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a b s t r a c t

Given an undirected graph G = (V , E) and a positive integer k ∈ {1, . . . , |V |}, we initiate
the combinatorial study of stable sets of cardinality exactly k in G. Our aim is to instigate
the polyhedral investigation of the convex hull of fixed cardinality stable sets, inspired
by the rich theory on the classical structure of stable sets. We introduce a large class of
valid inequalities to the natural integer programming formulation of the problem. We
also present simple combinatorial relaxations based on computing maximum weighted
matchings, which yield dual bounds towards finding minimum-weight fixed cardinality
stable sets, and particular cases which are solvable in polynomial time.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

We investigate a problem that is appealing to different research directions around algorithms, combinatorics and
ptimization. Let G def

= (V , E) be a finite, simple, undirected graph, and denote n def
= |V |, and m def

= |E|. A stable set (or
ndependent set, or co-clique) in G consists of a subset of pairwise non-adjacent vertices. Given k ∈ {1, . . . , n} and a
ertex-weighting function w : V → Q+, the k stable set problem consists in finding a minimum weight stable set of
ardinality k in G, or deciding that none exists. Note that k is also part of the input to this problem; if it were an arbitrary
ixed integer, the enumeration and optimization problems over stable sets of that cardinality could be solved in time
olynomially bounded by a function of n.

.1. Our contribution

The main idea of this work is to initiate the combinatorial study of fixed cardinality stable sets, introducing the first
esults in selected directions. We consider the problem first from the polyhedral standpoint, then we give efficiently
omputable dual bounds for the optimization problem, and conclude with graph classes where it can be solved in
olynomial time. The different angles from which we study the problem are definitely inviting for further research. Indeed,
ome basic questions about our results are left open in the form of conjectures throughout the text.
To summarize, the contributions of this article include:

1. We draw attention to the fixed cardinality version of a classical structure in combinatorial optimization and graph
theory, shedding light on its appeal to different research directions, besides motivating its application in the MSTCC
problem.

✩ A preliminary version of this work appears in the conference proceedings of the 18th Cologne-Twente Workshop on Graphs and Combinatorial
Optimization (Samer and Haugland, 2020) [28].

∗ Corresponding author.
E-mail addresses: samer@uib.no (P. Samer), dag.haugland@uib.no (D. Haugland).
https://doi.org/10.1016/j.dam.2021.01.019
0166-218X/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).

https://doi.org/10.1016/j.dam.2021.01.019
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2021.01.019&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:samer@uib.no
mailto:dag.haugland@uib.no
https://doi.org/10.1016/j.dam.2021.01.019
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


P. Samer and D. Haugland Discrete Applied Mathematics 303 (2021) 137–148

1

s

c
f
h
a
c
s
c
|

2. We show in Section 2 that the fixed cardinality stable set polytope is not 1
p -integral, for any integer p > 1. Thereafter

we introduce an exponential class of valid inequalities to that polytope, whose separation problem is interesting in
its own right.

3. We describe a combinatorial relaxation of the optimization problem in Section 3, where lower bounds are calculated
using maximum weighted matchings. Given the efficiency of the corresponding algorithm, this technique can be
extended as a building block in different solution approaches.

4. We prove in Section 4 that the problem can be solved in polynomial time when the input is restricted to some
important graph classes, including cluster, complete multipartite, split, threshold, and line graphs.

.2. Motivation from conflict-free spanning trees

Our original motivation for considering fixed cardinality stable sets stems from the NP-hard problem of minimum
spanning trees under conflict constraints (MSTCC). Given a graph G def

= (V , E) and a set of conflicting edge pairs C ⊆ E ×E, a
conflict-free spanning tree in G is a set of edges T ⊆ E inducing a spanning tree in G, such that for each (e, f ) ∈ C , at most
one of the edges e and f is in T . The MSTCC problem, introduced by Darmann et al. [13,14], asks for such a conflict-free
spanning tree of minimum weight.

Different combinatorial and algorithmic results about the MSTCC problem explore the associated conflict graph H def
=

(E, C), which has a vertex corresponding to each edge in the original graph G, and we represent each conflict constraint
by an (undirected) edge connecting the corresponding vertices in H . Note that each conflict-free spanning tree in G is
a subset of E which corresponds both to a spanning tree in G and to a stable set in H . Therefore, one can equivalently
earch for stable sets in H of cardinality exactly |V | − 1 which do not induce cycles in the original graph G.
It is not hard to devise different approaches for studying the MSTCC problem exploring the connection with fixed

ardinality stable sets. For the sake of illustration, consider the relax-and-cut approach described by Lucena [20] for the
ixed cardinality set partitioning problem. The author of that work developed a Lagrangean framework where dual bounds,
euristics and variable fixing tests are computed as a preprocessing phase, resulting in an easier problem to be handled to
n integer programming (IP) solver. Note that the Lagrangean bounds are strengthened by dynamically introducing valid
onstraints, including those from the exponential family of clique inequalities. Now, an analogue towards conflict-free
panning trees could be described as follows. Given the original graph G = (V , E), the conflict graph H = (E, C), and costs
∈ Q|E|

+ on edges of G, denote by C
def
= C(H, |V | − 1) the polytope of stable sets in H which have cardinality equal to

V | − 1. Using binary variables x ∈ {0, 1}|E|, we recast the MSTCC problem as

min {cx : Ax ≤ b, x ∈ C} , (1)

where the system {aix ≤ bi}mi=1 corresponds to the subtour elimination constraints (SEC):
{∑

e∈E(S) xe ≤ |S| − 1 : S ⊂ V ,

S ̸= ∅

}
. Thus, the number m of inequalities is an exponential function of |V |. Dualizing all the SEC, with the introduction

of multipliers λ ∈ Rm
+
, we have a lower bound to (1) given by the Lagrangean Relaxation Problem

