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SUMMARY
Increasingevidencesuggests thatneurodevelopmentalalterationsmightcontributeto increase thesusceptibility
to develop neurodegenerative diseases.We investigate the occurrenceof developmental abnormalities in dopa-
minergicneurons inamodelofParkinson’sdisease (PD).Wemonitor thedifferentiationofhumanpatient-specific
neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and sin-
gle-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase
of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify
the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes.
The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S
NESCs, neurons, andmidbrain organoids compared to controls.Wealso observe accelerateddopaminergic dif-
ferentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the
LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.
INTRODUCTION

Parkinson’s disease (PD) is the second most prevalent neurode-

generative disorder after Alzheimer’s disease. It is histopatho-

logically characterized by the progressive loss of midbrain

dopaminergic neurons (mDAs) in the substantia nigra (Przedbor-

ski, 2017; Schapira et al., 2017). However, the pathology’s wide

spectrum of clinical manifestations is only partially explained by

the progressive loss of mDAs. Several lines of evidence have

substantiated the hypothesis that PD might have a neurodevel-

opment component. This is, for example, suggested by an anal-

ysis of PD autoptic brain samples (Huisman et al., 2004). The

number of mDAs has been found to be decreased in the sub-
C
This is an open access article und
stantia nigra but strongly increased in the olfactory bulb (Huis-

man et al., 2004). Neurogenesis has been reported to occur in

human olfactory bulb until the first 18 months after birth (Sanai

et al., 2011; Wang et al., 2011). Thus, it is reasonable to conclude

that the increased number of mDAs was specified during devel-

opment. Further evidence for a neurodevelopmental component

of PD comes from leucine-rich repeat serine/threonine-protein

kinase 2 (LRRK2). Mutations in the gene encoding for LRRK2

have been associated with both familial and sporadic PD (Fu-

nayama et al., 2002; Lesage et al., 2006; Ozelius et al., 2006).

LRRK2 is highly expressed during development (Zechel et al.,

2010), and it binds to proteins of the dishevelled (DLV) family

(Sancho et al., 2009), key mediators of the Wnt signaling
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pathway. The Wnt pathway is essential in embryonic develop-

ment (Croce and McClay, 2008), controlling several key pro-

cesses such as cell fate specification (Logan and Nusse,

2004), including that of mDAs (Arenas, 2014). LRRK2 mutations

in the Roc domain have been shown to disrupt its interactions

with DLV1–3 (Sancho et al., 2009). Consistent with the neurode-

velopmental hypothesis, LRRK2 has been shown to regulate

synaptogenesis (Parisiadou et al., 2014; Winner et al., 2011).

The best-characterized PD-associated LRRK2 mutation is the

autosomal-dominant genomic mutation c.6055G>A, which re-

sults in a LRRK2-G2019S substitution. It also constitutes the

most prevalent genetic risk factor for PD (Funayama et al.,

2002; Paisán-Ruı́z et al., 2004; Zimprich et al., 2004). Function-

ally, the LRRK2-G2019S mutation causes increased LRRK2 ki-

nase activity (West et al., 2007), which leads to the activation

of several pathways (Cookson, 2010).

The penetrance of the LRRK2-G2019S mutation is incomplete

and variable (Healy et al., 2008), and it is modulated by age, indi-

vidual genetic background, and environmental factors (Chen

et al., 2017; Hill-Burns et al., 2016; Lorenz et al., 2017). It has

already been shown that genetic mutations can interfere with

development, resulting in defects of variable severity and diverse

clinical manifestations (Marı́n, 2016; Poduri et al., 2013).

Increasing evidence suggests that neural stem cell (NSC) dereg-

ulation and the resulting compromised neurodevelopment play a

role in PD (Le Grand et al., 2015; Marxreiter et al., 2013; Schwam-

born, 2018). The existence of a neurodevelopmental predisposi-

tion to PD could potentially explain also some of the extra-nigral

symptoms associated with PD (Schapira et al., 2017).

The use of PD-patient-derived human induced pluripotent

stem cells (hiPSCs) represents an enabling tool to model devel-

opmental alterations in an in vitro human-based system (Gammill

and Bronner-Fraser, 2003; Reinhardt et al., 2013b). hiPSC-

derived cells resemble embryonic identity at the gene expression

level and recapitulate early developmental events (Mariani et al.,

2012). hiPSC-derived neural cells carrying the LRRK2-G2019S

mutation reproduced several in vivo PD phenotypes, including

reduced neurite ramification (Reinhardt et al., 2013b), synaptic

alterations (Borgs et al., 2016; Reinhardt et al., 2013b; Sán-

chez-Danés et al., 2012), mitochondrial abnormalities (Cooper

et al., 2012; Sanders et al., 2014), reduced stress sensitivity

(Reinhardt et al., 2013b), autophagosomal dysfunctions (Sán-

chez-Danés et al., 2012), and stem cell alterations (Liu et al.,

2012; Sanders et al., 2014). Previous studies mainly character-

ized the mature differentiated mDAs without considering poten-

tial alterations in the transition dynamics from NSCs to neurons.

In contrast, here, we addressed this gap and extensively study

the impact of the LRRK2-G2019S mutation on the dynamics of

cell fate specification throughout neuronal differentiation of pa-

tient-specific neuroepithelial stem cells (NESCs).

RESULTS

In vitro differentiation of humanNESCs follows an in vivo

developmental process
To evaluate whether LRRK2-G2019S mutation could influence

the differentiation dynamics of dopaminergic neurons, we

cultured NESCs from an early-onset patient (PD2/G2019S) and
2 Cell Reports 37, 109864, October 19, 2021
the corresponding isogenic control line, where the mutation

was corrected (PD2/WT) (Figure S1A). We induced dopami-

nergic differentiation and collected the cells after 4, 10, 14, and

42 days. To analyze neuronal differentiation at a high-level

view, we performed droplet-based single-cell RNA sequencing

(scRNA-seq) at the mentioned time points.

To assess the quality and identity of our in vitro preparation, we

performed a prototype analysis using a machine-learning tool

and the information contained in a single-cell atlas of the human

developing ventral midbrain (La Manno et al., 2016). The algo-

rithm compares the transcriptomes measured from our in vitro

model to the in vivo reference human fetal cell types. The

approach allows evaluating the similarity of each cell to many

reference cell types. The classifier assigns each cell a probability

to belong to each of the prototypes. An analysis of the top 18 ex-

pressed candidate genes relevant to midbrain progenitors, neu-

roblast medial (NbM) stem cells, and mDAs was conducted. The

analysis revealed that the in vitro mDA differentiation is incom-

plete. However, the in vitro cells resemble good-quality NbM

and progenitors (Figure S1A). Hence, the used cell culture model

represents a suitable tool to address early developmental

processes.

LRRK2-G2019S causes accelerated neuronal
differentiation
After proving the in vivo relevance of our in vitromodel, we eval-

uated whether the LRRK2-G2019S mutation altered cell fate

acquisition. We used 13 iPSC-derived NESC lines generated

from three patients carrying the LRRK2-G2019S mutation and

four age- and gender-matched healthy individuals. Four isogenic

NESC lines (two where the mutation was introduced and two

where the mutation was corrected) were also used (Figures 1A

and S1A). We used two different clones for patient 1 (P1 and

P1.1). The derivation of NESCs from iPSCs and their mDA differ-

entiation and characterization have been previously described

(Figure S1A) (Reinhardt et al., 2013a).

Throughout the study, we grouped the cells in two ways; we

indicated the disease condition of the donor as healthy (H) or

PD and the absence (WT) or presence (G2019S) of the LRRK2-

G2019Smutation. H/WT indicates cells from a healthy individual,

while H/G2019S are healthy cells after the introduction of the

LRRK2-G2019S mutation (isogenic control). The PD/G2019S

lines are cells from PD patients carrying the LRRK2-G2019Smu-

tation, and they are annotated as PD/WT after the gene correc-

tion. We analyzed all NESC lines according to the following

groupings: (1) H+PD/G2019S versus H+PD/WT), (2) PD/G2019S

versus H/WT), (3) PD/G2019S versus PD/WT, and (4) (H/WT

versus H/G2019S).

To study the potential contribution of neurodevelopmental al-

terations to PD, we analyzed the temporal dynamics of neuronal

and mDA differentiation via automated image analysis. We

focused the analysis on days 4, 10, and 14 of differentiation (Fig-

ure 1B). We analyzed the appearing DA neuronal marker tyrosine

hydroxylase (TH+) and neuron-specific class III beta tubulin

(TUJ1+) cells in combination with the LIM homeobox transcrip-

tion factor 1-alpha (LMX1A) as a marker for mDA (Andersson

et al., 2006). LMX1A and TH staining confirmed the midbrain

identity of the cells during differentiation and showed the higher



Figure 1. LRRK2-G2019S accelerates

neuronal differentiation

(A) Cell line nomenclature and applied groupings.

(B) Representative confocal images of cells stained

for TH, LMX1A, andDNA at days 4, 10, and 14 (scale

bar, 50 mm). Quantification of TH+/TUJ1+ pixels at

days 4, 10, and 14. Statistical analysis performed

with Mann-Whitney test (experiments were per-

formed three times, with one technical replicate).

(C) Cytometry analysis of TH+/TUJ1+ neurons

quantified over time.

(D) Cytometry analysis of TH+/FOXA2+ neurons

quantified over time, two-way ANOVA followed by

Bonferroni post hoc test (experiments were per-

formed at least four times, with one technical

replicate).

All data are presented as mean ± SEM. *p < 0.05;

****p < 0.0001.
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number of neurons and mDA in LRRK2-G2019S compared to

control cultures (Figures 1B and S2A–S2C). LRRK2-G2019S

correction in PD-patient-derived cells rescued the dynamics of

mDA specification to healthy control levels. Furthermore, we

observed a significant increase in themDA fraction in healthy ge-

netic background lines when the LRRK2-G2019S mutation was

introduced (Figure S2A). We also analyzed the ratio of TUJ1+/

Hoechst (Figure S2B) and TH�-TUJ1+/Hoechst (Figure S2C)

and observed a similar tendency for neurons and non-mDA.

To gain further insights into the exact dynamics of this pheno-

type, we analyzed the cultures with a flow-cytometry-based

approach (fluorescence-activated cell sorting [FACS]). We

immunostained the cells using antibodies against TUJ1 and

TH. TH+/TUJ1+ neurons were measured prior induction of mDA

differentiation (day 0) and at days 2, 4, 6, 8, 10, 14, 28, and 42

of differentiation (Figures 1C, S3A, and S3B). LRRK2-G2019S

cultures at days 4, 10, and 14 differentiated into mDAs more

rapidly than control cultures. However, at the endpoint of differ-

entiation (day 42), no significant difference in the number of mDA

was detectable when comparing LRRK2-G2019S and control

cultures. Interestingly, correction of LRRK2-G2019S mutation

in patient-derived cells rescued the impaired mDA differentiation

dynamics to the levels observed in healthy controls (Figure 1C).

We also quantified TH in combination with the mDA marker fork-

head box protein A2 (FOXA2) (Sasaki and Hogan, 1994). FOXA2

was present in the majority of the cells (e.g., �95%) at day 14

(Figures 1D, S3C, and S3D). Quantification of TH+/FOXA2+ neu-

rons confirmed the initial increase of mDA in LRRK2-G2019S

cultures compared to controls. Thus, we conclude that the

LRRK2-G2019S mutation increases the rate of neuron and

mDA formation during differentiation.

To analyze cell identities during neuronal specification, we

reverted to the scRNA-seq and analyzed the global transcrip-

tome changes due to LRRK2-G2019S during neuronal

differentiation. We generated targeted gene lists specifically

for progenitor cells, mDAs, astrocytes, microglia, oligodendro-

cytes, endothelial cells, and cell cycle (Table S1) based on

the available literature (La Manno et al., 2016; Reinhardt

et al., 2013a; Whitfield et al., 2002). We profiled 2,000 quality-

controlled cells at the four differentiation time points (250 cells

per condition on days 0, 10, 14, and 42). After pre-processing

of the data (Figure S4A), we calculated cumulative gene

expression scores for the targeted cells or cellular processes

(NESCs and mDA-based defined gene lists). The analysis of

cumulative gene expression distributions and differentially

regulated gene expression (Figure S4B; Table S2) showed sig-

nificant differences between the genotypes for most time

points and gene lists. We pooled the data obtained from both

genotypes and performed a principal-component analysis.

