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Abstract

The spatial distribution of energetic protons contributes to the understanding of magnetospheric dynamics. Based
upon 17 yr of the Cluster/RAPID observations, we have derived machine-learning-based models to predict the
proton intensities at energies from 28 to 962 keV in the 3D terrestrial magnetosphere at radial distances between 6
and 22 RE. We used the satellite location and indices for solar, solar wind, and geomagnetic activity as predictors.
The results demonstrate that the neural network (multi-layer perceptron regressor) outperforms baseline models
based on the k-nearest neighbors and historical binning on average by ∼80% and ∼33%, respectively. The average
correlation between the observed and predicted data is about 56%, which is reasonable in light of the complex
dynamics of fast-moving energetic protons in the magnetosphere. In addition to a quantitative analysis of the
prediction results, we also investigate parameter importance in our model. The most decisive parameters for
predicting proton intensities are related to the location—Z geocentric solar ecliptic direction—and the radial
distance. Among the activity indices, the solar wind dynamic pressure is the most important. The results have a
direct practical application, for instance, for assessing the contamination particle background in the X-ray
telescopes for X-ray astronomy orbiting above the radiation belts. To foster reproducible research and to enable the
community to build upon our work we publish our complete code, the data, and the weights of trained models.
Further description can be found in the GitHub project at https://github.com/Tanveer81/deep_horizon.

Unified Astronomy Thesaurus concepts: Astronomy data modeling (1859); Astronomy data analysis (1858); Space
plasmas (1544); X-ray telescopes (1825); X-ray detectors (1815); X-ray observatories (1819)

1. Introduction

Understanding the distribution and dynamics of energetic
protons in the near-Earth space is not just essential for
magnetospheric physics. Energetic protons are also suspected
to damage space-based instruments and to affect their scientific
performance. For example, X-ray telescopes such as
Chandra (Weisskopf et al. 2002) and the X-ray Multi-Mirror
Mission (XMM-Newton, Jansen et al. 2001) are suffering from
contamination by so-called soft protons (SP, De Luca &
Molendi 2004; Kuntz & Snowden 2008; Leccardi &
Molendi 2008). These are protons at energies in the range of
tens of keV up to a few MeV. The SPs that populate the solar
wind and the Earth’s magnetosphere can damage CCD

detectors, leading to a loss of available exposure time due to
an increased background rate.
Consequently, the performance of future X-ray missions

orbiting in the magnetosphere and the solar wind depends on
how well the instruments are protected from the SP. For
example, the Advanced Telescope for High-ENergy Astro-
physics mission (Nandra et al. 2013) plans to deploy an array of
magnets to deflect charged particles away from the
instruments (Fioretti et al. 2018; Lotti et al. 2018). Moreover,
the original orbit choice might be changed from L2 to L1 due to
a better understanding of this region’s energetic particle
dynamics. The Solar wind Magnetosphere Ionosphere Link
Explorer (SMILE, Raab et al. 2016) mission is also concerned
with energetic particle levels in the magnetosheath that it will
experience during its polar orbit.
There are few studies related to the energetic proton

population in near-Earth space. In contrast to this work,
they focus on well-confined regions around the Earth. For
example, Meng et al. (1981), Kronberg et al. (2012), and
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Kronberg et al. (2015) have studied the dependence of the
distribution of energetic protons on solar wind and geomag-
netic activity parameters in the plasma sheet. The plasma
sheet is one of the few regions where it is expected to
experience an enhanced background; this is also true for
XMM; see, for example, Rosenqvist et al. (2002). In
Kronberg et al. (2015) the distribution is projected to the
equatorial plane. However, the missions mentioned above
plan on taking observations at high latitudes.

Energetic protons can also be observed in other regions. The
region upstream of the bow shock, for instance, is known to be
populated with energetic protons due to effective acceleration
at the bow shock (e.g., Lee 1982; Kronberg et al. 2009). Solar
wind phenomena such as coronal mass ejections and corota-
tional interaction regions are associated with energetic charged
particles observed by spacecraft in the region upstream of the
bow shock. The bow shock also serves to heat the solar wind
plasma as it flows into the magnetosheath, the boundary region
between the bow shock and the magnetopause, resulting in a
harder energy spectrum. This region is generally considered
void of energetic particles (∼100 keV). However, occasionally,
phenomena associated with energetic particles such as hot flow
anomalies and plasma jets (e.g., Facskó et al. 2010; Savin et al.
2014) occur. Some of these energetic particles escape the
magnetosphere (e.g., Kronberg et al. 2011). The diamagnetic
cavities at cusps are also effective particle accelerators (e.g.,
Nykyri et al. 2012).

