
Vol:.(1234567890)

Algorithmica (2021) 83:2170–2214
https://doi.org/10.1007/s00453-021-00822-x

1 3

Subexponential Parameterized Algorithms
and Kernelization on Almost Chordal Graphs

Fedor V. Fomin1 · Petr A. Golovach1

Received: 16 September 2020 / Accepted: 11 March 2021 / Published online: 11 April 2021
© The Author(s) 2021

Abstract
We study algorithmic properties of the graph class CHORDAL−ke , that is, graphs
that can be turned into a chordal graph by adding at most k edges or, equivalently,
the class of graphs of fill-in at most k. It appears that a number of fundamental
intractable optimization problems being parameterized by k admit subexponen-
tial algorithms on graphs from CHORDAL−ke . More precisely, we identify a large
class of optimization problems on CHORDAL−ke solvable in time 2O(

√

k log k)
⋅ n

O(1) .
Examples of the problems from this class are finding an independent set of maxi-
mum weight, finding a feedback vertex set or an odd cycle transversal of minimum
weight, or the problem of finding a maximum induced planar subgraph. On the other
hand, we show that for some fundamental optimization problems, like finding an
optimal graph coloring or finding a maximum clique, are FPT on CHORDAL−ke
when parameterized by k but do not admit subexponential in k algorithms unless
ETH fails. Besides subexponential time algorithms, the class of CHORDAL−ke
graphs appears to be appealing from the perspective of kernelization (with parame-
ter k). While it is possible to show that most of the weighted variants of optimization
problems do not admit polynomial in k kernels on CHORDAL−ke graphs, this does
not exclude the existence of Turing kernelization and kernelization for unweighted
graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique
on CHORDAL−ke graphs. For (unweighted) independent Set we design polynomial
kernels on two interesting subclasses of CHORDAL−ke , namely, INTERVAL−ke and
SPLIT−ke graphs.

Keywords Parameterized complexity · Structural parameterization · Subexponential
algorithms · Kernelization · Chordal graphs · Fill-in · Independent set · Clique ·
Coloring

 * Petr A. Golovach
 petr.golovach@uib.no

 Fedor V. Fomin
 fedor.fomin@uib.no

1 Department of Informatics, University of Bergen, PB 7803, 5020 Bergen, Norway

http://orcid.org/0000-0002-2619-2990
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00822-x&domain=pdf

2171

1 3

Algorithmica (2021) 83:2170–2214

Mathematics Subject Classification 05C85 · 05C69 · 68R10

1 Introduction

Many ��-hard graph optimization problems are solvable in polynomial or even lin-
ear time when the problem’s input is restricted to a special graph class. For example,
the chromatic number, the maximum size of a clique or an independent set of a per-
fect graph can be computed in polynomial time by the celebrated result of Grötschel,
Lovász, and Schrijver [36]. For chordal graphs, this was already pointed by Gavril
[32] in 1972. From the perspective of parameterized complexity, the natural ques-
tion here is how stable are these friendly algorithmic properties of graph classes
subject to some perturbations. For example, if an input n-vertex graph G is not
chordal but can be turned into a chordal graph by adding at most k edges, how fast
can we solve independent Set on G? Can we solve the problem in polynomial time
for constant k? Or maybe for k = log n or even for k = poly(log n) ? A word of warn-
ing is on order here. Since an algorithm for independent Set of running time 2o(n)
will refute the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane

[39, 40], and because k ≤
(

n

2

)

 , the existence of an algorithm of running time

2k
1∕2−�

⋅ nO(1) for some 𝜀 > 0 (which is polynomial for k = (log n)2∕(1−2�)) is unlikely.
Interestingly, as we shall see, independent Set (and many other problems) are solva-
ble in time 2k1∕2 log k ⋅ nO(1).

Leizhen Cai in [12] introduced a convenient notation for “perturbed” graph
classes. Let F be a class of graphs, then F − ke (respectively F − ve) is the class of
those graphs that can be obtained from a member of F by deleting at most k edges
(respectively vertices). Similarly one can define classes F + ke and F + ve . Then for
any class F and optimization problem P that can be solved in polynomial time on
F , the natural question is whether P is fixed-parameter tractable parameterized by k,
the “distance” to F .

In this paper, we obtain several algorithmic results on the parameterized com-
plexity of optimization problems on F − ke , where F is the class of chordal graphs
(see Sect. 2 for the formal definitions of the central notions in the area). Let us
remind that a graph H is chordal (or triangulated) if every cycle of length at least
four has a chord, i.e., an edge between two nonconsecutive vertices of the cycle.
We denote by CHORDAL−ke the class of graphs that can be made chordal graph by
adding at most k edges. While parameterized algorithms for various problems on
the class of CHORDAL−ke graphs were studied (see the section on previous work),
our work introduces the first subexponential parameterized algorithms on this graph
class. We prove the following.

Subexponential parameterized algorithms. We discover a large class of optimiza-
tion problems on graph class CHORDAL−ke that are solvable in time
2O(

√

k log k)
⋅ nO(1) . Examples of such optimization problems are: the problem of find-

ing an induced d-colorable subgraph of maximum weight (which generalizes
Weighted independent Set for d = 1 and Weighted Bipartite SuBgraph for d = 2);
the problem of finding a maximum weight induced subgraph admitting a

2172 Algorithmica (2021) 83:2170–2214

1 3

homomorphism into a fixed graph H; the problem of finding an induced d-degener-
ate subgraph of maximum weight and its variants like Weighted induCed ForeSt (or,
equivalently, Weighted FeedBaCk Vertex Set), Weighted induCed tree, induCed
planar graph, Weighted induCed path (CyCle) or Weighted induCed CyCle paCk-
ing; as well as various connectivity variants of these problems like Weighted Con-
neCted Vertex CoVer and Weighted ConneCted FeedBaCk Vertex Set. This implies
that all these problems are solvable in polynomial time for k = (

log n

log log n
)2 . On the

other hand, we refute (subject to ETH) existence of a subexponential time 2o(k) ⋅ nO(1)
algorithms on graphs in CHORDAL−ke for Coloring and Clique. Moreover, our
lower bounds hold for way more restrictive graph class COMPLETE−ke , the graphs
within k edges from a complete graph. We also show that both problems are fixed-
parameter tractable (���) (parameterized by k) on CHORDAL−ke graphs.

Kernelization. It follows almost directly from the previous work of Bodlaender,
Jansen, and Kratsch [8, 42] that Weighted independent Set, Weighted Ver-
tex CoVer, Weighted Bipartite SuBgraph, Weighted odd CyCle tranSVerSal,
Weighted FeedBaCk Vertex Set and Weighted Clique do not admit a polynomial in
k kernel (unless coNP ⊈ NP∕poly) on COMPLETE−ke and hence on CHORDAL−ke .
Interestingly, these lower bounds do not refute the possibility of polynomial Turing
kernelization or kernelization for unweighted variants of the problems. Indeed, we
show that Weighted Cliqueon CHORDAL−ke parameterized by k admits a Turing
kernel. For unweighted independent Set we show that the problem admits polyno-
mial in k kernel on graph classes INTERVAL−ke and SPLIT−ke (graphs that can be
turned into an interval or split graphs, correspondingly, by adding at most k edges).

Previous work. Chordal graphs form an important subclass of perfect graphs.
These graphs were also intensively studied from the algorithmic perspective. We
refer to books of Brandstädt, Le, and Spinrad [9], Golumbic [35], and Vanden-
berghe and Andersen [62] for introduction to chordal graphs and their algorithmic
properties.

The problem of determining whether a graph G belongs to CHORDAL−ke , which
is checking whether G can be turned into a chordal graph by adding at most k edges,
is known the literature as the MiniMuM Fill-in problem. The name fill-in is due to
the fundamental problem arising in sparse matrix computations, which was studied
intensively in the past; see, e.g., the papers of Parter [55] and Rose [58]. The survey
of Heggernes [38] gives an overview of techniques and applications of minimum
and minimal triangulations.

MiniMuM Fill-in (under the name Chordal graph CoMpletion) was one of the 12
open problems presented at the end of the first edition of Garey and Johnson’s book
[31] and it was proved to be NP-complete by Yannakakis [64]. Kaplan et al. [44]
proved that MiniMuM Fill-in is fixed parameter tractable by giving an algorithm of
running time 16k ⋅ nO(1) . There was a chain of algorithmic improvements resulting
in decreasing the constant in the base of the exponents [7, 11, 45] resulting with a
subexponential algorithm of running time 2O(

√

k log k)
⋅ nO(1) given by Fomin and Vil-

langer [29]. A significant amount of work in parameterized algorithms is devoted
to recognition problems of classes F − ke , F + ke , F − kv , and F + kv for chordal
graphs and various subclasses of chordal graphs [1, 2, 4, 5, 13–15, 27, 43, 50, 63].

2173

1 3

Algorithmica (2021) 83:2170–2214

Parameterized algorithms, mostly for graph coloring problems, were studied on
perturbed chordal graphs and subclasses of this graph class [12, 60]. Among other
results, Cai [12] proved that Coloring (the problem of computing the chromatic num-
ber of a graph) is ��� (parameterized by k) on SPLIT−ke graphs. Marx [49] proved that
Coloring is ��� on CHORDAL + ke and INTERVAL + ke graphs but is �[1]-hard on
CHORDAL + kv and INTERVAL + kv graphs. Jansen and Kratsch [41] proved that for
every fixed integer d, the problems d -Coloring and d -liSt Coloring admit polyno-
mial kernels on the parameterized graph classes SPLIT + kv , COCHORDAL + kv , and
COGRAPH + kv.

Liedloff, Montealegre, and Todinca [48] gave a general theorem establishing fixed-
parameter tractability for a large class of optimization problems. Let Cpoly be a class of
graphs having at most poly(n) minimal separators. (Since every chordal graph has at
most n minimal separators, the class of chordal graphs is a subclass of Cpoly .) Let � be a
Counting Monadic Second Order Logic (CMSO) formula, G be a graph, and t ≥ 0 be
an integer. Liedloff, Montealegre, and Todinca proved that on graph class Cpoly + kv ,
the following generic problem

is solvable in time f (t,�, k) ⋅ nO(t) , and thus is ��� parameterized by k for a given
formula � and a fixed integer t. The problem generalizes many classical algorith-
mic problems like MaxiMuM independent Set, longeSt induCed path, MaxiMuM
induCed ForeSt, and various packing problems as discussed by Fomin, Todinca, and
Villanger in [28].

Since the class Cpoly + kv contains CHORDAL−ke , the work of Liedloff et al. [48]
yields that all these problems are fixed-parameter tractable on CHORDAL−ke graphs
parameterized by k + t + |�| . However, the theorem of Liedloff et al. does not yield
our results. First, this theorem provides an ��� algorithm only for finding an induced
subgraph of constant treewidth, which is not the case in our situation. Second, even if
F is required to be an independent set, that is, the treewidth of F is zero, their technique
does not derive parameterized algorithms with subexponential running times.

Organization of the paper. The remaining part of the paper is organized as follows.
In Sect. 2, we introduce notation and provide some useful auxiliary results. In Sect. 3,
we discuss subexponential algorithms on CHORDAL−ke . Section 4 contains the lower
bounds for Coloring and Clique on CHORDAL−ke . Sects. 5–7 are devoted to kerneli-
zation. In Sect. 5, we give lower bounds and construct a polynomial Turing kernel for
Weighted Clique on CHORDAL−ke . In Sects. 6 and 7, we construct polynomial ker-
nels for independent Set on INTERVAL−ke and SPLIT−ke respectively. We conclude in
Sect. 8 by some open problems.

Max |X|

subject to There is a set F ⊆ V(G) such that X ⊆ F;

The treewidth of G[F] is at most t;

(G[F],X) ⊧ 𝜑.

2174 Algorithmica (2021) 83:2170–2214

1 3

2 Preliminaries

All graphs considered in this paper are simple: finite undirected graphs without
loops or multiple edges. For each of the graph problems considered in this paper,
we let n = |V(G)| and m = |E(G)| denote the number of vertices and edges, respec-
tively, of the input graph G if it does not create confusion. For a set X ⊆ V(G) ,
(

X

2

)

 denotes the set of pairs of distinct vertices of X. For a graph G and a subset

X ⊆ V(G) of vertices, we write G[X] to denote the subgraph of G induced by X.
We write G − X to denote the subgraph of G induced by V(G) ⧵ X , and we write
G − u instead of G − {u} for a single element set. Similarly, for an edge set A,
G − A denotes the graph G� = (V(G),E(G) ⧵ A) , and for a set of pairs of vertices

A ⊆

(

V(G)

2

)

 , G + A is the graph G� = (V(G),E(G) ∪ A) . For a single-element set

{e} , we use G + e for G + {e} . For A ⊆

(

V(G)

2

)

 , G△ A denotes the graph

G� = (V(G),E(G)△ A) . For a vertex v, we denote by NG(v) the (open) neighbor-
hood of v, i.e., the set of vertices that are adjacent to v in G. The closed neighbor-
hood NG[v] is NG(v) ∪ {v} . For a set of vertices X ⊆ V(G) , NG[X] =

⋃

v∈X NG[v]
and NG(X) = NG[X] ⧵ X . The degree of a vertex v is dG(v) = |NG(v)| . The comple-
ment of a graph G is the graph G with V(G) = V(G) such that two distinct vertices
are adjacent in G if and only if they are not adjacent in G. A (proper) �-coloring
of a graph G is an assignment c ∶ V(G) → {1,… ,�} of colors 1,… ,� to the verti-
ces of G in such a way that adjacent vertices get distinct colors; a graph G is �
-colorable if it has an �-coloring. A graph is d-degenerate for a nonnegative inte-
ger d, if every induced subgraph of G has a vertex of degree at most d. An equiv-
alent way of defining d-degenerate graph is in terms of coloring orderings was
given by Erdős and Hajnal [23]. A vertex ordering of a graph is a d-coloring
ordering, if each vertex has at most d neighbors that are after it in the ordering.
Then a graph G is d-degenerate if and only if it admits an d-coloring ordering.

For a graph class C and a nonengative integer k, C − ke denotes the class of all

graphs G such that there is a set A ⊆

(

V(G)

2

)

⧵ E(G) of size at most k such that

G + A ∈ C . In words, this means that C − ke contains graphs that can be turned to

be graphs of C by at most k edge additions. For a set A ⊆

(

V(G)

2

)

⧵ E(G) such

that G + A ∈ C , we say that A is a C-modulator.
Graph classes. A graph G is chordal (or triangulated) if it does not contain an

induced cycle of length at least four. In other words, every cycle of length at least
four has a chord, i.e., an edge whose end-vertices are nonconsecutive vertices of
the cycle. The intersection graph of a family of intervals of the real line is called
an interval graph; it is also said that G is an interval graph if there is a family of
intervals (called interval model or representation) such that G is isomorphic to
the intersection graph of this family. A graph G is said to be split if its vertex set
can be partition into an independent set and a clique. We refer to the books of

2175

1 3

Algorithmica (2021) 83:2170–2214

Brandstädt, Le, and Spinrad [9] and Golumbic [35] for a detailed introduction to
these graph classes. Notice that interval and split graphs are chordal.

A triangulation (or a chordal complementation) of a graph G is a chordal
supergraph H with V(H) = V(G) . The size of the triangulation is |E(H)| − |E(G)| .
The fill-in of a graph G, denoted � ���- ��(G) , is the minimum integer k such that
G ∈ CHORDAL−ke . In other words, fill-in is the minimum number of edges whose
addition makes the graph chordal. An interval complementation of a graph G is
an interval supergraph H with V(H) = V(G) . Similarly, a split complementation of
G is a split supergraph H and a clique complementation is a complete supergraph
with V(H) = V(G) . The size of interval (split, clique) completion is |E(H)| − |E(G)|
and we denote the minimum size of an interval (split, clique) complementation by
���-����(G) (�����-����(G) , �-����(G) respectively). Clearly, G has an interval
(split, clique) complementation of size at most k if and only if G ∈ INTERVAL−ke

(SPLIT−ke , COMPLETE−ke). It is easy to see that �-����(G) =

(

|V(G)|

2

)

− |E(G)| ,

and it is well-known that it is NP-hard to compute � ���- ��(G) by the result of Yan-
nakakis [64] and ���-����(G) [31], and the same holds for �����-����(G) as was
proved by Natanzon, Shamir, and Sharan [53].

