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a b s t r a c t

The Delta method is a classical procedure for quantifying epistemic uncertainty in statistical models,
but its direct application to deep neural networks is prevented by the large number of parameters
P . We propose a low cost approximation of the Delta method applicable to L2-regularized deep
neural networks based on the top K eigenpairs of the Fisher information matrix. We address efficient
computation of full-rank approximate eigendecompositions in terms of the exact inverse Hessian, the
inverse outer-products of gradients approximation and the so-called Sandwich estimator. Moreover,
we provide bounds on the approximation error for the uncertainty of the predictive class probabilities.
We show that when the smallest computed eigenvalue of the Fisher information matrix is near the L2-
regularization rate, the approximation error will be close to zero even when K ≪ P . A demonstration
of the methodology is presented using a TensorFlow implementation, and we show that meaningful
rankings of images based on predictive uncertainty can be obtained for two LeNet and ResNet-based
neural networks using the MNIST and CIFAR-10 datasets. Further, we observe that false positives have
on average a higher predictive epistemic uncertainty than true positives. This suggests that there is
supplementing information in the uncertainty measure not captured by the classification alone.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The predictive probabilities at the output layer of neural net-
ork classifiers are often misinterpreted as model (epistemic)
ncertainty (Gal & Ghahramani, 2016). Bayesian statistics pro-
ides a coherent framework for representing uncertainty in neu-
al networks (Goodfellow, Bengio, & Courville, 2016; MacKay,
992), but has not so far gained widespread use in deep learning
presumably due to the high computational cost that tradi-

ionally comes with second-order methods. Recently, Gal and
hahramani (2016) developed a theoretical framework which
asts dropout at test time in deep neural networks as approx-
mate Bayesian inference. Due to its mathematical elegance and
egligible computational cost, this work has caught great interest
n a variety of different fields (Litjens et al., 2017; Loquercio,
egu, & Scaramuzza, 2020; Yan, Gong, Wei, & Gao, 2020; Zhu
Laptev, 2017), but has also generated questions as to what

ypes of uncertainty these approximations actually lead (Osband,
016; Osband, Blundell, Pritzel, & Roy, 2016) and what types
re relevant (Kendall & Gal, 2017). For a general treatment of
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uncertainty in machine learning, we refer to Hüllermeier and
Waegeman (2020).

Epistemic uncertainty is commonly understood as the re-
ducible component of uncertainty — the uncertainty of the model
itself, or its parameters. In our context this amounts to the
uncertainty in the estimated class probabilities due to limited
amount of training data. While the epistemic uncertainty can
be reduced by increasing the amount of training data, the other
component of uncertainty known as aleatoric uncertainty, is irre-
ducible and stems from the uncertainty in the label assignment
process (Song, Kim, Park, & Lee, 2020). However, in this paper we
only address the epistemic part, and treat the labels as constant
when estimating uncertainty.

Our approach goes back to the work of MacKay (1992), and we
show that the above reasoning leads to the method known as the
Delta method1 (Hoef, 2012; Khosravi & Creighton, 2011; Newey
& McFadden, 1994) in statistics. However, as the Delta method
depends on the empirical Fisher information matrix which grows
quadratically with the number of neural network parameters P
– its direct application in modern deep learning is prohibitively
expensive. We therefore propose a low cost variant of the Delta
method applicable to L2-regularized deep neural networks based
on the top K eigenpairs of the Fisher information matrix. We

1 Also known as the Laplace approximation.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ddress efficient computation of full-rank approximate eigende-
ompositions in terms of either the exact inverse Hessian, the
nverse outer-products of gradients (OPG) approximation or the
o-called Sandwich estimator. Further, we exhibit the fact that
eep learning classifiers tend to be heavily over-parameterized.
his leads to flat Fisher information eigenvalue spectra which we
how can be exploited in terms of a simple linearization.
Another classical epistemic uncertainty quantification proce-

ure is the Bootstrap (Efron, 1979; Khosravi & Creighton, 2011).
comparison of the Delta methodology presented in this paper

nd the classical Bootstrap procedure applied to deep learning
lassification can be found in Nilsen, Munthe-Kaas, Skaug, and
run (2021).
The theoretical Fisher information matrix is always positive

semi)-definite, and we constrain our empirical counterpart to
e the same. Recent research (Alain, Roux, & Manzagol, 2019;
horbani, Krishnan, & Xiao, 2019; Sagun, Bottou, & LeCun, 2017;
agun, Evci, Guney, Dauphin, & Bottou, 2018), consistent with
ur own observations, show that the exact Hessian after train-
ng is rarely positive definite in deep learning. To mitigate this,
e propose a simple correction of the right tail of the Hes-
ian eigenvalue spectrum to achieve positive definiteness. We
orroborate our choice with two observations: a) negative eigen-
alues of the Hessian matrix are highly stochastic across differ-
nt weight initialization values, and b) correcting the eigenvalue
pectrum to achieve positive definiteness yields stable predictive
pistemic uncertainty estimates which are perfectly correlated
ith the estimates based on the OPG approximation — which by
onstruction is always positive (semi)-definite (Martens, 2020).
As the computational cost of the exact inverse Hessian matrix

r its full eigendecomposition is prohibitively expensive in deep
earning, we propose to use the Lanczos iteration (Trefethen &
II, 1997) in combination with Pearlmutter’s technique (Pearlmut-
er, 1994) to compute the needed eigenpairs. Consequently, the
atrix inversion will be straightforward, and the net computa-

ional complexity will be O(SPN) time and O(KP) space, where
N is the number of training examples and S is the number of
Lanczos–Pearlmutter steps required to compute K eigenpairs.

Also the inverse OPG approximation or its full eigendecompo-
sition is prohibitively costly in deep learning. Even if we disregard
the cubic time inversion and the quadratic space complexity, one
is first left to compute and store the N × P-dimensional Jacobian
matrix. In deep learning software provisions based on backward-
mode automatic differentiation, only the sum of mini-batch gra-
dients can be computed efficiently. We therefore propose to
compute mini-batches of the Jacobian using efficient per-example
gradients (Nilsen, Munthe-Kaas, Skaug, & Brun, 2019) in combi-
nation with incremental singular value decompositions (Levy &
Lindenbaum, 2000). Since the OPG approximation can be writ-
ten as a Jacobian matrix product, its eigenvectors will be the
right singular vectors of the Jacobian, and its eigenvalues the
squared singular values. This leads to a computational complexity
of O(KPN) time and O(KP) space, also accounting for the inversion.
The Sandwich estimator requires both the inverse Hessian and
the OPG approximation, and is thus O(max{K , S}PN) time and
O(KP) space.