Studying each region in isolation enhances our knowledge
about the physics in these regions and simplifies modeling.
However, the boundaries between the regions are not always
well defined, for instance, because of the quasi-parallel bow
shock formation or Kelvin–Helmholtz instability. Therefore, it
makes sense for space weather applications to study the proton
intensities in the near-Earth region holistically. Moreover, most
previous studies only consider a few input solar or geomagnetic
parameters instead of utilizing the full range of them.

Kronberg et al. (2020) studied the dependence of SP
contamination in the XMM-Newton telescope on location
and various solar and geomagnetic parameters using a
machine-learning approach. The study revealed the strongest
dependence of the contamination on the location and the solar
wind velocity. Simultaneously, parameters such as the AE or
SYM-H indices (which measure the geomagnetic activity,
namely, the disturbance of the magnetic field at high latitudes
resulting from auroral electrojets (AE) in the northern hemi-
sphere and at mid-latitudes, respectively) have shown sig-
nificantly lower importance levels for contamination, which
was rather unexpected from common knowledge of magneto-
spheric dynamics.

In this study we derive a predictive model for the energetic
proton intensities using the Cluster mission observations in the
near-Earth space environment. We exclude the region of the
radiation belts since the proton intensity levels in this region are
much higher than those in the outer magnetosphere. Our
experience has shown that the model tends to predict only the
intensities in the radiation belts if it is included. To enable
modeling the complex non-linear multidimensional dependen-
cies, we employ a machine-learning model instead of simple
linear models.

To summarize, our study aims are to (1) test the capability of
machine-learning algorithms to predict energetic particle popula-
tions in the near-Earth space, (2) reveal which parameters are the

most important for the prediction of energetic protons at different
energies, and (3) help future missions planning to deal best with
the effects of SP.

2. Observations and Data Analysis

In this section, we describe which data we use and how it
was obtained and preprocessed. The data can be found on
Zenodo:doi:10.5281/zenodo.4718561.

2.1. Proton Observations

The Research with Adaptive Particle Imaging Detectors
(RAPID) instrument (Wilken et al. 2001) on four Cluster
satellites (Escoubet et al. 2001) measures distributions of
energetic electron and ion intensities from ∼30 keV to ∼4
MeV. Around 50 data products are produced from the raw data
and delivered to the Cluster Science Archive (CSA)16 by the
RAPID team. We chose to work with proton observations from
spacecraft (SC) 4 (Tango), which has continuous observations
from 2001 through the present day and can be combined with
other ion measurements on Cluster. The omnidirectional
energetic proton intensities can be found at CSA under the
product proton_Dif_flux__C4_CP_RAP_HSPCT (Daly &
Kronberg 2010). We took the first seven energy channels as the
labels in our experiment, which represented the energy ranges
p1= 28–64 keV, p2= 75–92 keV, p3= 92–160 keV, p4=
160–374 keV, p5= 374–962 keV, p6= 962–1885 keV, p7=
1885–4007 keV, respectively. We exclude the region of the
radiation belts (radial distance, rdist< 6 RE) from the
data set.
For our experiments, we preprocessed the data as follows.

First, we eliminated outliers, namely values below 0 and above
108. Then, the data with original 4 s resolution were averaged
over 1 minute because we have observed many rapid
fluctuations within each minute and the predictors related to
the solar and geomagnetic activity have the highest resolution
of 1 minute. To be more precise, we calculated the mean proton
intensities each minute for each energy channel and used the
beginning of each minute as a time stamp.
Since the proton intensity values span multiple orders of

magnitude, we use the common logarithms of the intensities as
input to the model. However, since the proton intensity
measurements can contain zero values, we cannot directly
apply the logarithm. We investigated two methods: replacing
the zero values with very small values, i.e., one-tenth of the
smallest non-zero value, or dropping all measurements where
the intensity is zero.
We obtained better results when dropping the zero values in

the sense that, in this case, the model was more focused on
predicting values above zero. In considering zero values, the
model was skewed to the prediction of zero values as they are
many. Since high proton intensities are dangerous for the
performance of X-ray telescopes, we have decided to base our
model on proton intensities above zero. Developing the model
that focuses on zero/or close-to-zero proton intensities requires
a separate study. Since the number of zero values differs across
channels, we performed these operations independently for
each channel. The highest energy channels p6 and p7 were
dropped from the data set because they contain too many
missing and zero values.

16 https://csa.esac.esa.int
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From 15:21:00 on 2001 January 9 to 09:57:00 on 2018
February 19 UT, 6,051,937 minutes of data in total matched
these criteria. We list the predictors, also called features (the
variables that are potentially capable of predicting the proton
intensities), in Table 1 and discuss them below. Their
distributions, along with the distribution of the proton
intensities, are shown in Figure 9 in the Appendix.

2.2. Predictors

In this subsection we introduce the predictors that we divide
into groups: related to location in space and related to the solar,
solar wind, and geomagnetic activity.