We used the 20 first principal components in t-distributed sto-

chastic neighbor embedding (t-SNE) for further dimensionality

reduction (van der Maaten and Hinton, 2008). The resulting t-

SNE plots revealed separated cell clusters, particularly on

days 10 and 14 (Figure 2A). To characterize the clustering

structures and the relation of the cells with clusters of similar

gene expression, we fitted a Gaussian mixture model to the

t-SNE plots. This resulted in the identification of defined clus-

ters per each time point, as shown by the gray shadowed re-
4 Cell Reports 37, 109864, October 19, 2021
gions. We mapped individual cells on this clustered structure

using color-coded cluster assignments. We observed an

increasing specification and heterogeneity of the cells during

differentiation. The rather diffuse arrangement of cells over

the clusters in the NESCs became more constrained at later

time points, forming more distinct clusters. Interestingly, this

heterogeneity converged to a more homogeneous gene

expression pattern at differentiation day 42. Collectively, the re-

sults of the cluster-based scRNA-seq analyses verified the

accelerated mDA specification in LRRK2-G2019S-expressing

neurons. Furthermore, the pattern of initially diverging and

eventually converging gene profiles was clearly visualized by

the distinct clusters (Figure 2A). Cellular identity mapping re-

vealed highly specific neuronal differentiation and highlighted

the tendency of LRRK2-G2019S NESC cultures toward differ-

entiation. The panel shows dimensionality reduction of the

scRNA-seq, clustering, and identification of cell types based

on lists of genes. The panel shows dimensionality reduction

of the scRNA-seq, clustering, and identification of cell types

based on lists of genes for both PD2/WT and PD2/G2019S.

Cells identified as neurons are colored in yellow, while cells

identified more specifically as mDA are in green. There is one

table per time point. The first line of the table reports which per-

centage of cells belong to which cell type. We can see that

neurons represent 5.1% (day 0), 21.6% (day 10), 34% (day

14), and 28.4% (day 42), while mDAs represent 1.8% (day 0),

8.6% (day 10), 11% (day 14), and 5% (day 42) of all cell types.

Importantly, the fraction of neurons/mDAs is growing over time,

except for the last time point. The second line of the table re-

ports which percentage of cells within every cell type belong

to the PD2/G2019S sample. For neurons, these percentages

are 88.2% (day 0), 76.8% (day 10), 75.8% (day 14), and

70.8% (day 42); for mDAs, these percentages are 77.7% (day

0), 74.4% (day 10), 84% (day 14), and 22.8 (day 42). Thus,

both neurons and mDA are considerably more numerous in

the PD2/G2019S cultures than in PD2/WT at every time point

(except for mDAs at day 42).

Coherently, LRRK2-G2019S-expressing NESCs appeared to

be more prone to differentiate even before neuronal induction,

as indicated by the significant increased number of mDA-spe-

cific transcripts (Figure 2B). Furthermore, the cumulative

expression analysis statistically verified the early upregulation

of mDA-related transcripts at days 10 and 14 of differentiation.

To quantify and compare the developmental state between

the genotypes, we used the branching and pseudotime analysis

provided by Monocle (Trapnell et al., 2014; Qiu et al., 2017a,

2017b). The branching analysis identifies three branching points,

which reflect the differentiation process. It becomes evident that

cells carrying the LRRK2-G2019S mutation originate from the

same cell state and that both cell lines differentiate toward

similar cell states (Figures 2C and S4F). Moreover, LRRK2-

G2019S preceded LRRK2-WT cultures, suggesting a faster dif-

ferentiation. To quantify this observation, we compared the

pseudotimes as ameasure of the developmental state of individ-

ual cells from both cultures, LRRK2-G2019S and LRRK2-WT,

at each day. Figure 2D shows the distribution of pseudotimes

of LRRK2-WT and LRRK2-G2019S cells in gray and blue,

respectively. In the NESCs, the two distributions coincided



Figure 2. Single-cell RNA sequencing

(scRNA-seq) and pseudo-temporal ordering

confirms LRRK2-G2019S-dependent accel-

eration of neuronal differentiation

(A) PCA-t-SNE combination plots showing cluster

detection and color-coded cell-type detection

based on gene profiles. The gray underlying ellip-

soids represent a Gaussian mixture model (x =

center). The tables show the fraction of distinct cell

types in the total population (upper row) and indi-

cate the percentage of the G2019S genotype in

each particular cell type (lower row). d = control

(PD2/WT) and --- = patient (PD2/G2019S).

(B) Histograms showing cumulative gene expres-

sion distributions, for mDA-specific genes, during

differentiation. 250 cells per population per day

were analyzed. Statistical analysis was performed

via z-test followed by Bonferroni post hoc test,

****p < 0.0001. Differentially expressed genes and

percentages of particular lists are presented in

Figure S4B and in Table S2.

(C) Branching analysis of cell transitions using the

Monocle 2.0 R package based on the complete

pool of data.

(D) Distribution of corresponding cellular pseudo-

times for PD2/WT and PD2/G2019S. Experiments

were performed one time with one replicate per

time point.
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demonstrating that cells started from a very similar state. At day

10, the mutant cells exhibited already a significant fraction of

cells close to the final differentiation state, while the majority of

control cells still exhibited a stem cell state. The faster differen-

tiation of LRRK2-G2019S compared LRRK2-WT cells was main-

tained at day 14, but eventually, the distribution of both cell lines

converged at day 42.

Overall, these data show that the LRRK2-G2019S mutation

causes an acceleration of neuronal differentiation and mDA
C

specification. Additionally, these results

demonstrate that prior to differentiation,

the gene expression pattern in LRRK2-

G2019S NESCs already differs from that

of the isogenic control cells.

LRRK2-G2019S induces early cell-
cycle exit, loss of stemness, and
decreased viability in
differentiating mDA
To better understand the dynamics of

LRRK2-G2019S-associated early enrich-

ment of mDAs during differentiation, we

performed a cell-cycle exit analysis.

Using automated image analysis, we

quantified the fraction of cycling cells

using Ki-67 staining (Scholzen and

Gerdes, 2000). We observed that the

aberrant enrichment of neurons in

LRRK2-G2019S cultures was accompa-

nied by an earlier exit of LRRK2-G2019S

NESCs from the cell cycle. At days 4,
10, and 14 of differentiation, there were significantly fewer Ki-

67+ cells in LRRK2-G2019S than in wild-type cultures (Figures

3A and S5A).

We then used the scRNA-seq data to investigate differences

in cell-cycle-related gene expression (Figures 3B, 3C, and

S4D). The resulting expression matrices visualized the loss

of cycling cells during differentiation and highlighted the

more rapid loss of cell-cycle-related gene expression in

LRRK2-G2019S compared to LRRK2-WT cultures (Figure 3B).
ell Reports 37, 109864, October 19, 2021 5



Figure 3. LRRK2-G2019S induces early cell-cycle exit, loss of stemness, and cell death

(A) Representative confocal images of Ki-67 staining and automated quantification of Ki67+ cells at days 4, 10, and 14 of differentiation (scale bar 50 mm). Each

data point represents one analyzed micrograph (experiments were performed 3 times, 1 technical replicate). Data were analyzed via Mann-Whitney test.

(B) Expression matrices quantifying cell-cycle exit and related gene expression per cell. The expression levels are color-coded as indicated in the bar; red in-

dicates upregulation, and blue indicates downregulation.

(C) Histograms visualizing loss of cumulative gene expression of cell-cycle-specific genes during differentiation. Population histograms were analyzed via z-test

followed by Bonferroni post hoc test.

(D) Dynamics of SOX-1+ loss during differentiation quantified by FACS (experiments were performed at least four times, with one technical replicate). Data were

analyzed via unpaired t test.

(E) Histograms showing cumulative gene expression distributions for NESC-specific genes. Population histograms were analyzed via z-test followed by Bon-

ferroni post hoc test. Differentially expressed genes and percentages of particular lists are presented in Figure S4B and Table S2.

(F) Representative confocal images of cleavedPARP (c.PARP) staining and c.PARPdetection at days 4, 10, and 14of differentiation (scale bar, 50mm).Quantification

of c.PARP+ pixels at days 4, 10, and 14. Each data point represents one micrograph (experiments were performed three times, with one technical replicate).

For all panels, the data are presented as the mean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. The scRNA-seq experiment was performed one time

with one replicate per time point.
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We then quantified the differences in the expression of cell-

cycle-related genes in a cumulative expression approach

(Figure 3C).
6 Cell Reports 37, 109864, October 19, 2021
Since the exit from the cell cycle is associated with loss of

stemness, we measured the fraction of cells positive for the

NSC marker SRY-box 1 (SOX-1) (Bylund et al., 2003; Pevny
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et al., 1998). In NESC maintenance cultures (day 0), more than

�85% of the cells were positive for SOX-1 (Figures 3D, S5B,

and S5C). In all comparisons, the starting NESC cultures were

similar with respect to SOX-1 expression. As expected, the frac-

tion of SOX-1+ cells decreased markedly during neuronal differ-

entiation. The reduction in the fraction of SOX-1+ cells was more

prominent in LRRK2-G2019S than in LRRK2-WT cells (Fig-

ure 3D). We further confirmed the accelerated loss of stemness

in LRRK2-G2019S compared to LRRK2-WT cells by considering

the cell distributions over gene expression for stemness genes

(Figure 3E).

We then investigated whether the increased apoptosis was

the reason for the progressive time-dependent decrease in

mDA number in LRRK2-G2019S cultures. We quantified the

presence of cleaved poly(ADP-ribose) polymerase (c.PARP)+

cells (Duriez and Shah, 1997) at days 4, 10, and 14 of neuronal

differentiation. The automated image analysis revealed a signif-

icant increase of apoptotic cells during differentiation in LRRK2-

G2019S cultures (Figures 3F and S5D). The isogenic controls

confirmed the clear dependency of the c.PARP phenotype to

the LRRK2-G2019S mutation. The increased apoptosis at day

42 was also confirmed by scRNA-seq (Figures S4B–S4I). In Fig-

ure S4I, we compute the distributions of gene expressions for

pro-apoptotic, anti-apoptotic, and caspases across cells and

compute the corresponding fold change (FC) between the

expression in the PD2/G2019S and PD2/WT cells. FC > 0 indi-

cates overexpression in PD2/G2019S (compared to PD2/WT),

FC < 0 indicates under-expression in PD2/G2019S (compared

to PD2/WT), FC = 1 indicates that PD2/G2019S cells express

(on average) twice as much as PD2/WT cells, and FC = 0 indi-

cates that PD2/G2019S and PD2/WTcells express the same

levels. We observed that at day 10, PD2/G2019S cells signifi-

cantly overexpressed anti-apoptotic genes compared to PD2/

WT. At day 42, PD2/G2019S cells overexpressed both pro-

apoptotic and caspase genes, indicating that at day 42,

increased cell death is particularly occurring in PD2/G2019S

cells.

Overall, LRRK2-G2019S NESCs differentiated into mDAs

significantly more rapidly than healthy cells. This accelerated

differentiation was highlighted by a faster loss of proliferation ca-

pacity and stemness, and it is accompanied by increased

apoptosis.

The core regulatory circuit of NESCs is deregulated in
PD-patient-derived cells
As NESCs carrying the LRRK2-G2019S mutation showed an

increased propensity to differentiate into mDAs, we next sought

to investigate the molecular cause of this alteration. Different cell

types have been shown to maintain their cell identity through

core regulatory circuits (CRCs) of transcription factors. These

factors are often controlled by super-enhancers and bind to

each other’s regulatory regions to establish feedback mecha-

nisms maintaining cell-type-specific gene expression profiles

(Boyer et al., 2005; Hnisz et al., 2013). To derive the NESC-spe-

cific CRC, we performed chromatin immunoprecipitation

sequencing (ChIP-seq) analysis of histone H3 lysine 27 acetyla-

tion (H3K27ac) in NESC lines H1 and H4 from healthy individuals

and identified between 225 and 256 active super-enhancers in
NESCs, depending on the cell line (Tables S3 and S4). Next,

the transcription factors that are expressed and associated

with an active super-enhancer in NESCs were identified, and

the obtained data were used as an input for CRC mapper

(Saint-André et al., 2016). With CRC mapper, the transcription

factors that contain their DNA-binding sequence motif in their

own super-enhancer region, thus forming an autoregulatory

loop, are first identified. Next, the super-enhancer regions of

these autoregulated transcription factors are scanned for the

presence of the DNA-binding motifs of other similarly controlled

transcription factors. Finally, the identified feedback loops are

used to form the cell-line-specific CRCs (Figure 4). The analysis

identified a CRC of six transcription factors in each cell line, with

five transcription factors (NR2F1, NR2F2, SOX2, POU3F2, and

POU3F3) contributing to the CRC reproducibly in each cell line,

thus forming the consensus CRC of NESCs.

