
ETH Tight Algorithms for Geometric Intersection
Graphs: Now in Polynomial Space
Fedor V. Fomin #

University of Bergen, Norway

Petr A. Golovach #

University of Bergen, Norway

Tanmay Inamdar #

University of Bergen, Norway

Saket Saurabh #

The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway

Abstract
De Berg et al. in [SICOMP 2020] gave an algorithmic framework for subexponential algorithms
on geometric graphs with tight (up to ETH) running times. This framework is based on dynamic
programming on graphs of weighted treewidth resulting in algorithms that use super-polynomial
space. We introduce the notion of weighted treedepth and use it to refine the framework of de Berg
et al. for obtaining polynomial space (with tight running times) on geometric graphs. As a result,
we prove that for any fixed dimension d ≥ 2 on intersection graphs of similarly-sized fat objects
many well-known graph problems including Independent Set, r-Dominating Set for constant r,
Cycle Cover, Hamiltonian Cycle, Hamiltonian Path, Steiner Tree, Connected Vertex
Cover, Feedback Vertex Set, and (Connected) Odd Cycle Transversal are solvable in
time 2O(n1−1/d) and within polynomial space.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Subexponential Algorithms, Geometric Intersection Graphs, Treedepth,
Treewidth

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2021.21

Related Version Full Version: https://arxiv.org/abs/2107.06715

Funding The research leading to these results has received funding from the Research Council of
Norway via the project “‘MULTIVAL” (grant no. 263317) and the European Research Council
(ERC) via grant LOPPRE, reference 819416.

1 Introduction

Most of the fundamental NP-complete problems on graphs like Independent Set, Feedback
Vertex Set, or Hamiltonian Cycle do not admit algorithms of running times 2o(n)

on general graphs unless the Exponential Time Hypothesis (ETH) fails. However, on
planar graphs, H-minor-free graphs, and several classes of geometric graphs, such problems
admit subexponential time algorithms. There are several general frameworks for obtaining
subexponential algorithms [4, 6, 8]. The majority of these frameworks utilize dynamic
programming algorithms over graphs of bounded treewidth. Consequently, the subexponential
algorithms derived within these frameworks use prohibitively large (exponential) space.

We consider another related graph parameter, namely, treedepth. Given a graph G =
(V, E), a pair (F, φ) is a treedepth decomposition of G, if F is a rooted forest, and φ :
V (F) → V (G) is a mapping such that the neighbors in G are mapped to vertices in F that

© Fedor V. Fomin, Petr A. Golovach, Tanmay Inamdar, and Saket Saurabh;
licensed under Creative Commons License CC-BY 4.0

41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2021).
Editors: Mikołaj Bojańczyk and Chandra Chekuri; Article No. 21; pp. 21:1–21:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Fedor.Fomin@uib.no
mailto:Petr.Golovach@uib.no
mailto:Tanmay.Inamdar@uib.no
mailto:saket@imsc.res.in
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.21
https://arxiv.org/abs/2107.06715
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

have an ancestor-descendant relationship. Then, the treedepth of G is the minimum height
of the forest over all treedepth decompositions. Alternatively, the treedepth of G can be
thought of as the elimination distance to the family of edgeless graphs (see the book of
Nesetril and de Mendez [17] for more details). Recently, algorithms on graphs of bounded
treedepth attracted significant attention [9, 10, 15]. The advantage of these algorithms over
dynamic programming used for treewidth is that they use polynomial space. Our work is
motivated by the following natural question

Could the treedepth find applications in the design of (polynomial space) subexpo-
nential algorithms?

The problem is that the treedepth of a graph could be significantly larger than its
treewidth. For example, the treewidth of an n-vertex path is one, while the treedepth is
of order log n. It creates problems in using treedepth in frameworks like bidimensionality
that strongly exploit the existence of large grid minors in graphs of large treewidth. Despite
that, we show the usefulness of treedepth for obtaining polynomial space subexponential
algorithms on intersection graphs of some geometrical objects.

In [4], de Berg et al. developed a generic framework facilitating the construction of
subexponential algorithms on large classes of geometric graphs. By applying their framework
on intersection graphs of similarly-sized fat objects in dimension d ≥ 2, de Berg et al. obtained
algorithms with running time 2O(n1−1/d) for many well-known graph problems, including
Independent Set, r-Dominating Set for constant r, Hamiltonian Cycle, Hamiltonian
Path, Feedback Vertex Set, Connected Dominating Set, and Steiner Tree.

