
University of Bergen
Department of informatics

Routing of Offshore Survey Vessels

Author: Ingrid Næss Johansen
Supervisor: Martin Vatshelle

October, 2021

Acknowledgements

The work done in this master theses was done at the Department of Informatics at the University
of Bergen, during the period of January 2020 to October 2021.

First, I would like to thank my supervisor Martin Vatshelle. I don’t think I can ever thank you
enough for everything you have done for me, and I don’t think I could ever have done this without
your help. Even with how the situation have been the last year you have always been there to help
me whenever I needed it.

I would also want to thank my boyfriend Oskar Leirv̊ag for always being there for me and
supporting me.

A huge thanks also needs to be given to all my friends, I can’t name you all but you know who
you are. Ragnhild Skretting Solberg for being with me since 1st grade. You are always there when
I need someone to talk too, even though you now live over 400km away. Roger Wisnes for countless
academic discussion both at the university and on Zoom, and Sindre Hole for always taking time
of your work to join when i needed some time off.

I would also like to thank my Family. My mom and dad for always being there for me and
helping me whenever I need it, and always believing that I have what it takes, even though I don’t
always believe that myself. My siblings for always supporting me and being there when I needed
it. And lastly my grandparents. Even though you no longer are with me today I still want to
thank you for everything you have done for me, and I know you would have been proud if you
could have been here today.

1

Contents

1 Introduction 3

2 Preliminaries 5

3 TSP/Hamiltonian cycle 7
3.1 Earlier work . 7
3.2 Metric TSP . 8

3.2.1 Crossing edges . 8
3.3 Blossoming algorithm . 9
3.4 Exact Algorithms . 10
3.5 Christofides algorithm . 10

3.5.1 Correctness . 12
3.5.2 Approximation . 12
3.5.3 Runtime . 13

4 Programming 15
4.1 The data set . 15
4.2 Programming environment . 15
4.3 Algorithms and data structures . 15
4.4 Visualizing . 17
4.5 Improvements for the program . 17

4.5.1 Remove all crossing edges . 17
4.5.2 Change the placement of a vertex in the walk 17

5 Results 19
5.1 Results from the algorithm . 19
5.2 The map . 20
5.3 Comparison of different methods . 24

References 27

2

1 Introduction

The study of vehicle routing is a field of its own, ranging from the vehicles driving on the road to
drones flying in the air [Roberti and Ruthmair, 2021]. A lot of the work focus on routing vehicles
along roads and not so much focus has been done on routing offshore vessels. Some other master
theses that have been working on similar problems are ”Simulation Model for Strategical Fleet
Sizing and Operational Planning in Offshore Supply Vessels Operations”[Aneichyk, 2009], ”Routing
and Scheduling of Platform Supply Vessels”[Øyra Friedberg and Uglane, 2013], ”Optimal offshore
supply vessel planning: A case study of a Chinese offshore oil and gas production area”[Zeng, 2014].

Offshore vessels in the oil industry sometimes deploy equipment on various points of the seafloor,
(see Figure 1) and need to plan the best order to deploy on all these locations. In ”Monitoring the
Ormen Lange field” [Vatshelle et al., 2017] they show how they perform scientific measurements
over the oil field called ”Ormen Lange”. They have a set of measurement locations at the bottom of
the sea where they monitor pressure and gravity. The normal mode of operation is that the vessel
is positioned over the point of deployment, then the equipment is lowered down to and places on
the seafloor using an ROV. Then for a period of time instruments are measuring before they are
picked up and returned to the vessel which then proceeds to next location and repeats the process.
To transport equipment between measurements locations is time consuming and expensive, mainly
due to the cost of hiring the vessels, so finding an optimal path to lower the time it takes to make
all the measurements is beneficial.

The survey vessel routing problem takes as input a complete graph generated from a set of
points by computing a travel time between each pair of points. We assume the travel time is the
same in each direction, hence the graph is undirected. We call this graph class suvey vessel graphs.
When the travel time between two points is being calculated, acceleration and marching speed
must also be taken into account. There are also measurements that takes place at platforms at the
bottom of the seabed. The time it takes to lower and raise the equipment down to these platforms
can vary, therefore I have decided to add this time as a constant at the end of the algorithm.

Figure 1: Illustrated Images of survey vessles and the platforms at the sea floor. Taken from
[Octio, 2021]

When implementing the algorithm for this problem however there are things you can do to
simplify the problem. The first we notice is that the instruments have to be raised and lowered at
each of the points on the seabed. This is a process that takes the same amount of time, no matter

3

where in the route it is done. Therefore I have decided to add all of these times together into one
big number, and add this number to the result of the algorithm at the end. This way I do not
have to think about this problem in the implementation of the algorithm and it still produces an
accurate travel time. The acceleration for the vehicle also needs to be calculated into the travel
time. Since the time it takes for the boat to reach its marching speed is constant, this can be
used, together with the distance between two points to find the duration it takes to travel from
one position to another.

The algorithm used in this thesis is called Christofides algorithm. This is an approximation
algorithm that finds a good, but not exact solution for the Travelling salesman problem. The
solution given by The Christofides algorithm will never be more than 3

2 · OPTTSP . I have also
added two improvements to the algorithm. The first is to remove all crossing edges in the final
path. This improvement will always make a shorter path for an Euclidean graph, but not for the
graph used in this thesis, which is an Metric graph. The second improvement is to move a single
vertex in the path, to see if this results in a shorter path.

In the first chapter you find information about the problem and the theme for this thesis. In the
second chapter I have made a list of all the preliminaries used in this thesis. In the third chapter
the algorithm that is implemented in this thesis is described. The fourth chapter is the biggest
part of this theses, the implementation of the algorithm, which is publicly available on GitHub
[Johansen, 2021] In the last chapter you will find the results from running the implementation of
the algorithm, implemented in chapter four, using the data from the ”Ormen Lange” field.