To test whether the CRC genes were altered in LRRK2-

G2019S NESCs and whether this could underlie the observed

differences in dynamics of neuronal fate acquisition, we used

the scRNA-seq data to compare the expression levels of the

CRC genes across the cell populations.

We considered the gene expression across the cell populations

(of 250 cells each) for the five transcription factors of the core

CRC. We compared the expression for each of these genes in

PD2/WT and PD2/G2019S cells at days 0, 10, 14, and 42. This

was performed by computing the gene expression FCs of PD2/

G2019S with respect to PD2/WT cells (Figure 5A). NR2F1 was

significantly downregulated in PD2/G2019S compared to PD2/

WT cells. NR2F2 was also significantly downregulated at days

10, 14, and 42. Furthermore, we computed the gene-gene

correlation among the expression levels of these five transcription

factors, retained only those correlations that were statistically sig-

nificant (p value < 0.05), and averaged them over the number of

gene-gene combinations. As shown in Figure 5B, the value of

the average gene-gene correlation across the CRC genes in the

NESCs was similar between PD2/WT and PD2/G2019S cells.

During differentiation, its value increased in the PD2/WT cells,

indicating that these genes are co-expressed in PD2/WT. In

contrast, it decreased to zero in PD2/G2019S cultures at days

14 and 42. This indicates no statistically significant correlation be-

tween the expressions of these genes in PD2/G2019S cells upon

differentiation. This further supports the idea that the CRC is dys-

regulated by PD2/G2019S mutation upon differentiation. More-

over, we observed in both PD2/WT and PD2/G2019S groups

that at day 10 of differentiation the average correlation is higher

than the values at day 0 and at day 14 in the corresponding group.

This behavior is consistent with the fact that the average gene-

gene correlation is expected to be higher when cells are undergo-

ing a transition between cell states than when they are in a well-

defined cell state. The majority of PD2/G2019S cells showed a

clearly reduced expression of NR2F1, while only a few of the

PD2/WT cells show any reduction in its expression (Figure 5C).

qRT-PCR confirmed the decreased expression of NR2F1 in

both NESC and dopaminergic cultures after 8 days of differentia-

tion (Figures 5D and 5E). NR2F1 expression decreased in H lines

when LRRK2-G2019S mutation was introduced and increased in

PD lines when it was corrected. Overall, these data show that

LRRK2-G2019S mutation altered NESC CRC compared to
Cell Reports 37, 109864, October 19, 2021 7



Figure 4. Identification of the core regulato-

ry circuit (CRC) of the NESC state

Representation of the CRC derived for two healthy

donor NESC lines (one technical replicate) using

CRC mapper (Saint-André et al., 2016). The five

shared TFs forming the consensus circuit are

highlighted via underlying gray color. For each lo-

cus encoding for the indicated TFs, the detected

H3K27ac ChIP-seq signal is shown. The called

corresponding super-enhancer region is indicated

with a burgundy bar, and the locations of the

different DNA-binding motifs for the core tran-

scription factors are indicated in the respective

colors. For both cell lines, one additional CRC TF

(ZBTB16 and HOXA2) was mapped as indicated.
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LRRK2-WT cultures. It also highlights the peculiar role of LRRK2-

G2019S in downregulating NR2F1 expression levels.

To evaluate NR2F1 downregulation in a more complex in vitro

system, we used human midbrain organoids (hMOs). We have

previously shown that midbrain organoids are composed

of dopaminergic neurons producing and secreting dopamine

(Monzel et al., 2017; Smits et al., 2019). hMOs derived from PD

patients carrying the LRRK2-G2019S mutation presented a

decrease in the number and dendritic tree complexity of mDAs

compared to control organoids ((Smits et al., 2019)). We looked

into the scRNA-seq in (Smits et al., 2020) describing the tran-

scriptomic profile of hMOs generated from the healthy line H3/

WT in which the mutation was introduced (H3/G2019S). We

observed that NR2F1 mRNA expression is downregulated not

only in mDAs but also in glia, stem cell progenitors, and non-

dopaminergic neurons in H3/G2019S organoids compared to

H3/WT (Figure 5F). The decrease in NR2F1 expression was

observed after both 35 and 70 days of differentiation.

Next, we wanted to understand how the reduced expression

of NR2F1 might be mediated. First, we analyzed existing prox-

imity ligation-assisted ChIP-seq (PLAC-seq) data from primary

human cortical neurons to identify the regulatory regions associ-
8 Cell Reports 37, 109864, October 19, 2021
atedwith NR2F1 gene via chromatin loop-

ing interactions in vivo (Figure 6A) (Nott et

al., 2019). The identified regulatory re-

gions showed high consistency with the

active enhancer regions identified in our

NESCs, with most interactions clustering

at the NR2F1 super-enhancer region and

some chromatin loops connecting from

several hundred kilobases away (Fig-

ure 6). Then we performed further ChIP-

seq analysis in additional cell lines to

map the differentially active enhancer re-

gions between LRRK2-WT and LRRK2-

G2019S cells. In detail, we performed

ChIP-seq for H3K27ac in two of the pa-

tient-derived cell lines (PD1 and PD2)

and compared them either to an age-

matched healthy NESC line (H1 versus

PD1/G2019S) or tthe isogenic control

line used in the scRNA-seq analysis
(PD2/G2019S versus P2/WT) using THOR, a tool for differential

peak calling (Allhoff et al., 2016). This analysis confirmed the

presence of a large super-enhancer flanking the NR2F1 locus

also in the additional cell lines, but it did not reveal any consistent

changes in it between the two comparisons (Figures 6B and 6C).

However, the analysis did reveal the presence of an additional

super-enhancer almost 300 kb downstream of NR2F1 that was

also interacting with NR2F1 transcription start site according to

the PLAC-seq data. Interestingly, the differential peak calling re-

vealed a consistent reduction in the H3K27ac signal along a 5-kb

region of the distal super-enhancer in the patient-derived stem

cells (Figure 6B) in a LRRK2-G2019S-dependent manner (Fig-

ure 6C). This suggests that the downregulation of NR2F1 in PD

patient cells could be due to LRRK2-dependent alterations in

the activity of a distal downstream super-enhancer.

Dopaminergic differentiation is accelerated in vivo in
Nr2f1-deficient mouse embryos
NR2F1 (Nr2f1 in mouse) is a key factor for the development of

several neural structures (Armentano et al., 2007; Bertacchi et

al., 2019; Parisot et al., 2017; Tomassy et al., 2010), and its mu-

tations or deletions have been implicated in human pathological



Figure 5. NR2F1 mRNA levels are downregulated in LRRK2-G2019S cultures compared to controls

(A) Gene expression fold change for the five genes of the CRC of NESCs. For each gene and time point, this was defined as the logarithm in base two of the ratio

between the average expression (across cells) of that gene in LRRK2-G2019S and in LRRK2-WT cultures. Negative numbers indicate that LRRK2-G2019S

expresses that gene less than LRRK2-WT, and positive numbers indicate the opposite. p values were generated by applying a z-test followed by Bonferroni post

hoc test.

(B) Average gene-gene correlations among the five genes of the consensus core CRC. Correlations were filtered by their p value (required to be < 0.05, and

Bonferroni correction was applied), thus assuming no correlation exists for couples of genes where the correlation was not statistically significant.

(C and D) Distributions of cells populations across gene expression of NR2F1 in the scRNA-seq data. The expression ofNR2F1, normalized within each day, was

expressed on the horizontal axes. p values were generated by applying a z-test followed by Bonferroni post hoc test. The scRNA-seq experiment was performed

one time with one replicate per time point. NR2F1 mRNA expression levels were measured by qRT-PCR in NESCs (C) and after 8 days of mDA differentiation (D).

(legend continued on next page)
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conditions (Bertacchi et al., 2018; Bosch et al., 2014; Chen et al.,

2016). To test Nr2f1 possible implication in the development of

mDA, we first investigated its co-expression pattern with

midbrain-specific marker FoxA2 in mouse embryos at embry-

onic day 12.5 (E12.5) (Figure S6A and S6B), when both neural

progenitors (NPs) and neurons start accumulating at the ventral

side of the mesencephalon (Ang, 2006; Gale and Li, 2008). Nr2f1

is expressed in virtually all FoxA2+ cells, at higher level in differ-

entiating neurons compared to NPs (Figures S6A and S6A0). The
expression of Nr2f1 can be modulated by using heterozygous

(HET) or homozygous mouse model (Armentano et al., 2006),

in which one or both alleles are removed; consequently, Nr2f1

protein level can be roughly half in HETmice or completely abol-

ished in KO ones (Figures S6A00–S6B). At E12.5, TH+ differenti-

ated dopaminergic neurons found at the ventral-most midbrain

region widely express Nr2f1 (Figures S6C–S6E), with more

than 64.4% ± 2.7% showing high protein levels (Figure S6D).

InHET embryos, the loss of oneNR2F1 allele is sufficient to lower

Nr2f1 protein level, with the majority of the TH+ population

(65.2% ± 3.4%) showing low levels of Nr2f1 (Figure S6E). Taken

together, our data show that Nr2f1 expression follows the differ-

entiative process of dopaminergic neurons and can be efficiently

modulated with a genetic approach.

As NR2F1 is one of the CRC genes downregulated in LRRK2-

G2019S cultures, we exploited the mouse model to test the

possible effect of Nr2f1 loss on mDA differentiation in vivo. At

early time points (E10.5), Nr2f1 HET and KO embryos already

show decreased FoxA2+ progenitors and a parallel increased

production of the first FoxA2+TUJ1+ neurons exiting the cell cy-

cle (Figures 7A–7D), which we reconfirmed 2 days later (Figures

7E–7H). To further investigate early DA differentiation, we

analyzed the appearing DA marker TH in the different genotypes

and found an increased DA neuronal number also at E13.5 (Fig-

ures 7I–7L). As for in vitro human cell differentiation, a double

staining with cleaved-caspase3 revealed that TH+ neurons un-

dergo apoptosis when Nr2f1 is downregulated (Figure 7M).

Consistently, at E15.5, the number of TH+ neurons in mutants

was back to a level that is comparable to WT brains (Figure 7N),

suggesting that aberrantly differentiated dopaminergic cells are

removed by apoptotic process. All in all, the downregulation of

Nr2f1 triggers aberrant early mDA differentiation, followed by

increased apoptosis, implying that Nr2f1 is key for dopaminergic

differentiation. This highlights the in vivo relevance of our

findings.

DISCUSSION

Cells in the early neurodevelopmental phase are particularly

vulnerable to insults (Rice and Barone, 2000). Changes in the

brain microenvironment during the sensitive developmental

period might have deleterious effects that become apparent

over time (H€ubener and Bonhoeffer, 2014). Even subtle develop-
(E) Data were normalized to the NR2F1 expression level of H1. Statistical signifi

normality test. The comparison H1/WT versus H1/G2019S was assessed with a o

three times in triplicate.

(F) Gene expression data ofNR2F1 levels from scRNA-seq data of humanmidbrai

G2019S. hMOs were cultured for 35 and 70 days; 30 organoids were used for ea
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mental alterations might increase the susceptibility toward the

development of certain diseases, especially those associated

with aging. The contribution of such alterations toward the devel-

opment of several brain-related diseases has been previously

demonstrated (Marı́n, 2016; Poduri et al., 2013). In this context,

we suggest that the PD-associated LRRK2-G2019Smutation al-

ters mDA developmental dynamics via NR2F1.

Tomodel the potential neurodevelopmental contribution of the

PD-associated LRRK2-G2019Smutation, we used human iPSC-

based neuronal cultures, which are particularly suitable for

modeling early human embryonic neurodevelopment (Mariani

et al., 2012). The rejuvenation process during reprogramming,

which normally represents a major obstacle when studying the

age-related aspects of neurodegenerative diseases (Studer

et al., 2015), is in this case beneficial. We analyzed the dynamics

of the early transition phase of neuronal differentiation from

NESCs to mDAs. We observed an accelerated neuronal and

mDA fate specification in cells carrying LRRK2-G2019S muta-

tion compared to control cultures. Previous studies have re-

ported that the presence of the LRRK2-G2019S mutation does

not significantly affect the number of mDAs at a time point that

is comparable to our endpoint (Reinhardt et al., 2013b; Sán-

chez-Danés et al., 2012). Also, in our study, the amount of

mDAs at the last time point assessed is comparable between

LRRK2-G2019S and LRRK2-WT cultures. However, the dy-

namics by which this comparable proportion is reached are

significantly different. We previously studied the LRRK2 muta-

tion R1441G and found that murine NSCs carrying the mutation

showed increased cell death and decreased neuronal

differentiation, as shown by doublecortin staining after 4 days

of differentiation (Bahnassawy et al., 2013). The R1441G and

G2019S mutations are located in the Roc and kinase domains

of the LRRK2 protein, respectively. It is likely that the dynamics

of the dopaminergic differentiation might be differentially

affected in models carrying the two mutations considering the

location of the two-point mutations. Furthermore, differences

in the utilized cell culture models as well as species differences

might play a role.