We will make use of the following observation.

Observation 1 For every graph G, �-����(G) ≥ ���-����(G) ≥ � ���- ��(G) and
�-����(G) ≥ �����-����(G) ≥ � ���- ��(G).

In particular, this observation implies that complexity lower bounds obtained
for graph problems parameterized by the clique completion size hold when they
are parameterized by the interval or split completion or by the fill-in. Similarly,
the hardness for the interval or split completion parameterization implies the
hardness for the fill-in parameterization.

Natanzon, Shamir, and Sharan [52] proved that fill-in admits a polyopt
approximation.

Proposition 1 [52] There is a polynomial algorithm that, given a graph G and a
nonnegative integer k, either correctly reports that � ���- ��(G) > k or returns a trian-
gulation of G of size at most 8k2.

Tree decompositions. A tree decomposition of a graph G is a pair
T = (T , {Xt}t∈V(T)) , where T is a tree whose every node t is assigned a vertex sub-
set Xt ⊆ V(G) , called a bag, such that the following three conditions hold:

 (T1)
⋃

t∈V(T) Xt = V(G) . In other words, every vertex of G is in at least one bag.
 (T2) For every uv ∈ E(G) , there exists a node t of T such that bag Xt contains both

u and v.
 (T3) For every u ∈ V(G) , the set Tu = {t ∈ V(T)|u ∈ Xt} , i.e., the set of nodes whose

corresponding bags contain u, induces a connected subtree of T.

2176 Algorithmica (2021) 83:2170–2214

1 3

To distinguish between the vertices of the decomposition tree T and the vertices
of the graph G, we will refer to the vertices of T as nodes. By the classical result
due to Buneman and Gavril [10, 33], every chordal graph G has a tree decompo-
sition such that each bag of the decomposition is a maximal clique of G. Such a
tree decomposition is a clique tree of the chordal graph G.

It is more convenient to describe dynamic programming algorithms on tree
decompositions of a nice particular form. We think of nice tree decompositions
as rooted trees. That is, for a tree decomposition (T , {Xt}t∈V(T)) we distinguish one
vertex r of T which will be the root of T. We say that such a rooted tree decompo-
sition (T , {Xt}t∈V(T)) is nice if the following conditions are satisfied:

• Xr = � and X
�
= � for every leaf � of T. In other words, all the leaves as well

as the root contain empty bags.
• Every non-leaf node of T is of one of the following three types:

– Introduce node: a node t with exactly one child t′ such that Xt = Xt� ∪ {v}
for some vertex v ∉ Xt� ; we say that v is introduced at t.

– Forget node: a node t with exactly one child t′ such that Xt = Xt� ⧵ {w} for
some vertex w ∈ Xt� ; we say that w is forgotten at t.

– Join node: a node t with two children t1, t2 such that Xt = Xt1
= Xt2

.

Throughout the paper, given a nice tree decomposition (T , {Xt}t∈V(T)) of a graph
G, we denote by Vt the union of the bags in the subtree of T rooted in a node
t ∈ V(T).

We will be using the following proposition, see e.g., [49].

Proposition 2 Every n-vertex chordal graph G admits a nice tree decomposition
T = (T , {Xt}t∈V(T)) such that every bag Xt of G is a clique. This decomposition has
O(n2) nodes and can be constructed in polynomial time.

Parameterized complexity and kernelization. We refer to the books of Cygan
et al. [18], Downey and Fellows [22], and Fomin et al. [26] for the detailed intro-
duction to the field. Here we only briefly review the basic notions.

Parameterized complexity is a two-dimensional framework for studying the
computational complexity of a problem. One dimension is the input size n, and
the other is a parameter k associated with the input.

A parameterized problem is said to be fixed-parameter tractable (or ���) if it
can be solved in time f (k) ⋅ nO(1) for a computable function f.

Parameterized complexity theory also provides tools for obtaining complexity
lower bounds. Here we use lower bounds based on the Exponential Time Hypoth-
esis (ETH) formulated by Impagliazzo, Paturi and Zane [39, 40]. For an integer
k ≥ 3 , let qk be the infimum of the real numbers c such that the k -SatiSFiaBil-
ity problem can be solved in time O(2cn) , where n is the number of variables.
Exponential Time Hypothesis states that 𝛿3 > 3 . In particular, ETH implies that k
-SatiSFiaBility cannot be solved in time 2o(n)nO(1).

2177

1 3

Algorithmica (2021) 83:2170–2214

A compression of a parameterized problem �1 into a (non-parameterized)
problem �2 is a polynomial algorithm that maps each instance (I, k) of �1 with
the input I and the parameter k to an instance I′ of �2 such that

 (i) (I, k) is a yes-instance of �1 if and only if I′ is a yes-instance of �2 , and
 (ii) |I′| is bounded by f(k) for a computable function f.

The output I′ is also called a compression. The function f is said to be the size of
the compression. A compression is polynomial if f is polynomial. Kernelization
can be seen as a special case of compression when the algorithm is required to
map a parameterized problem to itself. Formally, a kernelization algorithm for
a parameterized problem � is a polynomial algorithm that maps each instance
(I, k) of � to an instance (I�, k�) of � such that

 (i) (I, k) is a yes-instance of � if and only if (I�, k�) is a yes-instance of � , and
 (ii) |I�| + k� is bounded by f(k) for a computable function f.

Respectively, (I�, k�) is a kernel and f is its size. A kernel is polynomial if f is
polynomial.

Every decidable parameterized problem is ��� if and only if it admits a kernel.
However, it is unlikely that every problem in ��� has a polynomial kernel (see,
e.g., [26] for the details). Still, even if a paramterized problem admits no poly-
nomial kernel up to some complexity conjectures, sometimes we can reduce it to
solving of a polynomial number of instances of the same problem such that the
size of each instance is bounded by a polynomial of the parameter.

Let � be a parameterized problem and let f ∶ ℤ+ → ℤ+ be a computable
function. A Turing kernelization or Turing kernel for � of size f is an algorithm
that decides whether an instance (I, k) of � is a yes-instance in time polynomial
in |I| + k , when given access to an oracle that decides whether (I�, k�) is a yes-
instance of � in a single step if |I�| + k ≤ f (k).

It is typical to describe a compression or kernelization algorithm as a series of
reduction rules. A reduction rule is a polynomial algorithm that takes as an input
an instance of a problem and output another, usually reduced, instance. A reduc-
tion rule is safe if the input instance is a yes-instance if and only if the output
instance is a yes-instance.

In our paper, we consider kernelization/compression for weighted problems.
Because we are using weights, we have to compress their values as well. For this,
we follow the approach proposed by Etscheid et al. [24] that is based on the algo-
rithm for compressing numbers given by Frank and Tardos in [30]. We state the
result of Frank and Tardos in the form provided in [24].

Proposition 3 [30] There is an algorithm that, given a vector w ∈ ℚh and an inte-
ger N, in polynomial time finds a vector w̄ ∈ ℤh with ‖w̄‖∞ ≤ 24h

3

Nh(h+2) such that
sign(w ⋅ b) = sign(w̄ ⋅ b) for all vectors b ∈ ℤh with ‖b‖1 ≤ N − 1.

2178 Algorithmica (2021) 83:2170–2214

1 3

3 Subexponential Algorithms for Induced d‑colorable Subgraphs

To construct subexponential algorithms on CHORDAL−ke , we consider tree
decompositions such that each bag is “almost” a clique.

Definition 1 (k-almost chordal graph) Let k be a nonnegative integer. A tree
decomposition T = (T , {Xt}t∈V(T)) of a graph G is k-almost chordal if for every
t ∈ V(T) , �-����(G[Xt]) ≤ k , that is, every bag can be converted to a clique by add-
ing at most k edges.

Note that every chordal graph has 0-almost chordal tree decomposition.
Given a k-almost chordal tree decomposition, we construct dynamic program-

ming algorithms that are subexponential in k for various problems. The crucial
property of the graphs in CHORDAL−ke is that we can build nice k-almost chordal
tree decompositions for them in subexponential in k time by using the following
result of Fomin and Villanger [29].

Proposition 4 [29] Deciding whether graph G is in CHORDAL−ke can be done in
time 2O(

√

k log k) +O(k2nm) . Moreover, if G ∈ CHORDAL−ke , then the corresponding
triangulation can be found in time 2O(

√

k log k) +O(k2nm).

Lemma 1 A nice k-almost chordal decomposition of a graph G ∈ CHORDAL−ke
with at most n2 bags can be constructed in time 2O(

√

k log k)
⋅ nO(1).

Proof Let G be a graph. By Proposition 4, in time 2O(
√

k log k) +O(k2nm) we can con-

struct a triangulation H of G such that H = G + A for A ⊆

(

V(G)

2

)

 of size at most

k. Using Proposition 2, we construct in polynomial time a nice tree decomposition
T = (T , {Xt}t∈V(T)) of H with at most n2 bags such that every bag Xt is a clique of H.
Clearly, T is a nice tree decomposition of G and G[Xt] = H[Xt] − A for t ∈ V(T) .
Therefore, �-����(G[Xt]) ≤ k for t ∈ V(T) , that is, T is a nice k-almost chordal
decomposition of G. ◻

We need the following folklore observation. We prove it here for completeness.

Lemma 2 A d-degenerate graph G has at most 2d ⋅ n cliques and all cliques of G
can be listed in 2d ⋅ nO(1) time.

Proof Let G be a d-degenerate graph, and let v1,… , vn be a d-coloring ordering of
its vertices. Since dG[vi,…,vn]

(vi) ≤ d , G[vi,… , vn] has at most 2d cliques containing vi
for every i ∈ {1,… , n} . Therefore, G has at most 2d ⋅ n cliques. The cliques can be
enumerated by brute force checking the subsets of the neighbors of vi in G[vi,… , vn]
for every i ∈ {1,… , n} . Because a d-coloring ordering can be found in polynomial
(in fact, linear) time [51], the total running time is 2d ⋅ nO(1) . ◻

2179

1 3

Algorithmica (2021) 83:2170–2214

The crux of our subexponential algorithms is in the following combinatorial
lemma.

Lemma 3 Let d ≥ 1 be an integer. Let G be a graph and let F be a set of induced
d-colorable subgraphs of G. Let U ⊆ V(G) be a set of vertices of G such that
�-����(G[U]) ≤ k , that is, U can be made a clique by adding at most k edges. Then

• for every F ∈ F ,

and
• the size of the projection of F on U, that is, the size of the family

is at most (1 + 2(
√

1+8k−1)∕2
⋅ �U�)d.

Moreover, there is an algorithm that in time 2O(d
√

k)
⋅ nO(d) outputs a family of sets

S
′ ⊇ S such that each set from S′ has at most 3d+

√

d2+8dk

2
 vertices, the number of

sets in S′ is (1 + 2(
√

1+8k−1)∕2
⋅ n)d and G[S] is d-colorable for S ∈ S

�.

Proof We partition U into sets X and Y as follows. Let X be the vertices of U that
have at least one non-neighbor in U. In other words, for every v ∈ X , there is u ∈ U
that is not adjacent to v. Two observations about set X will be useful. First, because
U, and hence X, can be turned into a clique by adding at most k edges, we have that
|X| ≤ 2k . Second, the remaining vertices of U, namely, Y = U ⧵ X , form a clique.
For every set S ∈ S , we define SX = X ∩ S and SY = Y ∩ S . Note that S = SX ∪ SY.

Because Y is a clique in G, no d-colorable subgraph from F can contain more
than d vertices from Y. Hence, |SY | ≤ d.

Let x = |SX| . Because G[SX] is an induced subgraph of some d-colora-
ble graph F ∈ F , we have that G[SX] is d-colorable. On the other hand, since
�-����(G[U]) ≤ k , G[SX] can be turned into complete graph by adding at most k
edges. These two conditions are used to estimate x. Let us recall that a Turán graph
is the complete d-partite graph on x vertices whose partition sets differ in size by
at most 1. According to Turán’s theorem, see e.g. the book of Diestel [21], Turán
graph has the maximum possible number of edges among all d-colorable graphs.
The number of edges in Turán’s graph is at most 1

2
x2

d−1

d
 . Thus,

and

Therefore,

�U ∩ V(F)� ≤
3d +

√

d2 + 8dk

2
,

S = {S ∣ S = U ∩ V(F) for some F ∈ F}

(

x

2

)

− k ≤ |E(G[SX])| ≤
1

2
x2
d − 1

d

k ≥

(

x

2

)

−
1

2
x2
d − 1

d
=

x2 − dx

2d
.

2180 Algorithmica (2021) 83:2170–2214

1 3

We obtain that

which proves the first claim of the lemma.
To prove the second claim, let H = G[U] . Observe that H , the complement of H,

has at most k edges. Consider Z ⊆ V(H) . If �Z� ≤
√

1+8k+1

2
 , then the minimum degree

�(H[Z]) ≤

√

1+8k−1

2
 . If �Z� >

√

1+8k+1

2
 , then

that is, the minimum degree of every induced subgraph of H is at most
√

8k+1−1

2
 .

Therefore, H is
√

1+8k−1

2
-degenerate.

An induced subgraph of H with the vertex set S is d-colorable if and only if S
can be partitioned into at most d independent sets. Equivalently, H[S] is d-colorable
if and only if S can be partitioned into at most d cliques of H . By Lemma 2, H has
at most 2(

√

8k+1−1)∕2
⋅ �U� cliques. Then U contains at most (1 + 2(

√

1+8k−1)∕2
⋅ �U�)d

subsets S such that S can be partitioned into at most d cliques of H.
To complete the proof, observe that the cliques of H can be listed in time

2(
√

1+8k−1)∕2
⋅ nO(1) by Lemma 2. Then in 2O(d

√

k)
⋅ nO(d) time, we construct S′ by con-

sidering the unions of d cliques; the cliques can be the same or empty. ◻

Let G be a graph and let F be an induced d-colorable subgraph of G. Infor-
mally, Lemma 3 says that for a given a k-almost chordal tree decomposition,
every bag of this tree decomposition contains roughly O(d +

√

dk) vertices of F.
This statement combined with dynamic programming over the tree decomposi-
tion could easily bring us to the algorithm computing a maximum d-colored sub-
graph of G in time nO(d+

√

dk) . However, this is not what we are shooting for; such
an algorithm is not fixed-parameter tractable with parameter k. This is where the
second part of the lemma becomes extremely helpful. Let us look at the family
of all d-colorable induced subgraphs of G. Then the number of different intersec-
tions of the graphs from this family with a single bag of the tree decomposition is
bounded by 2O(d

√

k)
⋅ nO(d) . This allows us to bound the number of “partial solu-

tions” in the dynamic programming, which in turn brings us to a parameterized
subexponential algorithm. As an example of the applicability of Lemma 3, we
give an algorithm for the following generic problem.

x ≤
d +

√

d2 + 8dk

2
.

�S� = �SX� + �SY � ≤ x + d ≤
3d +

√

d2 + 8dk

2
,

�(H[Z]) ≤
2�E(H[Z])�

�Z�
≤

4k
√

1 + 8k + 1
=

√

8k + 1 − 1

2
,

2181

1 3

Algorithmica (2021) 83:2170–2214

COLORABLE

COLORABLE

For d = 1 , this is the problem of finding an independent set of maximum
weight, the Weighted independent Set problem. For d = 2 , this is the problem of
finding an induced bipartite subgraph of the maximum weight, Weighted Bipar-
tite SuBgraph.

We prove the following theorem for Weighted d-ColoraBle SuBgraph. Note
that in Theorem 1 we do not require that the input graph is in Chordal −ke.

Theorem 1 Let d ≥ 1 be an integer. For a given graph G with a nice k-almost
chordal tree decomposition with nO(1) bags, the Weighted d-ColoraBle SuBgraph
problem is solvable in time 2O(

√

k⋅d log d)
⋅ nO(d).

Proof Let T = (T , {Xt}t∈V(T)) be a nice k-almost chordal tree decomposition of G
with |V(T)| = nO(1) . We perform dynamic programming over T . Let us note that the
width of the decomposition can be of order of n. The proof of the correctness for
this dynamic programming is very similar to the one provided normally for graphs
of bounded treewidth. However, the running time analysis is based on Lemma 3.

Recall that T is rooted at some node r, and for a node t of T, Vt denotes the union
of all the bags present in the subtree of T rooted at t, including Xt . For vertex sets
X ⊂ X′ of graph G, we say that a coloring c of G[X] is extendible to a coloring c′ of
G[X�] , if for every x ∈ X , c(v) = c�(v).