LRP(λ) def
= min {(c + λA)x − λb : x ∈ C} , (2)

and the best-possible bound is attained by solving the Lagrangean Dual Problem

LDP def
= max

{
LRP(λ) : λ ∈ Rm

+

}
. (3)

There are two main challenges in this approach. First, the issue of dualizing exponentially many inequalities is dealt
with (in a subgradient method) by a clever selection of active constraints among those which are currently or previously
violated, while arbitrarily setting to zero the subgradient vector entries corresponding to null multipliers; see [20, Section
1.2]. The second issue is how to optimize over C, to solve LRP(λ) in (2). In order of decreasing generality, we note that:

(i) The obvious relaxation would have been to also dualize edge inequalities in H (that is, xu + xv ≤ 1 for {u, v} ∈ C),
introducing a new set of Lagrangean multipliers µ ∈ R|C |

+ , and solving instead the easy problem

LRP ′(λ, µ) def
= min

{
(c + λA + µM)x − λb − µ :

∑
e∈E

xe = |V | − 1

}
, (4)

where M denotes the incidence matrix of the conflict graph H .
(ii) If more information on H is available (e.g. sparsity, structural decomposition), that could be translated as a better

approximation of C in the relaxed problem. For instance, if there is a natural decomposition of H into few connected
components, one could design instead the special case of a Lagrangean Decomposition, with different primal
variables for each component, dualizing the constraints equating the different variables [16, Section 7]. Alternatively,
if strong valid inequalities for C are known, they could be used towards a relaxation which is between (4) and (2).
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(iii) If H belongs to a graph class where the fixed cardinality stable set problem becomes solvable in polynomial time,
then we can solve problems (2) and (3) as stated above. Note that stronger bounds should follow in this case, since
more problem information is embedded in the relaxation.1

Our presentation of this first relax-and-cut approach for the MSTCC problem is limited to the above outline. We argue
hat results of different nature from research on the k stable set problem (e.g. integer programming formulations and valid
nequalities, well-solved particular cases, primal and dual bounds) could provide fundamental components to advance
nowledge on the MSTCC problem as well.

.3. Further related work

It is surprising that the combinatorics and optimization literature has not addressed the k stable set problem problem
n depth before. Note, for instance, that the thorough survey on fixed cardinality versions of combinatorial optimization
roblems by Bruglieri et al. [7] does not mention stable sets, in spite of the major role played by that structure throughout
he development of polyhedral combinatorics.

The convex hull of stable sets of cardinality at most k was studied by Janssen and Kilakos [18], but only for k ∈ {2, 3}.
part from that article, it has also appeared as part of an algorithm for a variant of the survivable network design
roblem [6, Chapter 2], where only an alternative proof of one of the original results by Janssen and Kilakos [18] is given.

hin graphs and frequency assignment problems. The early work of Mannino et al. [21] introduces an interesting class of
raphs, as well as a cardinality-constrained stable set problem, and their application in the efficient solution of real-world
nstances of a frequency assignment problem. We explain next the result which is most relevant to our work, and also
erive an initial fact about the problem that we study.
Given an ordering {v1, . . . , vn} of the vertices of a graph G = (V , E), and a partition V =

⨄k
i=1 Vi, let N(vj, h)< denote

he set of vertices in Vh of order lower than j which are non-adjacent to vj. The ordering and the partition are called
onsistent if the only vertices in Vh of order lower than j and non-adjacent to vj are the first

⏐⏐N(vj, h)<
⏐⏐ ones.

A graph G is k-thin if there is such an ordering of the vertices and a partition of V into k classes which are consistent.
he thinness of a graph is the smallest k such that G is k-thin. Now, if k = 1, this gives a characterization of interval
raphs (those graphs for which an intersection model consisting of intervals on a straight line can be defined). Specifically,
= (V , E) is an interval graph if and only if there exists an ordering {v1, . . . , vn} which is consistent (with V = V1, the

rivial partition).
Then, the authors prove:

heorem (2.12 in [21]). Given G = (V , E), together with an ordering and a partition V =
⨄k

i=1 Vi which are consistent, and
∈ Zk

+
, a maximum (minimum) weighted stable set S, with |S ∩ Vi| = di for each i ∈ {1, . . . , k}, can be determined in time(

|V | · (ρ + 1)k−1
· (1 + max1≤i≤k di)k

)
, where ρ denotes the largest amount of neighbours of lower order that a vertex has

in some class of the partition (thus, ρ ≤ ∆(G), the largest degree of a vertex in the graph).

Note that they have therefore introduced a different cardinality-constrained version of the stable set problem, more
eneral than the one we study in this work. Thereafter, the excellent computational results on large instances of the
requency-assignment application they describe depend crucially on the efficient solution of this generalized problem on
|H|-thin conflict graph, where H is a special set of transmitters in the input.
Finally, we remark that setting k = 1, although not interesting in their application, gives an initial result for our

roblem of interest. For k = 1, the consistent ordering in the above theorem implies that G is an interval graph, and that
n optimal stable set of fixed cardinality d can be found in time bounded by O (n · (1 + d)), which is in O

(
n2

)
.

Corollary 1. If G is an interval graph, the problem of finding a minimum-weight stable set of fixed cardinality in G is in P.

Extension complexity. The fixed cardinality stable set polytope also appears briefly in the recent and rapidly developing
theory of parameterized extension complexity. This line of research aims to develop bounds on the number of inequalities
necessary to describe a given polytope as the projection of a higher dimensional one. While that number can be
polynomially bounded (as a function of the number of vertices in the input graph) for a few particular cases of the classical
stable set and vertex cover polytopes, some striking negative results show how large that number can be in general.

There are two main categories of such results in the current literature. One is proving the hardness of approximating a
polytope by an extended formulation, such as the work of Bazzi et al. [2], who prove that for all n sufficiently large, there
exist graphs on n vertices such that every linear programming (LP) or even semidefinite programming (SDP) relaxation
of polynomial size for the stable set polytope on those graphs has integrality gap of ω(1).