An alteration in the temporal specification of mDAsmight have

subtle but important consequences in the substantia nigra. The

timing of brain development influences the signals (growth fac-

tors, chemokines, and neurotransmitters) that a neuron receives

and impacts the establishment of proper neuronal connections

(Jiang and Nardelli, 2016). Neurodevelopment is a competitive

and selective process (Yamaguchi and Miura, 2015), and the

presence of an altered number of mDAs during specific phases

of neurodevelopment might impact correct neuronal integration

(Bergami and Berninger, 2012). Such subtle changes in the

specification dynamics probably are not sufficient to cause se-

vere abnormalities at that specific time point but might increase

the susceptibility toward the onset of PD after a second hit

(Sulzer, 2007). This second hit can consist of additional
cance was assessed with unpaired t test or Mann-Whitney test according to

ne-sample t test. *p < 0.05, **p < 0.01. qRT-PCR experiments were performed

n organoids (hMOs) generated from the line H3/WTwith its isogenic control H3/

ch genotype and time point.



Figure 6. NR2F1 downregulation is accompanied by reduced

enhancer activity at a distal super-enhancer

(A) Long-distance chromatin interactions at NR2F1 locus were derived from

published PLAC-seq data of primary human cortical neurons (CNs) ( Nott et al.,

2019). The purple lines represent detected chromatin looping interactions

between H3K4me3-enriched chromatin and distal regulatory regions.

(B andC) Overview depicting the enrichment of H3K27ac at theNR2F1 locus in

the indicated cell lines. The ChIP-seq tracks from LRRK2-WT cells (H1 and

PD2/WT) are shown in gray and tracks from LRRK2-G2019S cells (PD1/

G2019S and PD2/G2019S) in blue (1 technical replicate per line). Differential

peaks (DPs) with >1,000 raw sequencing read difference called by THOR are

indicated by red bars and green bars for regions with significantly (p < 0.05)

decreased or increased signal in LRRK2-G2019S cells, respectively.
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mutations or genetic variations, infection, trauma, or environ-

mental factors.

In agreement with the literature (Liu et al., 2012; Reinhardt

et al., 2013b), we detected a loss of viability in LRRK2-G2019S

cultures and confirmed this phenotype throughout several

stages of mDA differentiation. The loss of viability and the altered

cellular fate transition of LRRK2-G2019SmDAs could result from

multiple factors. Increased cell death was in fact observed also in

LRRK2-G2019S NESCs compared to controls (Walter et al.,

2019; Nickels et al., 2020). According to the scRNA-seq analysis,

the presence of the LRRK2-G2019Smutation induced the acqui-

sition of a pro-differentiation state in NESCs. This is highlighted
by the significant upregulation of neuronal and mDA transcripts

and the downregulation of NESC transcripts. Overall, LRRK2-

G2019S cultures showed increased and accelerated mDA gen-

eration accompanied by increased cell death.

Strikingly, the transcription factor NR2F1 appears to be

involved in this accelerated differentiation. NR2Fs, also called

chicken ovalbumin upstream promoter transcriptional factors

(COUP-TFs), are a family of orphan receptors whose putative

molecular ligands are still elusive (Bertacchi et al., 2018).

NR2F1 and NR2F2 are the major homologs of the family identi-

fied in vertebrates and thought to have similar functions.

The transcription factor Nr2f1 has been shown to play a key

role in development, in particular during neocortical area

patterning (Greig et al., 2013; Terrigno et al., 2018). Its expres-

sion levels seem to regulate temporal competence in NPs (Ber-

tacchi et al., 2018). Nr2f1, along with Nr2f2, regulates the timing

of the switch of NSCs from neurogenesis to gliogenesis (Naka

et al., 2008). In addition, it regulates neuronal differentiation by

coordinating several processes within the neuroepithelium,

including cell-cycle exit, neurogenesis, and fate determination

(Faedo et al., 2008). These processes seem to be mediated via

receptor tyrosine kinase signaling and b-catenin-mediated Wnt

signaling (Faedo et al., 2008).

By knocking out Nr2f1, we were able to phenocopy the accel-

erated mDA differentiation phenotype in vivo in the mouse

mesencephalon. Interestingly, Nr2f1 downregulation in mouse

to half dosage (HET mutants) only shows a trend toward accel-

erated DA neuron differentiation. Only following complete loss

of Nr2f1 expression in vivo (i.e., full KO mutants) were a signifi-

cant increase of early differentiation and increased apoptosis

found. This discrepancy could be due to the fact that Nr2f1 is

only one out of five CRC factors for DA development. The loss

of Nr2f1 alone in mouse development could be compensated

by other factors of the same network, notably Nr2f2, as redun-

dancy between the two homologs has been demonstrated in

other brain areas (Flore et al., 2017; Tang et al., 2010; Zhou et

al., 2015). Nr2f1-2 double knockdown was shown to cause sus-

tained neurogenesis in stem cells at the expense of gliogenesis

both in vitro and in vivo in developing mouse brain (Naka et al.,

2008). The in vivo relevance of NR2F1 in the context of dopami-

nergic neurons comes also from a study investigating NR2F1

expression in the olfactory bulb of mice (Bovetti et al., 2013).

The study proved that odor deprivation resulted in decreased

expression of TH and Nr2f1. Considering that hyposmia is an

early clinical manifestation of PD, it is notable that Nr2f1 is

involved in the regulation of sensory-dependent plasticity in

the adult olfactory bulb.

LIMITATIONS OF THE STUDY

This study contains convincing pieces of evidence describing

abnormalities in the differentiation trajectory of LRRK2-G2019S

dopaminergic neurons mediated by NR2F1. The LRRK2-

G2019S-dependent decrease in NR2F1 levels is associated

with altered distal super-enhancer activity, but further studies

are necessary to clarify precisely the molecular signaling con-

necting the two proteins. NR2F1 contains several putative

phosphorylation sites, some of which have been proven to be
Cell Reports 37, 109864, October 19, 2021 11



Figure 7. Nr2f1 loss triggers early differentiation and apoptosis of mesencephalic dopaminergic cells

(A–D) FoxA2 (green, dopaminergic progenitors) and TUJ1 (red, neurons) immunostaining at E10.5 in the mesencephalon of wild-type (A and A0) versus Nr2f1

mutant (B and B0) brains. Partial (HET) or complete (KO) NR2F1 loss triggers early dopaminergic neuron differentiation; as a consequence, NPs are reduced (C;

WT/HET: *p = 0.017; WT/KO: **p = 0.0012), while TUJ1+ neurons increase in mutants (D; WT/HET: *p = 0.039; WT/KO: **p = 0.0041).

(E–H) FoxA2 (green) and TUJ1 (red) immunostaining at E12.5 in the mesencephalon of wild-type (E and E0) versus mutant (F) brains. Dotted lines in (E0 and F)

highlight the border between NP and differentiated neuron domains. Average number of NPs and neurons are shown in (G; WT/HET: p = 0.12 [not significant

(n.s.)]; WT/KO: *p = 0.016) and (H; WT/HET: p = 0.15 [n.s.]; WT/KO: *p = 0.028), respectively. Note the accumulation of increased number of differentiated cells

(white arrowhead in F) in the ventral-most mesencephalic region of mutant brains and the reduction of NPs along the ventricular surface (empty arrowhead in F).

(I–L) TH (green, dopaminergic neurons) and TUJ1 (red) immunostaining at E13.5 in control (I and J0) and mutant (K) brains. The average number of TH+ neurons is

shown in (L; WT/HET: *p = 0.032; WT/KO: *p = 0.017).

(M) Average number of apoptotic TH+ neurons, quantified in the ventral mesencephalon after double TH/cleaved-caspase-3 immunostaining.WT/HET: p = 0.058

(n.s.); WT/KO: *p = 0.026.

(N) Graph shows the average number of TH+ cells at E15.5 in the mesencephalon of different genotypes as indicated.WT/HET: p = 0.27 (n.s.); WT/KO: p = 0.12

(n.s.).

(legend continued on next page)
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phosphorylated in vivo (Gay et al., 2002). From here, it is

tempting to speculate that NR2F1 can be targeted by cellular ki-

nase, such as LRRK2.

A limitation of this study is that the in vivo relevance of the

observed LRRK2-G2019S-dependent neurodevelopmental de-

fects has yet to be mechanistically proven in the context of PD.

The key point that remains unsolved is whether the accelerated

differentiation is the major driver of the increased cell death

observed in LRRK2-G2019S differentiating neurons or whether

other factors are contributing. The latter scenario seems more

likely, as cell death has been observed also in LRRK2-G2019S

NESCs ( Walter et al., 2018; Nickels et al., 2019), accompanied

by altered mitochondrial morphology and functionality ( Walter

et al., 2018). A major experimental challenge to fully address

the role of LRRK2-G2019S in dopaminergic neurogenesis and

its impact on PD pathology remains how to recapitulate in vitro

complex phenomena ranging from brain development to age-

associated neurodegeneration, which in vivo take place over

decades. The use of aging inducers might certainly help to re-

create on dish the desired time-dependent cellular changes

within a reasonable experimental setup. An additional strategy

would be the possibility of gene editing postmitotic neurons to,

for example, correct the LRRK2-G2019 mutation only in fully

differentiated neurons. This would allow us to evaluate whether

these neurons are still susceptible to cell death as a conse-

quence of the altered neurogenesis even though the mutation

was corrected. These types of studies currently still present

technical challenges, but they are the necessary step forward

to unravel key unresolved questions in the field of

neurodegeneration.
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gado, S., Caig, C., Mora, S., Di Guglielmo, C., Ezquerra, M., Patel, B., Giralt,

A., et al. (2012). Disease-specific phenotypes in dopamine neurons from hu-

man iPS-based models of genetic and sporadic Parkinson’s disease. EMBO

Mol. Med. 4, 380–395.

Sancho, R.M., Law, B.M., and Harvey, K. (2009). Mutations in the LRRK2 Roc-

COR tandem domain link Parkinson’s disease to Wnt signalling pathways.

Hum. Mol. Genet. 18, 3955–3968.

Sanders, L.H., Laganière, J., Cooper, O., Mak, S.K., Vu, B.J., Huang, Y.A., Pa-

schon, D.E., Vangipuram, M., Sundararajan, R., Urnov, F.D., et al. (2014).

LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural

cells from Parkinson’s disease patients: reversal by gene correction. Neuro-

biol. Dis. 62, 381–386.

Sasaki, H., and Hogan, B.L. (1994). HNF-3 beta as a regulator of floor plate

development. Cell 76, 103–115.

Schapira, A.H.V., Chaudhuri, K.R., and Jenner, P. (2017). Non-motor features

of Parkinson disease. Nat. Rev. Neurosci. 18, 435–450.

Scholzen, T., and Gerdes, J. (2000). The Ki-67 protein: from the known and the

unknown. J. Cell. Physiol. 182, 311–322.

Schwamborn, J.C. (2018). Is Parkinson’s Disease a Neurodevelopmental Dis-

order and Will Brain Organoids Help Us to Understand It? Stem Cells Dev. 27,

968–975.

Smits, L.M., Magni, S., Kinugawa, K., Grzyb, K., Luginbuhl, J., Sabate-Soler,

S., Bolognin, S., Shin, J.W., Mori, E., Skupin, A., et al. (2020). Single-cell tran-

scriptomics revealsmultiple neuronal cell types in humanmidbrain-specific or-

ganoids. Cell Tissue Res 382, 463–476.

