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Abstract
We study algorithmic properties of the graph class CHORDAL−ke , that is, graphs 
that can be turned into a chordal graph by adding at most k edges or, equivalently, 
the class of graphs of fill-in at most k. It appears that a number of fundamental 
intractable optimization problems being parameterized by k admit subexponen-
tial algorithms on graphs from CHORDAL−ke . More precisely, we identify a large 
class of optimization problems on CHORDAL−ke solvable in time 2O(

√

k log k)
⋅ n

O(1) . 
Examples of the problems from this class are finding an independent set of maxi-
mum weight, finding a feedback vertex set or an odd cycle transversal of minimum 
weight, or the problem of finding a maximum induced planar subgraph. On the other 
hand, we show that for some fundamental optimization problems, like finding an 
optimal graph coloring or finding a maximum clique, are FPT on CHORDAL−ke 
when parameterized by k but do not admit subexponential in k algorithms unless 
ETH fails. Besides subexponential time algorithms, the class of CHORDAL−ke 
graphs appears to be appealing from the perspective of kernelization (with parame-
ter k). While it is possible to show that most of the weighted variants of optimization 
problems do not admit polynomial in k kernels on CHORDAL−ke graphs, this does 
not exclude the existence of Turing kernelization and kernelization for unweighted 
graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique 
on CHORDAL−ke graphs. For (unweighted) independent Set we design polynomial 
kernels on two interesting subclasses of CHORDAL−ke , namely, INTERVAL−ke and 
SPLIT−ke graphs.
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1 Introduction

Many ��-hard graph optimization problems are solvable in polynomial or even lin-
ear time when the problem’s input is restricted to a special graph class. For example, 
the chromatic number, the maximum size of a clique or an independent set of a per-
fect graph can be computed in polynomial time by the celebrated result of Grötschel, 
Lovász, and Schrijver [36]. For chordal graphs, this was already pointed by Gavril 
[32] in 1972. From the perspective of parameterized complexity, the natural ques-
tion here is how stable are these friendly algorithmic properties of graph classes 
subject to some perturbations. For example, if an input n-vertex graph G is not 
chordal but can be turned into a chordal graph by adding at most k edges, how fast 
can we solve independent Set on G? Can we solve the problem in polynomial time 
for constant k? Or maybe for k = log n or even for k = poly(log n) ? A word of warn-
ing is on order here. Since an algorithm for independent Set of running time 2o(n) 
will refute the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi and Zane 

[39, 40], and because k ≤
(

n

2

)

 , the existence of an algorithm of running time 

2k
1∕2−�

⋅ nO(1) for some 𝜀 > 0 (which is polynomial for k = (log n)2∕(1−2�) ) is unlikely. 
Interestingly, as we shall see, independent Set (and many other problems) are solva-
ble in time 2k1∕2 log k ⋅ nO(1).

Leizhen Cai in [12] introduced a convenient notation for “perturbed” graph 
classes. Let F  be a class of graphs, then F − ke (respectively F − ve ) is the class of 
those graphs that can be obtained from a member of F  by deleting at most k edges 
(respectively vertices). Similarly one can define classes F + ke and F + ve . Then for 
any class F  and optimization problem P that can be solved in polynomial time on 
F  , the natural question is whether P is fixed-parameter tractable parameterized by k, 
the “distance” to F .

In this paper, we obtain several algorithmic results on the parameterized com-
plexity of optimization problems on F − ke , where F  is the class of chordal graphs 
(see Sect.  2 for the formal definitions of the central notions in the area). Let us 
remind that a graph H is chordal (or triangulated) if every cycle of length at least 
four has a chord, i.e., an edge between two nonconsecutive vertices of the cycle. 
We denote by CHORDAL−ke the class of graphs that can be made chordal graph by 
adding at most k edges. While parameterized algorithms for various problems on 
the class of CHORDAL−ke graphs were studied (see the section on previous work), 
our work introduces the first subexponential parameterized algorithms on this graph 
class. We prove the following.

Subexponential parameterized algorithms. We discover a large class of optimiza-
tion problems on graph class CHORDAL−ke that are solvable in time 
2O(

√

k log k)
⋅ nO(1) . Examples of such optimization problems are: the problem of find-

ing an induced d-colorable subgraph of maximum weight (which generalizes 
Weighted independent Set for d = 1 and Weighted Bipartite SuBgraph for d = 2 ); 
the problem of finding a maximum weight induced subgraph admitting a 
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homomorphism into a fixed graph H; the problem of finding an induced d-degener-
ate subgraph of maximum weight and its variants like Weighted induCed ForeSt (or, 
equivalently, Weighted FeedBaCk Vertex Set), Weighted induCed tree, induCed 
planar graph, Weighted induCed path (CyCle) or Weighted induCed CyCle paCk-
ing; as well as various connectivity variants of these problems like Weighted Con-
neCted Vertex CoVer and Weighted ConneCted FeedBaCk Vertex Set. This implies 
that all these problems are solvable in polynomial time for k = (

log n

log log n
)2 . On the 

other hand, we refute (subject to ETH) existence of a subexponential time 2o(k) ⋅ nO(1) 
algorithms on graphs in CHORDAL−ke for Coloring and Clique. Moreover, our 
lower bounds hold for way more restrictive graph class COMPLETE−ke , the graphs 
within k edges from a complete graph. We also show that both problems are fixed-
parameter tractable ( ��� ) (parameterized by k) on CHORDAL−ke graphs.

Kernelization. It follows almost directly from the previous work of Bodlaender, 
Jansen, and Kratsch [8, 42] that Weighted independent Set, Weighted Ver-
tex CoVer, Weighted Bipartite SuBgraph, Weighted odd CyCle tranSVerSal, 
Weighted FeedBaCk Vertex Set and Weighted Clique do not admit a polynomial in 
k kernel (unless coNP ⊈ NP∕poly ) on COMPLETE−ke and hence on CHORDAL−ke . 
Interestingly, these lower bounds do not refute the possibility of polynomial Turing 
kernelization or kernelization for unweighted variants of the problems. Indeed, we 
show that Weighted Cliqueon CHORDAL−ke parameterized by k admits a Turing 
kernel. For unweighted independent Set we show that the problem admits polyno-
mial in k kernel on graph classes INTERVAL−ke and SPLIT−ke (graphs that can be 
turned into an interval or split graphs, correspondingly, by adding at most k edges).

Previous work. Chordal graphs form an important subclass of perfect graphs. 
These graphs were also intensively studied from the algorithmic perspective. We 
refer to books of Brandstädt, Le, and Spinrad [9], Golumbic [35], and Vanden-
berghe and Andersen [62] for introduction to chordal graphs and their algorithmic 
properties.

The problem of determining whether a graph G belongs to CHORDAL−ke , which 
is checking whether G can be turned into a chordal graph by adding at most k edges, 
is known the literature as the MiniMuM Fill-in problem. The name fill-in is due to 
the fundamental problem arising in sparse matrix computations, which was studied 
intensively in the past; see, e.g., the papers of Parter [55] and Rose [58]. The survey 
of Heggernes [38] gives an overview of techniques and applications of minimum 
and minimal triangulations.

MiniMuM Fill-in (under the name Chordal graph CoMpletion) was one of the 12 
open problems presented at the end of the first edition of Garey and Johnson’s book 
[31] and it was proved to be NP-complete by Yannakakis [64]. Kaplan et  al. [44] 
proved that MiniMuM Fill-in is fixed parameter tractable by giving an algorithm of 
running time 16k ⋅ nO(1) . There was a chain of algorithmic improvements resulting 
in decreasing the constant in the base of the exponents [7, 11, 45] resulting with a 
subexponential algorithm of running time 2O(

√

k log k)
⋅ nO(1) given by Fomin and Vil-

langer [29]. A significant amount of work in parameterized algorithms is devoted 
to recognition problems of classes F − ke , F + ke , F − kv , and F + kv for chordal 
graphs and various subclasses of chordal graphs [1, 2, 4, 5, 13–15, 27, 43, 50, 63].
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Parameterized algorithms, mostly for graph coloring problems, were studied on 
perturbed chordal graphs and subclasses of this graph class [12, 60]. Among other 
results, Cai [12] proved that Coloring (the problem of computing the chromatic num-
ber of a graph) is ��� (parameterized by k) on SPLIT−ke graphs. Marx [49] proved that 
Coloring is ��� on CHORDAL + ke and INTERVAL + ke graphs but is �[1]-hard on 
CHORDAL + kv and INTERVAL + kv graphs. Jansen and Kratsch [41] proved that for 
every fixed integer d, the problems  d -Coloring and  d -liSt Coloring admit polyno-
mial kernels on the parameterized graph classes SPLIT + kv , COCHORDAL + kv , and 
COGRAPH + kv.

Liedloff, Montealegre, and Todinca [48] gave a general theorem establishing fixed-
parameter tractability for a large class of optimization problems. Let Cpoly be a class of 
graphs having at most poly(n) minimal separators. (Since every chordal graph has at 
most n minimal separators, the class of chordal graphs is a subclass of Cpoly .) Let � be a 
Counting Monadic Second Order Logic (CMSO) formula, G be a graph, and t ≥ 0 be 
an integer. Liedloff, Montealegre, and Todinca proved that on graph class Cpoly + kv , 
the following generic problem

is solvable in time f (t,�, k) ⋅ nO(t) , and thus is ��� parameterized by k for a given 
formula � and a fixed integer t. The problem generalizes many classical algorith-
mic problems like MaxiMuM independent Set, longeSt induCed path, MaxiMuM 
induCed ForeSt, and various packing problems as discussed by Fomin, Todinca, and 
Villanger in [28].

Since the class Cpoly + kv contains CHORDAL−ke , the work of Liedloff et al. [48] 
yields that all these problems are fixed-parameter tractable on CHORDAL−ke graphs 
parameterized by k + t + |�| . However, the theorem of Liedloff et al. does not yield 
our results. First, this theorem provides an ��� algorithm only for finding an induced 
subgraph of constant treewidth, which is not the case in our situation. Second, even if 
F is required to be an independent set, that is, the treewidth of F is zero, their technique 
does not derive parameterized algorithms with subexponential running times.

Organization of the paper. The remaining part of the paper is organized as follows. 
In Sect. 2, we introduce notation and provide some useful auxiliary results. In Sect. 3, 
we discuss subexponential algorithms on CHORDAL−ke . Section 4 contains the lower 
bounds for Coloring and Clique on CHORDAL−ke . Sects. 5–7 are devoted to kerneli-
zation. In Sect. 5, we give lower bounds and construct a polynomial Turing kernel for 
Weighted Clique on CHORDAL−ke . In Sects. 6 and 7, we construct polynomial ker-
nels for independent Set on INTERVAL−ke and SPLIT−ke respectively. We conclude in 
Sect. 8 by some open problems.

Max |X|

subject to There is a set F ⊆ V(G) such that X ⊆ F;

The treewidth of G[F] is at most t;

(G[F],X) ⊧ 𝜑.
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2  Preliminaries

All graphs considered in this paper are simple: finite undirected graphs without 
loops or multiple edges. For each of the graph problems considered in this paper, 
we let n = |V(G)| and m = |E(G)| denote the number of vertices and edges, respec-
tively, of the input graph G if it does not create confusion. For a set X ⊆ V(G) , 
(

X

2

)

 denotes the set of pairs of distinct vertices of X. For a graph G and a subset 

X ⊆ V(G) of vertices, we write G[X] to denote the subgraph of G induced by X. 
We write G − X to denote the subgraph of G induced by V(G) ⧵ X , and we write 
G − u instead of G − {u} for a single element set. Similarly, for an edge set A, 
G − A denotes the graph G� = (V(G),E(G) ⧵ A) , and for a set of pairs of vertices 

A ⊆

(

V(G)

2

)

 , G + A is the graph G� = (V(G),E(G) ∪ A) . For a single-element set 

{e} , we use G + e for G + {e} . For A ⊆

(

V(G)

2

)

 , G△ A denotes the graph 

G� = (V(G),E(G)△ A) . For a vertex v, we denote by NG(v) the (open) neighbor-
hood of v, i.e., the set of vertices that are adjacent to v in G. The closed neighbor-
hood NG[v] is NG(v) ∪ {v} . For a set of vertices X ⊆ V(G) , NG[X] =

⋃

v∈X NG[v] 
and NG(X) = NG[X] ⧵ X . The degree of a vertex v is dG(v) = |NG(v)| . The comple-
ment of a graph G is the graph G with V(G) = V(G) such that two distinct vertices 
are adjacent in G if and only if they are not adjacent in G. A (proper) �-coloring 
of a graph G is an assignment c ∶ V(G) → {1,… ,�} of colors 1,… ,� to the verti-
ces of G in such a way that adjacent vertices get distinct colors; a graph G is �
-colorable if it has an �-coloring. A graph is d-degenerate for a nonnegative inte-
ger d, if every induced subgraph of G has a vertex of degree at most d. An equiv-
alent way of defining d-degenerate graph is in terms of coloring orderings was 
given by Erdős and Hajnal [23]. A vertex ordering of a graph is a d-coloring 
ordering, if each vertex has at most d neighbors that are after it in the ordering. 
Then a graph G is d-degenerate if and only if it admits an d-coloring ordering.

For a graph class C and a nonengative integer k, C − ke denotes the class of all 

graphs G such that there is a set A ⊆

(

V(G)

2

)

⧵ E(G) of size at most k such that 

G + A ∈ C . In words, this means that C − ke contains graphs that can be turned to 

be graphs of C by at most k edge additions. For a set A ⊆

(

V(G)

2

)

⧵ E(G) such 

that G + A ∈ C , we say that A is a C-modulator.
Graph classes. A graph G is chordal (or triangulated) if it does not contain an 

induced cycle of length at least four. In other words, every cycle of length at least 
four has a chord, i.e., an edge whose end-vertices are nonconsecutive vertices of 
the cycle. The intersection graph of a family of intervals of the real line is called 
an interval graph; it is also said that G is an interval graph if there is a family of 
intervals (called interval model or representation) such that G is isomorphic to 
the intersection graph of this family. A graph G is said to be split if its vertex set 
can be partition into an independent set and a clique. We refer to the books of 
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Brandstädt, Le, and Spinrad [9] and Golumbic [35] for a detailed introduction to 
these graph classes. Notice that interval and split graphs are chordal.