This work is a continuation of Nilsen et al. (2019), and we here
introduce the fully deterministic (Nagarajan & Warnell, 2019)
open sourced TensorFlow module pydeepdelta (pyDeepDelta,
2018-2021), and illustrate the methodology on two LeNet and
ResNet-based convolutional neural network classifiers using the
MNIST and CIFAR-10 datasets. The main contributions of the
paper can be summarized as follows:

• We recognize the Delta method as a measure of epistemic

as opposed to aleatoric uncertainty and break it into two
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components: the eigenvalue spectrum of the Fisher informa-
tion (i.e. Hessian) of the cost function and the per-example
sensitivities (i.e. gradients) of the model function.

• We show how to approximate the naïve Delta method and
thereby reducing the computational complexity in P from
quadratic in space and cubic in time, to linear in both space
and time. Bounds of the approximation error are provided.

• We provide an accompanying TensorFlow implementation,
and demonstrate how it can be applied on a few well known
architectures using the MNIST and CIFAR-10 datasets.

The paper is organized as follows: In Section 2 we give def-
initions which will be used throughout the paper. In Section 3
we review the Delta method in a deep learning classification
context, and in Section 4 we outline the details of the proposed
methodology. In Sections 5 and 6 we demonstrate the method,
and finally, in Section 7 we summarize the paper and give some
concluding remarks and ideas of future work.

2. Deep neural networks

We use a feed-forward neural network architecture with
dense layers to introduce terminology and symbols, but empha-
size that the theory presented in the paper is directly applicable
to any L2-regularized architecture.

2.1. Architectural

A feed-forward neural network is shown in Fig. 1. There are
L layers l = 1, 2, . . . , L with Tl neurons in each layer. The
input layer l = 1, is represented by the input vector xn =(
xn,1 xn,2 . . . xn,T1

)T where n = 1, 2, . . . ,N is the input
index. Furthermore, there are L − 2 dense hidden layers, l =

2, 3, . . . , L − 1, and a dense output layer l = L, each represented
by weight matrices W (l−1)

∈ RTl×Tl−1 , bias vectors b(l) ∈ RTl and
vectorized activation functions a(l).

2.2. Parameter vectors

The total number of parameters in the model shown in Fig. 1
can be written,

P =

L∑
l=2

P (l)
=

L∑
l=2

Tl−1Tl + Tl, (1)

where P (l) denotes the number of parameters in layer l. By def-
inition, P (1)

= 0 since the input layer contains no weights or
biases. Furthermore, we define parameter vectors representing
the layer-wise weights and biases as follows,

ω(l)
=

[
vec(W (l))

b(l)

]
∈ RP(l) , (2)

for l = 2, 3, . . . , L, with components ω
(l)
i , i = P (l−1)

+ 1, P (l−1)
+

2, . . . , P (l). The notation vec(W ) denotes a row-wise vectoriza-
tion2 of the matrix W A×B into a column vector of dimension RAB.
In the rest of the paper, we consider the full model and define
the parameter vector,

ω =

⎡⎢⎢⎢⎣
ω(2)

ω(3)

...

ω(L)

⎤⎥⎥⎥⎦ ∈ RP . (3)

2 Standard method in TensorFlow: tf.reshape(W, [−1]).
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Fig. 1. A feed-forward neural network with dense layers.
w
c
F
t

Σ

.3. Training, model and cost function

The model function f : RT1×P
→ RTL associated to the

architecture shown in Fig. 1 is defined as

f (xn, ω) = a(L)[W (L)a(L−1)(· · · a(2){W (2)xn + b(2)} + · · ·) + b(L)]. (4)

We use a softmax cross-entropy cost function C : RP
→ R and

require L2-regularization with a rate factor λ > 0,

C(ω) =
1
N

N∑
n=1

Cn(yn, ŷn) +
λ

2

P∑
p=1

ω2
p

=
1
N

N∑
n=1

(
−

TL∑
m=1

yn,mlog ŷn,m

)
+

λ

2

P∑
p=1

ω2
p, (5)

where yn represents the target vector for the nth example (N
examples), and where ŷn = f (xn, ω) represents the corresponding
prediction vector obtained by evaluating the model function (4)
using the input vector xn and the parameter vector (3). The
activation function a(L) : RTL → RTL in the output layer is the
vectorized softmax function defined as

a(L)(z) = softmax(z)

=
exp(z)∑TL

m=1 exp(zm)
, (6)

where exp(·) denotes the vectorized exponential function. Train-
ing of the neural network can be defined as finding an ‘optimal’
parameter vector ω̂ by minimizing the cost function (5),

ω̂ = arg min C(ω)
ω∈RP

. (7)

3. The delta method

The Delta method (Hoef, 2012) views a modern deep neural
network as a (huge) non-linear regression. In our classification
setting, we regard the labels as constant, and thus the epistemic
component of the uncertainty associated with predictions of an
arbitrary input example x0 reduces to the evaluation of the co-
variance matrix of the network outputs (Khosravi & Creighton,
2011). By a first-order Taylor expansion (Grosse, 2020), it can be
shown that the covariance matrix of the network outputs ŷ0, i.e.
the model function (4), can be approximated by

ˆ
T TL×TL
Cov(y0) ≈ FΣF ∈ R , (8)
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where

F =
[
Fij
]

∈ RTL×P , Fij =
∂

∂ωj
fi(x0, ω)

⏐⏐⏐⏐
ω=ω̂

(9)

is the Jacobian matrix of the model function, and where Σ is the
covariance matrix of the model parameter estimate ω̂. For a given
x0, an approximate standard deviation of ŷ0 is provided by the
formula

σ (x0) ≈

√
diag

(
FΣF T

)
∈ RTL . (10)

Eq. (10) means that when the neural network predicts for an
input x0, the associated epistemic uncertainty per class output is
determined by a linear combination of parameter sensitivity (i.e.
F ) and parameter uncertainty (i.e. Σ). Parameter sensitivity (F )
prescribes the amount of change in the neural network output for
an infinitesimal change in the parameter estimates, whereas the
parameter uncertainty (Σ) prescribes the amount of uncertainty
in the parameter estimates themselves.

We apply and compare three different approximations to Σ .
The first one is called the Hessian estimator, and is defined by

ΣH
=

1
N
H−1

=
1
N

[
1
N

N∑
n=1

∂2Cn

∂ω∂ωT

⏐⏐⏐⏐
ω=ω̂

+ λI

]−1

∈ RP×P , (11)

where H is the empirical Hessian matrix of the cost function
evaluated at ω̂.