Smits, L.M., Reinhardt, L., Reinhardt, P., Glatza, M., Monzel, A.S., Stanslow-

sky, N., Rosato-Siri, M.D., Zanon, A., Antony, P.M., Bellmann, J., et al.
Cell Reports 37, 109864, October 19, 2021 15

http://refhub.elsevier.com/S2211-1247(21)01331-0/sref25
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref25
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref25
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref26
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref26
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref27
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref27
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref27
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref27
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref28
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref28
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref28
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref29
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref29
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref29
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref29
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref29
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref30
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref30
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref30
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref31
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref31
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref32
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref32
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref32
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref32
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref33
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref33
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref33
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref33
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref34
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref34
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref34
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref34
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref35
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref35
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref36
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref36
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref73
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref73
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref73
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref73
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref37
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref37
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref37
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref87
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref87
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref87
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref76
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref76
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref76
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref76
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref38
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref38
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref38
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref38
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref39
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref39
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref39
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref39
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref40
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref40
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref40
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref40
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref79
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref79
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref79
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref41
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref41
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref42
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref42
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref43
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref43
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref44
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref44
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref44
https://doi.org/10.1038/nmeth.4402
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref46
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref46
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref46
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref46
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref47
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref47
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref47
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref47
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref47
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref48
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref48
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref48
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref49
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref49
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref49
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref50
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref50
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref50
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref50
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref51
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref51
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref51
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref51
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref51
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref52
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref52
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref52
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref53
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref53
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref53
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref53
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref53
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref54
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref54
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref55
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref55
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref56
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref56
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref57
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref57
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref57
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref74
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref74
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref74
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref74
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref75
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref75


Article
ll

OPEN ACCESS
(2019). Modeling Parkinson’s disease in midbrain-like organoids. NPJ Parkin-

sons Dis 5, 5.

Stuart, T., Butler, A., Hoffman, P., Hafemeister, C., Papalexi, E., Mauck, W.M.,

3rd, Hao, Y., Stoeckius, M., Smibert, P., and Satija, R. (2019). Comprehensive

Integration of Single-Cell Data. Cell 177, 1888-1902 e1821.

Studer, L., Vera, E., and Cornacchia, D. (2015). Programming and Reprogram-

ming Cellular Age in the Era of Induced Pluripotency. Cell Stem Cell 16,

591–600.

Sulzer, D. (2007). Multiple hit hypotheses for dopamine neuron loss in Parkin-

son’s disease. Trends Neurosci. 30, 244–250.

Tang, K., Xie, X., Park, J.I., Jamrich, M., Tsai, S., and Tsai, M.J. (2010). COUP-

TFs regulate eye development by controlling factors essential for optic vesicle

morphogenesis. Development 137, 725–734.

Terrigno, M., Bertacchi, M., Pandolfini, L., Baumgart, M., Calvello, M., Celler-

ino, A., Studer, M., and Cremisi, F. (2018). The microRNAmiR-21 Is a Mediator

of FGF8 Action onCortical COUP-TFI Translation. StemCell Rep. 16, 591–600.

Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., 2nd, Treacy, D., Trom-

betta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al. (2016). Dissect-

ing the multicellular ecosystem of metastatic melanoma by single-cell RNA-

seq. Science 352, 189–196.

Tomassy, G.S., De Leonibus, E., Jabaudon, D., Lodato, S., Alfano, C.,Mele, A.,

Macklis, J.D., and Studer, M. (2010). Area-specific temporal control of cortico-

spinal motor neuron differentiation by COUP-TFI. Proc. Natl. Acad. Sci. USA.

107, 3576–3581.

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Len-

non, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and

regulators of cell fate decisions are revealed by pseudotemporal ordering of

single cells. Nat. Biotechnol. 32, 381–386.

van der Maaten, L., and Hinton, G. (2008). Visualizing data using t-SNE.

J. Mach. Learn. Res. 9, 2579–2605.

Walter, J., Bolognin, S., Antony, P.M.A., Nickels, S.L., Poovathingal, S.K., Sal-

amanca, L., Magni, S., Perfeito, R., Hoel, F., Qing, X., et al. (2019). Neural Stem

Cells of Parkinson’s Disease Patients Exhibit Aberrant Mitochondrial

Morphology and Functionality. Stem Cell Reports 12, 878–889.
16 Cell Reports 37, 109864, October 19, 2021
Wang, C., Liu, F., Liu, Y.Y., Zhao, C.H., You, Y., Wang, L., Zhang, J., Wei, B.,

Ma, T., Zhang, Q., et al. (2011). Identification and characterization of neuro-

blasts in the subventricular zone and rostral migratory stream of the adult hu-

man brain. Cell Res. 21, 1534–1550.

Warren Andersen, S., Trentham-Dietz, A., Gangnon, R.E., Hampton, J.M., Fig-

ueroa, J.D., Skinner, H.G., Engelman, C.D., Klein, B.E., Titus, L.J., and New-

comb, P.A. (2013). The associations between a polygenic score, reproductive

and menstrual risk factors and breast cancer risk. Breast Cancer Res. Treat.

140, 427–434.

West, A.B., Moore, D.J., Choi, C., Andrabi, S.A., Li, X., Dikeman, D., Biskup, S.,

Zhang, Z., Lim, K.L., Dawson, V.L., and Dawson, T.M. (2007). Parkinson’s dis-

ease-associated mutations in LRRK2 link enhanced GTP-binding and kinase

activities to neuronal toxicity. Hum. Mol. Genet. 16, 223–232.

Whitfield,M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander,

K.E., Matese, J.C., Perou, C.M., Hurt, M.M., Brown, P.O., and Botstein, D.

(2002). Identification of genes periodically expressed in the human cell cycle

and their expression in tumors. Mol. Biol. Cell 13, 1977–2000.

Winner, B., Melrose, H.L., Zhao, C., Hinkle, K.M., Yue, M., Kent, C.,

Braithwaite, A.T., Ogholikhan, S., Aigner, R., Winkler, J., et al. (2011). Adult

neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice.

Neurobiol. Dis. 41, 706–716.

Yamaguchi, Y., andMiura, M. (2015). Programmed cell death in neurodevelop-

ment. Dev. Cell 32, 478–490.

Zechel, S., Meinhardt, A., Unsicker, K., and von Bohlen Und Halbach, O.

(2010). Expression of leucine-rich-repeat-kinase 2 (LRRK2) during embryonic

development. Int. J. Dev. Neurosci. 28, 391–399.

Zhou, X., Liu, F., Tian, M., Xu, Z., Liang, Q., Wang, C., Li, J., Liu, Z., Tang, K.,

He, M., et al. (2015). Transcription factors COUP-TFI and COUP-TFII are

required for the production of granule cells in the mouse olfactory bulb. Devel-

opment 142, 1593–1605.

Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Ka-

chergus, J., Hulihan, M., Uitti, R.J., Calne, D.B., et al. (2004). Mutations in

LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathol-

ogy. Neuron 44, 601–607.

http://refhub.elsevier.com/S2211-1247(21)01331-0/sref75
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref75
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref58
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref58
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref58
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref59
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref59
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref89
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref89
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref89
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref60
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref60
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref60
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref61
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref61
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref61
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref61
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref80
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref80
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref80
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref80
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref72
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref72
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref72
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref72
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref62
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref62
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref63
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref63
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref63
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref63
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref64
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref64
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref64
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref64
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref65
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref65
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref65
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref65
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref65
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref66
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref66
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref66
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref66
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref67
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref67
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref67
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref67
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref68
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref68
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref68
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref68
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref69
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref69
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref70
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref70
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref70
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref90
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref90
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref90
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref90
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref71
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref71
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref71
http://refhub.elsevier.com/S2211-1247(21)01331-0/sref71


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
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Antibodies

(1) Anti-beta III Tubulin (TUJ1) BioLegend Cat#801201; RRID:AB_2313773

(2) Ki67 anti-human BD Biosciences Cat# 550609, RRID:AB_393778

(3) LAMP2 (H4B4) DSHB Cat# H4B4, RRID:AB_2134755

(4) Tyrosine Hydroxylase TH (H-196) Santa Cruz Cat# sc-14007, RRID:AB_671397

(5) Anti-beta III Tubulin (TUJ1) Abcam Cat# ab107216, RRID:AB_10899689

(6) TOM20 (FL-145) Santa Cruz Cat# sc-11415, RRID:AB_2207533

(7) human SOX1 R&D systems Cat# AF3369, RRID:AB_2239879

(8) HNF-3b (FoxA2 (RY7)) Santa Cruz Cat# sc-101060, RRID:AB_1124660

(9) LMX1A Abcam Cat# ab139726, RRID:AB_2827684

(10) Anti-Cleaved PARP (Asp214) BD Cat# 552596, RRID:AB_394437

(11) LC3b Cell Signaling Cat# 2775, RRID:AB_915950

(12) SQSTM1 Cell Signaling Cat# 5114, RRID:AB_10624872

(13) Beclin-1 BD Transduction Laboratories Cat# 612113, RRID:AB_399484

(14) Anti- NR2F1 Abcam Cat# ab181137, RRID:AB_2890250

(15) Anti- cleaved Caspase-3 Cell Signaling Cat# 9661, RRID:AB_2341188

(16) Anti- Tyrosine Hydroxylase TH Millipore Cat# AB152, RRID:AB_390204

(17) Anti- FoxA2 Santa Cruz Cat# sc-101060, RRID:AB_1124660

(18) Anti-rabbit b-III (Tubulin Tuj1) Covance Cat# MRB-435P-100, RRID:AB_663339

(19) Anti-mouse b-III (Tubulin Tuj1) Sigma Cat# T8660, RRID:AB_477590

(20) Anti-rabbit H3K27ac Abcam Cat# ab4729, RRID:AB_2118291

(21) Donkey anti-Mouse IgG 647 Thermo Fisher Scientific Cat# A-31571, RRID:AB_162542

(22) Donkey anti-goat IgG 568 Thermo Fisher Scientific Cat# A-11057, RRID:AB_142581

(23) Donkey anti-rabbit IgG 488 Thermo Fisher Scientific Cat# A-21206, RRID:AB_2535792

(24) Goat IgG Isotype CTRL R&D systems Cat# AB-108-C, RRID:AB_354267

(25) Mouse IgG2a Isotype CTRL Sigma Cat# M5409, RRID:AB_1163691

(26) Rabbit IgG Isotype CTRL Santa Cruz Cat# sc-3888, RRID:AB_737196

(27) Goat anti-Chicken IgG 647 Thermo Fisher Scientific 21449

(28) Goat anti-Mouse IgG 568 Thermo Fisher Scientific Cat# A-11031, RRID:AB_144696

(29) Goat anti-Rabbit IgG 488 Thermo Fisher Scientific 11034

(30) Goat anti-Mouse IgG1 647 Thermo Fisher Scientific Cat# A-21240, RRID:AB_141658

Chemicals, peptides, and recombinant proteins

hBDNF PeproTech EC Ltd. 450-02

N-2 supplement Thermo Fisher Scientific 17502048

E8 iPSC medium Thermo Fisher Scientific A1517001

DMEM/F12 Thermo Fisher Scientific 12634010

Neurobasal Medium Thermo Fisher Scientific 21103049

Y-27632 Merck Millipore 688000-100mg

B-27 Supplement Thermo Fisher Scientific 17504044

L-Ascorbic acid Sigma-Aldrich A4544-100 g

dbcAMP Sigma-Aldrich D0627

CHIR99021 Axon Medchem BV AXON1386

SB 431542 Abcam ab120163

Hoechst33342 Thermo Fisher Scientific H21492

(Continued on next page)
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hGDNF PeproTech EC Ltd. 450-44B

DMEM/F-12, w/o phenol red Thermo Fisher Scientific 21041-025

Purmorphamin Enzo Life science ALX-420-045-M005

Dorsomorphin dihydrochlorid Tocris 3093

B-27 Supplement Minus Vitamin

A (50X), Liquid

Thermo Fisher Scientific 12587-010

Penicillin-Streptomycin, liquid Thermo Fisher Scientific 15140122

Accutase Thermo Fisher Scientific A11105-01

GelTrex Thermo Fisher Scientific A1413302

TGF-b3 PeproTech EC Ltd. 100-36E

Paraformaldehyde Sigma-Aldrich P6148

Antimycin A Abcam ab141904

D-(+)- Glucose Sigma-Aldrich G8270-100 g

Dulbecco0s Modified Eagle0s Medium Sigma-Aldrich D5030-10X1L

CyQuant Thermo Fisher Scientific C7026

NUNCLON cell culture ware Thermo Fisher Scientific —–

MatriGel Corning, Inc. 354277

Tween20 Sigma-Aldrich P7949

TritonX Carl Roth 3051.3

Bovine Serum Albumin Sigma-Aldrich A4503

Fetal Bovine Serum (FBS) Thermo Fisher Scientific 10270106

Fluoromount-G Southern Biotech SOUT0100-01

EBSS Thermo Fisher Scientific 24010043

HBSS (Hanks Balanced Salt

Solution w/ Ca and Mg)