4

2 Preliminaries

Definition 2.1 (Graph). A Graph G(V,E) is a data structure, where V is a set of vertices and
E is the edges. Edges are pairs of distinct vertices in V . A graph is called a weighted graph if each
edge e ∈ E is associated with a weight w(e) >= 0 (in this thesis we only consider positive weights).

Definition 2.2 (Degree). The degree of a vertex v is the number of edges connecting to v.

Definition 2.3 (Weight w()). Given a graph G(V,E), the weight w(e) is the length of an edge
e ∈ E

Definition 2.4 (Weight Sumw()). Given a graph G(V,E), the weight sumw(S) is the length of
all the edges in S ⊆ E added together.

Definition 2.5 (Walk). Given a graph G(V,E), a walk W is a sequence of vertices v ∈ V ,
connected by edges e ∈ E

Definition 2.6 (Trail). Given a graph G(V,E), a trail T is a walk where every edge e ∈ T is
unique.

Definition 2.7 (Path). Given a graph G(V,E), a path P is a trail T where every vertex v ∈ P is
unique.

Definition 2.8 (Cycle). Given a graph G(V,E), a Cycle C is a walk where the first and the last
vertex is the same vertex, and the set of vertices v ∈ C\vstart is unique.

Definition 2.9 (Minimum spanning tree). Given a graph G(V,E), a minimum spanning tree
(MST) is a set of edges S ⊆ E such that:

1. S connects V which means that for all pairs of vertices u, v ∈ V there must exist a path from
u to v only using edges in S.

2. The sumw(S) is minimum.

Lemma 2.10. Let G(V,E) be a graph and S a MST of G then there is no cycle using only edges
in S.

Proof. The criteria for a MST is that it is connected and that it is minimum. Assume for contra-
diction that S contains a cycle C. If you remove one edge x ∈ C the set S \ x will still connect
V , and sumw(S \ x) will be less than sumw(S) (Note that definition 2.1 assumes all weights are
positive). This contradicts that S is a MST since sumw(S) is not minimum.

Lemma 2.11. Let G(V,E) be a graph and S a MST of G then |S| = |V | − 1.

Proof. Start by assuming every vertex v ∈ V is a separate component. Adding one edge between
two vertices v ∈ V will connect them, making them the same element. By doing this |V | − 1
times, you end up with one element containing every vertex v ∈ V . Since all the vertices in V are
connected with |V |− 1 edges, by adding one more edge you make a cycle. This means that a MST
S ⊆ V containing more than |V |−1 edges will not be an MST, and an MST S ⊆ V containing less
than |V | − 1 edges will not be fully connected, there fore not be an MST. This means that every
MST S ⊆ V have |S| = |V | − 1 edges.

Definition 2.12 (Matching). Given a graph G(V,E), a matching M is a set of edges M ⊆ E
such that:

1. Every vertex v ∈ V is part of at most one edge e ∈M

2. (perfect matching) Given a G(V,E), a perfect matching of all vertices in G, is a matching

M such that |M | = |V |
2

3. (Minimum matching) a minimum matching is a perfect matching M such that Sumw(M) is
minimum

5

Definition 2.13 (Eulerian cycle). Given a graph G(V,E), a Eulerian cycle EC is a path P ⊆ E
such that:

1. P contains every edge e ∈ E

2. P starts and end with the same vertex v ∈ V

Definition 2.14 (induced subgraph). Given a graph G the induced sub graph G[S] is a graph such
that the set of vertices vertices v ∈ G[S] is a subgraph of G, and the edges e ∈ G[S] is every edge
from the original graph G where both endpoints of the edge e is in S

6

3 TSP/Hamiltonian cycle

The Traveling Salesman Problem (TSP) is a well-known problem where the objective is to find the
shortest walk through all vertices of a weighted graph. The TSP problem has been studied since
1930 [Zambito, 2006] The mathematician Merrill M. Flood used a version of TSP to solve a school
buss rout buss problem.

Definition 3.1 (Traveling Salesman Problem). The Traveling Salesman Problem (TSP) is a well-
known problem where the objective is to find the shortest walk through all vertices of a weighted
graph, ending at the starting vertex.

Definition 3.2 (Hamiltonian cycle). Given a graph G(V,E), a Hamiltonian cycle H is a cycle
that goes through every vertex v ⊆ V exactly once.

For the traveling Salesman problem no polynomial time algorithm for finding the optimal
solution is known. This takes us to the P vs NP problem. P is every problem that there exist
an algorithm for in polynomial time. NP is every problem where there exist a certificate for
the solution which can be checked in polynomial time. All of the problems in P exist in this
bigger group of problems called NP . The problems in NP \ P are problems that does not have a
polynomial time algorithm.

Inside NP there is also a group of problems called NP − Complete. The special thing about
these problems in NP − Complete is that they can all be reduced to every other problem in
NP − Complete. This means that if you found an algorithm to solve one of these problems in
polynomial time, you would also be able to solve every other problem in NP − Complete. The
problems in NP that are not in either P or NP − Complete are called NP − Intermediate
problems.

There also exist another group of problems called NP −Hard problems. These are problems
outside of NP that do not have a polynomial time solution, and a solution for any of these problem
cannot be checked in polynomial time either. For these problems there does not exist a reduction
to make them similar to any problem in NP − complete. However, if you find a polynomial
time solution for any of the problems in NP −Hard, that means you can solve every problem in
NP − complete in polynomial time also.

3.1 Earlier work

The Traveling Salesman Problem is a problem that has been studied for a long time, but no exact
solution has been found to the problem. The problem was posted by Hassler Whitney in 1934 at
Princeton University during a Seminar talk, where he talked about the ”48 States Problem” which
later got the name ”Traveling Salesman problem”. The person who first popularized the Traveling
Salesman Problem was the American mathematician Merrill M. Flood, who in 1956 he published
his work ”The Traveling Salesman Problem”[Flood, 1956].

