
Half (1,0.5,0.25,0.125) ”std”
Half08 (0.8,0.4,0.2,0.1) ”std”
Switch (1,0.1) ”repeat”

Table 2: Argument settings of the different sampling schemes tested.

form boosting at each sampling rate as long as the estimated generaliza-

tion loss improves, and stop at the last sampling rate. For step type value

”pulse”, the boosting will start over at the first sampling rate listed every

time there is an improvement at another sampling rate. For step type value

”repeat”, the boosting will start over at the first sampling rate after the last

sampling rate as long as there was an improvement in the last round. The

last parameter utilized in this paper is max max no red, which specifies how

many boosting iterations allowed with no reduction in generalization loss.

For a given sampling rate, the maximal number of iterations is given by

max max no red − max max no red · sample rate3. This formula has the

property that it sets an absolute maximum for number of iterations, while at

the same time giving increasingly higher number of iterations for smaller sam-

pling rates. In table 2, the argument settings of the sample schemes compared

in this thesis are listed.
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7 Experimental design

We now have a way of training AGTBoost models with subsampling with

Stochastic AGTBoost. However, the sampling rate still needs to be manually

tuned, as there is no one sampling rate that suits all datasets. We have

introduced some ideas of sampling schemes that hopefully can eliminate the

absolute need of manually tuning the sampling rate. In the next sections, we

will test a handful of these sampling schemes on real and simulated datasets,

to identify if any of those can be used as a default sampling scheme which

can improve the AGTBoosting for all or at least a range of different datasets.

All results are relative to the results of deterministic AGTBoost as of the R-

package aGTBoost (Lunde, 2020), and in some cases we compare the results

to the ones of XGBoost (Chen & Guestrin, 2016) and autoXGBoost (Thomas

et al., 2018), with the two latter being restricted in terms of functionality not

yet implemented in AGTBoost to get comparable results. This means that

column subsampling are set to 1, and regularization methods such as L1- and

L2-regularization are set to 0, such that it matches the current implementation

of AGTBoost. We will do testing on a range of real and generated data sets

as seen in Section 7.1 and Section 7.2.

7.1 Real Data

Minding the evaluability of our testing, we use datasets from Introduction to

Statistical Learning (James et al., 2013) and Elements of Statistical Learning

(Hastie et al., 2009), the same as seen in (Lunde et al., 2020). We also include

the Higgs Dataset from (Baldi, Sadowski, & Whiteson, 2014). In total we have

7 datasets with continuous response variable, and 6 with a binary response

variable. These are summarized in Table 3.
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7.2 Simulated Data

Name dimensions response type train - test Source Package
Boston 506 x 13 continous 50 - 50 MASS
Ozone 111 x 3 continous 50 - 50 EOSL
Auto 392 x 310 continous 50 - 50 ISLR

Carseats 400 x 11 continous 70 - 30 ISLR
College 777 x 17 continous 70 - 30 ISLR
Hitters 263 x 19 continous 70 - 30 ISLR
Wage 3000 x 25 continous 70 - 30 ISLR

Caravan 5822 x 85 binary 70 - 30 ISLR
Default 10000 x 3 binary 70 - 30 ISLR

OJ 1070 x 17 binary 70 - 30 ISLR
Smarket 1250 x 6 binary 70 - 30 ISLR
Weekly 1089 x 6 binary 70 - 30 ISLR
HIGGS 12500 x 30 binary 50 - 50

Table 3: All datasets from the books (Hastie et al., 2009) and (James et al., 2013),
their number of observations and covariates, the type of the response variable, the
train and test split proportion and the source. The dimensions are after using
the R function model.matrix, which performs one-hot encoding and removes rows
containing NA values.

7.2 Simulated Data

In addition to these datasets, we will also generate some datasets with the

specified properties as seen in Table 4. By generating data, we can adjust the

size of the data, the number of explanatory variables, the number of those

explanatory variables that are dependent on the response variable, and also

add effects such as interaction effects between variables and adjust how each

variable on its own affects the response variable. We will try and generate a

wide range of datasets with different properties so that the model testing is

done on datasets as diverse as possible. We separate the datasets by 6 parame-

ters. Number of rows or observations in the dataset, the number of columns or

covariates, the number of dependent variables affecting the response variables,

whether there should be interaction effects between the dependent variables
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7.2 Simulated Data

Set Dimensions Dependent variables Interactions Polynomial degree
1 200 x 100 100 FALSE 0
2 200 x 100 100 TRUE 3
3 200 x 10 5 FALSE 0
4 200 x 10 5 TRUE 3
5 200 x 100 1 FALSE 0
6 1000 x 100 100 FALSE 0
7 1000 x 100 100 TRUE 3
8 1000 x 100 10 FALSE 0
9 1000 x 100 10 TRUE 3
10 1000 x 100 1 FALSE 0
11 200 x 250 250 FALSE 0
12 200 x 250 250 TRUE 3