Thermo Fisher Scientific 14025-092

L-Glutamine Thermo Fisher Scientific 25030-024

Sodium Pyruvate 100 mM Thermo Fisher Scientific 11360-039

Deposited data

Single cell RNA sequencing data This paper GEO: GSE128040

Figures and Source codes This paper https://doi.org/10.17881/y9k6-xa72

Experimental models: Cell lines

iPSC line H1 Reinhardt et al., 2013b N/A

iPSC line H3 Dr. Bill Skarnes (The Wellcome Trust

Sanger Institute, Cambridge, UK)

N/A

iPSC line H2 Reinhardt et al., 2013b N/A

iPSC line H4 Coriell GM23338

iPSC line P1 Reinhardt et al., 2013b N/A

iPSC line P1.1 Reinhardt et al., 2013b N/A

iPSC line P2 Reinhardt et al., 2013b N/A

iPSC line P4 Coriell ND35367

Software and algorithms

SEURAT R package https://satijalab.org/seurat/ -

Monocle R package http://cole-trapnell-lab.github.

io/monocle-release/

2.4.0

GraphPad Prism GraphPad Software, Inc. 7.03

MATLAB The MathWorks, Inc. R2017a (9.2.0.556244)

Illustrator Adobe Systems, Inc. 19.2.1

Photoshop Adobe Systems, Inc. 2015.1.2 20160113.r.355

ImageView PerkinElmer, Inc. 1.1.0.0
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FASTQC https://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

-

FlowJo FlowJo, LLC 10.1r7

Destiny R package https://bioconductor.org/packages/

release/bioc/html/destiny.html

N/A

t-SNE van der Maaten and Hinton, 2008 https://cran.r-project.org/web/

packages/Rtsne/index.html

WAVE Seahorse Bioscience, Inc. 2.3.0.20

Chemidoc Imaging System BioRad -

THOR http://www.regulatory-genomics.

org/thor-2/basic-intrstruction/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Jens Schwamborn

(jens.schwamborn@uni.lu). Certain materials are shared with research organizations for research and educational purposes only un-

der an MTA to be discussed in good faith with the recipient.

Material availability
This study did not generate new unique reagents.

Data and code availability
scRNA-seq data have been deposited at GEO (GSE128040) and are publicly available. All the data of this manuscript is openly avail-

able https://doi.org/10.17881/y9k6-xa72.

The codes used in the paper are available on GitHub through the page https://doi.org/10.17881/y9k6-xa72.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human iPSCs were used in this study. Their use was approved by the local ethical committee (Ethic Review Panel of the University of

Luxembourg, PDiPS project and CNER No 201305/04).

All mouse experiments were conducted in accordance with relevant national and international guidelines and regulations (Euro-

pean Union rules; 2010/63/UE), and have been approved by the local ethical committee in France (CIEPAL NCE/2019-548). Nr2f1

heterozygous (HET) and homozygous (KO) mice were generated and genotyped as previously described (Armentano et al., 2006).

Littermates of HET and KO mice with normal Nr2f1 alleles were used as control mice (herein called WT). Midday of the day of the

vaginal plug was considered as embryonic day 0.5 (E0.5). Control and mutant mice were bred in a 129S2/SvPas background.

Both male and female embryos were used in this study; age is specified for each embryo used in specific experiments. Standard

housing conditions were approved by local ethical committee in France (CIEPAL NCE/2019-548); briefly, adult mice were kept on

a 12 hours light-dark cycle and housed three per cage with the recommended environmental enrichment (wooden cubes, cotton

pad, igloo) with food and water ad libidum.

METHOD DETAILS

Cell Culture
The work with human iPSCs was approved by the local ethical committee (Ethic Review Panel of the University of Luxembourg, PDiPS

project and CNERNo 201305/04). The gender of each line is reported in Figure S1A. Cells were maintained under standard cell culture

condition. iPSCs were maintained in E8 condition, on GelTrex matrix while splits were performed using Accutase. After splitting cells

were incubated overnight (o/n) with 5 mMY-27632 (MerckMillipore). NESCswere derived from iPSC as described and depicted in Fig-

ure S1C (Reinhardt et al., 2013a). Cells were maintained on MatriGel matrix NUNCLON cell culture ware or Cell carrier-96 plates for

imaging. N2B27 maintenance media formulation: Neurobasal, DMEM-F12 (1:1), 1x P/S, 1x L-Glutamine, B27 (1:100), N2 (1:200)

(ThermoFisher) freshly supplemented with 3 mM CHIR(�99021) (Axon Medchem), 0.75 mM Purmorphamine (PMA) (Enzo Life Science)

and 150 mM ascorbic acid (AA) (Sigma) (key resources table). Medium was changed every other day. Cells were maintained with initial

seeds at 5*104 cells/cm2 (counted in a Countess II, AMQAX1000 ThermoFisher). Weekly splits using 6 min Accutase digestion.
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Neuronal differentiation
Cells were seeded at 5*104 cells/cm2 density for long-term (42 days) differentiations and 5.5*104 cells/cm2 for short-term (up to

14 days). Either on NUNCLON cell culture ware or Cell Carrier-96 plates from Perkin Elmer for HCS analyses, MatriGel matrix coated.

Seeding densities were kept constant within a specific experiment. mDA differentiation was initiated two days after initial cell seeding

by addition of differentiation media consisting of N2B27 freshly supplemented with: 10 ng/ml hBDNF (Peprotech), 10 ng/ml hGDNF

(Peprotech), 500 mM dbcAMP (Peprotech), 200 mM ascorbic acid (Sigma), 1 ng/ml TGF-b3 (Peprotech), and 1 mM PMA (Enzo Life

Science). PMA was withdrawn from the media after six days.

Chromatin Immunoprecipitation (ChIP)
The chromatin immunoprecipitation of hNESCs was performed as previously described (Gérard et al., 2019). For immunoprecipita-

tion 30 mg of chromatin was used per reaction with 5 mg of an antibody against H3K27ac (Abcam, ab4729) and incubated overnight.

ChIP-seq
The sequencing of the ChIP samples was performed at the Genomics Core Facility in EMBL Heidelberg, Germany or at the

sequencing platform of the Luxembourg Centre for Systems Biomedicine (LCSB) at the University of Luxembourg with single-end

and unstranded reads sequenced in an Illumina HiSeq 2000machine with read length of 50 bp or in an Illumina NextSeq 500machine

with read length of 75 bp, respectively. In total approximately 30million raw reads per sample were obtained. The read quality control

and mapping were performed as previously described ( Gérard et al., 2019) using human reference genome GRCh38.

The enhancer and super-enhancer regions were called with Hypergeometric Optimization of Motif EnRichment (HOMER) version

4.7.2 (Hnisz et al., 2013) using the respective input samples as controls. For super-enhancer calling a stitching distance of 10 kb was

used.

Identification of the core regulatory circuit (CRC)
ChIP-seq data of H3K27ac enrichment from NESCs and the HOMER called super-enhancer coordinates were used as an input for

ROSE (Warren Andersen et al., 2013) to associate super-enhancers to actively expressed genes and to derive a list of super-

enhancer controlled transcription factors in NESCs using the default parameters. The obtained matrix was in turn used as an input

for CRC mapper (Saint-André et al., 2016) to derive a core regulatory circuit per NESC line using the default parameters.

Identification of differential H3K27ac peaks
THOR (Allhoff et al., 2016) was used to identify differential H3K27ac regions between conditions. H3K27ac signal normalization was

performed using the TMM approach implemented in THOR and differential H3K27ac regions were considered significant at a p value

of 0.05. Only differential H3K27ac peaks that show an absolute difference in read count superior or equal to 1000were kept for down-

stream analysis.

Single-cell RNaseq using DropSeq
Microfluidics devices were fabricated using a previously published design (Macosko et al., 2015; Walter et al., 2019). All the proced-

ures for obtaining the single-cell suspension as well the processing of the Dropseq data were performed as previously described

(Walter et al., 2019).

Analysis of differentially regulated genes
The output of the DropSeq experimental setup (Figure S4A) is the expressionmatrix where rows represent genes, and each column is

an individual cell. The elements of this matrix represent the measured intensity of gene expression, i.e., the measured number of

mRNA molecules leading to the gene expression matrix.

To extract the relevant information on the developmental status of cells from the large dataset, we defined five lists of specific

genes (Table S1). In particular, these lists contain genes covering stemness (NESC), dopaminergic neurons (mDAneurons), cell cycle,

and related to pro-apoptotic and caspases genes.

For each of these lists, we compared the expression of the corresponding genes between genotypes within sampling points. Since

the gene expression levels were measured at the single cell level, we analyzed the distribution of gene expression across cells. For

this purpose, we consider in Figures 2A, 3A, and S4C histograms showing the distributions for cells of each group of the cumulative

gene expression, for each of the lists considered above (rows) and for each day (columns), where cumulative gene expression cor-

responds to the sumof all mRNAs of listed genes leading to a single cumulative score for each cell. Since total numbers ofmRNAs are

not comparable between days the values in the horizontal axis are normalized, separately for each day and each list of genes, to the

maximum of the cumulative gene expression (across the genotypes GC and G2019S) for that particular day and list. Thus, 1 corre-

sponds to the maximal cumulative gene expression within one day and for one list of genes, while 0 corresponds to no expression for

all of the genes on that list on that day.

We applied a z-test to assess a statistically significant difference between the means of the cumulative gene expression of the ge-

notypes. The test was corrected with Bonferroni for multiple testing. Since between Figures 2B, 3C, 3E, and S4C the test was applied
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to five lists of genes and across four different days, which means to correct for a total of 20 repetitions of the test. Standard p values

thresholds are indicated on the panels as p values * < 0.05,** < 0.01, *** < 0.001, **** < 0.0001.

Furthermore, for each day we determined howmany genes were differentially expressed between control andmutant, by applying

to all genes (independently for each gene) the following three statistical tests: one-way ANOVA test, a one-way ANOVA test on ranks

(Kruskal-Wallis test), and aMutual Information based test. The minimum p value obtained by each gene across these three tests was

retained, and any gene was considered differentially expressed with statistical significance when the corresponding p value was

below the threshold of 0.01. In order to account for multiple testing, Bonferroni correction was included, which represents a conser-

vative choice. The test was applied for all the approximately 20000 genes for each time point. This means that the individual p value

for each gene is required to be < 0.01/20000 in order to claim statistical significance with an overall p value < 0.01. Figure S4B shows

the number of genes that were differentially expressed between genotypes with a statistical significance corresponding to a p value <

0.01, for each day. In the tables also the percentages were reported, indicating how many of the genes of each individual list (of the

five lists outlined above) are differentially expressed at each day. The colors indicate the list of genes to which the percentages refer

to, and the color coding is the same as in Figure S4C.

Cell cycle analysis
To characterize the cellular maturity, we subsequently investigate the cell cycle in more detail. Figure 3B shows a subset of the

expression matrices corresponding to cell cycle genes of Figure 3C for each day (columns), and each group (upper and lower

row respectively), where the color scale indicates the intensity of expression. We further investigate cell cycle by means of dimen-

sionality reduction, in particular, applying tSNE, in Figure S4D.

Normalization to the mean gene expression value was further performed to obtain the relative expression levels. This was done by

subtracting the average expression value (log2(TPM+1)) of each gene from all the cells of the DGEmatrix. Previous cell cycle analysis

have shown two prominent gene expression programs (G1/S and G2/M) to contain several gene expressions of different cell cycle

phases to overlap among the two (Macosko et al., 2015; Tirosh et al., 2016; Whitfield et al., 2002). Furthermore, these gene expres-

sion patterns have also been observed in the G1/S and G2/M cell cycle phases, in the bulk sample analysis of the differentially syn-

chronized HeLa cells (Whitfield et al., 2002). Based on this data, a core set of 100 genes (G1/S) and 133 genes (G2/M) was considered

for the cell cycle analysis (Table S1).

