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Background
Messenger RNAs (mRNAs) can be divided into three regions: the transcript leader 
sequence also known as the 5′ untranslated region (5′ UTR), the coding sequence 
(CDS), and the trailer sequence or 3′ untranslated region (3′ UTR). Eukaryotic 
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translation is normally initiated by the binding of the 40S ribosomal small subunit 
(SSU) and associated initiation factors, adjacent to the mRNA 5′ cap. The SSU then 
proceeds to scan downstream, until it reaches a favorable initiation context at the 
start of an open reading frame (ORF). Here, it recruits the 60S large ribosomal unit, 
which together with the SSU forms the 80S elongating complex which starts trans-
lating the protein. Inside the 80S ribosome there are three binding sites that acco-
modate tRNA base-pairing to mRNA: the aminoacyl-site (A), the peptidyl-site (P), 
and the exit-site (E). Incoming aminoacyl-tRNAs enter the ribosome at the A site, 
binding to the mRNA codon. The peptidyl-tRNA carrying the growing polypeptide 
chain is held in the P site, while the E site holds deacylated tRNAs just before they 
exit the ribosome (Additional file 1: Fig. S1). The 80S proceeds to translate the ORF, 
processing it codon-by-codon by translocating 3 nucleotides (nts) for each step, 
until it reaches a terminating codon and the protein synthesis is complete [1].

While eukaryotic transcripts typically encode only a single protein, evidence from 
high-throughput methods has revealed that many 5′ UTRs contain short upstream 
ORFs (uORFs) that can be translated [2]. While the functional importance of uORFs 
is still debated, several uORFs have been found to regulate gene expression [2, 3]. 
This primarily occurs by hindering ribosomes from reaching the protein-coding 
ORF leading to translational inhibition. This demonstrates that at least a subset of 
uORFs is functionally important.

While translation was previously studied on a gene-by-gene basis, the introduc-
tion of ribosome profiling (ribo-seq) and later, translation complex profiling (TCP-
seq) and ribosome complex profiling (RCP-seq) has made it possible to obtain a 
snapshot of translating and scanning ribosomes across the whole transcriptome 
[4–6]. Together with information on RNA levels and isoforms, protein-coding ORFs 
and uORFs can be identified and their translational levels can be quantified. Get-
ting functional insight from sequencing data requires robust computational analysis. 
Ribo-seq, being a mature assay, has a number of software packages and web ser-
vices designed specifically to handle it. TCP-seq [5, 7, 8] and RCP-seq [6], on the 
other hand, are much less supported. These methods need tools that can consider 
both scanning SSU and 80S elongating ribosome dynamics as well as the relationship 
between these.

Another complicating factor is that many genes have alternative transcription start 
sites (TSSs) [9]. The study of translation initiation requires accurate 5′ UTRs anno-
tation. It is otherwise challenging to determine which uORF candidates should be 
included in the analysis. The choice of TSS dictates which uORFs are present in the 
5′ UTR. In certain cases, uORFs are only present in specific tissues with the correct 
variant of the 5′ UTR [10].

To address these challenges and provide a comprehensive tool for studying trans-
lation in custom regions, we developed ORFik, a Bioconductor software package 
that streamlines the analysis of translation. It supports accurate 5′ UTR annotation 
through RNA-seq and cap analysis of gene expression (CAGE), detection and classifi-
cation of translated uORFs, characterization of sequence features, and the calculation 
of over 30 features and metrics used in the analysis of translation (Additional file 1: 
Table S1).
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Implementation
ORFik is implemented as an open-source software package in the R programming lan-
guage, with parts in C++ to efficiently process large datasets. While tools for analyz-
ing translation exist, none of them support comprehensive analysis of ribo-seq, TCP-seq 
and RCP-seq in combination with CAGE. Furthermore, many of these are either online 
tools [11], or are limited to studying only specific steps or aspects of translation [12]. A 
full comparison between functionality of related tools can be found in Additional file 1: 
Table  S2 [13–23] and benchmarks comparing ORFik to related tools can be found in 
Additional file 1: Table S3-Table S5 and Additional file 1: Figs. S2–S4.