2.2.1. Location in the Near-Earth Space

Each 1 minute averaged value of proton intensity is associated
with a location in the geocentric solar ecliptic (GSE) coordinate
system represented by parameters x, y, and z. The position
coordinates were taken from the sc_r_xyz_gse__C4_C-
P_AUX_POSGSE_1M auxiliary data set for SC4. We use them to
obtain the radial distance from the Earth: the parameter rdist.
Throughout the paper, distances are given in RE units. The
distribution of the proton intensities and the number of their
samples in the GSE system are shown in Figures 1 and 2. From
Figure 2 one can see that the number of samples of proton
intensity is strongly skewed toward the southern hemisphere and
especially high latitudes. This is because the Cluster trajectories
are inclined toward this hemisphere and cover well the high-
latitude region. This is also the region of high interest for the
XMM mission.

Figure 1 (left and middle panels) shows high intensities around
the equatorial plane, ZGSE= 0, namely the plasma sheet at the
night side and the region on the closed magnetic field lines at the
dayside in the XZ and YZ planes. There are also mid-altitude
cusps with less intensive plasma around XGSE= 0, in the same
planes, above and below ∼3 RE and ∼−3 RE in ZGSE direction,
respectively. Enhanced proton intensities at XGSE; 3–6 RE at
higher latitudes than the plasma sheet (above and below ∼5 RE

and∼−5 RE in ZGSE direction, respectively) in the XZ plane are
also visible. This intensity increase, at least partially, can be
explained by the presence of the diamagnetic cavities near the
cusps which can trap the protons and lead to their effective
acceleration (see, e.g., Nykyri et al. 2011, 2012). The intensities
are higher in the northern hemisphere than in the southern

hemisphere. The dusk–dawn distributions (in the YZ plane) show
asymmetry with higher intensities at the northern hemisphere’s
dusk side. The same higher intensity at dusk is visible in the XY
plane. This asymmetry agrees with observations of energetic
protons >274 keV by Kronberg et al. (2015) and Luo et al.
(2017). The proton intensities are higher on the dayside in the
region on closed magnetic field lines.
In Figure 3, we plot the mean proton intensities versus

individual predictors. In the following, for brevity, we refer to
the logarithm of proton intensities simply as proton intensities. In
panel (a), we observe a strong, almost linear decrease of the
proton intensities with radial distance. The intensities almost
linearly decrease with the ZGSE coordinates in the southern
hemisphere (see panel (b)), while the dependence looks more
complicated in the northern hemisphere. However, if we
consider the distances between ∼−15 and ∼8 RE the maximum
of proton intensity is shifted toward positive ZGSE=∼2 RE.
Taking this value as the symmetry axis, the proton intensity
distribution in the northern hemisphere also falls roughly linearly
with the distance. Panel (c) shows that the maximum of the
proton distribution is around± 5 RE. The proton intensity falls
rapidly at ∼−15 RE at the dawn side and ∼13 RE at the dusk
side. The dependence of proton intensities on XGSE is rather
complicated; see panel (d). The strong increase of the proton
intensities at XGSE<−15 RE can be explained by reduced
spacecraft sampling in the northern lobe at these distances; see
the XZGSE plane in Figure 2. It falls strongly at ∼10 RE as
expected at the magnetopause boundary, as also seen in
Figure 1. These spatial dependencies resemble those observed
for the SP contamination at the XMM-Newton X-Ray telescope
in Kronberg et al. (2020); see also Ghizzardi et al. (2017).

2.2.2. Solar, Solar Wind, and Geomagnetic Activity

The proton intensities are joined with simultaneous observa-
tions of solar, solar wind, and geomagnetic parameters from the
OMNI database17 (King & Papitashvili 2005). The solar wind
measurements are propagated to the bow shock of the terrestrial
magnetosphere. We used the following parameters to char-
acterize the SW: the proton density, NpSW [cm−3]; compo-
nents of the velocity (VSW) in the GSE coordinates,
VxSW_GSE, VySW_GSE and VzSW_GSE [km s−1]; the
temperature, Temp [K] and components of the IMF in the
GSE coordinates, BimfxGSE, BimfyGSE, and BimfzGSE
[nT]. We also included the dynamic pressure, Pdyn [nPa],
calculated as NpSW*VSW2× 1.67 · 106.
The solar wind velocity Vy and Vz components show that the

deviation from the radial direction leads to an increase of the
proton intensities, excluding cases with substantial deviation
(>100 km s−1) in positive Y- and ZGSE directions for which a
decrease is observed; see Figure 3 (e). The proton intensities
increase with the solar wind speed in the anti-sunward
direction, Vx, and the temperature; see panels (f) and (g). The
dependencies of the proton intensities on solar wind density
(panel (h)) and the solar wind dynamic pressure (panel (i)) have
non-linear trends. The change of the IMF’s direction toward
stronger absolute values mainly leads to increased proton
intensities (see panel (j)).
Solar irradiance, which correlates well with the number of

sunspots and characterizes the solar activity, influences the
amount of protons in the near-Earth space. The solar irradiance is