For every node t, every S ⊆ Xt such that G[S] is d-colorable, every mapping
c ∶ S → {1,… , d} of G[S], we define the following value:

If c is not a proper coloring of G[S] or if no such set Ŝ exists, then we put
cost[t, S, c] = −∞ . We also put cost[t, �, c] be the maximum possible weight of a set
Ŝ such that �S ⊆ Vt , Ŝ ∩ Xt = � , and G[Ŝ] is d-colorable. Then cost[r, �, c] is exactly
the maximum weight of a d-colorable induced subgraph in G; this is due to the fact
that Vr = V(G) and Xr = �.

Leaf node. If t is a leaf node, then we have cost[t, �, c] = 0 . In this case, because
the leaf node is an empty bag, the formula’s correctness is trivial.

Introduce node. Suppose t is an introduce node with child t′ such that
Xt = Xt� ∪ {v} for some v ∉ Xt� . Let S be any subset of Xt . If c is not a proper

(1)

cost[t, S, c] =maximum possible weight of a set�S such that

S ⊆ �S ⊆ Vt,
�S ∩ Xt = S, and c is a proper coloring ofG[S]

extendible to a proper d-coloring ofG[�S].

2182 Algorithmica (2021) 83:2170–2214

1 3

d-coloring of G[S], we put cost[t, S, c] = −∞ . Otherwise, we claim that the follow-
ing formula holds:

Here c′ is the coloring of S ⧵ {v} extendible to c.

Claim 1 Formula (2) is correct.

Proof of Claim 1 When v ∉ S , the formula trivially holds. Suppose that v ∈ S . Let
Ŝ be a set maximizing cost[t, S, c] . Because coloring c′ of S ⧵ {v} is extendible to
coloring c of S, which in turn is extendible to a d-coloring of Ŝ , we have that set
Ŝ ⧵ {v} is one of the sets considered in the definition of cost[t�, S ⧵ {v}, c�] . Hence
cost[t�, S ⧵ {v}, c�] ≥ �(Ŝ ⧵ {v}) = �(Ŝ) − �(v) = cost[t, S, c] − �(v).

On the other hand, let Ŝ′ be a set for which the maximum is attained in the defi-
nition of cost[t�, S ⧵ {v}, c�] . By the property of tree decompositions, all neigh-
bors of v in Vt , are contained in the bag Xt . This yields that set Ŝ� ∪ {v} induces
a graph whose d-coloring can be obtained by extending coloring c of S , there-
fore, cost[t, S, c] ≥ �(Ŝ� ∪ {v}) = cost[t�, S ⧵ {v}, c�] + �(v) . We conclude that
cost[t, S, c] = cost[t�, S ⧵ {v}, c�] + �(v) . ◻

To evaluate the running time required to compute (2), note that for fixed S and
c, we have to verify whether c is a proper coloring of S, which can be done in
time O(|S|2) by going through all adjacencies of G[S].

Forget node. Let t be a forget node with child t′ such that Xt = Xt� ⧵ {w} for
some w ∈ Xt� . Let S be any subset of Xt ; again we assume that c is a proper d-col-
oring of G[S], since otherwise we put cost[t, S, c] = −∞ . We claim that the fol-
lowing formula holds:

Claim 2 Formula (3) is correct.

Proof of Claim 2 Because Vt = Vt� , we have that

On the other hand, let Ŝ be a set for which the maximum is attained in the definition
of cost[t, S, c] . If w ∉ Ŝ , then cost[t, S, c] = cost[t�, S, c] . If w ∈ Ŝ , then

Thus

(2)cost[t, S, c] =

{

cost[t�, S, c] if v ∉ ;

cost[t�, S ⧵ {v}, c�] + �(v) otherwise.

(3)cost[t, S, c] =max
{

cost[t�, S, c], max
c is extendible to c�

cost[t�, S ∪ {w}, c�]
}

.

cost[t, S, c] ≥max
{

cost[t�, S, c], max
c is extendible to c�

cost[t�, S ∪ {w}, c�]
}

.

cost[t, S, c] = max
c is extendible to c�

cost[t�, S ∪ {w}, c�].

2183

1 3

Algorithmica (2021) 83:2170–2214

 ◻

For running time, to compute (3), one has to go through all colorings c′ of
S ∪ {w} which are extensions of coloring c of S. Thus for every possible color i of
w, we have to check if this color is compatible with the coloring by c the neigh-
bors of w in S. This can be done in time O(|S|).

Join node. Finally, suppose that t is a join node with children t1, t2 such that
Xt = Xt1

= Xt2
 . Let S be any subset of Xt ; as before, we can assume that c is a

proper d-coloring of G[S]. The claimed recursive formula is as follows:

Claim 3 Formula (4) is correct.

Proof of Claim 3 Let Ŝ be a set for which the maximum is attained in the definition
of cost[t, S, c] and Let Ŝ1 = Ŝ ∩ Vt1

 and Ŝ2 = Ŝ ∩ Vt2
 . Because �S ⊇ �Si , we have that

cost[ti, S, c] ≥ �(Ŝi) , i = 1, 2 . This yields that

On the other hand, the union of sets maximizing the costs of cost[t1, S, c] and
cost[t2, S, c] , is a set whose d-coloring can be obtained from extending coloring c of
S. Thus

 ◻

The running time to compute (4) for fixed set S and coloring c is proportional
to the time required to check whether c is a proper coloring. Again, this can be
done in time O(|S|2).

This concludes the description and the proof of correctness of the recur-
sive formulas for computing the values of cost[⋅, ⋅, ⋅] . The optimal subgraph of
the maximum weight can be found by standard backtracking arguments. Let
us now estimate the total running time. The running time of our dynamic pro-
gramming algorithm, up to a multiplicative factor O(|S|2) , is dominated by the
number of triples [t, S, c]. The number t is in nO(1) . Every set S should induce
a d-colorable subgraph, so we can restrict our attention only to sets of the form
Xt ∩ V(F) for some d-colorable graph F. By Lemma 3, each of these sets is of
size at most d + d+

√

d2+8dk

2
 and the total number of such sets S for each bag Xt is

is 2O(d
√

k)
⋅ nO(d) and they can be listed in 2O(d

√

k)
⋅ nO(d) time. Thus, the number of

d-colorings c of each of the sets S is dO(�S�) = dO(d+
√

dk) . Hence the total running
time of the dynamic programming is 2O(

√

k⋅d log d)
⋅ nO(d) . ◻

cost[t, S, c] ≤max
{

cost[t�, S, c], max
c is extendible to c�

cost[t�, S ∪ {w}, c�]
}

.

(4)cost[t, S, c] =cost[t1, S, c] + cost[t2, S, c] − �(S).

cost[t1, S, c] + cost[t2, S, c] ≥ �(Ŝ1) + �(Ŝ2) = �(Ŝ) − �(S) = cost[t, S, c].

cost[t1, S, c] ≥ cost[t1, S, c] + cost[t2, S, c] − �(S).

2184 Algorithmica (2021) 83:2170–2214

1 3

Combining Proposition 2, Lemma 1 and Theorem 1, we immediately obtain the

following corollary. Recall that A ⊆

(

V(G)

2

)

⧵ E(G) is a Chordal-modulator if

G + A is a chordal graph.

Corollary 1 Weighted d-ColoraBle SuBgraph on a graph G ∈ CHORDAL−ke is
solvable in time 2O(

√

k(log k+d log d))
⋅ nO(d) . Moreover, the problem can be solved in

2O(
√

k⋅d log d)
⋅ nO(d) time if a Chordal-modulator of size at most k is given.

By Corollary 1, we immediately derive the following.

Corollary 2 Weighted independent Set and Weighted Bipartite SuBgraph on
G ∈ CHORDAL−ke are solvable in time 2O(

√

k log k)
⋅ nO(1) . Moreover, the problems

can be solved in 2O(
√

k)
⋅ nO(1) time if a Chordal-modulator of size at most k is given.

In the Weighted Vertex CoVer, we are given a weighted graph G, and the task is
to find a vertex cover of minimum weight, that is, a set of vertices X such that every
edge of G has at least one endpoint in G. Similarly, in the Weighted odd CyCle
tranSVerSal, we are asked to find a minimum weight set of vertices such that every
cycle of odd length contains at least one vertex from the set. Since the complement
of every independent set is a vertex cover, and the complement of every induced
bipartite subgraph is an odd cycle transversal, we have the following corollary.

Corollary 3 Weighted Vertex CoVer and Weighted odd CyCle tranSVerSal on
CHORDAL−ke graphs are solvable in time 2O(

√

k log k)
⋅ nO(1) . Moreover, the problems

can be solved in 2O(
√

k)
⋅ nO(1) time if a Chordal-modulator of size at most k is given.

3.1 Various Extentions

We use the technique developed to prove Theorem 1 for obtaining subexponential
algorithms for other problems beyond Weighted d-ColoraBle SuBgraph. These
algorithms are very similar to the one from Theorem 1 and we sketch here only a
few problems and the adjustments required to apply the dynamic programming from
Theorem 1 to these problems.

A homomorphism G → H from a graph G to a graph H is a mapping from the
vertex set of G to that of H such that the image of every edge of G is an edge of H.
In other words, a homomorphism G → H exists if and only if there is a mapping
g ∶ V(G) → V(H) , such that for every edge uv ∈ E(G) , we have g(u)g(v) ∈ E(H) .
There is a homomorphism from G to a complete graph Kd on d vertices if and only if
G is d-colorable. Because of that, deciding whether there is a homomorphism from
G to H is often referred to as the H-coloring of G. Note that if G admits an H-color-
ing, then G is |V(H)|-colorable.

The main difference between solving Weighted H-ColoraBle SuBgraph, the
problem of finding the maximum weight induced subgraph admiting a homo-
morphism to H, with Theorem 1 is that the value cost[t, S, c] in (1) should be

2185

1 3

Algorithmica (2021) 83:2170–2214

redefined. In order to find a maximum weight H-colorable induced subgraph of a
graph G, we need to compute

The number of homomorphisms g from G[S] to H does not exceed |V(H)||S| . The
running time of operations join, introduce and forget operations in the dynamic pro-
gramming is bounded by a polynomial of the number of states. Hence we can solve
the problem in time 2O(

√

k(log k+�V(H)� log �V(H)�)
⋅ nO(�V(H)�).

Similar running times could be derived for the variants of Weighted d-Color-
aBle SuBgraph where some additional constraints on the properties of the
d-colorable induced subgraph of minimum weight are imposed by some prop-
erty C . For example, property C could be that the required subgraph is connected,
acyclic, regular, degenerate, etc. As far as the information of the partial solution
required for property C is characterized by set S ⊆ Vt and all possible subsets
of S or all permutations of S, we can solve the corresponding problem in time
2O((d

√

k) log(dk))
⋅ nO(d).

As a concrete example, consider Weighted d-degenerate SuBgraph, whose
task is to find a maximum weight d-degenerate induced subgraph H of the input
graphs G. Recall that a graph is d-degenerate for a nonnegative integer d, if every
induced subgraph of G has a vertex of degree at most d. In particular, every forest
is 1-degenerate. Recall also that a graph G is d-degenerate if and only if it admits
a d-coloring ordering [23]. In particular, this immediately implies that every
d-degenerate graph is (d + 1)-colorable. That is, the chromatic number bound is
automatically given by the d-degeneracy property.

Let G be a graph and let � be an ordering of its vertices. Let X ⊆ V(G) . We
say that � as an extension of an ordering �′ of X if the vertices of X occur in �
in the same order as in �′ . Suppose that X = {x1,… , xr} and the vertices of X
are indexed with respect to their order in � . Denote by ��(G,X) = (�1,… , �r) the
sequence of nonnegative integers such that for each i ∈ {1,… , k} , �i is the degree
of xi in the graph obtained from G by the deletion of the vertices that occur before
xi in � . Notice that if � is a d-coloring ordering of G, then �i ≤ d for i ∈ {1,… , r} .
We use the following lemma to construct our algorithm for Weighted d-degener-
ate SuBgraph.

Lemma 4 Let G be a graph and let V1,V2 ⊆ V(G) such that V1 ∪ V2 = V(G) . Let
also X = V1 ∩ V2 with r = |X| . Then G has a d-coloring ordering if and only if there
is an ordering � of X and orderings �1 and �2 of V1 and V2 respectively such that

 (i) �i is an extension of � for i = 1, 2,
 (ii) for the sequences ��(G[X],X) = (�1,… , �r) , ��1(G[V1],X) = (�(1)

1
,… , �(1)

r
)

and ��2(G[V2],X) = (�(2)
1
,… , �(2)

r
) , it holds that �(1)

i
+ �(2)

i
− �i ≤ d for every

i ∈ {1,… , r}.

cost[t, S, g] =maximum possible weight of a set�S such that

S ⊆ �S ⊆ Vt,
�S ∩ Xt = S, and g is a homomorphism fromG[S]

toH extendible to a homomorphism ofG[�S] toH.

2186 Algorithmica (2021) 83:2170–2214

1 3

Proof Suppose that �′ is a d-coloring ordering. Then we define � , �1 and �2 as the
orderings of X, V1 and V2 respectively as the ordering inherited from � , that is, every
two vertices of the corresponding sets occur exactly in the same order as in � . It is
straightforward to verify (i) and (ii). For the opposite direction, assume that there
are � , �1 and �2 satisfying (i) and (ii). Let � = (x1,… , xr) . We construct the ordering
�′ of G as follows. First, we concatenate the suborderings of �1 and �2 containing
the vertices that occur before x1 in these orderings and add x1 in the end. Then for
i = 2,… , r , we consecutively add suborderings of �1 and �2 composed by the verti-
ces that occur between xi−1 and xi and add xi in the end. Finally, we add suborderings
of �1 and �2 with the vertices that are after xr . It is easy to see that �′ is a d-coloring
ordering of G because of (i) and (ii). ◻

Using Lemma 4, we can define the values computed by our dynamic program-
ming algorithm for Weighted d-degenerate SuBgraph. For a non-negative inte-
ger r, we define �r = {(�1,… , �r) ∣ 0 ≤ �i ≤ d, 1 ≤ i ≤ r} , i.e, �r is the set of all
sequences of length r of nonnegative integers at most d. Similarly to (1), for every
node t, every S ⊆ Xt such that G[S] is (d + 1)-colorable, every ordering � of S and
every � ∈ �

|S| , we define

For a given S ⊆ Xt , there are |S|! different ordering of the vertices of S and
|�

|S|| = (d + 1)|S| . By Lemma 3, we have that �S� ≤ 3d+
√

d2+8dk

2
 and, therefore, we

consider 2O((d+
√

dk) log(dk)) orderings � and 2O((d+
√

dk) log d) sequences � . Taking into
account that by Lemma 3, we consider 2O(d

√

k)
⋅ nO(d) sets S, we obtain that the table

of our dynamic programming algorithm stores 2O((d
√

dk) log(kd))
⋅ nO(d) values. Apply-

ing Lemma 4 and the standard dynamic programming arguments, it is easy to show
that we can solve Weighted d-degenerate SuBgraph using the information stored in
the tables.

Many natural problems can be described by combining connectivity, degen-
eracy, or degree constraints. Examples of such problems are various maximiza-
tion problems like Weighted induCed tree, Weighted induCed path, Weighted
induCed CyCle, and various packing variants of these problems like Weighted
induCed CyCle paCking, the problem of finding a maximum induced subgraph
whose each connected component is a cycle.

We summarize these observations with the following theorem.

Theorem 2 Let d ≥ 1 be an integer and G be a graph from CHORDAL−ke . Then

• Weighted H-ColoraBle SuBgraph can be solved in
2O(

√

k(log k+�V(H)� log �V(H)�))
⋅ nO(�V(H)�) time,

• Weighted d-degenerate SuBgraph is solvable in time 2O((d
√

k) log(dk))
⋅ nO(d),

cost[t, S,𝜋, 𝛿] =maximum possible weight of a set�S such that

S ⊆ �S ⊆ Vt,
�S ∩ Xt = S, and ordering𝜋 of S can be extended

to a d-coloring ordering𝜋� ofG[�S]with 𝛿𝜋� (G[�S], S) = 𝛿.