The second estimator is called the Outer-Products of Gradi-
ents (OPG) estimator and is defined by

ΣG
=

1
N
G−1

=
1
N

[
1
N

N∑
n=1

∂Cn

∂ω

∂Cn

∂ω

T ⏐⏐⏐⏐
ω=ω̂

+ λI

]−1

∈ RP×P , (12)

here the summation part of G corresponds to the empirical
ovariance of the gradients of the cost function evaluated at ω̂.
inally, the third estimator is known as the Sandwich estima-
or (Freedman, 2006; Schulam & Saria, 2019) and is defined by

S
=

1
N
H−1GH−1

∈ RP×P . (13)

Across various fields and contexts, the two famous Eqs. (11)
and (12) are often presented and interpreted differently, and the
inconsistency in the vast literature is nothing but intriguing. We
therefore feel that their appearance in this paper requires some
elaboration. Firstly, for the Hessian estimator (11), we note that
the differentials act only on the data dependent part of the cost
function (5), C , so the second term, λI , here comes from the
n
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Fig. 2. The Delta method for quantifying the predictive epistemic uncertainty σ̃ (x0) of ŷ0 = f (x0, ŵ) in deep learning (solid line).
second-order derivatives of the L2-regularization term. Secondly,
for the OPG estimator (12), also here the differentials act on the
data dependent part of the cost function, but the crucial detail
often confused or let out in the literature comes with the second
term, λI: under L2-regularization it must be added explicitly in
order for G to be asymptotically equal to H (See Appendix for
a proof) – as is the primary motivation of the OPG estimator as
a plug-in replacement of the Hessian estimator in the first place.
If let out, G will almost always be singular (Murfet et al., 2020;
Watanabe, 2007), and thus cannot be used in (12).

At this point, we can see that two fundamental difficulties
arise when applying the Delta method in deep learning: (a) the
sheer size of the covariance matrix grows quadratically with P ,
and (2) the covariance matrix must be positive definite. In other
words, we are virtually forced to compute and store the full
covariance matrix, and are in terms of the Hessian estimator
dependent on that the optimizer can find a true local (or global)
minimum of the cost function. Nevertheless, with the OPG and
the Sandwich estimators, the second obstacle is virtually inap-
plicable since they by definition always will be positive definite
when λ > 0.

In the next section we present methodology that addresses
both these aspects. We present an indirect correction leaving the
Hessian estimator positive definite, and introduce methodology
with computational time and space complexity which is linear
in P .

4. The delta method in deep learning

We present our approach to the Delta method in deep learning
as a procedure carried out in two phases after the neural network
has been trained. See Fig. 2.

The first phase – the ‘initial phase’ – is carried out only once,
with the scope of indirectly computing full-rank, positive definite
approximations of the covariance matrices (11), (12) or (13) based
on approximate eigendecompositions of H and G. The second
phase – the ‘prediction phase’ – is carried out hand in hand
with the regular neural network prediction process (4), and is
used to approximate the epistemic component of the predictive
uncertainty governed by (10) using the indirect covariance matrix
approximation found in the ‘initial phase’.

In the next sections, we address the following aspects of the
proposed methods: (a) how to efficiently compute eigenvalues
and eigenvectors of the Hessian estimator via the Lanczos iter-
ation and exact Hessian vector products, (b) how to efficiently
compute eigenvalues and eigenvectors of the OPG estimator via
incremental singular value decompositions, (c) how to combine
the former two to obtain an approximation of the Sandwich
estimator, and (d) how to apply these estimators to efficiently
compute an approximation of (10).

4.1. Computing eigenvalues and eigenvectors of the covariance ma-
trix

The full eigendecomposition of the covariance matrix in (10)
is defined by

Σ = QΛ−1Q T
∈ RP×P , (14)
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Table 1
The computational complexity of the outlined methodology is linear in P across
both phases.

Initial phase Prediction phase (Per-Example)

Time Space Time Space

Hessian O(SPN)
O(KP) O(TLPK + T 2

L K + K 2TL) O(max{K , TL}P)OPG O(KPN)
Sandwich O(max{K , S}PN)

where Q ∈ RP×P is the matrix whose kth column is the eigenvec-
tor qk of Σ , and Λ ∈ RP×P is the diagonal matrix whose elements
are the corresponding eigenvalues, Λkk = λk. We assume that the
eigenvalues are algebraically sorted so that λ1 ≥ λ2 ≥ . . . ≥ λP .
Note that in terms of the Hessian estimator, the eigenvalues are
precisely the second derivatives of the cost function along the
principal axes of the ellipsoids of equal cost, and that Q is a
rotation matrix which defines the directions of these principal
axes (LeCun, Simard, & Pearlmutter, 1993).

For the Hessian estimator (11), the Lanczos iteration (Tre-
fethen & III, 1997) can be applied to find K < P eigenvalues
(and corresponding eigenvectors) in O(SNP) time and O(KP) space
when Pearlmutter’s technique (Pearlmutter, 1994) is applied in-
side the iteration (Nilsen et al., 2019). Pearlmutter’s technique
can simply be described as a procedure based on two-pass back-
propagations of complexity O(NP) time and O(P) space to obtain
exact Hessian vector products without requiring to keep the full
Hessian matrix in memory. The number S denotes the number
of Lanczos iterations to reach convergence. We observe that the
convergence of the Lanczos algorithm is quite fast in our experi-
ments, and we find that S is practically orders of magnitude less
than P .

For the OPG estimator (12), a slightly different approach can
be applied. Since the OPG estimator can be written as a Jaco-
bian matrix product (Nilsen et al., 2019), we get by the singular
value decomposition that its eigenvectors will be the right sin-
gular vectors of the Jacobian, and its eigenvalues the squared
singular values. Mini-batches of the Jacobian matrix can eas-
ily be obtained by standard back-propagation, and so an incre-
mental singular value decomposition (Cardot & Degras, 2015;
Levy & Lindenbaum, 2000) can be applied to each mini-batch.
The computational cost is thus O(KNP) time and O(KP) space.
The Sandwich estimator combines the Hessian and the OPG ap-
proximation via the product (13), and thus has a computational
complexity of O(max{K , S}NP) time and O(KP) space. The compu-
tational complexity of the outlined methodology is summarized
in Table 1.3

Our TensorFlow module pydeepdelta (pyDeepDelta, 2018-
2021) utilizes the Lanczos implementation available in the SciPy
distribution (SciPy), as well as the incremental singular value
decomposition available in the scikit-learn distribution (scikit-
learn).

3 Assuming naive matrix multiplication.
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.2. The eigenvalue spectra of H and G

To better understand the proposed covariance approxima-
ions, we first need to explore the prototypical deep learning
igenvalue spectrum of the empirical Hessian matrix H (11) and
he empirical covariance of the gradients G (12). To this end, we
ntroduce two LeNet-based convolutional neural network classi-
iers using the MNIST and CIFAR-10 datasets, and draw parallels
o the findings in the literature.