Table 1
Overview of Input Features Used and Their Units

Feature Unit Description

x, y, z RE position of Cluster in GSE coordi-
nate system

rdist RE radial distance from the Earth
BimfxGSE, Bim-

fyGSE, BimfzGSE
nT x, y, and z components of the inter-

planetary magnetic field (IMF)
in GSE

VxSW_GSE, VySW_GSE,
VzSW_GSE

km s−1 x, y, and z components of the solar
wind speed in GSE

NpSW n cm−1 solar wind density
Temp K solar wind temperature
Pdyn nPa solar wind dynamic pressure
AE_Index nT auroral electrojet index
SYM-H_index nT symmetric H-component index
F107 sfu the solar radio flux at 10.7 cm

17 https://omniweb.sci.gsfc.nasa.gov
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represented by the radio flux measurement at 10.7 cm (2.8 GHz)
called the F10.7 index, here F107 [sfu] (Tapping 2013). Unlike
many other solar indices, this parameter is measured reliably
under any weather conditions at the Earth. The solar irradiance is
non-linearly related to the proton intensities; see Figure 3 (k).

A parameter of geomagnetic activity such as the AE index,
denoted as AE_index, in nT, characterizes the magnetic field
disturbance in the auroral region of the northern hemisphere (Nosé
et al. 2017). The relation of the proton intensities with the AE
index is also non-linear; see Figure 3 (l). However, a general trend
of increase in the proton intensities with the AE index is visible,
namely with the geomagnetic activity at high latitudes. Another
parameter related to the geomagnetic activity is the SYM-H index,
denoted as SYM-H and measured in nT (Iyemori et al. 1992). This
parameter characterizes the disturbance of the geomagnetic field at
the equatorial regions. The geomagnetic activity related to the
geomagnetic storms, characterized by the SYM-H index, shows a
non-linear relation with proton intensities; see Figure 3 (m).

If we compare the trends of the proton intensity changes with
the solar, solar wind, and geomagnetic parameters with those
for the SP contamination from Kronberg et al. (2020) we notice
general agreement between those. More details on the
comparison are in Section 5.

2.3. Cross-correlations between Proton Intensities and
Predictors

Figure 4 shows the Pearson correlation between parameters
possibly related to proton dynamics. The correlation values

range between −1 and 1. Values close to −1/1 mean perfect
linear anticorrelation/correlation and values close to 0 mean
the absence of linear correlation. One has to be careful in the
interpretation of the Pearson correlation coefficient because it
assesses only linear relationships. The proton intensities from
channel p1 are well correlated with the radial distance and the
ZGSE location of observation, in agreement with Figure 3.
From the OMNI parameters, the proton intensities of channel
1 are best linearly correlated with the VxSW_GSE, the same as
the SP contamination in Kronberg et al. (2020).

2.4. Data Split

The full data set, as was mentioned above, comprises in total
6,051,937 measurements from 2001 January 09 15:21:00 UT to
2018 February 19 09:57:00 UT. We split the data set into a
training (or development) set (80%) and a test set (20%). To
prevent test leakage, we do not shuffle the data but split it by a
time point with the original order preserved. Afterward, we
additionally split the development data into a train (80%) and
validation set (20%) again by time. We utilize the validation set
to optimize the model hyperparameters.
We normalized the features by subtracting the median and

dividing by the inter-quartile range.18

Table 2 summarizes the sizes and periods of the data subsets
after performing preprocessing and splitting.

Figure 1. Distribution of the observed proton intensity for the energy channel p1 by SC4 from January 2001 to February 2018 in the GSE coordinate system.
Resolution (bin size) is 1 RE. Half black and half white circles, as well as the dashed circle, indicate the location of the Earth and are not to scale. Here zero values of
proton intensity are replaced with small values.

Figure 2. Distribution of the number of proton intensity measurements for the energy channel p1 in the GSE coordinate system in the same format as Figure 1.
Resolution (bin size) is 1 RE.

18 As implemented by RobustScaler in sklearn.
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3. Machine-learning Model for Proton Intensities

The relation between the proton intensities and the individual
predictors discussed above is mostly non-linear; see Figure 3.
Therefore, often a group of predictors or their ensemble help to
obtain better predictions than the best individual predictor
(Geron 2019).

