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A B S T R A C T   

Sensitivity analysis (SA) as a ‘formal’ and ‘standard’ component of scientific development and policy support is 
relatively young. Many researchers and practitioners from a wide range of disciplines have contributed to SA 
over the last three decades, and the SAMO (sensitivity analysis of model output) conferences, since 1995, have 
been the primary driver of breeding a community culture in this heterogeneous population. Now, SA is evolving 
into a mature and independent field of science, indeed a discipline with emerging applications extending well 
into new areas such as data science and machine learning. At this growth stage, the present editorial leads a 
special issue consisting of one Position Paper on “The future of sensitivity analysis” and 11 research papers on 
“Sensitivity analysis for environmental modelling” published in Environmental Modelling & Software in 2020–21.   

1. The topic 

Sensitivity analysis (SA) is the tool to gauge how the inference 
originating from a model is dependent upon the assumptions and pa-
rameters feeding into it. SA tackles the trade-off between model 
completeness and model interpretability, i.e. when the complexity of a 
model is justified by the quality of the data feeding into it, and for many 
other applications linked to the quality of models. Sensitivity analysis 
could thus be seen as the hermeneutics of mathematical modelling, to 
discern the meaning carried by the model under its mathematical and 
algorithmic formalism. 

SA has been historically, but informally, a fundamental underpin-
ning of scientific discovery and human decision making. Consider for 
example the classic laws of sliding friction, whose discovery is 
commonly attributed to the experiments by Leonardo da Vinci in the 
15th century (Hutchings, 2016). These laws state that the friction force 
acting between two sliding surfaces is proportional (i.e., linearly sensi-
tive) to the load pressing the surfaces together, but is independent of (i. 
e., insensitive to) the apparent contact area between the two surfaces. 
These laws were discovered by a series of physical experiments designed 
informally based on basic principles of SA, changing one factor at a time 
in a system and assessing the impact of that change. 

In the early 20th century, the need for the efficient design of physical 

and chemical experiments, to acquire representative information about 
the existence or strength of effects of one or multiple variables on 
another variable in a system, was the motivation for the development of 
a new paradigm called ‘design of experiments’ (DOE) (Fisher, 1953). 
DOE was a first step towards formalization of sensitivity analysis. Later 
in the century, the birth and growth of computational models of 
real-world systems demanded newer paradigms to enable answering 
SA-type questions in the context of complex and high-dimensional, but 
cheap-to-run, computer experiments. In response to this demand, in the 
1980s and 90s, SA as a formal way of thinking started to materialize 
(Sobol’, 1993). 

In the last few years, the SA community has gained visibility and 
assertiveness, thanks to the efforts of the community, and to the journal 
Environmental Modelling & Software (EMS) which has seen SA as an 
essential discipline and set of tools for studying environmental system 
models. Of particular note is a manifesto for good modelling practices 
published by Nature (Saltelli et al., 2020) that also acknowledged the 
fundamental role of sensitivity analysis. Another recent recognition of 
SA’s service role is a paper on major challenges in socio-environmental 
system modelling (Elsawah et al., 2020) appearing in the same period. 
The challenges coincide with several of the topics flagged by the SA 
community. 

Now, SA has started finding applications beyond conventional 
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computational models, in areas such as machine learning and data sci-
ence. In the context of machine learning, different recently developed 
heuristics to facilitate feature and structure selection and to address is-
sues around explainability and interpretability are rooted in principles 
of SA (see Bach et al., 2015; Galelli et al., 2014; Samek and Müller, 2019; 
Toms et al., 2020, or Razavi et al., 2020b for a review). Further 
formalization and standardization of SA approaches and tools in the 
field of machine learning can be instrumental in addressing the grand 
and emerging challenges that machine learning is facing in terms of 
explainability and interpretability and therefore falsifiability (Razavi, 
2021; Rudin, 2019). 

Finally, SA is now emerging as a paradigm that can directly deal with 
data, in the absence of any model describing the underlying system that 
the data is collected from (Pianosi and Wagener, 2018; Plischke et al., 
2013; Sheikholeslami and , 2020). The ‘given-data’ SA can provide 
unprecedented opportunities for scientists and practitioners across a 
wide range of disciplines to interrogate available datasets of any size, 
small or large and on a range of in-situ and remotely-sensed variables, to 
learn about their correlational or possibly causal relationships. 

2. The SAMO conferences 

Started in 1995 in Belgirate, Italy, and held since then every three 
years, the SAMO (sensitivity analysis of model output) conference series 
has been instrumental in creating a community of practitioners in what 
was once an archipelago of teams and disciplines.1 Unlike many other 
disciplines, the field of SA does not owe relevance to a specific discipline 
only, and many researchers, typically with vastly different research and 
educational backgrounds, have contributed to it over the years. SAMO 
has been central to bringing a ‘community’ feeling to this field. Because 
of all these efforts, SA is now beyond its original settings such as factor 
ranking or prioritization and its potential extends well into evidence 
based policy, data science and machine learning. In accord with the 
increasing prominence and relevance of SA, a web site is being con-
structed to link all conference pages.2 

3. The special issue and contributions 

The papers which make up this special issue for SA have been 
appearing in the journal of Environmental Modelling & Software (EMS) 
between 2020 and 2021. These two years bracket the 9th international 
SAMO conference, held at the Open University of Barcelona in October 
2019 (Open University of Catalonia, 2019), and the next 10th confer-
ence to be held in March 2022 in the USA, at Florida State University 
(Florida State University, 2022). 