One article for the traveling salesman that was posted in 1963 called ”An Algorithm for the
Traveling Salesman Problem” [Little et al., 1963], used an algorithm called ”branch and bound”.
It breaks the set of all possible tours into smaller sets, using a method called branching. This
algorithm calculates lower bound for each subset, to find a tour that is less than every lower bound.
This method is based on ideas that are frequently used in assignment problem solving. Another
approach to the problem was posted a few years later by non-mathematicians. This was in an article
called ”An Engineering Approach to the Traveling Salesman Problem” [Roberts and Flores, 1966],
posted in 1966. In this article they talked about a more intuitive way with a list of operations for
the algorithm to execute. This method generates all circuits from the smallest to the largest, and
has been tested on sets of 20, 48 and 52 vertices.

There has also been a lot of work on different versions of the TSP. ”The Black and White
Traveling Salesman Problem” [Ghiani et al., 2006] posted in 2006, is a version where the vertices

7

in G are partitioned into black and white, and the goal is to design a shortest Hamiltonian tour
on G. The method used in this algorithm has been applied in both telecommunications and airline
scheduling, and testing of the algorithm shows that it can solve exact instances of up to 100
vertices. A dynamic problem has also been applied in ”A Dynamic Traveling Salesman Problem
with Stochastic Arc Costs” [Toriello et al., 2014].

One that might also be interesting is ”Exact Methods for the Traveling Salesman Problem
with Drone” [Roberti and Ruthmair, 2021], where a delivery truck and a drone works together on
deliveries. Here they use the benefit of both, the delivery truck can drive long distances, and the
drone can drive fast in urban areas since the roads is not an obstacle.

3.2 Metric TSP

Definition 3.3 (Metric Graph). A graph G = (V,E) is a metric graph if the triangle inequality
holds for all triples a, b, c of vertices. That means w((a, b)) + w((b, c)) ≥ w((a, c)).

Metric TSP is TSP where the input is a Metric graph. The survey vessel graphs is a subset of
Metric graphs. Hence any algorithm for metric TSP can be used to solve the survey vessel routing
problem. Another graph class which is a subset of metric graphs is Euclidean graphs.

Definition 3.4 (Euclidean Graph). A graph G = (V,E) is a Euclidean graph if each vertex can
be associated with a point in the plane, and the edges are assigned weights equal to the Euclidean
distance between the two endpoints.

Euclidean TSP is TSP where the input is a Euclidean graph.

Definition 3.5 (Survey vessel graph). A graph G = (V,E) is a survey vessel graph if each vertex
can be associated with a points in the plane, and the edges are assigned weights equal to the time
it takes to travel between the two points, assuming constant acceleration a and maximum speed v.
The time is computed from the Euclidean distance between the end points by following the formula:

t(d) =

{
d
v + v

a , if d ≥ v2

a

2
√

d
a , if d < v2

a

Lemma 3.6. A survey vessel graph is not a Euclidean graph.

Proof. Given a graph G = (V,E) and tree vertices v1, v2, v3 ∈ V . Start by assuming there is a
vertex vc in the center of v1, v2, v3, and being the same distance from v1, v2, v3. This set of vertices
is possible to draw in the plane if the graph is a Euclidean graph, but not if the graph is a survey
vessel graph. Given the acceleration = a, distance = d, and marching speed = v. If the distance

from v1 to vc is shorter than v2

a the vessel will not reach the march speed. When looking at
the edges (v1, vc) and (v1, v2) in the Euclidean graph and the survey vessel graph, the difference
between these two edges will not be equal. This means that when trying to draw the survey vessel
graph in the plane, the circle drawn with radius w((v1, vc)) around v1 will not intersect whit the
point vc in the center of the tree vertices v1, v2, v3. This shows that the survey vessel graph can
not be drawn in the plane.

3.2.1 Crossing edges

One of the ways you can improve the length of a walk in an Euclidean graph is by removing crossing
edges. By crossing edges we mean two edges that intersect when lines between their endpoints are
drawn in the plane.

Lemma 3.7. Given a Euclidean graph G = (V,E) and a walk W = {v1, v2, . . . , vn}, two crossing
edges e1 = (vi, vi+1) and e2 = (vj , vj+1), where i < j. Replacing these two edges by e3 = (vi, vj)
and e4 = (vi+1, vj+1) will always give a shorter walk.

8

Proof. Given a Euclidean graph G = (V,E), and the two crossing edges e1 = (v1, v2), e2 =
(v3, v4) ∈ E. Let vc be the point where these two edges are crossing. In an Euclidean graph,
the direct edge from v1 to v3 will always be shorter than the edge from v1 to vc + the edge from
vc to v3, unless the point e is located on the edge from v1 to v3.

For a survey vessel graph however, this does not hold. Given a survey vessel graph G and two
crossing edges edges e1 = (vi, vi+1) ∈ G and e2 = (vj , vj+1) ∈ G. If the length of the edge e1 is

shorter than v2

a (the distance it takes for the boat to accelerate up to match speed and down again)

and e2 is considerably longer, replacing these edges with two new edges both longer than v2

a means
less time spent in marching speed.

Figure 2: This example shows a case with two crossing edges in a path, and two alternate edges
that doesn’t cross.

Given the example in figure 2, and given acceleration = 0.05m/s, march speed = 5m/s, and the
distances in the figure given in m . Calculating the travel times you get e1 = 10000

5 + 5
0.05 = 2100s,

e2 = 2 ∗
√

100
0.05 = 90s, and e3 = e4 = 5000

5 + 5
0.05 = 1100s. Adding the two crossing edges together

you get 2100s+ 90s = 2190s. Adding the two none crossing edges together you get 1100∗2 = 2200.
As you can see, the travel time for the crossing edges is shorter than the one for the none crossing
edges.