We interpret the prediction of proton intensities as a
regression problem of form

q» p xy f ; t([ ]∣ )

where y is the proton intensity for a single channel, p is the
spatial position, and xt the additional input parameters as given

Figure 3. Relations of mean proton intensities for the energy channel 1 and (a)–(d) radial distance, rdist, ZGSE, YGSE, and XGSE, respectively; (e) the solar wind
Vy and Vz components; (f) the solar wind radial velocity, Vx; (g)–(i) solar wind temperature, density, and dynamic pressure, respectively; (j) IMF components in GSE;
(k) F10.7 parameter; (l) AE index and (m) SYM-H index. Vertical lines represent confidence intervals at 95% confidence level. Here zero values of proton intensity are
replaced with small values.
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in Table 1 at time t. [ ; ] denotes the concatenation and θ are
model parameters that are to be estimated from the given data
set. We study solving this regression task by applying various
machine-learning models from which we select according to
validation performance. The models’ hyperparameters are also
tuned according to validation performance.

We investigated the following linear models: linear
regression (Galton 1886) with and without l1/l2 regularization

(lasso (Santosa & Symes 1986)/ridge regression (Hoerl &
Kennard 1970)), least angle regression (Tibshirani et al. 2004)
with and without l1 regularization (lasso LARS regression), and
linear support vector regression (SVR) (Cortes & Vapnik 1995).
We considered the following tree-based ensemble models:

regression trees (Breiman et al. 1984), random forests,
AdaBoost (Freund & Schapire 1995), ensembles of extremely
randomized trees (extra trees; Geurts et al. 2006), gradient

Figure 4. Pearson correlation matrix between input parameters and proton intensity (here, zero values are replaced with small values). For readability, the values are
rounded to the second decimal.

Table 2
Size and Periods of the Data Subsets after Splitting.

Subset Start (UT) End (UT) Number of Data Points without Zero Values

p1 p2 p3 p4 p5

Train 2001-01-09 15:21:00 2011-08-23 08:22:00 2,130,927 978,828 1,396,154 1,093,985 522,122
Validation 2011-08-23 08:24:00 2014-07-24 22:44:00 532,731 244,707 349,038 273,496 130,530
Test 2014-07-24 22:45:00 2018-02-19 09:57:00 694,867 320,363 447,790 329,581 131,208
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boosting (Friedman 2001), and light gradient boosting
machines (LGBM; Ke et al. 2017).

We also used a multi-layer perceptron (MLP) regressor
(Rosenblatt 1958). This regressor is a neural network with an
input layer, one or more hidden layers, and one output layer.
Each layer is a dense layer, x(i+1)= σ(Wx(i)+ b), where

Î Î´ + + W b,d d di i i1 1 are trainable parameters, and σ is a
non-linear activation function. The weights are trained end-to-end
with an iterative (stochastic) gradient descent method using the
gradient of the loss function’s output with respect to parameters.
The gradients can be efficiently computed using back-propaga-
tion. Important hyperparameters are the choice of the network
structure, i.e., the number of layers and the hidden dimensions di.

4. Machine Learning Experiments

4.1. Setup

We used LGBM implementation from the LightGBM library
(Microsoft Corporation 2008) and sklearn (Buitinck et al. 2013)
for all other models. In order to evaluate the models’
performance, we use the following measures: Spearman
correlation, Pearson correlation, mean absolute error, mean
squared error, and coefficient of determination (R2). For model
selection and hyper-parameter optimization, we focus on the
Spearman correlation.

To demonstrate the necessity of using advanced machine-
learning models, we compare the performance against two
simple baselines: historical binning and k-nearest neighbors
(kNN; Altman 1992).

In the historical binning baseline, we create spatial bins of
training data with the k-means algorithm (Lloyd 1982) applied to
the position features only. The number of bins is chosen
independently for each channel based on validation performance.

For a test point, we determine the corresponding bin and use the
average proton intensity of that corresponding region from the
train data as the prediction.
In the kNN baseline, for a test data point, we determine the

k-nearest neighbor that exists in the train set based on the
Minkowski distance and interpolate its proton intensity for the
position. Then we take the interpolated intensity at the test
position as the prediction.

4.2. Results

In order to determine the best hyperparameters, we used
random search over a pre-defined search space (see Table 6 in
the Appendix) due to its higher sample efficiency than grid
search (Bergstra & Bengio 2012). In this search, we trained
numerous models on the training data. We utilized the ASHA
Scheduler (Li et al. 2020) for its parallelism and extensive early
stopping capabilities via the ray tune (Liaw et al. 2018)
framework. After training, we evaluate each model on the
validation data, and we choose the configuration that obtains
the best validation Spearman correlation. To reduce resource
consumption, we perform this optimization only for channel p1
and apply the same best hyperparameters for the other
channels, cf. Table 6 in the Appendix.19 We obtain the best
validation performance for an MLP model based on the value
of p1 channel for which the optimization was done and we
select this choice; see Table 3. The second and the third best
results based on these metrics are obtained for LGBM and
AdaBoost models. If we calculate the average performance for
all energy channels, the MLP model was outperformed by
LinearSVR, LARSRegression, RidgeRegression, and Ada-
Boost (listed in decreasing performace order). The test results
are also shown for all machine-learning models; see Table 4.
They indicate that MLP is outperformed by the LGBM and
AdaBoost models considering the average performance of all
energy channels. These results show that top performing
machine-learning algorithms lead to relatively similar predic-
tion rates and can be interchangeably used. Table 5 shows the
final results for the MLP model on the training and test sets.
The MLP model outperforms the baseline models such as kNN
and historical binning by about 80% and 33%, respectively.
Because the MLP model performs better on test data than all
baselines, we conclude that it generalizes to unseen data. Note
that a gap between model performance on training and test data
is often observed for complex models and it is not necessarily
an indication of overfitting. The average Spearman correlation
between the observed and predicted data is about 56%. This