Table 4: All simulated datasets, their number of observations and columns, the
number of columns affecting the response variable, boolean indicating whether there
are interaction effects between the dependent variables and the polynomial degree
of the variables

and if there should be a polynomial dependency between the dependent vari-

ables and the response variable. When generating the datasets, we calculate a

mean of the response variables to be a function of the dependent variables, and

then draw the response variables from a normal distribution with the given

mean and a standard deviation given by the standard deviation of the means

times a factor of 0.3. One can see the full set of artificial datasets in Table 4

In each dataset, the explanatory variables are generated from a normal

distribution with mean 0 and standard deviation 100, and with the given

number of rows and column. Then, the first a columns, a being the number

of dependent variables for the given dataset, are summed, divided by their

standard deviation and multiplied by 100 and added to the response mean.

If interaction effects are specified, the first column is multiplied with each of

the other dependent variables. The products are summed, divided by their

standard deviation and multiplied by 100 and added to the response mean. If
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7.2 Simulated Data

the polynomial are specified to larger than 1, each of the dependent variables

are multiplied with themselves as many times as specified, and this is added

to the response mean in the same way as earlier. The response variables are

then generated from a normal distribution with the the response mean and

standard deviation as specified.
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8 Experimental results

In this section, we apply our model with some selected sampling schemes to

the aforementioned data, and see how they perform compared to standard

deterministic aGTBoost, XGBoost and autoXGBoost.

8.1 One rate subsampling

The first stochastic AGTBoost algorithm we test is the one-rate subsampling

algorithm. Here, a sampling rate is selected pre training, and all trees are

trained on a subsample of the training set with size corresponding to the

selected sampling rate. For this thesis, we train models for samples rates

between 0.1 and 1, with an increment of 0.1, and compare each sampling

rate for each dataset. There is no reason to believe strongly that the optimal

constant sampling rate for any dataset lies in this set of sampling rates, but it

is a wide range spanning from a low sampling rate of 0.1 and the deterministic

model with a sampling rate of 1. Thus, this set is suited to investigate the effect

of increasing and decreasing the sampling rate for the given dataset. Further,

there is no reason to believe that the same sample size will be efficient for all

types of dataset, thus the approach with a constant sampling rate will typically

favor tuning of the sampling rate before training a final model. This is also

the reason why we have introduced sampling schemes in this thesis.

As we suspected, we observe from Figure 8.2 and Figure 8.1 that the most

beneficial sampling rate varies over both the real and the simulated datasets.

For some dataset, the best sampling rate seems to be around 0.2, while some

datasets need substantially higher sampling rates to even beat deterministic

AGTBoost. The smallest sampling rate tested, 0.1 is in no case the best

performing. We notice a trend over most datasets, that there seems to be
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8.1 One rate subsampling
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Figure 8.1: Average test loss for AGTBoost trained with constant sampling rates
relative to deterministic AGTBoost trained on the same datasets with the same
train/test splits. The datasets and loss functions are in accordance with Table 3.
For each dataset, we train 100 models on different splits of the datasets for each
of the sampling rates 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 and the test
loss is averaged over the different splits. The black line at y = 1 represents the
performance of deterministic AGTBoost.
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8.1 One rate subsampling
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Figure 8.2: Comparison of sampling schemes for simulated datasets corresponding
to Figure 8.1. Datasets and loss functions can be seen in Table 4

74



8.2 Sampling schemes

a drastic improvement in increasing sampling rate until some optimal point,

before the performance decrease at a slow rate as it approaches 1.

8.2 Sampling schemes

In the next section, we will present results from models trained with the dif-

ferent sampling schemes presented in Section 6.5. Common for these are that

we define some rule that decides at each boosting iteration the sampling rate

used for that particular iteration, and that this sampling rate varies over the

iterations. The motivation behind introducing sampling schemes is what we

know from the last section, that the optimal constant sampling rate varies

over different dataset. We therefore hope by varying the sampling rate over

the boosting iteration that we can find a scheme that performs well compared

to a constant sampling rate over a range of datasets, and in this way eliminate

the need for manual tuning of the sampling rate. We will present the sampling

schemes in an aggregated manner, so for details of any particular sampling

scheme we refer to Section 6.5.

We test the sampling schemes in the same way as we did for constant

sampling rates, by training 100 models for each scheme on each of the real

and simulated datasets and comparing the test loss to that of deterministic

AGTBoost.