The primary tool introduced by de Berg et al. is the weighted treewidth. They show that
solving many optimization problems on intersection graph of n similarly-sized fat objects can
be reduced to solving these problems on graphs of weighted treewidth of order O(n1−1/d).
Combined with single-exponential algorithms on graphs of bounded weighted treewidth, this
yields subexponential algorithms for several problems.

The running times 2O(n1−1/d) are tight – de Berg et al. accompanied their algorithmic
upper bounds with matching conditional complexity (under ETH) bounds. However, as most
of the treewidth-based algorithms, the algorithms of Berg et al. are dynamic programming
over tree decompositions. As a result, they require super-polynomial space. Thus a concrete
question here is whether running times 2O(n1−1/d) could be achieved using polynomial space.

We answer this question affirmatively by developing polynomial space algorithms that in
time 2O(n1−1/d) solve all problems on intersection graphs of similarly-sized fat objects from
the paper of de Berg et al. except for Connected Dominating Set. The primary tool in
our work is the weighted treedepth. To the best of our knowledge, this notion is new.

The Cut&Count technique was introduced by Cygan et al. [3], who gave the first single-
exponential (randomized) algorithms parameterized by the treewidth for many problems using
this technique. We note that at the heart of these algorithms is a dynamic programming
over the tree decomposition, and thus require exponential space. However, unweighted
treedepth was recently used by several authors in the design of parameterized algorithms
using polynomial space [9, 10, 15]. Some of these works adapt the Cut&Count technique for
the treedepth decomposition.

Our main insight is that in the framework of de Berg et al. [4] for most of the problems the
weighted treedepth can replace the weighted treewidth. Pipelined with branching algorithms
over graphs of small weighted treedepth, this new insight brings us to many tight (up to
ETH) polynomial space algorithms on geometric graphs.

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:3

Our results. To explain our strategy of “replacing” the weighted treewidth with the weighted
treedepth, we need to provide an overview of the framework of de Berg et al. [4]. It has
two main ingredients. First, for an intersection graph of n similarly-sized fat objects (we
postpone technical definitions to the next section), we construct an auxiliary weighted graph
GP . (Roughly speaking, to create GP , we contract some cliques of G and assign weights to
the new vertices.) Then the combinatorial theorem of de Berg et al. states that the weighted
treewidth of GP is O(n1−1/d). Second, to solve problems on G in time 2O(n1−1/d), one uses
a tree decomposition of GP . This part is problem-dependent and, for some problems, could
be pretty non-trivial.

To plug in the treedepth into this framework, we first prove that the weighted treedepth
of GP is O(n1−1/d). Moreover, we give an algorithm computing a treedepth decomposition in
time 2O(n1−1/d) and polynomial space. For Independent Set, a simple branching algorithm
over the treedepth decomposition can solve the problem in time 2O(n1−1/d) and polynomial
space. We also get a similar time and space bounds for Dominating Set, and more generally,
r-Dominating Set for constant r; however, we need to use a slightly different kind of
recursive algorithm.

Next, we consider connectivity problems like Steiner Tree, Connected Vertex
Cover, Feedback Vertex Set, and (Connected) Odd Cycle Transversal. For
these problems, we are able to adapt the single exponential FPT algorithms parameterized by
(unweighted) treedepth given by Hegerfeld and Kratsch [10], into the framework of weighted
treedepth decomposition. Thus, we get 2O(n1−1/d) time, polynomial space algorithms for
these problems.

Finally, we consider Cycle Cover, which is a generalization of Hamiltonian Cycle.
Here, we are able to “compress” the given graph into a new graph, such that the (unweighted)
treedepth of the new graph is O(n1−1/d). We can also compute the corresponding treedepth
decomposition in 2O(n1−1/d) time, and polynomial space. Then, we can use a result by
Nederlof et al. [15] as a black box, which is a Cut&Count based a single exponential FPT
algorithms parameterized by treedepth, that uses polynomial space. Thus, we get 2O(n1−1/d)

time, polynomial space algorithms for Cycle Cover, Hamiltonian Cycle, and also for
Hamiltonian Path.

