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Abstract

This thesis explores diagrammatic En structures as models for En spaces.

Paper A: Braided injections and double loop spaces. (Christian Schlichtkrull and Mir-

jam Solberg.)

We consider a framework for representing double loop spaces (and more generally E2

spaces) as commutative monoids. There are analogous commutative rectifications of

braided monoidal structures and we use this framework to define iterated double deloop-

ings. We also consider commutative rectifications of E∞ spaces and symmetric monoidal

categories and we relate this to the category of symmetric spectra.

Paper B: Weak braided monoidal categories and their homotopy colimits.(Mirjam Sol-

berg.)

We show that the homotopy colimit construction for diagrams of categories with an

operad action, recently introduced by Fiedorowicz, Stelzer and Vogt, has the desired ho-

motopy type for diagrams of weak braided monoidal categories. This provides a more

flexible way to realize E2 spaces categorically.

Paper C: Operads and algebras in n-fold monoidal categories. (Mirjam Solberg.)

We develop the concept of n-fold monoidal operads and algebras over n-fold monoidal

operads in n-fold monoidal categories. We give examples of n-fold monoidal operads

whose algebras generalize the concepts of monoids, commutative monoids and n-fold

monoidal structures, to the setting of an n-fold monoidal category.

Paper D: Higher monoidal injections and diagrammatic En structures. (Christian

Schlichtkrull and Mirjam Solberg.)

We use the framework of n-fold monoidal categories to examine En structures in a dia-

grammatic setting. A major objective is to introduce the category In of n-fold monoidal

injections as a counterpart to the symmetric monoidal category of finite sets and in-

jective functions. This then leads to an n-fold monoidal version of the classical James

construction. We also discuss applications to n-fold commutative strictification of En

structures.
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Part I

Introduction and main results





Chapter 1

Introduction

1.1 Preliminaries

The theme of this thesis is multiplicative structures and commutativity. The simplest

setting for this is sets, where we have the well known concept of a monoid, a set with

an associative multiplication and an identity element. If the multiplication is commuta-

tive, we have a commutative monoid. Commutativity is here a strictly binary question,

the monoid is commutative or it is not. Changing the setting to topological spaces we

get a more interesting picture. We can consider topological monoids and commutative

topological monoids, but also monoids where the multiplication is not strictly commuta-

tive, but commutative up to homotopy. There can also be levels of this commutativity,

commutative up to a certain level of homotopies or commutative up to all higher homo-

topies.

Another setting for looking at commutative structure, which will feature heavily in this

thesis, is categories. A monoidal category is a category equipped with a multiplication, it

is called commutative if the monoidal product is commutative. Here there are also levels

of commutativity. The most commonly considered structure is the symmetric monoidal

category, where the monoidal product is commutative up to coherent isomorphisms. Mac

Lane’s famous description of the coherence theorem for symmetric monoidal categories,

see [ML98, Chapter XI.1], is often shortened to ”all coherence diagrams commute”.

Where symmetric monoidal categories represent the highest degree of commutativity,

short of strict commutativity, braided monoidal categories represent the lowest possible

degree. Filling out the spectrum, there are the n-fold monoidal categories introduced in

[BFSV03] for each integer n ≥ 1. The two lowest levels in the hierarchy, 1-fold monoidal

categories and 2-fold monoidal categories, are equivalent to monoidal categories, and



4 Introduction

braided monoidal categories respectively. A symmetric monoidal category can be con-

sidered as an n-fold monoidal category for any n ≥ 1.

In this preliminary section we will recall the definitions of the various monoidal category

structures and also the operads associated with them. Operads are a very useful tool

when it comes to the study of multiplicative structures and an integral part of this

thesis. Finally we recall some definitions and results related to iterated loop spaces, the

topological counterpart and inspiration for the definition of n-fold monoidal categories.

1.1.1 Monoidal category structures

Definition of a monoidal category from Chapter VII.1 in [ML98]:

Definition 1. A monoidal category, (A,⊗, I, α, λ, %), consists of a category A together

with a functor ⊗ : A×A → A, called the monoidal product, an object I, called the unit

object, and isomorphisms

αA,B,C : (A⊗ B)⊗ C ∼=−→ A⊗ (B ⊗ C),

λA : I ⊗ A ∼=−→ A and %A : A⊗ I ∼=−→ A

natural in A,B,C ∈ A, called the associativity, left unit and right unit isomorphisms

respectively. These isomorphisms must be such that the associativity pentagon

((A⊗ B)⊗ C)⊗D
αA⊗B,C,D

**

αA,B,C⊗id

tt
(A⊗ (B ⊗ C))⊗D
αA,B⊗C,D

��

(A⊗ B)⊗ (C ⊗D)

αA,B,C⊗D

��
A⊗ ((B ⊗ C)⊗D)

id⊗αB,C,D // A⊗ (B ⊗ (C ⊗D))

commutes for all objects A,B,C,D in A, and the triangle

(A⊗ I)⊗ B αA,I,B //

%A⊗id ''

A⊗ (I ⊗ B)

id⊗λBww
A⊗ B .

commutes for all objects A in A. If the natural isomorphisms α, λ and % are all identities,

the monoidal category is called strict.

Definition of a monoidal functor from Chapter XI.2 in [ML98]:



1.1 Preliminaries 5

Definition 2. A strong monoidal functor

F : (A,⊗, I, α, λ, %)→ (A′,⊗′, I ′, α′, λ′, %′)

consists of a functor F : A → A′ of the underlying categories, together with isomor-

phisms

ψ : I ′
∼=−→ F (I) and ϕA,B : F (A)⊗′ F (B)

∼=−→ F (A⊗ B)

natural in A,B ∈ A, such that the diagrams

(F (A)⊗′ F (B))⊗′ F (C)
α′
F (A),F (B),F (C)//

ϕA,B⊗′id
��

F (A)⊗′ (F (B)⊗′ F (C))

id⊗′ϕB,C

��
F (A⊗ B)⊗′ F (C)

ϕA⊗B,C

��

F (A)⊗′ F (B ⊗ C)

ϕA,B⊗C

��
F ((A⊗ B)⊗ C)

F (αA,B,C)
// F (A⊗ (B ⊗ C)),

I ′ ⊗′ F (A)
ψ⊗′id//

λ′
F (A)

  

F (I)⊗′ F (A)

ϕI,A

��

F (A)⊗′ F (I)

ϕA,I

��

F (A)⊗′ I ′id⊗′ψoo

%′
F (A)

~~

F (I ⊗ A)

F (λA)
��

and F (A⊗ I)

F (%A)
��

F (A) F (A)

commute for all A,B,C ∈ A. If for each A,B ∈ A, ϕA,B and ψ are identities, the

monoidal functor is called strict.

Definition of a symmetric monoidal category from Chapter XI.1 in [ML98]:

Definition 3. A monoidal category A is symmetric monoidal if it is equipped with a

symmetry isomorphism

ϑA,B : A⊗ B ∼=−→ B ⊗ A

natural in A,B ∈ A, such that ϑB,A = ϑ−1
A,B and the hexagonal diagram

(B ⊗ A)⊗ C αB,A,C// B ⊗ (A⊗ C)
id⊗ϑA,C

((
(A⊗ B)⊗ C

ϑA,B⊗id
66

αA,B,C ((

B ⊗ (C ⊗ A)

A⊗ (B ⊗ C)
ϑA,B⊗C

// (B ⊗ C)⊗ A
αB,C,A

66

commutes for all objects A,B,C in A.
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A strong monoidal functor F : A → A′ between symmetric monoidal categories is a

symmetric monoidal functor if the diagram

F (A)⊗′ F (B)

ϕA,B

��

ϑ′
F (A),F (B) // F (B)⊗′ F (A)

ϕB,A

��
F (A⊗ B)

F (ϑA,B)
// F (B ⊗ A)

commutes for all A,B ∈ A.

A symmetric monoidal category is called a permutative category if the associativity and

unit isomorphisms are identities.

Definition of a braided monoidal category from Chapter XI.1 in [ML98]:

Definition 4. A monoidal category A is braided monoidal if it is equipped with a

braiding

χA,B : A⊗ B ∼=−→ B ⊗ A

natural in A,B ∈ A, such that both hexagonal diagrams

(B ⊗ A)⊗ C αB,A,C// B ⊗ (A⊗ C)
id⊗χA,C

((
(A⊗ B)⊗ C

χA,B⊗id
66

αA,B,C ((

B ⊗ (C ⊗ A)

A⊗ (B ⊗ C)χA,B⊗C

// (B ⊗ C)⊗ A
αB,C,A

66

and

A⊗ (C ⊗ B)
α−1
A,C,B// (A⊗ C)⊗ B

χA,C⊗id

((
A⊗ (B ⊗ C)

id⊗χB,C

66

α−1
A,B,C ((

(C ⊗ A)⊗ B

(A⊗ B)⊗ CχA⊗B,C

// C ⊗ (A⊗ B)
α−1
C,A,B

66

commute for all objects A,B,C in A.

A monoidal functor F : A → A′ between braided monoidal categories is a braided
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monoidal functor if the diagram

F (A)⊗′ F (B)

ϕA,B

��

χ′
F (A),F (B) // F (B)⊗′ F (A)

ϕB,A

��
F (A⊗ B)

F (χA,B)
// F (B ⊗ A)

commutes for all A,B ∈ A.

The concept of n-fold monoidal categories was defined and developed by Balteanu,

Fiedorowicz, Schwänzel and Vogt in [BFSV03]. The following is Definition 1.7 from

that paper.

Definition 5. An n-fold monoidal category is a category E with the following structure:

There are n monoidal products

�1, . . . ,�n : E × E → E

which are strictly associative and there is an object 0 ∈ E which is a common strict

unit for all the monoidal products. For each pair (i, j) of natural numbers such that

1 ≤ i < j ≤ n there is a natural transformation

ηi,jA,B,C,D : (A�jB)�i(C�jD)→ (A�iC)�j(B�iD).

These natural transformations ηi,j are subject to the following conditions:

Internal unit condition ηi,jA,B,0,0 = ηi,j0,0,A,B = idA�jB.

External unit condition ηi,jA,0,B,0 = ηi,j0,A,0,B = idA�iB.

Internal associativity condition Commutativity of the diagram

(U�jV )�i(W�jX)�i(Y�jZ)
ηi,jU,V,W,X�iidY �jZ//

idU�jV
�iη

i,j
W,X,Y,Z

��

((U�iW )�j(V�iX))�i(Y�jZ)

ηi,j
U�iW,V �iX,Y,Z

��
(U�jV )�i((W�iY )�j(X�iZ))

ηi,j
U,V,W�iY,X�iZ // (U�iW�iY )�j(V�iX�iZ).

External associativity condition Commutativity of the diagram

(U�jV�jW )�i(X�jY�jZ)
ηi,j
U�jV,W,X�jY,Z

//

ηi,j
U,V �jW,X,Y �jZ

��

((U�jV )�i(X�jY ))�j(W�iZ)

ηi,jU,V,X,Y �j idW�iZ

��
(U�iX)�j((V�jW )�i(Y�jZ))

idU�iX
�jη

i,j
V,W,Y,Z// (U�iX)�j(V�iY )�j(W�iZ).
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Coherence For each triple (i, j, k) satisfying 1 ≤ i < j < k ≤ n, the following coherence

diagram must commute

((A�kB)�j(C�kD))�i((E�kF )�j(G�kH))

ηj,kA,B,C,D�iη
j,k
E,F,G,H

ww

ηi,j
A�kB,C�kD,E�kF,G�kH

''
((A�jC)�k(B�jD))�i((E�jG)�k(F�jH))

ηi,k
A�jC,B�jD,E�jG,F�jH

��

((A�kB)�i(E�kF ))�j((C�kD)�i(G�kH))

ηi,kA,B,E,F�jη
i,k
C,D,G,H

��
((A�jC)�i(E�jG))�k((B�jD)�i(F�jH))

ηi,jA,C,E,G�kη
i,j
B,D,F,H

&&

((A�iE)�k(B�iF ))�j((C�iG)�k(D�iH))

ηj,k
A�iE,B�iF,C�iG,D�iH

xx
((A�iE)�j(C�iG))�k((B�iF )�j(D�iH)).

Remark 6. The assumption in [BFSV03] of strict associativity and a strict unit in the

definition of an n-fold monoidal category is made for convenience. In paper [SS] we spell

out the definition with associativity and identity isomorphisms that are not necessarily

identities.

Remark 7. A 1-fold monoidal category is by definition the same thing as a strict

monoidal category. A braided strict monoidal category (B,⊗, I, χ) has an induced struc-

ture of a 2-fold monoidal category, see [BFSV03, Remark 1.5]. This is achieved by setting

�1 = �2 = ⊗, and

η1,2
A,B,C,D = idA ⊗ χB,C ⊗ idD.

A symmetric strict monoidal category, i.e. a permutative category, (C,⊗, I, ϑ) has an

induced structure of an n-fold monoidal category for each n ≥ 1, see [BFSV03, Re-

mark 1.9]. Similarly to above, we have �i = ⊗ for each 1 ≤ i ≤ n and

ηi,jA,B,C,D = idA ⊗ ϑB,C ⊗ idD

for each pair 1 ≤ i < j ≤ n.

Although this gives a strong connection between braided/symmetric monoidal categories

and n-fold monoidal categories, there is a crucial difference. The braiding χ and sym-

metry ϑ are required to be isomorphisms, whereas there is no such requirement for ηi,j.

This is important, because if such a requirement was made, the resulting structure would

be equivalent to that of a symmetric monoidal category for n ≥ 3, as shown by Joyal

and Street in [JS93, Proposition 5.4]. For n = 2 such a structure would be equivalent to

a braided monoidal category. This difference, however, turns out to be not so important
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as the homotopy category of braided monoidal categories and the homotopy category of

2-fold monoidal categories are already equivalent, see [FSV13, Theorem 8.22].

Definition of an n-fold monoidal functor from [BFSV03, Definition 1.8]:

Definition 8. An n-fold monoidal functor (F, λ1, . . . , λn) : E → F between n-fold

monoidal categories consists of a functor F such that F (0) = 0 together with natu-

ral transformations

λiA,B : F (A)�iF (B)→ F (A�iB) for i = 1, 2, . . . , n

satisfying the same associativity and unit conditions as monoidal functors. In addition,

the following hexagonal interchange diagram commutes:

(F (A)�jF (B))�i(F (C)�jF (D))

λjA,B�iλ
j
C,D

��

ηi,j // (F (A)�iF (C))�j(F (B)�iF (D))

λiA,C�jλ
i
B,D

��
F (A�jB)�iF (C�jD)

λi
A�jB,C�jD

��

F (A�iC)�jF (B�iD)

λj
A�iC,B�iD

��
F ((A�jB)�i(C�jD))

F (ηi,j) // F ((A�iC)�j(B�iD))

Note that the λi’s are not required to be isomorphisms.

1.1.2 Operads

Many of the definitions in this subsection are taken from [May72], but the set-

ting has been generalized from topological spaces to a symmetric monoidal category

(C,⊗, I, α, λ, %, ϑ). When there is a monoidal product of more than two objects in C, we

suppress the parenthesis in the resulting product. Any two parenthesised versions are

canonically isomorphic, so it is a matter of convenience. We say that an operad with a

sequence of objects in a category C is internal to C. In this section we will focus on op-

erads internal to the category of sets Set and the category of small categories Cat , as

these are the ones most relevant to the work in this thesis.

The following definition of a non-Σ operad is based on [May72, Definition 1.1]. The

setting is generalized as noted above, and the symmetric group operation is removed

together with the equivariance diagrams to get a non-Σ operad instead of a symmetric

operad.
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Definition 9. A non-Σ operad C internal to C consists of a sequence of objects C(j) in

C for j ≥ 0, together with the following data:

1. For each integer k ≥ 0 and each k-tuple of integers j1, . . . , jk ≥ 0 a morphism

γ : C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)→ C(j1 + · · ·+ jk),

where, for k = 0, γ : C(0) → C(0) is the identity. These operad structure maps

must satisfy an associativity condition: The following composite

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)⊗ C(i1,1)⊗ · · · ⊗ C(ik,jk)
ϑ−−−−→

C(k)⊗ C(j1)⊗ C(i1,1)⊗ · · · ⊗ C(i1,j1)⊗ · · · ⊗ C(jk)⊗ C(ik,1)⊗ · · · ⊗ C(ik,jk)

id⊗γ⊗···⊗γ−−−−−−→ C(k)⊗ C(i1,1 + · · ·+ i1,j1)⊗ · · · ⊗ C(ik,1 + · · ·+ ik,jk)
γ−−−−→ C

(
(i1,1 + · · ·+ i1,j1) + · · ·+ (ik,1 + · · ·+ ik,jk)

)

is equal to

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)⊗ C(i1,1)⊗ · · · ⊗ C(ik,jk)
γ⊗id⊗···⊗id−−−−−−−→

C(j1 + · · ·+ jk)⊗ C(i1,1)⊗ · · · ⊗ C(ik,jk)
γ−−−−→

C(i1,1 + · · ·+ i1,j1 + · · ·+ ik,1 + · · ·+ ik,jk).

2. An identity morphism ε : I → C(1) such that the diagrams

I ⊗ C(j)
ε⊗id //

λ ''

C(1)⊗ C(j)

γ

��

C(k)⊗ I ⊗ · · · ⊗ I
id⊗ε⊗···⊗ε

��

%

))
C(j) C(k)⊗ C(1)⊗ · · · ⊗ C(1)

γ // C(k)

commute for all j, k ≥ 0.

The definition of a non-Σ operad morphism is also from [May72, Definition 1.1], dropping

the equivariance condition on the maps.

Definition 10. A operad morphism Ψ: C → C′ between non-Σ operads is a sequence

of morphisms

Ψj : C(j)→ C′(j)
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in C, such that Ψ1 ◦ ε = ε′ : I → C′(1) and the diagram

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)
γ //

Ψk⊗Ψj1
⊗···⊗Ψjk

��

C(j1 + · · ·+ jk)

Ψj1+···+jk

��
C′(k)⊗ C′(j1)⊗ · · · ⊗ C′(jk)

γ′ // C′(j1 + · · ·+ jk)

commutes for integers k, j1, . . . , jk ≥ 0.

An important example of a non-Σ operad is the endomorphism operad, as this is what

lets us define an operad action on an object in C. The definition is taken from [MSS02,

Definition 1.7], disregarding the symmetric group action.

Definition 11. Let (C,⊗, I) be a symmetric closed monoidal category, i.e. it has an

internal hom functor compatible with the monoidal structure. The endomorphism operad

EndX for an object X in C is defined by

EndX(j) = hom(X⊗j, X),

with

γ : EndX(k)⊗ EndX(j1)⊗ · · · ⊗ EndX(jk)→ EndX(j)

defined as the composite

hom(X⊗k, X)⊗ hom(X⊗j1 , X)⊗ · · · ⊗ hom(X⊗jk , X)→
hom(X⊗k, X)⊗ hom(X⊗j, X⊗k)→ hom(X⊗j, X)

for k, j1, . . . , jk ≥ 0, where j = j1 + · · ·+ jk. The identity morphism ε : I → hom(X,X)

is the adjoint of the identity on X.

Definition 12 (Definition 1.20 [MSS02]). Let C be an operad internal to a symmetric

closed monoidal category C. An action of C on an object X in C is an operad morphism

C→ EndX .

The object X together with the action is called a C-algebra.

Using the adjoint relationship between hom and ⊗, an action is often rewritten as a

sequence of morphisms

C(k)⊗X⊗k → X

satisfying conditions corresponding to the conditions for an operad morphism.
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The multiplicative structures we have mentioned earlier are all encoded by operads.

Associative multiplications arise from actions of non-Σ operads described in the example

below.

Example 13. We now consider the symmetric monoidal category Set with cartesian

product × as monoidal product, and unit object I = {∗}, a one element set. Let

A(k) = {∗}, for all k ≥ 0. A one element set is a terminal object in the category of small

sets Set . Therefore there is a unique non-Σ operad structure on A with

γ : A(k)× A(j1)× · · · × A(jk)→ A(j1 + · · ·+ jk)

being the unique morphism

γ : {∗} × {∗} × · · · × {∗} → {∗},

and the identity ε the unique morphism I → A(1) = {∗}. Since {∗} is terminal, the

associativity and identity diagrams will be commutative by default. The A-algebras are

Set-monoids.

In Cat we can similarly get a non-Σ operad by setting A(k) = {∗} for k ≥ 0. Now {∗}
is a terminal category with one object and only the identity morphism. The rest of the

operad structure is analogously defined to the Set version of the operad. The A-algebras

for this categorical version are the small strict monoidal categories. Notice that this

operad action induce strict associativity. This however is not a significant restriction

when we work with monoidal categories, since any monoidal category is equivalent, via

strong monoidal functors, to a strict monoidal category, see [ML98, Theorem 1 Chapter

XI.3]

More common than non-Σ operads are symmetric operads, often just referred to as

operads. The definition below is a generalized version of [May72, Definition 1.1].

Definition 14. A symmetric operad internal to C is a non-Σ operad C together with a

right action of the symmetric group Σj on C(j) for each j ≥ 0, satisfying the following

two equivariance conditions. For σ ∈ Σk, the diagram

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)
σ⊗id //

∼=σ

��

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)

γ

��

C(k)⊗ C(jσ−1(1))⊗ · · · ⊗ C(jσ−1(k))

γ

��
C(jσ−1(1) + · · ·+ jσ−1(k))

σ(j1,...,jk) // C(j1 + · · ·+ jk)
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must commute for all k, j1, . . . , jk ≥ 0, where σ(j1, . . . , jk) denotes the block permutation

in Σj1+···+jk induced by σ. If we have τi ∈ Σji for i = 1, . . . , k, let τ1 ⊕ · · · ⊕ τk denote

the image of (τ1, · · · , τk) under the canonical inclusion Σj1 × · · · × Σjk ⊆ Σj1+···+jk . The

diagram

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)
γ //

id⊗τ1⊗···⊗τk
��

C(j1 + · · ·+ jk)

τ1⊕···⊕τk
��

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)
γ // C(j1 + · · ·+ jk)

must commute for all k, j1, . . . , jk ≥ 0. A symmetric operad is often just called an

operad.

A non-Σ operad morphism Ψ: C→ C′ between symmetric operads is a symmetric operad

morphism if each morphism

Ψj : C(j)→ C′(j)

is Σj equivariant.

Remark 15. The endomorphism operad from Definition 11 is a symmetric operad.

The action of Σj is precomposition with the action of Σj on X⊗j that comes from the

symmetric monoidal structure. An action of a symmetric operad on an object X is

defined as a symmetric operad morphism from the symmetric operad to EndX .

Associative multiplicative structures can also be given by actions of symmetric operads.