.2.1. Classifier architectures, parameters and training
The MNIST classifier has L = 6 layers, layer l = 1 is the

nput layer represented by the input vector. Layer l = 2 is a
× 3 × 1 × 32 convolutional layer followed by max pooling
ith stride equal to 2 and with a ReLU activation function. Layer
= 3 is a 3 × 3 × 32 × 64 convolutional layer followed by
ax pooling with a stride equal to 2, and with ReLU activation

unction. Layer l = 4 is a 3 × 3 × 64 × 64 convolutional layer
ith ReLU activation function. Layer l = 5 is a 576 × 64 dense

ayer with ReLU activation function, and the output layer l = 6
s a 64 × TL dense layer with softmax activation function, where
he number of classes (outputs) is TL = 10. The total number of
arameters is P = 93,322.
The CIFAR-10 classifier has L = 6 layers, layer l = 1 is the

input layer represented by the input vector. Layer l = 2 is a
3× 3× 3× 32 convolutional layer followed by max pooling with
stride equal to 2 and with a ReLU activation function. Layer l = 3
is a 3× 3× 32× 64 convolutional layer followed by max pooling
with a stride equal to 2, and with ReLU activation function. Layer
l = 4 is a 3×3×64×64 convolutional layer with ReLU activation
unction. Layer l = 5 is a 1024 × 64 dense layer with ReLU
ctivation function, and the output layer l = 6 is a 64 × 10
ense layer with softmax activation function, where the number
f classes (outputs) is TL = 10. The total number of parameters is

P = 122, 570.
We apply random normal weight initialization and zero bias

initialization. We use (5) as the cost function with a L2-
regularization rate λ = 0.01. We utilize the Adam optimizer (Bot-
tou, Curtis, & Nocedal, 2018; Kingma & Ba, 2014) with a batch
size of 100, and apply no form of randomized data shuffling. To
ensure convergence (i.e. ∥∇C(ω̂)∥2 ≈ 0) we apply the follow-
ng learning rate schedules given by the following (step, rate)
airs: MNIST = {(0, 10−3), (60k, 10−4), (70k, 10−5), (80k, 10−6)}
nd CIFAR-10 = {(0, 10−3), (55k, 10−4), (85k, 10−5), (95k, 10−6),
105k, 10−7)}. For MNIST, we stop the training after 90,000 steps
corresponding to a training accuracy of 0.979, test accuracy
.981, training cost C(ω̂) = 0.257 and a gradient norm
∇C(ω̂)∥ = 0.016. For CIFAR-10, we stop the training after
2
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15,000 steps – corresponding to a training accuracy of 0.701,
est accuracy 0.687, training cost C(ω̂) = 1.284 and a gradient
orm ∥∇C(ω̂)∥2 = 0.030.

4.2.2. The eigenvalue spectrum approximation
The general assumption in deep learning is that H after train-

ing is not positive definite and mostly contain eigenvalues close
to zero (Alain et al., 2019; Ghorbani et al., 2019; Granziol et al.,
2019; Sagun et al., 2017, 2018; Watanabe, 2007). The same holds
true for G although it by definition must at least be positive
semi-definite (Martens, 2020). However, given the discussion in
Section 3, we know that L2-regularization with rate λ/2 has the
effect of shifting the eigenvalues of H and G upwards by λ.

To test this hypothesis, we study the K = 1500 algebraically
largest and the K = 1500 algebraically smallest eigenvalues
of H and G for 16 trained instances of the MNIST network de-
fined in Section 4.2.1. These sixteen networks are thus only
distinguished from each other by a different random weight
initialization prior to training. The two corresponding log-scale
eigenvalue magnitude spectra are shown in Fig. 3.

Firstly, we note that in the midpoint gaps of the spectra,
there are P − 2K = 90, 195 ‘missing’ central eigenvalues which
we have not computed. Since the eigenvalues are sorted in de-
creasing order, all the central eigenvalues must be close to the
L2-regularization rate λ. We refer to this part of the eigenvalue
spectrum as the gap. Secondly, we note that the confidence inter-
vals in the plots are taken across instance space, thus telling how
the eigenvalue spectrum change based on the 16 random weight
initializations. In both plots, the blue confidence interval tells that
the largest eigenvalues of H and G (called left tail) are stable
across the 16 trained networks, but the smallest eigenvalues of
H are changing dramatically (called right tail, left plot). On the
contrary, all the eigenvalues of G are stable. Thirdly, as shown
by the green vertical dotted line in the upper plot representing
the mean zero-crossing, H is clearly not positive definite — even
with L2-regularization. The green confidence interval around the
ero-crossing shows that the number of negative eigenvalues also
hange across the networks.
In Granziol et al. (2019) it was hypothesized that negative

essian eigenvalues are caused by a discrepancy between the em-
irical Hessian (i.e. H) and its theoretical counterpart (expected
essian) in which the summation of (11) is replaced with an
xpectation so that effectively N → ∞. They showed that as
grows (holding ω̂ fixed), the empirical right tail grows toward
whereas the rest of the spectrum is stable. Supported by the

act that H and G will be equal in expectation (Appendix), the
expected Hessian eigenvalue spectrum might be more similar to
that of G where all the eigenvalues are greater than equal to λ.
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Fig. 4. In terms of its eigenvalue spectrum, the covariance matrix can be partitioned as given by Eq. (15): the left tail subspace (eigenpairs computed), the gap
subspace (eigenvalues approximated, eigenvectors implicitly found by orthonormality) and the right tail subspace (eigenvalues extrapolated, eigenvectors implicitly
found using orthonormality). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In line with these ideas and the empirical evidence presented
in Fig. 3, we assume that all the smallest eigenvalues of H in
the right tail are inherently noisy, and should not be used by
the Hessian estimator. Therefore, with reference to Fig. 4, for
the Hessian estimator, we (a) calculate all the eigenpairs in the
left tail, (b) approximate all the eigenvalues in the gap and (c)
extrapolate the eigenvalues from the gap into the right tail. The
eigenvectors corresponding to the gap and right tail can implicitly
be accounted for by orthonormality as discussed in the next
section.

For the OPG estimator, the same principle applies apart from
that the extrapolation inherently becomes a part of the gap sub-
space approximation because we know that G always is positive
definite when λ > 0. Finally, for the Sandwich estimator, we
simply apply the aforementioned procedures and estimate the
product (13).

4.3. Closing the gap

Based on the observations in the previous section, we now
propose a partitioning of the eigendecomposition which reveals
that full-rank, positive definite approximations of the Hessian and
OPG estimators can be obtained by computing only the eigenpairs
corresponding to the K algebraically largest eigenvalues of H and
G respectively. Finally, we show how to use these approximations
to construct an approximation of the Sandwich estimator.

4.3.1. The Hessian and OPG estimators
In terms of the Hessian and OPG estimators, the full eigen-

decomposition of the covariance matrix can be partitioned into
three subspaces as shown in Fig. 4

Σ = ΣL + ΣG + ΣR = QLΛ
−1
L Q T

L + QGΛ−1
G Q T

G + QRΛ
−1
R Q T

R . (15)

his decomposition applies to both ΣH (11) and ΣG (12), and thus
e have omitted the superscripts in our notation. In practice, the
wo merely differs by which of the two matrices H and G the
calculated eigenpairs come from. The subscript ‘G’ denotes the
gap subspace which is based on eigenvectors with eigenvalues
λK+1 to λP−K−1. Subscript ‘L’ denotes the left tail subspace and
is based on eigenvectors with eigenvalues λ1 to λK . Finally, the
subscript ‘R’ denotes the right tail subspace which is based on
eigenvectors with eigenvalues λP−K to λP . Accordingly, we have
that QL ∈ RP×K , ΛL ∈ RK×K , QG ∈ RP×(P−2K ), ΛG ∈ R(P−2K )×(P−2K ),
QR ∈ RP×K and ΛR ∈ RP×K .