2187

1 3

Algorithmica (2021) 83:2170–2214

and

– Weighted induCed ForeSt(Weighted FeedBaCk Vertex Set),
– Weighted induCed tree,
– Weighted induCed path (CyCle)
– Weighted induCed CyCle paCking,

are solvable in 2O(
√

k log k)
⋅ nO(1) time.

In some cases, we can obtain a better running time if a Chordal-modulator of
size at most k is given. For Weighted H-ColoraBle SuBgraph, this is done in the
same way as for Weighted d-ColoraBle SuBgraph. For some other problems, like
Weighted induCed ForeSt (Weighted FeedBaCk Vertex Set), this would demand
using recent techniques for dynamic programming on graphs of bounded treewidth
for problems with connectivity constraints (see [6, 20, 25, 56]) but this goes beyond
the scope of our paper.

Another extension of Theorem 1 can be derived from the very recent results of
Baste, Sau and Thilikos [3] about the F -Minor deletion problem on graphs of
bounded treewidth. Recall that a graph F is a minor of G if a graph isomorphic to F
can be obtained from G by vertex and edge deletions and edge contractions. Respec-
tively, G is said to be F-minor free if G does not contain F as a minor. For a family
of graphs F , G is F -minor free if G is F-minor free for every F ∈ F . For a family
F , the task of F -Minor deletion is, given a graph G, to find a minimum set of ver-
tices X such that G − X is F -minor free. Then F -Minor deletion is equivalent to
F -Minor Free induCed SuBgraph, whose task is to find a maximum F -minor free
induced subgraph of G. A family of graphs F is connected if every F ∈ F is a con-
nected graph. Baste et al. [3] obtained, in particular, the following result.

Proposition 5 [3] Let F be a finite connected family of graphs. Then F -Minor
deletion can be solved in time 2O(w logw)

⋅ nO(1) on graphs of treewidth at most w.1

It is well-known (see, e.g., the book of Nesetril and de Mendez [54] for the inclu-
sion relations between the classes of sparse graphs) that if F is a finite family, then
there is a positive integer d such that every F -minor free graph is d-degenerate. This
means that for a finite family F , F -minor free graphs are d-colorable for some con-
stant d that depends on F only. We use Lemma 3 and then combine our approach
from Theorem 1 with the techniques of Baste et al. [3]. Using Lemma 5. Hence the
following theorem.

Theorem 3 Let F be a finite connected family of graphs. Let also G be a graph
from CHORDAL−ke . Then F -Minor Free induCed SuBgraph (or, equivalently, F
-Minor deletion) can be solved in 2O(

√

k log k)
⋅ nO(1) time.

1 the constants hidden in the big-O notation depend on F .

2188 Algorithmica (2021) 83:2170–2214

1 3

For example, this framework encompasses such problems as induCed planar
SuBgraph or induCed outerplanar SuBgraph whose task is to find a subgraph of
maximum size that is planar or outerplanar, respectively.

With a small adjustment, the dynamic programming applies to the prob-
lems with specific requirements on the complement of the maximum induced
d-colored subgraph. For example, consider the following problem. A set of ver-
tices S ⊆ V(G) is a connected vertex cover if S is a vertex cover and G[S] is con-
nected. Then in the Weighted ConneCted Vertex CoVer problem, we are given
a graph G with a weight function w ∶ V(G) → ℤ+ , and the task is to find a con-
nected vertex cover in G of minimum weight. Similarly, Weighted ConneCted
FeedBaCk Vertex Set is the problem of finding a connected feedback vertex set of
minimum weight.

The complement of every vertex cover is an independent set, that is a 1-color-
able subgraph, and the complement of every feedback vertex set is a forest, hence
2-colorable subgraph. While the connectivity constraints are not on the maximum
induced subgraph but its complement, our previous arguments can be adapted to
handle these problems.

Theorem 4 Weighted ConneCted Vertex CoVer and Weighted ConneCted Feed-
BaCk Vertex Set are solvable in time 2O(

√

k log k)
⋅ nO(1) on CHORDAL−ke.

Proof (sketch) The proof is similar to the proof of Theorem 1, so we only briefly
sketch the main idea. We also give the sketch for Weighted ConneCted Vertex
CoVer only, the solution to Weighted ConneCted FeedBaCk Vertex Set is basically
the same.

Let (G, w, W) be an instance of Weighted ConneCted Vertex CoVer.
We use Lemma 1 to find a nice k-almost chordal tree decomposition

T = (T , {Xt}t∈V(T)) of G with O(n2) bags. Let r be the root of T and Vt be the union of
the bags in the subtree of T rooted in t.

The following claim is crucial for our algorithm.

Claim 4 Let t be a node of T and let S ⊆ Xt . Then G[S] has at most 3+
√

1+8k

2
 con-

nected components.

To prove the claim, observe that any set of vertices constructed by picking an
arbitrary vertex from each connected component of G[S] is independent. Hence,
the number of connected components of G[S] is upper bounded by the maximum
size of an independent set in Xt . By Lemma 3, any independent subset of Xt has
size at most 3+

√

1+8k

2
 and the claim follows.

Let t ∈ T . For a set S ⊆ Xt , denote by Pt(S) the set of all partitions of S such
that every two vertices x, y ∈ S that are in the same component are in the same set
of each partition; we assume that Pt(�) = {�}.

Notice that S ⊆ V(G) is a connected vertex cover if and only if U = V(G) ⧵ S is
an independent set and G[S] is a connected graph.

2189

1 3

Algorithmica (2021) 83:2170–2214

For every t ∈ V(T) , every independent set U ⊆ Xt and every P ∈ Pt(S) for
S = Xt ⧵ U , our algorithm computes the value cost[t,U,P] that is the minimum pos-
sible weight of a set �S ⊆ Vt such that

• Ŝ ∩ Xt = S = Xt ⧵ U,
• Ŝ is a vertex cover of G[Vt],
• for each connected component C of G[Ŝ] , V(C) ∩ S ≠ � unless S = �,
• every two vertices x, y ∈ S are in the same set of P if and only if they belong to

the same connected component of G[Ŝ].

We compute cost[t,U,P] bottom-up for t ∈ V(T) starting from the leaves. The com-
putations are trivial for leaf nodes and are performed in a standard way for intro-
duce, forget and join nodes. Finally, we compute cost[r, �, {�}] , which gives us the
minimum weight of a connected vertex cover.

By Lemma 3, Xt has 2O(
√

k)
⋅ nO(1) independent subsets. By Claim 4, we have

that for every S ⊆ Xt , G[S] has at most 3+
√

1+8k

2
 connected components. There-

fore, �Pt(S)� = 2O(
√

k log k) and the algorithm computes 2O(
√

k log k)
⋅ nO(1) values

of cost[t,U,P] for each t ∈ V(T) . Therefore, the running time of the algorithm is
2O(

√

k log k)
⋅ nO(1) . ◻

In this section, we discussed optimization problems but, in many cases, similar
dynamic programming can be applied for counting problems. For example, we can
compute the number of (inclusion) maximal independent sets, maximal bipartite
subgraphs, minimal (connected) feedback vertex sets, minimal connected vertex
covers in time 2O(

√

k log k)
⋅ nO(1) on CHORDAL−ke.

4 Beyond Induced d‑colorable Subgraphs

In Sect. 3, among other algorithms, we gave a subexponential (in k) algorithm on
CHORDAL−ke graphs computing a maximum d-colorable subgraph. In particular,
this also implies that for every fixed d, deciding whether a graph from CHORDAL−ke
is d-colorable, can be done in time subexponential in k. In this section, we show that
two fundamental problems, namely, Coloring and Clique, while still being ��� , but
unlikely be solvable in subexponential parameterized time.

4.1 Coloring CHORDAL−ke Graphs

First, we consider Coloring whose task is, given a graph G and a positive integer � ,
decide whether the chromatic number of G is at most � , that is, if G is �-colorable.
Note that � here is not a fixed constant as in Sect. 3 and may be arbitrarily large.

Cai [12] proved that Coloring is ��� (parameterized by k) on SPLIT−ke graphs.
We generalize his result by showing that Coloringis ��� on CHORDAL−ke . Our
approach is based on the dynamic programming which is similar to the one we used
in Sect. 3.

2190 Algorithmica (2021) 83:2170–2214

1 3

We need the following property of graph colorings. Let G be a graph. It is
well-known that an �-coloring of a graph G can be seen as a partition X of V(G)
into at most � independent sets formed by the vertices of the same color that
are called color classes. We call X an �-coloring partition of G. We also say
that a partition X of V(G) into independent sets is a coloring partition of G. Let
X = {X1,… , x

�
} be a coloring partition of G and let U ⊆ V(G) . We say that the

partition X|U of U formed by nonempty sets U ∩ X1,… ,U ∩ X
�
 is a projection of

X on U; we assume that X∅ contains the unique element ∅.

Lemma 5 Let G ∈ CHORDAL−ke and let A ⊆

(

V(G)

2

)

 such that |A| ≤ k and

G� = G + A is a chordal graph. Let also C be a clique of G′ . Then there are at most
(2k)2k partitions of C into independent in G sets and these partitions can be enumer-
ated in 2O(k log k)

⋅ n time.

Proof Let S be the set of end-vertices of the elements of A in C. Then C� = C ⧵ S is
a clique of G such that each vertex v of C is adjacent to every vertex of C′ distinct
from v. Therefore, for every coloring partition X of G, the vertices of C′ form single-
element sets of the projection of X on C. Therefore, only the vertices of S may be
included in nontrivial sets of the partitions. Since |S| ≤ 2k , there are at most (2k)2k
partitions of S into independent sets. Hence, there are at most (2k)2k partitions of
C. To enumerate all the partitions, we brute-force through all partitions of S and
verify for each partition whether this is a partition of S into independents sets. Since
|C| ≤ n , the enumeration can be done in 2O(k log k)

⋅ n time. ◻

Lemma 5 implies that there are at most (2k)2k projections of the coloring parti-
tions of G on C and these projections can be enumerated in 2O(k log k)

⋅ n time. This
allows to construct a dynamic programming algorithm for Coloring.

Theorem 5 Coloring can be solved in time 2O(k log k)
⋅ nO(1) on CHORDAL−ke.

Proof The algorithm follows the same routine as the algorithms from Sect. 3. We
only briefly sketch the main idea.

Let (G,�) be an instance of Coloring. By Lemma 1, one can construct a nice
k-almost chordal tree decomposition T = (T , {Xt}t∈V(T)) of G with O(n2) bags. Let
r be the root of T and recall that Vt denotes the union of the bags in the subtree of T
rooted in t. For t ∈ V(T) , let Yt be the family of all partitions of Xt into independent
sets. We put Yt = {�} if Xt = �.

For every X ∈ Yt , we define

���t(X) =

⎧

⎪

⎨

⎪

⎩

true if there is an �-coloring partition X� of G[Vt] s.t.

X
�
�Xt

= X,

false otherwise .

2191

1 3

Algorithmica (2021) 83:2170–2214

We compute the table of values of ���t(X) bottom-up for t ∈ V(V) starting from the
leaves. Clearly, G is �-colorable if and only if ���r(�) = true.

Leaf node. Computing the tables for leaves is trivial as the bags are empty, and
we assume that the empty graph is �-colorable.

From now on, we assume that a node t ∈ V(T) has children, and the tables are
already constructed for them.

Introduce node. Let t be an introduce node of T. Denote by t′ its child and
assume that Xt = Xt� ∪ {v} for v ∉ Xt� . For X ∈ Yt , we define X − v as the partition
of Xt′ obtained from X either by the deletion of {v} if {v} is an element of X or by the
deletion of v from a nontrivial set of X containing v. For every X ∈ Yt , we set

Forget node. Let t be a forget node of T. Denote by t′ its child and assume that
Xt = Xt� ⧵ {v} for v ∈ Xt� . For X ∈ Yt , we define X + v ⊆ Yt� to be the sets of all par-
titions X′ of Xt′ into independent sets such that X = X

� − v , that is, every X� ∈ X + v
is either obtained by adding the single-element set {v} or by including v into one of
the independent set. For every X ∈ Yt , we set

Join node. Let t be a join node of T with children t1 and t2 . Then Yt = Yt1
= Yt2

 . For
every X ∈ Yt,

The correctness of the computation of the tables of values of ���t(X) for t ∈ V(T)
follows by standard arguments. By Lemma 5, we have that each table has at most
(2k)2k = 2O(k log k) elements. By the same lemma, together with the description of the
computing the tables for the leave and the introduce, forget and join nodes, implies
that the computation of the table for every t ∈ V(T) can be done in time 2O(k log k)n .
Therefore, the total running time is 2O(k log k)

⋅ nO(1) . ◻

Now we show that it is unlikely that Coloring is solvable in subexponential in
k time. For this, we establish the complexity lower bound based on ETH. We use
the result of Komusiewicz and Uhlmann [46] for the auxiliary triangle CoVer
problem that, given a graph G with n = 3p vertices, asks whether V(G) can be
covered by p disjoint triangles, that is, by p copies of K3 that are subgraphs of G.

Proposition 6 [46] Unless ETH is false, triangle CoVer cannot be solved in time
2o(n+m) ⋅ (n + m)O(1) even when the input restricted to the graphs without induced K4.

Now we rule out the existence of a subexponential algorithm for Coloring on
CHORDAL−ke parameterized by k. We show a stronger claim.

���t(X) ∶= (|X| ≤ �) ∧ ���t� (X − v).

���t(X) ∶=
⋁

X
�∈X+v

���t� (X
�).

���t(X) ∶= ���t1 (X) ∧ ���t2 (X).

2192 Algorithmica (2021) 83:2170–2214

1 3

Theorem 6 Coloring cannot be solved in time 2o(k) ⋅ nO(1) on graphs in
COMPLETE−ke unless ETH fails.

Proof A set of cliques {C1,… ,C
�
} of a graph G is a clique cover if the cliques

are pairwise disjoint and V(G) = ∪�

i=1
Ci . It is well-known that G is �-colorable if

and only if its complement G has a clique cover of size � . Let G be a graph with
n = 3� vertices that has no induced K4 . Observe that G has a clique cover of size �
if and only if V(G) can be covered by � cliques of size 3, that is, by triangles. Con-
sider a graph G with n = 3� vertices such that G has no induced K4 . We obtain that
(G,�) is a yes-instance of Coloring if and only if G is a yes-instance of triangle
CoVer. Observe that G ∈ COMPLETE−ke if and only if G has at most k edges. Then
the existence of an algorithm for Coloring running in time 2o(k) ⋅ nO(1) on graphs in
COMPLETE−ke would imply that triangle CoVer can be solved in time 2o(k) ⋅ nO(1)
on graphs without induced K4 with at most k edges. This is impossible unless ETH
is false by Proposition 6. ◻

4.2 Clique in CHORDAL−ke Graphs

Now we consider the Clique problem that asks, given a graph G and a positive inte-
ger � , whether G has a clique of size at least � . We show that Clique is ��� on
CHORDAL−ke when parameterized by k even for the weighted variant of the prob-
lem in Sect. 5 by demonstrating that the problem admits a Turing kernel. Here, we
prove the following lower bound.

Theorem 7 Clique cannot be solved in time 2o(k) ⋅ nO(1) on graphs in COMPLETE−ke
unless ETH fails.

Proof Observe that a graph G has a clique of size at least � if and only if G has
an independent set of size at least � . Recall that G ∈ COMPLETE−ke if and only
if G has at most k edges. It was shown by Impagliazzo, Paturi and Zane [40] that
independent Set cannot be solved in time 2o(n+m)nO(1) on graphs with n vertices and
m edges unless ETH fails. These observations immediately imply the claim of the
theorem. ◻

We proved that Coloring and Clique do not admit subexponential algorithms on
COMPLETE−ke , when parameterized by k, unless ETH fails. Note that by Observa-
tion 1, this means that subexponential algorithms cannot solve these problems on
CHORDAL−ke as well unless ETH fails.

5 Kernelization on Chordal −ke

In this section we discuss kernelization of the problems considered in the previous
section.

2193

1 3

Algorithmica (2021) 83:2170–2214

Jansen and Bodlaender in [42] and Bodlaender, Jansen, and Kratsch in [8] proved
that Weighted independent Set, Weighted Vertex CoVer, Weighted Bipartite SuB-
graph, Weighted odd CyCle tranSVerSal, Weighted FeedBaCk Vertex Set and
Clique do not admit a polynomial kernel parameterized by the size of the minimum
vertex cover of the graph unless coNP ⊆ NP∕poly.

We use the following observation.