Example 16. Let A be the set operad with A(k) = Σk, where the Σk action is given by

right multiplication and

γ(τ ; τ1, . . . , τk) = τ(j1, . . . , jk)(τ1 ⊕ · · · ⊕ τk),

for τ ∈ Σk, τi ∈ Σji for i = 1, . . . , k. As in the definition of a symmetric operad,

τ1⊕· · ·⊕τk denotes the image of (τ1, · · · , τk) under the canonical inclusion Σj1×· · ·×Σjk ⊆
Σj1+···+jk . And τ(j1, . . . , jk) denotes the block permutation in Σj1+···+jk induced by τ .

The algebras over A are Set-monoids, i.e. a sets with an associative multiplication and

a unit element.

Viewing A(k) = Σk as a discrete category with only identity morphisms, we obtain a

Cat-operad A. Categories with an action of A are the strict monoidal small categories.

Remark 17. Note that the category of algebras for the symmetric operad A with A(k) =

Σk is the same as the category of algebras for the non-Σ operad A with A(k) = {∗}.
Also note that {∗} × Σk

∼= Σk. This fact generalizes to an adjunction between non-Σ

operads and symmetric operads as noted in the abstract of [Bat07]. There is a forgetful
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functor from symmetric operads to non-Σ operads. We can call the left adjoint functor

a symmetrization functor. If we have a non-Σ operad C, the symmetrization functor

takes C to C × Σ where (C × Σ)(k) = C(k) × Σk. The operad structure map γ is

the product of the operad structure maps from C and the symmetric operad A. The

action of the symmetric group on each level is trivial on the C(k) factor and given by

right multiplication on Σk. The categories of algebras of the non-Σ operad C and the

symmetric operad C× Σ are isomorphic.

Now we look at operads that give various degrees of commutativity. First out is strict

commutativity. Here we have both a Set-operad and a Cat-operad. In the rest of the

examples in this section we will consider operads that induce non strict commutativity.

Then Set is no longer a relevant setting and we will exclusively look at categorical

operads.

Example 18. Similarly to Example 13 there is a canonical symmetric operad structure

associated with the sequence C(k) = {∗} for k ≥ 0, both in Set and Cat . The C-algebras

in Set are commutative Set-monoids. The C-algebras in Cat are commutative monoidal

small categories, that is, permutative categories where the symmetry isomorphisms are

actually identities.

Next is the categorical version of the well-know Barratt-Eccles operad, see [BE74], which

give us permutative categories.

Example 19. Let Σ̃(k) denote the translation category of Σk. That is, the objects in

Σ̃(k) are the elements of the symmetric group Σk. Furthermore, given objects ς and

τ in Σ̃(k), a morphism υ : ς → τ is an element ς ∈ Σk such that υς = τ . There is a

symmetric operad structure associated with the sequence Σ̃(k) for k ≥ 0. The operad

structure map γ is determined by what it does on objects, and here the definition is the

same as for the categorical operad A from Example 16. The right action of an element σ

is defined on objects and morphisms by taking υ : ς → τ to υ : ςσ → τσ. The Σ̃-algebras

are the permutative categories.

Recall that permutative categories are symmetric strict monoidal small categories. The

associativity is strict, but the symmetry is not necessarily strict. It is worth repeating

that strict associativity is not a significant restriction, while strict symmetry (commuta-

tivity) is.

The following example is a symmetric Cat-operad whose algebras are braided strict

monoidal small categories, see the paragraph preceding Lemma 8.12 in [FSV13]. The

operad is similar to the previous example of the Barratt-Eccles operad, with the crucial

difference that the morphisms in the categories are braids and not permutations.
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Example 20. Let Br(k) be a category with objects the permutations in Σk. Let Bk

denote the braid group on k strings and given a braid α, let ᾱ be the underlying permu-

tation. A morphism in Br(k) from an object ς to τ is a braid α ∈ Bk such that ᾱς = τ .

The symmetric operad structure is defined similarly to the operad structure of the cate-

gorical Barratt-Eccles operad Σ̃. The Br-algebras are the braided strict monoidal small

categories.

The next example is the symmetric operad Mn associated with n-fold monoidal cat-

egories. We refer to Section 3 of [BFSV03] for details, and will here try to give an

impression of the operad.

Example 21. The objects of Mn(k) serve as templates for the various monoidal multi-

plications in an n-fold monoidal category with k factors. Examples of objects in M4(3)

include 1�13�12 and (2�41)�23. The object will consist of exactly the digits 1, 2 and 3,

in some order, in a product using some of the monoidal products �1, �2, �3 and �4. Ex-

amples of objects in M2(5) include (1�13�12)�2(4�15) and (4�21)�1(2�25)�13. The

operad structure map

γ : Mn(k)×Mn(j1)× · · · ×Mn(jk)→ Mn(j)

combines the objects from Mn(j1), . . . ,Mn(jk) using the template of the object from

Mn(k). The digits are then shifted appropriately, so that the new object consists of the

digits from 1 to j. Here is an example of γ

γ : M4(3)×M4(1)×M4(3)×M4(3)→ M4(7)

on a tuple of objects:

γ
(
(2�41)�23; 1, 2�31�33, (1�23)�12

)
=
(
(3�32�34)�41

)
�2

(
(5�27)�16

)
.

The morphisms in Mn(k) codify the interchange maps in n-fold monoidal categories.

Remark 22. There is a strong analogy when it comes to the relationship between the

symmetric operad Σ̃ and free permutative categories, the relationship between the sym-

metric operad Br and free braided strict monoidal categories and the relationship between

the symmetric operad Mn and free n-fold monoidal categories. The free permutative cat-

egory on one element is isomorphic to the disjoint union of all the symmetric groups,

which again is isomorphic to qk≥0Σ̃k/Σk. Similarly, the free braided strict monoidal cat-

egory on one element is isomorphic to the disjoint union of all the braid groups, which

again is isomorphic to qk≥0Br(k)/Σk. For Mn we have that the free n-fold monoidal

category on one element is isomorphic to qk≥0Mn(k)/Σk, see [BFSV03, Section 3].
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So far we have looked at non-Σ operads and symmetric operads, where the latter incor-

porates an action of the corresponding symmetric group at each level. When it comes to

symmetric monoidal categories and braided monoidal categories respectively, the sym-

metric groups and braid groups play similar roles. Taking advantage of this, Fiedorowicz

defines the concept of braided operads in [Fie, Definition 3.2]. The definition is similar

to that of symmetric operads, with actions of braid groups instead of symmetric groups.

Definition 23. Let C be a symmetric monoidal category. A braided operad is a non-Σ

operad C, internal to C, together with a right action of the braid group Bk on C(k) for

each k ≥ 0, satisfying the following two equivariance conditions. For a braid α ∈ Bk, let

ᾱ denote the underlying permutation. The diagram

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)
α⊗id //

∼=ᾱ
��

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)

γ

��

C(k)⊗ C(jᾱ−1(1))⊗ · · · ⊗ C(jᾱ−1(k))

γ

��
C(jᾱ−1(1) + · · ·+ jᾱ−1(k))

α(j1,...,jk) // C(j1 + · · ·+ jk)

must commute for all k, j1, . . . , jk ≥ 0. The braid α(j1, . . . , jk) in Bj1+···+jk is obtained

from α by replacing the mth strand in α by jm strands for m = 1, . . . , k. If we have

βi ∈ Bji for i = 1, . . . , k, let β1 ⊕ · · · ⊕ βk denote the image of (β1, · · · , βk) under the

canonical inclusion Bj1 × · · · × Bjk ⊆ Bj1+···+jk . The diagram

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)
γ //

id⊗β1⊗···⊗βk
��

C(j1 + · · ·+ jk)

β1⊕···⊕βk
��

C(k)⊗ C(j1)⊗ · · · ⊗ C(jk)
γ // C(j1 + · · ·+ jk)

must commute for all k, j1, . . . , jk ≥ 0.

A non-Σ operad morphism Ψ: C → C′ between braided operads is a braided operad

morphism if each morphism

Ψk : C(k)→ C′(k)

is Bk equivariant.

Note that any symmetric operad can be given the structure of a braided operad by

setting the action of an braid equal to the action of the underlying permutation. In this

way we can consider the endomorphism operad as a braided operad. An action of a

braided operad, internal to C, on an object X ∈ C is thus defined as a braided operad

morphism from the braided operad to the endomorphism operad on X.
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The next example, from [Fie, Example 3.2], is a braided version of the symmetric operad

Br from Example 20. We also denote the braided version with Br.

Example 24. Let Br(k) be the translation category of the braid group Bk. That is,

the objects of Br(k) are the braids on k strings. A morphism from a braid ς to τ is a

braid α such that ας = τ . The operad structure map γ is defined similarly to that of

the symmetric operad A in Example 16: For τ ∈ Bk, τi ∈ Bji we have

γ(τ ; τ1, . . . , τk) = τ(j1, . . . , jk)(τ1 ⊕ · · · ⊕ τk),

where τ1⊕ · · · ⊕ τk denotes the image of (τ1, · · · , τk) under the canonical inclusion Bj1 ×
· · · ×Bjk ⊆ Bj1+···+jk . And τ(j1, . . . , jk) denotes the block braid in Bj1+···+jk induced by

τ . The right action of a braid β ∈ Bk is defined on objects and morphisms by taking

α : ς → τ to α : ςβ → τβ. The algebras of the braided operad Br are the braided strict

monoidal small categories. So the algebras for the braided operad Br are the same as for

the symmetric operad Br.

Thinking of the n-fold monoidal setting as the bridge between the braided monoidal and

symmetric monoidal setting, it is natural to ask the following. Is it possible to find a

family of groups to play the role that the symmetric groups do for symmetric operads

and the braid groups do for the braided operads, but in the n-fold setting? The answer

(to a more precise version of the question) is no, see the introduction of [Bat10].

1.1.3 Iterated loop spaces and iterated monoidal categories

In topology, the concept of a loop space has been and continue to be an important area

of research. The following definition of a loop space is from [MSS02, Definition 2.1].

Definition 25. A loop space ΩX is the space of based maps from the circle S1 to a

space X. More generally an n-fold loop space ΩnX is the space of based maps from the

sphere Sn to a space X, 1 ≤ n <∞.

It is helpful to interpret ‘n-fold loop space’ as the sequence {Yi = ΩYi+1|0 ≤ i < n} with

Yn = X, Yn−1 = ΩX, . . . , Y0 = ΩnX.

An infinite loop space (n =∞) is then a sequence {Yi = ΩYi+1|0 ≤ i}.

An n-fold loop space is also called an iterated loop space for n > 1.
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A loop space has a natural product, induced by a projection of the circle onto a wedge

of circles, which is unital and associative up to homotopy. Not only does associativity

homotopies exist, but a diagram of associativity homotopies commutes up to homotopy,

and so on. The product is said to be associative up to all higher homotopies. Taking

the loop space of a a loop space, we obtain what is called a 2-fold loop space. An

Eckmann-Hilton type argument shows that the multiplication of a 2-fold loop space is

commutative up to homotopy. Iterating further, an n-fold loop space is the loop space

of an (n−1)-fold loop space. For increasing n the multiplication is commutative up to

higher and higher homotopies. In the limit case, an infinite loop space is commutative

up to all higher homotopies.

There is a strong relationship between iterated loop spaces and various monoidal cate-

gory structures. A model for the group completion the classifying space of a monoidal

category is the loop space of the classifying space, so it is a loop space. Furthermore, it is

well known that the group completion of the classifying space of a symmetric monoidal

category is an infinite loop space, see the introduction of [Tho95]. Analogously, as

pointed out by Stasheff [Sta92] and proved by Fiedorowicz [Fie, Example 3.2 and Propo-

sition 3.4] and Berger [Ber99, Therorem 1.2], the group completion of the classifying

space of a braided monoidal category is a double loop space. In [Tho95] Thomason

proved that each infinite loop space is weakly equivalent to the group completion of

the classifying space of a symmetric monoidal category. Inspired by this relationship,

Balteanu, Fiedorowicz, Schwänzel and Vogt set out to find a categorical structure corre-

sponding to n-fold loop spaces for a general n, see [BFSV03]. Analogous to the iterative

definition of an n-fold loop space as a loop space on an (n − 1)-fold loop space, an

iterative definition of an n-fold monoidal category is given in Section 1 of [BFSV03].

Loosely speaking an n-fold monoidal category is a monoid in the category of (n−1)-fold

monoidal categories. The induction start is given by letting a 1-fold monoidal category

be a strict monoidal category. There is a subtle point about the functors in the category

of (n− 1)-fold monoidal categories. They are lax (or weak) monoidal functors. The re-

sult is that the interchange maps in an n-fold monoidal category are not required to be

isomorphisms, unlike the symmetry isomorphisms of symmetric monoidal categories and

braids of braided monoidal categories, which are isomorphisms. See Remark 7 in the Pre-

liminaries for a further comment on this. The iterative definition of an n-fold monoidal

category is translated into a more explicit description in [BFSV03, Definition 1.7], this

is the definition we recalled earlier in this introduction (Definition 5).

After the definition of n-fold monoidal categories in [BFSV03], it is shown that the group

completion of the classifying space of an n-fold monoidal category is an n-fold loop space,

see [BFSV03, Theorem 2.2]. In a later article, [FSV13], it is shown that each n-fold loop
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space is weakly equivalent to the group completion of an n-fold monoidal category, see

[FSV13, Theorem 8.22]. Similarly each 2-fold loop space is weakly equivalent to the

group completion of a braided monoidal category. The method used in the article also

provides a new proof ([FSV13, Theorem 8.23]) for Thomasons analogous result about

infinite loop spaces and symmetric monoidal categories.

The multiplicative structures of loop spaces can, like the monoidal structures recalled

earlier in this introduction, also be encoded by operads. In fact, the first use case for

operads was the study of iterated loop spaces. For the rest of this section we focus on

topological operads. In [BV68] Boardman and Vogt defined a family of operads, the little

n-cubes operads Cn, which, by construction, act on n-fold loop spaces. Furthermore May

proved that any connected Cn-space has the weak homotopy type of an n-fold loop space.

This result is called the recognition theorem and is found in [May72, Theorem 1.3]. As

May states in [May72, Remarks 13.3], the geometry of the little n-cubes operads is so

closely tied to the geometry of iterated loop spaces that a recognition principle based

solely on these operads would be of little practical value.

For a more general recognition principle, we consider En-operads and E∞-operads. An

En-operad is a symmetric operad weakly equivalent to the little n-cubes operad. An

important example for our work is the nerve of the operad Mn which is an En operad

by Theorem 3.14 in [BFSV03]. The nerve of Mn naturally acts on the classifying space

of an n-fold monoidal category, see [BFSV03, Definition 3.1]. An E∞-operad is a Σ-free

symmetric operad which is contractible at each level. The Barratt-Eccles operad is an

E∞-operad (see the end of Chapter 15 in [May72]) and it naturally acts on the classifying

space of a permutative category, see Theorem 4.9 in [May74]. May’s recognition principle

implies that a connected En space has the weak homotopy type of an n-fold loop space

([May72, Theorem 13.1]) and a connected E∞ space has the weak homotopy type of

an infinite loop space ([May72, Theorem 14.4]). For n equals 1 and 2, E1- and E2-

operads can be modeled by A∞- and B∞-operads respectively. An A∞-operad is a

non-Σ operad that is contractible at each level, see [May72, Definition 3.5]. The nerve

of the categorical non-Σ operad A from Example 13 is clearly an A∞-operad. A B∞-

operad is a braided operad such that each level is contractible, and the actions of the

braid group at each level is free, see the paragraph after Definition 3.2 in [Fie]. An

example of a B∞-operad is the nerve of the braided operad Br from Example 24. This

braided operad naturally acts on the classifying space of a braided monoidal category,

see the paragraph before Example 3.2 in [Fie]. May’s recognition principle in particular

implies that a connected A∞ space has the weak homotopy type of a loop space ([May72,

Theorem 13.4]) and a connected B∞ space has the weak homotopy type of a double loop

space ([Fie, Proposition 3.4]).
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Chapter 2

Presentation of main results

2.1 Main results

In this section we present the main results of each paper of the thesis.

2.1.1 Braided injections and double loop spaces

In the preliminary section we saw how permutations and the symmetric groups are as-

sociated with symmetric monoidal categories, E∞ structures and infinite loop spaces.

Similarly braids and the braid groups are associated with braided monoidal categories,

E2 structures and double loop spaces. The main goal of this paper is to provide a commu-

tative rectification of E2 structures somewhat similar to what Sagave and Schlichtkrull

does for E∞ structures in [SS12]. In that article Sagave and Schlichtkrull works with I-

spaces which are functors from I, the permutative category of finite sets and injections,

to a suitable category of spaces or simplicial sets S.

For our purposes we define a braided monoidal category of finite sets and braided injec-

tions B, and work with B-spaces. The definition of a braided injection is given in terms

of homotopy classes of tuples of paths, quite similar to the definition of a braid given in

[Bir74]. Loosely speaking, a braid in the nth braid group Bn can be represented by n

paths starting at n distinct points and ending at n distinct points. In a similar way, a

braided injection from m = {1, . . . ,m} to n = {1, . . . , n} can be represented by m paths

starting at m distinct points and the ending points are m distinct points out of n pos-

sible endpoints. An illustration of such representatives can be seen in Figure 2.1.1. The

two leftmost drawings represent the same braided injection. Thinking of the paths as



22 Presentation of main results

physical strings of thread fixed at the endpoints, one can see that strings of the leftmost

picture can be moved into the position of the strings in the middle picture. The right-

most drawing represents a different braided injection, the strings of this one can not be

moved to resemble either of the two others.

Figure 2.1: Illustration of braided injections from 3 to 4.

The category B mimics a key property of I, namely that an injection can be uniquely

decomposed into a permutation followed by an order-preserving injection. Similarly, as

stated in the lemma below, a braided injection can be uniquely decomposed into a braid

followed by an order-preserving injection. Let M(m,n) be the set of order-preserving

injections from m to n. The functor Υ embeds an order-preserving injection into B in

the obvious way.

Lemma (Lemma 2.3). Every braided injection α : m→ n can be written uniquely as a

composition α = Υ(µ) ◦ ζ with µ in M(m,n) and ζ in the braid group Bm.

It is worth remarking that since every braid has an underlying permutation, every braided

injection has an underlying injection. This induces a functor B→ I. Thus any I-space

X : I → S gives rise to a B-space B→ I X−→ S.

Since we want to work with E2 structures in B-spaces, we need a braided monoidal

structure on the category of B-spaces SB. This is achieved in the usual way following

the general set up in [Day70]. The monoidal product � is defined as a left Kan extension

utilizing the monoidal products in B and S. The braiding b is similarly derived from

the braiding in B and the symmetric twist in S. The unit UB is a constant B-space

with a single point at each level.

Proposition (Proposition 3.12). The category SB equipped with the �-product, the

unit UB, and the braiding b is a braided monoidal category.

In Section 4 of the paper we shift the focus from B-spaces to B-categories, i.e. functors

from B to the category of small categories Cat . Here we also have a braided monoidal

structure, with Proposition 4.7 being the B-category version of Proposition 3.12. We
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define braided B-category monoids as a generalization of braided strict monoidal cat-

egories. That is, a constant B-category with a braided B-category monoid structure

corresponds to having a braided strict monoidal category.

Recall the operad Br from Example 20 in the Preliminaries. It is similar to the Barratt-

Eccles operad, but with the symmetric groups replaced by braid groups. There is both a

symmetric operad version and a braided operad version (Example 24 in the Preliminar-

ies), both denoted by Br. The structure of a braided strict monoidal small category can

be encoded by an action of the symmetric operad Br. The braided version of the operad

can act on B-categories. The next lemma shows that these algebras are isomorphic to

a type of structure we call braided B-category monoids. This justifies considering these

braided B-category monoids to be E2 structures.

Lemma (Lemma 5.3). The category Br-CatB is isomorphic to the category of braided

B-category monoids.

As a way to relate the braided B-category monoids to braided strict monoidal categories,

we use the Grothendieck construction. This is a general categorical construction that

defines a functor A
∫

: CatA → Cat for a small category A. One can think of it as

a categorical version of the homotopy colimit. In fact Thomason’s homotopy colimit

theorem [Tho79, Theorem 1.2] relates the two concepts. The next result shows that

when we apply the Grothendieck construction to a braided B-category monoid, the

category we get inherits a braided strict monoidal category structure. One can say

that the Grothendieck construction preserves the braided monoidal structures, or the E2

structures if you want.

Proposition (Proposition 4.10). The Grothendieck construction gives rise to a functor

B
∫

: Br-CatB → Br-Cat .

We introduce weak equivalences in the following way. A morphism in Br-Cat is a weak

equivalence if the nerve of the underlying functor is a weak equivalence of simplicial sets.

A morphism in Br-CatB is a weak equivalence, called a B-equivalence, if the induced

map on the Grothendieck construction is a weak equivalence. We call the classes of

weak equivalences in Br-Cat and Br-CatB for w and wB respectively. The homotopy

categories with respect to these weak equivalences are then equivalent as shown in the

next proposition. The functor ∆ is the constant embedding.

Proposition (Proposition 4.12). The functors B
∫

and ∆ induce an equivalence of the

localized categories

B
∫

: Br-CatB[w−1
B ] ' Br-Cat [w−1] :∆.
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We have now related E2 structures in Cat to E2 structures in Br-CatB. The next

step is to show that any braided B-category monoid is weakly equivalent to a strictly

commutative B-category monoid, thus rectifying the E2 structure. In order to achieve

this we construct a functor Φ from Br-Cat to commutative B-category monoids, see

Section 4.14. Letting C(CatB) denote the category of commutative B-category monoids,

the proposition below shows that this construction is functorial in A and that Φ(A) is a

commutative B-category monoid.

Proposition (Proposition 4.16). The B-category Φ(A) is a commutative monoid in

CatB and Φ defines a functor Φ: Br-Cat → C(CatB).

The theorem below, one of the main results of this paper, relates a braided B-category

monoid A to the commutative B-category monoid Φ(B
∫
A) via the following chain of

B-equivalences

A ' ∆(B
∫
A) ' ∆

(
B
∫

Φ(B
∫
A)
)
' Φ(B

∫
A).

Theorem (Theorem 4.19). Every braided B-category monoid is related to a strictly

commutative B-category monoid by a chain of natural B-equivalences in Br-CatB.

Section 5 is devoted to getting similar results for rectification of E2 structures in the B-

space setting. We define categories of E2 structures NBr-SB and NBr-S using the nerve

of the braided and symmetric version of the Br operad respectively. The homotopy

colimit preserves the algebra structure.

Lemma (Lemma 5.6). The homotopy colimit functor can be promoted to a functor

(−)hB : NBr-SB → NBr-S.

The relationship between the Grothendieck construction and the homotopy colimit,

shown in the diagram below, follows from Thomason’s work in [Tho79] checking that it

is compatible with the braided structures.