If λK ≈ λ we can safely assume that all the eigenvalues in
the gap subspace must be close to λ. In line with (Granziol et al.,
2019) and the empirical evidence presented in Fig. 3, we assume
that all the eigenvalues in the right subspace are inherently noisy,
and should not be used by the Hessian estimator. Consequently,
we assume that also the eigenvalues in the right subspace are
approximately equal to λ. Since the OPG estimator is always
positive definite when λ > 0, the same assumption also holds
true.
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With reference to Fig. 4, there are now two possible extreme
conditions: (a) when all the eigenvalues in the gap and right
subspaces are set to λK (blue), or (b) when all the eigenvalues
in the gap and right subspaces are set to λ (green). By defining
λ (purple) as the harmonic mean of λ and λK , and ϵλ as the
midpoint of their reciprocals,

λ =

(
λ−1

+ λ−1
K

2

)−1

and ϵλ =
λ−1

− λ−1
K

2
, (16)

t follows that λ̃−1
± ϵλ will enclose the interval [λ−1

K , λ−1
]. The

ovariance matrix can now be approximated by

˜ =
1
N

[
QLΛ

−1
L Q T

L + λ̃−1(QGQ T
G + QRQ T

R )
]
, (17)

with a worst-case approximation error ∆ given by

∆ =
ϵλ

N

[
QGQ T

G + QRQ T
R

]
, (18)

such that Σ is bounded by Σ̃ ± ∆. Since Q is an orthonormal
basis, we see that it is possible to express (17) and (18) without
an explicit need to compute any of the eigenvectors relative to
the gap nor right tail subspaces because

QGQ T
G + QRQ T

R = I − QLQ T
L . (19)

Inserting (17) into (10) with use of (19), yields the final form of
the approximation to the uncertainty associated with prediction
of x0

σ 2(x0) =
1
N
diag

{
F
[
QLΛ

−1
L Q T

L + λ̃−1(I − QLQ T
L )
]
F T}

∈ RTL , (20)

ith a worst-case approximation error δ given by

δ =
ϵλ

N
diag

{
F
(
I − QLQ T

L

)
F T}

∈ RTL , (21)

such that σ 2(x0) is bounded by σ̃ 2(x0) ± δ.
In terms of standard deviations, the worst-case approximation

error ϵ of σ̃ (x0) is given by

ϵ =
1
2

(√
σ̃ 2(x0) + δ −

√
σ̃ 2(x0) − δ

)
∈ RTL , (22)

uch that σ (x0) is bounded by σ̃ (x0) ± ϵ. Lastly, we define an
uncertainty score’ (which we will use later to rank images) by
umming the variances per class output (class variance), and then
ake the square root to get the total uncertainty in standard
eviations

score(x0) =

√ TL∑
m=1

σ̃ 2
m(x0) ∈ R, (23)

ith the corresponding worst-case approximation error ϵscore
iven by,

score =
1
2

⎛⎝
√ TL∑

σ̃ 2
m(x0) + δm −

√ TL∑
σ̃ 2
m(x0) − δm

⎞⎠ ∈ R, (24)

m=1 m=1
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uch that the true quantity is bounded by σ̃score(x0) ± ϵscore. We
note that the worst-case approximation errors (21), (22) and (24)
are functions of x0 but we have notationally dropped this from the
equations to avoid cluttering. The approximation errors should be
thought of as an uncertainty of the predictive uncertainty which
accounts for the worst-case loss of not computing the gap sub-
space explicitly. Since the right tail subspace can be extrapolated
when H is not positive definite, the concept of an approximation
error for the Hessian estimator must be used carefully.

At this point we make a few comments regarding Eq. (20).
The first term on the right hand side, QLΛ

−1
L Q T

L , corresponds
o a low-rank approximation of the covariance matrix based
n K explicitly computed principal eigenpairs. However, when
he second term, λ̃−1(I − QLQ T

L ), is added — the approxima-
ion becomes full-rank. When accounting for the left and right
ultiplication of the sensitivity matrix F , the per-class predic-

ive uncertainties of x0 can be interpreted as weighted sums
of the squared sensitivities in the directions expressed by the
eigenbasis Q using the inverse eigenvalues as weights. Hence,
for the low-rank approximation – regardless of the sensitivity
– the contribution to the predictive uncertainty will be zero in
directions k > K , whereas for the full-rank approximation — the
ontribution can still be high. We will come back to this when we
iscuss out-of-distribution examples in Section 5.

.3.2. The sandwich estimator
The approximation of the Sandwich estimator is defined by

˜ =
1
N
H̃−1G̃H̃−1. (25)

e introduce two separate linearization constants for the ap-
roximation of the gap (and right tail) subspace of G and H−1

sing the harmonic means

H
=

(
λ−1

+ λH
K

−1

2

)−1

, (26)

λG
=

(
λ−1

+ λG
K

−1

2

)−1

. (27)

The approximation of H−1 is thus given by

H−1
= QH

L ΛH
L

−1
QH
L

T
+ λ̃H−1

(I − QH
L QH

L
T
), (28)

and the approximation of G given by

G = Q G
L ΛG

LQ
G
L

T
+ λ̃G(I − Q G

L Q
G
L

T
). (29)

The superscripts ‘H’ and ‘G’ are used to distinguish the eigenvec-
tors and eigenvalues of H and G respectively. By inserting (28)
and (29) into (25) and working out the product, we define the
following eight matrices

S = QH
L ΛH

L
−1

QH
L

T
Q G
L ΛG

LQ
G
L

T
QH
L ΛH

L
−1

QH
L

T
(30)

A = QH
L ΛH

L
−1

QH
L

T
(I − Q G

L Q
G
L

T
)QH

L ΛH
L

−1
QH
L

T
(31)

N = (I − QH
L QH

L
T
)Q G

L ΛG
LQ

G
L

T
QH
L ΛH

L
−1

QH
L

T
(32)

D = (I − QH
L QH

L
T
)(I − Q G

L Q
G
L

T
)QH

L ΛH
L

−1
QH
L

T
(33)

W = QH
L ΛH

L
−1

QH
L

T
Q G
L ΛG

LQ
G
L

T
(I − QH

L QH
L

T
) = N T (34)

I = QH
L ΛH

L
−1

QH
L

T
(I − QH

L QH
L

T
)(I − Q G

L Q
G
L

T
) = DT (35)

C = (I − QH
L QH

L
T
)Q G

L ΛG
LQ

G
L

T
(I − QH

L QH
L

T
) (36)

H = (I − QH
L QH

L
T
)(I − Q G

L Q
G
L

T
)(I − QH

L QH
L

T
). (37)

The uncertainty associated with prediction of x0 can now be
written

σ 2(x0) =
1
diag

{
F
[
S + λ̃GA
N a
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+ λ̃H−1
(N + N T )

+ λ̃Gλ̃H−1
(D + DT )

+ λ̃H−2
C

+ λ̃Gλ̃H−2
H
]
F T}

∈ RTL , (38)

ith the worst-case approximation error given by

=
1
2N

diag
{
F
[
(λG

K − λ)A

+ (λ−1
− λH

K
−1

)(N + N T )

+ (λG
Kλ−1

− λH
K

−1
λ)(D + DT )

+ (λ−2
− λH

K
−2

)C

+ (λ−2λG
K − λH

K
−2

λ)H
]
F T}

∈ RTL , (39)

uch that σ 2(x0) is bounded by σ̃ 2(x0) ± δ. In terms of standard
eviations, the approximation error is readily found by inserting
38) and (39) into (22).