Another category is designing (exact) extended formulations of fixed-parameter tractable (FPT) size complexity. Still
on the negative side, it was recently proved by Gajarský et al. [15] that, regardless of any computational complexity

1 Contrast with the fact that, even if the classical stable set problem on H can be solved in polynomial time, the MSTCC problem with H as a
onflict graph need not be solvable in polynomial time (the original NP-hardness proof of Darmann et al. [14] makes the further assumption that
he conflict graph is a collection of disjoint paths of length 2).
139



P. Samer and D. Haugland Discrete Applied Mathematics 303 (2021) 137–148

a
s
g

P
s

r
a

ssumptions, the stable set polytope cannot have a FPT extension for all graphs (naturally parameterized by the solution
ize). On the positive side, the authors show that linear size FPT extensions do exist for the class of bounded expansion
raphs. Even before, it was proved by Buchanan and Butenko [9] that, when parameterized by the treewidth of G, tw(G),

the extension complexity of the stable set polytope on G is in O(2tw(G)n). Afterwards, Buchanan [8] proved bounds for FTP
extended formulations for vertex cover polytopes parameterized by the solution size. Interestingly, in a lemma towards
his main result, the author proves that the fixed cardinality stable set polytope for graphs of largest degree at most 2 is
given by edge and odd-cycle inequalities alone.

2. Polyhedral results

For any graph G, we denote by V (G) and E(G) the sets of vertices and edges of G, respectively. For conciseness, we
abbreviate ‘stable set of cardinality k’ as k-stab. The family of all k-stabs in G is denoted F(G, k). Recall that the incidence
vector of any S ⊂ V is χ S

∈ {0, 1}V defined by χ S
i = 1 if i ∈ S, and χ S

i = 0 if i ∈ V\S; so the central object of our interest
is C(G, k) def

= conv
{
χ S

: S ∈ F(G, k)
}
, i.e. the convex hull of incidence vectors of all the k-stabs in G.

The natural integer programming (IP) formulation for minimum-weight k-stabs in G is

z def
= min

{∑
v∈V

w(v)xv : x ∈ P(G, k) ∩ {0, 1}n
}

, (5)

where P(G, k) denotes the polyhedral region defined by:∑
v∈V

xv = k (6)

xu + xv ≤ 1 ∀ {u, v} ∈ E (7)

0 ≤ xv ≤ 1 ∀v ∈ V (8)

Constraints (7) are known as edge inequalities, imposing that no two adjacent vertices belong to the selection in x. Together
with bounds (8), they determine the fractional stable set polytope [29, Section 64.5].

Recall that a vector z is half-integer if 2z is integer (more generally, we say that z is 1
p -integer if pz is integer). A

classical result of Nemhauser and Trotter [24] shows that the fractional stable set polytope is half-integer, i.e. all its vertices
are

{
0, 1

2 , 1
}
-valued. Since that is the starting point for a series of both polyhedral and algorithmic advances, one could

ask whether that result holds for P(G, k) as well. Unfortunately, we discovered the negative answer to an even broader
question, as we show next.

Theorem 2. For each p ≥ 2 and each k ≥ 2, there exists a graph G such that P(G, k) is not 1
p -integer.

roof. Given p ≥ 2 and k ≥ 2 arbitrary, we determine n ∈ Z+, a graph G on n vertices, and a convenient point z ∈ Rn

uch that z is a vertex of the polyhedron P(G, k) which is not 1
p -integer.

First, we choose n = n(p, k) such that the point z def
= (

n−1 entries  
1/p+1 , · · · , 1/p+1 , p/p+1) satisfies the equality constraint (6):∑

v∈V xv = k. That is,

z1 + · · · + zn =
1

p + 1
+ · · · +

1
p + 1

+
p

p + 1
= (n − 1)

1
p + 1

+
p

p + 1
= k, (9)

and we therefore set n def
= p(k − 1) + k + 1. Consider next G def

= Sn−1 = K1,n−1, the star on n vertices (illustrated in Fig. 1).
We can show that z is a vertex of P(Sn−1, k) ⊂ Rn using the equivalence of vertices, basic feasible solutions and extreme

points of polyhedra; see e.g. [4, Section 2.2]. Besides satisfying all equality constraints, a basic solution of a polyhedron
embedded in Rn must have n constraints

(i) which are active (equiv. satisfied at equality) at z, and
(ii) whose corresponding vectors in Rn are linearly independent.

The equality constraint (6) is satisfied by construction of the point z in (9). The graph G = Sn−1 has an edge {vi, vn} ∈

E(G) for each i ∈ {1, . . . , n − 1}, and the corresponding edge inequality (7) is active at z: xvi + xvn =
1

p+1 +
p

p+1 = 1. It
emains to verify that the coefficient vectors of those n constraints are linearly independent. Indeed, arranging the vectors
s rows of matrix An×n,

An×n =

⎛⎜⎜⎜⎜⎝
a1,1 a1,2 a1,3 · · · a1,n−1 a1,n
a2,1 a2,2 a2,3 · · · a2,n−1 a2,n
a3,1 a3,2 a3,3 · · · a3,n−1 a3,n
...

...
...

. . .
...

...

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
1 1 1 · · · 1 1
1 0 0 · · · 0 1
0 1 0 · · · 0 1
...

...
...

. . .
...

...

⎞⎟⎟⎟⎟⎠ ,
an,1 an,2 an,3 · · · an,n−1 an,n 0 0 0 · · · 1 1
140
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Fig. 1. The star graphs S4, S5 and S6 .

t follows that det A = (−1)n(n − 2) ̸= 0, and the row vectors are indeed linearly independent. Since z is also feasible
as the bounds 0 < 1/p+1 < p/p+1 < 1 are satisfied by construction), it is a basic feasible solution, and thus a vertex of
(Sn−1, k).
Finally, p ·

1
p+1 =

p
p+1 is not an integer (but a proper fraction), and it is clear that pz is not an integer point. Therefore,

the vertex z is not 1
p -integer, and the result follows. □

2.1. The unsuitable neighbourhood inequalities (UNI)

We introduce next a class of valid inequalities for C(G, k), exploring the relationship between k, the size of the
neighbourhood N(S) def

= {u ∈ V\S : ∃ {u, v} ∈ E for some v ∈ S} of any set S ⊂ V , and how many vertices from S can
appear in any k-stab. First, denoting the set of neighbours of a vertex v ∈ V by δ(v), that is δ(v) = N({v}), one can
immediately observe that no vertex which has too many neighbours to still build a k-stab can be chosen. This gives the
following simple preprocessing test.