ORFik is highly optimized and fast. To achieve this, we have reimplemented several 
functions in the Bioconductor core package GenomicFeatures that are currently inef-
ficient for larger datasets, like converting from transcript coordinates to genomic coor-
dinates and vice versa. In addition, to aid with the ever-increasing size of datasets, we 
have focused on allowing faster computation of large bam files with our format “.ofst” 
based on the Facebook compression algorithm zstd [24, 25]. “.ofst” is a serialized format 
(see the section on Optimized File Format), with optional collapsing of duplicated reads, 
enabling near-instantaneous data loading (Fig. 1; Additional file 1: Table S5).

Overview

A typical workflow takes transcriptome/genome annotation and high-through-
put sequencing data as input, processes these to make transcriptome-wide tracks 
(Fig. 2a), and use these to either make summary statistics for all genes or transcripts, 
or to characterize one or more specific transcriptomic regions. Regions can be of any 
type and are completely user-customizable, but typically consist of genes, 5′ UTRs, 
CDSs, uORFs, start codons, or similar. ORFik can then be used to calculate summary 
statistics and features for all candidate regions.

ORFik supports standard translation analysis: it can map reads from RNA-seq and 
ribo-seq, it performs trimming and P-site shifting of ribo-seq reads, quantifies riboso-
mal occupancy (Fig. 2b), characterizes ORFs, and creates a range of plots and predic-
tions. In addition, it supports the analysis of translation initiation through TCP-seq, 
RCP-seq, and CAGE. It can quantify translation initiation through scanning efficiency 
and ribosome recruitment, and can correlate these with sequence elements. Overall, 
ORFik provides a toolbox of functions that is extremely versatile and enables the user 
to go far beyond standardized pipelines.

Obtaining and preprocessing data

The first step in ORFik is obtaining and preprocessing data (Fig. 2a). It automates direct 
download of datasets from the NGS repositories: SRA [26], ENA [27], and DRA [28], 
download of annotations (FASTA genome and GTF annotation) through a wrapper to 
biomartr [29], while also supporting local NGS datasets and annotations. The sequenc-
ing data can be automatically trimmed with fastp [30] with auto removal of adapter 
sequences or any user defined sequence. Adapter presets for the most common Illumina 
adapters are included (TruSeq, small RNA-seq and Nextera), but other sequencing plat-
forms can be used by customizing adapter removal. Following this, ORFik can detect 



Page 4 of 16Tjeldnes et al. BMC Bioinformatics          (2021) 22:336 

and remove any of the known contaminants (e.g., PhiX 174, rRNA, tRNA, non-coding 
RNAs) and finally align the reads using STAR [31].

Quality control

Post-alignment quality control is initiated by calling the function ORFikQC. ORFik out-
puts quality control plots and tables for comparisons between all runs in an experiment 
and the whole process is streamlined to be as fast and simple as possible for the user. 
Among others, plots of the meta coverage across all transcript regions and correlation 
plots between all pairs of samples (Fig. 2d; Additional file 1: Fig. S5) are generated. Fur-
thermore, essential mapping statistics are calculated such as the fraction of reads map-
ping to important features, contaminants, and transcript regions (Fig. 2c).

Fig. 1 ORFik API overview. ORFik is a versatile API for the analysis of translation. It consists of 7 main 
components with gray arrows representing data flow through the components. Data is first loaded either 
directly from raw or pre-aligned form or through the Web Data Download API (left blue box). The latter allows 
for automatic downloading of data which increases replicability by allowing scripts that include the whole 
process from data retrieval to analysis. If not previously aligned, the Read Aligner API (right blue box) can 
trim adapters from fastq files, remove contaminants and align the reads, For this, ORFik uses fastp and STAR. 
Persistent Data (grey box) is then ensured through storage in a ORFik.experiment object which represents 
an experiment. This contains file paths to NGS data and genome annotation used. From this data can be 
retrieved to perform Quality Control (left red box). ORFik implements extensive quality control at several 
processing steps: contamination QC, alignment QC, annotation QC and analysis QC. For analyses, data is 
typically processed through the TranscriptRanges API (middle red box). This extends GenomicRanges to 
facilitate work with transcripts, supporting genomically disjoint regions like ORFs spanning several exons 
(described in Additional file 1: Table S6). At a more high level the Discovery API (right red box) provides tools 
that take advantage of TranscriptRanges to accomplish common tasks, among others: ORF finding, P-shifting 
and initiation context analysis over ORFs. Finally, results from the QC and analysis can be displayed through 
the Visualization API (green box). This supports a range of figures which can be normalized and summarized 
in a multitude of ways (described in Additional file 1: Table S1)
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Single‑base resolution of transcription start sites