A triangulation (or a chordal complementation) of a graph G is a chordal 
supergraph H with V(H) = V(G) . The size of the triangulation is |E(H)| − |E(G)| . 
The fill-in of a graph G, denoted � ���- ��(G) , is the minimum integer k such that 
G ∈ CHORDAL−ke . In other words, fill-in is the minimum number of edges whose 
addition makes the graph chordal. An interval complementation of a graph G is 
an interval supergraph H with V(H) = V(G) . Similarly, a split complementation of 
G is a split supergraph H and a clique complementation is a complete supergraph 
with V(H) = V(G) . The size of interval (split, clique) completion is |E(H)| − |E(G)| 
and we denote the minimum size of an interval (split, clique) complementation by 
���-����(G) ( �����-����(G) , �-����(G) respectively). Clearly, G has an interval 
(split, clique) complementation of size at most k if and only if G ∈ INTERVAL−ke 

( SPLIT−ke , COMPLETE−ke ). It is easy to see that �-����(G) =

(

|V(G)|

2

)

− |E(G)| , 

and it is well-known that it is NP-hard to compute � ���- ��(G) by the result of Yan-
nakakis [64] and ���-����(G) [31], and the same holds for �����-����(G) as was 
proved by Natanzon, Shamir, and Sharan [53].

We will make use of the following observation.

Observation 1 For every graph G, �-����(G) ≥ ���-����(G) ≥ � ���- ��(G) and 
�-����(G) ≥ �����-����(G) ≥ � ���- ��(G).

In particular, this observation implies that complexity lower bounds obtained 
for graph problems parameterized by the clique completion size hold when they 
are parameterized by the interval or split completion or by the fill-in. Similarly, 
the hardness for the interval or split completion parameterization implies the 
hardness for the fill-in parameterization.

Natanzon, Shamir, and Sharan [52] proved that fill-in admits a polyopt 
approximation.

Proposition 1 [52] There is a polynomial algorithm that, given a graph G and a 
nonnegative integer k, either correctly reports that � ���- ��(G) > k or returns a trian-
gulation of G of size at most 8k2.

Tree decompositions. A tree decomposition of a graph G is a pair 
T = (T , {Xt}t∈V(T)) , where T is a tree whose every node t is assigned a vertex sub-
set Xt ⊆ V(G) , called a bag, such that the following three conditions hold: 

 (T1) 
⋃

t∈V(T) Xt = V(G) . In other words, every vertex of G is in at least one bag.
 (T2) For every uv ∈ E(G) , there exists a node t of T such that bag Xt contains both 

u and v.
 (T3) For every u ∈ V(G) , the set Tu = {t ∈ V(T)|u ∈ Xt} , i.e., the set of nodes whose 

corresponding bags contain u, induces a connected subtree of T.
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To distinguish between the vertices of the decomposition tree T and the vertices 
of the graph G, we will refer to the vertices of T as nodes. By the classical result 
due to Buneman and Gavril [10, 33], every chordal graph G has a tree decompo-
sition such that each bag of the decomposition is a maximal clique of G. Such a 
tree decomposition is a clique tree of the chordal graph G.

It is more convenient to describe dynamic programming algorithms on tree 
decompositions of a nice particular form. We think of nice tree decompositions 
as rooted trees. That is, for a tree decomposition (T , {Xt}t∈V(T)) we distinguish one 
vertex r of T which will be the root of T. We say that such a rooted tree decompo-
sition (T , {Xt}t∈V(T)) is nice if the following conditions are satisfied:

• Xr = � and X
�
= � for every leaf � of T. In other words, all the leaves as well 

as the root contain empty bags.
• Every non-leaf node of T is of one of the following three types:

– Introduce node: a node t with exactly one child t′ such that Xt = Xt� ∪ {v} 
for some vertex v ∉ Xt� ; we say that v is introduced at t.

– Forget node: a node t with exactly one child t′ such that Xt = Xt� ⧵ {w} for 
some vertex w ∈ Xt� ; we say that w is forgotten at t.

– Join node: a node t with two children t1, t2 such that Xt = Xt1
= Xt2

.

Throughout the paper, given a nice tree decomposition (T , {Xt}t∈V(T)) of a graph 
G, we denote by Vt the union of the bags in the subtree of T rooted in a node 
t ∈ V(T).

We will be using the following proposition, see e.g., [49].

Proposition 2 Every n-vertex chordal graph G admits a nice tree decomposition 
T = (T , {Xt}t∈V(T)) such that every bag Xt of G is a clique. This decomposition has 
O(n2) nodes and can be constructed in polynomial time.

Parameterized complexity and kernelization. We refer to the books of Cygan 
et al. [18], Downey and Fellows [22], and Fomin et al. [26] for the detailed intro-
duction to the field. Here we only briefly review the basic notions.

Parameterized complexity is a two-dimensional framework for studying the 
computational complexity of a problem. One dimension is the input size n, and 
the other is a parameter k associated with the input.

A parameterized problem is said to be fixed-parameter tractable (or ��� ) if it 
can be solved in time f (k) ⋅ nO(1) for a computable function f.

Parameterized complexity theory also provides tools for obtaining complexity 
lower bounds. Here we use lower bounds based on the Exponential Time Hypoth-
esis (ETH) formulated by Impagliazzo, Paturi and Zane [39, 40]. For an integer 
k ≥ 3 , let qk be the infimum of the real numbers c such that the  k -SatiSFiaBil-
ity problem can be solved in time O(2cn) , where n is the number of variables. 
Exponential Time Hypothesis states that 𝛿3 > 3 . In particular, ETH implies that  k 
-SatiSFiaBility cannot be solved in time 2o(n)nO(1).
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A compression of a parameterized problem �1 into a (non-parameterized) 
problem �2 is a polynomial algorithm that maps each instance (I, k) of �1 with 
the input I and the parameter k to an instance I′ of �2 such that 

 (i) (I, k) is a yes-instance of �1 if and only if I′ is a yes-instance of �2 , and
 (ii) |I′| is bounded by f(k) for a computable function f.

The output I′ is also called a compression. The function f is said to be the size of 
the compression. A compression is polynomial if  f is polynomial. Kernelization 
can be seen as a special case of compression when the algorithm is required to 
map a parameterized problem to itself. Formally, a kernelization  algorithm for 
a parameterized problem � is a polynomial algorithm that maps each instance 
(I, k) of � to an instance (I�, k�) of � such that 

 (i) (I, k) is a yes-instance of � if and only if (I�, k�) is a yes-instance of � , and
 (ii) |I�| + k� is bounded by f(k) for a computable function f.

Respectively, (I�, k�) is a kernel and f is its size. A kernel is polynomial if f is 
polynomial.

Every decidable parameterized problem is ��� if and only if it admits a kernel. 
However, it is unlikely that every problem in ��� has a polynomial kernel (see, 
e.g., [26] for the details). Still, even if a paramterized problem admits no poly-
nomial kernel up to some complexity conjectures, sometimes we can reduce it to 
solving of a polynomial number of instances of the same problem such that the 
size of each instance is bounded by a polynomial of the parameter.

Let � be a parameterized problem and let f ∶ ℤ+ → ℤ+ be a computable 
function. A Turing kernelization or Turing kernel for � of size f is an algorithm 
that decides whether an instance (I, k) of � is a yes-instance in time polynomial 
in |I| + k , when given access to an oracle that decides whether (I�, k�) is a yes-
instance of � in a single step if |I�| + k ≤ f (k).

It is typical to describe a compression or kernelization algorithm as a series of 
reduction rules. A reduction rule is a polynomial algorithm that takes as an input 
an instance of a problem and output another, usually reduced, instance. A reduc-
tion rule is safe if the input instance is a yes-instance if and only if the output 
instance is a yes-instance.

In our paper, we consider kernelization/compression for weighted problems. 
Because we are using weights, we have to compress their values as well. For this, 
we follow the approach proposed by Etscheid et al. [24] that is based on the algo-
rithm for compressing numbers given by Frank and Tardos in [30]. We state the 
result of Frank and Tardos in the form provided in [24].

Proposition 3 [30] There is an algorithm that, given a vector w ∈ ℚh and an inte-
ger N, in polynomial time finds a vector w̄ ∈ ℤh with ‖w̄‖∞ ≤ 24h

3

Nh(h+2) such that 
sign(w ⋅ b) = sign(w̄ ⋅ b) for all vectors b ∈ ℤh with ‖b‖1 ≤ N − 1.
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3  Subexponential Algorithms for Induced d‑colorable Subgraphs

To construct subexponential algorithms on CHORDAL−ke , we consider tree 
decompositions such that each bag is “almost” a clique.

Definition 1 (k-almost chordal graph) Let k be a nonnegative integer. A tree 
decomposition T = (T , {Xt}t∈V(T)) of a graph G is k-almost chordal if for every 
t ∈ V(T) , �-����(G[Xt]) ≤ k , that is, every bag can be converted to a clique by add-
ing at most k edges.

Note that every chordal graph has 0-almost chordal tree decomposition.
Given a k-almost chordal tree decomposition, we construct dynamic program-

ming algorithms that are subexponential in k for various problems. The crucial 
property of the graphs in CHORDAL−ke is that we can build nice k-almost chordal 
tree decompositions for them in subexponential in k time by using the following 
result of Fomin and Villanger [29].

Proposition 4 [29] Deciding whether graph G is in CHORDAL−ke can be done in 
time 2O(

√

k log k) +O(k2nm) . Moreover, if G ∈ CHORDAL−ke , then the corresponding 
triangulation can be found in time 2O(

√

k log k) +O(k2nm).

Lemma 1 A nice k-almost chordal decomposition of a graph G ∈ CHORDAL−ke 
with at most n2 bags can be constructed in time 2O(

√

k log k)
⋅ nO(1).

Proof Let G be a graph. By Proposition 4, in time 2O(
√

k log k) +O(k2nm) we can con-

struct a triangulation H of G such that H = G + A for A ⊆

(

V(G)

2

)

 of size at most 

k. Using Proposition 2, we construct in polynomial time a nice tree decomposition 
T = (T , {Xt}t∈V(T)) of H with at most n2 bags such that every bag Xt is a clique of H. 
Clearly, T  is a nice tree decomposition of G and G[Xt] = H[Xt] − A for t ∈ V(T) . 
Therefore, �-����(G[Xt]) ≤ k for t ∈ V(T) , that is, T  is a nice k-almost chordal 
decomposition of G.   ◻

We need the following folklore observation. We prove it here for completeness.

Lemma 2 A d-degenerate graph G has at most 2d ⋅ n cliques and all cliques of G 
can be listed in 2d ⋅ nO(1) time.

Proof Let G be a d-degenerate graph, and let v1,… , vn be a d-coloring ordering of 
its vertices. Since dG[vi,…,vn]

(vi) ≤ d , G[vi,… , vn] has at most 2d cliques containing vi 
for every i ∈ {1,… , n} . Therefore, G has at most 2d ⋅ n cliques. The cliques can be 
enumerated by brute force checking the subsets of the neighbors of vi in G[vi,… , vn] 
for every i ∈ {1,… , n} . Because a d-coloring ordering can be found in polynomial 
(in fact, linear) time [51], the total running time is 2d ⋅ nO(1) .   ◻
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The crux of our subexponential algorithms is in the following combinatorial 
lemma.

Lemma 3 Let d ≥ 1 be an integer. Let G be a graph and let F  be a set of induced 
d-colorable subgraphs of G. Let U ⊆ V(G) be a set of vertices of G such that 
�-����(G[U]) ≤ k , that is, U can be made a clique by adding at most k edges. Then

• for every F ∈ F  , 

and
• the size of the projection of F  on U, that is, the size of the family

is at most (1 + 2(
√

1+8k−1)∕2
⋅ �U�)d.

Moreover, there is an algorithm that in time 2O(d
√

k)
⋅ nO(d) outputs a family of sets 

S
′ ⊇ S such that each set from S′ has at most 3d+

√

d2+8dk

2
 vertices, the number of 

sets in S′ is (1 + 2(
√

1+8k−1)∕2
⋅ n)d and G[S] is d-colorable for S ∈ S

�.

Proof We partition U into sets X and Y as follows. Let X be the vertices of U that 
have at least one non-neighbor in U. In other words, for every v ∈ X , there is u ∈ U 
that is not adjacent to v. Two observations about set X will be useful. First, because 
U, and hence X, can be turned into a clique by adding at most k edges, we have that 
|X| ≤ 2k . Second, the remaining vertices of U, namely, Y = U ⧵ X , form a clique. 
For every set S ∈ S , we define SX = X ∩ S and SY = Y ∩ S . Note that S = SX ∪ SY.

Because Y is a clique in G, no d-colorable subgraph from F  can contain more 
than d vertices from Y. Hence, |SY | ≤ d.

Let x = |SX| . Because G[SX] is an induced subgraph of some d-colora-
ble graph F ∈ F  , we have that G[SX] is d-colorable. On the other hand, since 
�-����(G[U]) ≤ k , G[SX] can be turned into complete graph by adding at most k 
edges. These two conditions are used to estimate x. Let us recall that a Turán graph 
is the complete d-partite graph on x vertices whose partition sets differ in size by 
at most 1. According to Turán’s theorem, see e.g. the book of Diestel [21], Turán 
graph has the maximum possible number of edges among all d-colorable graphs. 
The number of edges in Turán’s graph is at most 1

2
x2

d−1

d
 . Thus,

and

Therefore,

�U ∩ V(F)� ≤
3d +

√

d2 + 8dk

2
,

S = {S ∣ S = U ∩ V(F) for some F ∈ F}

(

x

2

)

− k ≤ |E(G[SX])| ≤
1

2
x2
d − 1

d

k ≥

(

x

2

)

−
1

2
x2
d − 1

d
=

x2 − dx

2d
.
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We obtain that

which proves the first claim of the lemma.
To prove the second claim, let H = G[U] . Observe that H , the complement of H, 

has at most k edges. Consider Z ⊆ V(H) . If �Z� ≤
√

1+8k+1

2
 , then the minimum degree 

�(H[Z]) ≤

√

1+8k−1

2
 . If �Z� >

√

1+8k+1

2
 , then

that is, the minimum degree of every induced subgraph of H is at most 
√

8k+1−1

2
 . 

Therefore, H is 
√

1+8k−1

2
-degenerate.