Proposition (Proposition 5.7). The diagram

Br-CatB N //

B
∫

��

NBr-SB

(−)hB
��

Br-Cat N // NBr-S

commutes up to natural weak equivalence.
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A morphism of B-spaces is a B-equivalence if the induced map on homotopy colimits is

a weak equivalence. We write w for the class of morphisms in NBr-S whose underlying

maps of spaces are weak equivalences and wB for the class of morphisms in NBr-SB

whose underlying maps of B-spaces are B-equivalences. The main results of Section 5

are summed up in the following theorem.

Theorem (Theorem 1.2). The homotopy colimit (−)hB and the constant embedding ∆

define an equivalence of the localized categories

(−)hB : NBr-SB[w−1
B ] ' NBr-S[w−1] :∆

and every object in NBr-SB is naturally B-equivalent to a strictly commutative B-space

monoid.

In Section 6 we define the bar construction on a B-space monoid. If the B space

monoid is commutative, the bar construction can be iterated twice. This provides a

concrete example of a double delooping for the group completion of the nerve of a

braided monoidal small category.

Corollary (Corollary 6.6). If A is a braided monoidal small category, then

B� (B� (NΦ(A)))hB

is a double delooping of the group completion of NA.

2.1.2 Weak braided monoidal categories and their homotopy

colimits

In this paper we provide an answer to a question about homotopy properties of the

homotopy colimit for weak braided monoidal categories, left open in [FSV13]. A weak

braided monoidal category is a monoidal category with a family of natural morphisms

X ⊗ Y → Y ⊗ X, not necessarily isomorphisms, but satisfying the other axioms for a

braiding. As is the case for a braided monoidal category, the nerve of a weak braided

monoidal category is also an E2 space, so we can consider a weak monoidal category to

be a categorical E2 structure.

A weak braided monoidal structure is more flexible than a braided monoidal structure

and can be seen as a step towards the 2-fold monoidal structures which we will study

later in the thesis. Where a braided monoidal category has one monoidal product and

braidings that are isomorphisms, a weak braided monoidal category has one monoidal
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product and weak braidings that are not necessarily isomorphisms, while 2-fold monoidal

categories have 2 monoidal products and interchange maps that are not necessarily iso-

morphisms.

Recall that braided strict monoidal small categories are algebras over the operad Br,

the braid group version of the categorical Barratt-Eccles operad, see Example 20 in the

Preliminaries. There is also a weak braided version of this operad, namely Br+, with

braid groups replaced by braid monoids. The category of algebras Br+-Cat is isomorphic

to the category of weak braided strict monoidal small categories, see [FSV13, Section 8].

The nerve of an object in Br+-Cat inherits an action of the simplicial operad NBr+, the

nerve functor applied to Br+.

In [FSV13, Definition 4.10] a general homotopy colimit hocolimMX was constructed for

a Cat-operad M and a diagram X of M-algebras. This was shown to have the desired

homotopy properties if the operad in question satisfies the factorization condition in

[FSV13, Definition 6.8]. The factorization condition was shown to be satisfied by the op-

erads encoding symmetric strict monoidal categories, braided strict monoidal categories

and n-fold monoidal categories, but the question if this is also true for Br+ was left open.

The key result of this paper is showing that Br+ does satisfy the factorization condition,

and thus we get the following result concerning the homotopy properties of hocolimBr+X

for a functor X from a small category into Br+-Cat .

Theorem (Theorem 1.1). There is a natural weak equivalence

hocolimNBr+NX → N(hocolimBr+X)

of NBr+-algebras.

The proof involves an analysis of braid monoids. We consider a poset category C with

objects a certain subset of a braid monoid, and show the existence of a unique minimal

object in C.

As a corollary we get an equivalence between Br+-algebras and NBr+-algebras localized

with respect to suitable classes of weak equivalences, see Section 3.1. Note that the

same equivalence of localized categories was obtained by Fiedorowicz, Stelzer and Vogt

in [FSV16, Section 11] without using the homotopy colimit construction of Br+-algebras.

Corollary (Corollary 3.3). We have an equivalence of localized categories

(Br+-Cat)[we−1] ' (NBr+-S)[we−1].
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2.1.3 Operads and algebras in n-fold monoidal categories

The goal of this paper is to define a concept of n-fold monoidal operads and actions of n-

fold monoidal operads on objects in n-fold monoidal categories. We want to preserve as

much of the structure we find in symmetric operads, braided operads (see Definition 23

in the Preliminaries) and non-Σ operads as possible. In particular we want a 1-fold

monoidal operad to be the same thing as a non-Σ operad. In order to formulate a familiar

associativity axiom for the n-fold monoidal operad structure we need a canonical way

to reorder a tensor product of objects. This is hard to achieve in an n-fold monoidal

category. So we settled on defining an n-fold monoidal operad E as a structure with

objects in a symmetric monoidal category C. We say that E is internal to C. As we

will see later, in order for E to act on an object in an n-fold monoidal category E , the

category E has to be enriched over C.

Part of the structure of a symmetric operad C is a sequence of objects C(n) in C, each

with an action of the permutation group Σn. This means that a symmetric operad has an

underlying functor from Σop = (qn≥0Σn)op to C. The category Σ is the free permutative

category on one element. Similarly a braided operad has an underlying functor from the

free braided strict monoidal category on one element Bop = (qn≥0Bn)op, where Bn is the

nth braid group. For a non-Σ operad, the corresponding underlying functor is from the

set of natural numbers, including 0, which can be thought of as the free strict monoidal

category on one element. In line with this pattern, an n-fold monoidal operad internal

to C is, in Definition 4.3 of this paper, defined with an underlying functor

E : Fop
n → C where A 7→ EA.

The category Fn is the free n-fold monoidal category on one element 1, see the paragraph

before Section 3.4. The objects in this category are products of tuples of 1’s using the

n-monoidal products. An example of an object is (1�21)�1

(
(1�21)�31

)
�11 which can

be visualized using a tree, as in the illustration below.

'

&

$

%

�1

�2

1 1

�3

�2

1 1

1

1

To define the additional structure we make use of the symmetric monoidal structure of

C. First there should be a unit element morphism from the monoidal unit I in C to E1.
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Furthermore there should be operad structure maps

γ : EA ⊗ EB1 ⊗ · · · ⊗ EBk
→ E�A(B1,...,Bk),

where ⊗ is the monoidal product in C. The object �A(B1, . . . , Bk) is, loosely speaking,

the monoidal product in Fn of objects B1, . . . , Bk, according to the structure of the

object A. If for example A = (1�21)�11 and B1 = 1�11, B2 = 1 and B3 = 1�31�31,

then

�A(B1, B2, B3) = ((1�11)�21)�1(1�31�31).

The first 1 in A is replaced with B1, the second 1 in A is replaced with B2 and the

third 1 in A is replaced with B3. The structure maps must satisfy unit conditions,

associativity conditions and equivariance conditions as detailed in Definition 4.3 of the

paper. These conditions are modeled on the corresponding conditions for symmetric and

braided operads. Per this definition, a 1-fold monoidal operad is the same as a non-Σ

operad.

Section 5 in the paper deals with how an n-fold monoidal operad internal to C can act

on an object in an n-fold monoidal category E . For this to work the category has to

be enriched over C, for details see Definition 2.3 in this paper. As we shall see, an n-

fold monoidal operad, the endomorphism operad, can in this case be associated with an

object X in E . For an object A in Fn we write X�A for the monoidal product of a tuple

of X’s according to the n-fold monoidal structure of A. Using once more the example

of A = (1�21)�11, we have X�A = (X�2X)�1X. The endomorphism operad EndX is

defined with

(EndX)A = E(X�A , X)

in Definition 5.1. For a morphism Φ: A→ A′,

(EndX)Φ : (EndX)A′ → (EndX)A

is precomposition by a morphism induced by Φ. The rest of the n-fold monoidal operad

structure maps are quite analogous to the structure maps of the standard symmetric

endomorphism operad associated with an object in a symmetric monoidal category. The

endomorphism operad is then used to define an action of an n-fold monoidal operad.

Definition (Definition 5.4). An action of an n-fold monoidal operad C, internal to C,
on an object X in E , consists of a map θ : C→ EndX of n-fold monoidal operads.

This is the analogous definition to that of an action of a symmetric monoidal operad given

by May in [May72]. However, a symmetric operad action is often described adjointly

as a collection of maps C(j) × Xj → X. If the n-fold monoidal category E is not only
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enriched over C, but also tensored over C in a manner compatible with the enriched

structure (see Definition 6.1), there is an analogous adjoint description of an action of

an n-fold monoidal operad. The proof that these two approaches are equivalent is more

involved than in the symmetric monoidal case, and is dealt with in Section 6 of the

paper.

In Section 7 we define the concepts of n-fold monoids and n-fold commutative monoids,

and also n-fold monoidal operads that induce these structures. An n-fold monoid (Def-

inition 7.1) is an object X in an n-fold monoidal category with n associative monoid

multiplications, one for each monoidal product,

µi : X�iX → X.

The monoid products should have a common strict unit. An n-fold monoid is called

commutative if the diagram

(X�jX)�i(X�jX)
ηi,jX,X,X,X //

µj�iµj

��

(X�iX)�j(X�iX)

µi�jµi

��
X�iX

µi
((

X�jX

µj
vv

X

commutes for all 1 ≤ i < j ≤ n (Definition 7.4). The operads for these structures are

defined internal to the category Set . Every category can be considered to be enriched over

Set , so we can have n-fold monoidal Set-operads act on objects in any n-fold monoidal

category. The n-fold monoidal operad for an n-fold commutative monoid Comm is defined

in Definition 7.6 with CommA = {∗} for each A ∈ Fn. This is similar to the symmetric

operad C for commutative Set-monoids, see Example 18 in the Preliminaries. The n-fold

monoidal operad Assoc for n-fold monoids is likewise similar to the symmetric operad A

from Example 16 in the Preliminaries. For the symmetric operad we have A(k) = Σk

which is the morphism set Σ(k,k) in the permutative category Σ. The n-fold monoidal

operad is in Definition 7.2 defined with AssocA = qA′∈FnFn(A,A′). The algebras of the

operads Assoc and Comm are shown to be the n-fold monoids and the n-fold commutative

monoids respectively, in Proposition 7.3 and Proposition 7.7.

The last section of the paper is devoted to En structures. These are structures where

there is a degree of commutativity to the multiplications, similar to the structure of

an En-space or the categorical counterpart, an n-fold monoidal category. We can now

no longer consider an n-fold monoidal category which is just enriched over Set , there

needs to be more flexibility. Instead we consider an n-fold monoidal category E enriched
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over Cat and model the definition of an En object in E on the definition of an n-fold

monoidal category in Cat . Definition 8.1 defines an En object in E as an n-fold monoid

with multiplications

µi : X�iX → X for i = 1, . . . , n,

a common unit, and for each pair of integers i, j with 1 ≤ i < j ≤ n, a 2-cell ∆i,j as

illustrated by the diagram

(X�jX)�i(X�jX)
ηi,jX,X,X,X //

µj�iµj

��

(X�iX)�j(X�iX)

µi�jµi

��
X�iX

µi

''

∆i,j

==⇒ X�jX

µj

ww
X.

Note that the outer diagram is the same as that for a commutative n-fold monoid. For

a commutative n-fold monoid the diagram must be commutative, for an En object the

requirement is a 2-cell from one composite to the other.

Furthermore there are internal and external unit conditions, internal and external asso-

ciativity conditions, and a coherence condition, all similar to the axioms for an n-fold

monoidal category. In fact, an En object thus defined is a generalization of an n-fold

monoidal category.

Proposition (Proposition 8.2). Let Cat be the 2-category of small categories, functors

and natural transformations. We consider Cat as an n-fold monoidal category with

�1 = · · · = �n = ×, and the terminal category {∗} as the unit. An En object X in Cat

is exactly the same as an n-fold monoidal category structure on X .

The structure of an En object can also be encoded by an n-fold monoidal operad. In

Definition 8.3 we define the n-fold monoidal operad En internal to Cat . For an object

A ∈ Fn we set

(En)A = (A ↓ Fn).

This was inspired by the categorical version of the Barratt-Eccles operad, which has the

comma category (k ↓ Σ) at level k.

The final result of this paper is that the En-algebras are the En-objects.

Proposition (Proposition 8.5). Let X be an object in an n-fold monoidal Cat-category

E . An En object structure on X in the sense of Definition 8.1 is equivalent to an action

of En on X.
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2.1.4 Higher monoidal injections and diagrammatic En struc-

tures

Commutative rectification of E∞ structures and E2 structures was achieved in [SS12] and

[SS16] respectively, by using diagram spaces and diagram categories with these struc-

tures. The main objective of this paper is to continue this line of work and consider En

structures on diagram categories and diagram spaces. Specifically we will use diagrams

with an n-fold monoidal category, see Definition 5 in Preliminaries, as indexing category.

Proposition 4.2 in the paper shows that if we have a closed symmetric monoidal cate-

gory C, where the underlying category is cocomplete, and we have a small strict n-fold

monoidal category A, then the diagram category CA inherits an n-fold monoidal struc-

ture. Throughout this section ⊗ stands for the monoidal product in such a category

C.

A crucial step in setting up the theory in this paper is to determine what we mean by

an En structure on a diagram X ∈ CA, where A is n-fold monoidal. For this we use the

notion of n-fold monoidal operads developed in [Sol]. In Section 4.16 we consider the

n-fold monoidal operad E with underlying functor

E : Fop
n → Cat , a 7→ (a ↓ Fn).

This is the operad that was denoted En in the previous paper. Recall that it is an n-

fold version of the categorical Barratt-Eccles operad and that its algebras generalize the

concept of strict n-fold monoidal categories, see Propositions 8.5 and 8.2 in [Sol]. The

latter fact is also reflected in the symmetrization of E, which we will discuss later in this

presentation.

The action of an n-fold monoidal operad C, internal to C, on a diagram X ∈ CA, can be

described in more explicit terms than the action in a general n-fold monoidal category.

According to Definition 4.7 in the paper it consists of a family of natural transformations

θc : C(c)⊗X(a1)⊗ · · · ⊗X(ak)→ X(�c(a1, . . . , ak))

indexed by objects c ∈ Fn(k) and ai ∈ A for i = 1, . . . k. The object �c(a1, . . . , ak)

is constructed as an n-fold monoidal product of the objects a1, . . . , ak according to the

structure of c. The natural transformations must be unital, associative and equivariant as

specified in the definition. A diagram X equipped with a C-action is called a C-algebra.

In order to relate this concept of En structures as algebras over the n-fold monoidal op-

erad E to traditional En structures we define symmetrization of n-fold monoidal operads



32 Presentation of main results

in Section 4.8. An n-fold monoidal operad C internal to C has an underlying functor

C : Fop
n → C. Left Kan extension along the canonical functor ςn : Fop

n → Σop gives

a functor ςn!(C) : Σop → C natural in C. The n-fold monoidal operad structure on C

induce a symmetric operad structure on ςn!(C), and this is what we call the symmetriza-

tion of C. Proposition 4.9 shows that ςn! is the left adjoint in an adjunction between the

category of n-fold operads internal to C and symmetric operads internal to C:

ςn! : Opn(C) � OpΣ(C) : ς∗n

As a corollary we get that, in a symmetric setting, C-algebras and ςn!C-algebras are

naturally isomorphic. In the result below the permutative category A is considered

to have the canonical n-fold monoidal structure associated to a symmetric monoidal

category, see Remark 7 in the Preliminaries.

Corollary (Corollary 4.11). Let A be a small permutative category and let C be an

n-fold monoidal operad internal to C. Then the categories of algebras C-CA and ςn!C-CA
are naturally isomorphic.

These results provide the justification for considering a C-algebra structure as an En

structure, if the nerve of the symmetrization of C is an En operad. As mentioned in

Section 1.1.3 of the Preliminaries, the nerve of the symmetric operad Mn is an En

operad. Therefore the following result lets us consider the algebras over the n-fold

monoidal operad E as En structures.

Proposition (Proposition 4.17). The symmetrization of the n-fold monoidal operad E

is isomorphic to the operad Mn governing n-fold monoidal categories.

For technical reasons we need to shift to using the n-fold monoidal operad Eop. This is

defined similarly to E, but with the opposite category at each level. The symmetriza-

tion of Eop is Mop
n which is isomorphic to Mn, so Eop-algebras are also En structures.

Proposition 5.3 shows that for an Eop-algebra X in CatA, the Grothendieck construc-

tion A
∫
X inherits the structure of an Eop-algebra in Cat , which is equivalent to the

structure of an n-fold monoidal category by the above corollary.

We write Eop-CatA for the category of Eop-algebras in CatA, and similarly Eop-Cat for

the category of Eop-algebras in Cat . A morphism in Eop-Cat is a weak equivalence if the

nerve of the underlying functor is a weak equivalence of simplicial sets. A morphism in

Eop-CatA is a weak equivalence if the induced functor on the Grothendieck construction

is a weak equivalence. Localizing with respect to these classes of weak equivalences

respectively, yields homotopy categories of Eop-algebras. The main result of the paper
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is that there is an equivalence between the homotopy categories of En structures in Cat

and CatA.

Theorem (Theorem 5.11). Let A be a small and strict n-fold monoidal category with

contractible classifying space. Then the functors A
∫

and ∆ induce an equivalence be-

tween the localized categories

A
∫

: Eop-CatA[w−1
A ] ' Eop-Cat [w−1] :∆.

So far the results mentioned have been about diagrams indexed by any small strict n-

fold monoidal category A. Now we consider a specific indexing category we call In, the

category of n-fold monoidal injections, see Definition 3.4 in the paper. The objects of In
are the objects of the free n-fold monoidal category on one element, Fn. A morphism in

In, called an n-fold monoidal injection, consists of a pair of one morphism in Fn and an

injective order preserving function of ordered finite sets. This is similar to how a braided

injection in the category B or an injection in the category I can be decomposed: A

braided injection can be written as a pair of an element in the braid group and an order

preserving function. An injection can be written as a pair of an element in the symmetric

group and an order preserving function. In all three cases the number of elements in the

domain of the order preserving function should match the permutation/braid/morphism

in Fn. A further common trait of these categories is that they have similar universal

properties. As per Remark 3.11 in this paper, I is a free permutative category generated

by the morphism 0→ 1 and B is a free braided strict monoidal category the morphism

0→ 1. For In the universal property is stated in the following result.

Proposition (Proposition 3.9). The category In is the free n-fold monoidal category

generated by the morphism 0→ 1.

A goal for future research is to study n-fold commutative monoids in CatIn further.

Particularly to check if the homotopy category of n-fold commutative monoids in CatIn

is equivalent to the homotopy category of n-fold monoidal categories, localizing each of

the categories with respect to the relevant weak equivalences. In this paper we have taken

a step in that direction by showing that it is possible to realize a free n-fold monoidal

category as the Grothendieck construction of an n-fold commutative monoid in CatIn :

Given a category X with a distinguished object ∗ ∈ X, there is a functor X• : I → Cat

that maps p to the product category Xp and takes a morphism f : p → q in I to a

functor f∗ : Xp → Xq. For a p-tuple of objects x = (x1, . . . , xp), the components of

f∗x = y are given by yj = xi if f(i) = j and yj = ∗ if j is not in the image of f .

Precomposing with the canonical functor ςn : In → I (see Corollary 3.10 in this paper),

we get an element in CatIn . We can give X• an n-fold commutative monoid structure
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where the product is induced by concatenation of tuples of objects, see the discussion

at the start of Section 6 of this paper. Let X be a small category and X+ the disjoint

union of X with the terminal category. Treating the disjoint object as the distinguished

object we form the Mn-algebra In
∫
(X+)•. The free n-fold monoidal category on X is

Mn(X), where Mn is the monad associated to the symmetric operadMn. The inclusion

X → In
∫
(X+)• induces a map of Mn-algebras Mn(X)→ In

∫
(X+)•.

Theorem (Theorem 6.6). The canonical map of Mn-algebras

Mn(X)→ In
∫
(X+)•

is a weak equivalence.

The free n-fold monoidal category Mn(X) is therefore weakly equivalent to the

Grothendieck construction of the n-fold commutative monoid (X+)• and we have a con-

crete model for Mn(X) in CatIn .

Analogously, in the simplicial set setting, we have the following result.

Theorem (Theorem 6.3). For a based simplicial set X there is a natural weak equiva-

lence ρ : X•hIn
∼−→ NMn∗(X) of NMn-algebras.
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2.2 Future research

Here we list some topics of interest for future research.

• It would be good to have more explicit examples of n-fold monoidal operads. One

idea is to try and make an n-fold monoidal operad version of the little n-cubes

operad.

• Recall that an E∞ operad is a Σ-free operad which is contractible at each level.

For n equals 1 and 2, E1- and E2-operads can be modeled by A∞- and B∞-operads

respectively. An A∞-operad is a non-Σ operad that is contractible at each level. A

B∞-operad is a braided operad such that each level is contractible, and the actions

of the braid group at each level is free.

An n-fold monoidal En-operad can be defined as an n-fold monoidal operad with

a contractible space at each level, such that the underlying functor is cofibrant in

a suitable model structure. The cofibrant condition is analogous to the condition

that the group action should be free for E∞ and B∞ operads. It would be interest-

ing to further examine the relationship between n-fold monoidal En-operads and

symmetric monoidal En-operads.

• In [BM03] Berger and Moerdijk define model structures on operads internal to

symmetric monoidal model categories, given that certain conditions are satisfied.

It would be interesting to see if a similar approach can be taken to define model

structures on n-fold monoidal operads.

• In [Bat10] Batanin defines locally constant n-operads as higher braided operads.

Both n-fold monoidal operads and locally constant n-operads generalize non-Σ

operads (n = 1), braided operads (n = 2) and symmetric operads (n = ∞), but

different aspects are generalized. It would be interesting to explore the relationship

between these different generalizations.

• Finally, there is the continuation of the red thread that runs through this thesis,

rectifying En structures. In [SS] we introduced the category In of n-fold monoidal

injections as an n-fold analog of the indexing categories I for I-spaces and B for

B-spaces, used in rectifying E∞ ([SS12]) and E2 ([SS16]) structures respectively.

With the use of the n-fold monoidal operads, we have explicitly defined En objects

in a diagram category indexed over a small n-fold monoidal category. In particular

we can apply this to the diagram category CatIn . In [SS, Theorem 4.11] we showed

that the homotopy category of these En diagram categories and the homotopy

category of the corresponding En structures in Cat are equivalent. A natural
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next step is to try and generalize the rectification of E∞ structures in [SS12] or

the rectification of E2 structures in [SS16] to En structures, using the setting of

In-categories and In-spaces. As a first step one could start with comparing B-

categories and I2-categories to see what can be generalized there.
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BRAIDED INJECTIONS AND DOUBLE LOOP SPACES

CHRISTIAN SCHLICHTKRULL AND MIRJAM SOLBERG

Abstract. We consider a framework for representing double loop spaces (and more

generally E2 spaces) as commutative monoids. There are analogous commutative rec-

tifications of braided monoidal structures and we use this framework to define iterated

double deloopings. We also consider commutative rectifications of E∞ spaces and sym-

metric monoidal categories and we relate this to the category of symmetric spectra.