Many organisms have extensive variations in the use of isoforms between tissues and 
can often use a range of sites to initiate transcription. Since many analyses of translation 
depend on an accurate annotation of 5′UTRs, ORFik supports the use of CAGE data. 
CAGE is a high-throughput assay for the precise determination of transcription start 
sites (TSSs) at single-base pair resolution [32]. ORFik makes use of CAGE (or similar 5′ 
detection assays) to reannotate transcripts. In a typical workflow (Additional file 1: Fig. 
S7), ORFik identifies all CAGE peaks in promoter-proximal regions and assigns the larg-
est CAGE peak as the TSS. This can be customized to only consider specific thresholds 
or exclude ambiguous TSSs that are close to the boundary of other genes.

Automatic read length determination

When performing ribo-seq it is customary to size-select a range of fragments that cor-
respond to the size protected by a single ribosome. This is because not all isolated frag-
ments necessarily originate from regions protected by ribosomes. Instead, these can be 
the product of other sources such as RNA structure, RNA binding proteins or incom-
plete digestion [33]. This filtering of sizes is typically performed first in the lab and then 
computationally. To identify which read lengths most likely originate from actual ribo-
some footprints (RFPs), ORFik identifies read lengths that display 3 nt periodicity over 
protein-coding regions, indicative of ribosome translocation (Fig. 2a; Additional file 1: 
Fig. S1). For each fragment length, we sum the 5′ ends of footprints mapping to the first 
150 nucleotides in the CDSs of the top 10% of protein-coding genes ranked by coverage 
and keep lengths with at least 1000 reads. The resulting vectors are subject to discrete 
Fourier transform, and the fragment lengths whose highest amplitude corresponds to a 
period of 3 are considered to be bonafide RFPs (Additional file 1: Fig. S8). By default, all 
read lengths that lack this periodicity are filtered out [34].

Sub‑codon resolution through P‑shifting

Sequenced RFP reads span the whole region where the ribosome was situated. In many 
analyses, however, it is interesting to increase the resolution and determine exactly 

(See figure on next page.)
Fig. 2 ORFik functionality. a ORFik supports a number of preprocessing steps including (1) removal of 
rRNA contamination) and other ncRNA), (2) Alignment to genome or transcriptome, (3) selecting 80S 
read lengths that display 3 nt periodicity characteristic of ribosome translocation over translated regions 
(see Additional file 1: Fig. S1). b To identify the P-sites for reads (top illustration) from an 80S library ORFik 
performs change point detection on the 5′ ends of reads across a window over translation initiation sites. 
This determines the location of reads from initiating ribosomes and the distance from their 5′ end to the 
start codon. This is done separately for each read length (heatmap). c Examples of figures used to perform 
quality control on the data from a Ribo-seq experiment with four samples. Left column: The percentage of 
reads in each translation frame over CDSs after P-shifting, stratified by read-length. Right column: (1) Number 
of aligned reads after filtering contaminants. (2) Percentage of reads aligning to various transcript types 
(> 1%). (3) Percentage alignment of each transcript type in the "Other" group. (4) Percentage of reads aligning 
to mRNA falling into the CDS or UTRs. For more QC examples see Additional file 1: Figs. S5 and S6. d Read 
coverage tracks for scanning ribosomal small subunit (SSU), 80S translating ribosomes and CAGE-defined 
transcription start sites (TSS) for a model gene. The gene has two transcript isoforms with different TSSs and 
5′UTRs. The second isoform harbors an additional uORF leading to translational repression through ribosome 
dissociation (uORF 1). ORFik can assist in detecting such differences in isoform through differential expression, 
visualization, and metrics
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which codon the ribosome was processing when it was captured, the so-called P-site. 
Several methods of determining P-site location within footprints (P-shifting) have previ-
ously been developed [12, 23, 34, 35]. ORFik predicts the P-site offset per read length, 
taking inspiration from the Shoelaces algorithm [34]. To determine the P-site offset in 
the protected footprints, ORFik considers the distribution of the different read lengths 
over the translation initiation site (TIS) region. For each read length ORFik takes the 5′ 
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end of all reads from all genes and sums these for each coordinate relative to the TIS. 
ORFik then performs a change point analysis to maximize the difference between an 
upstream and downstream window relative to the changepoint (Additional  file 1: Fig. 
S9). This analysis results in the most probable offset to shift the 5′ ends of fragments 
protected by initiating ribosomes exactly at the TIS (Fig. 2b). The function can process 
any number of libraries and can supply log files and heatmaps over the start and stop 
codon used to verify that the P-site detection was correct (Additional file 1: Fig. S10) and 
users can manually override the suggested shifts. The user can choose between several 
formats, where the two default formats are wiggle format (wig) and ofst (for very fast 
loading into R).