An induced subgraph of H with the vertex set S is d-colorable if and only if S 
can be partitioned into at most d independent sets. Equivalently, H[S] is d-colorable 
if and only if S can be partitioned into at most d cliques of H . By Lemma 2, H has 
at most 2(

√

8k+1−1)∕2
⋅ �U� cliques. Then U contains at most (1 + 2(

√

1+8k−1)∕2
⋅ �U�)d 

subsets S such that S can be partitioned into at most d cliques of H.
To complete the proof, observe that the cliques of H can be listed in time 

2(
√

1+8k−1)∕2
⋅ nO(1) by Lemma 2. Then in 2O(d

√

k)
⋅ nO(d) time, we construct S′ by con-

sidering the unions of d cliques; the cliques can be the same or empty.   ◻

Let G be a graph and let F be an induced d-colorable subgraph of G. Infor-
mally, Lemma  3 says that for a given a k-almost chordal tree decomposition, 
every bag of this tree decomposition contains roughly O(d +

√

dk) vertices of F. 
This statement combined with dynamic programming over the tree decomposi-
tion could easily bring us to the algorithm computing a maximum d-colored sub-
graph of G in time nO(d+

√

dk) . However, this is not what we are shooting for; such 
an algorithm is not fixed-parameter tractable with parameter k. This is where the 
second part of the lemma becomes extremely helpful. Let us look at the family 
of all d-colorable induced subgraphs of G. Then the number of different intersec-
tions of the graphs from this family with a single bag of the tree decomposition is 
bounded by 2O(d

√

k)
⋅ nO(d) . This allows us to bound the number of “partial solu-

tions” in the dynamic programming, which in turn brings us to a parameterized 
subexponential algorithm. As an example of the applicability of Lemma  3, we 
give an algorithm for the following generic problem.

x ≤
d +

√

d2 + 8dk

2
.

�S� = �SX� + �SY � ≤ x + d ≤
3d +

√

d2 + 8dk

2
,

�(H[Z]) ≤
2�E(H[Z])�

�Z�
≤

4k
√

1 + 8k + 1
=

√

8k + 1 − 1

2
,
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COLORABLE

COLORABLE

For d = 1 , this is the problem of finding an independent set of maximum 
weight, the Weighted independent Set problem. For d = 2 , this is the problem of 
finding an induced bipartite subgraph of the maximum weight, Weighted Bipar-
tite SuBgraph.

We prove the following theorem for Weighted d-ColoraBle SuBgraph. Note 
that in Theorem 1 we do not require that the input graph is in Chordal −ke.

Theorem  1 Let d ≥ 1 be an integer. For a given graph G with a nice k-almost 
chordal tree decomposition with nO(1) bags, the Weighted d-ColoraBle SuBgraph 
problem is solvable in time 2O(

√

k⋅d log d)
⋅ nO(d).

Proof Let T = (T , {Xt}t∈V(T)) be a nice k-almost chordal tree decomposition of G 
with |V(T)| = nO(1) . We perform dynamic programming over T  . Let us note that the 
width of the decomposition can be of order of n. The proof of the correctness for 
this dynamic programming is very similar to the one provided normally for graphs 
of bounded treewidth. However, the running time analysis is based on Lemma 3.

Recall that T is rooted at some node r, and for a node t of T, Vt denotes the union 
of all the bags present in the subtree of T rooted at t, including Xt . For vertex sets 
X ⊂ X′ of graph G, we say that a coloring c of G[X] is extendible to a coloring c′ of 
G[X�] , if for every x ∈ X , c(v) = c�(v).

For every node t, every S ⊆ Xt such that G[S] is d-colorable, every mapping 
c ∶ S → {1,… , d} of G[S], we define the following value:

If c is not a proper coloring of G[S] or if no such set Ŝ exists, then we put 
cost[t, S, c] = −∞ . We also put cost[t, �, c] be the maximum possible weight of a set 
Ŝ such that �S ⊆ Vt , Ŝ ∩ Xt = � , and G[Ŝ] is d-colorable. Then cost[r, �, c] is exactly 
the maximum weight of a d-colorable induced subgraph in G; this is due to the fact 
that Vr = V(G) and Xr = �.

Leaf node. If t is a leaf node, then we have cost[t, �, c] = 0 . In this case, because 
the leaf node is an empty bag, the formula’s correctness is trivial.

Introduce node. Suppose t is an introduce node with child t′ such that 
Xt = Xt� ∪ {v} for some v ∉ Xt� . Let S be any subset of Xt . If c is not a proper 

(1)

cost[t, S, c] =maximum possible weight of a set�S such that

S ⊆ �S ⊆ Vt,
�S ∩ Xt = S, and c is a proper coloring ofG[S]

extendible to a proper d-coloring ofG[�S].
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d-coloring of G[S], we put cost[t, S, c] = −∞ . Otherwise, we claim that the follow-
ing formula holds:

Here c′ is the coloring of S ⧵ {v} extendible to c.

Claim 1 Formula (2) is correct.

Proof of Claim 1 When v ∉ S , the formula trivially holds. Suppose that v ∈ S . Let 
Ŝ be a set maximizing cost[t, S, c] . Because coloring c′ of S ⧵ {v} is extendible to 
coloring c of S, which in turn is extendible to a d-coloring of Ŝ , we have that set 
Ŝ ⧵ {v} is one of the sets considered in the definition of cost[t�, S ⧵ {v}, c�] . Hence 
cost[t�, S ⧵ {v}, c�] ≥ �(Ŝ ⧵ {v}) = �(Ŝ) − �(v) = cost[t, S, c] − �(v).

On the other hand, let Ŝ′ be a set for which the maximum is attained in the defi-
nition of cost[t�, S ⧵ {v}, c�] . By the property of tree decompositions, all neigh-
bors of v in Vt , are contained in the bag Xt . This yields that set Ŝ� ∪ {v} induces 
a graph whose d-coloring can be obtained by extending coloring c of S , there-
fore, cost[t, S, c] ≥ �(Ŝ� ∪ {v}) = cost[t�, S ⧵ {v}, c�] + �(v) . We conclude that 
cost[t, S, c] = cost[t�, S ⧵ {v}, c�] + �(v) .   ◻

To evaluate the running time required to compute (2), note that for fixed S and 
c, we have to verify whether c is a proper coloring of S, which can be done in 
time O(|S|2) by going through all adjacencies of G[S].

Forget node. Let t be a forget node with child t′ such that Xt = Xt� ⧵ {w} for 
some w ∈ Xt� . Let S be any subset of Xt ; again we assume that c is a proper d-col-
oring of G[S], since otherwise we put cost[t, S, c] = −∞ . We claim that the fol-
lowing formula holds:

Claim 2 Formula (3) is correct.

Proof of Claim 2 Because Vt = Vt� , we have that

On the other hand, let Ŝ be a set for which the maximum is attained in the definition 
of cost[t, S, c] . If w ∉ Ŝ , then cost[t, S, c] = cost[t�, S, c] . If w ∈ Ŝ , then

Thus

(2)cost[t, S, c] =

{

cost[t�, S, c] if v ∉ ;

cost[t�, S ⧵ {v}, c�] + �(v) otherwise.

(3)cost[t, S, c] =max
{

cost[t�, S, c], max
c is extendible to c�

cost[t�, S ∪ {w}, c�]
}

.

cost[t, S, c] ≥max
{

cost[t�, S, c], max
c is extendible to c�

cost[t�, S ∪ {w}, c�]
}

.

cost[t, S, c] = max
c is extendible to c�

cost[t�, S ∪ {w}, c�].
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  ◻

For running time, to compute (3), one has to go through all colorings c′ of 
S ∪ {w} which are extensions of coloring c of S. Thus for every possible color i of 
w, we have to check if this color is compatible with the coloring by c the neigh-
bors of w in S. This can be done in time O(|S|).

Join node. Finally, suppose that t is a join node with children t1, t2 such that 
Xt = Xt1

= Xt2
 . Let S be any subset of Xt ; as before, we can assume that c is a 

proper d-coloring of G[S]. The claimed recursive formula is as follows:

Claim 3 Formula (4) is correct.

Proof of Claim 3 Let Ŝ be a set for which the maximum is attained in the definition 
of cost[t, S, c] and Let Ŝ1 = Ŝ ∩ Vt1

 and Ŝ2 = Ŝ ∩ Vt2
 . Because �S ⊇ �Si , we have that 

cost[ti, S, c] ≥ �(Ŝi) , i = 1, 2 . This yields that

On the other hand, the union of sets maximizing the costs of cost[t1, S, c] and 
cost[t2, S, c] , is a set whose d-coloring can be obtained from extending coloring c of 
S. Thus

  ◻

The running time to compute (4) for fixed set S and coloring c is proportional 
to the time required to check whether c is a proper coloring. Again, this can be 
done in time O(|S|2).

This concludes the description and the proof of correctness of the recur-
sive formulas for computing the values of cost[⋅, ⋅, ⋅] . The optimal subgraph of 
the maximum weight can be found by standard backtracking arguments. Let 
us now estimate the total running time. The running time of our dynamic pro-
gramming algorithm, up to a multiplicative factor O(|S|2) , is dominated by the 
number of triples [t,  S,  c]. The number t is in nO(1) . Every set S should induce 
a d-colorable subgraph, so we can restrict our attention only to sets of the form 
Xt ∩ V(F) for some d-colorable graph F. By Lemma  3, each of these sets is of 
size at most d + d+

√

d2+8dk

2
 and the total number of such sets S for each bag Xt is 

is 2O(d
√

k)
⋅ nO(d) and they can be listed in 2O(d

√

k)
⋅ nO(d) time. Thus, the number of 

d-colorings c of each of the sets S is dO(�S�) = dO(d+
√

dk) . Hence the total running 
time of the dynamic programming is 2O(

√

k⋅d log d)
⋅ nO(d) .   ◻

cost[t, S, c] ≤max
{

cost[t�, S, c], max
c is extendible to c�

cost[t�, S ∪ {w}, c�]
}

.

(4)cost[t, S, c] =cost[t1, S, c] + cost[t2, S, c] − �(S).

cost[t1, S, c] + cost[t2, S, c] ≥ �(Ŝ1) + �(Ŝ2) = �(Ŝ) − �( S) = cost[t, S, c].

cost[t1, S, c] ≥ cost[t1, S, c] + cost[t2, S, c] − �( S).
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Combining Proposition 2, Lemma 1 and Theorem 1, we immediately obtain the 

following corollary. Recall that A ⊆

(

V(G)

2

)

⧵ E(G) is a Chordal-modulator if 

G + A is a chordal graph.

Corollary 1 Weighted d-ColoraBle SuBgraph on a graph G ∈ CHORDAL−ke is 
solvable in time 2O(

√

k(log k+d log d))
⋅ nO(d) . Moreover, the problem can be solved in 

2O(
√

k⋅d log d)
⋅ nO(d) time if a Chordal-modulator of size at most k is given.

By Corollary 1, we immediately derive the following.

Corollary 2 Weighted independent Set and Weighted Bipartite SuBgraph on 
G ∈ CHORDAL−ke are solvable in time 2O(

√

k log k)
⋅ nO(1) . Moreover, the problems 

can be solved in 2O(
√

k)
⋅ nO(1) time if a Chordal-modulator of size at most k is given.

In the Weighted Vertex CoVer, we are given a weighted graph G, and the task is 
to find a vertex cover of minimum weight, that is, a set of vertices X such that every 
edge of G has at least one endpoint in G. Similarly, in the Weighted odd CyCle 
tranSVerSal, we are asked to find a minimum weight set of vertices such that every 
cycle of odd length contains at least one vertex from the set. Since the complement 
of every independent set is a vertex cover, and the complement of every induced 
bipartite subgraph is an odd cycle transversal, we have the following corollary.

Corollary 3 Weighted Vertex CoVer and   Weighted odd CyCle tranSVerSal on 
CHORDAL−ke graphs are solvable in time 2O(

√

k log k)
⋅ nO(1) . Moreover, the problems 

can be solved in 2O(
√

k)
⋅ nO(1) time if a Chordal-modulator of size at most k is given.

3.1  Various Extentions

We use the technique developed to prove Theorem 1 for obtaining subexponential 
algorithms for other problems beyond Weighted d-ColoraBle SuBgraph. These 
algorithms are very similar to the one from Theorem 1 and we sketch here only a 
few problems and the adjustments required to apply the dynamic programming from 
Theorem 1 to these problems.

A homomorphism G → H from a graph G to a graph H is a mapping from the 
vertex set of G to that of H such that the image of every edge of G is an edge of H. 
In other words, a homomorphism G → H exists if and only if there is a mapping 
g ∶ V(G) → V(H) , such that for every edge uv ∈ E(G) , we have g(u)g(v) ∈ E(H) . 
There is a homomorphism from G to a complete graph Kd on d vertices if and only if 
G is d-colorable. Because of that, deciding whether there is a homomorphism from 
G to H is often referred to as the H-coloring of G. Note that if G admits an H-color-
ing, then G is |V(H)|-colorable.

The main difference between solving Weighted H-ColoraBle SuBgraph, the 
problem of finding the maximum weight induced subgraph admiting a homo-
morphism to H, with Theorem  1 is that the value cost[t, S, c] in (1) should be 
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redefined. In order to find a maximum weight H-colorable induced subgraph of a 
graph G, we need to compute

The number of homomorphisms g from G[S] to H does not exceed |V(H)||S| . The 
running time of operations join, introduce and forget operations in the dynamic pro-
gramming is bounded by a polynomial of the number of states. Hence we can solve 
the problem in time 2O(

√

k(log k+�V(H)� log �V(H)�)
⋅ nO(�V(H)�).

Similar running times could be derived for the variants of Weighted d-Color-
aBle SuBgraph where some additional constraints on the properties of the 
d-colorable induced subgraph of minimum weight are imposed by some prop-
erty C . For example, property C could be that the required subgraph is connected, 
acyclic, regular, degenerate, etc. As far as the information of the partial solution 
required for property C is characterized by set S ⊆ Vt and all possible subsets 
of S or all permutations of S, we can solve the corresponding problem in time 
2O((d

√

k) log(dk))
⋅ nO(d).

As a concrete example, consider Weighted d-degenerate SuBgraph, whose 
task is to find a maximum weight d-degenerate induced subgraph H of the input 
graphs G. Recall that a graph is d-degenerate for a nonnegative integer d, if every 
induced subgraph of G has a vertex of degree at most d. In particular, every forest 
is 1-degenerate. Recall also that a graph G is d-degenerate if and only if it admits 
a d-coloring ordering [23]. In particular, this immediately implies that every 
d-degenerate graph is (d + 1)-colorable. That is, the chromatic number bound is 
automatically given by the d-degeneracy property.

Let G be a graph and let � be an ordering of its vertices. Let X ⊆ V(G) . We 
say that � as an extension of an ordering �′ of X if the vertices of X occur in � 
in the same order as in �′ . Suppose that X = {x1,… , xr} and the vertices of X 
are indexed with respect to their order in � . Denote by ��(G,X) = (�1,… , �r) the 
sequence of nonnegative integers such that for each i ∈ {1,… , k} , �i is the degree 
of xi in the graph obtained from G by the deletion of the vertices that occur before 
xi in � . Notice that if � is a d-coloring ordering of G, then �i ≤ d for i ∈ {1,… , r} . 
We use the following lemma to construct our algorithm for Weighted d-degener-
ate SuBgraph.