3.3 Blossoming algorithm

The Blossoming Algorithm is an algorithm for finding a perfect maximal matching for a set of
vertices in any graph. This algorithm is an improvement of the Hungarian matching algorithm
that finds maximum weight matching in bipartite graphs. The idea behind the algorithm is that
you take cycles of an odd length and combine them to one single vertex. By repeating this until
all the odd cycles in the graph has been removed and then run the Hungarian matching algorithm
on the new graph made.

The input of the algorithm is a list of every edge in the graph, given by a list of n1, n2

and the length between the two vertices. Since the algorithm uses the length of each edge and
not the points in the plane, the algorithm can be used by graphs that are not Euclidean. Since
the blossoming algorithm outputs a maximum matching and the Christofides algorithm needs a

9

minimum matching, some modifications were made. Since I did not implement the Blossoming
algorithm I decided to modify the input to the blossoming algorithm rather than the algorithm
itself. What was done was every length between two vertices was multiplied with -100. This Inverts
the graph by switching the longest and the shortest distances. This makes the algorithm believe
that it returns a maximum matching on the inverted graph, but in reality it returns a minimum
matching on the original graph.

3.4 Exact Algorithms

The most naive way to find the optimal/best solution is to start in one vertex and try every single
possible route through the graph, and then back to the start. Since you are going to go back to
the start it does not matter where you start, and you only have to start from one vertex. This
means from vertex v1, try ever v − 1 connecting vertex except where you came from. Then from
all on these v − 1 vertices, try every v − 2 connecting vertices, except the ones where you already
have been. Continue this until you have tried every single option.

For the graph I am using which contains n = 115, the number of different walks you can go is
(v − 1) ∗ (v − 2) ∗ ... ∗ (v − (v − 1)) = 114 ∗ 113 ∗ ... ∗ 1 = 114! = 2.5 ∗ 10186. If you try to test all of
these options on a super computer and started when the universe was made, you would not even
have tested 0.000000000000000001 percent of all the possible paths for the graph. The amount of
time it takes to test the graph is growing exponentially with the number of vertices in the graph.
Which means for 10 vertices it takes less than a second to test all possible walks, for 21 vertices it
takes a year, for 28 vertices it takes about the life of the universe.

Another way to find the exact shortest path is by using dynamic programming. For every
Si ⊆ S of length i, you save the shortest path from v1 ∈ s to v2 ⊆ s, where v1 6= v2. To
find for length j = i + 1, choose a start vertex s1, then choose two vertices s2, s3 to be the last
vertices, in the respective order. To find the order of the last j − 3 vertices, set s1 to be the start
vertex, s2 to be the end vertex, and find the shortest path between these two vertices. This means
j − 3 + 2 = j − 1 = i vertices. Since you already have the length of every set of length I, just set
the length to be the length of the set between s1 and s2 of size I, plus the length between s2 and
s3. Do this for every start vertex s1 ∈ S and every pair of vertices s2, s3 ⊆ S

3.5 Christofides algorithm

The Christofides algorithm is an approximation algorithm for the Travelling Salesman Problem,
that guaranties that the factor of the solution will be within 3/2 of the optimal solution. The graph
used in this algorithm is a Euclidean graph which means that the points given to the vertices are
there actual points in the plane, and the length between two vertices are the actual length in that
plain.

The Christofides algorithm is divided into different algorithms that combined makes an Ap-
proximation Algorithm for the Travelling Salesman problem. The Algorithm 1 shows each of the
steps for the Approximation Algorithm Christofides algorithm. This is a bit simplified but these
are the most crucial steps.

The algorithm starts by making a minimum spanning tree of all the vertices in the graph.
After this it goes through the minimum spanning tree and looks at the degree of the vertices and
chooses all the vertices with an odd degree. It than makes a perfect minimal matching with all the
vertices with an odd degree. The algorithm than combines the minimum spanning tree and the
perfect minimal matching to make an Eulerian circuit through every edge in these two combined,
see figure 3. Since the Eulerian circuit most likely will contain duplicates of some vertices the
algorithm than makes a Hamiltonian cycle by replacing all duplicates of edges with short cuts that
skips the vertex.

10

Figure 3: The Eulerian Cycle made from the Perfect matching(the blue lines), and the minimum
spanning tree(the red lines). Note that in this example, two edges can have the same endpoints,
but only one of the edges gets drawn.

11

Algorithm 1: Christofides algorithm

Data: A graph G.
Result: A Hamiltonian cycle

1 T ← a minimum spanning tree of G.
2 S ← the vertices of T with odd degree.
3 M ← a perfect matching in G[S].
4 C ← an Eulerian Circuit containing the edges T ∪M .
5 H ← a Hamiltonian cycle from C by skipping repeated vertices.
6 return H;

I have also added a few improvements to the algorithm to hopefully get a better result. These
added improvements will not grantee a better result, but the walk will be less than or equal to the
solution given by the Christofides algorithm.

3.5.1 Correctness

Lemma 3.8. The algorithm will be able to make an MST T

Proof. Since the graph G is a connected graph, in fact the graph G is a complete graph, this means
that that the Kruskal algorithm used in Christofides algorithm will always be able to produce a
MST from G.

Lemma 3.9. Given a MST T there will always be an even number of vertices with an odd degree.

Proof. A graph on V has 1/2
∑

v∈V d(v) edges, so
∑

d(v) is an even number [Diestel, 2017]. In
order for

∑
d(v) to be an even number, the number of vertices with an odd degree must be an

even number.