Analysis

After preprocessing the user creates an instance of the “experiment” class. This sum-
marizes and provides information about the data and makes it possible to analyze, 
plot, or create features for any number of NGS libraries. Experiments contain all rel-
evant metadata so that naming and grouping in plots can be performed automatically. 
It also specifies the correct annotation and genomic sequence files for the data, ena-
bling automatic downloading of these. To facilitate sharing between researchers the 
experiment class is constructed to not contain any local information like file paths. 
This makes it easy to send a short single script to collaborators that can perfectly rep-
licate the entire process starting from scratch and producing identical downstream 
analyses and plots.

ORFik extends GenomicRanges and GenomicFeatures to the transcriptome

To facilitate the analysis of any region in the transcriptome, ORFik extends the func-
tionality of two Bioconductor core packages: GenomicRanges and GenomicFeatures 
[24]. The intention of the first package was to provide robust representation and facili-
tate manipulation of contiguous (non-spliced) genomic intervals. GenomicFeatures, on 
the other hand, aimed at extending this functionality to spliced ranges and more com-
plicated annotations, like gene models. The high-speed functions for intra- and inter-
ranges manipulation of GenomicRanges are, however, inconsistent or completely lacking 
for the spliced ranges. ORFik extends these packages with more than 50 new functions 
for spliced ranges and more effectively converts between genomic and transcriptomic 
coordinates (Additional file 1: Table S5). ORFik also supports fully customizable subsets 
of transcript regions and direct subsetting of among others start codons, stop codons, 
transcription start sites (TSS), translation initiation sites (TIS), and translation termina-
tion sites (TTS).

ORFik also contains functions to facilitate rapid calculation of read coverage over 
regions. Beyond basic coverage per nucleotide, ORFik supports different coverage sum-
maries like read length or translation frame in ORFs (Additional file 1: Table S7). All cov-
erage functions also support the input reads as collapsed reads (merged duplicated reads 
with a meta column describing the number of duplicates). This greatly speeds up cal-
culations and reduces memory consumption, especially for short-read sequencing data 
characterized by high duplication level (e.g., ribo-seq).
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Visualizing meta coverage

Metaplots are a useful way of visualizing read coverage over the same relative region 
across multiple transcripts. ORFik implements these plots through a generalized syn-
tax used for intuitive one-line functions. All plots can be extended or edited as ggplot 
objects (R internal graphic objects [36]). Since meta coverage and heat maps can be rep-
resented in multiple ways that emphasize different features of the data ORFik provides 
14 different data transformations for metaplots; more basic ones like the sum, mean and 
median, and more advanced transformations like z-score (number of reads mapped to 
position—mean reads of region / standard deviation over region), position-normalized 
(number of reads mapped to position / total number of reads mapped to region), or 
mRNA-seq normalized (number of reads mapped to position / mRNA-seq FPKM of the 
entire gene) (equations in Additional file 1: Table S7). It also provides filters to avoid bias 
from single occurrences such as extreme peaks caused by contaminants in the data (e.g., 
non-coding RNAs). ORFik can filter these peaks or whole transcripts, to make plots 
more representative of the majority of the regions.