Lemma 4 Let G be a graph and let V1,V2 ⊆ V(G) such that V1 ∪ V2 = V(G) . Let 
also X = V1 ∩ V2 with r = |X| . Then G has a d-coloring ordering if and only if there 
is an ordering � of X and orderings �1 and �2 of V1 and V2 respectively such that

 (i) �i is an extension of � for i = 1, 2,
 (ii) for the sequences ��(G[X],X) = (�1,… , �r) , ��1(G[V1],X) = (�(1)

1
,… , �(1)

r
) 

and ��2(G[V2],X) = (�(2)
1
,… , �(2)

r
) , it holds that �(1)

i
+ �(2)

i
− �i ≤ d for every 

i ∈ {1,… , r}.

cost[t, S, g] =maximum possible weight of a set�S such that

S ⊆ �S ⊆ Vt,
�S ∩ Xt = S, and g is a homomorphism fromG[S]

toH extendible to a homomorphism ofG[�S] toH.
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Proof Suppose that �′ is a d-coloring ordering. Then we define � , �1 and �2 as the 
orderings of X, V1 and V2 respectively as the ordering inherited from � , that is, every 
two vertices of the corresponding sets occur exactly in the same order as in � . It is 
straightforward to verify (i) and (ii). For the opposite direction, assume that there 
are � , �1 and �2 satisfying (i) and (ii). Let � = (x1,… , xr) . We construct the ordering 
�′ of G as follows. First, we concatenate the suborderings of �1 and �2 containing 
the vertices that occur before x1 in these orderings and add x1 in the end. Then for 
i = 2,… , r , we consecutively add suborderings of �1 and �2 composed by the verti-
ces that occur between xi−1 and xi and add xi in the end. Finally, we add suborderings 
of �1 and �2 with the vertices that are after xr . It is easy to see that �′ is a d-coloring 
ordering of G because of (i) and (ii).   ◻

Using Lemma 4, we can define the values computed by our dynamic program-
ming algorithm for Weighted d-degenerate SuBgraph. For a non-negative inte-
ger r, we define �r = {(�1,… , �r) ∣ 0 ≤ �i ≤ d, 1 ≤ i ≤ r} , i.e, �r is the set of all 
sequences of length r of nonnegative integers at most d. Similarly to (1), for every 
node t, every S ⊆ Xt such that G[S] is (d + 1)-colorable, every ordering � of S and 
every � ∈ �

|S| , we define

For a given S ⊆ Xt , there are |S|! different ordering of the vertices of S and 
|�

|S|| = (d + 1)|S| . By Lemma  3, we have that �S� ≤ 3d+
√

d2+8dk

2
 and, therefore, we 

consider 2O((d+
√

dk) log(dk)) orderings � and 2O((d+
√

dk) log d) sequences � . Taking into 
account that by Lemma 3, we consider 2O(d

√

k)
⋅ nO(d) sets S, we obtain that the table 

of our dynamic programming algorithm stores 2O((d
√

dk) log(kd))
⋅ nO(d) values. Apply-

ing Lemma 4 and the standard dynamic programming arguments, it is easy to show 
that we can solve Weighted d-degenerate SuBgraph using the information stored in 
the tables.

Many natural problems can be described by combining connectivity, degen-
eracy, or degree constraints. Examples of such problems are various maximiza-
tion problems like Weighted induCed tree, Weighted induCed path, Weighted 
induCed CyCle, and various packing variants of these problems like Weighted 
induCed CyCle paCking, the problem of finding a maximum induced subgraph 
whose each connected component is a cycle.

We summarize these observations with the following theorem.

Theorem 2 Let d ≥ 1 be an integer and G be a graph from CHORDAL−ke . Then

• Weighted H-ColoraBle SuBgraph can be solved in 
2O(

√

k(log k+�V(H)� log �V(H)�))
⋅ nO(�V(H)�) time,

• Weighted d-degenerate SuBgraph is solvable in time 2O((d
√

k) log(dk))
⋅ nO(d),

cost[t, S,𝜋, 𝛿] =maximum possible weight of a set�S such that

S ⊆ �S ⊆ Vt,
�S ∩ Xt = S, and ordering𝜋 of S can be extended

to a d-coloring ordering𝜋� ofG[�S]with 𝛿𝜋� (G[�S], S) = 𝛿.
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and

– Weighted induCed ForeSt(Weighted FeedBaCk Vertex Set),
– Weighted induCed tree,
– Weighted induCed path (CyCle)
– Weighted induCed CyCle paCking,

are solvable in 2O(
√

k log k)
⋅ nO(1) time.

In some cases, we can obtain a better running time if a Chordal-modulator of 
size at most k is given. For Weighted H-ColoraBle SuBgraph, this is done in the 
same way as for Weighted d-ColoraBle SuBgraph. For some other problems, like 
Weighted induCed ForeSt (Weighted FeedBaCk Vertex Set), this would demand 
using recent techniques for dynamic programming on graphs of bounded treewidth 
for problems with connectivity constraints (see [6, 20, 25, 56]) but this goes beyond 
the scope of our paper.

Another extension of Theorem 1 can be derived from the very recent results of 
Baste, Sau and Thilikos [3] about the F  -Minor deletion problem on graphs of 
bounded treewidth. Recall that a graph F is a minor of G if a graph isomorphic to F 
can be obtained from G by vertex and edge deletions and edge contractions. Respec-
tively, G is said to be F-minor free if G does not contain F as a minor. For a family 
of graphs F  , G is F -minor free if G is F-minor free for every F ∈ F  . For a family 
F  , the task of F  -Minor deletion is, given a graph G, to find a minimum set of ver-
tices X such that G − X is F -minor free. Then F  -Minor deletion is equivalent to 
F  -Minor Free induCed SuBgraph, whose task is to find a maximum F -minor free 
induced subgraph of G. A family of graphs F  is connected if every F ∈ F  is a con-
nected graph. Baste et al. [3] obtained, in particular, the following result.

Proposition 5 [3] Let F  be a finite connected family of graphs. Then F  -Minor 
deletion can be solved in time 2O(w logw)

⋅ nO(1) on graphs of treewidth at most w.1

It is well-known (see, e.g., the book of Nesetril and de Mendez [54] for the inclu-
sion relations between the classes of sparse graphs) that if F  is a finite family, then 
there is a positive integer d such that every F -minor free graph is d-degenerate. This 
means that for a finite family F  , F -minor free graphs are d-colorable for some con-
stant d that depends on F  only. We use Lemma 3 and then combine our approach 
from Theorem 1 with the techniques of Baste et al. [3]. Using Lemma 5. Hence the 
following theorem.

Theorem 3 Let F  be a finite connected family of graphs. Let also G be a graph 
from CHORDAL−ke . Then F  -Minor Free induCed SuBgraph (or, equivalently, F  
-Minor deletion) can be solved in 2O(

√

k log k)
⋅ nO(1) time.

1 the constants hidden in the big-O notation depend on F .
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For example, this framework encompasses such problems as induCed planar 
SuBgraph or induCed outerplanar SuBgraph whose task is to find a subgraph of 
maximum size that is planar or outerplanar, respectively.

With a small adjustment, the dynamic programming applies to the prob-
lems with specific requirements on the complement of the maximum induced 
d-colored subgraph. For example, consider the following problem. A set of ver-
tices S ⊆ V(G) is a connected vertex cover if S is a vertex cover and G[S] is con-
nected. Then in the Weighted ConneCted Vertex CoVer problem, we are given 
a graph G with a weight function w ∶ V(G) → ℤ+ , and the task is to find a con-
nected vertex cover in G of minimum weight. Similarly, Weighted ConneCted 
FeedBaCk Vertex Set is the problem of finding a connected feedback vertex set of 
minimum weight.

The complement of every vertex cover is an independent set, that is a 1-color-
able subgraph, and the complement of every feedback vertex set is a forest, hence 
2-colorable subgraph. While the connectivity constraints are not on the maximum 
induced subgraph but its complement, our previous arguments can be adapted to 
handle these problems.

Theorem 4 Weighted ConneCted Vertex CoVer and Weighted ConneCted Feed-
BaCk Vertex Set are solvable in time 2O(

√

k log k)
⋅ nO(1) on CHORDAL−ke.

Proof (sketch) The proof is similar to the proof of Theorem 1, so we only briefly 
sketch the main idea. We also give the sketch for Weighted ConneCted Vertex 
CoVer only, the solution to Weighted ConneCted FeedBaCk Vertex Set is basically 
the same.

Let (G, w, W) be an instance of Weighted ConneCted Vertex CoVer.
We use Lemma  1 to find a nice k-almost chordal tree decomposition 

T = (T , {Xt}t∈V(T)) of G with O(n2) bags. Let r be the root of T and Vt be the union of 
the bags in the subtree of T rooted in t.

The following claim is crucial for our algorithm.

Claim 4 Let t be a node of T  and let S ⊆ Xt . Then G[S] has at most 3+
√

1+8k

2
 con-

nected components.

To prove the claim, observe that any set of vertices constructed by picking an 
arbitrary vertex from each connected component of G[S] is independent. Hence, 
the number of connected components of G[S] is upper bounded by the maximum 
size of an independent set in Xt . By Lemma 3, any independent subset of Xt has 
size at most 3+

√

1+8k

2
 and the claim follows.

Let t ∈ T  . For a set S ⊆ Xt , denote by Pt(S) the set of all partitions of S such 
that every two vertices x, y ∈ S that are in the same component are in the same set 
of each partition; we assume that Pt(�) = {�}.

Notice that S ⊆ V(G) is a connected vertex cover if and only if U = V(G) ⧵ S is 
an independent set and G[S] is a connected graph.
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For every t ∈ V(T) , every independent set U ⊆ Xt and every P ∈ Pt(S) for 
S = Xt ⧵ U , our algorithm computes the value cost[t,U,P] that is the minimum pos-
sible weight of a set �S ⊆ Vt such that

• Ŝ ∩ Xt = S = Xt ⧵ U,
• Ŝ is a vertex cover of G[Vt],
• for each connected component C of G[Ŝ] , V(C) ∩ S ≠ � unless S = �,
• every two vertices x, y ∈ S are in the same set of P if and only if they belong to 

the same connected component of G[Ŝ].

We compute cost[t,U,P] bottom-up for t ∈ V(T) starting from the leaves. The com-
putations are trivial for leaf nodes and are performed in a standard way for intro-
duce, forget and join nodes. Finally, we compute cost[r, �, {�}] , which gives us the 
minimum weight of a connected vertex cover.

By Lemma  3, Xt has 2O(
√

k)
⋅ nO(1) independent subsets. By Claim  4, we have 

that for every S ⊆ Xt , G[S] has at most 3+
√

1+8k

2
 connected components. There-

fore, �Pt(S)� = 2O(
√

k log k) and the algorithm computes 2O(
√

k log k)
⋅ nO(1) values 

of cost[t,U,P] for each t ∈ V(T) . Therefore, the running time of the algorithm is 
2O(

√

k log k)
⋅ nO(1) .   ◻

In this section, we discussed optimization problems but, in many cases, similar 
dynamic programming can be applied for counting problems. For example, we can 
compute the number of (inclusion) maximal independent sets, maximal bipartite 
subgraphs, minimal (connected) feedback vertex sets, minimal connected vertex 
covers in time 2O(

√

k log k)
⋅ nO(1) on CHORDAL−ke.

4  Beyond Induced d‑colorable Subgraphs

In Sect. 3, among other algorithms, we gave a subexponential (in k) algorithm on 
CHORDAL−ke graphs computing a maximum d-colorable subgraph. In particular, 
this also implies that for every fixed d, deciding whether a graph from CHORDAL−ke 
is d-colorable, can be done in time subexponential in k. In this section, we show that 
two fundamental problems, namely, Coloring and Clique, while still being ��� , but 
unlikely be solvable in subexponential parameterized time.

4.1  Coloring CHORDAL−ke Graphs

First, we consider Coloring whose task is, given a graph G and a positive integer � , 
decide whether the chromatic number of G is at most � , that is, if G is �-colorable. 
Note that � here is not a fixed constant as in Sect. 3 and may be arbitrarily large.

Cai [12] proved that Coloring is ��� (parameterized by k) on SPLIT−ke graphs. 
We generalize his result by showing that Coloringis ��� on CHORDAL−ke . Our 
approach is based on the dynamic programming which is similar to the one we used 
in Sect. 3.
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We need the following property of graph colorings. Let G be a graph. It is 
well-known that an �-coloring of a graph G can be seen as a partition X  of V(G) 
into at most � independent sets formed by the vertices of the same color that 
are called color classes. We call X  an �-coloring partition of G. We also say 
that a partition X  of V(G) into independent sets is a coloring partition of G. Let 
X = {X1,… , x

�
} be a coloring partition of G and let U ⊆ V(G) . We say that the 

partition X|U of U formed by nonempty sets U ∩ X1,… ,U ∩ X
�
 is a projection of 

X  on U; we assume that X∅ contains the unique element ∅.

Lemma 5 Let G ∈ CHORDAL−ke and let A ⊆

(

V(G)

2

)

 such that |A| ≤ k and 

G� = G + A is a chordal graph. Let also C be a clique of G′ . Then there are at most 
(2k)2k partitions of C into independent in G sets and these partitions can be enumer-
ated in 2O(k log k)

⋅ n time.

Proof Let S be the set of end-vertices of the elements of A in C. Then C� = C ⧵ S is 
a clique of G such that each vertex v of C is adjacent to every vertex of C′ distinct 
from v. Therefore, for every coloring partition X  of G, the vertices of C′ form single-
element sets of the projection of X  on C. Therefore, only the vertices of S may be 
included in nontrivial sets of the partitions. Since |S| ≤ 2k , there are at most (2k)2k 
partitions of S into independent sets. Hence, there are at most (2k)2k partitions of 
C. To enumerate all the partitions, we brute-force through all partitions of S and 
verify for each partition whether this is a partition of S into independents sets. Since 
|C| ≤ n , the enumeration can be done in 2O(k log k)

⋅ n time.   ◻

Lemma 5 implies that there are at most (2k)2k projections of the coloring parti-
tions of G on C and these projections can be enumerated in 2O(k log k)

⋅ n time. This 
allows to construct a dynamic programming algorithm for Coloring.

Theorem 5 Coloring can be solved in time 2O(k log k)
⋅ nO(1) on CHORDAL−ke.