Proposition 3. If x is the incidence vector of any k-stab, and v ∈ V is such that |δ(v)| > n − k, then xv = 0.

In an attempt to enforce an algebraic expression that enough vertices are left upon choosing a set S ⊂ V towards
building a k-stab, we introduce a class of exponentially-many constraints, which we refer to as unsuitable neighbourhood
inequalities (UNI).

Theorem 4. For each S ⊂ V such that 1 ≤ |S| < k and |N(S)| > n − k, inequality
∑

v∈S xv ≤ |S| − 1 is valid for C(G, k).

roof. From |S| < k, it follows that S is not a k-stab in itself. If S were a subset of any k-stab, there should be at least
− |S| vertices left to choose from, while no neighbour in N(S) can be selected towards building a stable set. That is

n − |S| − |N(S)| ≥ k − |S| , ∀S ⊂ V , 1 ≤ |S| < k,
⇔ |N(S)| ≤ n − k , ∀S ⊂ V , 1 ≤ |S| < k.

Since |N(S)| > n − k by hypothesis, S cannot be part of a k-stab. Therefore no incidence vector x of a k-stab induces
the selection of all the vertices in S, and the result follows. □

While Proposition 3 is clearly a special case of Theorem 4, one could ask whether the UNI indeed give a stronger
condition. The positive answer follows next.

Theorem 5. For any graph G and k > 1, the UNI imply the condition enforced by Proposition 3 in the description of C(G, k),
but the converse does not hold.

Proof. Let x be a vector satisfying all UNI. The inequalities in Proposition 3 are implied by the UNI with |S| = 1.
Suppose that S = {u} and |N(S)| = |δ(u)| > n − k. Then u cannot be extended to a k-stab and the UNI include
xu =

∑
v∈S xv ≤ |S| − 1 = 0, which is the condition on the former proposition.

Now the converse does not hold, i.e. even if |δ(v)| ≤ n− k for each v ∈ V , the UNI need not be automatically satisfied,
as the following counterexample shows (see Fig. 2). Consider the graph G def

= 2P3, which consists of two copies of the path
graph on 3 vertices put together, so that n = 6, and suppose that k def

= 3. Since all vertices have degree 1 or 2, it follows
that |δ(u)| ≤ n − k = 3 for each vertex u. On the other hand, with a test set S consisting of the two vertices of degree
2 in the middle of the paths, we have 1 ≤ |S| < k and |N(S)| = 4 > n − k, thus yielding the unsuitable neighbourhood
inequality given by

∑
v∈S xv ≤ |S| − 1 = 1 which separates from the convex hull C(G, k) any vector selecting those two

vertices. □

Proposition 6. In either of the following two conditions, the corresponding unsuitable neighbourhood inequality is redundant
in C(G, k): (i) if S ⊂ V is not independent, or (ii) if S ⊂ V is not minimal with respect to the condition |N(S)| > n − k.

Proof. If u, v ∈ S are adjacent vertices, the edge inequality xu + xv ≤ 1 implies
∑

v∈S xv ≤ |S| − 1.
Otherwise, let S ⊂ V with 1 ≤ |S| < k and N(S) > n − k be a given independent set, and suppose that T ⊊ S is such

that |N(T )| > n − k. The UNI corresponding to T is
∑

v∈T xv ≤ |T | − 1. Combined with xv ≤ 1 for each v ∈ S\T , it implies∑

the UNI corresponding to S, i.e. v∈S xv ≤ |S| − 1, which is thus redundant in the description of C(G, k). □
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Fig. 2. The graph 2P3 and the selection of its two central vertices.

Recall that the domination number γ (G) gives the least cardinality of a dominating set in G = (V , E), i.e. a subset D ⊂ V
such that every vertex u ∈ V\D has a neighbour in D. If a lower bound on the domination number of G is known, the
following result might be useful.

Proposition 7. If γ (G) ≥ k, then there exists no UNI for C(G, k).

Proof. Suppose there were S ⊂ V with 1 ≤ |S| < k and |N(S)| > n − k, and denote T def
= V\{S ∪ N(S)}. Note that any

vertex belongs to exactly one among S, N(S), or T ; then

|S| + |N(S)| + |T | = n H⇒ |S| + |T | = n − |N(S)| H⇒ |S| + |T | < n − [n − k] = k,

since |N(S)| > n− k. Now, S ∪ T would be a dominating set of cardinality strictly less than k, contradicting the hypothesis
that γ (G) ≥ k. □

On the algorithmic side, it is in general impractical to include a priori all minimal UNI in an IP formulation for a
black-box solver, since the number of those inequalities may grow exponentially with the size of the input (n, k). The
natural approach in this case is to try to cut off successive solutions x∗ to a linear programming (LP) relaxation, by finding
cutting planes corresponding to UNI violated at x∗, i.e. separating x∗ from C(G, k), or deciding that none exists. Answering
that question is known as the separation problem for a class of valid inequalities.

Definition 8 (Separation Problem for UNI). Given a graph G = (V , E), with n def
= |V |, k ∈ {2, . . . , n − 1}, and x∗

∈ [0, 1]n
satisfying the conditions that

∑
v∈V x∗

v = k and that x∗
u + x∗

v ≤ 1 for each {u, v} ∈ E, determine

i. either a set S ⊂ V , with 1 ≤ |S| ≤ k − 1 and |N(S)| ≥ n − (k − 1), such that
∑

v∈S x
∗
v > |S| − 1, in which case the

unsuitable neighbourhood inequality corresponding to S separates x∗ from C(G, k),
ii. or that no such set exists, in which case all UNI are satisfied at x∗.