Identifying and characterizing open reading frames

ORFs can be split into a hierarchy based on the available evidence: (1) sequence com-
position and presence in a transcript, (2) active translation, measured with ribo-seq, (3) 
peptide product detection (4) confirmation of function. ORFik addresses the two first 
levels of this hierarchy.

Obtaining all possible ORFs based on sequence is accomplished through a scan of 
user-provided FASTA sequences to find candidate ORFs. The search is efficiently imple-
mented using the Knuth–Morris–Pratt [37] algorithm with binary search for in-frame 
start codons per stop codon (Additional file 1: Table S5). It supports circular prokaryotic 
genomes and fast direct mapping to genomic coordinates from transcript coordinates. 
The provided sequence data can be any user-provided files or biostrings objects but the 
most straightforward approach is to obtain these from ORFiks own data loading func-
tions. After identification, ORFs can be saved (e.g., in BED format with color codes) and 
loaded into a genome browser for visualization.

If based purely on the sequence, the number of ORFs in most genomes is vast [38]. 
When searching for uORFs or novel genes it can therefore be advantageous to move 
to the second step of the ORF hierarchy and also consider the ribosomal occupancy of 
the novel region. However, when analyzing small regions, like putative uORFs, simply 
observing the presence of reads will often have low predictive power. This stems from 
two issues: The first is a sampling problem, in that ribosomes over a short region might 
be transient and simply not get sampled and sequenced unless the occupancy is par-
ticularly high. The second is the aforementioned problem that not all reads originate 
from ribosomes. A weak ribo-seq signal alone is therefore not conclusive as evidence for 
translation [39].

To address this, several metrics or features have been produced that quantify how 
RNA fragments that originate from ribosome protection behave over verified protein-
coding regions. ORFik currently supports more than 30 of these metrics that have been 
previously described in the literature, by us and others (Additional  file 1: Table  S1). 
ORFik also provides a wrapper function computeFeatures that produces a complete 
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matrix of all supported metrics with one row per ORF or region. This resulting output 
matrix can be used to characterize specific ORFs or as input to machine learning classi-
fiers that can be used to predict novel functional ORFs. By using a set of verified ORFs 
(e.g., known protein-coding sequences) the user can construct a positive set and use the 
features learned from them to classify the set of new candidate ORFs. Alternatively, the 
matrix may be exported and provided as input to other tools.

Differential expression

ORFik supports various ways of estimating differential expression or preparing data 
for other tools. For visualization, it supports standard plots for studying fold changes 
of translation and RNA, and the relationship between expression and translational effi-
ciency (Fig. 3a). Since many tools require raw counts as input for analysis of expression 
[40–43], ORFik can provide count data tables through the countTable function. This can 
optionally collapse and merge replicates or normalize data to FPKM values. These count 
tables can be supplied to DESeq2, anota2seq, and other tools to perform differential 
expression analysis [40, 44]. Alternatively, an implementation of the deltaTE algorithm 
[45] is also included in ORFik, which can detect translational regulation between condi-
tions using a Wald test for statistical significance (Fig. 3b).

Results
To illustrate the functionality of ORFik we show two use cases, where we (1) study 
translation initiation with profiling of scanning SSUs, and (2) make a simple pipeline 
to predict and characterize translated uORFs.

Using ORFik to analyze translation initiation

When analyzing data that includes small subunit profiling the goal is often to under-
stand or characterize the regulation of translation initiation. ORFik was here applied to a 
TCP-seq data set from HeLa cells [8], and easily produces metaprofiles over transcripts, 
separated into scanning SSU and 80S elongating ribosomes (Fig. 4a). As expected, the 
SSU scanning complexes display the highest coverage in 5′UTRs, while elongating ribo-
somes are enriched over the CDSs. To obtain accurate measurements of scanning over 
5′UTRs, CAGE data was used to reannotate the TSSs. The effect on the coverage of SSU 
complexes around the TSS as a result of this reannotation can be viewed in Fig. 4b. These 
heatmaps have been transcript-normalized, meaning that all the reads mapping to one 
transcript have been normalized to sum to 1. This has the effect of weighing each tran-
script equally, but ORFik supports a range of other normalization methods that empha-
size different aspects of the data (Additional file 1: Fig. S11). The increased coverage and 
sharper delineation of the TSS that can be seen in these plots illustrate that CAGE-rean-
notation is important even in well-annotated transcriptomes like the human. Accurate 
TSS is also important when studying features at the start of the transcript such as the 
presence of a TOP motif [47]. TOP motifs are known to be involved in the regulation of 
specific genes and ORFik can correlate such features to other observations of the tran-
script. An example of such an analysis is associating motifs with the scanning efficiency 
(SE) — the number of scanning ribosomes on the 5′UTR relative to the RNA abundance 
[5]. In our latest study, we showed an association between ribosome recruitment and 