Proof The algorithm follows the same routine as the algorithms from Sect. 3. We 
only briefly sketch the main idea.

Let (G,�) be an instance of Coloring. By Lemma  1, one can construct a nice 
k-almost chordal tree decomposition T = (T , {Xt}t∈V(T)) of G with O(n2) bags. Let 
r be the root of T and recall that Vt denotes the union of the bags in the subtree of T 
rooted in t. For t ∈ V(T) , let Yt be the family of all partitions of Xt into independent 
sets. We put Yt = {�} if Xt = �.

For every X ∈ Yt , we define

���t(X) =

⎧

⎪

⎨

⎪

⎩

true if there is an �-coloring partition X� of G[Vt] s.t.

X
�
�Xt

= X,

false otherwise .
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We compute the table of values of ���t(X) bottom-up for t ∈ V(V) starting from the 
leaves. Clearly, G is �-colorable if and only if ���r(�) = true.

Leaf node. Computing the tables for leaves is trivial as the bags are empty, and 
we assume that the empty graph is �-colorable.

From now on, we assume that a node t ∈ V(T) has children, and the tables are 
already constructed for them.

Introduce node. Let t be an introduce node of T. Denote by t′ its child and 
assume that Xt = Xt� ∪ {v} for v ∉ Xt� . For X ∈ Yt , we define X − v as the partition 
of Xt′ obtained from X  either by the deletion of {v} if {v} is an element of X  or by the 
deletion of v from a nontrivial set of X  containing v. For every X ∈ Yt , we set

Forget node. Let t be a forget node of T. Denote by t′ its child and assume that 
Xt = Xt� ⧵ {v} for v ∈ Xt� . For X ∈ Yt , we define X + v ⊆ Yt� to be the sets of all par-
titions X′ of Xt′ into independent sets such that X = X

� − v , that is, every X� ∈ X + v 
is either obtained by adding the single-element set {v} or by including v into one of 
the independent set. For every X ∈ Yt , we set

Join node. Let t be a join node of T with children t1 and t2 . Then Yt = Yt1
= Yt2

 . For 
every X ∈ Yt,

The correctness of the computation of the tables of values of ���t(X) for t ∈ V(T) 
follows by standard arguments. By Lemma 5, we have that each table has at most 
(2k)2k = 2O(k log k) elements. By the same lemma, together with the description of the 
computing the tables for the leave and the introduce, forget and join nodes, implies 
that the computation of the table for every t ∈ V(T) can be done in time 2O(k log k)n . 
Therefore, the total running time is 2O(k log k)

⋅ nO(1) .   ◻

Now we show that it is unlikely that Coloring is solvable in subexponential in 
k time. For this, we establish the complexity lower bound based on ETH. We use 
the result of Komusiewicz and Uhlmann [46] for the auxiliary triangle CoVer 
problem that, given a graph G with n = 3p vertices, asks whether V(G) can be 
covered by p disjoint triangles, that is, by p copies of K3 that are subgraphs of G.

Proposition 6 [46] Unless ETH is false, triangle CoVer cannot be solved in time 
2o(n+m) ⋅ (n + m)O(1) even when the input restricted to the graphs without induced K4.

Now we rule out the existence of a subexponential algorithm for Coloring on 
CHORDAL−ke parameterized by k. We show a stronger claim.

���t(X) ∶= (|X| ≤ �) ∧ ���t� (X − v).

���t(X) ∶=
⋁

X
�∈X+v

���t� (X
�).

���t(X) ∶= ���t1 (X) ∧ ���t2 (X).
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Theorem  6 Coloring cannot be solved in time 2o(k) ⋅ nO(1) on graphs in 
COMPLETE−ke unless ETH fails.

Proof A set of cliques {C1,… ,C
�
} of a graph G is a clique cover if the cliques 

are pairwise disjoint and V(G) = ∪�

i=1
Ci . It is well-known that G is �-colorable if 

and only if its complement G has a clique cover of size � . Let G be a graph with 
n = 3� vertices that has no induced K4 . Observe that G has a clique cover of size � 
if and only if V(G) can be covered by � cliques of size 3, that is, by triangles. Con-
sider a graph G with n = 3� vertices such that G has no induced K4 . We obtain that 
(G,�) is a yes-instance of Coloring if and only if G is a yes-instance of triangle 
CoVer. Observe that G ∈ COMPLETE−ke if and only if G has at most k edges. Then 
the existence of an algorithm for Coloring running in time 2o(k) ⋅ nO(1) on graphs in 
COMPLETE−ke would imply that triangle CoVer can be solved in time 2o(k) ⋅ nO(1) 
on graphs without induced K4 with at most k edges. This is impossible unless ETH 
is false by Proposition 6.   ◻

4.2  Clique in CHORDAL−ke Graphs

Now we consider the Clique problem that asks, given a graph G and a positive inte-
ger � , whether G has a clique of size at least � . We show that Clique is ��� on 
CHORDAL−ke when parameterized by k even for the weighted variant of the prob-
lem in Sect. 5 by demonstrating that the problem admits a Turing kernel. Here, we 
prove the following lower bound.

Theorem 7 Clique cannot be solved in time 2o(k) ⋅ nO(1) on graphs in COMPLETE−ke 
unless ETH fails.

Proof Observe that a graph G has a clique of size at least � if and only if G has 
an independent set of size at least � . Recall that G ∈ COMPLETE−ke if and only 
if G has at most k edges. It was shown by Impagliazzo, Paturi and Zane [40] that 
independent Set cannot be solved in time 2o(n+m)nO(1) on graphs with n vertices and 
m edges unless ETH fails. These observations immediately imply the claim of the 
theorem.   ◻

We proved that Coloring and Clique do not admit subexponential algorithms on 
COMPLETE−ke , when parameterized by k, unless ETH fails. Note that by Observa-
tion 1, this means that subexponential algorithms cannot solve these problems on 
CHORDAL−ke as well unless ETH fails.

5  Kernelization on Chordal −ke

In this section we discuss kernelization of the problems considered in the previous 
section.
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Jansen and Bodlaender in [42] and Bodlaender, Jansen, and Kratsch in [8] proved 
that Weighted independent Set, Weighted Vertex CoVer, Weighted Bipartite SuB-
graph, Weighted odd CyCle tranSVerSal, Weighted FeedBaCk Vertex Set and 
Clique do not admit a polynomial kernel parameterized by the size of the minimum 
vertex cover of the graph unless coNP ⊆ NP∕poly.

We use the following observation.

Observation 2 If G has a vertex cover of size at most k, then �����-����(G) ≤

(

k

2

)

.

Proof Let G be a graph with a vertex cover X of size at most k. Let 

A =

(

X

2

)

⧵ E(G[X]) . Clearly, G + A is a split graph. Therefore, 

�����-����(G) ≤

(

k

2

)

 .   ◻

Observation 2 and the results of [8, 42] yield the following proposition.

Proposition 7 Weighted independent Set, Weighted Vertex CoVer, Weighted 
Bipartite SuBgraph, Weighted odd CyCle tranSVerSal, Weighted FeedBaCk Ver-
tex Set and Clique do not admit a polynomial in k kernel on SPLIT−ke graphs 
unless coNP ⊆ NP∕poly.

By Observation 1, these problems parameterized by k have no polynomial kernel 
on CHORDAL−ke as well unless coNP ⊆ NP∕poly.

These results do not refute the existence of polynomial Turing kernels. We show 
that Weighted Clique has such a kernel. The input of Weighted Clique contains a 
graph G together with a weight function w ∶ V(G) → ℤ+ and a nonnegative integer 
W, and the task is to decide whether G has a clique C of weight at least W.

Our kernelization algorithm uses the following well-known property of chordal 
graphs.

Proposition 8 [34, 61] An n-vertex chordal graph has at most n inclusion-maximal 
cliques, and they can be listed in linear time.

Theorem 8 Weighted Clique on CHORDAL−ke parameterized by k admits a Turing 
kernel with at most 16k2 vertices with size O(k8).

Proof Let (G, w, W) be an instance of Weighted Clique.
We apply Proposition 1 to approximate the fill-in of G. If the algorithm reports 

that � ���- ��(G) > k , we report that G ∉ CHORDAL−ke and stop. Assume that this is 

not the case. Then the algorithm returns a set A ⊆

(

V(G)

2

)

 of size at most 8k2 such 

that G� = G + A is a chordal graph. Let X be the set of vertices that are the end-verti-
ces of the edges of A. Note that |X| ≤ 16k2 . Then we use Proposition 8 to list all the 
inclusion maximal cliques C1,… ,Cr of G′ . Let Xi = X ∩ Ci for i ∈ {1,… , r} . 
Observe that if C is a clique of G of weight at least W, then C ⊆ Ci for some 
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i ∈ {1,… , r} . Observe also that each G[Ci] contains a clique of weight at least W if 
and only if Gi = G[Xi] contains a clique of weight at least 
Wi = max{0,W − w(Ci ⧵ Xi)} . Trivially, � ���- ��(Gi) ≤ � ���- ��(G) for i ∈ {1,… , r} , 
that is, each Gi ∈ CHORDAL−ke if G ∈ CHORDAL−ke.

Observe that (G,  w,  W) is a yes-instance of Weighted Clique if and only if 
(Gi,w,Wi) is a yes-instance for at least one i ∈ {1,… , r} . Then Turing kernelization 
algorithm solves Weighted Clique by calling the oracle for each instance (Gi,w,Wi) 
with the parameter k for i ∈ {1,… , r}.

Since |V(Gi)| = |Xi| ≤ |X| ≤ 16k2 for i ∈ {1,… , r} , we solve instances with the 
input graphs of bounded size. To call the oracle that solves the instances of bounded 
size, we have to compress the weights. For this, we apply Proposition 3.

Let i ∈ {1,… , r} and consider the instance (Gi,w,Wi) . Let v1,… , vp be the 
vertices of Gi . Using the notation of Proposition  3, let h = p + 1 and N = p + 2 . 
Consider vector w = (w(v1),… ,w(vp),Wi)

⊺ ∈ ℤh . The algorithm of Frank and 
Tardos finds a vector w̄ = (w̄1,… , w̄p, W̄i)

⊺ with ‖w̄‖∞ ≤ 24h
3

Nh(h+2) such that 
sign(w ⋅ b) = sign(w̄ ⋅ b) for all vectors b ∈ ℤh with ‖b‖1 ≤ N − 1 . We define 
w̄(vj) = w̄j for j ∈ {1,… , p} and consider the instance (Gi, w̄, W̄i) of Weighted inde-
pendent Set.

Since sign(w ⋅ b) = sign(w̄ ⋅ b) for all vectors b ∈ ℤh with ‖b‖1 ≤ N − 1 , the 
equality holds for every b whose elements are in {−1, 0, 1} . This implies that the 
weights w̄(vj) are positive and W̄i is nonnegative. Also we have that for every set of 
indices I ⊆ {1,… , p} , 

∑

j∈I w(vj) ≤ Wi if and only if 
∑

j∈I w̄(vj) ≤ W̄i . This proves 
that the instances (Gi,w,Wi) and (Gi, w̄, W̄i) are equivalent.

Since |V(Gi)| ≤ 16k2 , we obtain that the weights in the instance (Gi, w̄, W̄i) can be 
encoded by stings of length O(k6) for i ∈ {1,… , r} . Hence, the size of each instance 
is O(k8).

Propositions 1, 8 and 3 immediately imply that the kernelization algorithm runs 
in polynomial time.   ◻

6  Independent Set on INTERVAL−ke

In this section, we show that independent Set parameterized by the size of the 
interval completion admits a polynomial compression into the Weighted inde-
pendent Set problem. We state Weighted independent Set as a decision problem, 
whose input contains a graph G with a weight function w ∶ V(G) → ℤ+ and a 
nonnegative integer W, and the task is to decide whether G has an independent set 
S with w(S) ≥ W .

More formally, we show the following theorem.

Theorem 9 independent Set on G ∈ INTERVAL−ke admits a compression of size 
O(k56) into Weighted independent Set.
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Since Weighted independent Set is in �� and, consecutively, has a polynomial 
reduction to independent Set that is ��-complete [31], the theorem immediately 
gives the following result.

Corollary 4 independent Set on G ∈ INTERVAL−ke admits a polynomial kernel 
when parameterized by k.

The proof of Theorem 9 is the most technical part of our paper. Before giving 
the formal proof, we explain technical issues and briefly sketch the compression 
algorithm’s main ideas. We start with an approach that does not work and then 
explain how to fix it.

Let G be a graph and let A ⊆

(

V(G)

2

)

⧵ E(G) be a set of pairs of nonadjacent 

vertices such that the graph G′ obtained from G by adding the edges from A 
becomes interval. Denote by X the set of end-vertices of the edges of A in G′.

Consider an interval model of G′ . For each vertex v ∈ V(G�) , let �v and rv be, 
respectively, the left and right endpoint of the interval representing v. For each 
v ∈ V(G�) , denote by G�

v
 and Gr

v
 the subgraphs of G′ induced by the sets of ver-

tices U�

v
= {u ∈ V(G�) ∣ ru < �v} and Ur

v
= {u ∈ V(G�) ∣ rv < �u} respectively, 

and for every two distinct u, v ∈ V(G�) , let Guv be the subgraph induced by 
Uuv = {w ∈ V(G�) ∣ ru < �w ≤ rw < �v} (see Figure 1). For a graph H, denote by 
I(H) a maximum independent set of H. Suppose that I is a maximum independent 
set of G and let I ∩ X = {x1,… , xs} with rvi−1 < �vi

 for i ∈ 2,… , s . Then it is pos-
sible to prove that

is a maximum independent set of G.
This allows us to create the following compression of the initial problem to 

an instance of Weighted independent Set. Let F  be the set of all induced sub-
graphs G�

v
 , Gr

v
 and Guv for all u, v ∈ X . Consider the graph G with the set of ver-

tices X ∪ F  with the following adjacencies: for distinct u, v ∈ V(G) , u and v are 
adjacent if and only if one of the following holds:

• u, v ∈ X and xy ∈ E(G),
• u ∈ X , v ∈ F  and u is adjacent to a vertex of v in G,
• u, v ∈ F  and the subgraphs u and v have either common or adjacent vertices in 

G.

I� = I(G�

x1
) ∪

(

s
⋃

i=2

I(Gxi−1xi
)
)

∪ I(Gr
xs
)

Fig. 1  Structure of a maximum independent set in G 
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We define the weight w(v) for v ∈ V(G) be one if v ∈ X and set w(v) = |I(v)| for 
v ∈ F  . It can be shown that G has an independent set of size at least W if and only 
if G has an independent set of weight at least W. Then we can use the technique of 
Frank and Tardos [30] to compress the weights.