We give next a slight reformulation of the separation problem which might be useful in future work. Given the input
[G, k, x∗

] corresponding to Definition 8, define y∗
∈ [0, 1]n such that y∗

v

def
= 1− x∗

v . Note now that
∑

v∈S x
∗
v > |S| − 1 if and

only if
∑

v∈S y
∗
v < 1. We thus have the following equivalent statement of the problem.

Definition 9 (Equivalent Formulation of the Separation Problem for UNI). Given a graph G = (V , E), with n def
= |V |,

k ∈ {2, . . . , n − 1}, and y∗
∈ [0, 1]n satisfying the conditions that

∑
v∈V y∗

v = n − k and that y∗
u + y∗

v ≥ 1 for each
u, v} ∈ E, determine

i. either a set S ⊂ V , with |N(S)| ≥ n−(k−1) and
∑

v∈S y
∗
v < 1, in which case the unsuitable neighbourhood inequality

corresponding to S separates x∗ def
= 1 − y∗ from C(G, k),

ii. or that no such set exists, in which case all UNI are satisfied at x∗ def
= 1 − y∗.

We consider this statement of the problem to be particularly appealing. Note that if S has size exactly k − 1, then
N(S)| ≥ n − (k − 1) implies that it would be a dominating set. Given the condition that adjacent vertices have y∗ values
umming up to at least 1, and that we require

∑
v∈S y

∗
v < 1, we would actually have an independent dominating set if

S| = k− 1, i.e. a subset of vertices which is both dominating and independent (stable). Now, allowing |S| ≤ k− 1 means
hat there might be q ∈ {0, 1, . . . , k − 2} vertices neither in S nor dominated by it. If we define a q-quasi dominating set
n a graph G = (V , E) to be a subset of vertices which is dominating in G[V\X], for some X ⊂ V , |X | ≤ q, our separation
roblem corresponds to finding a (k − 2)-quasi dominating set of weight at most 1, or deciding that none exists. (Recall
hat, for any graph G and U ⊂ V (G), the induced subgraph G [U] is a graph with vertex set U and all of the edges in E(G)
hich have both endpoints in U .)
We leave the open question of establishing the complexity of that problem.

onjecture 1. The separation problem for UNI is NP-hard.

.2. UNI separation with MIP heuristics

We discuss next an alternative to actually use the UNI in a branch-and-cut solver. This part of the text is only interesting

nder the assumption that the above conjecture is true.
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Besides the natural strategies of designing separation heuristics or including a priori some UNI corresponding to sets
of small cardinality, it might prove useful to explore an IP formulation of the separation problem. One can actually use
ood but not necessarily optimal solutions to that auxiliary IP, which give very effective cutting planes, for instance, in the
ontext of an example of optimizing over the first Chvátal closure [5, Section 5.4]. Most MIP solvers include a collection of
eneral purpose heuristics to accelerate the availability of integer feasible solutions, like local branching, feasibility pump
nd neighbourhood diving methods; see [17] for a recent survey.
The following is described in light of Definition 9, with input [G, k, y∗

]. We suppose further that the input is
preprocessed by the reduction rules:

(i) Remove any vertex v such that y∗
v = 1

(ii) Remove isolated vertices

Those operations do not change the problem answer, since a UNI is automatically satisfied if it contains a vertex with
y∗
v = 1, and since isolated vertices are not contained in a minimal set S corresponding to a UNI.
For each v ∈ V , let variables zv ∈ {0, 1} be such that zv = 1 if and only if v ∈ S, and wv ∈ {0, 1} be such that wv = 1

f and only if v ∈ N[S] = S ∪ N(S), the closed neighbourhood of S ⊂ V . Then, we have to determine

ρ = min

{∑
v∈V

y∗

v · zv : (z,w) ∈ PUNI(G, y∗) ∩ {0, 1}2n
}

, (10)

here PUNI(G, y∗) denotes the polyhedral region:∑
v∈V

(wv − zv) ≥ n − (k − 1) (11)

zu ≤ wv ∀u ∈ V , ∀v ∈ N[u] (12)∑
u∈N[v]

zu ≥ wv ∀v ∈ V (13)

zu + zv ≤ 1 ∀ {u, v} ∈ E (14)

0 ≤ zv ≤ 1 ∀v ∈ V (15)

0 ≤ wv ≤ 1 ∀v ∈ V (16)

he objective function in (10) accounts for the used y∗ budget, as prescribed in Definition 9. Inequality (11) guarantees
the minimum number of vertices dominated by S (excluding those which are in S). Inequalities (12) and (13) bind the
inary variables w and z, to enforce the domination condition that wv = 1 if and only if zu = 1 for some u ∈ N[v].
Inequalities (14) are redundant, being implied at integer points in PUNI(G, y∗) by (11) and the fact the input parameter

atisfies y∗
u + y∗

v ≥ 1 for each {u, v} ∈ E. Still, adding those inequalities is likely to tighten the LP relaxation bounds, and
ence speed up the overall optimization procedure.
The exact separation problem thus reduces to deciding if ρ < 1. The MIP heuristic, on the other hand, consists of

earching (e.g. allowing a MIP solver to run with a prescribed time limit) for any integer feasible solution (z′,w′) with
n objective value less than 1, which determines the UNI

∑
v∈S′ xv ≤ |S ′

| − 1, with S ′
=

{
v ∈ V : z ′

v = 1
}
, violated at

∗
= 1 − y∗.