Observation 2 If G has a vertex cover of size at most k, then �����-����(G) ≤

(

k

2

)

.

Proof Let G be a graph with a vertex cover X of size at most k. Let

A =

(

X

2

)

⧵ E(G[X]) . Clearly, G + A is a split graph. Therefore,

�����-����(G) ≤

(

k

2

)

 . ◻

Observation 2 and the results of [8, 42] yield the following proposition.

Proposition 7 Weighted independent Set, Weighted Vertex CoVer, Weighted
Bipartite SuBgraph, Weighted odd CyCle tranSVerSal, Weighted FeedBaCk Ver-
tex Set and Clique do not admit a polynomial in k kernel on SPLIT−ke graphs
unless coNP ⊆ NP∕poly.

By Observation 1, these problems parameterized by k have no polynomial kernel
on CHORDAL−ke as well unless coNP ⊆ NP∕poly.

These results do not refute the existence of polynomial Turing kernels. We show
that Weighted Clique has such a kernel. The input of Weighted Clique contains a
graph G together with a weight function w ∶ V(G) → ℤ+ and a nonnegative integer
W, and the task is to decide whether G has a clique C of weight at least W.

Our kernelization algorithm uses the following well-known property of chordal
graphs.

Proposition 8 [34, 61] An n-vertex chordal graph has at most n inclusion-maximal
cliques, and they can be listed in linear time.

Theorem 8 Weighted Clique on CHORDAL−ke parameterized by k admits a Turing
kernel with at most 16k2 vertices with size O(k8).

Proof Let (G, w, W) be an instance of Weighted Clique.
We apply Proposition 1 to approximate the fill-in of G. If the algorithm reports

that � ���- ��(G) > k , we report that G ∉ CHORDAL−ke and stop. Assume that this is

not the case. Then the algorithm returns a set A ⊆

(

V(G)

2

)

 of size at most 8k2 such

that G� = G + A is a chordal graph. Let X be the set of vertices that are the end-verti-
ces of the edges of A. Note that |X| ≤ 16k2 . Then we use Proposition 8 to list all the
inclusion maximal cliques C1,… ,Cr of G′ . Let Xi = X ∩ Ci for i ∈ {1,… , r} .
Observe that if C is a clique of G of weight at least W, then C ⊆ Ci for some

2194 Algorithmica (2021) 83:2170–2214

1 3

i ∈ {1,… , r} . Observe also that each G[Ci] contains a clique of weight at least W if
and only if Gi = G[Xi] contains a clique of weight at least
Wi = max{0,W − w(Ci ⧵ Xi)} . Trivially, � ���- ��(Gi) ≤ � ���- ��(G) for i ∈ {1,… , r} ,
that is, each Gi ∈ CHORDAL−ke if G ∈ CHORDAL−ke.

Observe that (G, w, W) is a yes-instance of Weighted Clique if and only if
(Gi,w,Wi) is a yes-instance for at least one i ∈ {1,… , r} . Then Turing kernelization
algorithm solves Weighted Clique by calling the oracle for each instance (Gi,w,Wi)
with the parameter k for i ∈ {1,… , r}.

Since |V(Gi)| = |Xi| ≤ |X| ≤ 16k2 for i ∈ {1,… , r} , we solve instances with the
input graphs of bounded size. To call the oracle that solves the instances of bounded
size, we have to compress the weights. For this, we apply Proposition 3.

Let i ∈ {1,… , r} and consider the instance (Gi,w,Wi) . Let v1,… , vp be the
vertices of Gi . Using the notation of Proposition 3, let h = p + 1 and N = p + 2 .
Consider vector w = (w(v1),… ,w(vp),Wi)

⊺ ∈ ℤh . The algorithm of Frank and
Tardos finds a vector w̄ = (w̄1,… , w̄p, W̄i)

⊺ with ‖w̄‖∞ ≤ 24h
3

Nh(h+2) such that
sign(w ⋅ b) = sign(w̄ ⋅ b) for all vectors b ∈ ℤh with ‖b‖1 ≤ N − 1 . We define
w̄(vj) = w̄j for j ∈ {1,… , p} and consider the instance (Gi, w̄, W̄i) of Weighted inde-
pendent Set.

Since sign(w ⋅ b) = sign(w̄ ⋅ b) for all vectors b ∈ ℤh with ‖b‖1 ≤ N − 1 , the
equality holds for every b whose elements are in {−1, 0, 1} . This implies that the
weights w̄(vj) are positive and W̄i is nonnegative. Also we have that for every set of
indices I ⊆ {1,… , p} ,

∑

j∈I w(vj) ≤ Wi if and only if
∑

j∈I w̄(vj) ≤ W̄i . This proves
that the instances (Gi,w,Wi) and (Gi, w̄, W̄i) are equivalent.

Since |V(Gi)| ≤ 16k2 , we obtain that the weights in the instance (Gi, w̄, W̄i) can be
encoded by stings of length O(k6) for i ∈ {1,… , r} . Hence, the size of each instance
is O(k8).

Propositions 1, 8 and 3 immediately imply that the kernelization algorithm runs
in polynomial time. ◻

6 Independent Set on INTERVAL−ke

In this section, we show that independent Set parameterized by the size of the
interval completion admits a polynomial compression into the Weighted inde-
pendent Set problem. We state Weighted independent Set as a decision problem,
whose input contains a graph G with a weight function w ∶ V(G) → ℤ+ and a
nonnegative integer W, and the task is to decide whether G has an independent set
S with w(S) ≥ W .

More formally, we show the following theorem.

Theorem 9 independent Set on G ∈ INTERVAL−ke admits a compression of size
O(k56) into Weighted independent Set.

2195

1 3

Algorithmica (2021) 83:2170–2214

Since Weighted independent Set is in �� and, consecutively, has a polynomial
reduction to independent Set that is ��-complete [31], the theorem immediately
gives the following result.

Corollary 4 independent Set on G ∈ INTERVAL−ke admits a polynomial kernel
when parameterized by k.

The proof of Theorem 9 is the most technical part of our paper. Before giving
the formal proof, we explain technical issues and briefly sketch the compression
algorithm’s main ideas. We start with an approach that does not work and then
explain how to fix it.

Let G be a graph and let A ⊆

(

V(G)

2

)

⧵ E(G) be a set of pairs of nonadjacent

vertices such that the graph G′ obtained from G by adding the edges from A
becomes interval. Denote by X the set of end-vertices of the edges of A in G′.

Consider an interval model of G′ . For each vertex v ∈ V(G�) , let �v and rv be,
respectively, the left and right endpoint of the interval representing v. For each
v ∈ V(G�) , denote by G�

v
 and Gr

v
 the subgraphs of G′ induced by the sets of ver-

tices U�

v
= {u ∈ V(G�) ∣ ru < �v} and Ur

v
= {u ∈ V(G�) ∣ rv < �u} respectively,

and for every two distinct u, v ∈ V(G�) , let Guv be the subgraph induced by
Uuv = {w ∈ V(G�) ∣ ru < �w ≤ rw < �v} (see Figure 1). For a graph H, denote by
I(H) a maximum independent set of H. Suppose that I is a maximum independent
set of G and let I ∩ X = {x1,… , xs} with rvi−1 < �vi

 for i ∈ 2,… , s . Then it is pos-
sible to prove that

is a maximum independent set of G.
This allows us to create the following compression of the initial problem to

an instance of Weighted independent Set. Let F be the set of all induced sub-
graphs G�

v
 , Gr

v
 and Guv for all u, v ∈ X . Consider the graph G with the set of ver-

tices X ∪ F with the following adjacencies: for distinct u, v ∈ V(G) , u and v are
adjacent if and only if one of the following holds:

• u, v ∈ X and xy ∈ E(G),
• u ∈ X , v ∈ F and u is adjacent to a vertex of v in G,
• u, v ∈ F and the subgraphs u and v have either common or adjacent vertices in

G.

I� = I(G�

x1
) ∪

(

s
⋃

i=2

I(Gxi−1xi
)
)

∪ I(Gr
xs
)

Fig. 1 Structure of a maximum independent set in G

2196 Algorithmica (2021) 83:2170–2214

1 3

We define the weight w(v) for v ∈ V(G) be one if v ∈ X and set w(v) = |I(v)| for
v ∈ F . It can be shown that G has an independent set of size at least W if and only
if G has an independent set of weight at least W. Then we can use the technique of
Frank and Tardos [30] to compress the weights.

Unfortunately, the above arguments do not work for the following reason. We
based our construction on the assumption that we know G′ and the resulting inter-
val model. But computing an optimal interval completion is an ��-hard task. Of
course, it would suffice even if we had a poly(OPT) approximation algorithm for
interval completion. That is, an algorithm producing in polynomial time an edge
set A of size polynomial in k, and whose addition turns the input graph G into an
interval graph. However, the existence of such an approximation is a long-standing
open problem. The best-known result is the O(log n) approximation algorithm of
Rao and Richa [57] for the minimum number of edges of an interval supergraph of
an n-vertex graphs. While we were able to implement the above idea and obtain the
required compression, the absence of a good approximation makes the proof more
complicated.

Given a graph G, we construct a vertex set X and a set of induced subgraphs F
of G − X such that the graph G defined above have the desired property: G has an
independent set of size at least W if and only if G has an independent set of weight
at least W. We start the construction of X using the algorithm of Natanzon, Shamir,
and Sharan [52] to approximate � ���- ��(G) ≤ ���-����(G) . Initially, we set X be the
set of vertices in the pairs of nonadjacent vertices returned by the algorithm. Then
we apply a series of reduction rules that either solve the problem or enhance X by
adding vertices or delete vertices of the graph. The reduction rules use the forbid-
den induced subgraph characterization of interval graphs given by Lekkerkerker and
Boland [47]. This way, we construct X of size O(k3) . Then we construct F of size
O(k14) and define G . Here again, we use the technique of Frank and Tardos [30] to
compress the weights.

The remaining part of the section contains the proof of Theorem 9. In Sect. 6.1,
we introduce additional notions and state some auxiliary results. Then, in Sect. 6.2,
we give the compression itself.

6.1 Technical Lemmata

An interval graph has been defined as an intersection graph of a family of inter-
vals of the real line. For our compression algorithm, we need the characterization of
interval graphs in terms of forbidden induced subgraphs.

Three pairwise nonadjacent vertices of a graph form an asteroidal triple (AT)
if there is a path between every two of them that avoids the closed neighborhood
of the third. For an asteroidal triple T of a graph G, a T-AT-witness is an inclu-
sion minimal induced subgraph F of G such that T is an asteroidal triple of F.
The vertices of T are called terminals of F. Clearly, F is induced by the vertices
of induced paths between every two vertices of T that avoid the closed neighbor-
hood of the third. Therefore, the existence of an asteroidal triple T can be checked
in polynomial time, and then the construction of a T-AT-witness can be done in

2197

1 3

Algorithmica (2021) 83:2170–2214

polynomial time using the self-reducibility technique. An asteroidal witness is an
inclusion minimal induced subgraph that contains an asteroidal triple, and we call
the vertices of an asteroidal triple terminals of the witness (note that the choice of
terminals is not unique).

A graph G is AT-free if G has no asteroidal triple. We use the following classi-
cal result of Lekkerkerker and Boland [47].

Proposition 9 [47] A graph G is an interval graph if and only if G is chordal and
AT-free.

The main result of Lekkerkerker and Boland [47] is the characterization of
interval graphs by forbidden induced subgraphs. We use this characterization in
the following form tailored for our purposes.

Lemma 6 [47] If a chordal graph G contains an asteroidal triple T, then it contains
a minimal asteroidal witness F isomorphic to one of the graphs F1 , F2 , F3(r) for
r ≥ 2 or F4(r) for r ≥ 1 that are shown in Figure 2 (a)–(d) and for every nonterminal
vertex v of F, it holds that v ∈ V(G) ⧵ T . Moreover, such a witness F can be found in
polynomial time.

The lemma’s last statement means that the vertices of an asteroidal triple of G
may be only terminal vertices of a minimal witness.

We say that vertex set X ⊆ V(G) is a chordal-complementing set for G if there

is A ⊆

(

X

2

)

⧵ E(G[X]) such that G + A is chordal. If G + A is chordal, then the

set of end-vertices of the edges of A is chordal-complementing. Observe also that
every superset of a chordal-complementing set is chordal-complementing, and for
each U ⊆ V(G) , X ⧵ U is a chordal-complementing set of G − U.

(a) (c)(b)

(e)(d)

Fig. 2 Minimal asteroidal witnesses; asteroidal triples (terminals) are shown by white bullets

2198 Algorithmica (2021) 83:2170–2214

1 3

We say that a triple of vertices T of G is an X-touching AT if T is an asteroidal
triple of G − E(G[X]) that has a T-AT-witness F such that either |V(F) ∩ X| ≤ 1 or
V(F) ∩ X ⊆ T . We say that F is associated with T.

Our compression algorithm uses the properties of chordal-complementing sets
and X-touching ATs with associated witnesses given in the following two lemmas.

Lemma 7 Let X ⊆ V(G) be a chordal-complementing set for a graph G and let T be
an X-touching AT triple of G. Then G has an X-touching AT T ′ with an associated
witness F′ isomorphic to one of the graphs F1 , F2 , F3(r) for r ≥ 2 , F4(r) for r ≥ 1 or
F5 that are shown in Figure 2 (a)–(e). Moreover, T ′ and an associated witness F′ can
be constructed in polynomial time.

Proof Suppose that T = {u1, u2, u3} is an X-touching AT. We find an associated wit-
ness F. Note that this can be done in polynomial time using the self-reducibility
technique.

Assume that F is not a chordal graph. Then it contains an induced cycle C with at
least four vertices. Notice that since X is a chordal-complementing set, C has at least
two nonadjacent vertices from T. We consider four cases depending on the length of
C.

Let C be of length 4. By symmetry, we assume without loss of generality that
u1, u2 ∈ V(C) . Then C = u1v1u2v2u1 for some v1, v2 ∈ V(F) ⧵ T . Recall that F is
induced by the vertices of induced paths between every two vertices of T that avoid
the closed neighborhood of the third. The vertices v1 and v2 cannot belong to any
induced (u1, u3) or (u2, u3)-path that avoids NF[u2] and NF[u1] . Hence, v1 and v2 are
vertices of an induced (u1, u2)-path that avoids NF[u3] . Clearly, u1v2u2 is an induced
(u1, u2)-path. We obtain that F − v2 is T-AT-witness but this contradicts the minimal-
ity of F. We conclude that C has length at least 5.

Suppose that C has length 5. Again, we can assume without loss of generality that
u1, u2 ∈ V(C) . Then C = u1v1u2v2v3u1 for some v1, v2, v3 ∈ V(F) ⧵ T . Then for every

A ⊆

(

X

2

)

⧵ E(G[X]) , G�� = G + A contains a cycle of length at least four: if

u1u2 ∈ A , then u1u2v2v3v4v1 is such a cycle and if u1u2 ∉ A , then C is a cycle of G′′ .
This contradicts the condition that X is a chordal-complementing set. Hence, C has
length at least 6.

Assume that C has length 6. Suppose that |V(C) ∩ T| = 2 . Then we can assume
that u1, u2 ∈ V(C) and either C = u1v1u2v2v3v4u1 or C = u1v1v2u2v3v4u1 for some
v1, v2, v3, v4 ∈ V(F) ⧵ T . In both cases, we obtain a contradiction with the condition
that X is a chordal-complementing set in the same way as in the previous case,

because for every A ⊆

(

X

2

)

⧵ E(G[X]) , G�� = G + A contains a cycle of length at

least four. Therefore, T ⊆ V(C) and C = u1v1u2v3u3v3u1 for some
v1, v2, v3 ∈ V(F) ⧵ T . We obtain that C = F = F5 is a T-AT-witness as required by
the lemma.

Finally, let C be of length at least 7. Then for two vertices of T, say, u1 and u2 , C
contains an induced (u1, u2)-path P of length at least 3. Then for every

2199

1 3

Algorithmica (2021) 83:2170–2214

A ⊆

(

X

2

)

⧵ E(G[X]) , G�� = G + A contains a cycle of length at least four that con-

tains P as a segment. This contradicts the condition that X is a chordal-complement-
ing set.