Lemma 3.10. The algorithm will always be able to make a perfect minimal matching from the
vertices with odd degree in the MST

Proof. Given a graph G and an MST T on the graph, the |S| is even, and that the graph is a
complete graph, the Blossoming algorithm used in Christofides algorithm will be able to make a
perfect matching.

Lemma 3.11. The algorithm will always be able to make an Eulerian Cycle, using the MST and
the Perfect matching

Proof. Given Lemma 3.9 and Lemma 3.10, all the vertices v ∈ T ∪M has an even degree. All the
vertices in v ∈ T ∪M is also connected, given that the graph is an Euclidean graph. This means
that by starting at an arbitrary vertex v ∈ T ∪M , you can go through every vertex v ∈ T ∪M
and end where you started, thus making an Eulerian Cycle.

Lemma 3.12. The Algorithm 2 always produces a Hamiltonian cycle.

Proof. Since the graph G is a complete graph, you can always remove duplicates of noes. If you
have two edge e1 = (a, b) and e2 = (b, c), you can replace these two edges with a new edge
e3 = (a, c)

3.5.2 Approximation

In this section we will prove that Christofides algorithm always produces a solution which is at most
3/2 of the optimal solution. We define OPTtsp(G) to be the minimum weight of a Hamiltonian
cycle in G. Likewise we define OPTmst(G) to be the weight of a minimum spanning tree and
OPTmatch(G) to be the weight of a minimum perfect matching.

Lemma 3.13. Let G be a metric graph then OPTtsp(G) ≤ Sumw(H) ≤ Sumw(C).

12

Proof. Given a complete metric graph G, OPTtsp(G) ≤ Sumw(H) ≤ Sumw(C). When you have
Sumw(C), Sumw(H) will always be shorter or at least as short as Sumw(C) since any short cut
you make between two vertices will always make Sumw(H) shorter, and you will never need to add
any edges to Sumw(H) that will make it longer. OPTtsp(G) is also the same as Sumw(H). Since
the graph is metric and complete, the shortest path between two vertices will always be the direct
path between the two vertices. This means that making a Sumw(H) will also result in making a
OPTtsp(G).

Lemma 3.14. Let G be a metric graph then OPTmst(G) < OPTtsp(G) ≤ 2 ∗OPTmst(G).

Proof. Assume for contradiction that OPTmst(G) ≥ OPTtsp(G). Since OPTtsp(G) is a cycle
we can remove one edge from OPTtsp(G) and obtain a path P . Clearly P is a spanning tree
and since all edge weights are positive the weight of P is less than OPTtsp(G). By definition
OPTmst(G) ≤ Sumw(P). Hence we get a contradiction.

Assume for contradiction that OPTtsp(G) > 2 ∗OPTmst(G). Given an MST OPTmst(G), you
can start at one arbitrary vertex and move through every vertex in the MST using a DFS, and
make an Eulerian cycle. This is done by moving back the edge when you reach a leaf vertex or have
no new vertices to visit for current vertex. This means you are using every edge in OPTmst(G)
twice, resulting in Sumw(C) = 2 ∗ OPTmst(G). Given the lemma 3.13, OPTtsp(G) ≤ Sumw(C).
Hence we get a contradiction.

Lemma 3.15. Let G be a graph with an even number of vertices, then OPTmatch(G) ≤ OPTtsp(G)
2 .

Proof. Assume for contradiction OPTmatch(G) >
OPTtsp(G)

2 . OPTtsp(G) is a cycle with n edges.
We can split the Hamiltonian cycle corresponding to OPTtsp(G) into two matchings by letting
every second edge be in M1 and the other edges be in M2, we select M to be the matching from

M1,M2 with lowest weight and get that M ≤ OPTtsp(G)
2 hence we get a contradiction as M can

not be smaller than the smallest perfect matching.

If we apply the above lemma on the graph G[S] we get that OPTmatch(G[S]) ≤ OPTtsp(G[S])
2

clearly this implies that OPTmatch(G[S]) ≤ OPTtsp(G)
2 since we can take a Hamiltonian path in G

and shortcut past any vertex not in S. This Hamiltonian path of G[S] will always be shorter since
the graph is Euclidean and then all shortcuts will make the cycle shorter.

Lemma 3.16. Let G be an Euclidean graph and H be the Hamiltonian cycle produced in line 5 of
the Algorithm 1, then Sumw(H) < 3

2 ∗OPTtsp(G)

Proof. Let C be the Eulerian cycle produced in line 4 of the Algorithm 1, Then Sumw(H) ≤
Sumw(C) = OPTMST (G)+OPTmatch(G) by construction and the fact that the graph G is metric.
When making C you add all edges from OPTMST (G) + OPTmatch(G), which means Sumw(C) =
OPTMST (G)+OPTmatch(G). When making the Hamiltonian cycle you make shortcuts in the walk
by removing two edges e1 and e2, and adding one new edge e3, so that |e1|+|e2| ≥ |e3|. From lemma
3.13 we get that the length of the path can only either stay the same or get shorter, this shows that
Sumw(H) ≤ Sumw(C). Therefore Sumw(H) ≤ Sumw(C) = OPTMST (G)+OPTmatch(G). Given
lemma 3.14 OPTMST (G) ≤ OPTTSP (G) resulting in Sumw(H) ≤ Sumw(C) = OPTTSP (G) +

OPTmatch(G). Given Lemma 3.15 OPTmatch(G) ≤ OPTtsp(G)
2 resulting in Sumw(H) ≤ Sumw(C) =

OPTTSP (G) +
OPTtsp(G)

2 . Adding this together you get Sumw(H) < 3
2 ∗OPTtsp(G).

3.5.3 Runtime

The runtime for the algorithm is is calculated from the lines in the Christofides algorithm, algorithm
1.

Line 1. The MST uses the Kruskal algorithm and have a runtime of O(n · log(n)).