Unfortunately, the above arguments do not work for the following reason. We 
based our construction on the assumption that we know G′ and the resulting inter-
val model. But computing an optimal interval completion is an ��-hard task. Of 
course, it would suffice even if we had a poly(OPT) approximation algorithm for 
interval completion. That is, an algorithm producing in polynomial time an edge 
set A of size polynomial in k, and whose addition turns the input graph G into an 
interval graph. However, the existence of such an approximation is a long-standing 
open problem. The best-known result is the O(log n) approximation algorithm of 
Rao and Richa [57] for the minimum number of edges of an interval supergraph of 
an n-vertex graphs. While we were able to implement the above idea and obtain the 
required compression, the absence of a good approximation makes the proof more 
complicated.

Given a graph G, we construct a vertex set X and a set of induced subgraphs F  
of G − X such that the graph G defined above have the desired property: G has an 
independent set of size at least W if and only if G has an independent set of weight 
at least W. We start the construction of X using the algorithm of Natanzon, Shamir, 
and Sharan [52] to approximate � ���- ��(G) ≤ ���-����(G) . Initially, we set X be the 
set of vertices in the pairs of nonadjacent vertices returned by the algorithm. Then 
we apply a series of reduction rules that either solve the problem or enhance X by 
adding vertices or delete vertices of the graph. The reduction rules use the forbid-
den induced subgraph characterization of interval graphs given by Lekkerkerker and 
Boland [47]. This way, we construct X of size O(k3) . Then we construct F  of size 
O(k14) and define G . Here again, we use the technique of Frank and Tardos [30] to 
compress the weights.

The remaining part of the section contains the proof of Theorem 9. In Sect. 6.1, 
we introduce additional notions and state some auxiliary results. Then, in Sect. 6.2, 
we give the compression itself.

6.1  Technical Lemmata

An interval graph has been defined as an intersection graph of a family of inter-
vals of the real line. For our compression algorithm, we need the characterization of 
interval graphs in terms of forbidden induced subgraphs.

Three pairwise nonadjacent vertices of a graph form an asteroidal triple (AT) 
if there is a path between every two of them that avoids the closed neighborhood 
of the third. For an asteroidal triple T of a graph G, a T-AT-witness is an inclu-
sion minimal induced subgraph F of G such that T is an asteroidal triple of F. 
The vertices of T are called terminals of F. Clearly, F is induced by the vertices 
of induced paths between every two vertices of T that avoid the closed neighbor-
hood of the third. Therefore, the existence of an asteroidal triple T can be checked 
in polynomial time, and then the construction of a T-AT-witness can be done in 



2197

1 3

Algorithmica (2021) 83:2170–2214 

polynomial time using the self-reducibility technique. An asteroidal witness is an 
inclusion minimal induced subgraph that contains an asteroidal triple, and we call 
the vertices of an asteroidal triple terminals of the witness (note that the choice of 
terminals is not unique).

A graph G is AT-free if G has no asteroidal triple. We use the following classi-
cal result of Lekkerkerker and Boland [47].

Proposition 9 [47] A graph G is an interval graph if and only if G is chordal and 
AT-free.

The main result of Lekkerkerker and Boland [47] is the characterization of 
interval graphs by forbidden induced subgraphs. We use this characterization in 
the following form tailored for our purposes.

Lemma 6 [47] If a chordal graph G contains an asteroidal triple T, then it contains 
a minimal asteroidal witness F isomorphic to one of the graphs F1 , F2 , F3(r) for 
r ≥ 2 or F4(r) for r ≥ 1 that are shown in Figure 2 (a)–(d) and for every nonterminal 
vertex v of F, it holds that v ∈ V(G) ⧵ T  . Moreover, such a witness F can be found in 
polynomial time.

The lemma’s last statement means that the vertices of an asteroidal triple of G 
may be only terminal vertices of a minimal witness.

We say that vertex set X ⊆ V(G) is a chordal-complementing set for G if there 

is A ⊆

(

X

2

)

⧵ E(G[X]) such that G + A is chordal. If G + A is chordal, then the 

set of end-vertices of the edges of A is chordal-complementing. Observe also that 
every superset of a chordal-complementing set is chordal-complementing, and for 
each U ⊆ V(G) , X ⧵ U is a chordal-complementing set of G − U.

(a) (c)(b)

(e)(d)

Fig. 2  Minimal asteroidal witnesses; asteroidal triples (terminals) are shown by white bullets
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We say that a triple of vertices T of G is an X-touching AT if T is an asteroidal 
triple of G − E(G[X]) that has a T-AT-witness F such that either |V(F) ∩ X| ≤ 1 or 
V(F) ∩ X ⊆ T  . We say that F is associated with T.

Our compression algorithm uses the properties of chordal-complementing sets 
and X-touching ATs with associated witnesses given in the following two lemmas.

Lemma 7 Let X ⊆ V(G) be a chordal-complementing set for a graph G and let T be 
an X-touching AT triple of G. Then G has an X-touching AT T ′ with an associated 
witness F′ isomorphic to one of the graphs F1 , F2 , F3(r) for r ≥ 2 , F4(r) for r ≥ 1 or 
F5 that are shown in Figure 2 (a)–(e). Moreover, T ′ and an associated witness F′ can 
be constructed in polynomial time.

Proof Suppose that T = {u1, u2, u3} is an X-touching AT. We find an associated wit-
ness F. Note that this can be done in polynomial time using the self-reducibility 
technique.

Assume that F is not a chordal graph. Then it contains an induced cycle C with at 
least four vertices. Notice that since X is a chordal-complementing set, C has at least 
two nonadjacent vertices from T. We consider four cases depending on the length of 
C.

Let C be of length 4. By symmetry, we assume without loss of generality that 
u1, u2 ∈ V(C) . Then C = u1v1u2v2u1 for some v1, v2 ∈ V(F) ⧵ T  . Recall that F is 
induced by the vertices of induced paths between every two vertices of T that avoid 
the closed neighborhood of the third. The vertices v1 and v2 cannot belong to any 
induced (u1, u3) or (u2, u3)-path that avoids NF[u2] and NF[u1] . Hence, v1 and v2 are 
vertices of an induced (u1, u2)-path that avoids NF[u3] . Clearly, u1v2u2 is an induced 
(u1, u2)-path. We obtain that F − v2 is T-AT-witness but this contradicts the minimal-
ity of F. We conclude that C has length at least 5.

Suppose that C has length 5. Again, we can assume without loss of generality that 
u1, u2 ∈ V(C) . Then C = u1v1u2v2v3u1 for some v1, v2, v3 ∈ V(F) ⧵ T  . Then for every 

A ⊆

(

X

2

)

⧵ E(G[X]) , G�� = G + A contains a cycle of length at least four: if 

u1u2 ∈ A , then u1u2v2v3v4v1 is such a cycle and if u1u2 ∉ A , then C is a cycle of G′′ . 
This contradicts the condition that X is a chordal-complementing set. Hence, C has 
length at least 6.

Assume that C has length 6. Suppose that |V(C) ∩ T| = 2 . Then we can assume 
that u1, u2 ∈ V(C) and either C = u1v1u2v2v3v4u1 or C = u1v1v2u2v3v4u1 for some 
v1, v2, v3, v4 ∈ V(F) ⧵ T  . In both cases, we obtain a contradiction with the condition 
that X is a chordal-complementing set in the same way as in the previous case, 

because for every A ⊆

(

X

2

)

⧵ E(G[X]) , G�� = G + A contains a cycle of length at 

least four. Therefore, T ⊆ V(C) and C = u1v1u2v3u3v3u1 for some 
v1, v2, v3 ∈ V(F) ⧵ T  . We obtain that C = F = F5 is a T-AT-witness as required by 
the lemma.

Finally, let C be of length at least 7. Then for two vertices of T, say, u1 and u2 , C 
contains an induced (u1, u2)-path P of length at least 3. Then for every 
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A ⊆

(

X

2

)

⧵ E(G[X]) , G�� = G + A contains a cycle of length at least four that con-

tains P as a segment. This contradicts the condition that X is a chordal-complement-
ing set.

Assume now that F is a chordal graph. Then the claim of the lemma is a direct 
corollary of Lemma 6.   ◻

Lemma 8 Let X ⊆ V(G) be a chordal-complementing set for a graph G. Suppose 
that G has an X-touching AT T with an associated witness F isomorphic to one of 
the graphs F1 , F2 , F3(r) for r ≥ 2 , F4(r) for r ≥ 1 or F5 that are shown in Figure 2 
(a)–(e). Then for every interval complementation H of G, H has an edge uv ∉ E(G) 
such that

 (i) u, v ∈ V(F),
 (ii) either u ∉ X or v ∉ X.

Proof Suppose that T is an X-touching AT with an associated witness isomorphic to 
one of the graphs F1 , F2 , F3(r) for r ≥ 2 , F4(r) for r ≥ 1 or F5 . Let H be an interval 
complementation of G. If |V(F) ∩ X| ≤ 1 , then the claim immediately follows form 
Proposition 9 as H is AT-free. Assume that |V(F) ∩ X| ≥ 2 . Then V(F) ∩ X ⊆ T .

Assume that |V(F) ∩ T| = 2 . If the vertices of V(F) ∩ T  are nonadjacent in H, 
then the existence of uv ∉ E(G) satisfying (i) and (ii) follows from Proposition 9. Let 
these vertices be adjacent. Suppose that z1, z2 of F (see Figure 2) are in T. Observe 
that F + z1z2 contains an induced cycle of length at least four as it is shown in Fig-
ure 3 (a)–(e). Since H is chordal, we obtain that there is uv ∈ E(H) ⧵ E(G) satisfying 
(i) and (ii). The case z2, z3 ∈ T  is symmetric. Assume that z1, z3 ∈ T  . By symme-
try, it is sufficient to consider the cases F = F2 , F = F3(r) and F = F4(r) . Again, we 
observe that F + z1z3 contains an induced cycle of length at least four as it is shown 
in Figure 3 (f)–(h) and the claim follows.

Let |V(F) ∩ T| = 3 , that is T = {z1, z2, z3} . If the vertices of V(F) ∩ T  are pair-
wise nonadjacent in H, then the existence of uv ∈ E(H) ⧵ E(G) satisfying (i) and 
(ii) follows from Proposition 9. If H[T] contains an edge, then we apply the same 
arguments as above for the cases F = F2 , F = F3(r) and F = F4(r) and obtain that 
F + E(H[T]) contains an induced cycle of length at least four. This implies that 
there is uv ∈ E(H) ⧵ E(G) satisfying (i) and (ii). Let F = F5 . If |E(H[T])| = 1 or 
|E(H[T])| = 2 , we again have that F + E(H[T]) contains an induced cycle of length 
at least four (see Figure 3 (e) and (i)) and the claim follows. Let |E(H[T])| = 3 . Then 
F + {z1z2, z2z3, z1z3} coincides with F4(2) . Since H has no induced subgraph iso-
morphic to F4(2) , we have that there is uv ∈ E(H) ⧵ E(G) satisfying (i) and (ii).   ◻

In our compression algorithm, we have to compute a maximum independent 
set for chordal graphs. It was already observed by Gavril [32] in 1972 that this in 
polynomial (linear) time on chordal graphs.
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Proposition 10 [32, 59] independent Set can be solved in time O(n + m) on 
chordal graphs.

6.2  Compression

In this section, we give a compression of independent Set on G ∈ INTERVAL−ke 
parameterized by k. Let (G,�) be an instance of independent Set and let a nonnega-
tive integer k be the parameter.

First, we apply the algorithm of Natanzon, Shamir, and Sharan [52] (see Proposi-
tion 1) to approximate the fill-in of G. If the algorithm reports that � ���- ��(G) > k , we 
immediately stop as, clearly, G ∉ INTERVAL−ke . Assume that this is not the case. 

Then the algorithm returns a set A ⊆

(

V(G)

2

)

 of size at most 8k2 such that G + A is 

a chordal graphs. We define X to be the set of vertices that are the end-vertices of the 
edges of A. Note that X is a chordal-complementing set. We apply a series of reduc-
tion rules for the instance of independent Set considered together with X, that is, for 
the triple (G,�,X).

We apply the following reduction rule to enhance X.

Reduction Rule 1 If G has an X-touching AT T with an associated witness F = F1 , 
then set X ∶= X ∪ V(F).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3  Induced cycles in F shown by thick lines
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We apply the rule exhaustively but at most k + 1 times. Lemma 8 guarantees that 
if we find an X-touching AT T with an associated witness F = F1 , then every interval 
complementation of G contains an edge uv such that u and v are nonadjacent verti-
ces of F and at most one of them is in X. Hence the following rule is safe.

Reduction Rule 2 If Reduction Rule 1 has been applied k + 1 times, then report that 
G ∉ INTERVAL−ke and stop.

Assume that the algorithm did not stop. Since |V(F1)| = 7 , we obtain that 
|X| ≤ 8k2 + 7k after this step.

In the next step, we find and delete some irrelevant vertices of G. For this, set 
p = 8k2 + 7k + 2.

Reduction Rule 3 If for some vertex x ∈ V(G) , the subgraph G[NG(x) ⧵ X] has an 
independent set of size at least p + 1 , then set G ∶= G − x and X ∶= X ⧵ {x}.

Lemma 9 Reduction Rule 3 is safe.

Proof Denote by G′ and X′ the graph and the vertex set obtained from G and X 
respectively by applying the rule for some x ∈ V(G) . Note that X� = X if x ∉ X . We 
show that G is an independent set of size � if and only G′ has an independent set of 
the same size. It is trivial that if G′ has an independent set of size � , then the same 
set is an independent set of G. Assume that G has an independent set I if size � . We 
prove that G′ has an independent set of size at least � . The claim is straightforward 
if x ∉ I . Suppose that x ∈ I . Let S be an independent set of size at least p + 1 in 
G[NG(x) ⧵ X] . Clearly, S ∩ I = �.

If there is S′ ⊂ S of size p − 1 that has no vertex adjacent to a vertex of 
I ⧵ (X ∪ {x}) , then consider I� = (I ⧵ (X ∪ {x})) ∪ S� . Observe that I′ is an independ-
ent set of G′ . Since |X| ≤ p − 2 , |I′| ≥ |I| ≥ � and we have that I′ is a required inde-
pendent set of size at least � in G′.