. Combinatorial dual bounds

We concern next the possibility to compute dual bounds to problem (5) via a combinatorial relaxation, i.e. computing
lower bound to z def

= min
{∑

v∈V w(v)xv : x ∈ P(G, k) ∩ {0, 1}n
}

through a relaxation which is a new combinatorial
ptimization problem, and which is more tractable or interesting, for some reason. For instance, a key ingredient in a
ecent matheuristic for a class of generalized set partitioning problems [27] is an efficiently computable combinatorial
ound similar to the ones introduced here, even though the actual bounds are weaker than LP relaxation ones.
In this section, we write V = {v1, . . . , vn}, with the vertices indexed by non-decreasing weight, so that w(v1) ≤

(v2) ≤ · · · ≤ w(vn). Note that the most naïve lower bound corresponds to the selection of the k vertices of least weight
n G. That is,

z ≥

k∑
i=1

w(vi), (17)

hich corresponds to relaxing all of the edge inequalities (7) in the definition of P(G, k). We introduce a simple way of
elaxing fewer of those inequalities.

Recall that a matching in a graph is a subset of pairwise non-adjacent edges, that is, a subset of edges without common
ertices. While the facial structure of the matching polytope and combinatorial algorithms to find a maximum weighted
atching in a graph are well-known, the following result is less frequently used.
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emark 10. Finding a minimum-weight matching of a specified cardinality in a graph is a well-solved problem. More
enerally, for any l, u ∈ Z+, l ≤ u, the convex hull of incidence vectors of matchings M ⊂ E(G) such that l ≤ |M| ≤ u
s equal to the set of those vectors in the matching polytope of G satisfying l ≤ 1⊤x ≤ u, that is, l ≤

∑
e∈E(G) x(e) ≤ u

29, Section 18.5f].

heorem 11. Suppose that P(G, k) ∩ {0, 1}n ̸= ∅, so that z is well-defined in problem (5), and let S
def
= {v1, . . . , vk}.

(i) Let M ⊂ E be any matching in the induced subgraph G [S]. Then

b1(M)
def
=

k∑
i=1

w(vi) +

∑
{vi,vj}∈M,

i<j

[
w(vk+1) − w(vj)

]
is a lower bound on z.

(ii) Let ν ∈
{
1, . . . ,

⌊ k
2

⌋}
denote the maximum cardinality of a matching in G[S]. For 1 ≤ q ≤ ν, let Mq ⊂ E be any

matching in G [S] such that |Mq| = q. Then

b2 (M1, . . . ,Mν)
def
= max

1≤q≤ν

{
b1(Mq) +

q∑
h=2

[w(vk+h) − w(vk+1)]

}
is a lower bound on z.

roof. Note first that S is the vertex selection giving the trivial bound (17), which is also the first summand in the
efinition of b1. If there exists

{
vi, vj

}
∈ E, for any 1 ≤ i < j ≤ k, then S is not feasible and (17) is not tight. Since

ome (possibly all) vertices in S need to be replaced towards finding an optimal k-stab, an optimistic approach would be
o consider disjoint pairs of vertices which are not compatible with each other in S, i.e. a matching in G [S], and that we
ould form a k-stab by exchanging the vertex with larger weight in each pair with a hypothetical vertex in G\S with the
east possible weight: w(vk+1). Surely, there might not exist enough vertices with such weight in G\S, and even if that is
he case, the new pair could be incompatible (that is, adjacent in G). Still, to assume an additional value of w(vk+1)−w(vj)
o make feasible each matched pair of vertices

{
vi, vj

}
, i < j, yields a lower bound on the optimal value of z. This proves

(i), where only those additional values are added to the naïve bound.
The proof of (ii) follows from the same reasoning, while performing slightly less optimistic exchanges. Previ-

ously, we assumed the availability of enough vertices with weight w(vk+1) in G\S to replace the one with larger
weight on each matched pair in M . Now, we still get a lower bound on z if we use the actual weight of that many
ertices among the ones with lowest weight in G\S. More precisely: given matching Mq, to assume that replacing
vj : for each

{
vi, vj

}
∈ Mq, i < j

}
by {vk+h : for 1 ≤ h ≤ q} would give a k-stab is still a relaxation of problem (5).

e can thus increase bound b1(Mq), where we assumed w(vk+1) − w(vj) would suffice to replace each vj, by the
ccumulated differences

∑q
h=2 [w(vk+h) − w(vk+1)], and still get a lower bound on z. Finally, since we cannot anticipate

hich matching gives the greatest weight increase, we take the maximum bound among the ones attained by different
atching cardinalities in G[S]. □

emark 12. For each edge
{
vi, vj

}
∈ E(G[S]), with i < j, let c({vi, vj})

def
=

[
w(vk+1) − w(vj)

]
. Then, taking M to be

maximum weighted matching in G [S] with edge weights given by c gives the strongest bound b1(M) in Theorem 11.
nalogously, taking allMq, q ∈ {1, . . . , ν}, to be maximumweighted matchings gives the strongest bound b2 (M1, . . . ,Mν).

It is worth remarking that the graph G [S] would no longer be a model for the pairwise compatibility of the new
election of vertices after even a single such exchange operation. Therefore, in the case of both bounds b1 and b2, we
annot accumulate the additional value for non-disjoint conflicting pairs of vertices and still get a lower bound on z. That
s the rationale behind searching for matchings, and attaining dual bounds for z via a well-solved combinatorial problem.

We can generalize the reasoning behind the relaxations yielding bounds b1 and b2 in Theorem 11 by considering
atchings in the whole graph G, that is, not only in a proper induced subgraph. Since each k-stab contains at most one
ertex from each edge in a matching, we can simply pick the k vertices of lowest weight among: (i) the cheapest vertex
n each matched edge, and (ii) the remaining vertices not covered by the matching. So we have the following result.

heorem 13. Suppose that P(G, k) ∩ {0, 1}n ̸= ∅, so that z is well-defined in problem (5). Let M ⊂ E be any matching in
. Define ce

def
= w(vi) for each edge e =

{
vi, vj

}
∈ M, with i < j. Also define cu

def
= w(vu) for any vertex vu not covered

y the matching M. Then, the sum of the k lowest values among the c(·) is a lower bound on z. That is, given an order
1 ≤ c2 · · · ≤ c(n−|M|) on {ce}e∈M ∪{cu}u∈V\VM , where VM corresponds to the set of vertices covered by M, we have z ≥

∑k
i=1 ci.