13

Line 2. This part goes through all the vertices and checks if the degree is odd, since finding the
degree of a vertex can be done in O(1) time this line has runtime O(n)

Line 3. The perfect matching uses the algorithm Blossoming algorithm and has a runtime of
O(n2 · |E|). In worst case all nodes of the MST has odd degree and since G is a complete graph,
|E| can be O(n2) giving a total runtime of O(n4)

Line 4. The Eulerian Cycle can be found in O(|E|) time, and since the subgraph we are
searching through is a spanning tree + a matching, the runtime is O(n)

Line 5. The Hamiltonian is found by short cutting whenever a vertex appears twice in the
Eulerian tour. To find all repeated vertices can be done in O(n) time. Selecting one of the
repeated nodes to keep and short cutting all occurrences can be done in O(degree) time, since sum
of degree is 2n (ref lemma) the total runtime of this line is O(n)

Line 6. The fixes I have made for the algorithm is O(n2 ∗m). Since the Hamiltonian cycle the
fixes are applied to have the same number of edges and vertices, the runtime will be O(n3)

14

4 Programming

In this section we describe the programming done in association with this thesis. Since Christofides
algorithm has an approximation ratio of 3

2 we know that for any metric graph the output will be
somewhat reasonable. If we want to improve on this there are two main approaches, improve
either the approximation ratio for all graphs or the results for typical inputs of the problem. As we
regarded the task of improving the approximation ratio of Christofides algorithm for quite hard we
have instead focused on testing out various ideas on a real world dataset from the Ormen Lange
field. Since the graphs obtained from converting point sets into times is no longer Euclidean it was
not clear to us which of the rules applying to Euclidean graphs would also apply to these graphs.

4.1 The data set

The dataset of points used in this algorithm is extracted from the map of ”Ormen Lange” obtained
from [Vatshelle et al., 2017], see figure 4. A grid was drawn over the image of the field and each
point were given coordinates corresponding to this grid. These coordinates are not exact coordi-
nates, but are read with one decimal. To get the exact distance between two points the scale at
the bottom of the image were used to calculate the actual distance between two points, and then
calculate the difference in percentage from measured distance to actual distance.

Input to the algorithm is information about the Oil Field ”Ormen Lange”. The first is all
the points at the bottom of the sea floor. This is given as X,Y coordinates in a .txt file named
points.txt. Here there are 115 lines with coordinates that the algorithm uses to make vertices for
the graph. There are no edges given to the graph, since this is a boat driving out on the sea, which
means this is a complete graph. The algorithm is also getting information to scale the field, since
the coordinates in the file are not true to size. This is a number that combined with the distance
between two points will give the actual distance in the field.

Since there is a boat that drives between these points the algorithm is also getting information
about this boat. This is the max speed at which the boat can drive, the acceleration for the boat
and the time it takes to lower and raise the measuring equipment.

4.2 Programming environment

The implementation for this algorithm is written in the Java programming language version 15,
using IntelliJ as the integrated development environment (IDE). The full implementation for this
algorithm is now also public on GitHub. [Johansen, 2021]

4.3 Algorithms and data structures

For the minimum spanning tree, I implemented the Kruskal’s algorithm. Since Union Find is some-
thing that does not exist in Java, but is something that this algorithm requires, I also implemented
this.

For the perfect matching I did not write the Blossoming algorithm. For this I found an already
written code that I have used, written by Lucas Siemond. [Siemond, 2018] To implement this code
into my project I had to convert the input and output for the blossoming algorithm to match
the code that I have written. Also due to the fact that the blossoming algorithm is a maximum
spanning tree, and the Christofides algorithm requires a minimum spanning tree, I did have to
convert the input to get the required output.

To be able to see the path that the algorithm is producing I used JFrame and JPanel together
with graphics to make a visualizer that shows the path as an image. To be able to convert the
data from the input graph to the vessel routing graph, I also made a Singleton instance named
”DataConverter”.

15

Figure 4: This is an illustration of The Ormen Lange field, taken from [Vatshelle et al., 2017]

16

4.4 Visualizing

To be able to analyse the results better I have made a visualizer in the program that shows the
graph and the different paths as images. This visualizer print out one image of the map for each
of the important steps in the algorithm. The MSP, perfect matching, Eulerian cycle, and every
version of the Hamiltonian cycle. The Visualizer uses JFrame and JPannel as frameworks for the
image, and then draws the edges and vertices with graphic.

It was also a good help to have the map when trying to find some improvements for the
algorithm. When you visualize the map it is easier to see where improvements can be done, and
also what needs to be done in order to improve the algorithm. The images of the different results
from the algorithm shown in this theses are made with this visualizer.

4.5 Improvements for the program

Since the Christofides algorithm does not give an optimal solution for the Traveling Salesman
Problem, there are small fixes you can make to shorten the walk even more. The two I have chosen
to implement in my program is to remove all crossing lines 4.5.1 and to change the path of some
vertices 4.5.2 to try to find an shorter path.

4.5.1 Remove all crossing edges

First start with going over every pair of edges in the walk and removing all crossing edges, replacing
them with new none crossing edges. Since replacing two edges may make new crossing edges in
another part of the walk, the program are doing this operation until there are no more crossing
edges in the walk.

The runtime of checking every pair of edges to see if they are crossing is N2. The number of
times you need to go over the graph to check for new crossing edges are depending on the graph,
stopping if there are no more crossing edges, but in worst case the runtime is N . So the worst case
runtime for this improvement is N3.

Algorithm 2: Improvement 1

Data: A hamiltonian cycle H.
Result: A shorter hamiltonian cycle H ′

1 for e1 ∈ edge do
2 for e2 ∈ edge do
3 if crossing(e1, e2) then removeCross(e1, e2);
4 end

5 end
6 return H ′;

4.5.2 Change the placement of a vertex in the walk

After getting the Hamiltonian cycle from the Christofides algorithm, and doing the additional
improvement of removing any crossing lines. There are still one more thing you can do to try to
improve the path by making it even shorter. This is to try an find vertices in the walk, that can
be moved to another position in the walk, making the overall result shorter.