1. Introduction

The study of multiplicative structures on spaces has a long history in algebraic topol-

ogy. For many spaces of interest the notion of a strictly associative and commutative

multiplication is too rigid and must be replaced by the more flexible notion of an E∞
multiplication encoding higher homotopies between iterated products. This is analogous

to the situation for categories where strictly commutative multiplications rarely occur in

practice and the more useful E∞ notion is that of a symmetric monoidal structure. Sim-

ilar remarks apply to multiplicative structures on other types of objects. However, for

certain kinds of applications it is desirable to be able to replace E∞ structures by strictly

commutative ones, and this can sometimes be achieved by modifying the underlying cate-

gory of objects under consideration. An example of this is the introduction of modern cat-

egories of spectra (in the sense of stable homotopy theory) [EKMM97, HSS00, MMSS01]

equipped with symmetric monoidal smash products. These categories of spectra have

homotopy categories equivalent to the usual stable homotopy category but come with

refined multiplicative structures allowing the rectification of E∞ ring spectra to strictly

commutative ring spectra. This has proven useful for the import of ideas and con-

structions from commutative algebra into stable homotopy theory. Likewise there are

symmetric monoidal refinements of spaces [BCS10, SS12] allowing for analogous rectifi-

cations of E∞ structures.

Our main objective in this paper is to construct similar commutative rectifications

in braided monoidal contexts. In order to provide a setting for this we introduce the

category B of braided injections, see Section 2. This is a braided monoidal small category

that relates to the category I of finite sets and injections in the same way the braid

groups relate to the symmetric groups. We first explain how our rectification works in

the setting of small categories Cat and let Br-Cat denote the category of braided (strict)

2010 Mathematics Subject Classification. Primary 18D10, 18D50, 55P48; Secondary 55P43.
Key words and phrases. Braided monoidal categories, double loop spaces, diagram spaces.
First published in: Trans. Amer. Math. Soc. 368 (2016), no. 10, 7305–7338.
c© 2015 American Mathematical Society.
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2 CHRISTIAN SCHLICHTKRULL AND MIRJAM SOLBERG

monoidal small categories. Let CatB be the diagram category of functors from B to

Cat and let us refer to such functors as B-categories. The category CatB inherits a

braided monoidal convolution product from B and there is a corresponding category

Br-CatB of braided monoidal B-categories. A morphism A → A′ in Br-CatB is said to

be a B-equivalence if the induced functor of Grothendieck constructions B
∫
A→ B

∫
A′

is a weak equivalence of categories in the usual sense. We write wB for the class of

B-equivalences and w for the class of morphisms in Br-Cat whose underlying functors

are weak equivalences. The following rectification theorem is obtained by combining

Proposition 4.12 and Theorem 4.19.

Theorem 1.1. The Grothendieck construction B
∫

and the constant embedding ∆ define

an equivalence of the localized categories

B
∫

: Br-CatB[w−1
B ] ' Br-Cat [w−1] :∆

and every object in Br-CatB is naturally B-equivalent to a strictly commutative B-

category monoid.

Thus, working with braided monoidal categories is weakly equivalent to working with

braided monoidal B-categories and the latter category has the advantage that we may

assume multiplications to be strictly commutative. This implies in particular that every

braided monoidal small category is weakly equivalent to one of the form B
∫
A for a

commutative B-category monoid A.

Let Br be the categorical operad such that the category of Br-algebras can be identified

with Br-Cat (see Section 5.1 for details). For the analogous rectification in the category

of spaces S (which we interpret as the category of simplicial sets) we consider the operad

NBr in S obtained by evaluating the nerve of Br. This is an E2 operad in the sense of

being equivalent to the little 2-cubes operad and we may think of the category of algebras

NBr-S as the category of E2 spaces. In order to rectify E2 spaces to strictly commutative

monoids we work in the diagram category of B-spaces SB equipped with the braided

monoidal convolution product inherited from B. There is an analogous category of

E2 B-spaces NBr-SB. After localization with respect to the appropriate classes of B-

equivalences wB in NBr-SB and weak equivalences w in NBr-S, Proposition 5.8 and

Theorem 5.9 combine to give the following result.

Theorem 1.2. The homotopy colimit (−)hB and the constant embedding ∆ define an

equivalence of the localized categories

(−)hB : NBr-SB[w−1
B ] ' NBr-S[w−1] :∆

and every object in NBr-SB is naturally B-equivalent to a strictly commutative B-space

monoid.

This implies in particular that every double loop space is equivalent to an E2 space of

the form AhB for a commutative B-space monoid A. To give an example why this may
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be useful, notice that if A is a commutative B-space monoid, then the category SB/A of

B-spaces over A inherits the structure of a braided monoidal category. It is less obvious

how to define such a structure for the corresponding category of spaces over an E2 space.

The above rectification theorems have corresponding versions for symmetric monoidal

categories and E∞ spaces that we spell out in Section 7. As an application of this we

show how to rectify certain E∞ ring spectra to strictly commutative symmetric ring

spectra. However, the braided monoidal setting is somewhat more subtle and is the

main focus of this paper.

Our main tool for replacing braided monoidal structures by strictly commutative ones

is a refinement of the usual strictification construction used to replace monoidal categories

by strictly monoidal ones, see e.g. [JS93, Section 1]. While it is well-known that this

construction cannot be used to turn braided monoidal categories into categories with a

strictly commutative multiplication, we shall see that it can be reinterpreted so as to take

values in commutative B-category monoids instead. This gives rise to the B-category

rectification functor Φ introduced in Section 4.14. In order to obtain an analogous

rectification on the space level we apply the results of Fiedorowicz-Stelzer-Vogt [FV03,

FSV13] that show how to associate braided monoidal categories to E2 spaces. Our

rectification functor Φ then applies to these braided monoidal categories and we can

apply the nerve functor level-wise to get back into the category of commutative B-space

monoids.

It was pointed out by Stasheff and proved by Fiedorowicz [Fie] and Berger [Ber99] that

the classifying space of a braided monoidal small category becomes a double loop space

after group completion. As an application of our techniques we show in Section 6 how

one can very simply define the double delooping: Given a braided monoidal category

A, we apply the rectification functor Φ and the level-wise nerve to get a commutative

B-space monoid NΦ(A). The basic fact (valid for any commutative monoid in a braided

monoidal category whose unit is terminal) is now that the bar construction applied to

NΦ(A) is a simplicial monoid and hence can be iterated once to give a bisimplicial B-

space. Evaluating the homotopy colimit of this B-space we get the double delooping.

This construction in fact gives an alternative proof of Stasheff’s result independent of

the operadic recognition theorem for double loop spaces.

Another ingredient of our work is a general procedure for constructing equivalences

between localized categories that we detail in Appendix A. This improves on previous

work by Fiedorowicz-Stelzer-Vogt [FSV13, Appendix C] and has subsequently been used

by these authors in [FSV] to sharpen some of their earlier results.

1.3. Organization. We begin by introducing the category of braided injections in Sec-

tion 2 and establish the basic homotopy theory of B-spaces in Section 3. Then we

switch to the categorical setting in Section 4 where we prove Theorem 1.1. In Section 5

we return to the analysis of B-spaces and prove Theorem 1.2, whereas Section 6 is ded-

icated to double deloopings of commutative B-space monoids. Finally, we consider the
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symmetric monoidal version of the theory and relate this to the category of symmetric

spectra in Section 7. The material on localizations of categories needed for the paper is

collected in Appendix A.

2. The category of braided injections

We generalize the geometric definition of the braid groups by introducing the notion

of a braided injection. In this way we obtain a category B of braided injections such

that the classical braid groups appear as the endomorphism monoids.

In the following we write I for the unit interval. Let n denote the ordered set {1, . . . , n}
for n ≥ 1. A braided injection α from m to n, written α : m→ n, is a homotopy class of

m-tuples (α1, . . . , αm), where each αi is a path αi : I → R2 starting in (i, 0) and ending

in one of the points (1, 0), ..., (n, 0) with the requirement that αi(t) 6= αj(t) for all t in

I, whenever i 6= j. Two m-tuples (α1, . . . , αm) and (β1, . . . , βm) are homotopic if there

exists an m-tuple of homotopies Hi : I × I → R2 from αi to βi, fixing endpoints, such

that Hi(s, t) 6= Hj(s, t) for all (s, t) in I × I whenever i 6= j. The requirement that Hi

fixes endpoints ensures that a braided injection α from m to n defines an underlying

injective function ᾱ : m→ n by writing αi(1) = (ᾱ(i), 0). When visualising an injective

braid, we think of the points αi(t) for i = 1, . . . ,m as a family of distinct points in R2

moving downwards from the initial position (1, 0), . . . , (m, 0), for t = 0, to the final

position (ᾱ(1), 0),. . . , (ᾱ(m), 0), for t = 1.

Figure 1. Braided injections with the same underlying injective map:
1 7→ 2, 2 7→ 4, 3 7→ 1.

We can compose two braided injections α : m → n and β : n → p by choosing

representatives (α1, . . . , αm) and (β1, . . . , βn), and set β ◦ α to be the homotopy class of

the paths

(βᾱ(1) · α1, ..., βᾱ(m) · αm).

Here βᾱ(i) · αi denotes the usual composition of paths,

βᾱ(i) · αi(t) =




αi(2t), for 0 ≤ t ≤ 1/2,

βᾱ(i)(2t− 1), for 1/2 ≤ t ≤ 1.

We let 0 denote the empty set and say that there is exactly one braided injection from

0 to n for n ≥ 0.

Definition 2.1. The category B of braided injections has objects the finite sets n for

n ≥ 0 and morphisms the braided injections between these sets.
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Next we recall the definitions of some categories closely related to B.

Definition 2.2. The categories B, Σ, I and M all have as objects the finite sets n for

n ≥ 0. Here the braid category B and the permutation category Σ have respectively the

braid group Bn and the permutation group Σn as the endomorphism set of n, and no

other morphisms. The morphisms in I andM are the injective functions and the order

preserving injective functions, respectively.

There is a canonical functor Π from B to I that takes a braided injection α : m→ n

to the underlying injective function ᾱ : m → n. By definition, B is a subcategory of

B and Σ is a subcategory of I. Clearly Π restricts to a functor from B to Σ, which

we also denote by Π. The category M is a subcategory of I and there is a canonical

embedding Υ: M → B with Υ(n) = n. For an injective order preserving function

µ : m → n, let µi be the straight path from (i, 0) to (µ(i), 0) for 1 ≤ i ≤ m. Since µ is

order preserving, µi(t) is different from µj(t) whenever i 6= j, and we can define Υ(µ) as

the braided injection represented by the tuple (µ1, . . . , µm). These functors fit into the

following commutative diagram

(2.1) B ⊆

Π
��

B

Π
��

Σ ⊆ I M.

Υ
aa

⊇

The categories B, Σ, I and M are all monoidal categories with monoidal product t
given on objects by mtn = m+n. In addition, B is braided monoidal and Σ and I are

symmetric monoidal. We will extend these monoidal structures to a braided monoidal

structure on B such that all functors in the diagram are strict monoidal functors and

functors between braided monoidal categories are braided strict monoidal functors. In

order to do this, we will show that every morphism in B can be uniquely written in

terms of a braid and a morphism in M.

Lemma 2.3. Every braided injection α : m→ n can be written uniquely as a composition

α = Υ(µ) ◦ ζ with µ in M(m,n) and ζ in the braid group Bm.

Proof. Let µ : m → n be the unique order preserving injective function whose image

equals that of ᾱ, and let {j1, . . . , jm} be the permutation of the set m = {1, . . . ,m}
determined by ᾱ(i) = µ(ji) for i = 1, . . . ,m. Choose representatives (µ1, . . . , µm) and

(α1, . . . , αm) for Υ(µ) and α respectively. Let µ′i be the reverse path of µi for 1 ≤ i ≤ m.

Since the path µ′ji starts in (µ(ji), 0) = αi(1) and ends in (ji, 0), the homotopy class of

the concatenated paths (µ′j1 ·α1, . . . , µ
′
jm ·αm) is a braid on m strings and we define this

to be ζ. The composite Υ(µ)◦ ζ is represented by (µj1 ·µ′j1 ·α1, . . . , µjm ·µ′jm ·αm), which

is clearly homotopic to (α1, . . . , αm). The morphism µ is uniquely determined by ᾱ and

we see from the construction that ζ is then also uniquely determined. �
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The above lemma implies that there is a canonical identification

(2.2) B(m,n) ∼=M(m,n)× Bm.

Now consider a pair (µ, ζ) in M(m,n) × Bm and a pair (ν, ξ) in M(n,p) × Bn. By

Lemma 2.3 there exists a unique morphism ξ∗(µ) in M(m,n) and a unique braid µ∗(ξ)

in Bm such that the diagram

m
Υ(µ)

//

µ∗(ξ)
��

n

ξ
��

m
Υ(ξ∗(µ))

// n

commutes in B. Hence we see that composition in B translates into the formula

(ν, ξ) ◦ (µ, ζ) = (ν ◦ ξ∗(µ), µ∗(ξ) ◦ ζ)

under the identification in (2.2).

In order to define functors out of the categories considered in Definition 2.2, it is

sometimes convenient to have these categories expressed in terms of generators and

relations. Consider first the case of M and write ∂in : n→ n t 1 for the morphism that

misses the element i in {1, . . . , n + 1}. It is well known that M is generated by the

morphisms ∂in subject to the relations

∂in+1∂
j
n = ∂j+1

n+1∂
i
n for i ≤ j.

Now consider the category B and let ζ1
n, . . . , ζ

n−1
n be the standard generators for the

braid group Bn, see e.g. [Bir74, Theorem 1.8].

1 i i + 1 n

ζin

1 i i + 1 n

(ζin)
−1

Figure 2. The generator ζ in and its inverse

We also write ∂in : n → n t 1 for the braided injections obtained by applying the

functor Υ to the corresponding morphisms in M.

Lemma 2.4. The category B is generated by the morphisms ζ in : n→ n for n ≥ 2 and

1 ≤ i ≤ n − 1, and the morphisms ∂in : n → n t 1 for n ≥ 0 and 1 ≤ i ≤ n+1, subject

to the relations

ζ inζ
j
n = ζjnζ

i
n for |i− j| ≥ 2

ζ inζ
i+1
n ζ in = ζ i+1

n ζ inζ
i+1
n for 1 ≤ i ≤ n− 2

∂in+1∂
j
n = ∂j+1

n+1∂
i
n for i ≤ j
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and

ζ in+1∂
j
n =





∂jnζ
i−1
n for j < i

∂j+1
n for j = i

∂j−1
n for j = i+ 1

∂jnζ
i
n for j > i+ 1.

Proof. The identification B(m,n) ∼= M(m,n) × Bm makes it clear that any morphism

can be written in terms of the generators. The two first relations are the relations for the

braid groups (see e.g., [Bir74, Theorem 1.8]), the next are the relations in M, so that

leaves the relations between the ∂in’s and ζ in’s. It is easy to see that these relations hold

in B and that they can be used to decompose any product of the ∂in’s and the ζ in’s into

the form Υ(µ) ◦ ζ for a braid ζ and a morphism µ in M. Since such a decomposition is

unique, the relations are also sufficient. �

Finally, we consider the category I and write σin : n → n for the image of ζ in under

the projection Π : B→ I. We obtain a presentation of I from the presentation of B by

imposing the relation σinσ
i
n = idn, just as the symmetric group Σn is obtained from Bn.

We use the above to define a strict monoidal structure on B with unit 0. Just as for

the monoidal categories considered in Diagram (2.1), the monoidal product mtn of two

objects m and n in B is m+n. The decomposition of a braided injection given in (2.2)

lets us define the monoidal product (µ, ζ) t (ν, ξ) of two morphisms (µ, ζ) and (ν, ξ) in

B as (µt ν, ζ t ξ) using the monoidal structures onM and B, for an illustration of this

see Figure 3.

Figure 3. The monoidal product of two braided injections.

It is well known that the subcategory B is braided with braiding χm,n : mtn→ ntm

moving the first m strings over the last n strings while keeping the order among the m

strings and the n strings respectively. This family of isomorphisms is in fact also a

braiding on B. The hexagonal axioms for a braiding only involve morphisms in B so it

remains to check that χm,n is natural with respect to the generators ∂ik. This is quite

clear geometrically (see Figure 4 for an illustration) and can be checked algebraically by

writing χm,n in terms of the generators.

3. The homotopy theory of B-spaces

In this section we introduce B-spaces as functors from B to the category of spaces

and equip the category of B-spaces with a braided monoidal model structure. We

assume some familiarity with the basic theory of cofibrantly generated model categories

as presented in [Hov99, Section 2.1] and [Hir03, Section 11].



8 CHRISTIAN SCHLICHTKRULL AND MIRJAM SOLBERG

Figure 4. The equality (∂2
3 t id2) ◦ χ2,3 = χ2,4 ◦ (id2 t ∂2

3).

3.1. The category of B-spaces. A B-space is a functor X : B → S, where S is the

category of simplicial sets. We call a natural transformation between two such functors

a morphism between the two B-spaces and write SB for the category of B-spaces so

defined.

The category SB inherits much structure from S. All small limits and colimits exists

and are constructed level-wise. Furthermore, SB is enriched, tensored and cotensored

over S. For a B-space X and a simplicial set K, the tensor X × K and cotensor XK

are the B-spaces given in level n by

(X ×K)(n) = X(n)×K and XK(n) = MapS(K,X(n)),

where MapS is the standard simplicial function complex. The simplicial set of maps

from X to Y is the end

MapSB(X, Y ) =

∫

n∈B
MapS

(
X(n), Y (n)

)
.

Lemma 3.2. The category of B-spaces is a bicomplete simplicial category with the above

defined structure. �

3.3. The B-model structure on SB. We will use the free B-space functors Fn : S →
SB given by Fn(K) = B(n,−)×K to transport the usual model structure on simplicial

sets to SB. The functor Fn is left adjoint to the evaluation functor Evn taking a B-space

X to the simplicial set X(n). Note that since 0 is initial in B, the functor F0 takes a

simplicial set to a constant B-space. We often use the notation ∆ for F0.

It is a standard fact, see for instance [Hir03, Theorem 11.6.1], that SB has a level

model structure where a morphism is a weak equivalence (or respectively a fibration) if

it is a weak equivalence (or respectively a fibration) of simplicial sets when evaluated at

each level n. This model structure is cofibrantly generated with generating cofibrations

I = {Fn(i) | n ∈ B, i : ∂∆k → ∆k for 0 ≤ k}

and generating acyclic cofibrations

J = {Fn(j) | n ∈ B, j : Λk
l → ∆k for k > 0 and 0 ≤ l ≤ k}

where i and j denote the inclusion of the boundary of ∆k and the lth horn of ∆k in ∆k

respectively. The cofibrations in the level model structure have a concrete description
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using latching maps. The nth latching space of a B-space X is defined as

Ln(X) = colim
(m→n)∈∂(B↓n)

X(m),

where ∂(B ↓n) is the full subcategory of the comma category (B ↓n) with objects the

non-isomorphisms. For a map of B-spaces f : X → Y , the nth latching map is the Bn-

equivariant map Lnf : Ln(Y ) qLn(X) X(n)→ Y (n). A map f : X → Y is a cofibration

if for every n ≥ 0, the nth latching map Lnf is a cofibration of simplicial sets such that

the Bn-action on the complement of the image is free. We refer to such cofibrations as

B-cofibrations.

The level model structure is primarily used as a convenient first step in equipping SB

with a model structure making it Quillen equivalent to S. In such a model structure we

need a wider class of weak equivalences. Recall that the Bousfield-Kan construction of

the homotopy colimit of a functor X from a small category C to S is the simplicial set

hocolimC X with k-simplices

(3.1)
∐

m0←···←mk

X(mk)k

for morphisms m0 ← m1, . . . ,mk−1 ← mk in C, cf. [BK72, Section XII.5.1]. When the

functor X is a B-space we will often denote its homotopy colimit by XhB.

Definition 3.4. A morphisms X → Y of B-spaces is a B-equivalence if the induced

map XhB → YhB is a weak equivalence of simplicial sets.

We say that a morphism X → Y of B-spaces is a B-fibration if X(n) → Y (n) is a

fibration of simplicial sets for every n ∈ B and if the square

(3.2) X(m)
X(α)

//

��

X(n)

��
Y (m)

Y (α)
// Y (n)

is homotopy cartesian for every braided injection α : m→ n.

In order to make the B-equivalences and B-fibrations part of a cofibrantly generated

model structure we have to add more generating acyclic cofibrations compared to the

level model structure. We follow the approach taken for diagram spectra in [HSS00,

Section 3.4] and [MMSS01, Section 9] and for diagram spaces in [SS12, Section 6.11]:

Each braided injection α : m→ n gives rise to a map of B-spaces α∗ : Fn(∗)→ Fm(∗).
The latter map factors through the mapping cylinder M(α∗) as α∗ = rαjα, where jα is

a cofibration in the level model structure and rα is a simplicial homotopy equivalence.

We now set

J̄ = {jα�i | α : m→ n ∈ B, i : ∂∆k → ∆k for 0 ≤ k},
where � denotes the pushout-product, see e.g. [Hov99, Definition 4.2.1].
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Proposition 3.5. There is a model structure on SB, the B-model structure, with weak

equivalences the B-equivalences, fibrations the B-fibrations and cofibrations the B-cofi-

brations. This model structure is simplicial and cofibrantly generated where IB = I is the

set of generating cofibrations and JB = J ∪ J̄ is the set of generating acyclic cofibrations.

Proof. The proof is similar to the proofs of Propositions 6.16 and 6.19 in [SS12]. (We

refer the reader to Remark 3.14 for a summary of the extent to which the results for

symmetric monoidal diagram categories established in [SS12] carries over to the present

setting.) �

As promised this model structure makes B-spaces Quillen equivalent to simplicial sets.

Proposition 3.6. The adjunction colimB : SB � S : ∆ is a Quillen equivalence.

Proof. The category B has an initial object so NB is a contractible simplicial set. Ar-

guing as in the proof of Proposition 6.23 in [SS12] yields the result. �

Example 3.7. In general an I-space Z : I → S pulls back to a B-space Π∗Z via the

functor Π: B → I from Section 2. Consider in particular a based space X with base

point ∗ and the I-space X• : I → S such that X•(n) = Xn. A morphism α : m→ n in

I acts on an element x = (x1, . . . , xm) by

α∗(x) = (xα−1(1), . . . , xα−1(n)),

where xα−1(j) = xi if α(i) = j and xα−1(j) = ∗ if j is not in the image of α. It is proved

in [Sch07] that if X is connected, then the geometric realization |X•hI | is equivalent to

the infinite loop space Ω∞Σ∞(|X|). In contrast to this we shall prove in Example 5.10

that |(Π∗X•)hB| is equivalent to Ω2Σ2(|X|) for connected X.