Assume from now that every S′ ⊂ S of size p − 1 has a vertex with a neighbor in 
I ⧵ (X ∪ {x}) . Because |S| ≥ p + 1 , there are three distinct vertices u1, u2, u3 ∈ S that 
have neighbors in I ⧵ (X ∪ {x}) . Denote these neighbors of u1 , u2 and u3 by v1 , v2 and 
v3 respectively. Note that u1, u2, u3 are pairwise nonadjacent and they are adjacent to 
x. Notice also that u1, u2, u3, v1, v2, v3 ∉ X . If vi = vj for some distinct i, j ∈ {1, 2, 3} , 
we have that xuiviujx is an induced cycle but this contradicts the property that X 
is a chordal-complementing set. Hence, v1, v2, v3 are pairwise distinct and vi is not 
adjacent to uj for distinct i, j ∈ {1, 2, 3} . Because v1, v2, v3 ∈ I , these vertices are 
pairwise nonadjacent. But then G[{x, u1, u2, u3, v1, v2, v3}] is isomorphic to F1 (see 
Figure  2 (a)). This contradict the assumption that Reduction Rule  1 was applied 
exhaustively and the algorithm was not stopped by Reduction Rule 2. This competes 
the safeness proof.   ◻

We apply Reduction Rule 3 exhaustively. The crucial property we achieve by this 
rule is the following.
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Observation 3 If G has an X-touching AT T with an associated witness F = F3(r) or 
F = F4(r) (see Figure 2 (c) and (d)), then r ≤ 2p − 1 = 16k2 + 14k + 1.

Proof Assume that G has an X-touching AT T with an associated witness F = F3(r) . 
Note that only the terminals of F could be in X. Then {x1, x3,… , x2⌈r∕2⌉−1} is an 
independent set in G[NG(y) ⧵ X] (see Figure 2 (c)). Since Reduction Rule 3 cannot 
be applied, r ≤ 2p − 1 . If F = F4(r) , the arguments are the same and the only differ-
ence is that we consider y1 instead of y (see Figure 2 (d)).   ◻

Now we proceed with enhancing X.

Reduction Rule 4 If G has an X-touching AT T with an associated witness F isomor-
phic to one of the graphs F1 , F2 , F3(r) for r ≥ 2 , F4(r) for r ≥ 1 or F5 that are shown 
in Figure 2 (a)–(e), then set X ∶= X ∪ V(F).

We apply the rule exhaustively but at most k + 1 times, because in the same 
way as for Reduction Rule 2, we can apply Lemma 8. Hence, the next rule is safe.

Reduction Rule 5 If Reduction Rule 4 has been applied k + 1 times, then report that 
G ∉ INTERVAL−ke and stop.

Assume that the algorithm did not stop. By Observation 3, each F, whose verti-
ces have been added to X by Reduction Rule 4, has at most 2p + 4 = 32k2 + 2k + 4 
vertices. Then

By applying Reduction Rule 4, we achieve an essential property of G and X. When 
the rule cannot be applied anymore, by Lemma 7, the following holds.

Observation 4 The graph G� = G − E(G[X]) has no asteroidal triple T ⊆ X with a 
T-AT-witness F such that V(F) ∩ X = T .

Next, we simplify the instance (G,�) of independent Set by the removal 
chordal components. It is straightforward to see that the following rule is safe.

Reduction Rule 6 If G has a connected component H that is a chordal graph, then 
compute the size �(H) of a maximum independent set of H and set G ∶= G − V(H) , 
X ∶= X ⧵ V(H) and � = � − �(H) . If � ≤ 0 , then return a trivial yes-instance of 
Weighted independent Set and stop.

The rule is applied exhaustively. We assume that the algorithm did not stop.
For a set Y ⊆ X of size at most two, let CY be the set of connected components 

of the graph G − (X ∪ NG(Y) and define

(5)|X| ≤ 8k2 + 7k + k(32k2 + 2k + 4) = 32k3 + 10k2 + 11k = O(k3).
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Notice that C is a set of connected induced subgraphs of G − X and distinct sub-
graphs in the set can have common or adjacent vertices. For each C ∈ C , let I(C) be 
a maximum independent set of C. We use the following crucial property of C.

Lemma 10 There is a set S ⊆ X and a family C∗ ⊆ C of pairwise disjoint graphs 
without adjacent (in G) vertices in distinct subgraphs such that

is a maximum independent set of G.

Proof Let I be a maximum independent set of G. Let S = I ∩ X and denote 
by C1,… ,Cs the connected components of G − (X ∪ NG(S)) . Clearly, 
I ⧵ S ⊆ V(C1) ∪ … ∪ V(Cs) . Moreover, if Ii is an arbitrary maximum independent 
set of Ci for i ∈ {1,… , s} , then I� = S ∪ I1 ∪… ∪ Is is a maximum independent set 
of G. We claim that for each i ∈ {1,… , s} , there is a set Y ⊆ S of size at most two 
such that Ci ∈ CY.

To obtain a contradiction, assume that for some i ∈ {1,… , s} , Ci ∉ CY for every 
Y ⊆ S of size at most two. Then |S| ≥ 3 and there are distinct vertices u1, u2, u3 ∈ S 
such that for every j ∈ {1, 2, 3} , there is vj ∈ NG(uj) ⧵ X such that 

 (i) vj ∉ NG(uh) for h ∈ {1, 2, 3} ⧵ {j} , and
 (ii) vj is adjacent to some vertex wj of Ci.

Consider any two distinct vertices uj and uh for j, h ∈ {1, 2, 3} . Let t be the unique 
element of {1, 2, 3} ⧵ {j, h} . Since Ci is connected, there is a (wj,wh)-path P in Ci . 
Notice that P avoids NG[ut] . Let P� = ujvjPvhuh . We have that P′ is an (uj, uh)-path 
in G� = G − E(G[X]) avoiding the neighborhood of ut . Since this holds for any 
choice of j and h, we obtain that T = {u1, u2, u3} ⊆ X is an asteroidal triple T in G′ 
with a T-AT-witness F such that V(F) ∩ X = T  but this contradicts Observation 4. 
This proves that for each i ∈ {1,… , s} , there is a set Y ⊆ S of size at most two 
such that Ci ∈ CY.

We obtain that C1,… ,Cs ∈ C are pairwise disjoint graphs without adjacent verti-
ces in distinct subgraphs and

is a maximum independent set of G.   ◻

C =
⋃

Y⊆X, |Y|≤2

CY .

I∗ = S ∪
⋃

C∈C∗

I(C)

I∗ = S ∪ I(C1) ∪ … ∪ I(Cs)
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We show that the size of C is bounded by a polynomial of the parameter. First, 
we prove an auxiliary claim.

Lemma 11 Let x ∈ Y ⊆ X , where |Y| ≤ 2 , and let C′ ⊆ CY be the set of graphs in CY 
that have at least one neighbor in NG(x) ⧵ X . Then |C′| ≤ 3p for p = 8k2 + 7k + 2.

Proof To obtain a contradiction, assume that |C′| > 3p , that is, there are at least 
3p + 1 connected components of G� = G − (NG(Y) ∪ X) that have neighbors in 
NG(x) ⧵ X . Let y ∈ NG(x) ⧵ X . If y is adjacent to at least p + 1 connected components 
of G′ , then NG(y) ⧵ X contains an independent set of size at least p + 1 . In this case 
we would be able to apply Reduction Rule 3; which is a contradiction. Therefore, 
each y ∈ NG(x) ⧵ X has neighbors in at most p connected components of G′ . Since 
C
�
≥ 3p + 1 , we conclude that there are three distinct vertices y1, y2, y3 ∈ NG(x) ⧵ X 

such that there are three distinct connected components C1,C2,C3 ∈ C
� with the 

property that for every i ∈ {1, 2, 3} , yi has a neighbor zi ∈ V(Ci) and yi has no neigh-
bor in Cj for j ∈ {1, 2, 3} ⧵ {i} . Consider H = G[{x, y1, y2, y3, z1, z2, z3}] . It is easy 
to see that z1, z2, z3 is an asteroidal triple in this graph and H contains an induced 
subgraph isomorphic to F1 , F3(2) or F3(3) (see Figure 2 (a) and (c)) depending on 
the adjacencies between y1 , y2 and y3 . This means that we would be able to apply 
Reduction Rule  4 contradicting the assumption that the rule was applied exhaus-
tively. This proves that |C′| ≤ 3p .   ◻

Lemma 12 

Proof By the definition, C =
⋃

Y⊆X, �Y�≤2 CY . We upper bound |CY | for Y ⊆ X of size 
at most two.

Let Y = � . Observe that each connected component of G contains a vertex of X, 
because G has no connected component that is a chordal graph as Reduction Rule 6 
cannot be applied. Note that if a vertex x has neighbors in at least p + 1 connected 
components of G − X for p = 8k2 + 7k + 2 , then NG(x) ⧵ X contains an independent 
set of size at least p + 1 and we would be able to apply Reduction Rule 3. There-
fore, each vertex of X has neighbors in at most p components of G − X . Hence, 
|C�| ≤ p|X| = O(k5) by the definition of p and (5).

Suppose that Y = {x} for x ∈ X . Denote by C(1) the set of graphs in CY that have 
vertices adjacent to NG(x) ⧵ X and let C(2) be the set of graphs in CY that have no vertex 
adjacent to NG(x) ⧵ X . We have that CY = C

(1) ∪ C
(2) . By exactly the same arguments as 

for Y = � , we obtain that |C(2)| ≤ p(|X| − 1) . By Lemma 11, |C(1)| ≤ 3p . We obtain that

and, therefore, |CY | = O(k5) by the definition of p and (5).
Suppose now that Y = {x1, x2} for distinct x1, x2 ∈ X . Denote by C(i) the set of 

graphs in CY that have vertices adjacent to some vertices of NG(xi) ⧵ X for i ∈ {1, 2} 
and and let C(3) be the set of graphs in CY that have no vertex adjacent to NG(Y) ⧵ X . 
We have that CY = C

(1) ∪ C
(2) ∪ C

(3) . By exactly the same arguments as for Y = � , we 
obtain that |C(3)| ≤ p(|X| − 2) . By Lemma 11, |C(1)| ≤ 3p for i ∈ {1, 2} . Then

|C| = O(k14).

|CY | = |C
(1) ∪ C

(2)
| ≤ |C

(1)
| + |C

(2)
| ≤ 3p + p(|X − 1|)



2205

1 3

Algorithmica (2021) 83:2170–2214 

and, therefore, |CY | = O(k5) by the definition of p and (5).

Since there are |X| single-element subsets Y ⊆ X and 
(

|X|

2

)

 two-element subsets 

Y ⊆ X , we have that |C| = O(k14) by (5).   ◻

Construction of the instance of Weighted independent Set. At the next step of 
our compression algorithm we construct the instance of Weighted independent 
Set as follows.

• Construct the graph G∗ with the vertex set X ∪ C by making every two distinct 
vertices u and v either adjacent or nonadjacent by the following rule:

– if u, v ∈ X , then u and v are adjacent in G∗ if and only if they are adjacent in 
G,

– if u ∈ X and v ∈ C , then u and v are adjacent if and only if u is adjacent to a 
vertex of the subgraph v in G,

– if u, v ∈ C , then u and v are adjacent if and only if the subgraph u and v of 
G have either common vertices or adjacent vertices in G.

• For v ∈ V(G∗) , set the weight w(v) = 1 if v ∈ X and set w(v) be the size of a 
maximum independent set of the subgraph v of G.

Lemma 13 The instance (G,�) is a yes-instance of independent Set if and only if 
(G∗,w,�) is a yes-instance of Weighted independent Set.

Proof Let (G,�) be a yes-instance of independent Set. By Lemma 10, there is a set 
S ⊆ X and a family C∗ ⊆ C of pairwise disjoint graphs without adjacent vertices in 
distinct subgraphs such that

is a maximum independent set of G, where I(C) is a maximum independent set of 
C. By the definition of G∗ , we have that S ∪ C

∗ is an independent set of G∗ of weight 
�S� +

∑

C∈C∗ �I(C)� = �I� . Hence, (G∗,w,�) is a yes-instance of Weighted independ-
ent Set.

Assume now that (G∗,w,�) is a yes-instance of Weighted independent Set. Con-
sider an independent set I∗ of weight at least � in G∗ . Let S = I∗ ∩ X and C∗ = I∗ ∩ C . 
By the definition of G∗ , we have that S ⊆ X is an independent set of G, and the 
graphs of C∗ are disjoint induced subgraphs of G that have no vertices adjacent to S 
and there are no two adjacent vertites that are in distinct graphs of C∗ . Every graph 
C ∈ C

∗ has an independent set I(C) of size w(C) by the definition of the weights. 
This means that I = S ∪

⋃

C∈C∗ I(C) is an independent set in G of size at least � . 
Therefore, (G,�) is a yes-instance of independent Set.   ◻

|CY | = |C
(1) ∪ C

(2) ∪ C
(3)
| ≤ |C

(1)
| + |C

(2)
| + |C

(3)
| ≤ 6p + p(|X − 2|)

I = S ∪
⋃

C∈C∗

I(C)
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By Lemma 12, G∗ has O(k14) vertices, that is, the size of G∗ is bounded by a poly-
nomial of the parameter. To complete the construction of the compressed instance, 
it remains to reduce the weights of vertices. We do it by making use of Proposi-
tion 3. Let v1,… , vs be the vertices of G∗ . Following the notation of Proposition 3, 
let h = s + 1 and N = s + 2 . Consider the vector w = (w(v1),… ,w(vs),𝓁)

⊺ ∈ ℤh . 
The algorithm of Frank and Tardos finds a vector w̄ = (w1,… ,ws,W) with 
‖w̄‖∞ ≤ 24h

3

Nh(h+2) such that sign(w ⋅ b) = sign(w̄ ⋅ b) for all vectors b ∈ ℤh with 
‖b‖1 ≤ N − 1 . We define w∗(vi) = wi for i ∈ {1,… , s} and consider the instance 
(G∗,w∗,W) of Weighted independent Set. This completes the construction of the 
compression. The properties of the obtained instance of Weighted independent 
Setare summarized in the following lemma.

Lemma 14 The instance (G∗,w,�) is a yes-instance of Weighted independent Set 
if and only if (G∗,w∗,W) is a yes-instance. The size of (G∗,w∗,W) is O(k56).