We note that the results in the previous two paragraphs are based on the Cut&Count
technique, and are randomized. We also note that all of our algorithms, except for Cycle
Cover and related problems can work even without the geometric representation of the
similarly-sized fat objects. For Cycle Cover and related problems, however, we require
the geometric representation. This is in line with similar requirements for these problems
from [4].

Organization. In Section 2, we define some of the basic concepts including the weighted
treedepth, and then prove our main result about the same. At the end of the section, we
give a warm-up example of an algorithm for Independent Set using this framework. Then,
in Section 3 we describe the Cut&Count algorithm, and its application for Steiner Tree
using the notion of weighted treedepth. Finally, we give a rough sketch of our approach for
Cycle Cover in Section 4. The algorithms for the remaining problems are omitted from
the main version due to page limit, but they can be found in the full version of the paper.

FSTTCS 2021

21:4 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

2 Geometric Graphs and Weighted Treedepth

In this section we define the weighted treedepth, prove a combinatorial bound on the treedepth
of certain geometric graphs and provide a generic algorithm and provide an abstract theorem
modeling at a high level our subexponential time and polynomial space algorithms. But first,
we need some definitions.

Graphs. We consider only undirected simple graphs and use the standard graph theoretic
terminology; we refer to the book of Diestel [7] for basic notions. We write |G| to denote
|V (G)|, and throughout the paper we use n for the number of vertices if it does not create
confusion. For a set of vertices S ⊆ V (G), we denote by G[S] the subgraph of G induced by
the vertices from S and write G−S to denote the graph obtained by deleting the vertices of S.
For a vertex v, NG(v) denotes the open neighborhood of v, that is, the set of vertices adjacent
to v, and NG[v] = {v} ∪ NG(v) is the closed neighborhood. For a vertex v, dG(v) = |NG(v)|
denotes the degree of v. We may omit subscripts if it does not create confusion. For two
distinct vertices u and v of a graph G, a set S ⊆ V (G) is a (u, v)-separator if G − S has no
(u, v)-path and S is a separator if S is a (u, v)-separator for some vertices u and v. A pair of
vertex subsets (A, B) is called a separation if A ∪ B = V (G), and there are no edges between
A \ B and B \ A, that is, S = A ∩ B is a (u, v)-separator for u ∈ A \ B and v ∈ B \ A. We
say that a subset S ⊆ V (G) is an α-balanced separator for a constant α ∈ (0, 1) if there
exists a separation (A, B) such that A ∩ B = S, and max {|A|, |B|} ≤ αn.

κ-partition Let P = {V1, V2, . . . , Vt} be a partition of V (G) for some t ≥ 1, such that any
Vi ∈ P satisfies the following properties: (1) G[Vi] is connected, and (2) Vi is a union of
at most κ cliques in G (not necessarily disjoint). Then, we say that P is a κ-partition of
G. Furthermore, given a κ-partition P = {V1, V2, . . . , Vt} of G, we define the graph GP , the
graph induced by P, as the undirected graph obtained by contracting each Vi to a vertex,
and removing self-loops and multiple edges.

Treedepth and Weighted Treedepth. We introduce weighted treedepth of a graph as a
generalization of the well-known notion of treedepth (see e.g. the book of Nesetril and de
Mendez [17]). There are different ways to define treedepth but it is convenient for us to deal
with the definition via treedepth decompositions or elimination forests. We say that a forest
F supplied with one selected node (it is convenient for us to use the term “node” instead of
“vertex” in such a forest) in each connected component, called a root, a rooted forest. The
choice of roots defines the natural parent–child relation on the nodes of a rooted forest. Let
G be a graph and let ω : V (G) → R be a weight function. A treedepth decomposition of G is
a pair (F, φ), where F is a rooted forest and φ : V (F) → V (G) is a bijective mapping such
that for every edge uv ∈ E(G), either φ−1(u) is an ancestor of φ−1(v) in F or φ−1(v) is
an ancestor of φ−1(u). Then the depth of the decomposition is the depth of F , that is, the
maximum number of nodes in a path from a root to a leaf. The treedepth of G, denoted
td(G), is the minimum depth of a treedepth decomposition of G. We define the weighted
depth of a treedepth decomposition as the maximum

∑
v∈V (P) ω(φ(v)) taken over all paths

P between roots and leaves. Respectively, the weighted treedepth wtd(G) is the minimum
weighted depth of a treedepth decomposition. For our applications, we assume without loss
of generality that G is connected, which implies that the forest F in a (weighted) treedepth
decomposition is actually a tree.