Since the graph G is an Euclidean graph the idea for this improvement will also hold. Given
an Hamiltonian H, five vertices in H, v1, v2, v3, v4, and v5, and tree edges e1 = (v1, v2), e2 =
(v2, v3), and e3 = (v4, v5), you can check if moving the vertex v2 will make the H shorter. Let
L1 = w(e1) + w(e2) + w(e3) and L2 = w((v1, v3)) + w((v4, v2)) + w((v2, v5)). If L1 > L2 the path
will be shorter if you change the placement of the vertex. By doing this you also create a new edge
from v1 to v3 in H, replacing the once going through v2.

17

By doing this you can end with a little dilemma. By changing the placement of one vertex in
the walk, to another position, this change can make a new set of crossing edges. The overall length
of the walk will be shorter by doing these replacements, but the previous improvement of removing
crossing edges can now be done over again. This means that the program will be going back and
fourth between these two improvements till one of them no longer have a positive impact on the
result of the walk.

Lemma 4.1. If a vertex v in a Hamiltonian is closer to an edge e than the edge connecting its
neighbours, then moving n to between the vertices in e will shorten the length of H.

Proof. Given a Hamiltonian H, five vertices v1, v2, v3, v4 and v5, and four edges e1 = (v1, v2),
e2 = (v2, v3), e3 = (v4, v5) and e4 = (v1, v3) in H. If v2 is closer to e3 than e4 in H, than H will
become shorter if you move the placement of v2 in H to be between v4 and v5. This is because H
will have to walk both e3 and e4 regardless, but having v2 closer to the corresponding edge means
the detour through v2 will make the walk shorter overall.

Algorithm 3: Improvement 2

Data: A hamiltonian cycle H.
Result: A shorter hamiltonian cycle H ′

1 for e ∈ edge do
2 for v ∈ vertices do
3 if shorterIfMoved(e, n) then move(e, n);
4 end

5 end
6 return H ′;

18

5 Results

After implementing the Algorithm 1, the program can produce a Hamiltonian Cycle, see Lemma
3.12. After making the tour, the Algorithm then prints out the different results it has found to the
console.

Since there is no efficient way to find an exact solution to the travelling salesman problem, there
does not exist any exact result that I can compare to, so seeing how it compare to the actual shortest
path is difficult. Instead you can set a lower and a upper bound to see how the result compare to

these. A lower bound for this problem is the OPTmst(G). Since Sumw(E)·2
3 ≤ OPTTSP (G), see

Lemma 3.14. This means that the result from the algorithm can be no lower that OPTmst(G).
There is also an upper bound to the problem. The result given by the algorithm can be no greater
that the Eulerian cycle that the algorithm provides. This is because the algorithm is making a
Hamiltonian, from the Eulerian, and given the Lemma 3.13.

The last step of the original Christofides algorithm is to make the Hamiltonian, using the
Eulerian cycle from the previous step. For this part the algorithm removes duplicates of vertices
at random. Instead of using this approach, my algorithm is making a quick calculation of the path
to see which edge makes the shortest path, and remove the one that makes the longest. By using
this calculation the result will be no greater than the random removal, but has the potential to
make a shorter path.

5.1 Results from the algorithm

The algorithm produces both the time it takes for the offshore vessel to travel the distance, and
the actual distance of the tour. It gives the distance in both meters and km, and the time in both
seconds and hours. The results calculated are the length of the minimum spanning tree and the
perfect matching, and the length and duration for the Eulerian circuit, Hamiltonian with random
path chosen, Hamiltonian with bets path chosen, and the Hamiltonian with improvements.

Length Time

MST 232.05 km
Matching 100.27 km
Eulerian 332.32 km 39.09 h

Hamiltonian Random 313.42 km 34.01 h
Hamiltonian 298.83 km 33.20 h

Hamiltonian with Improvements 280.97 km 32.21 h

I have also calculated the percentage between different results. The first is the difference
between the minimum spanning tree and the Hamiltonian with Improvements. The second is the
difference between the Hamiltonian with Improvements and the Eulerian, third is the difference
between the Hamiltonian with Improvements and Hamiltonian with random chosen path, and last
is difference between Hamiltonian with Improvements and Hamiltonian with best chosen path.

Percentage:

percent

Bigger than MST 17.41
Less than Eulerian 15.45

Less than Hamiltonian Random 10.35
Less than Hamiltonian 5.98

19

5.2 The map

Figure 5, 6, and 7, is maps made by the visualizer, that shows the actual path that the algorithm
is taking. Figure 5 shows the path made by the christofides algorithm where the the removal of
vertices going from the Eulerian to Hamiltonian is chosen at random. Figure 6 shows the path made
by the christofides algorithm where the removal of vertices going from the Eulerian to Hamiltonian
is calculated to choose the edges that results in the shortest path. Figure 7 shows the path made
in figure 6, but here both the improvements are also applied.

20

Figure 5: This figure shows the Hamiltonian cycle where the edges removed when going from
Eulerian to Hamiltonian is chosen at random.

21

Figure 6: This figure shows the Hamiltonian cycle where the edges removed when going from
Eulerian to Hamiltonian is calculated to choose the shortest path.

22

Figure 7: Hamiltonian with Improvements. This figure shows the results from 6 where the extra
improvements have been added.