Proof Notice that, in particular, the equality sign(w ⋅ b) = sign(w̄ ⋅ b) holds for all 
vectors b ∈ ℤh such that each element of b is −1 , 0 or 1. This implies that the ele-
ments of w̄ are positive and for every J ⊆ {1,… , s} , 

∑

i∈J w(vi) ≥ � if and only if 
∑

i∈J wi ≥ W . Clearly, for every set of vertices S ⊆ V(G∗) , 
∑

v∈S w(v) ≥ � if and only 
if 
∑

v∈S w
∗(v) ≥ W . This means that (G∗,w,�) is a yes-instance of Weighted inde-

pendent Setif and only if (G∗,w∗,W) is a yes-instance.
Since ‖w̄‖∞ ≤ 24h

3

Nh(h+2) , we have that w(v) ≤ 24(s+1)
3

(s + 2)(s+1)(s+3) for every 
v ∈ V(G∗) and the same upper bound holds for W. This implies that the weights 
of the vertices and W can be encoded by a string of length O(k42) , because by 
Lemma 12, |V(G∗)| = O(k14) . Because G∗ has O(k14) vertices and O(k28) edges, the 
size of (G∗,w∗,W) is O(k56) .   ◻

Running time. Finally, we have to show that the compression algorithm is pol-
ynomial. The construction of the initial set X can be done in polynomial time by 
Proposition 1. Then we apply Reduction Rules 1–6. It is straightforward to see that 
Reduction Rule 1 can be applied in polynomial time as we are looking in it for an 
induced subgraph of bounded size. Reduction Rules 2 and 5 are trivial. Reduction 
Rules 3 and 6 are polynomial by Proposition 10. Reduction Rule 4 is polynomial by 
Lemma 7. Since Reduction Rules 1 and 4 are applied at most k + 1 times and Reduc-
tion Rules 3 and 6 are applied at most |V(G)| times, we conclude all the rules can be 
applied in polynomial time. In the next step, we construct the instance (G∗,w,�) and 
the step is polynomial due to Proposition 10. Finally, we reduce the weight, and this 
can be done in polynomial time by Proposition 3.

The proof of Theorem 9 is complete.

7  Independent Set on SPLIT−ke

In this section, we show that independent Set admits a polynomial kernel when 
parameterized by the split completion size.
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Computing �����-����(G) is NP-hard [53]. Interestingly, if we allow not only edge 
additions but also edge deletions, then the problem becomes polynomial-time solv-
able [37].

Proposition 11 [37] There is an algorithm that, given a graph G, in polynomial 

time finds a set A ⊆

(

V(G)

2

)

 of minimum size such that G△ A is a split graph.

Theorem  10 independent Set on SPLIT−ke admits a polynomial kernel with at 
most 2k2(k + 2) vertices when parameterized by k.

Proof Let (G,�) be an instance of independent Set and let a nonnegative integer k 
be the parameter.

We use Proposition 11 and find a set A ⊆

(

V(G)

2

)

 of minimum size such that 

G� = G△ A is a split graph. If |A| > k , we conclude that G ∉ SPLIT−ke and stop. 
Assume that is not the case. Let D = A ∩ E(G) and C = A ⧵ E(G) , that is, D is the set 
of deleted edges and C is the set of added edges. We find a partition of V(G�) into a 
clique K and an independent set I. By the minimality of A, the edges of D have their 
end-vertices in I, and the edges of C have their end-vertices in K. Let X be the set of 
end-vertices of C and set Y = K ⧵ X . Note that |X| ≤ 2k and every vertex of X is 
adjacent to each vertex of Y.

We apply a series of reduction rules for (G,�) together with the sets I, X, Y, D.

Reduction Rule 7 If D ≠ ∅ , then for uv ∈ D do the following.

• If each of u and v is not adjacent to at least k + 2 vertices of Y in G, then report 
that G ∉ SPLIT−ke and stop.

• Otherwise, pick a vertex of {u, v} with the minimum number of nonneighbors in 
Y, say u, and

– set D ∶= D − uv,
– set I ∶= I ⧵ {u},
– set X ∶= X ∪ {u} ∪ (Y ⧵ NG(u)),
– set Y ∶= Y ∩ NG(u).

We apply the rule exhaustively until D becomes empty.

Claim 5 If the algorithm stops while executing Reduction Rule  7, then 
�����-����(G) > k.

Proof of Claim 5 The algorithm stops if there is uv ∈ D such that |Y ⧵ NG(u)| ≥ k + 2 

and |Y ⧵ NG(v)| ≥ k + 2 . Let R ⊆

(

V(G)

2

)

⧵ E(G) be a set of pairs of vertices of 

minimum size such that Ĝ = G + R is a split graph. Let (S, Z) be a partition of V(Ĝ) 
into an independent set S and a clique Z. Notice that either u ∈ Z or v ∈ Z . By sym-
metry, assume without loss of generality that u ∈ Z . Observe that Y is a clique of G. 
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Hence, |Y ⧵ Z| ≤ 1 . This implies that R contains at least k + 1 edges incident to u in 
Ĝ whose other end-vertices are in Y. Therefore, �����-����(G) = |R| ≥ k + 1 .   ◻

Claim 5 guarantees that if we stop by Reduction Rule 5, then G ∉ SPLIT−ke . 
Assume that the algorithm did not stop. Then we obtain that the constructed sets 
X, Y, and I have the properties summarized in the following claim.

Claim 6 The sets X, Y, I form a partition of the vertices of G such that

(i)  I is an independent set in G,
(ii)  Y is a clique in G,
(iii)  for every v ∈ X , Y ⊆ NG(v),
(iv)  |X| ≤ (k + 2)k,
(v)  for every independent set S ⊆ X , |S| ≤ 2k.

Proof of Claim 6 It is straightforward that (X, Y, I) is a partition of V(G).
To see (i), it is sufficient to observe that only the edges of D had both their end-

vertices in I in the initial I, and we exclude at least one end-vertex of every edge of 
D from I by Reduction Rule 7.

The property (ii) is trivial as Y was a clique before we started to apply Reduction 
Rule 7 and we only delete vertices from Y by the rule.

For (iii), observe that if v is a vertex of the initial set X, then Y ⊆ NG(v) by the 
definition of X and Y. Then, if we add a vertex u ∈ I to Y by Reduction Rule 7, then 
we delete the vertices of Y ⧵ NG(u) from Y. Note that these vertices are in X and, 
since Y is a clique, they are adjacent to all remaining vertices of Y. Hence, Y ⊆ NG(v) 
for every v ∈ X.

To show (iv), notice that initially |X| ≤ 2|C| . Then, whenever we apply Reduction 
Rule 7, we add to X at most k + 2 vertices. The rule is applied at most |D| times. We 
obtain that |X| ≤ 2|C| + (k + 2)|D| ≤ (k + 2)|A| ≤ (k + 2)k.

Finally, to prove (v), observe that initially |X| ≤ 2|C| and, therefore, every inde-
pendent set with its vertices in the initial set X has size at most 2|C|. By each appli-
cation of Reduction Rule 7, we put a vertex u ∈ I in X and add a clique Y ⧵ NG(u) . 
Hence we can increase the maximum size of an independent subset of X by at most 
two. The rule is applied at most |D| times. We conclude that the maximum size of an 
independent subset of X is at most 2|C| + 2|D| = 2|A| ≤ 2k .   ◻

These properties allow us to apply the following two rules.

Reduction Rule 8 Set Y ∶= Y ⧵ NG(I).

Reduction Rule 9 If |Y| ≥ 2 , then delete |Y| − 1 arbitrary vertices of Y and set 
I ∶= I ∪ Y .
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Claim 7 Reduction Rules 8 and 9 are safe and the set I constructed by Reduction 
Rule 9 is independent.

Proof of Claim 7 Let G′ be the graph obtained from G by the application of Reduc-
tion Rules 8 and 9 and denote by I′ the set obtained from I. For the safeness proof, it 
is sufficient to show that if G has an independent set S with |S| ≥ � , then G′ has an 
independent set of size at least � . If S ∩ Y = � , S ⊆ V(G�) , that is, S is an independ-
ent set of G′ . Suppose that there is v ∈ S ∩ Y  . Since Y is a clique, v is the unique 
vertex of S in Y. Since Y ⊆ NG(u) for every u ∈ X , X ∩ S = � . This means that 
S ⧵ {v} ⊆ I.

Suppose that there is u ∈ I such that v ∈ NG(u) . Consider S� = (S ⧵ {v}) ∪ {u} . 
We obtain that S′ is an independent set, since S′ ⊆ I . Clearly, |S�| = |S| ≥ �.

Assume now that v ∈ Y ⧵ NG(I) . Note that the vertices of Y ⧵ NG(I) are true twins 
in G, that is, for every x, y ∈ Y ⧵ NG(I) , NG[x] = NG[y] . Hence, we can assume with-
out loss of generality that u was not deleted by Reduction Rule 7 and S ⊆ V(G�).

To see that I′ constructed by Reduction Rule 9 is independent, it is sufficient to 
observe that we include in I a unique vertex of Y that is not adjacent to other vertices 
of I.   ◻

Observe that after applying Reduction Rules 8 and 9, we have that (X, I) is a par-
tition of V(G), where I is an independent set.

Reduction Rule 10 If there is a vertex u ∈ X such that |NG(u)| ≥ 2k , then set 
X ∶= X ⧵ {u}.

Claim 8 Reduction Rule 10 is safe.

Proof of Claim 8 Denote by G′ the graph obtained from G by the application of 
Reduction Rule 10 for a vertex u ∈ X . It is sufficient to show that if G has an inde-
pendent set S with |S| ≥ � , then G′ has an independent set of size at least � . If u ∉ S , 
then S is an independent set of G′ . Assume that u ∈ S . Consider the set I. Observe 
that |S ∩ I| ≤ |I| − 2k . By Claim 6 (v), |S ∩ X| ≤ 2k . We obtain that |I| ≥ |S| . Since I 
is an independent set in G′ , the claim follows.   ◻

We apply the rule exhaustively. We obtain G with the property that 
|NG(u) ∩ I| ≤ 2k − 1 for every u ∈ X.

Finally, we exhaustively apply the following reduction rule.

Reduction Rule 11 If there is an isolated vertex u, then set G ∶= G − u , 
X ∶= X ⧵ {u} , I ∶= I ⧵ {u} and � ∶= � − 1.

It is straightforward to see that the rule is safe.
Now we can show that the obtained graph G has a bounded size.

Claim 9 The graph G has at most 2k2(k + 2) vertices.
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Proof of Claim 9 After the exhaustive application of Reduction Rule  11, G has 
no isolated vertices. Recall that by Claim  6 (iv), |X| ≤ (k + 2)k . Since each ver-
tex of X is adjacent to at most 2k − 1 vertices in I, |I| ≤ (2k − 1)(k + 2)k . Then 
|V(G)| ≤ |X| + |I| ≤ (k + 2)k + (2k − 1)(k + 2)k = 2k2(k + 2) .   ◻

This completes the construction of the kernel.
The initial construction of X, Y, D and I is polynomial by Proposition 11. It is 

straightforward to see that Reduction Rules 7–11 runs in polynomial time. Hence, 
our kernelization algorithm is polynomial.   ◻

8  Conclusion

In this paper, we initiated the study of parameterized subexponential and kerneliza-
tion algorithms on CHORDAL−ke graphs. The existence of such algorithms makes 
this graph class a very interesting object for studies. For other structural parameters, 
like treewidth or vertex cover, we have quite good understanding about the com-
plexity of various optimization problems derived from general meta-theorems like 
Courcelle’s or Pilipczuk’s theorems [17, 56] and advanced algorithmic techniques 
[19, 20, 25]. We believe that further exploration of the complexity landscape of fill-
in parameterization is an interesting research direction. If an optimization problem 
is ��-complete on chordal graphs, like doMinating Set, then on CHORDAL−ke this 
problem is in ���� − �� . On the other hand, even if a problem is solvable in poly-
nomial time on chordal graphs, in theory, there is nothing preventing it from being 
���� − �� on CHORDAL−ke . Is there a natural graph problem with this property? 
For many problems that are solvable in polynomial time on chordal graphs, we also 
established ��� algorithms on CHORDAL−ke class. This does not exclude a possibil-
ity that there are problems that are not ��� parameterized by k but solvable in poly-
nomial time for every fixed k. We do not know any such problem (in other words, 
the problem in class �P ) yet. It will be interesting to see, if there is any natural 
graph problem of such complexity. In addition, we proved that there are problems 
that are ��� on CHORDAL−ke when parameterized by k and which cannot be solved 
in subexponential time unless ETH fails. We believe it would be exciting to obtain 
a logical characterization of problems that can be solved in subexponential time on 
CHORDAL−ke when parameterized by k, similar to the classical Courcelle’s theorem 
[17].

Some concrete open problems. Observe that for our subexponential dynamic pro-
gramming algorithms, we only need a k-almost chordal tree decomposition of the 
input graph, that is, a decomposition where each bag can be made a clique by adding 
at most k edges. (Recall Definition 1.) The maximum of numbers �-����(G[Xt]) ≤ k 
can be significantly smaller than the minimum fill-in of a graph. For graphs in 
CHORDAL−ke , we can find fill-in in a subexponential in k time by the algorithm 
of Fomin and Villanger [29]. However, we do not know if it is ��� in k to decide, 
whether a graph admits a k-almost chordal tree decomposition. And if yes, can it be 
done in subexponential time?
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The only reason why many of the algorithms introduced in our work run in time 
2O(

√

k log k)
⋅ nO(1) and not 2O(

√

k)
⋅ nO(1) is because we do not know how to find a fill-in 

of size k in time 2O(
√

k)
⋅ nO(1) . The best known lower bound given by Cao and Sand-

eep [16] rules out algorithms of time 2o(
√

k)
⋅ nO(1) and better algorithms for fill-in 

would imply better algorithms for various optimization problems on CHORDAL−ke 
graphs. Moreover, to get rid of the logarithm in the exponent, we do not need an 
exact algorithm. By the results of Natanzon, Shamir and Sharan [52] (Proposi-
tion 1), � ���- ��(G) can be approximated in polynomial time within a polyopt factor 
8 ⋅ � ���- ��(G) . Deciding whether � ���- ��(G) ≤ k can be done in time 2O(

√

k log k)
⋅ nO(1) 

by the results of Fomin and Villanger [29] (Proposition 4). Is there an ��� constant-
factor approximation algorithm with running time 2O(

√

k)
⋅ nO(1) ? The existence of 

such an algorithm would improve running times of the algorithms for many prob-
lems. For example, pipelined with our results, it would imply that Weighted inde-
pendent Set is solvable in 2O(

√

k)
⋅ nO(1) time on Chordal −ke.

Finally, we proved that independent Set on INTERVAL−ke and SPLIT−ke admit 
polynomial kernels when parameterized by k. We leave open the question whether 
or not this problem has a polynomial (Turing) kernel on CHORDAL−ke.
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