Page 10 of 16Tjeldnes et al. BMC Bioinformatics          (2021) 22:336 

TOP motifs during early zebrafish development [6]. ORFik easily produces a similar 
analysis for the HeLa cells revealing no such relationship in these cells.

Beyond recruitment, an important part of translation initiation is the recognition of 
the start codon. This is facilitated by the context surrounding it and ORFik provides sev-
eral ways of exploring these features. At the level of basic visualization, heatmaps similar 
to those for TSS can be produced to explore the conformations and periodicity around 
the start codon (Additional file 1: Fig. S10). Provided with small subunit profiling, the 
initiation rate (IR)—the number of 80S elongating ribosomes relative to SSU scanning 
[5] — can also be calculated. Together with the sequence, this allows for investigating 
which initiation sequences lead to the most productive elongation (Fig. 4d, e).

Fig. 3 Analysis of differential regulation. ORFik supports within-group (a) and between-group (b) plots 
for analyzing translational regulation. a TE vs mRNA levels using the average values across replicates. b 
Differential translation analysis between conditions. Non-significant genes are colored black while significant 
genes (p < 0.05) are grouped into 3 categories according to deltaTE classification [40]: Translational regulation 
— mRNA abundance is static while translation changes (orange), Buffering — mRNA and ribosome profiling 
regulated in opposite directions (purple), mRNA abundance regulation — significant change in mRNA 
abundance and a corresponding significant change in ribo-seq levels (green). Example data from two 
zebrafish developmental stages from Bazzini et al. 2014 (Additional file 1: Table S9), each with two replicates 
[46]
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Fig. 4 Analysis of translation initiation. a Meta coverage plot of RCP-seq data over 5′ UTRs, CDSs, and 3′ UTRs 
from all mRNA transcripts [8]. Regions are scaled to be the same size and coverage is displayed as the sum 
of reads for the translating (80S) and scanning ribosomes (SSU). b 5′ end coverage heatmaps of SSU reads 
(left column) and 80S (right column) from TCP-seq relative to transcription start site. Coverage is shown 
before (upper row) and after (lower row) reannotation of transcription start sites with CAGE data. c Analysis 
of initiation context showing the median initiation rate (IR) for translation initiation sites with a specific base 
(x-axis) at a specific position (y-axis). The strongest consensus is displayed with a black frame. d Analysis of 
ribosome recruitment showing the relationship between different TSS contexts and SSU scanning efficiency. 
Left: empirical cumulative distribution function (ecdf ) of scanning efficiency colored by the first nucleotide 
in the 5′UTR. Right: ecdf of scanning efficiency for 3 different motifs; a C nucleotide, the TOP motif (C, then 
4 pyrimidines), and all other TSS variants. e Initiation contexts ranked by IR. Top: mean IR for all CDSs with 
specified sequence (x-axis) relative to TIS (− 4 to − 1). Bottom: similarity score to human Kozak sequence as 
defined in [48, 49]
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Detecting translated upstream open reading frames

To illustrate an example of a search for novel translated regions, we applied ORFik to 
the problem of discovering differential uORF usage across three developmental stages 
of zebrafish embryogenesis: 12 h post-fertilization (hpf), 24 hpf, and 48 hpf [46]. Using 
public ribo-seq, RNA-seq [46], and CAGE [50] data we used ORFik to derive stage-spe-
cific 5′UTRs and searched these for all ATGs and near-cognate start codons. ORFik sup-
ports a number of features that have been shown to correlate with translation activity 
(Additional file 1: Table S1). We used ORFik to calculate all these metrics per stage for: 
(1) all uORF candidates, (2) all CDSs of known protein-coding genes, and (3) random 
regions from the 3′ UTRs. We used these to train a random forest model on each stage 
with the H2O R-package [51] using the CDSs as a positive set and the 3′UTR regions 
as the negative set (Additional file 1: Supplementary Note 1). This model was used to 