The drawback involved in this statement is that, while the actual algorithm to compute the bounds referring to

heorem 11 is immediate (following Remark 12), the choice of a specific matching M yielding the strongest bound in

144



P. Samer and D. Haugland Discrete Applied Mathematics 303 (2021) 137–148

T
b

w

t
e

t

4

a
t
[

i

R
v
o
f
i
p
n
t

heorem 13 is not clear. A first approach would be to evaluate different greedy constructions. Alternatively, a stronger
ound should follow from computing minimum-weight matchings in G with cardinality at least l ∈ {1, . . . , k}, using

the edge-weight function corresponding to c(·) in the latter theorem, that is, for each
{
vi, vj

}
∈ E(G), with i < j, define

c({vi, vj})
def
= w(vi). Note that we can find such a matching of least weight in polynomial time, as we note in Remark 10.

Finally, since every matching in a proper induced subgraph is also considered by Theorem 13, it follows that
experimenting with the selection of the matching M yielding the latter bounds should never be weaker than bounds
b1 or b2 from Theorem 11.

3.1. Application towards balanced branching trees

A fundamental component for the performance of branch-and-cut algorithms for the classical stable set problem
is the balanced branching rule of Balas and Yu [1]; see also [25] and [22]. Its original motivation also applies to the
fixed cardinality setting: avoiding unbalanced branch-and-bound trees when branching on a fractional variable xv , since
fixing xv = 1 has the larger impact of implying xu = 0 for each u ∈ N(v), while fixing xv = 0 has no impact on the
neighbourhood.

The general branching scheme can be adapted to find minimum weight k-stabs with little effort. Suppose that, on a
given node of the enumeration tree, G′

= (V ′, E ′) denotes the subgraph induced by vertices not fixed in this subproblem,
and that z is the best primal bound available. Let W ⊆ V ′ be such that we can determine efficiently that the minimum
eight of a k-stab in the subgraph induced by W , denoted z(W ), is such that z(W ) ≥ z. Note that, if W = V ′, the

subproblem is fathomed and the whole subtree rooted on this node can be pruned. Otherwise, if the search on this
subtree is to eventually find that z(V ′) < z, any bound-improving solution must intersect V ′

\W =
{
v1, . . . , vp

}
. That is,

we can partition the search space into the sets

V ′

i = {vi}
⋃

V ′
\
(
N(vi) ∪

{
vi+1, . . . , vp

})
for 1 ≤ i ≤ p. The enumeration can therefore branch on p subproblems, each fixing xvi = 1, and fixing at 0 those variables
corresponding to N(vi) ∪

{
vi+1, . . . , vp

}
.

Now, there are different strategies to determine subgraph W . The standard one is to find a collection of cliques in G′,
e.g. with as many cliques as the currently available lower bound, when searching for maximum cardinality stable sets.
For minimum-weight k-stabs, the natural idea would be to greedily find k cliques, such that the combined weight of the
cheapest vertices in each exceed z.

The combinatorial bounds that we introduce give an alternative approach tailored for optimizing over k-stabs. Using
he weight function corresponding to c(·) in Theorem 13, we can determine candidate subgraphs W by inspecting, for
ach l ∈ {1, . . . , k}:

1. A minimum-weight matching in G′ with cardinality l
2. A suitable choice of k − l vertices not covered by the matching

We leave for future work the task of comparing those two strategies, whether theoretically or according to computa-
ional experience.

. Particular cases solvable in polynomial time

A major research topic in combinatorial optimization is the study of particular cases of an NP-hard problem which
dmit a solution algorithm with polynomially-bounded worst case complexity. As indicated before, the rich theory on
he classical stable set problem suggests that research in this direction is also promising. The work of Dabrowski et al.
11,12] in parameterized complexity parallels our contributions here. Instead of NP-completeness, their work builds on the
W[1]-completeness of the classical stable set problem, cf. [10, Section 13.3], to give fixed-parameter tractable algorithms
for an input restricted to some graph classes which extend that of graphs of bounded clique number.

We note that the recognition problem for all classes we discuss next can be solved in polynomial time, i.e. given an
arbitrary graph G, there exists an algorithm with polynomially-bounded worst-case time complexity which decides if G
belongs to that class of graphs. We refer the interested reader to the ISGCI encyclopaedia of graph classes [26]. Throughout
this section, we denote by perfect the set of all perfect graphs (i.e. those graphs in which the chromatic number of every
nduced subgraph equals its clique number), and follow similar notation for any graph class.

emark 14. Consider the unweighted problems corresponding to the classical stable set problem and the fixed cardinality
ersion. If G = (V , E) is such that the stability number α(G) can be found in polynomial time (i.e. the classical problem
ver G is in complexity class P), then we also have that deciding if there exists a k-stab in G is also in P. More precisely:
or k ∈ {1, . . . , α(G)}, the answer for the latter problem is yes; for k > α(G), the answer is no. Nevertheless, the same
s not true regarding the weighted version of the problems. Even if a maximum-weight stable set in G can be found in
olynomial time, it is not obvious how to find a k-stab in G of optimal weight, in general. In principle, there can be a
umber of optimal solutions for the classical problem, from which a k-stab might be retrieved or not; and, conversely,
here might exist optimal-weight k-stabs in G which are not contained in any optimal solution to the classical problem.
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Recall that a graph is k-partite (or k-colourable) if its vertices can be partitioned into k different stable sets. Now, a
omplete k-partite graph is a k-partite graph containing an edge between all pairs of vertices from different stable sets. A
omplete multipartite graph is complete k-partite for some k. The following result is rather straightforward.