Testing the sampling schemes on real data, we find that apart from the ran-

dom scheme, there are on average only small differences between the schemes

in terms of prediction accuracy. However, differences between the sampling

schemes for the single data set vary more. It is hard to recognize any sam-

pling scheme that overall outperforms the others, but we notice that all of the

non-random sampling schemes performs on par or better than deterministic

75



8.2 Sampling schemes
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Figure 8.3: Comparison of sampling schemes over real data. Averaged test loss over
the 13 datasets from Table 3 relative to AGTBoost for models trained with sampling
schemes. The constant scheme represent the best constant sampling rate for each
dataset, selected for each split by cross validation over the training set. For each
dataset and sampling scheme combination, 100 stochastic models are trained on 100
different train/test splits, and compared with a deterministic model trained on the
same splits. The mean test loss is averaged over the 100 training iterations, with a
95% mean confidence interval marked by same color lines.
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8.2 Sampling schemes

AGTBoost for the vast majority of datasets. In the case of real datasets, it

seems that tuning a constant sampling rate is favorable to using any of the

specified sampling schemes in terms of performance, even though for set 1

and 5 it is possible to dramatically increase performance by using a sampling

scheme instead of a constant sampling rate. We notice that for set 7, which

is a large data where we know it to be beneficial with a sampling rate around

0.9, the schemes Half 0.8, and switch seems to do substantially worse than the

constant sampling rate and the other sampling schemes.

Inspecting the results from the simulated data, we find that both Pulse and

Switch tends to do marginally better than the other sampling schemes and the

constant sampling rate, and may based on this seem like a preferred choice for

a sampling scheme. Interestingly, on the simulated data, not starting the Half

scheme with a deterministic sampling rate of 1 seems to be beneficial over all

but set 7, where there are only a small advantage of the Half sampling scheme

compared to Half(08). This result is not however consistent over the real data

sets, where if some, the advantage is the other way around. We notice that in

all cases, all sampling schemes apart from Random performs on par or better

than the deterministic AGTBoost, as well as the constant sampling rate.

We are not however only interested in the average performance, but also

the consistency over multiple trainings as noted in Section 6.3. In Figure 8.5,

we have plotted the relative test loss of 50 models of each sampling scheme

trained on the same split of the data sets in Table 3. From this we can ob-

serve the variance of the performance of all of our sampling schemes induced

by the sampling procedure itself. Also here the results of a selected best con-

stant sampling rate is plotted. The best constant sampling rate is selected

by cross validation over the training sets for real data, and by separate simu-

lated datasets for the simulated data. We have from Figure 8.3 that the best
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8.2 Sampling schemes
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Figure 8.4: Comparison of sampling schemes over simulated data corresponding to
Figure 8.3. The constant scheme represent the best constant sampling rate for each
dataset, selected by cross validation over separate simulated datasets with the same
distribution as the ones used for testing. For each dataset and sampling scheme
combination, 50 stochastic models are trained on 50 different train/test splits, and
compared with a deterministic model trained on the same split.
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8.2 Sampling schemes

constant model performs descent compared to the sampling schemes, but we

notice here that it is relatively high in variance. This may to some degree

be reduced by limiting the set of possible sampling rates to rates close to 1,

but at the cost of performance. It may be that it still would be preferred to

any of the sampling schemes, but one also has to consider that this requires

tuning to find the optimal constant rate. We also notice that the pulse scheme

is the most consistent, way more so than constant or random sampling rates.

What goes for the last three schemes, Half(1) and Switch seems slightly more

consistent than Half(0.8), but all three of them are worse of than Pulse. The

same pattern is seen in Figure 8.6, if we ignore the last two datasets. The pulse

scheme is consistently the most consistent sampling scheme, with random and

constant producing the least constant results.
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8.2 Sampling schemes
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Figure 8.5: Mean squared test error for Stochastic AGTboost models for each of the
five listed sampling schemes relative with deterministic AGTBoost, trained 50 times
on each of the datasets listed in Table 3 for each of the different sampling schemes
listed. Each training on a given dataset is done with the exact same train/test-split.
The constant scheme represents the best constant sampling rate for each dataset,
selected independently for each dataset by cross validation on the training data of
the same split on which the models are tested.
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8.2 Sampling schemes
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Figure 8.6: Average test mean squared error for AGTBoost trained with different
sampling schemes relative to deterministic AGTBoost trained on the same datasets
with the same train/test splits. For each dataset, we train 100 models on different
splits of the datasets for each of the sample schemes Random, Half(1), Half(0.8),
Pulse and Switch, and the test loss is averaged over the different splits.
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8.2 Sampling schemes

Next, we compare our sampling schemes to XGBoost (Chen & Guestrin,

2016) and AutoXGBoost(AXGB) (Thomas et al., 2018). AXGB is an auto-

mated gradient tree boosting method, where XGBoost is tuned automatically

by Bayesian optimization, a procedure where different combinations of algo-

rithms and parameters setting are sequentially evaluated in a guided manner

such that it finds a minimum in relatively few iterations (Snoek et al., 2012).