Table 3
Validation Result of all Machine-learning Models Represented by a Spearman
Correlation between Results Predicted by Different Models and Observed

Proton Intensity for All Considered Energy Channels

Model p1 p2 p3 p4 p5

MLP 61.4% 50.4% 46.1% 37.2% 18.5%
LGBM 57.1% 46.3% 47.0% 36.9% 17.6%
AdaBoost 56.9% 53.9% 52.5% 34.7% 23.2%
ExtraTrees 53.3% 51.3% 50.9% 41.6% 9.7%
LinearSVR 51.9% 52.9% 51.2% 44.5% 22.2%
RidgeRegression 49.9% 54.6% 51.2% 45.6% 25.1%
LARSRegression 49.9% 54.6% 51.2% 45.6% 25.2%
RandomForest 39.4% 34.4% 34.0% 30.4% −9.6%

Table 4
Test Result of All Machine-learning Models Represented by a Spearman
Correlation between Results Predicted by Different Models and Observed

Proton Intensity for All Considered Energy Channels

Model p1 p2 p3 p4 p5

MLP 56.9% 58.8% 53.5% 56.2% 53.5%
LGBM 56.7% 60.2% 60.3% 60.3% 57.7%
AdaBoost 57.0% 60.5% 58.3% 58.4% 55.8%
ExtraTrees 42.2% 47.2% 42.3% 43.9% 43.3%
LinearSVR 46.5% 52.6% 50.5% 51.3% 44.6%
RidgeRegression 44.3% 52.8% 51.2% 51.6% 40.3%
LARSRegression 44.2% 52.8% 51.2% 51.6% 40.3%
RandomForest 35.1% 43.4% 31.6% 40.7% 9.8%

Table 5
Spearman Correlation between Results Predicted by Different Models and

Observed Proton Intensity for All Considered Energy Channels on Both Train
and Test Split.

Model Split p1 p2 p3 p4 p5

kNN Test 29.1% 32.3% 32.3% 32.7% 30.0%
HistBin Test 39.3% 44.0% 40.3% 42.3% 44.0%

MLP Train 73.5% 72.6% 70.6% 70.8% 74.8%
MLP Test 56.9% 58.8% 53.5% 56.2% 53.5%

Note. The MLP model was chosen as the best configuration according to the
validation Spearman correlation of channel p1.

19 We publish the trained models on Zenodo: doi:10.5281/zenodo.4593065.
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value is reasonable considering the stochasticity and complex
dynamics of the fast-moving energetic protons in the terrestrial
magnetosphere.

Figure 5 shows the distributions of the observed proton
intensities versus the predicted values for five energy channels.
The left-hand panels show the training set distributions,
whereas the right-hand panels represent the test set. Observed
and predicted data for the training and test data sets agree
relatively well. The data are mainly concentrated along the
black dashed line, corresponding to a perfect correlation. The
prediction of proton intensities in all five energy channels has a
similar quality.

In Figure 6, we show a qualitative example of the model’s
predictions. The chosen time frame shows a plasma sheet
crossing, the approach of the radiation belts, and the cusp
region at the night side of the magnetosphere. The model
predicts the proton intensities for the different energy channels,
rarely deviating more than one order of magnitude, which is
considered a good prediction for energetic particle dynamics.
From the beginning of this time interval until ∼13 UT,
substorm processes (AE>∼ 150 nT) were observed. The
SYM-H index was above −30 nT, excluding the time period
from ∼08 to 09 UT during which it dropped almost down to
−40 nT, indicating that during this interval there was almost no
magnetic storm activity. Figure 7 shows another example that
demonstrates the model performance during a magnetic storm
with the SYM-H index dropping down to −90 nT. During this
time interval, the Cluster spacecraft was in the near-Earth
plasma sheet. As for the previous event, the model predicts the
proton intensities mainly within an order of magnitude. We
must, however, mention that our model is not developed
specifically for the prediction of the proton intensities during
magnetic storms which are rather rare events. Therefore,
prediction efficiency during geomagnetic storms is not
expected to be high.