3.8. The flat B-model structure on SB. We will now consider another structure

on B-spaces, the flat B-model structure, which takes into account that each level of

a B-space has a left action of a braid group. The weak equivalences are again the

B-equivalences, but the flat B-model structure has more cofibrant objects than the B-

model structure. In some places, in particular in Section 6, we get more general results

by considering these “flat” objects instead of only the B-cofibrant objects. The flat

B-model structure is constructed similarly to the B-model structure, but the starting

point is Shipley’s mixed model structure on the category Bn-S of simplicial sets with

left Bn-action, see [Shi04, Proposition 1.3]. Shipley only considers finite groups, but the

construction applies equally well to discrete groups in general if one allows all subgroups

to be considered. An equivariant map is a weak equivalence (or respectively a cofibration)

in the mixed model structure if the underlying map of simplicial sets is. Recall that given

a group H and an H-space K, the space of homotopy fixed points KhH is the homotopy

limit of K viewed as a diagram over the one-object category H. An equivariant map

K → L is a fibration in the mixed model structure if the induced maps KH → LH of
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fixed points are fibrations and the diagrams

KH //

��

KhH

��

LH // LhH

are homotopy cartesian for all subgroups H of Bn. This model structure is cofibrantly

generated, see the proof of [Shi04, Proposition 1.3] for a description of the generating

(acyclic) cofibrations.

The forgetful functor Evn : SB → Bn-S evaluating a B-space X at the nth level has

a right adjoint Gn given by Gn(K) = B(n,−) ×Bn K. We proceed as in the previous

subsection and get a new level model structure on SB where a morphism is a weak

equivalence (or respectively a fibration) if it is a weak equivalence (or respectively a

fibration) in the mixed model structure on Bn-S when evaluated at each level n. This

model structure is cofibrantly generated with generating (acyclic) cofibrations Im (Jm)

obtained by applying Gn to the generating (acyclic) cofibrations for the mixed model

structure on Bn-S for all n in B. A morphisms f : X → Y is a cofibration in this

level model structure if for every n ≥ 0, the nth latching map Lnf is a cofibration of

simplicial sets. We refer to such cofibrations as flat B-cofibrations. A morphism X → Y

of B-spaces is said to be a flat B-fibration if X(n) → Y (n) is a fibration in the mixed

model structure on Bn-S for every n in B and if the square (3.2) is homotopy cartesian

for every braided injection α : m→ n.

Proposition 3.9. There is a model structure on SB, the flat B-model structure, with

weak equivalences the B-equivalences, fibrations the flat B-fibrations and cofibrations the

flat B-cofibrations. This model structure is simplicial and cofibrantly generated where

Iflat = Im is the set of generating cofibrations and Jflat = Jm ∪ J̄ is the set of generating

acyclic cofibrations.

Proof. The proof is similar to the proofs of Propositions 6.16 and 6.19 in [SS12]. �

We will refer to the flat B-cofibrant objects simply as flat objects. These will play

an important role also when we are considering the B-model structure. The next result

gives a criterion for an object to be flat which is easier to check than the one given above.

Proposition 3.10. A B-space X is flat if and only if each morphism m → n induces

a cofibration X(m) → X(n) and for each diagram of the following form (with maps

induced by the evident order preserving morphisms)

(3.3) X(m) //

��

X(m t n)

��
X(l tm) // X(l tm t n)

the intersection of the images of X(l tm) and X(m t n) in X(l tm t n) equals the

image of X(m).
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Proof. Recall from Definition 2.2 the canonical embedding Υ: M → B, where M is

the category with the same objects as B and injective order preserving functions as

morphisms. This induces an embedding (M↓ n) → (B ↓ n) whose image is a skeletal

subcategory by Lemma 2.3. Identifying (M↓ n) with the poset category of subsets of

n, we see that a B-space gives rise to an n-cubical diagram for all n. Furthermore, it

follows from the definitions that a map of B-spaces is a flat B-cofibration if and only

if the induced maps of cubical diagrams are cofibrations in the usual sense. Given this,

the proof proceeds along the same lines as the proof of the analogous result for I-spaces,

see [SS12, Proposition 3.11]. �

3.11. The braided monoidal structure on SB. Any category of diagrams in S in-

dexed by a braided monoidal small category inherits a braided monoidal convolution

product from the indexing category. We proceed to explain how this works in the case of

SB. Given B-spaces X and Y , we define the B-space X�Y to be the left Kan extension

of the (B×B)-space

B×B
X×Y−−−→ S × S ×−→ S

along the monoidal structure map t : B × B → B. Thus, the data specifying a map

of B-spaces X � Y → Z is equivalent to the data giving a map of (B × B)-spaces

X(m)× Y (n)→ Z(m t n). We also have the level-wise description

X � Y (n) = colim
n1tn2→n

X(n1)× Y (n2)

where the colimit is taken over the comma category (t↓n) associated to the monoidal

product t : B × B → B. The monoidal unit for the �-product is the terminal B-

space UB = B(0,−). Using that S is cartesian closed one easily defines the coherence

isomorphisms for associativity and unity required to make SB a monoidal category. We

specify a braiding b : X �Y → Y �X on SB by requiring that the diagram of (B×B)-

spaces

(3.4) X(m)× Y (n)
twist //

��

Y (n)×X(m)

��
X � Y (m t n)

b(mtn)
// Y �X(m t n)

Y �X(χm,n)
// Y �X(n tm)

be commutative. The following proposition can either be checked by hand or deduced

from the general theory in [Day70].

Proposition 3.12. The category SB equipped with the �-product, the unit UB, and the

braiding b is a braided monoidal category. �

We use the term B-space monoid for a monoid in SB. By the universal property of

the �-product, the data needed to specify the unit u : UB → A and the multiplication

µ : A � A → A on a B-space monoid A amounts to a zero simplex u in A(0) and a

map of (B×B)-spaces µ : A(m)× A(n)→ A(m t n) satisfying the usual associativity
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and unitality conditions. By the definition of the braiding, A is commutative (that is,

µ ◦ b = µ) if and only if the diagram of (B×B)-spaces

(3.5) A(m)× A(n)
µ

//

twist
��

A(m t n)

A(χm,n)

��
A(n)× A(m)

µ
// A(n tm)

is commutative.

Recall that given maps f1 : X1 → Y1 and f2 : X2 → Y2 of B-spaces, the pushout-

product is the induced map

f1�f2 : (X1 � Y2)q(X1�X2) (Y1 �X2)→ Y1 � Y2.

Following [Hov99, Definition 4.2.6] we say that a model structure on SB is a monoidal

model structure if given any two cofibrations f1 and f2, the pushout-product f1�f2 is a

cofibration that is in addition acyclic if f1 or f2 is.

Lemma 3.13. Both the B-model structure and the flat B-model structure are monoidal

model structures.

Proof. We give the proof for the B-model structure, the proof for the flat case is similar.

By Lemma 3.5 in [SS00] it suffices to verify the condition for the generating (acyclic) cofi-

brations. For two generating cofibrations i, i′ in S it is easy to check that Fm(i)�Fn(i′)

is isomorphic to Fmtn(i�i′). This uses that Fm(K) � Fn(L) is naturally isomorphic to

Fmtn(K × L) for two simplicial sets K and L and also that Fmtn is a left adjoint and

hence commutes with colimits. Simplicial sets is a monoidal model category, therefore

i�i′ is a cofibration and then so is Fmtn(i�i′), since Fmtn preserves cofibrations. Sim-

ilarly Fm(i)�Fn(j) is an acyclic cofibration if j is a generating acyclic cofibration in

S.

Now let α : m→m′ be a morphism in B. We check that (jα�i)�Fn(i′) is an acyclic

cofibration for i : ∂∆k → ∆k and i′ : ∂∆l → ∆l generating cofibrations in S. Using that

jα�i ∼= jα�F0(i), we get the identifications

(jα�i)�Fn(i′) ∼= jα�(F0(i)�Fn(i′)) ∼= jα�Fn(i�i′) ∼= jα � Fn(∗)× (i�i′).

Since jα is a cofibration by construction, it follows from the first part of the lemma and

the fact that the B-model structure is simplicial, that this is a cofibration. For the same

reason it therefore suffices to show that jα�Fn(∗) is a B-equivalence. For this we apply

the two out of three property for B-equivalences to the diagram

Fm(∗) � Fn(∗)
∼=

��

jα�idFn(∗)
// M(α∗) � Fn(∗)

rα�idFn(∗)
// Fm′(∗) � Fn(∗)

∼=
��

Fmtn(∗)
(αtidn)∗

∼
// Fm′tn(∗).
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The vertical maps are isomorphisms and the lower horizontal map is a B-equivalence

since both Fmtn(∗)hB and Fm′tn(∗)hB are contractible. Furthermore, rα � idFn(∗) is

a simplicial homotopy equivalence since rα is a simplicial homotopy equivalence and

−� idFn(∗) preserves simplicial homotopy equivalences. This completes the proof. �

Remark 3.14. In [SS12] a projective model structure is defined for a general diagram

category SK indexed by a small symmetric monoidal category K that is well-structured

as per Definition 5.5 in [SS12]. Similarly a flat model structure is defined for SK if in ad-

dition K together with its subcategory of automorphisms form a well-structured relative

index category as per Definition 5.2 in [SS12]. These definitions can be canonically ex-

tended to allow braided monoidal categories as index categories such that similar model

structures exist. This will not make B a well-structured index category because the

comma category (k t −↓ l) will in general not have a terminal object for k and l in B.

This property is however not used to establish the model structures, so Proposition 3.5

and Proposition 3.10 are proved as the similar results in [SS12]. But the proofs of results

concerning how the monoidal structure interacts with the model structures do use the

mentioned property. Above we have shown that the model structures we consider are

monoidal model structures by an alternative argument. It is not clear if the arguments

in [SS12] can be generalized to define model structures on monoids and commutative

monoids in B-spaces.

Let X and Y be B-spaces and consider the natural transformation

νX,Y : XhB × YhB
∼=−→ (X × Y )h(B×B) → ((− t−)∗(X � Y ))h(B×B) → (X � Y )hB

where the second map is induced by the universal natural transformation of B × B

diagrams X(m) × Y (n) → (X � Y )(m t n). These maps gives rise to a monoidal

structure on the functor (−)hB, c.f. [Sch09, Proposition 4.17].

Lemma 3.15. If both X and Y are flat, then νX,Y : XhB× YhB → (X � Y )hB is a weak

equivalence.

Proof. The fact that the flat B-model structure is monoidal combined with Ken Brown’s

Lemma implies that the functor X � (−) takes B-equivalences between flat B-spaces to

B-equivalences since X is itself flat. Therefore we can take a cofibrant replacement of Y

in the B-model structure and it will suffice to prove the result when Y is B-cofibrant.

Applying a symmetric argument we reduce to the case where both X and Y are B-

cofibrant, which in turn implies that also X � Y is B-cofibrant. By Proposition 18.9.4

in [Hir03] the canonical map hocolimB Z → colimB Z is a weak equivalence for any B-

cofibrant B-space Z. The claim now follows since the colimit functor is strong symmetric

monoidal. �
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4. B-categories and braided monoidal structures

In this section we introduce the notion of a B-category and equip the category of

such with a braided monoidal structure. We then relate the braided (strict) monoidal

objects in this setting to braided (strict) monoidal categories in the usual sense. Fi-

nally we introduce the B-category rectification functor and use this to show that any

braided monoidal structure can be rectified to a strictly commutative structure up to

B-equivalence.

4.1. B-categories and the Grothendieck construction. Let Cat denote the cate-

gory of small categories and let CatB be the functor category of B-diagrams in Cat .

We shall refer to an object in CatB as a B-category. Recall that the Grothendieck con-

struction B
∫
X on a B-category X is a category with objects (n,x) given by an object

n in B and an object x in the category X(n). A morphism (α, s) : (m,x) → (n,y) is

a morphism α : m → n in B together with a morphism s : X(α)(x) → y in X(n). The

composition of morphisms is defined by

(β, t) ◦ (α, s) = (β ◦ α, t ◦X(β)(s)).

This construction defines a functor B
∫

: CatB → Cat in the obvious way. We think

of B
∫
X as the homotopy colimit of X in Cat . This is justified by Thomason’s homo-

topy colimit theorem [Tho79, Theorem 1.2] which states that there is a natural weak

equivalence

(4.1) η : hocolim
n∈B

N(X(n))
'−→ N(B

∫
X).

Let us say that a functor Y → Y ′ between small categories is a weak equivalence if

the induced map of nerves N(Y ) → N(Y ′) is a weak equivalence of simplicial sets. We

say that a map of B-categories X → X ′ is a B-equivalence if the map of Grothendieck

constructions B
∫
X → B

∫
X ′ is a weak equivalence in this sense. By the natural weak

equivalence in (4.1) this is equivalent to the level-wise nerve N(X) → N(X ′) being a

B-equivalence in the sense of the previous section. Let w denote the class of weak

equivalences in Cat , and let wB be the class of B-equivalences in CatB. With the

given definition of B-equivalences it is not surprising that the categories CatB and Cat

become equivalent after localization with respect to these classes of equivalences. For

the convenience of the reader we have collected the relevant background material on

localization in Appendix A. Let us write ∆: Cat → CatB for the functor that takes a

small category to the corresponding constant B-category.

Proposition 4.2. The functors B
∫

and ∆ induce an equivalence of the localized cate-

gories

B
∫

: CatB[w−1
B ] ' Cat [w−1] :∆.

For the proof of the proposition we need to introduce an auxiliary endofunctor on

CatB. Let (B ↓ •) be the B-category defined by the comma categories (B ↓ n). By
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definition, an object of (B ↓n) is a pair (m, γ) given by an object m and a morphism

γ : m → n in B. A morphism α : (m1, γ1) → (m2, γ2) is a morphism α : m1 → m2 in

B such that γ1 = γ2 ◦ α. Let πn : (B↓n)→ B be the forgetful functor mapping (m, γ)

to m. Clearly these functors assemble to a map of B-categories π : (B ↓ •) → ∆(B).

Given a B-category X, the bar resolution X is the B-category defined by the level-wise

Grothendieck constructions

X(n) = (B↓n)
∫
X ◦ πn.

The structure maps making X a B-category are inherited from the B-category (B↓•)
in the obvious way. Our use of the term “bar resolution” is motivated by the analogous

bar resolution for B-spaces that we shall consider in Section 5.4.

Lemma 4.3. There is a natural level-wise weak equivalence ev : X → X.

Proof. For each n we define a functor ev(n) : (B↓n)
∫
X ◦ πn → X(n). An object in the

domain has the form ((m, γ),x) with (m, γ) in (B↓n) and x an object in X(m). We map

this to the object X(γ)(x) in X(n). A morphism from ((m1, γ1),x1) to ((m2, γ2),x2)

amounts to a morphism α : (m1, γ1) → (m2, γ2) in (B ↓ n) together with a morphism

s : X(α)(x1)→ x2 in X(m2). We map such a morphism to the morphism

X(γ2)(s) : X(γ1)(x1) = X(γ2)(X(α)(x1))→ X(γ2)(x2)

in X(n). These functors are compatible when n varies and give rise to the map of B-

categories in the lemma. To show that ev(n) is a weak equivalence, we consider the

canonical functor

j(n) : X(n)→ (B↓n)
∫
X ◦ πn, x 7→ (1n,x)

where 1n denotes the terminal object in (B↓n). Then ev(n)◦j(n) is the identity functor

on X(n) and it is easy to see that there is a natural transformation from the identity

functor on (B ↓ n)
∫
X ◦ πn to j(n) ◦ ev(n). Hence j(n) defines a homotopy inverse of

ev(n). �

Lemma 4.4. There is a natural B-equivalence π : X → ∆(B
∫
X).

Proof. For each n the forgetful functor πn : (B↓n)→ B gives rise to a functor

(B↓n)
∫
X ◦ πn → B

∫
X

by mapping an object ((m, γ),x) to (m,x). Letting n vary this defines the map of

B-categories in the lemma. We must show that the functor B
∫
π is a weak equivalence

and for this we consider the diagram of categories

B
∫ (

(B↓•)
∫
X ◦ π•

) B
∫
π

//

B
∫

ev

��

B
∫

∆(B
∫
X)

∼=
��

B
∫
X B× (B

∫
X)

proj
oo
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where proj denotes the projection away from the first variable. This diagram is not

commutative but we claim that it commutes up to a natural transformation. Indeed,

consider an object (n, (m, γ),x) with n in B, (m, γ) an object in (B↓n), and x an object

in X(m). The functor B
∫

ev maps this to (n, X(γ)(x)) whereas the other composition

maps it to (m,x). It is easy to see that the morphisms

(γ, idX(γ)(x)) : (m,x)→ (n, X(γ)(x))

define a natural transformation between these functors. Since B
∫

ev is a weak equivalence

by Lemma 4.3 and proj is a weak equivalence because B has an initial object, it follows

that also B
∫
π is a weak equivalence. �

Proof of Proposition 4.2. We first observe that the localization of Cat with respect to w

actually exists since Thomason has realized it as the homotopy category of a suitable

model structure, see [Tho80]. With terminology from Appendix A, Lemmas 4.3 and 4.4

give a chain of natural B-equivalences relating ∆(B
∫
X) to X. The other composition

B
∫

∆Y can be identified with the product category B × Y which is weakly equivalent

to Y since B has an initial object. Hence the result follows from Proposition A.1. �

Remark 4.5. Let (• ↓ B) denote the Bop-category defined by the comma categories

(n↓B). The universal property of the Grothendieck construction established in [Tho79,

Proposition 1.3.1] implies that B
∫
X can be identified with the coend (• ↓B) ×B X in

Cat . This in turn implies that the functor B
∫

participates as the left adjoint in an

adjunction

B
∫

: CatB � Cat :Cat((•↓B),−).

The right adjoint takes a small category Y to the B-category for which the objects of

Cat((n ↓B), Y ) are the functors from (n ↓B) to Y and the morphisms are the natural

transformations. However, this adjunction is not so useful for our purposes since it

cannot be promoted to an adjunction between the braided monoidal structures we shall

consider later.

4.6. Braided monoidal structures. As in the case of B-spaces considered in Sec-

tion 3.11, the braided monoidal structure of B induces a braided monoidal structure on

CatB: Given B-categories X and Y , we define X � Y to be the left Kan extension of

the (B×B)-category

B×B
X×Y−−−→ Cat × Cat

×−→ Cat

along the monoidal structure map t : B×B→ B. Thus, the data specifying a map of

B-categories X � Y → Z is equivalent to the data giving a map of (B×B)-categories

X(m)× Y (n)→ Z(m t n). We also have the level-wise description

X � Y (n) = colim
n1tn2→n

X(n1)× Y (n2).
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The monoidal unit for the �-product is the terminal B-category UB = B(0,−). Using

that Cat is cartesian closed one easily defines the coherence isomorphisms for associa-

tivity and unity required to make CatB a monoidal category. We specify a braiding

b : X � Y → Y �X on CatB by requiring that the categorical analogue of the diagram

(3.4) be commutative. The following is the categorical analogue of Proposition 3.12.

Proposition 4.7. The category CatB equipped with the �-product, the unit UB, and the

braiding b is a braided monoidal category. �

We use the term B-category monoid for a monoid in CatB. By the universal property

of the �-product, the data needed to specify the unit UB → A and the multiplication

⊗ : A�A→ A on a B-category monoid A amounts to a unit object u in A(0) and a map

of (B ×B)-categories ⊗ : A(m) × A(n) → A(m t n) satisfying the usual associativity

and unitality conditions. By the definition of the braiding, A is commutative (that is,

⊗ ◦ b = ⊗) if and only if the categorical version of the diagram (3.5) is commutative.

In order to talk about braided B-category monoids we need the notion of a natural

transformation between maps of B-categories: Given maps of B-categories f, g : X → Y ,

a natural transformation φ : f ⇒ g is a family of natural transformations φ(n) : f(n)⇒
g(n) such that for any morphism α : m → n in B we have an equality of natural

transformations φ(n) ◦X(α) = Y (α) ◦φ(m) between the functors f(n) ◦X(α) = Y (α) ◦
f(m) and g(n)◦X(α) = Y (α)◦g(m). Here the symbol ◦ denotes the usual “horizontal”

composition, and we use the notation X(α) and Y (α) both for the functors defined by

X and Y and for the corresponding identity natural transformations. A braiding of a

B-category monoid A is then a natural transformation Θ: ⊗ ⇒ ⊗◦ b as depicted in the

diagram

(4.2) A� A
b //

⊗
Θ ⇒

##

A� A

⊗{{
A,

such that Θ has an inverse and the familiar axioms for a braided monoidal structure

holds. In order to formulate this in a convenient manner we observe that the data

defining a natural isomorphism Θ as above amounts to a natural isomorphism

Θm,n : a⊗ b→ A(χ−1
m,n)(b⊗ a)

of functors A(m)×A(n)→ A(mtn) for all (m,n), with the requirement that for each

pair of morphisms α : m1 →m2 and β : n1 → n2 we have

A(α t β) ◦Θm1,n1 = Θm2,n2 ◦ (A(α)× A(β))

as an equality of natural transformations.



BRAIDED INJECTIONS AND DOUBLE LOOP SPACES 19

Definition 4.8. A braiding of a B-category monoid A is a natural isomorphism Θ as

in (4.2) such that the diagrams

a⊗ b⊗ c
Θl,m⊗idc

//

Θl,mtn
��

A(χ−1
l,m t 1n)(b⊗ a⊗ c)

A(χ−1
l,mt1n)(idb⊗Θl,n)

��

A(χ−1
l,mtn)(b⊗ c⊗ a) A(χ−1

l,m t 1n)A(1m t χ−1
l,n)(b⊗ c⊗ a)

and

a⊗ b⊗ c
ida⊗Θm,n

//

Θltm,n
��

A(1l t χ−1
m,n)(a⊗ c⊗ b)

A(1ltχ−1
m,n)(Θl,n⊗idb)

��

A(χ−1
ltm,n)(c⊗ a⊗ b) A(1l t χ−1

m,n)A(χ−1
l,n t 1m)(c⊗ a⊗ b)

commute for all objects a ∈ A(l), b ∈ A(m), and c ∈ A(n).