23

5.3 Comparison of different methods

I have also tried to see if one of the improvements I have added to the algorithm are better than the
other. Here only one of the improvements are added to the algorithm before the results is printed.
As you can see in the table below both improvements given by the algorithm result in a shorter
walk than the original Christofides Algorithm, but both are also shorter than both improvements
combined. The table also shows that the changing the place of the vertex actually gives a slightly
better result than the removal of crossing edges. Figure 8 shows the path made in figure 6, but
only the improvement where the placement of one vertex is applied. Figure 9 shows the path made
in figure 6, but only the improvement where the crossing edge is removed is applied.

The reason both of these are applied to the algorithm as the improvements is that after removing
crossing edges you might end up with a vertex that can change place in the walk and therefore
make the length shorter. the same holds for the other, after changing the placement of one vertex
in the walk you might make two new edges crossing, and replacing them with none crossing edges
will make the walk shorter. To get the best result here you need to apply these two improvements
to the walk until one of them do not make the walk any shorter. This is when no vertex can change
place in the walk to make it shorter, or no edges are crossing after a vertex has changes place.

There are a lot of other improvements that could have been added to this algorithm, but I
decided to only implement the two mentioned above. One of the extra improvements that could
have been added is to change a subsection S ⊂ H(E), such that the length Sumw(H) becomes
shorter. Sometimes changing the placement of each vertex v ∈ S individually does not make
Sumw(H)shorter, but changing the placement of S in the graph will.

Length Time

Change place of vertex 288.20 km km 32.61 h
Removing crossing edges 287.35 km 32.56 h

Both Improvements 280.97 km 32.21 h

24

Figure 8: This figure shows the result where the algorithm have only applied the improvement
where one vertex changes its place in the path to get a shorter path.

25

Figure 9: This figure shows the result where the algorithm have only applied the improvement
where every two crossing edges have been replaced with none crossing edges.

26

References

[Aneichyk, 2009] Aneichyk, T. (2009). Simulation model for strategical fleet sizing and operational
planning in offshore supply vessels operations. Master’s thesis, Høgskolen i Molde.

[Diestel, 2017] Diestel, R. (2017). Graph Theory. Springer.

[Flood, 1956] Flood, M. M. (1956). The traveling-salesman problem. Operations Research, 4.

[Ghiani et al., 2006] Ghiani, G., Laporte, G., and Semet, F. (2006). The black and white traveling
salesman problem. Operations Research, 54.

[Johansen, 2021] Johansen, I. (2021). The traveling salesman problem. https://github.com/

Ingrid97/TSP. git commit: 3e3317f.

[Little et al., 1963] Little, J. D. C., Murty, K. G., Sweeney, D. W., and Karel, C. (1963). An
algorithm for the traveling salesman problem. Operations Research, 11.

[Roberti and Ruthmair, 2021] Roberti, R. and Ruthmair, M. (2021). Exact methods for the trav-
eling salesman problem with drone. Operations Research, 55.

[Roberts and Flores, 1966] Roberts, S. M. and Flores, B. (1966). An engineering approach to the
traveling salesman problem. Operations Research, 13.

[Siemond, 2018] Siemond, L. (2018). Maximum weighted matching - edmonds blossom. https:

//github.com/simlu/EdmondsBlossom. git commit: 8e52ab4.

[Shoemaker et al., 2016] Shoemaker, A. and Vare, S. (2016). Edmonds’ Blossom Algorithm Stan-
ford University, CME 323

[Toriello et al., 2014] Toriello, A., Haskell, W. B., and Poremba, M. (2014). A dynamic traveling
salesman problem with stochastic arc costs. Operations Research, 62.

[Vatshelle et al., 2017] Vatshelle, M., Glegola, M., Lien, M., Noble, T., and Ruiz, H. (2017). Mon-
itoring the ormen lange field with 4d gravity and seafloor subsidence.

[Zambito, 2006] Zambito, L. (2006). The traveling salesman problem: A comprehen-
sive survey. https://www.semanticscholar.org/paper/The-Traveling-Salesman-Problem%
3A-A-Comprehensive-Zambito/a5cdc315936617eb0e41ad54095950dba04b9a84.

[Zeng, 2014] Zeng, C. (2014). Optimal offshore supply vessel planning: A case study of a chinese
offshore oil and gas production area. Master’s thesis, University of Stavanger.

[Øyra Friedberg and Uglane, 2013] Øyra Friedberg, D. and Uglane, V. T. (2013). Routing and
scheduling of platform supply vessels. Master’s thesis, Norwegian University of Science and
Technology. With: SINTEF, http://www.sintef.no.

[Octio, 2021] Octio AS. (2021). Gravimetry and seafloor subsidence surveys. https://www.octio.
com/gravimetry-and-seafloor-subsidence-surveys/.

27

https://github.com/Ingrid97/TSP
https://github.com/Ingrid97/TSP
https://github.com/simlu/EdmondsBlossom
https://github.com/simlu/EdmondsBlossom
https://www.semanticscholar.org/paper/The-Traveling-Salesman-Problem%3A-A-Comprehensive-Zambito/a5cdc315936617eb0e41ad54095950dba04b9a84
https://www.semanticscholar.org/paper/The-Traveling-Salesman-Problem%3A-A-Comprehensive-Zambito/a5cdc315936617eb0e41ad54095950dba04b9a84
http://www.sintef.no
https://www.octio.com/gravimetry-and-seafloor-subsidence-surveys/
https://www.octio.com/gravimetry-and-seafloor-subsidence-surveys/

	Introduction
	Preliminaries
	TSP/Hamiltonian cycle
	Earlier work
	Metric TSP
	Crossing edges

	Blossoming algorithm
	Exact Algorithms
	Christofides algorithm
	Correctness
	Approximation
	Runtime

	Programming
	The data set
	Programming environment
	Algorithms and data structures
	Visualizing
	Improvements for the program
	Remove all crossing edges
	Change the placement of a vertex in the walk

	Results
	Results from the algorithm
	The map
	Comparison of different methods

	References