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:5

Weighted Treewidth. We assume basic familiarity with the notion of treewidth and tree
decomposition of a graph – see a textbook such as [2], for example. Similar to the previous
paragraph, de Berg et al. [4] define the weighted treewidth of a graph. Given an undirected
graph G = (V, E) with weights ω : V (G) → R, the weighted width of a tree decomposition
(T, β), is defined to be the maximum over bags, the sum of the weights of vertices in the
bag. The weighted treewidth of a graph is the minimum weighted width over all tree
decompositions of the graph.

It is useful to observe that we consider treedepth and tree decompositions of the graphs
GP constructed for graphs G with given κ-partition P = {V1, V2, . . . , Vt}. Then the treedeph
decomposition of GP can be seen as a pair (F, φ), where F is a rooted forest and φ is a bijective
mapping of V (F) to P. Similarly, in a tree decomposition (T, β) of GP , corresponding to
every node t ∈ V (T), the bag β(t) is a subset of P . Finally, we observe that the results of [4]
regarding weighted treewidth – thus our results for weighted treedepth – hold for any weight
functions ω : P → R+, provided that ω(ℓ) = O(ℓ1−1/d−ϵ), for any ϵ > 0. However, as in [4],
we will fix the weight function to be ω(ℓ) := log(1 + ℓ) throughout the rest of the paper. For
the simplicity of notation, we use the shorthand ω(ui) := ω(|Vi|), where φ(ui) = Vi, and for
any ui ∈ V (F), and ω(S) :=

∑
ui∈S ω(ui) for any subset S ⊆ V (F).

Geometric Definitions. Given a set F of objects in Rd, we define the corresponding
intersection graph G[F] = (V, E), where there is a bijection between an object in F and
V (G), and uv ∈ E(G) iff the corresponding objects in F have a non-empty intersection. It is
sometimes convenient to erase the distinction between F with V (G), and to say that each
vertex is a geometric object from F .

We consider the geometric intersection graphs of fat objects. A geometric object g ⊂ Rd

is said to be α-fat for some α ≥ 1, if there exist balls Bin, Bout such that Bin ⊆ g ⊆ Bout,
such that the ratio of the radius of Bout to that of Bin is at most α. We say that a set F

of objects is fat if there exists a constant α ≥ 1 such that every geometric object in F is
α-fat. Furthermore, we say that F is a set of similarly-sized fat objects, if the ratio of the
largest diameter of an object in F , to the smallest diameter of an object in F is at most a
fixed constant. Finally, observe that if F is a set of similarly-sized fat objects, then the ratio
of the largest out-radius to the smallest in-radius of an object is also upper bounded by a
constant. de Berg et al. [4] prove the following two results regarding the intersection graphs
of similarly sized fat objects.

▶ Lemma 1 ([4]). Fix dimension d ≥ 2. There exist constants κ and ∆, such that for any
intersection graph G = (V, E) of an (unknown) set of n similarly-sized fat objects in Rd, a
κ-partition P for which GP has maximum degree ∆ can be computed in time polynomial
in n.

In the following, we will use the tuple (G, d, P, GP) to indicate that G = (V, E) is the
intersection graph of n similarly-sized fat objects in Rd, P is a κ-partition of G such that
GP has maximum degree ∆, where κ, ∆ are constants, as guaranteed by Lemma 1.

▶ Lemma 2 ([4]). For any (G, d, P, GP), the weighted treewidth of GP is O(n1−1/d).

Now we are ready to prove the following result about the intersection graphs of similarly
sized fat objects. This result is at the heart of the subexponential algorithms designed in the
following sections.

▶ Theorem 3. There is a polynomial space algorithm that for a given (G, d, P, GP), computes
in time 2O(n1−1/d) a weighted treedepth decomposition (F, φ) of GP of weighted treedepth
O(n1−1/d).