Due to the sparsity of the scRNaseq data, the expression for each cell cycle phase was refined by first evaluating the correlation

between each of the genes in the scRNaseq data with the average gene expression values of all the genes involved in the respective

cell cycle program (G1/S & G2/M), and by then including all the genes with high correlation value (R2 > 0.3; p value < 0.05). Hierar-

chical clustering of the data demonstrates that some cells are cycling with high relative expression of most of the genes included in

either of the cell cycle program or both of the programs, while other cells show basal expression for most of these genes (Figure 3D).

To determine the cell cycle score for individual cells and to set a threshold for classifying the cells as cycling cells, we proceed as fol-

lows. First, to determine the cell cycle score for individual cells (Figure S4D), the average value of the relative expression of all the genes

involved in both cell cycle programswere evaluated. Second, the average basal expression score for the cell cycle programwas calcu-

lated for all the genes involved in both cell cycle programs (G1/S andG2/M) for the 10%of the cell population showing the least expres-

sion magnitude. Finally, the classification of a cell as cycling or non-cycling was performed using the t test statistics on the expression

value of different genes in both cycling programs, considering the averaged basal cell cycle score (cycling cells; FDR < 0.05).

Pseudo-temporal analysis
To cross-validate our analysis and to quantify the developmental differences between the PD2/WT and PD2/G2019S cell lines, we

also employed the single cell R analysis packageMonocle ( Qiu et al., 2017). For a cross time point analysis, data of all 3055 cells from

both cell lines and all time points were combined into one expression matrix shown in Figure S4A. We then performed the standard

quality control steps of Monocle for gene filtering, considering aminimal expression threshold of 10%and only genes expressed in at

least 10 cells, leading to a reduction of the number of considered genes from 20,766 to 16,992. To remove outliers and doublets, only

cells with at least 2123 and less than 23350 transcripts were considered leading to 2954 cells. Using the same gene lists led to a very

similar population composition compared to our customized analysis (see below).

For the cluster analysis across days, we reduced batch effects by excluding residuals caused by the number of expressed genes.

The resulting clustering shown in Figure S4E demonstrates that cells at day 0 do not differ between the two cell lines but diversify

during the differentiation process.

To quantify and compare the developmental state between the genotypes, we used the branching and pseudotimeanalysis provided

by Monocle. For this purpose, we restricted our analysis to the most variable genes identified by the dispersion characteristics calcu-

lated byMonocle. Subsequently, we again reduced the dimensionality for stable calculation of cell trajectories based on reverse graph

embedding ( Qiu et al., 2017). Based on the resulting trajectories, Monocle identifies branching points and calculates pseudotimes by

ordering cells on the resulting branches based on shortest paths similar to the diffusion map approach (Haghverdi et al., 2016).

Cluster detection, cell identity mapping, and quantification
For a deeper analysis of cell states and the differentiation process, we developed a custom analysis pipeline using MATLAB (version

R2017a; Mathworks) scripts. To preprocess the gene expression matrices as described. We restricted the number of cells (columns)
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to a subset of the most maximally expressed cells, according to various factors such as the minimum level of expression, the cumu-

lative level of expression as described. This led to the number of cells used for each group and day as indicated (Figures S4G and

S4H). Then, we performed a cluster analysis of this high dimensional data to investigate cell type-specific gene expression across

different days, and for the different cell lines. We first reduced the dimensionality of the data by principle component analysis

(PCA) (Bishop, 2006). This technique allowed obtaining the orthogonally transformed space that better captures the variance of

the data. For the sake of data analysis and visualization, we kept only the first 20 principal components (PCs), reflecting more

than 75% of the variance for all days.

Next, the resulting matrices for each day containing cells of both genotypes were used as inputs to the t-SNE (t-distributed sto-

chastic neighbor embedding) algorithm (van derMaaten and Hinton, 2008).While PCA is transforming the data by capturing the high-

est mode of variation, allowing to preserve as much variance as desired and still reduce the dimensionality, t-SNE rather looks at

finding a non-linear transformation that preserves the neighboring structure of nearby points in the original data. Therefore, its pur-

pose its merely enabling the visualization of the data, originally in a high dimensional space, by projecting them to 2 or 3 dimensions.

Ideally, the projected data may possess some non-random structure, such as separated clusters of points organized together, that

will allow unveiling different properties and relations between the samples, in our case, the different cells. Using the results of PCA as

input and mapping the data to three dimensions we selected the best viewpoint in terms of clearness of the existing clusters. When

running t-SNE, we used the Barnes-hut algorithm for the approximate computation of the joint distributions (van der Maaten and Hin-

ton, 2008), and Euclidean distance as a measure of similarity between points.

From the scatterplots obtained by t-SNEwe already got some insights into the structure of the data. But tomore deeply investigate

the data, we designed a fully automated and unbiased pipeline for performing the different analyses presented in Figure 2A. In the

next step, a cluster analysis on the resulting 3D data was performed by fitting a Gaussian mixture model using expectation maximi-

zation (Bishop, 2006). Each cluster is represented by one resulting ellipsoid, whose centroid and shape depends on the mean and

covariance matrix of the underlying 3D Gaussian distribution fitted to the neighboring points. We fitted eight components in all con-

ditions, as shown in Figure 2A.

In Figure 2A we color-coded the cells by their cell type identity. The seven potential identities considered were: oligodendrocyte,

neuron, mDA neuron, microglia, endothelial, astrocytes, and NESC. Each of these phenotypic identities was defined by a list of genes

known to be highly expressed in the corresponding cell types (Table S1). For each cell, we obtain then seven scores (one per identity)

as the mean value of the expression level of all genes contained in each particular list. This way, we compared unbiasedly all these

scores and just selected the one with the highest value as the mostly expressed identity, which finally enabled the generation of all

scatterplots in Figure 2A.

Similarly, we have a different list of genes that defines different phenotypes and/or states during cell development (Table S1).

Using these lists, we first obtained for each cell a mean expression value. Then, using these scores, we compared all the cells of

one cluster to the cells in the remaining clusters by means of the Mann-Whitney U test in order to obtain a p value from the

comparison. This test was chosen due to the fact that the normality assumption was not fulfilled. This was done for all possible

comparisons, eight in our case, the number of fitted components. Then, we discarded all the comparisons where the mean

expression level of all cells in the chosen cluster is smaller than the mean expression level of the remaining ones. Finally, among

the comparisons left, we chose the one with the lowest p value. This way, we led to one cluster that we define as the ‘‘cluster

with the highest expression,’’ as opposed to the remaining cells. Additionally, the size of the marker depends on the expression

level.

Additionally, we provide the percentages of either PD2/G2019S or PD2/WT cells in the highlighted cluster with respect to the total

number of cells of that type, indicated with square and roundedmarkers respectively. The p value provides the statistical significance

which of the genotypes ismore highly concentratedwithin the highlighted cluster. This p valuewas obtained by running a permutation

test on the data, i.e., we randomly shuffle the elements of the label vector that contains the correspondence between each cell and

the group it belongs to. Then, using this shuffled vector, we counted again the number of cells of each genotype contained in the

particular cluster. We repeated this permutation 20,000 times, finally leading to the distributions of a number of cells for each group

in the cluster. Hence, given these distributions and the original number of cells of each genotype in the cluster, we computed a p value

that accounts for an abnormal number of cells of one specific type in the highlighted cluster.

Data pre-processing scRNA-seq in organoids
From midbrain organoids datasets, cells having unique feature counts over 2,500 were removed as probable doublets or multi-

plets. Similarly, low-quality cells or empty droplets, were further filtered out with unique feature counts below 100 (for day35

data) - 200 (for day70 data), and mitochondrial transcripts above 30% (Figure S1). MT genes were removed from midbrain orga-

noid datasets after QC by deletion of all row names with pattern ‘MT’. After QC, WT35 midbrain organoids included 2864 cells,

WT70 - 2005 cells, MUT35 - 2946 cells and MUT70 - 2660 cells. To better transmit the biological information between in vivo and

in vitro ventral midbrain datasets, midbrain organoid data (WT35, WT70, MUT35 and MUT70) were integrated with embryonic

midbrain data (La Manno et al., 2016) using Seurat integration analysis workflow (Stuart et al., 2019). Integration was performed

based on the top 20 dimensions. RNA assay data of integrated object were log normalized and scaled to 10’000 transcripts per

cell.
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Cell type identification scRNA-seq in organoids
After integration of embryonicmidbrain andmidbrain organoid datasets, integrated object was scaled and principal component anal-

ysis (PCA) was applied. Cell clustering was performed based on the top 20 principal components using Louvain algorithmmodularity

optimization with a resolution of 0.5. UMAP was used for cell cluster visualization (Becht et al., 2018). Nine distinct cell clusters were

identified in UMAP plot. Clusters 0 and 7 were present only in midbrain organoids, and located in a close proximity to each other in

UMAP plot, indicating their high similarity and in vitro specificity. Because of this overclustering both clusters were pulled, resulting in

eight distinct cellular identities. For cell type identification, binarized gene list across cell types from (LaManno et al., 2016) was used.

For more details on how this list is generated please refer to (La Manno et al., 2016).

Characterization of the core CRC genes expression by sc-RNaseq
To investigate via scRNaseq the difference in expression of the five genes of the core CRC, we considered the gene expres-

sion across the cell populations (of 250 cells each) for the five transcription factors. We compared the expression for each of

these genes within the PD2/WT cells with the one within the PD2/G2019S cells, for day 0, 10, 14 and 42. This was done by

computing the gene expression fold-change of the G2019S compared to the WT (Figure 5A). For each gene and day, this is

obtained as the logarithm in base two of the ratio between the average expression (across cells) of that gene in the G2019S,

and that in WT, so negative numbers indicate that PD2/G2019S expresses that gene less than PD2/WT, positive numbers the

converse. The number of cells considered is 250 per population and per day, and the p value comes from applying a z-test,

and accounting for repeated hypothesis testing by applying Bonferroni correction for the total number of time the test was

repeated for all the genes of the consensus. Error bars are obtained considering the error on each of the two averages

(PD2/WT, PD2/G2019S) by the standard error of the mean (SEM), and combining the two using the variance formula for calcu-

lating error propagation. Therein, the statistical significance was assessed with a z-test, including Bonferroni correction for

multiple hypothesis testing.

The expression levels of the transcription factor NR2F1 are shown in detail in terms of cells distributions across gene expression in

Figure 5C. These histograms exhibit the normalized NR2F1 expression on the horizontal axes. They show the details of the distribu-

tions of cells corresponding to the red bars in Figure 5A. Statistical significance is again assessed by means of a z-test corrected by

Bonferroni correction accounting for the repetition of this test on the full-list of consensus and non-consensus genes of the core CRC

tested.

Furthermore, the average gene-gene correlation between the five genes of the consensus core CRC was computed and we re-

tained only those correlations which were statistically significant (p value < 0.05). These were averaged over the number of gene-

gene combinations. Gene-gene correlation is computed for each day and condition among each couple of genes, then averaged

over genes. Correlations are filtered by their p value, thus assuming no correlation for couples of genes where the correlation is

not statistically significant, i.e., whenever the corresponding p value is < 0.05 after applying Bonferroni correction for multiple hypoth-

esis testing across all genes, days and conditions.

In vivo prototype mapping
To compare our in vitro cell preparation to in vivo cells embryonic human development we used, as a reference, a single-cell atlas of

the embryonic human ventral midbrain (described in LaManno et al., 2016). To perform the comparisonwe used ‘‘prototype analysis’’

a machine learning approach that is described in more detail in that paper. In brief, the analysis strategy is to compare every single-

cell transcriptome to a set of predefined cell types using a machine learning classifier. First a set of cell type identities, also ‘‘proto-

types,’’ are each defined by taking in consideration a group of cells from the human embryonic atlas. Then, a regularized logistic

regression classifier is trained to discriminate cells from different prototypes. The model formulation is probabilistic and can output

a probability for each possible assignment. The assigned prototype is the one of maximum likelihood.

With respect to the original paper (La Manno et al., 2016), we made the following minor changes. We performed a normalization

of the NESC dataset. This was a normalization by total molecules across the cells of the sample and normalized the whole dataset

to the same scale of the training dataset (the atlas). In particular, the normalization is this is: ~xij =
mj:xijP

j
xij

where myj = mean

�P
i

yij

�
. xij

and yij indicate the value of the ith gene for the jth cell for the test and train set respectively. This size normalization was meant to

buffer two effects: cell-to-cell variation in RNA detection that in the DropSeq can be stark, and the difference in average

sequencing depth of the test with respect to the reference dataset since they were generated with different technologies

(STRT versus DropSeq).