heorem 15. If G is a complete multipartite graph, the problem of finding a minimum-weight k-stab in G is in P.

roof. Let G = (V1 ⊎ · · · ⊎ Vc, E) be an arbitrary complete c-partite graph, so that each Vi induces a stable set in G,
or 1 ≤ i ≤ c. Clearly, no stable set in G contains vertices from more than one set in the partition. For each Vi such
hat |Vi| ≥ k, then, we inspect the least-weight subset of cardinality k, i.e. we find Si ∈ argminS⊂Vi,|S|=k

∑
v∈S w(v). A

inimum-weight k-stab in G is therefore one of minimum weight among all Si. □

Complete multipartite graphs are a subclass of cographs, or complement-reducible graphs: those which can be con-
tructed from isolated vertices by disjoint union and complementation operations alone. The class cograph is equivalent
o that of P4-free graphs, and a number of other characterizations are known [23, Sec. 7.9]. It follows from the definition
hat the class of graphs which are the complement of some complete multipartite graph corresponds to another subclass
f cographs. These are known as cluster graphs. Thus G is a cluster graph if and only if G is the disjoint union of cliques;
quivalently, G is a cluster graph if and only if it is P3-free.

heorem 16. If G is cluster graph, the problem of finding a minimum-weight k-stab in G is in P.

roof. Let G =
⨄q

i=1 Kni , where each Kni induces a clique on ni vertices. Clearly, at most one vertex from each Kni can be
art of a k-stab. If k > q, there cannot exist a k-stab in G. Now, assuming k ≤ q, the set of k-stabs in G corresponds to
ubsets of k vertices from different cliques each, since G is a disjoint union of the q cliques Kni , 1 ≤ i ≤ q. In particular,
e can restrict our attention to the set S def

=
⨄q

i=1

{
vi ∈ argminv∈Kni

w(v)
}
of least weight vertices in each clique, and a

inimum-weight k-stab in G can be found by choosing k vertices of least weight in S. □

Note that cograph is contained in perfect. We consider next another subclass of perfect graphs, not contained in that
f cographs. We say that G is a split graph if there exists a partition of its vertices into two sets, one of which induces a
lique in G, the other inducing a stable set. A noteworthy result is that almost all chordal graphs are in split. (Recall that
hordal or triangulated graphs are those in which every cycle of length at least 4 has a chord.) Precisely, the probability
hat a chordal graph chosen uniformly at random from the set of all chordal graphs on n vertices is split goes to 1 as
→ ∞ [3].

heorem 17. If G is a split graph, the problem of finding a minimum-weight k-stab in G is in P.

roof. Suppose V (G) = C ⊎ I is such that C induces a clique and I induces a stable set in G. Note first that at most one
ertex from C belongs to any k-stab. Then, if |I| < k− 1, or if |I| = k− 1 and C = ∅, there is no k-stab in G. Suppose now
hat |I| ≥ k − 1 and C ̸= ∅. For each vi ∈ C such that |I\N(vi)| ≥ k − 1, let Si denote a subset of k − 1 vertices in I\N(vi)
f least weight, that is, Si ∈ argminS⊆I\N(vi),|S|=k−1

∑
v∈S w(v). Now,

S def
= {{vi} ∪ Si : for each vi ∈ C such that |I\N(vi)| ≥ k − 1}

s thus an enumeration of all the k-stabs in G which include a vertex from C, and that those amount to at most |C|

-stabs. If |I| ≥ k, define also S0 ∈ argminS⊆I,|S|=k
∑

v∈S w(v), i.e. a k-stab contained in I of least weight. Therefore, a
inimum-weight k-stab in G can be found by inspection among those in S and S0 thus defined. □

The class cograph ∩ split is equivalent to the class of threshold graphs. G is a threshold graph if it is possible to define
constant t ∈ R and a function f : V (G) → R in such a way that {u, v} ∈ E(G) if and only if f (u) + f (v) ≥ t . An
quivalent definition is that G is a threshold graph if it can be constructed from the empty graph by repeatedly adding
ither an isolated vertex or a universal vertex. It is therefore a consequence of Theorem 17 that our problem of interest
s well-solved over threshold graphs.

orollary 18. If G is a threshold graph, the problem of finding a minimum-weight k-stab in G is in P.

From our results, we have algorithms with polynomial worst-case time complexity to find minimum-weight k-stabs in
ome representative subclasses of cograph: complete graphs, complete multipartite graphs, cluster graphs and threshold
raphs. A natural question that we pose as a conjecture, then, is whether the positive results could be generalized to the
hole class of cographs.

onjecture 2. Given an arbitrary cograph G, weights w : V (G) → R+ and k ∈ Z+, the problem of finding a minimum-weight
-stab in G is in P.
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To conclude, we mention that the problem is also well-solved over a class of graphs which is not contained in perfect.
n equivalent result was already shown by Buchanan [8], but we include its simple proof for the sake of completeness.
he line graph L(G) of a given graph G = (V , E) is the intersection graph of the edges of G, that is, the graph containing a

vertex for each element in E, and where two vertices are connected if and only if the corresponding edges in G share an
endpoint.

Theorem 19. If H is a line graph, the problem of finding a minimum-weight k-stab in H is in P.

Proof. Suppose that H = L(G) is an arbitrary line graph, with G being an underlying root graph. Note that G is uniquely
defined, provided H ̸∈

{
K3, K1,3

}
(in which cases the result would follow immediately), as proved by Whitney [30]

cf. [23, Example 1.4]. Moreover, the original graph G can be determined from H in linear time [19]. Now, S ⊂ V (H),
induces a stable set in H if and only if S ⊂ E(G) is a matching in G, and the bijection obviously preserves cardinality and
weight. Therefore, a minimum-weight k-stab in H corresponds to a minimum-weight matching of cardinality k in G. The
result, then, follows from the fact that finding such a matching is a well-solved problem, as described in Remark 10. □
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