Fig. 5 Prediction of uORFs in three zebrafish developmental stages. a Left panel: Number of candidate 
uORFs identified from sequence per stage. The union group describes the union set of all three timepoints. 
uORFs are colored whether they are common to all stages (green), shared between multiple (blue), or unique 
to one stage (brown). Right panel: Number of uORFs predicted to be actively translated. Direct comparison 
of overlapping uORFs between stages can be seen in Additional file 1: Fig. S12. b Distribution of start codons 
for candidate uORFs (gray) and predicted translated uORFs (purple). c Metrics used as features in classification 
(x-axis) shown for uORFs predicted to be translated (purple), predicted not to be translated (green), and 
protein-coding CDSs (yellow). See Additional file 1: Table S1 for a description of features. Y-axis pseudo-log2 
score (abs(log2(score)) if score > 0.01, − log2(-score) if score < −0.01, and 0 if absolute value of score is < 0.01)
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predict translational activity over the uORF candidates resulting in 8191 unique trans-
lated uORFs across all 3 stages (12hpf: 4042, 24hpf: 2178, 48hpf: 2676). Of these, only 
133 are translated in all stages (Fig. 5a). Given the stringency of our training set which 
consists of long, translated proteins (positive), contrasted with short non-translated 
3′UTR regions (negative) this should be considered a very conservative prediction. More 
nuanced predictions could be achieved by tuning these sets to better represent the typi-
cally shorter, more weakly translated uORFs.

For the predicted translated uORFs a clear difference in the usage of start codons can 
be seen relative to all possible candidate uORFs by sequence (Fig.  5b). While purely 
sequence-predicted uORFs show a relatively uniform distribution in start codon usage, a 
clear bias towards ATG followed by CTG can be seen for the translated uORFs. Since the 
classifier favors uORFs that start with start codons known to be strong initiators, despite 
not using start codon sequence as a feature, suggest that it is able to identify uORFs that 
are actively translated. Since the classifier is trained on CDSs, the resulting uORFs also 
have features that resemble known protein-coding genes (Fig. 5c).

Summary
In summary, we have developed ORFik, a new API and toolkit for streamlining anal-
ysis of ORFs and translation. ORFik introduces hundreds of tested, documented, and 
optimized methods to analyze and visualize ribosome coverage over transcripts. It sup-
ports a range of data formats and can be used to create complete pipelines from read 
processing and mapping to publication-ready figures. We demonstrate its use on a tran-
scriptome-wide study of translation initiation and quick annotation of translated uORFs. 
Together, this empowers users to perform complex translation analysis with less time 
spent on coding, allowing the user to focus on biological questions.

Availability and requirements

• Project name: ORFik
• Project home page: http:// bioco nduct or. org/ packa ges/ ORFik
• Archived version: ORFik
• Operating system(s): Platform independent
• Programming language: R
• Other requirements: R version ≥ 3.6, Bioconductor version ≥ 3.10
• License: MIT+ file LICENSE
• Any restrictions to use by non-academics: none.
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Abbreviations
ORF: Open reading frame; CDS: Coding sequence (main ORF of mRNA); 5′ UTR : 5′ Untranslated region (also called 
transcript leader); 3′ UTR : 3′ Untranslated region (also called transcript trailer); uORF: Upstream open reading frame; NGS: 
Next-generation sequencing; RFP: Ribosome-protected footprint (also referred to as RPF); P-, E-, A-site: TRNA bind-
ing sites in the ribosome (peptidyl, exit and aminoacyl); P-shifting: Relative 5′ end shifting of Ribo-seq reads to their 
estimated P-site; HPF: Hours post-fertilization; TSS: Transcription start site; TIS: Translation initiation site; SSU: Small subunit 
(ribosomal); 80S: 80S elongating ribosome.
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