FSTTCS 2021

21:6 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

Proof. We use the approximation algorithm from [18] to compute a weighted tree decom-
position (T, β) of GP (see the later part of the proof for a detailed explanation). Using the
standard properties of the tree decomposition (e.g., see [2]), there exists a node t ∈ V (T), such
that VB :=

⋃
Vi∈β(t) Vi is an α-balanced separator for G, for some α ≤ 2/3. Let B := β(t).

Note that B ⊆ P.
Now we construct a part of the forest F , and the associated bijection φ in the weighted

treedepth decomposition (F, φ) of GP . We create a path π = (u1, u2, . . . , u|B|), and arbitrarily
assign φ(ui) to some Vi ∈ B such that it is a bijection. We set u1, the first vertex on π, to
be the root of a tree in F . We also set the weight ω(ui) = log(1 + |Vi|), where φ(ui) = Vi.
Note that the ω(π) = ω(B) = O(n1−1/d).

Let (Y1, Y2) be the separation of G, corresponding to the separator
⋃

Vi∈β(t) Vi. Analog-
ously, let (P ′

1, P ′
2) denote the separation of GP , corresponding to the separator B. Further-

more, let Xi := Yi \ VB, and Pi := P ′
i \ B for i = 1, 2. Note that X1 \ VB , X2 ⊆ V (G) are

disjoint, max{|X1|, |X2|} ≤ αn, and there is no edge from a vertex in X1, to a vertex in X2.
Furthermore, P1 is a κ-partition of G[X1], and P2 is a κ-partition of G[X2].

Now, we recursively construct weighted treedepth decomposition (F1, φ1) of GP [P1]. Note
that φ1 is a bijection between V (F1) and P1 ⊆ P . Let R1 denote the set of roots of the trees
in forest F1. We add an edge from the last vertex u|B| on the path π, to each root in R1. In
other words, we attach every tree in F1 as a subtree below u|B|. The bijection φ is extended
to P1 using φ1. Now we consider a weighted treedepth decomposition (F2, φ2) of GP [P2],
and use it to extend (F, φ) in a similar manner. This completes the construction of (F, φ).

Let us first analyze the weighted treedepth of (F, φ). Let us use q := 1 − 1/d for simplicity.
For a path π in F , let ω(π) denote the sum of weights of vertices along the path π. Recall
that the weight of any root-leaf path π in F is at most O(nq). More generally, let c′ ≥ 0
be a universal constant (independent of the path π, or its level in F) such that the weight
of a path corresponding to a separator computed at level j, is at most c′ · (αj−1n)q. Since
max{|X1|, |X2|} ≤ αn, we inductively assume that the weighted treedepth of (F1, φ1), and
that of (F2, φ2) is at most O(αq · nq). More specifically, we assume that there exists a
universal constant c ≥ c′, such that the sum of the weights along any root-leaf path in F1 is
upper bounded by c · (αn)q

1−αq . The same inductive assumption holds for any root-leaf path in
F2. Therefore, the weight of any root-leaf path in F is upper bounded by

ω(π) + c · αqnq

1 − αq
≤ cnq

(
1 + αq

1 − αq

)
= cnq

1 − αq
.

Therefore, we have the desired bound on the weighted treedepth by induction.
Now we look the treewidth construction part of the algorithm in order to sketch the

claims about bounds on time and space. Given the graph GP , we construct a graph H by
replacing every vertex Vi with a (new) clique Ci of size log(1+ |Vi|). If ViVj ∈ E(GP), we also
add edges from every vertex in Ci to every vertex in Cj . As shown in [4], the weighted width
of GP is equal to the treewidth of H, plus 1. Note that |V (H)| =

∑
Vi∈P log(1 + |Vi|) ≤ n,

since P is a partition of V (G).
The algorithm from [18] (see also Section 7.6.2 in the Parameterized Algorithms book [2])

for approximating treewidth of a graph H works as follows. Suppose the treewidth of a graph
is k, which is known. At the heart of this algorithm is a procedure decompose(W, S), where
S ⊊ W ⊆ V (H), and |S| ≤ 3k + 4. This procedure tries to decompose the subgraph H[W] in
such a way that S is completely contained in one bag of the tree decomposition. The first step
is to compute a partition (SA, SB) of S, such that the size of the separator separating SA and
SB in H[W] is at most k +1. This is done by exhaustively guessing all partitions, which takes
2O(k) time. For each such guess of (SA, SB), we run a polynomial time algorithm to check