To evaluate the statistical significance of our results, we use
a two-sided hypothesis test on the Spearman correlation. The
null hypothesis states that the predictions are uncorrelated to
the observations. For all five channels, we obtain a p value of 0,
or, more correctly, below the smallest positive number in
float64. Hence, we can reject the null hypothesis, i.e., the
predictions are correlated to the observations. Thus, we can
deduce from this result that our model learned the trend of
proton intensity.

4.3. Feature Importances

To investigate the importance of the individual input features
on the model’s prediction, we utilize permutation feature
importance (Fisher et al. 2019) since it is model-agnostic and
interpretable. For an investigated feature column, e.g., x, its
values are shuffled to break any association with the target
value, i.e., the proton intensity. Then, we re-calculate the
model’s prediction and evaluate the Spearman correlation
between the prediction and the original target values. The
feature importance is measured as the decrease in performance:
thus, a more substantial decrease in model performance
corresponds to a more important feature. Negative feature
importance is also possible when the prediction improves when
breaking an input feature’s association. We use bootstrapping
with 100 iterations and a subsampling fraction of 75% to
estimate the mean and variance of this statistic to assess the
significance.

Figure 8 shows the feature importance for each input
variable and channel. The parameters related to the location
show significantly higher importance than parameters related to
solar, solar wind, and geomagnetic activities. From those, on
average, the most vital dependence is seen for ZGSE and the
radial distance. In the ZGSE direction, the satellite crosses
more different magnetospheric regions, e.g., plasma sheet,
cusp, lobe, and magnetosheath, than in other directions. This
leads to stronger gradients of the proton intensities in this
direction; see also Figure 1. This, at least partially, explains the
strongest dependence on this parameter. The least important
location parameter is YGSE. From the other parameters, the
solar wind dynamic pressure is the most important parameter
for predicting the proton intensities, followed by, on average,
the AE index.

5. Discussion

We want to note that the most substantial linear dependence
of the proton intensities among the OMNI parameters is on the
VxSW_GSE, cf. the Pearson correlation in Figure 4. This linear
dependence is also evident in Figure 3. However, the feature
importance derived in our model indicates Pdyn and the AE
index as the most important OMNI parameters; cf. Figure 8. In
Figures 3 and 4, we always consider one input variable and one
output variable in isolation. The model, however, is not
restricted to do so, but rather can combine features to get
“latent features”, i.e., combinations of individual features or
their interaction.
The proton intensities’ dependency on different parameters

is generally very similar to the dependencies of the XMM SP
contamination count rates derived in Kronberg et al. (2020)
despite differences in the trajectories of the spacecraft. For
example, a clear dependence on rdist is similar in enhancing
the proton intensities and count rates between 17 and 19 RE.
For the YGSE dependency, we observe for both proton
intensities and SP count rates a decrease at YGSE; 0 RE and
dusk-ward asymmetry at distances YGSE;±10 RE. For the
XGSE dependency, we observe high proton intensities and SP
count rates between XGSE∼ 0 and 5 RE. Similar dependencies
are observed for the almost linear relation with VxSW_GSE up
to ∼−900 km s−1, for the Temp, Np up to 20 cm−3,
BimfxGSE and BimfyGSE up to |10| nT, AE index up to
∼700 nT and the SYM-H index within the range between
−150 and 50 nT. For Pdyn, the considered scale ranges are
very different, and, therefore, the resolution is different.
However, we still see an average increase of Pdyn with the
proton intensities/SP count rates at least up to 6 nPa. The only
considerable disagreement for the relations of the proton
intensities and parameters is observed for the F10.7 index. For
example, for the XMM count rates, one observes an increase
with the F10.7 index up to 150 sfu. However, the proton
intensities observed by Cluster show a decrease. We can draw a
relation to the complexity of the processes associated with the
solar cycle or/and to the bias related to the spacecraft trajectory
during the solar cycle. The Cluster mission was located closer
to the Earth during the years related to the 24th solar cycle
(higher proton intensities versus lower F10.7 index) which is
significantly weaker than the 23rd solar cycle during which the
XMM measurements were done (lower proton intensities
versus higher F10.7 index). The highest Pearson correlation
derived for the proton intensities/SP count rates are the ZGSE,
rdist, and VxSW_GSE in both cases. In conclusion, based on
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Figure 5. The observed (x-axis, in this case zero values are dropped) vs. the predicted (y-axis) proton intensities for the energy channels p1 to p5 from the training
(left) and the test (right) set. The color represents the number of samples in the corresponding bin, where a good model will predict most of the intensities along the
diagonal, i.e., closely matching the measurements. The underlying model for those plots is the best MLP determined according to the validation Spearman correlation
for channel p1.
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Figures 3 and 4 our energetic proton observations indicate that
it is likely that they could be a cause of the XMM SP
contamination. The physical processes leading to proton
energization associated with high solar wind speed are related,
for example, to the formation of the quasi-parallel shock,
acceleration processes associated with reconnection at the day

side, magnetospheric storms, and substorms; see more detailed
discussion in Kronberg et al. (2020).
The dependencies of proton intensities and SP count rates on

the different parameters are generally similar. A notable
difference is that Pdyn and the AE index had the highest
importance of the proton intensities in the MLP model. In