Assume now that F is a chordal graph. Then the claim of the lemma is a direct
corollary of Lemma 6. ◻

Lemma 8 Let X ⊆ V(G) be a chordal-complementing set for a graph G. Suppose
that G has an X-touching AT T with an associated witness F isomorphic to one of
the graphs F1 , F2 , F3(r) for r ≥ 2 , F4(r) for r ≥ 1 or F5 that are shown in Figure 2
(a)–(e). Then for every interval complementation H of G, H has an edge uv ∉ E(G)
such that

 (i) u, v ∈ V(F),
 (ii) either u ∉ X or v ∉ X.

Proof Suppose that T is an X-touching AT with an associated witness isomorphic to
one of the graphs F1 , F2 , F3(r) for r ≥ 2 , F4(r) for r ≥ 1 or F5 . Let H be an interval
complementation of G. If |V(F) ∩ X| ≤ 1 , then the claim immediately follows form
Proposition 9 as H is AT-free. Assume that |V(F) ∩ X| ≥ 2 . Then V(F) ∩ X ⊆ T .

Assume that |V(F) ∩ T| = 2 . If the vertices of V(F) ∩ T are nonadjacent in H,
then the existence of uv ∉ E(G) satisfying (i) and (ii) follows from Proposition 9. Let
these vertices be adjacent. Suppose that z1, z2 of F (see Figure 2) are in T. Observe
that F + z1z2 contains an induced cycle of length at least four as it is shown in Fig-
ure 3 (a)–(e). Since H is chordal, we obtain that there is uv ∈ E(H) ⧵ E(G) satisfying
(i) and (ii). The case z2, z3 ∈ T is symmetric. Assume that z1, z3 ∈ T . By symme-
try, it is sufficient to consider the cases F = F2 , F = F3(r) and F = F4(r) . Again, we
observe that F + z1z3 contains an induced cycle of length at least four as it is shown
in Figure 3 (f)–(h) and the claim follows.

Let |V(F) ∩ T| = 3 , that is T = {z1, z2, z3} . If the vertices of V(F) ∩ T are pair-
wise nonadjacent in H, then the existence of uv ∈ E(H) ⧵ E(G) satisfying (i) and
(ii) follows from Proposition 9. If H[T] contains an edge, then we apply the same
arguments as above for the cases F = F2 , F = F3(r) and F = F4(r) and obtain that
F + E(H[T]) contains an induced cycle of length at least four. This implies that
there is uv ∈ E(H) ⧵ E(G) satisfying (i) and (ii). Let F = F5 . If |E(H[T])| = 1 or
|E(H[T])| = 2 , we again have that F + E(H[T]) contains an induced cycle of length
at least four (see Figure 3 (e) and (i)) and the claim follows. Let |E(H[T])| = 3 . Then
F + {z1z2, z2z3, z1z3} coincides with F4(2) . Since H has no induced subgraph iso-
morphic to F4(2) , we have that there is uv ∈ E(H) ⧵ E(G) satisfying (i) and (ii). ◻

In our compression algorithm, we have to compute a maximum independent
set for chordal graphs. It was already observed by Gavril [32] in 1972 that this in
polynomial (linear) time on chordal graphs.

2200 Algorithmica (2021) 83:2170–2214

1 3

Proposition 10 [32, 59] independent Set can be solved in time O(n + m) on
chordal graphs.

6.2 Compression

In this section, we give a compression of independent Set on G ∈ INTERVAL−ke
parameterized by k. Let (G,�) be an instance of independent Set and let a nonnega-
tive integer k be the parameter.

First, we apply the algorithm of Natanzon, Shamir, and Sharan [52] (see Proposi-
tion 1) to approximate the fill-in of G. If the algorithm reports that � ���- ��(G) > k , we
immediately stop as, clearly, G ∉ INTERVAL−ke . Assume that this is not the case.

Then the algorithm returns a set A ⊆

(

V(G)

2

)

 of size at most 8k2 such that G + A is

a chordal graphs. We define X to be the set of vertices that are the end-vertices of the
edges of A. Note that X is a chordal-complementing set. We apply a series of reduc-
tion rules for the instance of independent Set considered together with X, that is, for
the triple (G,�,X).

We apply the following reduction rule to enhance X.

Reduction Rule 1 If G has an X-touching AT T with an associated witness F = F1 ,
then set X ∶= X ∪ V(F).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3 Induced cycles in F shown by thick lines

2201

1 3

Algorithmica (2021) 83:2170–2214

We apply the rule exhaustively but at most k + 1 times. Lemma 8 guarantees that
if we find an X-touching AT T with an associated witness F = F1 , then every interval
complementation of G contains an edge uv such that u and v are nonadjacent verti-
ces of F and at most one of them is in X. Hence the following rule is safe.

Reduction Rule 2 If Reduction Rule 1 has been applied k + 1 times, then report that
G ∉ INTERVAL−ke and stop.

Assume that the algorithm did not stop. Since |V(F1)| = 7 , we obtain that
|X| ≤ 8k2 + 7k after this step.

In the next step, we find and delete some irrelevant vertices of G. For this, set
p = 8k2 + 7k + 2.

Reduction Rule 3 If for some vertex x ∈ V(G) , the subgraph G[NG(x) ⧵ X] has an
independent set of size at least p + 1 , then set G ∶= G − x and X ∶= X ⧵ {x}.

Lemma 9 Reduction Rule 3 is safe.

Proof Denote by G′ and X′ the graph and the vertex set obtained from G and X
respectively by applying the rule for some x ∈ V(G) . Note that X� = X if x ∉ X . We
show that G is an independent set of size � if and only G′ has an independent set of
the same size. It is trivial that if G′ has an independent set of size � , then the same
set is an independent set of G. Assume that G has an independent set I if size � . We
prove that G′ has an independent set of size at least � . The claim is straightforward
if x ∉ I . Suppose that x ∈ I . Let S be an independent set of size at least p + 1 in
G[NG(x) ⧵ X] . Clearly, S ∩ I = �.

If there is S′ ⊂ S of size p − 1 that has no vertex adjacent to a vertex of
I ⧵ (X ∪ {x}) , then consider I� = (I ⧵ (X ∪ {x})) ∪ S� . Observe that I′ is an independ-
ent set of G′ . Since |X| ≤ p − 2 , |I′| ≥ |I| ≥ � and we have that I′ is a required inde-
pendent set of size at least � in G′.

Assume from now that every S′ ⊂ S of size p − 1 has a vertex with a neighbor in
I ⧵ (X ∪ {x}) . Because |S| ≥ p + 1 , there are three distinct vertices u1, u2, u3 ∈ S that
have neighbors in I ⧵ (X ∪ {x}) . Denote these neighbors of u1 , u2 and u3 by v1 , v2 and
v3 respectively. Note that u1, u2, u3 are pairwise nonadjacent and they are adjacent to
x. Notice also that u1, u2, u3, v1, v2, v3 ∉ X . If vi = vj for some distinct i, j ∈ {1, 2, 3} ,
we have that xuiviujx is an induced cycle but this contradicts the property that X
is a chordal-complementing set. Hence, v1, v2, v3 are pairwise distinct and vi is not
adjacent to uj for distinct i, j ∈ {1, 2, 3} . Because v1, v2, v3 ∈ I , these vertices are
pairwise nonadjacent. But then G[{x, u1, u2, u3, v1, v2, v3}] is isomorphic to F1 (see
Figure 2 (a)). This contradict the assumption that Reduction Rule 1 was applied
exhaustively and the algorithm was not stopped by Reduction Rule 2. This competes
the safeness proof. ◻

We apply Reduction Rule 3 exhaustively. The crucial property we achieve by this
rule is the following.

2202 Algorithmica (2021) 83:2170–2214

1 3

Observation 3 If G has an X-touching AT T with an associated witness F = F3(r) or
F = F4(r) (see Figure 2 (c) and (d)), then r ≤ 2p − 1 = 16k2 + 14k + 1.

Proof Assume that G has an X-touching AT T with an associated witness F = F3(r) .
Note that only the terminals of F could be in X. Then {x1, x3,… , x2⌈r∕2⌉−1} is an
independent set in G[NG(y) ⧵ X] (see Figure 2 (c)). Since Reduction Rule 3 cannot
be applied, r ≤ 2p − 1 . If F = F4(r) , the arguments are the same and the only differ-
ence is that we consider y1 instead of y (see Figure 2 (d)). ◻

Now we proceed with enhancing X.

Reduction Rule 4 If G has an X-touching AT T with an associated witness F isomor-
phic to one of the graphs F1 , F2 , F3(r) for r ≥ 2 , F4(r) for r ≥ 1 or F5 that are shown
in Figure 2 (a)–(e), then set X ∶= X ∪ V(F).

We apply the rule exhaustively but at most k + 1 times, because in the same
way as for Reduction Rule 2, we can apply Lemma 8. Hence, the next rule is safe.

Reduction Rule 5 If Reduction Rule 4 has been applied k + 1 times, then report that
G ∉ INTERVAL−ke and stop.

Assume that the algorithm did not stop. By Observation 3, each F, whose verti-
ces have been added to X by Reduction Rule 4, has at most 2p + 4 = 32k2 + 2k + 4
vertices. Then

By applying Reduction Rule 4, we achieve an essential property of G and X. When
the rule cannot be applied anymore, by Lemma 7, the following holds.

Observation 4 The graph G� = G − E(G[X]) has no asteroidal triple T ⊆ X with a
T-AT-witness F such that V(F) ∩ X = T .

Next, we simplify the instance (G,�) of independent Set by the removal
chordal components. It is straightforward to see that the following rule is safe.

Reduction Rule 6 If G has a connected component H that is a chordal graph, then
compute the size �(H) of a maximum independent set of H and set G ∶= G − V(H) ,
X ∶= X ⧵ V(H) and � = � − �(H) . If � ≤ 0 , then return a trivial yes-instance of
Weighted independent Set and stop.

The rule is applied exhaustively. We assume that the algorithm did not stop.
For a set Y ⊆ X of size at most two, let CY be the set of connected components

of the graph G − (X ∪ NG(Y) and define

(5)|X| ≤ 8k2 + 7k + k(32k2 + 2k + 4) = 32k3 + 10k2 + 11k = O(k3).

2203

1 3

Algorithmica (2021) 83:2170–2214

Notice that C is a set of connected induced subgraphs of G − X and distinct sub-
graphs in the set can have common or adjacent vertices. For each C ∈ C , let I(C) be
a maximum independent set of C. We use the following crucial property of C.

Lemma 10 There is a set S ⊆ X and a family C∗ ⊆ C of pairwise disjoint graphs
without adjacent (in G) vertices in distinct subgraphs such that

is a maximum independent set of G.

Proof Let I be a maximum independent set of G. Let S = I ∩ X and denote
by C1,… ,Cs the connected components of G − (X ∪ NG(S)) . Clearly,
I ⧵ S ⊆ V(C1) ∪ … ∪ V(Cs) . Moreover, if Ii is an arbitrary maximum independent
set of Ci for i ∈ {1,… , s} , then I� = S ∪ I1 ∪… ∪ Is is a maximum independent set
of G. We claim that for each i ∈ {1,… , s} , there is a set Y ⊆ S of size at most two
such that Ci ∈ CY.

To obtain a contradiction, assume that for some i ∈ {1,… , s} , Ci ∉ CY for every
Y ⊆ S of size at most two. Then |S| ≥ 3 and there are distinct vertices u1, u2, u3 ∈ S
such that for every j ∈ {1, 2, 3} , there is vj ∈ NG(uj) ⧵ X such that

 (i) vj ∉ NG(uh) for h ∈ {1, 2, 3} ⧵ {j} , and
 (ii) vj is adjacent to some vertex wj of Ci.

Consider any two distinct vertices uj and uh for j, h ∈ {1, 2, 3} . Let t be the unique
element of {1, 2, 3} ⧵ {j, h} . Since Ci is connected, there is a (wj,wh)-path P in Ci .
Notice that P avoids NG[ut] . Let P� = ujvjPvhuh . We have that P′ is an (uj, uh)-path
in G� = G − E(G[X]) avoiding the neighborhood of ut . Since this holds for any
choice of j and h, we obtain that T = {u1, u2, u3} ⊆ X is an asteroidal triple T in G′
with a T-AT-witness F such that V(F) ∩ X = T but this contradicts Observation 4.
This proves that for each i ∈ {1,… , s} , there is a set Y ⊆ S of size at most two
such that Ci ∈ CY.

We obtain that C1,… ,Cs ∈ C are pairwise disjoint graphs without adjacent verti-
ces in distinct subgraphs and

is a maximum independent set of G. ◻

C =
⋃

Y⊆X, |Y|≤2

CY .

I∗ = S ∪
⋃

C∈C∗

I(C)

I∗ = S ∪ I(C1) ∪ … ∪ I(Cs)

2204 Algorithmica (2021) 83:2170–2214

1 3

We show that the size of C is bounded by a polynomial of the parameter. First,
we prove an auxiliary claim.

Lemma 11 Let x ∈ Y ⊆ X , where |Y| ≤ 2 , and let C′ ⊆ CY be the set of graphs in CY
that have at least one neighbor in NG(x) ⧵ X . Then |C′| ≤ 3p for p = 8k2 + 7k + 2.

Proof To obtain a contradiction, assume that |C′| > 3p , that is, there are at least
3p + 1 connected components of G� = G − (NG(Y) ∪ X) that have neighbors in
NG(x) ⧵ X . Let y ∈ NG(x) ⧵ X . If y is adjacent to at least p + 1 connected components
of G′ , then NG(y) ⧵ X contains an independent set of size at least p + 1 . In this case
we would be able to apply Reduction Rule 3; which is a contradiction. Therefore,
each y ∈ NG(x) ⧵ X has neighbors in at most p connected components of G′ . Since
C
�
≥ 3p + 1 , we conclude that there are three distinct vertices y1, y2, y3 ∈ NG(x) ⧵ X

such that there are three distinct connected components C1,C2,C3 ∈ C
� with the

property that for every i ∈ {1, 2, 3} , yi has a neighbor zi ∈ V(Ci) and yi has no neigh-
bor in Cj for j ∈ {1, 2, 3} ⧵ {i} . Consider H = G[{x, y1, y2, y3, z1, z2, z3}] . It is easy
to see that z1, z2, z3 is an asteroidal triple in this graph and H contains an induced
subgraph isomorphic to F1 , F3(2) or F3(3) (see Figure 2 (a) and (c)) depending on
the adjacencies between y1 , y2 and y3 . This means that we would be able to apply
Reduction Rule 4 contradicting the assumption that the rule was applied exhaus-
tively. This proves that |C′| ≤ 3p . ◻

Lemma 12

Proof By the definition, C =
⋃

Y⊆X, �Y�≤2 CY . We upper bound |CY | for Y ⊆ X of size
at most two.

Let Y = � . Observe that each connected component of G contains a vertex of X,
because G has no connected component that is a chordal graph as Reduction Rule 6
cannot be applied. Note that if a vertex x has neighbors in at least p + 1 connected
components of G − X for p = 8k2 + 7k + 2 , then NG(x) ⧵ X contains an independent
set of size at least p + 1 and we would be able to apply Reduction Rule 3. There-
fore, each vertex of X has neighbors in at most p components of G − X . Hence,
|C�| ≤ p|X| = O(k5) by the definition of p and (5).

Suppose that Y = {x} for x ∈ X . Denote by C(1) the set of graphs in CY that have
vertices adjacent to NG(x) ⧵ X and let C(2) be the set of graphs in CY that have no vertex
adjacent to NG(x) ⧵ X . We have that CY = C

(1) ∪ C
(2) . By exactly the same arguments as

for Y = � , we obtain that |C(2)| ≤ p(|X| − 1) . By Lemma 11, |C(1)| ≤ 3p . We obtain that

and, therefore, |CY | = O(k5) by the definition of p and (5).
Suppose now that Y = {x1, x2} for distinct x1, x2 ∈ X . Denote by C(i) the set of

graphs in CY that have vertices adjacent to some vertices of NG(xi) ⧵ X for i ∈ {1, 2}
and and let C(3) be the set of graphs in CY that have no vertex adjacent to NG(Y) ⧵ X .
We have that CY = C

(1) ∪ C
(2) ∪ C

(3) . By exactly the same arguments as for Y = � , we
obtain that |C(3)| ≤ p(|X| − 2) . By Lemma 11, |C(1)| ≤ 3p for i ∈ {1, 2} . Then

|C| = O(k14).

|CY | = |C
(1) ∪ C

(2)
| ≤ |C

(1)
| + |C

(2)
| ≤ 3p + p(|X − 1|)

2205

1 3

Algorithmica (2021) 83:2170–2214

and, therefore, |CY | = O(k5) by the definition of p and (5).