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:7

whether the bound on the separator size holds. Once such a partition is found, a set Ŝ ⊋ S

is found by augmenting S in a particular way. Finally, we recursively run the procedure
decompose(NH [D], NH(D)), for each connected component D in H[W \ Ŝ]. Finally, the tree
decomposition of H[W] is computed by augmenting the tree decompositions computed by
the recursive procedure for its children, with the root bag containing Ŝ. It is shown that this
algorithm computes a tree decomposition of width O(tw) in time 2O(tw) · nO(1). Furthermore,
it can also be observed that it only uses polynomial space.

Therefore, computing a tree decomposition of GP of weighted treewidth O(n1−1/d) takes
2O(n1−1/d) time and polynomial space, corresponding to the original graph G with n vertices.
The treewidth computation algorithm is called at most n times, and there is additional
polynomial processing at every step. This implies the time and space bounds as claimed. ◀

We note that de Berg et al. [4] show the existence of a balanced separator of weight
O(n1−1/d), which is then used to show the same bound on weighted treewidth (Theorem
2). This separator can be computed in O(nd+2) time if we are also given the geometric
representation of the underlying objects in Rd. However, without geometric representation it
is not clear whether this separator can be directly computed. Therefore, we first compute an
approximate weighted treewidth decomposition, and then retrieve the separator bag in the
proof of Theorem 3. We state the following abstract theorem that models at a high level
our subexponential algorithms that use polynomial space. The proof of this theorem follows
from Theorem 3, and can be found the full version.

▶ Theorem 4. Let A be an algorithm for solving a problem on graph G, that takes in-
put (G, d, P, GP), and a weighted treedepth decomposition (F, φ) of GP of weighted depth
O(n1−1/d) (and optionally additional inputs of polynomial size). Suppose A is a recursive
algorithm, that at every node u ∈ V (F), spends time proportional to 2O(ω(u)) · nO(1), uses
polynomial space, and makes at most 2O(ω(u)) recursive calls on the children of u. Then, the
algorithm A runs in time 2O(n1−1/d), and uses polynomial space.

Independent Set. As a warm-up example for using the weighted treedepth decomposition,
we describe an application for Independent Set. Given (G, d, P, GP), we first observe
that every Vi ∈ P is a union of at most κ cliques, which implies that the intersection of an
independent set with any Vi is bounded by κ. A recursive algorithm for Independent Set
works with the weighted treedepth decomposition (F, φ) computed via Theorem 3. When the
algorithm is at a node ui ∈ V (F), we make a recursive call to the children of ui, corresponding
to each independent subset Ui ⊆ φ(ui) = Vi of size at most κ, that is independent. We
recursively compute a Maximum Independent Set in the subgraph of G, corresponding to
the subtree rooted at each children of ui, with the vertices in N(Ui) removed. We return the
maximum independent set found over all choices of the subset Ui. Finally, we observe that the
number of subsets of Vi of size at most κ is at most (1 + |Vi|)κ = 2O(log(1+|Vi|)) = 2O(ω(ui)),
where we use the fact that κ = O(1). A more formal description of the algorithm can be
found in the full version.

▶ Theorem 5. There exists a 2O(n1−1/d) time, polynomial space algorithm to compute a
maximum (weight) independent set in the intersection graphs of similarly sized fat objects
in Rd.

r-Dominating Set. For a fixed r ≥ 1, r-Dominating Set asks for a minimum-size vertex
subset D ⊆ V (G), such that for every v ∈ V (G), there exists some u ∈ D such that
distG(u, v) ≤ r, where distG(u, v) is the number of edges on the shortest path in G between

FSTTCS 2021

21:8 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

Algorithm Space Similarly-sized Convex Robust
Corollary 2.4 in [4] Poly Yes Yes No
Theorem 2.13 in [4] 2O(n1−1/d) Yes No Yes

Theorem 5 (this paper) Poly Yes No Yes

Figure 1 Comparison of three 2O(n1−1/d)-time algorithms for Independent Set on the intersec-
tion graphs of fat objects. “Robust” in the last column means that the algorithm does not require
the geometric representation of the objects. In terms of technique, our algorithm (third row) is
closely related to the one in the first row, albeit we use the framework of weighted treedepth.

u and v. Following [4], there are the two important ingredients in our algorithm for r-
Dominating Set. First, de Berg et al. [4] show that it can be assumed that |Vi ∩ D| ≤
κ2(1 + ∆) for any Vi ∈ P . However, this property alone is not sufficient to obtain a recursive
algorithm that runs in subexponential time and polynomial space.