Figure 6. Predicted intensities (red) vs. measured intensities (blue, in this case; zero values are dropped) within the time interval on 2015 September 19 from 01:15 to
20:30 UT.
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contrast, the SP count rates in the extra random forest model
had the highest importance for the VxSW_GSE and F10.7 index
(from the solar, the solar wind, and geomagnetic parameters).
This difference most likely occurs because of using different
non-linear models and different observation lengths (one versus
one and a half solar cycles). Another possible reason is that the

Cluster trajectories cover the plasma sheet much more
thoroughly than those of the XMM. The plasma sheet
dynamics is strongly related to substorm activity indicated by
the AE index and is strongly dependent on Pdyn. In the study
by Smirnov et al. (2019) based on Cluster observations, the
dependence of the electron intensities at L-shells between 4 and

Figure 7. Predicted intensities (red) vs. measured intensities (blue, in this case; zero values are dropped) within the time interval on 2015 October 07 from 06:00 to
12:00 UT. During this time interval, a magnetic storm was observed with SYM-H index dropping almost down to −90 nT.
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6 for ∼1.5 solar cycle (approximately the same period as in our
study) was also the best correlated with the Pdyn and AE
index. The electron intensities in the outer radiation belts are
governed by the substorm associated activity in the plasma
sheet and acceleration processes related to charged particle
injections/dipolarizations(e.g., Gabrielse et al. 2014; Malykhin
et al. 2018) as well as associated loss mechanisms. The proton
intensities are also enhanced during such injections.

In this work, we have tried to include a wide range of the
history of the solar and geomagnetic parameters. However,
they did not improve the model. The solar wind–magneto-
sphere energy coupling functions (e.g., Gonzalez et al. 1994;
Milan et al. 2012; Wang et al. 2014) are not considered in this
work and are beyond the scope of this paper.

6. Conclusions and Outlook

Using 17 yr of Cluster/RAPID observations, we have
derived a machine-learning-based model for predicting proton
intensities at energies from 28 to 962 keV in the 3D terrestrial
magnetosphere between 6 and 22 RE. As predictors, we used
the location, solar, solar wind, and geomagnetic activity
indices. The results demonstrate that the neural network’s
(MLP) prediction capabilities exceed the baselines based on the
kNN and historical binning on average by ∼80% and ∼33%,
respectively. The average correlation between the observed and
predicted data is about 56% despite the complex dynamics of
the energetic protons in the magnetosphere. The most
important parameters for predicting proton intensities in our
model are the ZGSE direction and the radial distance, both
related to location. The most important predictor of solar, solar
wind, and geomagnetic activity is the solar wind dynamic

pressure. The results are in general agreement with the study by
Kronberg et al. (2020) on the characteristics of the SP
contamination in the XMM-Newton telescope. The results
can directly be applied in practice, e.g., to assess the
contamination of X-ray telescopes as well as better determine
the contamination risk for various future mission concept
orbits.
Based on this experience, in our future study, we plan to

derive a tailored machine-learning model for predicting the
proton intensities at different energy channels along the XMM
trajectory. In a future study, we want to use the same time
interval and location in the magnetosphere to avoid possible
biases. The aim will be to find which energies of proton
intensities correlate most strongly with the SP count/rates. The
results of the tailored model will be compared with the results
of this model.
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acknowledge the use of NASA/GSFC’s Space Physics Data
Facility’s OMNIWeb service and OMNI data. This work was
conceived within the team led by Fabio Gastaldello on “Soft
Protons in the Magnetosphere focused by X-ray Telescopes” at
the International Space Science Institute in Bern, Switzerland.
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McKinney 2010), Matplotlib (Hunter 2007).

Figure 8. Permutation feature importance in the logarithmic (base 10) scale calculated for the MLP model on the test set. Original negative values of the feature
importance are shown in gray color.
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Appendix

Figure 9 demonstrates the distributions of the number of
samples for the predictors and the proton intensities at different

energies (on the vertical axis) in a corresponding range of
values (on the horizontal axis).
Table 6 shows the search space for hyper-parameter

optimization and the best values found for the MLP model.

Figure 9. Histogram of the number of samples of predictors and proton intensities used in the model. The intensities per channel are in log10 space.
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Search Space for Hyper-parameter Optimization and the Best Values in the
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Parameter Search Space Best Value

Multi-layer Perceptron

Number of Layers (2, 5) 2
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Optimizer

Batch Size (32, 256) 56
Learning Rate (10−6, 10−3) 0.00046
L2 Penalty (0, 10−2) 0.00882
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