.4. On the relation between the effective number of parameters and

In MacKay (1992), the so-called effective number of parame-
ers is defined in terms of the eigenvalues of the Hessian matrix.
t is noted that directions in parameter space for which the
igenvalues are close to λ do not contribute to the number of
ood parameter measurements. Therefore, the effective number
f parameters is a measure of the number of parameters which
re well determined by the training data. In other words, when
e select K so that λK ≈ λ, we loosely cover the data dependent
art of the Hessian matrix (first term of right hand side of (5))
nd can therefore expect that K will be a crude estimate of the
umber of effective parameters.
As seen by Eqs. (21) and (39), the approximation error will be

ero when the smallest eigenvalue λK in the left tail subspace (of
and G) is exactly equal to the L2-regularization rate λ.

. Demonstration and proof of concept

In the following Section we explore and demonstrate the
pproximate predictive epistemic uncertainty estimate governed
y (10) for the two LeNet-based neural network classifiers that
ere introduced in Section 4.2.1. We establish by the use of
egressions that the three estimators (11)–(13) yield close to
erfectly correlated predictive epistemic uncertainty estimates
or both of the classifiers.

.1. The distribution of approximate predictive epistemic uncertainty

Fig. 5 shows nonparametrically smoothed versions of the pre-
ictive epistemic uncertainty for the three proposed estimators
gainst class probability for all the images in the MNIST and
IFAR-10 test sets. Clearly, the three estimators yield close to
dentical results. Further, we observe that the average predic-
ive epistemic uncertainty associated with false positives (yellow
ine) is higher than for true positives (blue line). The banana-
haped appearance of these plots suggests that there is a negative
uadratic relationship between probability and uncertainty. The
xplanation for this is attributed to the softmax activation func-
ion whose gradient (i.e. sensitivity F ) will always be weighted by
quantity which is negative quadratic in probability (i.e. ŷ(1−ŷ)).
The evolution of the nonparametrically smoothed uncertainty

evels and approximation errors for the OPG estimator as func-
ions of the number of computed eigenpairs K and class prob-

bility is displayed in Fig. 6. As expected, for a growing K , the
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Fig. 5. Nonparametrically smoothed versions of the predictive epistemic uncertainty (10) for the true positives (blue) and false positives (orange) in the MNIST
(upper row, K = 1500) and CIFAR-10 (lower row, K = 2500) test sets as functions of class probability for each of the three estimators. The shaded gray bullets
(N × TL such bullets) represent the raw predictive uncertainty for all TL classes against probability. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
Fig. 6. Nonparametrically smoothed versions of the predictive epistemic uncertainty (upper row) and the approximation error (lower row) in the MNIST and CIFAR-10
test sets as functions of the number of computed eigenpairs K and class probability using the OPG estimator.
pproximation errors diminish and the uncertainty stabilizes.
lthough we do not display similar plots for the other two es-
imators, we note that for MNIST, the approximation errors are
mallest for the OPG estimator, followed by the Hessian estimator
nd the Sandwich estimator. The larger the difference between
and the smallest eigenvalue λK , the higher the average ap-

proximation error. As seen by the eigenvalue spectra in Fig. 3,
the drop-off rate toward λ is faster for G, thus explaining why
the OPG estimator leads to the lowest approximation errors on
MNIST. We note that since the Sandwich estimator is dependent
on both the approximation of H and G, its approximation errors
re not unexpectedly the highest. Furthermore, the fall-off rate
oward λ in the eigenvalue spectrum for CIFAR-10 is slightly
ower than for MNIST. This means that the CIFAR-10 classifier has
171
a greater number of effective parameters — and thus requires a
higher K to achieve acceptable approximation error levels. This
fact is evident by Fig. 6, where we see that the OPG approximation
errors for CIFAR-10 are dropping off to zero slower than for
MNIST.

For all three estimators, it is evident by Fig. 6 that most of the
contribution to the predictive epistemic uncertainty comes from
the left subspace corresponding to the largest eigenvalues of H
and G. This observation can be counter-intuitive since it is the
directions with the smallest eigenvalues that will be the largest
contributors to the variance when accounting for the inversions
in (11), (12) or (13).

The explanation for this phenomenon is attributed to the sen-
sitivity F (9). We observe that the training and test set sensitivity
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Fig. 7. The uncertainty score (a) as a function of K for the MNIST OoD example in (b) using the full-rank OPG approximation (green curve) vs. its low-rank
ounterpart (blue curve) from Eqs. (20) and (23). The green interval corresponds to the approximation error. The reference images (black curves) are computing
sing the full-rank approximation, and corresponds to the ten images in the training set with the highest uncertainty scores sorted in descending order. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
able 2
egression comparison of σ̃H , σ̃G and σ̃ S across all the images in the MNIST and CIFAR-10 training and test sets. The respective superscripts H , G and S denote
essian, OPG and Sandwich. The regression intercept, slope and squared correlation coefficient are denoted by α, β and R2 , respectively.

Hessian vs. OPG σ̃G(xn) = α + βσ̃H(xn) Hessian vs. Sandwich σ̃ S(xn) = α + βσ̃H(xn) OPG vs. Sandwich σ̃ S(xn) = α + βσ̃G(xn)

R2 α β R2 α β R2 α β

MNIST Training set 0.997 0.000 1.206 0.998 0.000 0.923 0.990 0.000 0.761
Test set 0.998 0.000 1.219 0.999 0.000 0.915 0.995 0.000 0.748

CIFAR-10 Training set 0.999 0.000 1.062 0.999 0.000 1.017 0.997 0.000 0.956
Test set 1.000 0.000 1.066 1.000 0.000 1.014 0.998 0.000 0.950
drops to zero in directions k for which λk ≈ λ and is thus
anceling with the reciprocals of the smallest eigenvalues in the
inear combinations formed by (20) or (38). Nevertheless, as the
ensitivity for data not belonging to the same distribution as the
raining can still be high in these directions, the corresponding
redictive epistemic uncertainty can still receive significant con-
ributions from directions k > K . This emphasizes the importance
of making the estimators full-rank using the orthonormal basis
technique presented in Section 4.3. We add that due to the full-
rank property, the number K should be thought of as the number
of explicitly computed eigenpairs rather than the number of
utilized eigenpairs — as the latter will effectively be equal to P .