Notice that for A a constant B-category monoid this definition recovers the usual no-

tion of a braided strict monoidal category. We write Br-CatB for the category of braided

B-category monoids and braiding preserving (strict) maps of B-category monoids. Thus,

a morphism f : A → B in Br-CatB is a map of B-category monoids such that for all

m,n we have

f(m t n) ◦ΘA
m,n = ΘB

m,n ◦ (f(m)× f(n))

as an equality of natural transformations between functors from A(m)×A(n) to B(mt
n). Similarly, we write Br-Cat for the category of braided strict monoidal small categories

and braiding preserving strict monoidal functors.

Remark 4.9. The natural transformations between maps of B-categories make CatB

a 2-category in the obvious way. Furthermore, this enrichment is compatible with the

�-product such that CatB is a braided monoidal 2-category in the sense of [JS93, Sec-

tion 5]. In such a setting there is a notion of braided monoidal objects with coherence

isomorphisms generalizing those for a braided monoidal category. With the terminology

from [JS93], our notion of a braided B-category monoid is thus the same thing as a

braided strict monoidal object in CatB. We shall not be concerned with the coherence

theory for B-categories and leave the details for the interested reader.

Our main goal in this subsection is to show that the functor B
∫

induces an equivalence

between the categories Br-CatB and Br-Cat after localization as in Proposition 4.2.

Consider in general a B-category monoid A. Then B
∫
A inherits the structure of a

strict monoidal category with product ⊗ : B
∫
A×B

∫
A→ B

∫
A defined on objects and

morphisms by

[
(m1, a1)

(α,s)−−→ (m2, a2)
]
⊗
[
(n1,b1)

(β,t)−−→ (n2,b2)
]

=
[
(m1 t n1, a1 ⊗ b1)

(αtβ,s⊗t)−−−−−−→ (m2 t n2, a2 ⊗ b2)
]
.
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The monoidal unit for ⊗ is the object (0,u) defined by the unit object u ∈ A(0). Now

suppose that A has a braiding given by a compatible family of natural isomorphisms

Θm,n : a ⊗ b → A(χ−1
m,n)(b ⊗ a). Then we define a braiding of B

∫
A by the natural

transformation

(m, a)⊗ (n,b) = (m t n, a⊗ b)
(χm,n,A(χm,n)(Θm,n))−−−−−−−−−−−−−→ (n tm,b⊗ a) = (n,b)⊗ (m, a).

We summarize the construction in the next proposition.

Proposition 4.10. The Grothendieck construction gives rise to a functor

B
∫

: Br-CatB → Br-Cat . �

Remark 4.11. It is clear from the definition that the functor B
∫

is monoidal and

hence takes monoids in CatB to monoids in Cat . However, B
∫

is not braided monoidal

and consequently does not take commutative monoids to commutative monoids. The

main point of the above proposition is that it nonetheless preserves braided monoidal

structures.

For the next proposition we write w for the class of morphisms in Br-Cat whose

underlying functors are weak equivalences in Cat . Similarly we write wB for the class of

morphisms in Br-CatB whose underlying maps of B-categories are B-equivalences.

Proposition 4.12. The functors B
∫

and ∆ induce an equivalence of the localized cat-

egories

B
∫

: Br-CatB[w−1
B ] ' Br-Cat [w−1] :∆.

The proof of the proposition is based on the following lemma.

Lemma 4.13. The bar resolution functor taking a B-category X to X can be promoted

to an endofunctor on Br-CatB.

Proof. Consider in general a B-category monoid A with unit object u ∈ A(0) and

multiplication specified by functors ⊗ : A(m) × A(n) → A(m t n). Then A inherits a

monoid structure with unit object (10,u) in A(0), and multiplication

⊗ : (B↓m)
∫
A ◦ πm × (B↓n)

∫
A ◦ πn → (B↓m t n)

∫
A ◦ πmtn

defined on objects and morphisms by

[
((m1, γ1), a1)

(α,s)−−→ ((m2, γ2), a2)
]
⊗
[
((n1, δ1),b1)

(β,t)−−→ ((n2, δ2),b2)
]

=
[
((m1 t n1, γ1 t δ1), a1 ⊗ b1)

(αtβ,s⊗t)−−−−−−→ ((m2 t n2, γ2 t δ2), a2 ⊗ b2)
]
.

Now suppose that in addition A has a braiding specified by a family of natural isomor-

phisms Θm,n : a⊗b→ A(χ−1
m,n)(b⊗a). Then we define a braiding Θ of A by the natural
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isomorphisms

((m, γ), a)⊗((n, δ),b)
Θ // A(χ−1

m,n)
[
((n, δ),b)⊗((m, γ), a)

]

((m t n, γ t δ), a⊗ b)
(χm,n,A(χm,n)(Θm,n))

// ((n tm, χ−1
m,n ◦ (δ t γ)),b⊗ a).

It is straight forward to check the axioms for a braiding as formulated in Definition 4.8.

�

Proof of Proposition 4.12. We first observe that the work of Fiedorowicz-Stelzer-Vogt

[FSV13] shows that the localization of Br-Cat exists, cf. Example A.2 in the appendix.

Given this, the proof of the proposition follows the same pattern as the proof of Propo-

sition 4.2: For a braided B-category monoid A we know from Lemma 4.13 that A has

the structure of a braided B-category monoid and it is clear from the definitions that

the B-equivalences ev and π in Lemmas 4.3 and 4.4 are morphisms in Br-CatB. With

the terminology from Appendix A we therefore have a chain of natural B-equivalences

in Br-CatB relating A and ∆(B
∫
A). Given a braided strict monoidal category A, the

other composition B
∫

∆(A) can be identified with the product category B × A as an

object in Br-Cat . Clearly the projection B × A → A is a weak equivalence in Br-Cat

and the proposition therefore follows from Proposition A.1. �

4.14. Rectification and strict commutativity. Now we proceed to introduce the

B-category rectification functor and show how it allows us to replace braided monoidal

structures by strictly commutative structures up to B-equivalence. Let (A,⊗,u) be

a braided strict monoidal small category. We shall define the B-category rectification

of A to be a certain B-category Φ(A) such that the objects of Φ(A)(n) are n-tuples

(a1, . . . , an) of objects in A. By definition Φ(A)(0) has the “empty string” ∅ as its only

object. The morphisms in Φ(A)(n) are given by

Φ(A)(n)
(
(a1, . . . , an), (b1, . . . ,bn)

)
= A(a1 ⊗ . . .⊗ an,b1 ⊗ . . .⊗ bn)

with composition inherited fromA. Here we agree that the ⊗-product of the empty string

is the unit object u so that Φ(A)(0) can be identified with the monoid of endomorphisms

A(u,u). For a morphism α : m→ n in B, the induced functor

Φ(A)(α) : Φ(A)(m)→ Φ(A)(n)

is given on objects by

Φ(A)(α)(a1, . . . , am) = (aᾱ−1(1), . . . , aᾱ−1(n))

where ᾱ : m→ n denotes the underlying injection, aᾱ−1(j) = ai if ᾱ(i) = j, and aᾱ−1(j) =

u if j is not in the image of ᾱ. In order to describe the action on morphisms we use

Lemma 2.3 to get a factorization α = Υ(ν) ◦ ξ with ν ∈ M(m,n) and ξ ∈ Bm. The

action of Φ(A)(α) on a morphism f from (a1, . . . , am) to (b1, . . . ,bm) is then determined
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by the commutativity of the diagram

aᾱ−1(1) ⊗ · · · ⊗ aᾱ−1(n)

Φ(A)(α)(f)

��

aξ̄−1(1) ⊗ · · · ⊗ aξ̄−1(m) a1 ⊗ · · · ⊗ am
ξ∗oo

f

��
bᾱ−1(1) ⊗ · · · ⊗ bᾱ−1(n) bξ̄−1(1) ⊗ · · · ⊗ bξ̄−1(m) b1 ⊗ · · · ⊗ bm

ξ∗oo

where ξ∗ denotes the canonical action of ξ on the m-fold ⊗-product. In particular,

this describes the action of Φ(A)(α) on the generating morphisms in Lemma 2.4 and one

easily checks that the relations in this lemma are preserved. Hence the above construction

does indeed define a B-category. The construction is clearly functorial in A so that we

have defined a functor Φ: Br-Cat → CatB. This functor was first considered in the

unpublished Master’s Thesis by the second author [Sol11].

The B-category Φ(A) is homotopy constant in positive degrees in the sense of the

next lemma. Here we let B+ denote the full subcategory of B obtained by excluding

the initial object 0.

Lemma 4.15. The functor Φ(A)(α) : Φ(A)(m) → Φ(A)(n) is a weak equivalence for

any morphism α : m→ n in B+.

Proof. We first consider a morphism of the form j : 1 → m and claim that the functor

Φ(A)(j) is in fact an equivalence of categories. Indeed, let p : Φ(A)(m) → Φ(A)(1) be

the obvious functor taking (a1, . . . , am) to (a1 ⊗ · · · ⊗ am). Then p ◦ j is the identity on

Φ(A)(1) and it is clear that the other composition j ◦ p is naturally isomorphic to the

identity on Φ(A)(m). For a general morphism α : m→ n in B+ we have a commutative

diagram

Φ(A)(1)
Φ(A)(j)

xx

Φ(A)(αj)

&&
Φ(A)(m)

Φ(A)(α)
// Φ(A)(n)

and the result follows. �

The next proposition shows that Φ takes braided monoidal structures to strictly com-

mutative structures and is the reason why we refer to Φ as a “rectification functor”. Let

us write C(CatB) for the category of commutative B-category monoids.

Proposition 4.16. The B-category Φ(A) is a commutative monoid in CatB and Φ

defines a functor Φ: Br-Cat → C(CatB).

Proof. We define functors ⊗ : Φ(A)(m)× Φ(A)(n)→ Φ(A)(m t n) by

(a1, . . . , am)⊗ (b1, . . . ,bn) = (a1, . . . , am,b1, . . . ,bn)

on objects and by applying the monoidal structure f ⊗ g of A on morphisms. These

functors are natural in (m,n) as one verifies by checking for the generating morphisms in

Lemma 2.4. By the universal property of the �-product we therefore get an associative
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product on Φ(A). It is clear that the object ∅ in Φ(A)(0) specifies a unit for this

multiplication. The categorical analogue of the criteria for commutativity expressed by

the commutativity of (3.5) clearly holds on objects and on morphisms it follows from

the naturality of the braiding on A. �

Remark 4.17. The definition of Φ(A) can be extended to braided monoidal small

categories A that are not necessarily strict monoidal. Indeed, the objects of Φ(A)(n)

are again n-tuples (a1, . . . , an) of objects in A and a morphism from (a1, . . . , an) to

(b1, . . . ,bn) is defined to be a morphism

(· · · ((a1 ⊗ a2)⊗ a3)⊗ · · · ⊗ an−1)⊗ an → (· · · ((b1 ⊗ b2)⊗ b3)⊗ · · · ⊗ bn−1)⊗ bn

in A. Proceeding as in the strict monoidal case, the coherence theory for braided

monoidal categories ensures that Φ(A) canonically has the structure of a commutative

B-category monoid. This is functorial with respect to braided strong monoidal functors

that strictly preserve the unit objects.

We shall view C(CatB) as the full subcategory of Br-CatB given by the braided B-

category monoids with identity braiding ⊗ = ⊗ ◦ b.

Proposition 4.18. The composite functor

Br-Cat
Φ−→ C(CatB) −→ Br-CatB

B
∫
−→ Br-Cat

is related to the identity functor on Br-Cat by a natural weak equivalence.

Proof. For a braided strict monoidal category A we define a functor P : B
∫

Φ(A) → A
such that P takes an object (m, (a1, . . . , am)) to a1⊗ · · · ⊗ am. A morphism (α, f) from

(m, (a1, . . . , am)) to (n, (b1, . . . ,bn)) is given by a morphism α : m → n in B together

with a morphism f from aᾱ−1(1) ⊗ · · · ⊗ aᾱ−1(n) to b1 ⊗ · · · ⊗ bn. Using Lemma 2.3 we

get a factorization α = Υ(ν) ◦ ξ with ν ∈ M(m,n) and ξ ∈ Bm, and let P (α, f) be the

composition

a1 ⊗ · · · ⊗ am
P (α,f)

//

ξ∗
��

b1 ⊗ · · · ⊗ bn

aξ̄−1(1) ⊗ · · · ⊗ aξ̄−1(m) aᾱ−1(1) ⊗ · · · ⊗ aᾱ−1(n).

f

OO

It is straight forward to check that P is a braided strict monoidal functor. Furthermore,

it follows from the definition of Thomason’s equivalence (4.1) that the composition

N(Φ(A)(1))→ hocolim
n∈B

N(Φ(A)(n))
η−→ N(B

∫
Φ(A))

P−→ N(A)

is the canonical identification. Hence it suffices to prove that the first map, induced by

the inclusion {1} → B, is a weak equivalence. To this end we first restrict N(Φ(A))

to B+ such that all the structure maps are weak equivalences by Lemma 4.15. Then it
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follows from [GJ99, Lemma IV.5.7] that the diagram

N(Φ(A)(1)) //

��

N(Φ(A))hB+

��
{1} // N(B+)

is homotopy cartesian, and since N(B+) is contractible this in turn implies that

N(Φ(A)(1)) → N(Φ(A))hB+ is a weak equivalence. Secondly, it is easy to see that the

inclusion of B+ in B is homotopy cofinal such that the induced map N(Φ(A))hB+ →
N(Φ(A))hB is a weak equivalence by [Hir03, Theorem 19.6.13]. �

Combining the result obtained in this section we get the following theorem.

Theorem 4.19. Every braided B-category monoid is related to a strictly commutative

B-category monoid by a chain of natural B-equivalences in Br-CatB.

Proof. Given a braided B-category monoid A, we have the following chain of B-equiva-

lences

A ' ∆(B
∫
A) ' ∆

(
B
∫

Φ(B
∫
A)
)
' Φ(B

∫
A).

The first and last equivalences are the chains of B-equivalences ∆(B
∫
(−)) ' (−) from

the proof of Proposition 4.12 and the B-equivalence in the middle is obtained by applying

∆ to the weak equivalence B
∫

Φ(−) ' (−) in Proposition 4.18. �

5. E2 spaces and braided commutativity

Building on the categorical foundations in the last section, we proceed to show that

every E2 space can be represented by a strictly commutative B-space monoid up to

B-equivalence.

5.1. Operadic interpretation of braided monoidal structures. In order to relate

our results from the previous section to multiplicative structures on spaces, it is con-

venient to work with an operadic interpretation of braided monoidal structures. By a

Cat-operad we understand an operad internal to the category Cat . Thus, a Cat-operad

M is given by a sequence of small categories M(k) for k ≥ 0 together with functors

γ : M(k)×M(j1)× · · · ×M(jk)→ M(j1 + . . . jk),

a unit object 1 ∈ M(1), and a right Σk-action on M(k). These data are required to

satisfy the usual axioms for associativity, unity, and equivariance as listed in [May72,

Definition 1.1]. We shall always assume that a Cat-operad M is reduced in the sense

that M(0) is the terminal category with one object and one morphism. A Cat-operad as

above gives rise to a monad M on Cat by letting

M(X) =
∐

n≥0

M(k)×Σk X
k
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for a small category X. Here X0 denotes the terminal category. By definition, an M-

algebra in Cat is an algebra for this monad and we write M-Cat for the category of

M-algebras. An algebra structure θ : M(X) → X is determined by a family of functors

θk : M(k)×Xk → X satisfying the axioms listed in [May72, Lemma 1.4].

Following [FSV13, Section 8] we introduce a Cat-operad Br such that Br-algebras are

braided strict monoidal small categories. The objects of Br(k) are the elements a ∈ Σk

and given objects a and b, a morphism α : a→ b is an element α ∈ Bk such that ᾱa = b.

Composition in Br(k) is inherited from Bk and the right action of an element g ∈ Σk is

defined on objects and morphisms by taking (α : a→ b) to (α : ag → bg). The structure

map

γ : Br(k)× Br(j1)× · · · × Br(jk)→ Br(j1 + · · ·+ jk)

is defined on objects by

γ(a, b1, . . . , bk) = a(j1, . . . , jk) ◦ b1 t · · · t bk
where a(j1, . . . , jk) denotes the block permutation of j1 t · · · t jk specified by a. The

action on morphisms is analogous except for the obvious permutation of the indices. Let

A be the discrete Cat-operad given by the objects of Br. It is well-known and easy to

check that A-algebras are the same thing as monoids in Cat , that is, strict monoidal small

categories. Hence a Br-algebra X has an underlying strict monoidal category with unit

object determined by the structure map θ0 : Br(0) × X0 → X and monoidal structure

⊗ = θ2(12,−,−) determined by restricting the structure map θ2 : Br(2) × X2 → X to

the unit object 12 ∈ Br(2). With t the non-unit object of Br(2) and ζ the generator of

B2, the morphism ζ : 12 → t determines a natural transformation

θ2(ζ, idx1 , idx2) : x1 ⊗ x2 → x2 ⊗ x1

which gives a braiding of X. Conversely, for a braided strict monoidal category X we

define a Br-algebra structure by the functors θk : Br(k) × Xk → X taking a tuple of

morphisms α : a→ b in Br(k) and fi : xi → yi in X for i = 1, . . . , k, to the composition

in the commutative diagram

xa−1(1) ⊗ · · · ⊗ xa−1(k)

α∗ //

fa−1(1)⊗···⊗fa−1(k)

��

xb−1(1) ⊗ · · · ⊗ xb−1(k)

fb−1(1)⊗···⊗fb−1(k)

��
ya−1(1) ⊗ · · · ⊗ ya−1(k)

α∗ // yb−1(1) ⊗ · · · ⊗ yb−1(k).

Here α∗ denotes the canonical action of α defined by the braided monoidal structure.

Summarizing, we have the following consistency result that justifies our use of the nota-

tion Br-Cat in the previous section.

Lemma 5.2. The category Br-Cat of Br-algebras is isomorphic to the category of braided

strict monoidal categories. �
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It is natural to ask for an analogous operadic characterization of braided B-category

monoids. However, since the symmetric groups do not act on the iterated �-products in

CatB, we instead have to work with braided operads as introduced by Fiedorowicz [Fie].

By definition, a braided Cat-operad M is a sequence of small categories M(k) for k ≥ 0

together with structure maps and a unit just as for a Cat-operad. The difference from

an (unbraided) Cat-operad is that in the braided case we require a right Bk-action on

M(k) for all k such that the braided analogue of the equivariance axiom for a Cat-operad

holds. A braided Cat-operad M defines a monad on CatB by letting

M(X) =
∐

k≥0

M(k)×Bk X�k

for a B-category X. By definition, an M-algebra in CatB is an algebra for this monad and

we write M-CatB for the category of M-algebras. It follows from the universal property

of the �-product that an M-algebra structure on a B-category X can be described in

terms of functors

(5.1) θk : M(k)×X(n1)× · · · ×X(nk)→ X(n1 t · · · t nk)

such that the usual associativity and unity axioms hold as well as the equivariance axiom

stating that the diagram

M(k)×X(n1)× · · · ×X(nk)
θk◦(σ×id)

//

id×σ̄
��

X(n1 t · · · t nk)

X(σ(n1,...,nk))

��
M(k)×X(nσ̄−1(1))× · · · ×X(nσ̄−1(k))

θk // X(nσ̄−1(1) t · · · t nσ̄−1(k))

is commutative for all σ ∈ Bk. We also use the notation Br for the braided Cat-operad

for which the category Br(k) has objects the elements a ∈ Bk and a morphism α : a→ b

is an element α ∈ Bk such that αa = b. The structure maps making this a braided Cat-

operad are defined as for the analogous unbraided operad. Let A be the discrete braided

Cat-operad given by the objects in Br. It is easy to see that an A-algebra in CatB is

the same thing as a B-category monoid and hence that a Br-algebra is a B-category

monoid with extra structure. Indeed, suppose that X is a Br-algebra in CatB and write

⊗ : X � X → X for the monoid structure defined by restricting θ2 : Br(2) × X�2 → X

to the unit object 12 ∈ Br(2). With ζ the standard generator of B2, the morphism

ζ : 12 → ζ determines a natural isomorphism Θ = θ(ζ,−,−) as in the diagram (4.2) and

Θ satisfies the axioms for a braiding of X. Arguing as in the unbraided setting we get

the following analogue of Lemma 5.2.

Lemma 5.3. The category Br-CatB is isomorphic to the category of braided B-category

monoids. �

5.4. Rectification of E2 algebras. Applying the nerve functor N to the unbraided Cat-

operad Br we get an operad NBr in simplicial sets with kth space NBr(k). This is an E2

operad in the sense that its geometric realization is equivalent to the little 2-cubes operad,



BRAIDED INJECTIONS AND DOUBLE LOOP SPACES 27

cf. [FSV13, Proposition 8.13]. Since the nerve functor preserves products it is clear that it

induces a functor N: Br-Cat → NBr-S. This was first observed by Fiedorowicz [Fie], and

is the braided version of the analogous construction for permutative categories considered

by May [May74]. Similarly, the braided version of the Cat-operad Br gives rise to the

braided operad NBr in simplicial sets. By the level-wise characterization of Br-algebras in

(5.1) it is equally clear that the level-wise nerve induces a functor N: Br-CatB → NBr-SB.

Now we want to say that the homotopy colimit functor induces a functor from NBr-SB

to NBr-S, but to explain this properly requires some preparation. Recall that the pure

braid group Pk is the kernel of the projection Π : Bk → Σk. Following [FSV13], a braided

operad M can be “debraided” to an (unbraided) operad M/Pk with kth term the orbit

space M(k)/Pk. The structure maps are inherited from the structure maps of M and Σk

acts from the right via the isomorphism Σk
∼= Bk/Pk. For instance, the debraiding of the

braided Cat-operad Br is the corresponding unbraided Cat-operad Br and similarly for

the braided operad NBr. In the following lemma we consider the product of the latter

with an arbitrary braided operad M and form the debraided operad (NBr ×M)/P .

Lemma 5.5. Let M be a braided operad in simplicial sets. Then the homotopy colimit

functor can be promoted to a functor

(−)hB : M-SB → (NBr ×M)/P-S.

Proof. Let X be a B-space with M-action defined by natural maps

θk : M(k)×X(n1)× · · · ×X(nk)→ X(n1 t · · · t nk).

To X we associate the simplicial category (that is, simplicial object in Cat) B
∫
X ob-

tained by applying the Grothendieck construction in each simplicial degree of X thought

of as a B-diagram of simplicial discrete categories. It is clear from the definition that

the nerve of B
∫
X can be identified with XhB. Let us further view Br(k) as a constant

simplicial category and M(k) as a simplicial discrete category. Then we define maps of

simplicial categories

θk : Br(k)×M(k)× (B
∫
X)k → B

∫
X

such that a tuple of objects a ∈ Br(k), m ∈ M(k), and (mi, xi) ∈ B
∫
X for i = 1, . . . , k,

is mapped to the object

(
mā−1(1) t · · · tmā−1(k), X(a(m1, . . . ,mk))θk(m, x1, . . . , xk)

)
.