However, this process still takes time, but one can stop the process at any

point. For each split on which we train AXGB, we allow this optimization

to go on from 10 to 100 times the time it takes to train the pulse scheme.

For XGBoost, we tune both the number of trees and the sampling rate by

cross validation, and for both of the mentioned methods we allow no L1 or L2

regularization or column subsampling.

We see from Figure 8.7 that XGBoost outperforms stochastic AGTBoost

for all sampling schemes on most of the real datasets used. For AXGB, the

picture is somewhat different and inconclusive in terms of performance relative

with AGTBoost.
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Figure 8.7: Average test mean squared error for Stochastic AGTBoost, XG-
Boost(XGB) and AXGB, trained with different sampling schemes relative to de-
terministic AGTBoost trained on the same datasets with the same train/test splits.
For each dataset, we train 50 models on different splits of the datasets for each of
the sample schemes Random, Half(1), Half(0.8), Pulse and Switch, and the test loss
is averaged over the different splits. AXGB is on each split of each set allowed to
train from 10 to 100 times as long as the slowest AGTBoost scheme dependent on
the dataset.
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9 Discussion

With the motivation of improving the AGTBoost algorithm by introducing

stochastic row subsampling, this thesis has explored Stochastic Gradient Tree

Boosting. We have shown that one can extend the information criterion from

(Lunde et al., 2020) for estimating generalization loss reduction in a Gradient

Tree Boosting setting to work in the stochastic setting with row subsampling.

As we hoped for, we have seen that the implementation of stochastic row

subsampling at each boosting iteration has also in general improved on the

predictive power of AGTBoost.

The implementation of subsampling proposed allows for custom selection of

sampling rate. This may be set constant over all boosting iterations, or to vary

given self-defined parameters. We have tested the algorithm on a set of such

sampling schemes in addition to constant sampling rates. The results indicates

that a constant sampling rate allows for improvement in most cases, and our

implementation include the option to set a constant self-selected sampling rate

between 0 and 1. We find that overall, setting an arbitrary constant sampling

rate below 1 and above 0.5 is likely to outperform the deterministic method

with sampling rate equal to 1. However, we find that using a constant sampling

rate favors manual tuning, as the optimal sampling rate varies over different

data sets. As the sampling rate gets smaller, the difference in performance

between data sets increases, and where our method with constant sampling

rate for some data sets even favors sampling rates below 0.2, such low sampling

rates in many cases are outperformed by the deterministic AGTBoost.

With this in mind, and recalling the philosophy behind AGTBoost, namely

to have an automatic method free of manual tuning, we sought to find a way of

automating the selection of sampling rate. This was not achieved for the con-
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stant sampling rate, but we implemented the possibility of predefined sampling

schemes, and proposed a selection of schemes, some that seems to work well

over a range of data sets. We find that in general, a good sampling scheme

strategy is to start at a higher sampling rate and decrease as the boosting

progress. In the process we have tested sampling schemes with other strate-

gies such as increasing sampling rates, and although some excluded schemes

performed well for selected data sets, the clear pattern is that a decreasing sam-

pling rate in most cases outperform most constant sampling rates, increasing

sampling rates, and also seems to perform stable over different data sets. The

problem of finding an optimal sampling rate or sampling scheme or strategy

remains unsolved, and it is unsatisfying that even between the proposed sam-

pling schemes the comparison is indecisive. Our selection of sampling schemes

are limited, and it is an open problem to improve on the sampling schemes.

All of the proposed sampling schemes except for the random one, bases the

sampling rate or change in sampling rate on the reduction in generalization loss

over the last iterations. One possible sampling strategy that we have not tested

is to let the sampling rate change systematically but without consideration

of the reduction of generalization loss in the last iterations. Another possible

improvement could be to let the absolute value of the sampling rate depend on

this development of the estimated generalization loss over boosting iterations,

or on properties of the data set.

It is theoretically trivial to extend the Stochastic AGTBoost to include

column subsampling, although one can not expect this to have the same impact

on predictive power as row subsampling.

Unfortunately, the testing against XGBoost and AutoXGBoost was limited

due to the computational demands of tuning these two methods. That is why

the testing of these are limited to only 10 splits of the included datasets.
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The philosophy behind AGTBoost is as the name indicates to have a fully

Automatic Gradient Tree Boosting method, and the inclusion of subsampling

in terms of constant sampling rate does favor manual tuning. However, we

have introduced sampling schemes in the gradient tree boosting setting, and

seen that this safely can be deployed as a tuning-free stochastic variant of

AGTBoost which cause overall improvement of the method without any need

of manual tuning. However, finding an optimal or better sampling scheme

remains an unsolved task.
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