To illustrate the concept of a low vs. full-rank approximation,
Fig. 7a displays the uncertainty scores as functions of K for the
low and full-rank version of the OPG estimator applied to the
out-of-distribution (OoD) example shown in Fig. 7b. For refer-
ence, we also plot the uncertainty scores for the ten images in
the training set with the highest uncertainty scores sorted in
descending order. Comparing the green curve with the blue curve
shows that the OoD example has a sensitivity spectrum stretching
out far beyond K = 1500 because the low-rank version (blue)
has not yet reached the stable level achieved by the full-rank
approximation (green) at this K . That the full-rank approximation
uickly stabilizes already at around K = 600, can be explained by
hat it receives contribution from the full spectrum even though
nly K principal eigenpairs are computed explicitly at each stage.
he reference images (black curves) are computing using the
ull-rank approximation, and are all lower ranked than the OoD
xample.
A detailed comparison of the three estimators is shown in

able 2. By regressing their outcomes against each other, we
learly see that the relative estimated uncertainty levels are near
172
to perfectly correlated since the squared correlations coefficients
are close to 1. As seen by the slopes β , only the absolute levels
of the estimated uncertainty differ, and since the intercepts α are
zero, there are no offsets.

5.2. Ranking images based on the ‘uncertainty score’

We propose to validate our results by studying the MNIST
and CIFAR-10 images associated with the maximum and mini-
mum amount of total predictive epistemic uncertainty as defined
in (23) using the Hessian estimator. Unsurprisingly, since the
squared correlation coefficients in Table 2 are close to 1, the OPG
and Sandwich estimators yield almost identical results and are
not shown.

The idea is based on the following reasoning: if a neural
network classifies an image with low predictive epistemic ‘un-
certainty score’, the image should be easy to classify also for a
human. Conversely, if the neural network classifies an image with
a high predictive epistemic ‘uncertainty score’, the image should
be hard to classify for a human. Effectively, the predictive epis-
temic ‘uncertainty score’ ranks images according to the degree
of ‘doubt’ expressed by the neural network — and by the figures
we find striking evidence that this corresponds well with human
judgment.

6. Computational considerations and larger architectures

Despite the fact that we have reduced the naïve Delta method’s
computational complexity to be linear in P , the presented
methodology still requires considerable amount of computing
power when P grows very large. For reference, the Hessian es-
timator’s initial phase on the MNIST LeNet with P in the order of
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Fig. 8. The MNIST and CIFAR-10 images ranked by the predictive epistemic ‘uncertainty score’ per class: (a) lowest 5 in the training set, (b) lowest 5 in the test set,
(c) highest 5 in the training set and (d) highest 5 in the test set.
105 using K = 600 (as seen by Fig. 6, K = 600 leads to acceptable
pproximations errors), amounts to an order of Tflops as N =

0, 000 and as the final number of Lanczos steps turned out to be
= 2330 in this case. This corresponds to a computational time
f about one hour using an AMD Ryzen 5 2600 CPU @ 3.4 GHz
ith eight cores and 32 GB memory along with an NVIDIA RTX
080 Ti based GPU with 11 GB memory. The Hessian estimator’s
emory requirement amounts to about 500 MBs assuming single
recision. For comparison, the naïve Delta method would clock in
t the order of Pflops with a theoretical memory requirement of
5 GBs. Since in practice one would need to store both H and its
nverse, as well as temporary variables depending on the type of
nversion algorithm, the effective memory consumption can be
s much as 320 GBs.4 On top of this, handling the possibility of

an indefinite H would require an additional explicit eigenvalue
decomposition and several large matrix multiplications. In this
regime, the use of direct linear algebra methods is infeasible.

With larger architectures such as ResNets (He, Zhang, Ren,
& Sun, 2016), P is several orders of magnitude larger than for
the LeNets discussed so far. In particular, ResNet-18 has a P in
the order of 107. To further investigate the practicality of our
methodology in this context, we present supplementing exper-
iments for the Hessian estimator with MNIST and CIFAR-10 using
the pre-activation ResNet-18 architecture.

6.1. ResNet-18

Adapting pre-activation ResNet-18 (He et al., 2016) to MNIST
and CIFAR-10 leads to a total number of parameters
P = 11, 175, 818 and P = 11, 176, 970, respectively. A vital

4 Try running numpy.linalg.inv(np.diag(10**5).astype(‘float32’)) and watch
he memory consumption throughout the whole process.
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building block of the ResNet architecture family is the batch-
normalization (BN) layer (Ioffe & Szegedy, 2015). The β and γ
parameters of the BN layers are in the following experiments
treated as trainable parameters, and are thus included in both P
and all relevant computations (e.g. Hessians). Furthermore, since
the operation of BN layers depends on the mode to which they
are configured (i.e. training mode or inference mode), we use
the following rule: all quantities involving the training set as
input data are computed in training mode (e.g. training cost,
training accuracy, gradients, Hessians), while quantities involving
the test set as input data are computed in inference mode (e.g.
test predictions/test accuracy and sensitivity matrices (9)).

The training details are as follows: we apply uniform He (He,
Zhang, Ren, & Sun, 2015) weight initialization and zero bias ini-
tialization. We use (5) as the cost function with a L2-
regularization rate λ = 0.01. We utilize the Adam optimizer (Bot-
tou et al., 2018; Kingma & Ba, 2014) with a batch size of 100,
and apply no form of randomized data shuffling. To ensure
convergence (i.e. ∥∇C(ω̂)∥2 ≈ 0) we apply the following learning
rate schedules given by the following (step, rate) pairs: MNIST =

{(0, 10−3), (60k, 10−4), (70k, 10−5), (80k, 10−6)} and CIFAR-10 =

{(0, 10−3), (55k, 10−4), (85k, 10−5), (125k, 10−6), (155k, 10−7),
(205k, 10−8), (255k, 10−9)}. For MNIST, we stop the training after
90,000 steps — corresponding to a training accuracy of 0.999,
test accuracy 0.995, training cost C(ω̂) = 0.281 and a gradient
norm ∥∇C(ω̂)∥2 = 0.018. For CIFAR-10, we stop the training after
285,000 steps – corresponding to a training accuracy of 0.994, test
accuracy 0.773, training cost C(ω̂) = 0.520 and a gradient norm
∥∇C(ω̂)∥2 = 0.076.

To stay within the 32 GB memory bound of the aforemen-
tioned computer specification, we managed to compute up to
K = 200 eigenpairs for the Hessian estimator. For both MNIST
and CIFAR-10, the Lanczos algorithm converged at exactly
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Fig. 9. Comparison of the Hessian eigenvalue spectra of LeNet and ResNet-18
for MNIST and CIFAR-10 data.