A tuple of morphisms α : a → b in Br(k) and βi : (mi, xi) → (ni, yi) in B
∫
X for i =

1, . . . , k, is mapped to the morphism specified by

α(mᾱ−1(1), . . . ,mᾱ−1(k)) ◦ βᾱ−1(1) t · · · t βᾱ−1(k).

Evaluating the nerves of these simplicial categories we get a map of bisimplicial sets and

by restricting to the simplicial diagonal a map of simplicial sets

(NBr(k)×M(k))× N(B
∫
X)k → N(B

∫
X).
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It is not difficult to check that these maps satisfy the conditions for a braided operad

action and hence descends to an action of the debraided operad (NBr ×M)/P . Clearly

this is functorial in X. �

When M is the braided operad NBr we can compose with the diagonal map of (un-

braided) operads NBr/P → (NBr × NBr)/P to get the next lemma.

Lemma 5.6. The homotopy colimit functor can be promoted to a functor

(−)hB : NBr-SB → NBr-S. �

The natural maps introduced so far are compatible in the expected way.

Proposition 5.7. The diagram

Br-CatB
N //

B
∫

��

NBr-SB

(−)hB
��

Br-Cat
N // NBr-S

commutes up to natural weak equivalence.

Proof. Given a braided B-category X, we claim that Thomason’s equivalence η in (4.1)

is in fact a morphism in NBr-S. In order to verify the claim we first use Proposition 4.10

and Lemma 5.2 to get an explicit description of the NBr-algebra structure on N(B
∫
X).

Secondly, we use Lemmas 5.3 and 5.6 to get an explicit description of the NBr-algebra

structure on (NX)hB. It is then straight forward (although somewhat tedious) to check

that Thomason’s explicit description of η in [Tho79, Lemma 1.2.1] is compatible with

the algebra structures. �

We proceed to show that the functor (−)hB in Lemma 5.6 induces an equivalence after

suitable localizations of the domain and target. Let us write w for the class of morphisms

in NBr-S whose underlying maps of spaces are weak equivalences and wB for the class

of morphisms in NBr-SB whose underlying maps of B-spaces are B-equivalences. The

following is the B-space version of Proposition 4.12. As usual ∆ denotes the constant

functor embedding.

Proposition 5.8. The functors (−)hB and ∆ induce an equivalence of the localized

categories

(−)hB : NBr-SB[w−1
B ] ' NBr-S[w−1] :∆.

For the proof of the proposition we need to invoke the bar resolution for B-spaces.

Given a B-space X, this is the B-space X defined by

X(n) = hocolim
(B↓n)

X ◦ πn

with notation as for the categorical bar resolution considered in Section 4.1. (See e.g.

[HV92] for the interpretation of this as an actual bar construction.) Arguing as in the
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proof of Lemma 5.5 one sees that this construction can be promoted to an endofunctor

on NBr-SB.

Proof of Proposition 5.8. First recall that the localization NBr-S[w−1] exists since it can

be realized as the homotopy category of a suitable model structure. As for the cate-

gorical analogue in Proposition 4.12 there are natural B-equivalences ev : A → A and

π : A → ∆(AhB) in NBr-SB. For a Br-algebra Y in S, the other composition ∆(Y )hB

can be identified with the product algebra NB × Y such that the projection defines a

weak equivalence of Br-algebras ∆(Y )hB
∼−→ Y . The statement therefore follows from

Proposition A.1. �

With these preparations we can finally prove that NBr-algebras in SB can be rectified

to strictly commutative B-space monoids. Our proof of this result differs from the proof

of the analogous categorical statement in Theorem 4.19 since we do not have a space-

level version of the rectification functor Φ. Instead we shall make use of the functor

F : NBr-S → Br-Cat introduced by Fiedorowicz-Stelzer-Vogt [FSV13] and then compose

the latter with Φ. The relevant facts about the functor F are discussed in the context

of localization in Example A.2.

Theorem 5.9. Every NBr-algebra in SB is related to a strictly commutative B-space

monoid by a chain of natural B-equivalences in NBr-SB.

Proof. Let A be an NBr-algebra in SB. Then AhB is an NBr-algebra in S and applying

the functor F we get a Br-algebra F (AhB) in Cat . We claim that A is related to the

commutative B-space monoid NΦ(F (AhB)) by a chain of B-equivalences in NBr-SB. To

this end we first proceed as in the proof of Proposition 5.8 to get a chain of B-equivalences

A ' ∆(AhB). Then we compose the chains of weak equivalences

AhB ' NF (AhB) ' N(B
∫

Φ(F (AhB))) ' NΦ(F (AhB))hB

defined respectively in [FSV13, C.2], Proposition 4.18, and Proposition 5.7. This in turn

gives a chain of B-equivalences

A ' ∆(AhB) ' ∆(NΦ(F (AhB))hB) ' NΦ(F (AhB)),

again by Proposition 5.8. �

Example 5.10. In general an (unbraided) operad M in S gives rise to a functor M : Iop →
S as explained in [CMT78]. Given a based space X we have the I-space X• from Exam-

ple 3.7 and may form the coend M⊗IX• (whose geometric realization is denoted M|X| by

May [May72]). In the same way a braided operad M gives rise to a functor M : Bop → S
and using the same notation for the pullback of X• to a B-space we may form the coend

M ⊗B X
• considered by Fiedorowicz [Fie]. Writing M/P for the debraided operad, the

fact that the pure braid groups Pn act trivially on Xn implies that there is a natural

isomorphism M ⊗B X
• ∼= M/Pn ⊗I X•. Now specialize to the braided operad NBr and

recall that the homotopy colimit X•hB can be identified with the coend N(•↓B)⊗B X
•.
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Proceeding as in [Sch07, Section 4.2] we define a map of Bop-spaces N(• ↓B) → NBr

such that the induced map of coends

N(•↓B)⊗B X
• → NBr ⊗B X

•

is an equivalence. The above remarks together with the fact that the geometric realiza-

tion of the debraiding NBr/P is equivalent to the little 2-cubes operad C2 imply that

there are equivalences

|NBr ⊗B X
•| ∼= |NBr/P ⊗I X•| ' C2 ⊗I |X|•.

For connected X it therefore follows from [May72, Theorem 2.7] that the geometric

realization of X•hB is homotopy equivalent to Ω2Σ2(|X|). We may interpret this as saying

that the commutative B-space monoid X• represents the 2-fold loop space Ω2Σ2(|X|).

6. Classifying spaces for braided monoidal categories

We consider a monoidal category (A,⊗, I) and therein a monoid A, a right A-module

M , and a left A-module N . Suppressing a choice of parentheses from the notation, the

two-sided bar construction B
⊗
• (M,A,N) is the simplicial object defined by

[k] 7→M ⊗ A⊗k ⊗N

with structure maps as for the usual bar construction for spaces, see for instance [May72,

Chapter 9]. If the unit I for the monoidal structure is both a right and left A-module we

can define the bar construction on A as B
⊗
• (A) = B

⊗
• (I, A, I). This works in particular

when I is a terminal object in A.

In order to say something about the multiplicative properties of B
⊗
• (A) we investigate

how monoids behave with respect to the monoidal product. If A is a braided monoidal

category with braiding b the monoidal product A⊗B of two monoids A and B is again

a monoid. Suppressing parentheses, the multiplication µA⊗B is the morphism

A⊗ B ⊗ A⊗ B idA⊗bB,A⊗idB−−−−−−−−→ A⊗ A⊗ B ⊗ B µA⊗µB−−−−→ A⊗ B

where µA and µB are the multiplications of the monoids A and B respectively. Unlike in

a symmetric monoidal category, the monoidal product of two commutative monoids in A
is not necessarily a commutative monoid. But it is straightforward to check that if A is

a commutative monoid, then the multiplication µA : A⊗A→ A is a monoid morphism.

Suppose given a monoid A in A such that the unit I is a right and left A-module. Then

the above implies that for each k, B
⊗
k (A) is a monoid. If in addition A is commutative,

the family of multiplication maps assemble into a morphism B
⊗
• (A)⊗B⊗• (A)→ B

⊗
• (A) of

simplicial objects, where the monoidal product is taken degreewise. The bar construction

on a commutative monoid A is a simplicial monoid in A with this multiplication.

Now we specialize to the braided monoidal category SB of B-spaces. Here we can

realize a simplicial object Z• by taking the diagonal |Z•| of the two simplicial direc-

tions to obtain a B-space. We define the bar construction on a B-space monoid A as
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B� (A) = |B�
• (A)|. From now on we will refer to the simplicial version as the simpli-

cial bar construction. The above discussion about the multiplicative properties of the

simplicial bar construction implies the following result.

Lemma 6.1. The bar construction B� (A) on a commutative B-space monoid A is a

(not necessarily commutative) monoid in SB. �

Recall that the natural transformation νA,B : AhB×BhB → (A�B)hB from Lemma 3.15

gives the homotopy colimit functor (−)hB : SB → S the structure of a lax monoidal func-

tor. As usual when we have a lax monoidal functor, it follows that if A is a B-space

monoid, then AhB inherits the structure of a monoid in S. If M is a right A-module,

then MhB inherits the structure of a right AhB-module in S and similarly for a left A-

module N . We can then apply the two-sided simplicial bar construction in S to AhB,

MhB and NhB and obtain B•(MhB, AhB, NhB). The natural transformation ν gives rise to

maps Bk(MhB, AhB, NhB)→ B�
k (M,A,N)hB that commute with the simplicial structure

maps. Hence we obtain a morphism

B(MhB, AhB, NhB)→ B� (M,A,N)hB

in S. By specializing to the case where M and N is the unit UB we can relate B� (A)hB

to B(AhB) via B(UB
hB, AhB, U

B
hB). The homotopy colimit of UB is homeomorphic to

NB which is a contractible simplicial set. Hence the map B(NB, AhB,NB)→ B(AhB)

induced by the projection NB→ ∗ is a weak equivalence.

Proposition 6.2. If A is a B-space monoid with underlying flat B-space the above

defined maps

B� (A)hB
'←− B(NB, AhB,NB)

'−→ B(AhB)

are weak equivalences.

Proof. The argument for the right hand map being a weak equivalence is given before

the proposition. The map (AhB)×k → (A�k)hB is a weak equivalence for each k ≥ 0

since A is flat, see Lemma 3.15. It follows that the left hand map is the diagonal of a

map of bisimplicial sets which is a weak equivalence at each simplicial degree of the bar

construction. Therefore it is itself a weak equivalence. �

Our goal is to use the bar construction in B-spaces to give a double delooping of

the group completion of AhB for a commutative B-space monoid A with underlying flat

B-space. In order to apply the previous proposition twice we will show that the bar

construction on something flat is also flat.

Lemma 6.3. If A is a B-space monoid with underlying flat B-space, then the underlying

B-space of the bar construction B� (A) on A is also flat.

Proof. When A is flat, it follows from Lemma 3.13 that B�
k (A) is flat for each k ≥ 0. The

criterion for flatness given in Proposition 3.10 can be checked in each simplicial degree.
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Thus, B� (A) is the diagonal of a bisimplicial object which is flat at each simplicial degree

of the bar construction and is therefore flat. �

We use the well known fact that the group completion of a homotopy commutative

simplicial monoid M may be modelled by the canonical map M → Ω(B(M)fib), where

the fibrant replacement B(M)fib is the singular simplicial set of the geometric realization

of B(M). By a double delooping of a simplicial set K we mean a based simplicial set L

such that Ω2(Lfib) ' K.

Proposition 6.4. If A is a commutative B-space monoid with underlying flat B-space,

then B� (B� (A))hB is a double delooping of the group completion of AhB.

Proof. Letting A equal B� (A) in Proposition 6.2 and using Lemma 6.3 we get

B� (B� (A))hB ' B(B� (A)hB).

Evaluating Ω((−)fib) on this we get equivalences

Ω(B� (B� (A))fib
hB) ' Ω(B(B� (A)hB)fib) ' B� (A)fib

hB ' B(AhB)fib

where the map in the middle is an equivalence since B� (A)hB is connected and hence

group-like. Looping once more we see that B� (B� (A))hB is indeed a double delooping

of the group completion of B(AhB). �

Recall from Remark 4.17 that we can construct a commutative B-space monoid NΦ(A)

for any braided (not necessarily strict) monoidal small category. Next, we show that

NΦ(A) has underlying flat B-space so we can apply the above result to the double bar

construction on NΦ(A).

Lemma 6.5. Let A is a braided monoidal small category. The commutative B-space

monoid NΦ(A) has underlying flat B-space.

Proof. Here we prove the result for a braided strict monoidal small category, the non-

strict case is left to the reader. We use the criterion given in Proposition 3.10. For each

braided injection m→ n the induced functor Φ(A)(m)→ Φ(A)(n) is injective on both

objects and morphisms. Thus the nerve of that map is a cofibration of simplicial sets.

The functor Φ(A)(m)→ Φ(A)(mt n) induced by the inclusion of m in mt n takes an

object (a1, . . . , am) to (a1, . . . , am, U
B, . . . UB). Since we have a strict monoidal structure

it takes a morphism f to the morphism f � idUB�···�UB = f . If we consider a diagram

similar to (3.3) for the B-category Φ(A) it is clear that the intersection of the images of

Φ(A)(l tm) and Φ(A)(m t n) in Φ(A)(l tm t n) equals the image of Φ(A)(m). The

same then holds for the B-space NΦ(A). �

Corollary 6.6. If A is a braided monoidal small category, then B� (B� (NΦ(A)))hB is a

double delooping of the group completion of NA.
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Proof. The underlying B-space of NΦ(A) is flat, so we can apply the proposition and

get that B� (B� (NΦ(A)))hB is a double delooping of the group completion of NΦ(A)hB.

But by combining Propositions 5.7 and 4.18, the latter is weakly equivalent to NA. �

7. I-categories and E∞ spaces

In this section we focus on diagrams indexed by the category I and we record the

constructions and results analogous to those worked out for diagrams indexed by the

category B in the previous sections. The proofs are completely analogous to those in

the braided case (if not simpler) and will be omitted throughout. We then relate this

material to the category of symmetric spectra.

Let CatI denote the category of I-categories with the symmetric monoidal convolution

product inherited from I. The Grothendieck construction defines a functor I
∫

: CatI →
Cat and a map of I-categories X → Y is said to be an I-equivalence if the induced

functor I
∫
X → I

∫
Y is a weak equivalence. We write Sym for the symmetric monoidal

analogue of the Cat-operad Br. Thus, the category Sym(k) has as its objects the elements

a in Σk and a morphism α : a→ b is an element α ∈ Σk such that αa = b. It is proved in

[May74] that a Sym-algebra in Cat is the same thing as a permutative (i.e., symmetric

strict monoidal) category and that the nerve NSym can be identified with the Barratt-

Eccles operad. The latter is an E∞ operad in the sense that NSym(k) is Σk-free and

contractible for all k. As in Proposition 4.12 one checks that there is an equivalence of

localized categories

I
∫

: Sym-CatI [w−1
I ] ' Sym-Cat [w−1] :∆.

The rectification functor Φ from Section 4.14 also has a symmetric monoidal version, now

in the form of a functor Φ: Sym-CatI → C(CatI) where the codomain is the category of

commutative I-category monoids. The composite functor

(7.1) Sym-Cat
Φ−→ C(CatI) −→ Sym-CatI

I
∫
−→ Sym-Cat

is weakly equivalent to the identity functor and arguing as in the proof of Theorem 4.19

we get the following result.

Theorem 7.1. Every Sym-algebra in CatI is related to a strictly commutative I-category

monoid by a chain of I-equivalences in Sym-CatI. �

In particular, every symmetric monoidal category is weakly equivalent to one of the

form I
∫
A for A a strictly commutative I-category monoid. Now let SI be the category

of I-spaces equipped with the symmetric monoidal convolution product inherited from

I. A map of I-spaces X → Y is an I-equivalence if the induced map of homotopy

colimits XhI → YhI is a weak equivalence and the I-space version of Proposition 5.8

gives an equivalence of the localized categories

(7.2) (−)hI : NSym-SI [w−1
I ] ' NSym-S[w−1] :∆.
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Furthermore, one checks that the I-category version of Thomason’s equivalence (4.1)

gives a natural weak equivalence relating the two compositions in the diagram

(7.3) Sym-CatI
N //

I
∫

��

NSym-SI

(−)hI
��

Sym-Cat
N // NSym-S.

Arguing as in the proof of Theorem 5.9 one can use this to show that every NSym-algebra

in SI is I-equivalent to one that is strictly commutative. However, a stronger form of

this statement has been proved in [SS12]: There is a model structure on NSym-SI such

that the equivalence (7.2) can be derived from a Quillen equivalence, and a further model

structure on C(SI) (the category of commutative I-space monoids) making the latter

Quillen equivalent to NSym-SI .

7.2. Symmetric spectra and E∞ spaces. Let SpΣ be the category of symmetric

spectra as defined in [HSS00]. The smash product of symmetric spectra makes this

a symmetric monoidal category with monoidal unit the sphere spectrum. Given an

(unbased) space X we write Σ∞(X+) for the suspension spectrum with nth space X+∧Sn
where X+ denotes the union of X with a disjoint base point. If X is an E∞ space (i.e.,

an algebra for an E∞ operad in S), then Σ∞(X+) is an E∞ symmetric ring spectrum for

the same operad. It is proved in [EM06] that in general an E∞ symmetric ring spectrum

is stably equivalent to a strictly commutative symmetric ring spectrum. However, the

proof of this fact is not very constructive and it is of interest to find more memorable

commutative models of the E∞ ring spectra in common use. Here we shall do this for

E∞ symmetric ring spectra of the form Σ∞(NA+) for a permutative category A. The

relevant operad is the Barratt-Eccles operad NSym as explained above. In order to make

use of the rectification functor Φ we recall from [SS12, Section 3] that the suspension

spectrum functor extends to a strong symmetric monoidal functor SI : SI → SpΣ taking

an I-space X to the symmetric spectrum SI [X] with nth space X(n)+ ∧ Sn. Given a

permutative category A we may apply this functor to the commutative I-space monoid

NΦ(A) to get the commutative symmetric ring spectrum SI [NΦ(A)].

Proposition 7.3. Given a permutative category A, the commutative symmetric ring

spectrum SI [NΦ(A)] is related to Σ∞(NA+) by a chain of natural stable equivalences of

E∞ symmetric ring spectra.

Proof. Composing the natural weak equivalence relating the composite functor (7.1) to

the identity functor with Thomason’s weak equivalence relating the two compositions in

(7.3), we get a weak equivalence of NSym-algebras

NA '←− N(I
∫

Φ(A))
'←− (NΦ(A))hI .

Furthermore, using the bar resolution (−) as in Section 5.4 we get a chain of I-equivalences

∆(NΦ(A)hI)
'←− NΦ(A)

'−→ NΦ(A)
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in NSym-SI . This gives the result since the functor SI [−] takes I-equivalences to stable

equivalences. �

We also note that the symmetric spectrum SI [NΦ(A)] has several of the pleasant

properties discussed in [HSS00, Section 5]: The fact that it is S-cofibrant (this is what

some authors call flat) ensures that it is homotopically well-behaved with respect to the

smash product, and the fact that it is semistable ensures that its spectrum homotopy

groups can be identified with the stable homotopy groups of NA.

Example 7.4. The underlying infinite loop space Q(S0) of the sphere spectrum plays

a fundamental role in stable homotopy theory. In order to realize the E∞ ring spec-

trum Σ∞(Q(S0)+) as a commutative symmetric ring spectrum, we use that Q(S0) is

weakly equivalent to the classifying space of Quillen’s localization construction Σ−1Σ,

where as usual Σ denotes the category of finite sets and bijections. (We refer to [Gra76]

for a general discussion of Quillen’s localization construction and to [SS12] for an ex-

plicit description of Σ−1Σ.) The category Σ−1Σ inherits a permutative structure from

Σ and it follows from Proposition 7.3 that the commutative symmetric ring spectrum

SI [NΦ(Σ−1Σ)] is a model of Σ∞(Q(S0)+).

Appendix A. Localization of categories

We make some elementary remarks on localization of categories. Let C be a (not nec-

essarily small) category and let V be a class of morphisms in C. Recall that a localization

of C with respect to V is a category C ′ together with a functor L : C → C ′ that maps the

morphisms in V to isomorphisms in C ′ and is initial with this property: Given a category

D and a functor F : C → D that maps the morphisms in V to isomorphisms in D, there

exists a unique functor F ′ : C ′ → D such that F = F ′ ◦ L. Clearly a localization of C
with respect to V is uniquely determined up to isomorphism if it exists. We sometimes

use the notation C → C[V−1] for such a localization. It will be convenient to assume that

C and C[V−1] always have the same objects.

Let again C be a category equipped with a class of morphisms V and consider a

category A together with a pair of functors F,G : A → C. In this situation we say that

F and G are related by a chain of natural transformations in V , written F 'V G, if there

exists a finite sequence of functors H1, . . . , Hn from A to C with H1 = F and Hn = G,

and for each 1 ≤ i < n either a natural transformation Hi → Hi+1 with values in V or

a natural transformation Hi+1 → Hi with values in V . In the next proposition we write

IC for the identity functor on C.

Proposition A.1. Let C and D be categories related by the functors F : C → D and

G : D → C. Suppose that V is a class of morphisms in C and that W is a class of

morphisms in D such that F (V) ⊆ W, G(W) ⊆ V, G ◦ F 'V IC, and F ◦ G 'W ID.

Then the localization of C with respect to V exists if and only if the localization of D
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with respect to W exists, and in this case F and G induce an equivalence of categories

F : C[V−1] � D[W−1] :G.

Proof. Suppose that a localization of D with respect to W exists and write L : D → D′
for such a localization. Then we define a category C ′ with the same objects as C and

morphism sets C ′(C1, C2) = D′(LF (C1), LF (C2)). The composition in C ′ is inherited

from the composition in D′. We claim that the canonical functor LC : C → C ′, which is

the identity on objects and given by LF on morphisms, is a localization of C with respect

to V . Thus, consider a category E and a functor H : C → E that maps the morphisms in

V to isomorphisms in E . We must define a functor H ′ : C ′ → E such that H = H ′ ◦ LC,
and it is clear that we must have H ′(C) = H(C) for all objects C in C ′. In order to

define the action on morphisms, we factor the composite functor K = H ◦ G : D → E
over the localization of D′ to get a functor K ′ : D′ → E . The relation G ◦ F 'V IC gives

a natural isomorphism φC : HGF (C) → H(C) and we define the action of H ′ on the

morphism set C ′(C1, C2) to be the composition

D′(LF (C1), LF (C2))
K′−→ E(HGF (C1), HGF (C2))

φC2
◦(−)◦φ−1

C1−−−−−−−→ E(H(C1), H(C2)).