Prototypes that were used to train the classifier are so defined: Embryonic stem cells (eES) prototype was learned by the model

using eSCa, eSCb and eSCc as a reference. Radial glia-like cells type 1 (Rgl1) were trained on hRgl1; radial glia-like cells type 2 (Rgl2)

trained on hRgl2, hRgl2b, hRgl2c; radial glia-like cells type 3 (Rgl3) trained on hRgl3, Neural progenitors (NProg) on hNProg, neuro-

blast mediolateral type 1 on hNbML1, serotonergic neurons (Sert) trained on hSert; dopaminergic neurons (DA) trained on hDA0,

hDA1 and hDA2 populations, neuroblast medial (NbM) on hNbM; Early progenitor cells (Prog) on hProgFPM, hProgFPL, hProgM

and hProgBP. The expression of the top 18 genes for the twenty best cells identified as DA, NbM and Prog are compared to their

corresponding embryo standards in Figure S1.
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Immunocytochemistry
Cells were fixed using 4% paraformaldehyde (PFA) in 1x phosphosaline buffer (1xPBS), pH 7.4, for 15min at room temperature (RT).

Permeabilization was done using 0.3% Triton X-100 in 1xPBS for 5 min at RT. Unspecific antibody (AB) binding was avoided by

blocking buffer incubation (5% FCS, 0.1%Tween20 in 1xTBST) for 1h at RT. Primary AB binding was performed o/n at 4�C using

indicated primary AB in blocking buffer. Following incubation and 3x 1xPBS washing steps, secondary AB binding was performed

for 1h at RT, using all secondary AB at 1:1000 dilution, including 1:1000 Hoechst33342. Following incubation, cells were washed 3x

using 1xPBS. For HCS analysis cells were imaged while covered with 1xPBS. Image acquisition was done within 14 days after ICC in

automated unbiased manner in an OPERA HCS microscope (PerkinElmer). Primary ABs used with this setup: 2, 4, 5, 9, 10. Images

were acquired on a spinning disc confocal microscope (Opera QEHS, Perkin Elmer). Four fluorescence channels were measured

sequentially. First, Hoechst was excited with a 405 nm laser and emitted fluorescence was detected behind a 450/50 bandpass filter.

Second, Alexa 488was excited with a 488 nm laser and detected behind a 520/35 bandpass filter. Third, Alexa568 was excited with a

561 nm laser and detected behind a 600/40 bandpass filter. Finally, Alexa647 was excited with a 640 nm laser and detected behind a

690/70 bandpass filter. For each channel, a 20x water immersion objective with N.A. 0.7 was used in combination with camera

binning 2.

Image analysis
Nuclei were detected using pre-processing of the Hoechst channel with a difference of Gaussians and thresholding. For the differ-

ence of Gaussians, the foreground image was convolved with a Gaussian of size 10 and standard deviation 2 and the background

image was convolved with a Gaussian of size 60 and standard deviation 20 (NucDoG). The nuclei mask was defined via thresholding

of NucDoG (> 20), and by removing connected components with less than 200 pixels (NucMask). Only images with a total nuclei area

of at least 15000 pixels were considered for further analysis. To quantify apoptosis, the raw nuclei channel was low pass filtered with

an average filter of side length 5 and thresholded (> 1000, NucMaskHigh).

For segmentation of TH positive structures, local and global thresholding approaches were combined. For global thresholding, the

TH channel was low pass filteredwith aGaussian filter of size 10 and standard deviation 1, and thresholded (> 300, TH_Mask_Global).

For local thresholding, a difference of Gaussians was applied. The foreground image was convolved with a Gaussian of size 11 and

standard deviation 1 while the background image was convolved with a Gaussian of size 21 and standard deviation 7 (TH_DoG). The

resulting image was thresholded (> 200, TH_Mask_Local). The final TH mask was defined via Boolean OR operation between

TH_Mask_Global and TH_Mask_Lokal, and by excluding nuclei and connected components with less than 100 pixels (TH_Mask).

For the segmentation of neurons based on Tuj1 fluorescence, local and global analyses were combined. For global thresholding,

the Tuj1 channel was low pass filtered with a Gaussian of size 10 and standard deviation 3 (Tuj1LP). The resulting image was thresh-

olded (> 150, Tuj1_GlobalMask). For the local approach, a background image convolved with a Gaussian of size 20 and standard

deviation 6 was subtracted from a foreground image convolved with a Gaussian of size 10 and standard deviation 3 (Tuj1DoG).

This difference of Gaussians was thresholded (> 3, Tuj1_LocalMask). To define the neuronal mask (NeuroMask), Tuj1_GlobalMask

and Tuj1_LocalMask were combined via boolean OR operation and connected components with less than 200 pixels were removed.

PARP fluorescence was segmented via global thresholding. The PARP channel was pre-processed via low pass filtering with a

Gaussian of size 10 and standard deviation 1 (PARP_LP). After thresholding (> 50), connected components with less than 50 pixels

were removed (PARP_Mask).

Ki67 was also segmented using global thresholding. The Ki67 channel was low pass filtered with a Gaussian filter of size 10 and

standard deviation 1 (Ki67_LP). This low pass filtered Ki67 image was thresholded (> 50), and in the resulting mask, connected com-

ponents with less than 50 pixels were removed (Ki67_Mask).

Flow Cytometry Analyses
Cell preparation for stainings was done under sterile conditions. At indicated time points and stages, cells were washed using warm

1xPBS and dissociated using Accutase digestion at 37�C, incubation time dependent on densities, minimal 10 min and maximal

30min. Cells were pelleted for 5 min at 300 rcf. The single cell suspension was prepared by dislodging the pellet in cold 1xPBS

and the cell clumps and debris were excluded from the suspension using 40 mm Nylon cell strainer (BD). Cells were pelleted at

400 rcf. for 5 min at 4�C. The resulting pellets were dissociated in 100 mL 10% FBS-PBS. While vortexing gently 500 mL 4%PFA-

1xPBS were added drop-wise to the suspension, cells in fixative were incubated for 15 min at RT. Fixed cells were pelleted at

800 rcf. And washed twice in 10% FCS-PBS.

Samples were subjected to flow cytometric imaging protocol. Samples were split for different antibody staining combinations, and

a similar number of cells for each sample was stained (ABs used: 1, 4, 7, 8, 20-25, 15, 16, 17, 18, 19 key resources table). Cell per-

meabilization was performed for 20 min at 4�C using permeabilization buffer 1 mL 0.05% Saponin-1% BSA-1xPBS. Next, cells were

subjected to titrated primary antibodies and isotype controls in equal concentration in permeabilization buffer for 1h at 4�C. After two

10%FBS-1xPBSwash steps cells were resuspended in secondary antibodymix and incubated for 30min at 4�C. Following two 10%

FBS-1xPBS washing steps, cells were resuspended in 1xPBS and analyzed in a Fortessa flow cytometry analyzer (BD Biosciences),

Becton Dickinson Biosciences. Resulting flow cytometric data was further processed using FlowJo, LLC software. First, we gated-

out doublets using conservative double gating via SSH-A/SSH-H and SSH-A/SSC-W). Samples were further analyzed while consid-

ering appropriate negative, compensation, and isotype controls. Gated quantitative numbers were subjected to different groupings
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and further statistically analyzed as indicated. Cells were dissociated using Accutase incubation for 8 min, at 37�C. Accutase activity

was reduced using DMEM/F12 w/o phenol-red. After 5 min 400 rcf. centrifugation cells were washed once in 1 mL ice cold DMEM/

F12 w/o phenol-red. In the last step, cells were dissociated in 300 ml DMEM/F12 w/o phenol-red and stained with final concentration

propidium iodide 0.33 mg/ml for 2 min at 4�C.

Quantitative real time PCR
NESCs and differentiated neurons (day eight of differentiation) were collected by scraping in cold PBS and lysed in RLT buffer

(QIAGEN) containing 5% b-mercaptoethanol. For each cell line used, three independent samples from three different passages

were taken (n = 3 per line). RNA isolation was performed using the RNeasy Mini kit (QIAGEN) including an on-column DNA digestion

(QIAGEN) according to the manufacturer’s instructions. RNA quantities were measured using the NanoDrop 2000c Spectrophotom-

eter (Thermo Scientific). 500ng RNA per sample were reversely transcribed to cDNA using the High-Capacity cDNA Reverse Tran-

scription Kit (Applied Biosystems). cDNA samples were diluted 1:10 before 5 ul per sample were subjected to quantitative real-time

PCR using the TaqMan�Gene Expression Assays (Applied Biosystems) for NR2F1 (assay ID Hs00818842_m1) and RPL37 (assay ID

Hs03044965_g1) as reference gene. FAM signal of gene-specific probes was measured on the AriaMx Real-Time PCR System (Agi-

lent Technologies). The DDct method was applied to transform individual cycle threshold (ct) values into the relative expression of

NR2F1 (fold change) referenced to RPL37 and normalized to the H1/WT group.

Immunohistochemistry
Mouse embryonic brains/whole heads were dissected and fixed in 4% paraformaldehyde (PFA) at 4�C for 3 h in agitation, then

washed in PBS 1X and dehydrated in 25% sucrose overnight at 4�C. Primary antibodies used: NR2F1 (Abcam ab181137, 1:1000,

rabbit; R&D H8132, 1:1000, mouse); cleaved Caspase-3 (Cell signaling #9661, 1:2000, rabbit); Tuj1 (b-III Tubulin, Covance MRB-

435P, 1:1000, rabbit; or Sigma T8660, 1:1000, mouse); FoxA2 (Santa Cruz sc-101060, 1:1000, mouse); TH (Millipore AB152,

1:1000, rabbit). All antibodies required antigen retrieval (10 minutes at 95�C in pH = 6 Citric acid solution). Alexa Fluor 488, 555,

594 and 647 anti-mouse or anti-rabbit IgG conjugates (Thermo Fisher scientific, all 1:500) were used as secondary antibodies. Im-

ages were acquired at an Apotome Zeiss, using the AxioVision software. For cell percentage/number quantification after immuno-

fluorescence (IF), measurements were performed on at least 9 sections coming from 2 to 3 different animals. Fixed embryos with

damaged tissues were excluded from any further analysis/processing. Microscope images were processed with Photoshop or Im-

ageJ software, by randomly overlapping fixed-width (100mm) rectangular boxes on the area of interest, then quantifying positive cells

or pixel intensity inside the boxes. When calculating percentages over the total cell number, the latter was quantified by counting

DAPI+ nuclei, unless otherwise specified.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis was assay and purpose dependent as indicated in the figure legends. We applied: unpaired or paired (isogenic

controls) Student’s t test when sample size was small and data normally distributed. For large datasets like HCS imaging data that

was not normally distributed Mann-Whitney-Test without further cleaning of the data was applied. Two-way ANOVA with Bonferroni

correction was applied when indicated. Tests applied indicated in the particular legends. All data are presented as mean ± SEM.

Significance levels were set at*/y p < 0.05, **/yy p < 0.01, ***/yyy p < 0.001, ****/yyyy p < 0.0001. For statistical analysis, GraphPad

Prism was used. Statistical analysis of single-cell RNaseq data was handled differently and as indicated. In particular, the statistical

significance of the differences in cumulative gene expressions (Figures 2B, 3C, and S4C) were assessed using a z-test, with Bonfer-

roni correction to account for multiple testing. One-way ANOVA together with one-way ANOVA on ranks and Mutual Information

where used to identify genes which are differentially expressed with statistical significance, again considering Bonferroni correction

to account for multiple testing. The details of these different statistical analyses of single-cell RNaseq data are explained in the sec-

tion titled ‘‘analysis of differentially regulated genes’’ of this supplementary material. Further statistical aspects of the analysis of the

single-cell RNaseq data are explained in detail in the sections ‘‘Cell cycle analysis,’’ ‘‘Pseudo-temporal analysis,’’ ‘‘Cluster detection,

cell identity mapping, and quantification’’ and ‘‘Characterization of the core CRC genes expression by sc-RNAseq.’’

For the scRNaseq data in organoids, the statistical analysis was performed with RStudio R version 3.6.2 using ggplot2 package.

For all comparison non-parametric Kruskal Wallis test was performed. Statistical significance between comparisons are represented

with asterisks: p < 0.05 *, p < 0.01**, p < 0.001***, p < 0.00001****.

For the immunohistochemistry analysis in animals, data were statistically analyzed and graphically represented using Microsoft

Office Excel software and GraphPad Prism (version 7.00). Quantitative data are shown as the mean ± standard error (SEM). Data

were compared by 2-way ANOVA (analysis of variance; for comparison of three or more groups) and statistical significance was

set as follows: * = p % 0.05; ** = p % 0.01; *** = p % 0.001.
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