S = 502 iterations with total computation times of about 14 and
15 h, respectively.

In agreement with the findings in Yao, Gholami, Keutzer, and
Mahoney (2020), Fig. 9 shows that the curvature (i.e. Hessian
eigenvalue spectrum) of the ResNets has a slower decay to λ. In
other words, for a given K , we can expect that a (large) ResNet
will yield larger approximation errors (18) than for a (small)
LeNet.

Fig. 10 shows the nonparametrically smoothed versions of the
predictive epistemic uncertainty for the ResNets against the class
probability for all the images in the MNIST and CIFAR-10 test sets.
For reference, the corresponding plots for the LeNets were shown
in Fig. 5. The absolute level of the predictive uncertainty for the
ResNets is larger than for the LeNets, and exceeds the theoretical
maximum standard deviation of 0.5 for softmax-based neural
networks. A simple inspection of the computed approximation
errors (22) for the ResNets rules out a too low K = 200 as the
only culprit, because the MNIST test set image with the largest
approximation error corresponds to σ̃ ± ϵ ≈ 19 ± 4 and the
CIFAR-10 equivalent to σ̃ ± ϵ ≈ 50 ± 13 (i.e. lower bounds still
greater than the theoretical bound 0.5). We leave to investigate
the root cause of this anomaly, but speculate that the number of
training examples N might simply be too small now that N ≪ P .
Nevertheless, the relative uncertainty levels are still reasonable
in terms of the raised level for false positives (as seen by Fig. 10),
and in terms of that meaningful rankings similar to those shown

in Fig. 8 for the LeNets still can be obtained for the ResNets.
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7. Summary, concluding remarks and further work

We have presented a computationally tractable framework
for traditional Fisher information based (epistemic) uncertainty
quantification in deep learning classification. To this end, we have
introduced full-rank, positive definite covariance estimators using
approximate eigendecompositions in terms of the Hessian, the
OPG approximation and the so-called Sandwich estimator. We
have recognized the Delta method as a measure of epistemic as
opposed to aleatoric uncertainty and break it into two compo-
nents: the eigenvalue spectrum of the Fisher information (i.e.
Hessian) of the cost function and the per-example sensitivities
(i.e. gradients) of the model function. Further, we have proposed
to utilize the Lanczos algorithm in combination with Pearlmut-
ter’s technique to compute the needed eigenpairs of the Hessian,
and to compute mini-batches of the Jacobian matrix using ef-
ficient per-example gradients in combination with incremental
singular value decompositions for the OPG approximation. As the
computational complexity of these methods scale linearly with
the number of model parameters, they are therefore suited for
deep learning. However, since the computational complexity also
scales (linearly) with the number of eigenpairs K , it seems that
with today’s computing power, the bottleneck of our methodol-
ogy is reached when the number of parameters is in the order of
107.

We have shown that the three estimators yield almost iden-
tical prediction uncertainty estimates when applied on two dif-
ferent LeNet-based neural network classifiers. We have seen that
only the top K ≪ P Fisher information matrix eigenpairs con-
tribute significantly to the predictive uncertainty for data in the
same distribution as the training set. As this does not necessarily
hold true for OoD examples, we have shown that thanks to
the full-rank property of the proposed estimators, these too will
converge quickly under the same framework.

We have also seen that when images are ranked according
to their relative level of predictive epistemic uncertainty, the
ordering corresponds well with human judgment: ambiguous
images tend to be highly ranked, and we clearly see why data
augmentation is beneficial — since the top ranked images often
are prone to unusual perspectives and/or rare colors. Generally,
we conjecture that deep learning classifiers can benefit from
incorporating also the uncertainty measure in the classification
rule. As a corroborative example we have empirically shown
that false positives appears to have an average higher prediction
uncertainty than true positives.

Looking forward, we point at several specific areas of research

which could be investigated. The first candidate is to establish
Fig. 10. Nonparametrically smoothed versions of the predictive epistemic uncertainty (10) based on the Hessian estimator for the ResNets using K = 200. The true
ositives (blue) and false positives (orange) are shown for MNIST in (a) and for CIFAR-10 in (b) using the test sets as input data and are plotted as functions of the
lass probability. The shaded gray bullets (N × TL such bullets) represent the raw predictive uncertainty for all TL classes against probability. (For interpretation of
he references to color in this figure legend, the reader is referred to the web version of this article.)
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ow the Fisher information eigenspectrum of very large networks
nd datasets behave. If the contraction of the eigenspectrum
oward λ continues to be fast with growing network and dataset
sizes, the methodology presented can be tractable even for the
most complex models. However, if the largest affordable K yields

λK far from λ, it can render the methodology intractable as
he approximation errors can be too large. This points to under-
tanding what causes the contraction phase in the first place, and
ence uncovering the factors that drive it. Promising research
n this direction is the Stochastic Lanczos algorithm (Lin, Saad,
Yang, 2016; Yao et al., 2020) as well as the investigation of

athological spectra of the Fisher information (Karakida, Akaho,
Amari, 2019). However, inconveniently for our methodology,
e find evidence in agreement with recent literature (Yao et al.,
020) showing that ResNets have a higher number of effective
arameters than LeNets. In other words, for a given K , we can
xpect that a (large) ResNet will yield larger approximation errors
han for a (small) LeNet. Secondly, we leave the discussion regard-
ng which of the three estimators (or other combinations) one
hould use – and when – as an opportunity for future research.
hirdly, as this work has been focused on the classification task,
natural extension is to see how the framework behaves under
eep learning regression (Khosravi & Creighton, 2011). Fourthly,
e point at a fundamental issue with the Delta method itself.
he Delta method is inevitably based on the local curvature
round the parameter estimate ω̂, hence incorporating no means
bout the uncertainty of the parameter estimate outside this local
egion. What is lost, and how much, by disregarding the broader
erspective of the solution space – a space potentially within
each for sampling methods.
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ppendix

The cost function C(ω) can be interpreted as the negative log
osterior,

(ω) = − log p(D|ω)p(ω), (40)

or the parameter ω and some training data D, where p(D|ω) is
he likelihood and p(ω) the prior. Under L2-regularization with
ate λ/2, the prior takes the form of a multivariate normal distri-
ution with zero mean and covariance (λ/2)−1I

∼ N
(
0, (λ/2)−1I

)
. (41)

t follows that

C(ω) = −Hlog p(D|ω)p(ω) = −Hlog p(D|ω) + λI, (42)

here we have used that Hlog p(ω) = −λI . Taking expectation with
espect to p(D|ω), and drawing on the well known result for the
xpected Fisher information matrix (Lehmann & Casella, 1998):

E
[
Hlog p(D|ω)

]
= − E

[
∇ log p(D|ω)∇ log p(D|ω)T

]
, (43)
(D|ω) p(D|ω)

175
it follows that

E
p(D|ω)

[
HC(ω)

]
= E

p(D|ω)
[G] + λI □ (44)
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