Since there are |X| single-element subsets Y ⊆ X and
(

|X|

2

)

 two-element subsets

Y ⊆ X , we have that |C| = O(k14) by (5). ◻

Construction of the instance of Weighted independent Set. At the next step of
our compression algorithm we construct the instance of Weighted independent
Set as follows.

• Construct the graph G∗ with the vertex set X ∪ C by making every two distinct
vertices u and v either adjacent or nonadjacent by the following rule:

– if u, v ∈ X , then u and v are adjacent in G∗ if and only if they are adjacent in
G,

– if u ∈ X and v ∈ C , then u and v are adjacent if and only if u is adjacent to a
vertex of the subgraph v in G,

– if u, v ∈ C , then u and v are adjacent if and only if the subgraph u and v of
G have either common vertices or adjacent vertices in G.

• For v ∈ V(G∗) , set the weight w(v) = 1 if v ∈ X and set w(v) be the size of a
maximum independent set of the subgraph v of G.

Lemma 13 The instance (G,�) is a yes-instance of independent Set if and only if
(G∗,w,�) is a yes-instance of Weighted independent Set.

Proof Let (G,�) be a yes-instance of independent Set. By Lemma 10, there is a set
S ⊆ X and a family C∗ ⊆ C of pairwise disjoint graphs without adjacent vertices in
distinct subgraphs such that

is a maximum independent set of G, where I(C) is a maximum independent set of
C. By the definition of G∗ , we have that S ∪ C

∗ is an independent set of G∗ of weight
�S� +

∑

C∈C∗ �I(C)� = �I� . Hence, (G∗,w,�) is a yes-instance of Weighted independ-
ent Set.

Assume now that (G∗,w,�) is a yes-instance of Weighted independent Set. Con-
sider an independent set I∗ of weight at least � in G∗ . Let S = I∗ ∩ X and C∗ = I∗ ∩ C .
By the definition of G∗ , we have that S ⊆ X is an independent set of G, and the
graphs of C∗ are disjoint induced subgraphs of G that have no vertices adjacent to S
and there are no two adjacent vertites that are in distinct graphs of C∗ . Every graph
C ∈ C

∗ has an independent set I(C) of size w(C) by the definition of the weights.
This means that I = S ∪

⋃

C∈C∗ I(C) is an independent set in G of size at least � .
Therefore, (G,�) is a yes-instance of independent Set. ◻

|CY | = |C
(1) ∪ C

(2) ∪ C
(3)
| ≤ |C

(1)
| + |C

(2)
| + |C

(3)
| ≤ 6p + p(|X − 2|)

I = S ∪
⋃

C∈C∗

I(C)

2206 Algorithmica (2021) 83:2170–2214

1 3

By Lemma 12, G∗ has O(k14) vertices, that is, the size of G∗ is bounded by a poly-
nomial of the parameter. To complete the construction of the compressed instance,
it remains to reduce the weights of vertices. We do it by making use of Proposi-
tion 3. Let v1,… , vs be the vertices of G∗ . Following the notation of Proposition 3,
let h = s + 1 and N = s + 2 . Consider the vector w = (w(v1),… ,w(vs),𝓁)

⊺ ∈ ℤh .
The algorithm of Frank and Tardos finds a vector w̄ = (w1,… ,ws,W) with
‖w̄‖∞ ≤ 24h

3

Nh(h+2) such that sign(w ⋅ b) = sign(w̄ ⋅ b) for all vectors b ∈ ℤh with
‖b‖1 ≤ N − 1 . We define w∗(vi) = wi for i ∈ {1,… , s} and consider the instance
(G∗,w∗,W) of Weighted independent Set. This completes the construction of the
compression. The properties of the obtained instance of Weighted independent
Setare summarized in the following lemma.

Lemma 14 The instance (G∗,w,�) is a yes-instance of Weighted independent Set
if and only if (G∗,w∗,W) is a yes-instance. The size of (G∗,w∗,W) is O(k56).

Proof Notice that, in particular, the equality sign(w ⋅ b) = sign(w̄ ⋅ b) holds for all
vectors b ∈ ℤh such that each element of b is −1 , 0 or 1. This implies that the ele-
ments of w̄ are positive and for every J ⊆ {1,… , s} ,

∑

i∈J w(vi) ≥ � if and only if
∑

i∈J wi ≥ W . Clearly, for every set of vertices S ⊆ V(G∗) ,
∑

v∈S w(v) ≥ � if and only
if
∑

v∈S w
∗(v) ≥ W . This means that (G∗,w,�) is a yes-instance of Weighted inde-

pendent Setif and only if (G∗,w∗,W) is a yes-instance.
Since ‖w̄‖∞ ≤ 24h

3

Nh(h+2) , we have that w(v) ≤ 24(s+1)
3

(s + 2)(s+1)(s+3) for every
v ∈ V(G∗) and the same upper bound holds for W. This implies that the weights
of the vertices and W can be encoded by a string of length O(k42) , because by
Lemma 12, |V(G∗)| = O(k14) . Because G∗ has O(k14) vertices and O(k28) edges, the
size of (G∗,w∗,W) is O(k56) . ◻

Running time. Finally, we have to show that the compression algorithm is pol-
ynomial. The construction of the initial set X can be done in polynomial time by
Proposition 1. Then we apply Reduction Rules 1–6. It is straightforward to see that
Reduction Rule 1 can be applied in polynomial time as we are looking in it for an
induced subgraph of bounded size. Reduction Rules 2 and 5 are trivial. Reduction
Rules 3 and 6 are polynomial by Proposition 10. Reduction Rule 4 is polynomial by
Lemma 7. Since Reduction Rules 1 and 4 are applied at most k + 1 times and Reduc-
tion Rules 3 and 6 are applied at most |V(G)| times, we conclude all the rules can be
applied in polynomial time. In the next step, we construct the instance (G∗,w,�) and
the step is polynomial due to Proposition 10. Finally, we reduce the weight, and this
can be done in polynomial time by Proposition 3.

The proof of Theorem 9 is complete.

7 Independent Set on SPLIT−ke

In this section, we show that independent Set admits a polynomial kernel when
parameterized by the split completion size.

2207

1 3

Algorithmica (2021) 83:2170–2214

Computing �����-����(G) is NP-hard [53]. Interestingly, if we allow not only edge
additions but also edge deletions, then the problem becomes polynomial-time solv-
able [37].

Proposition 11 [37] There is an algorithm that, given a graph G, in polynomial

time finds a set A ⊆

(

V(G)

2

)

 of minimum size such that G△ A is a split graph.

Theorem 10 independent Set on SPLIT−ke admits a polynomial kernel with at
most 2k2(k + 2) vertices when parameterized by k.

Proof Let (G,�) be an instance of independent Set and let a nonnegative integer k
be the parameter.

We use Proposition 11 and find a set A ⊆

(

V(G)

2

)

 of minimum size such that

G� = G△ A is a split graph. If |A| > k , we conclude that G ∉ SPLIT−ke and stop.
Assume that is not the case. Let D = A ∩ E(G) and C = A ⧵ E(G) , that is, D is the set
of deleted edges and C is the set of added edges. We find a partition of V(G�) into a
clique K and an independent set I. By the minimality of A, the edges of D have their
end-vertices in I, and the edges of C have their end-vertices in K. Let X be the set of
end-vertices of C and set Y = K ⧵ X . Note that |X| ≤ 2k and every vertex of X is
adjacent to each vertex of Y.

We apply a series of reduction rules for (G,�) together with the sets I, X, Y, D.

Reduction Rule 7 If D ≠ ∅ , then for uv ∈ D do the following.

• If each of u and v is not adjacent to at least k + 2 vertices of Y in G, then report
that G ∉ SPLIT−ke and stop.

• Otherwise, pick a vertex of {u, v} with the minimum number of nonneighbors in
Y, say u, and

– set D ∶= D − uv,
– set I ∶= I ⧵ {u},
– set X ∶= X ∪ {u} ∪ (Y ⧵ NG(u)),
– set Y ∶= Y ∩ NG(u).

We apply the rule exhaustively until D becomes empty.

Claim 5 If the algorithm stops while executing Reduction Rule 7, then
�����-����(G) > k.

Proof of Claim 5 The algorithm stops if there is uv ∈ D such that |Y ⧵ NG(u)| ≥ k + 2

and |Y ⧵ NG(v)| ≥ k + 2 . Let R ⊆

(

V(G)

2

)

⧵ E(G) be a set of pairs of vertices of

minimum size such that Ĝ = G + R is a split graph. Let (S, Z) be a partition of V(Ĝ)
into an independent set S and a clique Z. Notice that either u ∈ Z or v ∈ Z . By sym-
metry, assume without loss of generality that u ∈ Z . Observe that Y is a clique of G.

2208 Algorithmica (2021) 83:2170–2214

1 3

Hence, |Y ⧵ Z| ≤ 1 . This implies that R contains at least k + 1 edges incident to u in
Ĝ whose other end-vertices are in Y. Therefore, �����-����(G) = |R| ≥ k + 1 . ◻

Claim 5 guarantees that if we stop by Reduction Rule 5, then G ∉ SPLIT−ke .
Assume that the algorithm did not stop. Then we obtain that the constructed sets
X, Y, and I have the properties summarized in the following claim.

Claim 6 The sets X, Y, I form a partition of the vertices of G such that

(i) I is an independent set in G,
(ii) Y is a clique in G,
(iii) for every v ∈ X , Y ⊆ NG(v),
(iv) |X| ≤ (k + 2)k,
(v) for every independent set S ⊆ X , |S| ≤ 2k.

Proof of Claim 6 It is straightforward that (X, Y, I) is a partition of V(G).
To see (i), it is sufficient to observe that only the edges of D had both their end-

vertices in I in the initial I, and we exclude at least one end-vertex of every edge of
D from I by Reduction Rule 7.

The property (ii) is trivial as Y was a clique before we started to apply Reduction
Rule 7 and we only delete vertices from Y by the rule.

For (iii), observe that if v is a vertex of the initial set X, then Y ⊆ NG(v) by the
definition of X and Y. Then, if we add a vertex u ∈ I to Y by Reduction Rule 7, then
we delete the vertices of Y ⧵ NG(u) from Y. Note that these vertices are in X and,
since Y is a clique, they are adjacent to all remaining vertices of Y. Hence, Y ⊆ NG(v)
for every v ∈ X.

To show (iv), notice that initially |X| ≤ 2|C| . Then, whenever we apply Reduction
Rule 7, we add to X at most k + 2 vertices. The rule is applied at most |D| times. We
obtain that |X| ≤ 2|C| + (k + 2)|D| ≤ (k + 2)|A| ≤ (k + 2)k.

Finally, to prove (v), observe that initially |X| ≤ 2|C| and, therefore, every inde-
pendent set with its vertices in the initial set X has size at most 2|C|. By each appli-
cation of Reduction Rule 7, we put a vertex u ∈ I in X and add a clique Y ⧵ NG(u) .
Hence we can increase the maximum size of an independent subset of X by at most
two. The rule is applied at most |D| times. We conclude that the maximum size of an
independent subset of X is at most 2|C| + 2|D| = 2|A| ≤ 2k . ◻

These properties allow us to apply the following two rules.

Reduction Rule 8 Set Y ∶= Y ⧵ NG(I).

Reduction Rule 9 If |Y| ≥ 2 , then delete |Y| − 1 arbitrary vertices of Y and set
I ∶= I ∪ Y .

2209

1 3

Algorithmica (2021) 83:2170–2214

Claim 7 Reduction Rules 8 and 9 are safe and the set I constructed by Reduction
Rule 9 is independent.

Proof of Claim 7 Let G′ be the graph obtained from G by the application of Reduc-
tion Rules 8 and 9 and denote by I′ the set obtained from I. For the safeness proof, it
is sufficient to show that if G has an independent set S with |S| ≥ � , then G′ has an
independent set of size at least � . If S ∩ Y = � , S ⊆ V(G�) , that is, S is an independ-
ent set of G′ . Suppose that there is v ∈ S ∩ Y . Since Y is a clique, v is the unique
vertex of S in Y. Since Y ⊆ NG(u) for every u ∈ X , X ∩ S = � . This means that
S ⧵ {v} ⊆ I.

Suppose that there is u ∈ I such that v ∈ NG(u) . Consider S� = (S ⧵ {v}) ∪ {u} .
We obtain that S′ is an independent set, since S′ ⊆ I . Clearly, |S�| = |S| ≥ �.

Assume now that v ∈ Y ⧵ NG(I) . Note that the vertices of Y ⧵ NG(I) are true twins
in G, that is, for every x, y ∈ Y ⧵ NG(I) , NG[x] = NG[y] . Hence, we can assume with-
out loss of generality that u was not deleted by Reduction Rule 7 and S ⊆ V(G�).

To see that I′ constructed by Reduction Rule 9 is independent, it is sufficient to
observe that we include in I a unique vertex of Y that is not adjacent to other vertices
of I. ◻

Observe that after applying Reduction Rules 8 and 9, we have that (X, I) is a par-
tition of V(G), where I is an independent set.

Reduction Rule 10 If there is a vertex u ∈ X such that |NG(u)| ≥ 2k , then set
X ∶= X ⧵ {u}.

Claim 8 Reduction Rule 10 is safe.

Proof of Claim 8 Denote by G′ the graph obtained from G by the application of
Reduction Rule 10 for a vertex u ∈ X . It is sufficient to show that if G has an inde-
pendent set S with |S| ≥ � , then G′ has an independent set of size at least � . If u ∉ S ,
then S is an independent set of G′ . Assume that u ∈ S . Consider the set I. Observe
that |S ∩ I| ≤ |I| − 2k . By Claim 6 (v), |S ∩ X| ≤ 2k . We obtain that |I| ≥ |S| . Since I
is an independent set in G′ , the claim follows. ◻

We apply the rule exhaustively. We obtain G with the property that
|NG(u) ∩ I| ≤ 2k − 1 for every u ∈ X.

Finally, we exhaustively apply the following reduction rule.

Reduction Rule 11 If there is an isolated vertex u, then set G ∶= G − u ,
X ∶= X ⧵ {u} , I ∶= I ⧵ {u} and � ∶= � − 1.

It is straightforward to see that the rule is safe.
Now we can show that the obtained graph G has a bounded size.

Claim 9 The graph G has at most 2k2(k + 2) vertices.

2210 Algorithmica (2021) 83:2170–2214

1 3

Proof of Claim 9 After the exhaustive application of Reduction Rule 11, G has
no isolated vertices. Recall that by Claim 6 (iv), |X| ≤ (k + 2)k . Since each ver-
tex of X is adjacent to at most 2k − 1 vertices in I, |I| ≤ (2k − 1)(k + 2)k . Then
|V(G)| ≤ |X| + |I| ≤ (k + 2)k + (2k − 1)(k + 2)k = 2k2(k + 2) . ◻

This completes the construction of the kernel.
The initial construction of X, Y, D and I is polynomial by Proposition 11. It is

straightforward to see that Reduction Rules 7–11 runs in polynomial time. Hence,
our kernelization algorithm is polynomial. ◻

8 Conclusion

In this paper, we initiated the study of parameterized subexponential and kerneliza-
tion algorithms on CHORDAL−ke graphs. The existence of such algorithms makes
this graph class a very interesting object for studies. For other structural parameters,
like treewidth or vertex cover, we have quite good understanding about the com-
plexity of various optimization problems derived from general meta-theorems like
Courcelle’s or Pilipczuk’s theorems [17, 56] and advanced algorithmic techniques
[19, 20, 25]. We believe that further exploration of the complexity landscape of fill-
in parameterization is an interesting research direction. If an optimization problem
is ��-complete on chordal graphs, like doMinating Set, then on CHORDAL−ke this
problem is in ���� − �� . On the other hand, even if a problem is solvable in poly-
nomial time on chordal graphs, in theory, there is nothing preventing it from being
���� − �� on CHORDAL−ke . Is there a natural graph problem with this property?
For many problems that are solvable in polynomial time on chordal graphs, we also
established ��� algorithms on CHORDAL−ke class. This does not exclude a possibil-
ity that there are problems that are not ��� parameterized by k but solvable in poly-
nomial time for every fixed k. We do not know any such problem (in other words,
the problem in class �P) yet. It will be interesting to see, if there is any natural
graph problem of such complexity. In addition, we proved that there are problems
that are ��� on CHORDAL−ke when parameterized by k and which cannot be solved
in subexponential time unless ETH fails. We believe it would be exciting to obtain
a logical characterization of problems that can be solved in subexponential time on
CHORDAL−ke when parameterized by k, similar to the classical Courcelle’s theorem
[17].