The issue includes a major effort from the SAMO community, an EMS 
Position Paper signed by as many as twenty six practitioners of the 
discipline (Razavi et al., 2021), entitled “The Future of Sensitivity 
Analysis: An essential discipline for systems modeling and policy sup-
port”, and 11 research papers, many originating from SAMO 2019 (Open 
University of Catalonia, 2019). All papers can be reached via the jour-
nal’s homepage (Razavi et al., 2020a). More papers from the same 
SAMO 2019 event are collected in a twin special issue in the journal 
Reliability Engineering and System Safety (RESS) (Iooss and Sudret, 
2021). 

The Position Paper maps the open challenges which need to be 
tackled to fully transform SA into a recognized discipline, from the need 
to identify best practice and the attendant teaching material to the 
tackling of applications in new domains (Fig. 1, from Razavi et al. 
(2021)). 

The Position Paper also discusses how to engage more with model-
ling in the social sciences, which is one of the great challenges identified 

in Toms et al. (2020), and with the decision sciences. Incorporating 
input from the social sciences for the quality of models is also an 
important topic, as discussed in Bammer et al. (2020). Another theme 
discussed in the Position Paper is how to tackle ‘Deep Uncertainty’ 
problems, following the interesting discussion on the topic in relation to 
the present pandemic (Saltelli et al., 2020; Steinmann et al., 2020). A 
major challenge is also undertaking uncertainty analysis on models with 
high runtimes. Efficient sampling methods and model emulation tech-
niques are required to address it, as well as discussing with modellers 
when these analysis are worth the effort and the prioritization of 
computational resources that they demand. 

One field of potential development identified in the Position Paper is 
machine learning. Almost all approaches toward interpretability and 
explainability are ‘informally’ and sometimes ‘formally’ based on SA. 
The recent use of sensitivity analysis in the context of variable selection 
in regression (Becker et al., 2021), by practitioners acquainted with 
sensitivity analysis literature, confirms that similar developments are 
also possible for machine learning - likely to be a hot application for SA 
in the coming years. In addition, most often, emulators (cheap surrogate 
models developed from the full model representation), typically rooted 
in machine learning, are used to generate sensitivity measures such as 
Sobol’. 

The other papers in the present special issue represent an interesting 
compilation of ongoing SA research topics: comparing the efficiency of 
existing SA methods (Puy et al., 2021a; Azzini et al., Rosati); SA for 
spatially and temporally distributed outputs (Roux et al., 2021); SA for 
problems with dependent variables (Il Idrissi et al., 2021); development 
of new software tools for SA (Kimet al., 2021); development of efficient 
visualization approaches to understand SA results (Şalap-Ayça et al., 
2021); application of SA to statistical modelling problems such as pro-
pensity score matching (Woo et al., 2021); combining methods such as 
variance based and distribution based (Baroni and Francke, 2020); and 
new applications of SA to large models (Korgaonkar et al., 2020; Susini 
and Todd, 2021). 

4. The road to SAMO 2022: conclusions and challenges ahead 

Historically, various heuristics based on principles of SA (but not 
named so) have been the fundamental underpinnings of a variety of 
analyses in modelling and decision making. 

Such a process has a long history of application, perhaps in all areas 
of science. Examples include: assessment of the effectiveness of a deci-
sion option in a policy-making problem; the impact of a problem 
constraint on the optimality of a cost or benefit function via shadow 
prices; or the role and function of a model parameter in generating a 
model output. Such analyses are generally referred to as ‘Local Sensi-
tivity Analysis’. Often, not having gone through the learning curve of the 
SAMO community, these applications leave scope for improvement in 
terms of multidimensional exploration of the input space via a specific 
design of experiment. 

Now that SA is gradually being recognized as an independent disci-
pline with its own community, an available handbook with different 
language versions (Douglas-Smith et al., 2020; Saltelli et al., 2008; Wu 
et al., 2018) and various software tools (Adams, 2020; Baudin et al., 
2017; Herman and Usher, 2017; Iooss et al., 2018; Kucherenko and 
Zaccheus, 2018; Marelli and Sudret, 2014; Noacco et al., 2019; Puy 
et al., 2022; Razavi et al., 2019; Tong, 2015), SAMO’s effort to 
disseminate what SAMO does best must be redoubled. 

SAMO should also continue its tradition to go beyond an analysis of 
‘just’ model parameter or structural uncertainty, opening up to norma-
tive or framing dimensions in the analysis of the quality of a model, as 
discussed in both the manifesto and the Position Paper (Saltelli et al., 
2020; Razavi et al., 2021). SA is now well-positioned to guide the pro-
cess of scenario generation about the possible future states of the world 
to address societal needs by identifying dominant controls of human-
–natural systems (Razavi et al., 2020c; Ghoreishi et al., 2021; Puy et al., 

1 All SAMO proceedings 1995–2019 are stored at https://bit.ly/3zJPmCe.  
2 See also https://www.gdr-mascotnum.fr/samo.html. 
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2021b), see also the growing literature around sensitivity auditing, an 
extension of SA to policy relevant modelling studies (Saltelli et al., 
2013). 

A challenge for the SAMO community is how to reach out to mod-
ellers in all disciplines to support not only good practices and ongoing 
method development for their problem contexts, but also to avoid 
rediscovery and relabeling of established SA methods in different ap-
plications. One area where there is likely scope for cooperation is be-
tween the SA community and modellers engaged in ‘ensemble 
modelling’, e.g. in climatic studies (Parker, 2013). The application of 
uncertainty and sensitivity analysis may lead to a reconsideration of the 
severity of environmental threats based on point estimates (Puy et al., 
2020), and their use is hence to be advised in the making of ecological 
policies. 

The “coming of age” mentioned in the title of our editorial will not be 
without devoted efforts and the occasional conflict. But the payoff in 
terms of societal acceptance of mathematical models justifies it. 
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