It is immediate from the definition that H ′ satisfies the required conditions and it remains

to show that it is uniquely determined. The composition LC ◦G factors over D′ to give

the left hand square in the commutative diagram

D G //

L
��

C F //

LC
��

D
L

��
D′ G′ // C ′ // D′.

Notice that the relation F ◦ G 'W ID gives a natural isomorphism relating the compo-

sition L ◦F ◦G to L. Let J be the category with objects 0 and 1, and two non-identity

arrows i : 0→ 1 and j : 1→ 0. (Thus, J is a groupoid with inverse isomorphisms i and

j.) Then we may interpret the natural isomorphism in question as a functor D×J → D′,
or, by adjointness, a functor D → (D′)J . The latter factors over D′ to give a natural

isomorphism relating the composition in the bottom row of the diagram to the identity

functor on D′. It follows that G′ : D′ → C ′ is fully faithful and consequently that H ′

is uniquely determined on the full subcategory of C ′ generated by objects of the form

G(D) for D in D. Furthermore, the relation G ◦ F 'V IC implies that any morphism in

C ′ can be written as a composition of morphisms in this subcategory with morphisms in

the image of LC and inverses of morphisms in the image of LC. This shows that H ′ is

uniquely determined on the whole category C ′. The last statement in the proposition is

an immediate consequence. �

Example A.2. The work of Fiedorowicz-Stelzer-Vogt [FSV13] fits into this framework.

Let M be a Cat-operad that is Σ-free in the sense that Σk acts freely on M(k) for

all k. In [FSV13, C.2] the authors define a functor F : NM-S → M-Cat and show
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that if M satisfies a certain “factorization condition”, then there are chains of weak

equivalences N ◦ F 'w I and F ◦ N 'w I with I the respective identity functors. By

[FSV13, Lemma 8.12] this applies in particular to the (unbraided) operad Br discussed

in Section 5.1. It is well-known that the localization of NBr-S with respect to the weak

equivalences exists, since it can be realized as the homotopy category of a suitable model

category. Thus, it follows from Proposition A.1 that also the localization of Br-Cat with

respect to the weak equivalences exists and that these localized categories are equivalent.

This is shown in [FSV13, Proposition 7.4] except that the discussion of Grothendieck

universes and “localization up to equivalence” is not really needed in order to state this

result.
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WEAK BRAIDED MONOIDAL CATEGORIES AND THEIR
HOMOTOPY COLIMITS

MIRJAM SOLBERG

Abstract. We show that the homotopy colimit construction for diagrams of categories

with an operad action, recently introduced by Fiedorowicz, Stelzer and Vogt, has the

desired homotopy type for diagrams of weak braided monoidal categories. This provides

a more flexible way to realize E2 spaces categorically.

1. Introduction

Braided monoidal categories have been much studied and are used extensively in many

areas of mathematics, for instance in knot theory, representation theory and topological

quantum field theories. It has been known for a long time that the nerve of a braided

monoidal category is an E2 space, and it was shown recently [FSV13] that all homotopy

types of E2 spaces arise in this way. In this article we study a weaker categorical struc-

ture, namely weak braided monoidal categories. These are monoidal categories with a

family of natural morphisms X⊗Y → Y ⊗X satisfying the axioms for a braiding, except

that they are not required to be isomorphisms. We will see that weak braided monoidal

categories give a more flexible way to realize E2 spaces categorically.

Homotopy colimit constructions have become increasingly important in homotopy

theory. In order for the equivalence between weak braided monoidal categories and

E2 spaces to be really useful, one should be able to construct homotopy colimits on

the categorical level. Such a homotopy colimit construction was defined in [FSV13] in

general for diagrams of categories with an operad action. The question of the homotopy

properties of the homotopy colimit was left open for weak braided monoidal categories.

In this paper we provide an answer to that question. Let Br+-Cat denote the category

of weak braided monoidal categories and let X be a diagram of weak braided monoidal

categories. Applying the nerve N to a weak braided monoidal category yields a space

with an action of the E2 operad NBr+, see Subsection 3.1. Let hocolimBr+X denote the

homotopy colimit of X defined in [FSV13], and let hocolimNBr+NX denote the homotopy

colimit of NX, for details see Subsection 3.1. Then our main result, Theorem 3.2, can

be stated as follows.

Theorem 1.1. There is a natural weak equivalence

hocolimNBr+NX → N(hocolimBr+X)

2010 Mathematics Subject Classification. Primary 18D10, 18D50; Secondary 55P48.
Key words and phrases. Weak braided monoidal categories, homotopy colimits, double loop spaces.
First published in: Theory and Applications of Categories, Vol. 30, No. 3, 2015, pp. 40-48.
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2 MIRJAM SOLBERG

of NBr+-algebras.

1.2. Organization. We begin by giving the definition of weak braided monoidal cate-

gories in Section 2 and provide some examples. In Section 3 we set up and prove our

main result, Theorem 3.2. The proof involves an analysis of braid monoids which is

interesting in its own right.

2. Weak braided monoidal categories

Let D be a monoidal category with monoidal product ⊗, monoidal unit i, associativity

isomorphism a and left and right unit isomorphisms l and r respectively. A weak braiding

for D consists of a family of morphisms

bd,e : d⊗ e→ e⊗ d

in D, natural in d and e, such that ldbd,i = rd, and rdbi,d = ld and the following two

diagrams

(e⊗ d)⊗ f a // e⊗ (d⊗ f)

id⊗b
��

d⊗ (f ⊗ e) a−1
// (d⊗ f)⊗ e

b⊗1
��

(d⊗ e)⊗ f
b⊗id

EE

a ��

e⊗ (f ⊗ d) d⊗ (e⊗ f)

id⊗b
EE

a−1
��

(f ⊗ d)⊗ e

d⊗ (e⊗ f)
b

// (e⊗ f)⊗ d
a

DD

(d⊗ e)⊗ f
b

// f ⊗ (d⊗ e)
a−1

DD

commute for all d, e and f in D. Here the sub indices of the weak braiding b and the

associativity isomorphism a have been omitted. A weak braided monoidal category is a

monoidal category equipped with a weak braiding. Note that if all the morphisms bd,e

are isomorphisms, then b is a braiding for the monoidal category.

Remark 2.1. The notion of a weak braided monoidal category found in [BFSV03]

and [FSV13] differs from the definition given here, in that the underlying monoidal

structure is required to be strictly associative and strictly unital. This is not a significant

difference, since each weak braided monoidal category is equivalent to a weak braided

strict monoidal category, along monoidal functors preserving the weak braiding. The

proof of this is similar to the proof of the analogous result for braided monoidal structures.

Weak braided monoidal categories have not been much studied in the literature, so

before we proceed we will look at some examples to show how such structures natu-

rally arise. The first example, the disjoint union of the braid monoids, is somehow the

canonical example.

Example 2.2. Let B+
m denote the braid monoid on m strings with the following presen-

tation:

〈σ1, . . . , σm−1 | σiσj = σjσi if |i− j| > 1 and σiσi+1σi = σi+1σiσi+1〉.
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The elements in B+
m are called positive braids on m strings, or just positive braids.

Let B+ denote the category with an object m for each integer m ≥ 0, with endomor-

phisms of m the elements of the braid monoid B+
m, and no other morphisms. This is a

strict monoidal category with monoidal product given by m t n = m+n and juxtapo-

sition of positive braids, the unit is 0. The weak braiding from m t n to n tm is given

by the positive braid

(σn · · · σm+n−1) · · · (σ2 · · · σm+1)(σ1 · · · σm),

braiding the first m strings over the last n strings. This is the same as the usual braiding

in the classical braid category, which is the disjoint union of the braid groups, see [JS93,

Example 2.1].

Example 2.3. We consider the category of non-negatively graded abelian groups. An

object G is a collection of abelian groups Gn for n ≥ 0. A morphism f : G→ H consists

of group homomorphisms fn : Gn → Hn for n ≥ 0. This category has a monoidal product

given by

(G⊗H)n =
⊕

n1+n2=n

Gn1 ⊗Hn2 .

Now fix an integer k. For g ∈ Gn1 and h ∈ Hn2 the assignment g ⊗ h 7→ kn1n2h ⊗ g

induces a map from Gn1 ⊗ Hn2 to Hn2 ⊗ Gn1 , which in turn induces a homomorphism

(G ⊗ H)n → (H ⊗ G)n. The collection of such maps gives a weak braiding for the

category of non-negatively graded abelian groups. Note that if k is a unit, i.e. ±1, then

the weak braiding is an actual braiding.

This example may be generalized to the category of non-negatively graded R-modules

for any commutative ring R. Pick an element in R to play the role of k in the weak

braiding.

A much studied construction is the center of a monoidal category, which can be en-

dowed with a braided monoidal structure, see for instance Example 2.3 in [JS93]. Our

next example is a weak version of this.

Example 2.4. Let D be a strict monoidal category with monoidal unit i. We consider

pairs (d, δ) where d is an object in D and δ is a natural transformation δ : d ⊗ (−) →
(−)⊗ d such that δi = idd and such that for any two objects x, y ∈ D the triangle

d⊗ x⊗ y
δx⊗idy

//

δx⊗y &&

x⊗ d⊗ y

idx⊗δyxx
x⊗ y ⊗ d

commutes. An arrow between two pairs (d, δ)→ (e, ε) consists of a morphism φ : d→ e

such that for all x ∈ D the identity εx ◦ (φ⊗ idx) = (idx ⊗ φ) ◦ δx holds. We can define

a monoidal product of two such pairs by setting

(d, δ)⊗ (e, ε) = (d⊗ e, (δ ⊗ ide) ◦ (idd ⊗ ε)).
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The collection of morphisms

δe : (d, δ)⊗ (e, ε)→ (e, ε)⊗ (d, δ)

satisfies the conditions for a weak braiding on this category of pairs and arrows. We call

this the weak center of D.

The requirement that D should be strictly associative and strictly unital was only a

matter of convenience. A similar construction works for any monoidal category, details

are left to the interested reader.

2.5. Operadic interpretation of weak braided monoidal structures. When the

underlying monoidal multiplication is strict, weak braided monoidal categories are the

algebras over a certain Cat-operad. By a Cat-operad we understand an operad internal

to the category Cat of small categories. Following [FSV13, Section 8] we will introduce

the Cat-operad Br+ such that Br+-algebras are weak braided strict monoidal categories.

The objects of Br+(k) are the elements A of the symmetric group Σk. Let p : B+
k → Σk

denote the projection of the braid monoid onto the corresponding symmetric group.

Then a morphism α : A→ B in Br+(k) is a positive braid α ∈ B+
k such that p(α)A = B.

Composition in Br+(k) is given by multiplication in B+
k . The category Br+(k) has a right

action of Σk defined on objects and morphisms by sending α : A → B to α : Ag → Bg

for g ∈ Σk. The operad structure map

γ : Br+(k)× Br+(j1)× · · · × Br+(jk)→ Br+(j1 + · · ·+ jk)

takes the tuple (A,B1, . . . , Bk) to

A(j1, . . . , jk) ◦ (B1 t · · · t Bk).

Here A(j1, . . . , jk) denotes the canonical block permutation obtained from A by replacing

the ith letter with ji letters. The action on morphisms is analogous except for the obvious

permutation of the indices. It is easy to check that the category of weak braided monoidal

categories with weak braiding preserving strict monoidal functors is isomorphic to Br+-

algebras. See for instance the argument given in Section 5.1 in [SS14] for the braided

monoidal version. We denote the category of Br+-algebras by Br+-Cat .

3. Homotopy colimits of weak braided monoidal categories

In [FSV13, Definition 4.10] there is a general homotopy colimit construction for a

diagram of algebras over a Cat-operad. Let L be a small category and consider the

category (Br+-Cat)L of functors L → Br+-Cat and natural transformations. The above

mentioned construction gives in particular a functor

hocolim
L

Br+ : (Br+-Cat)L → Br+-Cat .

3.1. The homotopy type of the homotopy colimit. Let S be the category of sim-

plicial sets and let N be the nerve functor from Cat to S. If we apply N levelwise to

the Cat-operad Br+, we get an operad NBr+ internal to the category S. We denote
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the category of algebras over NBr+ as NBr+-S. A morphism of NBr+-algebras is called

a weak equivalence if the underlying simplicial set map is a weak equivalence. These

are the weak equivalences in the standard model structure on NBr+-algebras, for a ref-

erence to the topological case, see for instance [SV91, Theorem B]. Given a diagram

W : L → (NBr+-S), let hocolimNBr+

L W denote the coend construction N(−/L)⊗LQW ,

where Q is an object wise cofibrant replacement functor in the category of NBr+-algebras.

This is the homotopy colimit of QW from Definition 18.1.2 in [Hir03]. If X is in

(Br+-Cat)L, then there is a natural map

hocolim
L

NBr+NX → N(hocolim
L

Br+X),

see the paragraph before Definition 6.7 [FSV13]. This is an operadic version of Thoma-

son’s map in Lemma 1.2.1 [Tho79]. The question if this map is a weak equivalence or not,

was left open in [FSV13]. Our main result provides a positive answer to this problem.

Theorem 3.2. The diagram

(Br+-Cat)L
N //

hocolimBr+

L ��

(NBr+-S)L

hocolimNBr+

L��

Br+-Cat
N // NBr+-S

commutes up to weak equivalence of NBr+-algebras.

The operad NBr+ is an E2 operad, see Proposition 8.13 in [FSV13]. The above theorem

gives one way to relate weak braided monoidal categories and E2 spaces as seen in the

corollary below. Fiedorowicz, Stelzer and Vogt obtain the same equivalence without

using the homotopy colimit construction of Br+-algebras in [FSV].

Corollary 3.3. We have an equivalence of localized categories

(Br+-Cat)[we−1] ' (NBr+-S)[we−1].

Proof. Theorem 3.2 shows that Theorem 7.6 in [FSV13] applies to the operad Br+. The

corollary then follows from the latter theorem with the added observation that the lo-

calization (Br+-Cat)[we−1] exists, see Proposition A.1 in [SS14]. �

By general theory (details will be provided later), the proof of the theorem reduces to

showing that certain categories have the property that each connected component has an

initial object. Fix an A ∈ Σm, a B ∈ Σn, and non-negative integers r1, . . . , rn such that

r1 + · · · + rn = m. Let B̃ denote the canonical block permutation B(r1, . . . , rn) ∈ Σm

obtained from B by replacing the ith letter with ri letters. We define a poset category

C depending on A, B and r1, . . . , rn . The objects in C are the positive braids α ∈ B+
m

such that

p(α)AB̃ ∈ (Σr1 × · · · × Σrn) ⊆ Σm.

There is a morphism α ≤ β from α to β in C if there exist γi ∈ B+
r1

for i = 1, . . . , n such

that (γ1 t · · · t γn)α = β in B+
m.
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3.4. Analysis of minimal positive braids in C. First we note that all references to

the presentation of a braid monoid, will be to the standard presentation, see Example 2.2.

We call an object ν in C a minimal object if for all objects ν ′ in C, ν ′ ≤ ν implies ν ′ = ν.

Define the norm |β| ∈ N0 of an element β in B+
m, as the length of any word representing

β, see Section 6.5.1 in in [KT08]. This is well defined because each of the relations in the

presentation identifies words of equal length. It is immediate from the definition that ν

is a minimal object if and only if ν 6= (γ1 t · · · t γn)ν ′ for all γi ∈ B+
ri

and all ν ′ ∈ C with

|ν ′| < |ν|.

Proposition 3.5. Given an object α in C there is a unique minimal object να such that

να ≤ α.

This proposition is the key ingredient in the proof of our main result. But before

we prove either, we will derive some auxiliary results from the nature of the standard

presentation of a braid monoid.

Let w and w′ be two words representing the same positive braid. According to Section

6.1.5 in [KT08], w′ can be obtained from w by a finite number of consecutive substitutions

of the form

w1rw2 = w1r
′w2

where r = r′ is one of the relations in the presentation. Observe that for each of the

relations r = r′ in the presentation, r and r′ contain the same letters, only the order and

number of occurrences of each letter differ. This implies that a letter σi is in w if and

only if σi is in w′.

For integers r1, . . . , rn adding up to m, consider B+
r1
× · · · × B+

rn as a submonoid of

B+
m consisting of the positive braids in B+

m which can be represented by a word not

containing the letters σri for i = 1, . . . , n− 1. The above discussion shows that α ∈ B+
m

lies in B+
r1
×· · ·×B+

rn if and only if no word representing α contains any of the letters σri
for i = 1, . . . , n− 1. Also, a positive braid α ∈ B+

m does not lie in B+
r1
× · · · × B+

rn if and

only if any word representing α contains at least one of the letters σri for i = 1, . . . , n−1.

This immediately implies the next lemma.

Lemma 3.6. Given two positive braids α and β in B+
m such that their product βα lies

in B+
r1
× · · · × B+

rn, then both α and β lie in B+
r1
× · · · × B+

rn as well.

A right common multiple of two elements x and x′ in a monoid M , is an element in M

that is of the form xy = x′y′ for some y and y′ in M . A right least common multiple of

x and x′ is an element lcm(x, x′) ∈M such that lcm(x, x′) is a right common multiple of

x and x′, and such that any right common multiple of x and x′ is of the form lcm(x, x′)z

for some z ∈ M . A unique right least common multiple of γ and γ′ exists for any two

positive braids γ and γ′ on k strings, see Theorem 6.5.4 in [KT08]. Since we will only

be dealing with right least common multiples, and not left least common multiples, the

notation lcm will not be ambiguous. We will however use a subindex k to indicate that

the least common multiple lcmk is taken in the braid monoid B+
k .
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Corollary 3.7. Given γi, γ
′
i ∈ B+

ri
for i = 1, . . . , n, let γ = γ1 t · · · t γn and similarly

γ′ = γ′1t· · ·tγ′n. Then the least common multiple lcmm(γ, γ′) in B+
m of γ and γ′ is equal

to

lcmr1(γ1, γ
′
1) t · · · t lcmrn(γn, γ

′
n).

Proof. It is clear that lcmr1(γ1, γ
′
1)t· · ·t lcmrn(γn, γ

′
n) is the right least common multiple

of γ and γ′ in the monoid B+
r1
× · · · × B+

rn . Now lcmr1(γ1, γ
′
1) t · · · t lcmrn(γn, γ

′
n) is a

right multiple of both γ and γ′, so we get

lcmm(γ, γ′)φ = lcmr1(γ1, γ
′
1) t · · · t lcmrn(γn, γ

′
n)

for some φ ∈ B+
m. Since the product lcmm(γ, γ′)φ lies in B+

r1
× · · · × B+

rn , then so does

lcmm(γ, γ′), and the result follows. �

Proof of Proposition 3.5. We first prove the existence of να. If α is not a minimal object,

there exists an object α1 ∈ C such that α1 ≤ α and |α1| < |α|. We repeat this process as

many times as necessary until we obtain a minimal αk with αk ≤ αk−1 and |αk| < |αk−1|.
The process terminates after a finite number of steps since the norm of the αi’s decrease

strictly each time. We set να = αk, so by construction να ≤ α.

We now turn to the uniqueness of να. Suppose there are two minimal objects να

and ν ′α such that both να ≤ α and ν ′α ≤ α. Then α equals both (γ1 t · · · t γn)να and

(γ′1 t · · · t γ′n)ν ′α for some γi, γ
′
i ∈ B+

ri
, i = 1, . . . , n. Abbreviating γ1 t · · · t γn to γ and

γ′1 t · · · t γ′n to γ′, we recall that

lcmm(γ, γ′) = lcmr1(γ1, γ
′
1) t · · · t lcmrn(γn, γ

′
n).

Since α is a right common multiple of both γ and γ′,

α = (lcmr1(γ1, γ
′
1)) t · · · t (lcmrn(γn, γ

′
n))ω

for some ω ∈ B+
m. The right least common multiple of γi and γ′i is in particular a

right common multiple of γi and γ′i, so lcm(γi, γ
′
i) = γiφi = γ′iφ

′
i for some φi, φ

′
i ∈ B+

ri
,

i = 1, . . . , n. Combining this we get that

(γ1 t · · · t γn)να = α = (γ1 t · · · t γn)(φ1 t · · · t φn)ω and

(γ′1 t · · · t γ′n)ν ′α = α = (γ′1 t · · · t γ′n)(φ′1 t · · · t φ′n)ω.

The braid monoid injects into the corresponding braid group [FSV13, Theorem 6.5.4],

so we can apply left cancellation to the above equations to obtain

να = (φ1 t · · · t φn)ω and ν ′α = (φ′1 t · · · t φ′n)ω.

It is straightforward to check that p(ω)AB̃ is in Σr1 ×· · ·×Σrn , so that ω is an object in

C. Then the above equations say that ω ≤ να and ω ≤ ν ′α in C. But since να and ν ′α are

minimal objects these maps have to be identities. This proves the uniqueness of να. �

Lemma 3.8. Each connected component in C has an initial object.
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Proof. Given a morphism α ≤ β in C, Proposition 3.5 associates to α and β unique

minimal objects να and νβ respectively. The two objects must be equal since να ≤ α ≤ β,

but νβ is the unique minimal object with νβ ≤ β. Hence the minimal objects associated

to any two objects in the same connected component has to be equal, and we have a

unique minimal object in each connected component of C. The minimal objects are

initial in their respective connected components. �

Fix an M ∈ Σm, an N ∈ Σn, and non-negative integers s1, . . . , sn such that s1 + · · ·+
sn = m. The factorization category C(M,N, s1, . . . , sn), as defined in [FSV13, Section 6],

has as objects tuples (C1, . . . , Cn, α) consisting of Ci ∈ Σsi for i = 1, . . . n, and α ∈ B+
m

such that

(1) p(α)M = Ñ(C1 t · · · t Cn).

A morphism from (C1, . . . , Cn, α) to (D1, . . . , Dn, β) consists of elements γi in B+
si

for

i = 1, . . . n such that (γ1 t · · · t γn)α = β.

Lemma 3.9. The factorization category C(A,B−1, rB−1(1), . . . , rB−1(n)) is isomorphic to

the category C considered in this section.

Proof. Here B̃−1(C1 t · · · t Cn) = (CB(1) t · · · t CB(n))B̃
−1, so Equation (1) can be

rewritten as

p(α)AB̃ = CB(1) t · · · t CB(n).

This equation determines the Ci’s uniquely given α with p(α)AB̃ in Σr1 × · · · × Σrn .

The two categories therefore have isomorphic objects, and the morphism sets are easily

seen to be isomorphic as well. �

Proof of Theorem 3.2. Together Lemmas 3.8 and 3.9 show that each factorization cat-

egory has an initial object in each of its connected components. Thus the operad Br+

satisfies the factorization condition [FSV13, Definition 6.8] and the result follows from

Theorem 6.10 [FSV13]. �
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