Some concrete open problems. Observe that for our subexponential dynamic pro-
gramming algorithms, we only need a k-almost chordal tree decomposition of the
input graph, that is, a decomposition where each bag can be made a clique by adding
at most k edges. (Recall Definition 1.) The maximum of numbers �-����(G[Xt]) ≤ k
can be significantly smaller than the minimum fill-in of a graph. For graphs in
CHORDAL−ke , we can find fill-in in a subexponential in k time by the algorithm
of Fomin and Villanger [29]. However, we do not know if it is ��� in k to decide,
whether a graph admits a k-almost chordal tree decomposition. And if yes, can it be
done in subexponential time?

2211

1 3

Algorithmica (2021) 83:2170–2214

The only reason why many of the algorithms introduced in our work run in time
2O(

√

k log k)
⋅ nO(1) and not 2O(

√

k)
⋅ nO(1) is because we do not know how to find a fill-in

of size k in time 2O(
√

k)
⋅ nO(1) . The best known lower bound given by Cao and Sand-

eep [16] rules out algorithms of time 2o(
√

k)
⋅ nO(1) and better algorithms for fill-in

would imply better algorithms for various optimization problems on CHORDAL−ke
graphs. Moreover, to get rid of the logarithm in the exponent, we do not need an
exact algorithm. By the results of Natanzon, Shamir and Sharan [52] (Proposi-
tion 1), � ���- ��(G) can be approximated in polynomial time within a polyopt factor
8 ⋅ � ���- ��(G) . Deciding whether � ���- ��(G) ≤ k can be done in time 2O(

√

k log k)
⋅ nO(1)

by the results of Fomin and Villanger [29] (Proposition 4). Is there an ��� constant-
factor approximation algorithm with running time 2O(

√

k)
⋅ nO(1) ? The existence of

such an algorithm would improve running times of the algorithms for many prob-
lems. For example, pipelined with our results, it would imply that Weighted inde-
pendent Set is solvable in 2O(

√

k)
⋅ nO(1) time on Chordal −ke.

Finally, we proved that independent Set on INTERVAL−ke and SPLIT−ke admit
polynomial kernels when parameterized by k. We leave open the question whether
or not this problem has a polynomial (Turing) kernel on CHORDAL−ke.

Acknowledgements We thank Torstein Strømme, Daniel Lokshtanov, and Pranabendu Misra for fruit-
ful discussions on the topic of this paper. We also grateful to Saket Saurabh for helpful suggestions that
allowed us to improve our results. A preliminary version of this paper appeared in the proceedings of
ESA 2020. The research leading to these results has been supported by the Research Council of Norway
via the project “MULTIVAL” (grant no. 263317)

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Agrawal, A., Lokshtanov, D., Misra, P., Saurabh, S., Zehavi, M.: Feedback vertex set inspired kernel
for chordal vertex deletion. ACM Trans. Algorithms 15(1), 11:1–11:28 (2019). https:// doi. org/ 10.
1145/ 32843 56

 2. Agrawal, A., Misra, P., Saurabh, S., Zehavi, M.: Interval vertex deletion admits a polynomial kernel.
In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1711–1730. SIAM (2019). https:// doi. org/ 10. 1137/1. 97816 11975 482. 103

 3. Baste, J., Sau, I., Thilikos, D.M.: A complexity dichotomy for hitting connected minors on bounded
treewidth graphs: the chair and the banner draw the boundary. In: Proceedings of the 31th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 951–970. SIAM (2020)

 4. Bessy, S., Perez, A.: Polynomial kernels for Proper Interval Completion and related problems. Infor-
mation and Computation 231, 89–108 (2013). https:// doi. org/ 10. 1016/j. ic. 2013. 08. 006

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3284356
https://doi.org/10.1145/3284356
https://doi.org/10.1137/1.9781611975482.103
https://doi.org/10.1016/j.ic.2013.08.006

2212 Algorithmica (2021) 83:2170–2214

1 3

 5. Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: Subexponential parameterized algorithm for
interval completion. ACM Trans. Algorithms 14(3), 35:1–35:62 (2018). https:// doi. org/ 10. 1145/
31868 96

 6. Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algo-
rithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015).
https:// doi. org/ 10. 1016/j. ic. 2014. 12. 008

 7. Bodlaender, H.L., Heggernes, P., Villanger, Y.: Faster parameterized algorithms for minimum fill-
in. Algorithmica 61(4), 817–838 (2011). https:// doi. org/ 10. 1007/ s00453- 010- 9421-1

 8. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition.
SIAM J. Discrete Math. 28(1), 277–305 (2014). https:// doi. org/ 10. 1137/ 12088 0240

 9. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. SIAM Monographs on Discrete
Mathematics and Applications. SIAM (1999). https:// doi. org/ 10. 1137/1. 97808 98719 796

 10. Buneman, P.: A characterization of rigid circuit graphs. Discr. Math. 9, 205–212 (1974)
 11. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf.

Process. Lett. 58(4), 171–176 (1996)
 12. Cai, L.: Parameterized complexity of vertex colouring. Discrete Appl. Math. 127(3), 415–429

(2003). https:// doi. org/ 10. 1016/ S0166- 218X(02) 00242-1
 13. Cao, Y.: Linear recognition of almost interval graphs. In: Proceedings of the 26th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA), pp. 1096–1115. SIAM (2016)
 14. Cao, Y.: Unit interval editing is fixed-parameter tractable. Inf. Comput. 253, 109–126 (2017).

https:// doi. org/ 10. 1016/j. ic. 2017. 01. 008
 15. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms 11(3),

21:1–21:35 (2015). https:// doi. org/ 10. 1145/ 26295 95
 16. Cao, Y., Sandeep, R.B.: Minimum fill-in: Inapproximability and almost tight lower bounds. Inf.

Comput. 271, 104514 (2020). https:// doi. org/ 10. 1016/j. ic. 2020. 104514
 17. Courcelle, B.: The monadic second-order logic of graphs I: recognizable sets of finite graphs. Inf.

Comput. 85, 12–75 (1990)
 18. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,

M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015). https:// doi. org/ 10. 1007/
978-3- 319- 21275-3

 19. Cygan, M., Kratsch, S., Nederlof, J.: Fast hamiltonicity checking via bases of perfect matchings. In:
Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC), pp. 301–310.
ACM (2013)

 20. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solv-
ing connectivity problems parameterized by treewidth in single exponential time. In: Proceedings
of the 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 150–159. IEEE
(2011)

 21. Diestel, R.: Graph Theory, 4th Edition, Graduate texts in mathematics, vol. 173. Springer, Berlin
(2012)

 22. Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity. Texts Comput. Sci.
(2013). https:// doi. org/ 10. 1007/ 978-1- 4471- 5559-1

 23. Erdős, P., Hajnal, A.: On chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hun-
gar 17, 61–99 (1966). https:// doi. org/ 10. 1007/ BF020 20444

 24. Etscheid, M., Kratsch, S., Mnich, M., Röglin, H.: Polynomial kernels for weighted problems. J.
Comput. Syst. Sci. 84, 1–10 (2017). https:// doi. org/ 10. 1016/j. jcss. 2016. 06. 004

 25. Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Efficient computation of representative fam-
ilies with applications in parameterized and exact algorithms. J. ACM 63(4), 29:1-29:60 (2016).
https:// doi. org/ 10. 1145/ 28860 94

 26. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization. Cambridge University Press,
Cambridge (2019). Theory of parameterized preprocessing

 27. Fomin, F.V., Saurabh, S., Villanger, Y.: A polynomial kernel for proper interval vertex deletion.
SIAM J. Discrete Math. 27(4), 1964–1976 (2013). https:// doi. org/ 10. 1137/ 12089 051X

 28. Fomin, F.V., Todinca, I., Villanger, Y.: Large induced subgraphs via triangulations and CMSO.
SIAM J. Comput. 44(1), 54–87 (2015). https:// doi. org/ 10. 1137/ 14096 4801

 29. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum fill-in. SIAM J.
Comput. 42(6), 2197–2216 (2013)

 30. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial
optimization. Combinatorica 7(1), 49–65 (1987). https:// doi. org/ 10. 1007/ BF025 79200

https://doi.org/10.1145/3186896
https://doi.org/10.1145/3186896
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1007/s00453-010-9421-1
https://doi.org/10.1137/120880240
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1016/S0166-218X(02)00242-1
https://doi.org/10.1016/j.ic.2017.01.008
https://doi.org/10.1145/2629595
https://doi.org/10.1016/j.ic.2020.104514
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/BF02020444
https://doi.org/10.1016/j.jcss.2016.06.004
https://doi.org/10.1145/2886094
https://doi.org/10.1137/12089051X
https://doi.org/10.1137/140964801
https://doi.org/10.1007/BF02579200

2213

1 3

Algorithmica (2021) 83:2170–2214

 31. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Complete-
ness. W.H. Freeman and Company, New York (1979)

 32. Gavril, F.: Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and
maximum independent set of a chordal graph. SIAM J. Comput. 1(2), 180–187 (1972). https:// doi.
org/ 10. 1137/ 02010 13

 33. Gavril, F.: Algorithms on circular-arc graphs. Networks 4(4), 357–369 (1974)
 34. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combin.

Theory Ser. B 16, 47–56 (1974). https:// doi. org/ 10. 1016/ 0095- 8956(74) 90094-x
 35. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
 36. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization,

Algorithms and Combinatorics, vol. 2, second edn. Springer-Verlag, Berlin (1993). https:// doi. org/
10. 1007/ 978-3- 642- 78240-4

 37. Hammer, P.L., Simeone, B.: The splittance of a graph. Combinatorica 1(3), 275–284 (1981). https://
doi. org/ 10. 1007/ BF025 79333

 38. Heggernes, P.: Minimal triangulations of graphs: a survey. Discrete Math. 306(3), 297–317 (2006).
https:// doi. org/ 10. 1016/j. disc. 2005. 12. 003

 39. Impagliazzo, R., Paturi, R.: Complexity of k-sat. In: Proceedings of the 14th Annual IEEE Confer-
ence on Computational Complexity (CCC), pp. 237–240. IEEE Computer Society (1999). https://
doi. org/ 10. 1109/ CCC. 1999. 766282

 40. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity. J.
Comput. Syst. Sci. 63(4), 512–530 (2001)

 41. Jansen, B.M., Kratsch, S.: Data reduction for graph coloring problems. Inf. Comput. 231, 70–88
(2013)

 42. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited - upper and lower bounds
for a refined parameter. Theory Comput. Syst. 53(2), 263–299 (2013). https:// doi. org/ 10. 1007/
s00224- 012- 9393-4

 43. Jansen, B.M.P., Pilipczuk, M.: Approximation and kernelization for chordal vertex deletion. SIAM
J. Discrete Math. 32(3), 2258–2301 (2018). https:// doi. org/ 10. 1137/ 17M11 2035X

 44. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal
and interval graphs: Minimum fill-in and physical mapping. In: Proceedings of the 35th Annual
Symposium on Foundations of Computer Science (FOCS), pp. 780–791. IEEE (1994)

 45. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal,
strongly chordal, and proper interval graphs. SIAM J. Comput. 28, 1906–1922 (1999)

 46. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl.
Math. 160(15), 2259–2270 (2012). https:// doi. org/ 10. 1016/j. dam. 2012. 05. 019

 47. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real
line. Fund. Math. 51, 45–64 (1962/1963). https:// doi. org/ 10. 4064/ fm- 51-1- 45- 64

 48. Liedloff, M., Montealegre, P., Todinca, I.: Beyond classes of graphs with “few” minimal separators:
FPT results through potential maximal cliques. Algorithmica 81(3), 986–1005 (2019). https:// doi.
org/ 10. 1007/ s00453- 018- 0453-2

 49. Marx, D.: Parameterized coloring problems on chordal graphs. Theor. Comput. Sci. 351(3), 407–
424 (2006)

 50. Marx, D.: Chordal deletion is fixed-parameter tractable. Algorithmica 57(4), 747–768 (2010)
 51. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring algorithms. J.

ACM 30(3), 417–427 (1983). https:// doi. org/ 10. 1145/ 2402. 322385
 52. Natanzon, A., Shamir, R., Sharan, R.: A polynomial approximation algorithm for the minimum fill-

in problem. In: Proceedings of the 30th Annual ACM Symposium on the Theory of Computing
(STOC), pp. 41–47. ACM (1998). https:// doi. org/ 10. 1145/ 276698. 276710

 53. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification prob-
lems. Discrete Appl. Math. 113(1), 109–128 (2001). https:// doi. org/ 10. 1016/ S0166- 218X(00)
00391-7

 54. Nesetril, J., de Mendez, P.O.: Sparsity - Graphs, Structures, and Algorithms, Algorithms and combi-
natorics, vol. 28. Springer (2012). https:// doi. org/ 10. 1007/ 978-3- 642- 27875-4

 55. Parter, S.: The use of linear graphs in Gauss elimination. SIAM Rev. 3, 119–130 (1961)
 56. Pilipczuk, M.: Problems parameterized by treewidth tractable in single exponential time: a logical

approach. CoRR abs/1104.3057 (2011). arXiv: 1104. 3057
 57. Rao, S., Richa, A.W.: New approximation techniques for some linear ordering problems. SIAM J.

Comput. 34(2), 388–404 (2004). https:// doi. org/ 10. 1137/ S0097 53970 24131 97

https://doi.org/10.1137/0201013
https://doi.org/10.1137/0201013
https://doi.org/10.1016/0095-8956(74)90094-x
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/978-3-642-78240-4
https://doi.org/10.1007/BF02579333
https://doi.org/10.1007/BF02579333
https://doi.org/10.1016/j.disc.2005.12.003
https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1109/CCC.1999.766282
https://doi.org/10.1007/s00224-012-9393-4
https://doi.org/10.1007/s00224-012-9393-4
https://doi.org/10.1137/17M112035X
https://doi.org/10.1016/j.dam.2012.05.019
https://doi.org/10.4064/fm-51-1-45-64
https://doi.org/10.1007/s00453-018-0453-2
https://doi.org/10.1007/s00453-018-0453-2
https://doi.org/10.1145/2402.322385
https://doi.org/10.1145/276698.276710
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.1016/S0166-218X(00)00391-7
https://doi.org/10.1007/978-3-642-27875-4
http://arxiv.org/abs/1104.3057
https://doi.org/10.1137/S0097539702413197

2214 Algorithmica (2021) 83:2170–2214

1 3

 58. Rose, D.J.: A graph-theoretic study of the numerical solution of sparse positive definite systems of
linear equations. In: Read, R.C. (ed.) Graph Theory and Computing, pp. 183–217. Academic Press,
New York (1972)

 59. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM
J. Comput. 5, 266–283 (1976)

 60. Takenaga, Y., Higashide, K.: Vertex coloring of comparability +ke and- −ke graphs. In: Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science (WG), pp. 102–112. Springer
(2006)

 61. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acy-
clicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. Comput. 13(3), 566–
579 (1984). https:// doi. org/ 10. 1137/ 02130 35

 62. Vandenberghe, L., Andersen, M.S.: Chordal graphs and semidefinite optimization. Foundations and
Trends® in Optimization 1(4), 241–433 (2015)

 63. Villanger, Y., Heggernes, P., Paul, C., Telle, J.A.: Interval completion is fixed parameter tractable.
SIAM J. Comput. 38(5), 2007–2020 (2009)

 64. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Alg. Disc. Meth. 2,
77–79 (1981)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1137/0213035

	Subexponential Parameterized Algorithms and Kernelization on Almost Chordal Graphs
	Abstract
	1 Introduction
	2 Preliminaries
	3 Subexponential Algorithms for Induced d-colorable Subgraphs
	3.1 Various Extentions

	4 Beyond Induced d-colorable Subgraphs
	4.1 Coloring Graphs
	4.2 Clique in Graphs

	5 Kernelization on Chordal
	6 Independent Set on
	6.1 Technical Lemmata
	6.2 Compression

	7 Independent Set on
	8 Conclusion
	Acknowledgements
	References