Consider a similar recursive algorithm that is processing a vertex Vi ∈ P using a weighted
treedepth decomposition (F, φ) of GP . There are three possibilities for a vertex u ∈ Vi – (i)
it is in the dominating set, (ii) it is already being dominated by a vertex that was added to
the dominating set at an earlier stage of recursion, or (iii) it will be dominated by a vertex
v ∈ Vj with distG(u, v) ≤ r, where Vj belongs to the subtree of F rooted at Vi. To handle
case (iii), we need to enumerate partial solutions from all Vj ’s such that distGP (Vi, Vj) ≤ r.
However, the weighted treedepth bound given in Theorem 3 is not sufficient, and we need a
strengthened version of the theorem. Such a result appears in [4], and we reprove it in the
full version for completeness. Loosely speaking, this result bounds the total weight of all the
bags that appear within the r-neighborhood of the α-balanced separator obtained via the
weighted treewidth decomposition. Armed with this result, the recursive algorithm “guesses”
the set of vertices from the balanced separator bag, and for each vertex u type (iii), it also
guesses a vertex v from the subtree that dominates u. The stronger theorem implies that
the number of recursive calls made from the i-th level of recursion can still be bounded by
2O((αi−1n)1−1/d). A formal description and analysis of this algorithm can be found in the full
version of the paper. We summarize our result in the following theorem.

▶ Theorem 6. For any fixed r ≥ 1, there exists a 2O(n1−1/d) time, polynomial space algorithm
to compute a minimum r-dominating set in the intersection graphs of similarly sized fat
objects in Rd.

3 Cut&Count Algorithms

Hegerfeld and Kratsch [10] adapt the Cut&Count technique to give FPT algorithms for
various connectivity based subset problems, parameterized by (unweighted) treedepth. In
particular, these algorithms are randomized, have running times of the form 2O(td) ·nO(1), and
use polynomial space. In their work, they consider Connected Vertex Cover, Feedback
Vertex Set, Connected Dominating Set, Steiner Tree, and Connected Odd
Cycle Transversal problems. We are able to adapt their technique for all of these
problems, except for Connected Dominating Set. For the rest of the problems, we will
extend their ideas to the more general case of weighted treedepth, and use it to give 2O(n1−1/d)

time, polynomial space, randomized algorithms. In the following, we select Steiner Tree
as a representative problem, which is explained in detail. For the remaining problems, we
give only a brief sketch highlighting the differences from the Steiner Tree algorithm, and
defer the formal details to the full version.

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:9

3.1 Setup
We adopt the following notation from Hegerfeld and Kratsch [10]. Let cc(G) denote the
number of connected components in G. A cut of X ⊆ V (G) is a pair (XL, XR), where
XL ∩ XR = ∅, XL ∪ XR = X. We refer to XL, XR as the left and the right side of the
cut (XL, XR) respectively. A cut (XL, XR) of G[X] is consistent, if for any u ∈ XL and
v ∈ XR, uv ̸∈ E(G[X]). A consistently cut subgraph of G is a pair (X, (XL, XR)), such that
X ⊆ V (G), and (XL, XR) is a consistent cut of G[X]. Finally, for X ⊆ V (G), we denote the
set of consistently cut subgraphs of G[X] by C(X).

For n ∈ N, let [n] denote the set of integers from 1 to n. For integers a, b, we write a ≡ b

to indicate equality modulo 2. We use Iverson’s bracket notation: for a boolean predicate p,
[p] is equal to 1 if p is true, otherwise [p] is equal to 0.

Consider a function f : A → S. For every s ∈ S and a set X, we define the set
X(f, s) := X ∩ f−1(s) – note that X(f, s) may be empty for some or all s ∈ S. Furthermore,
observe that the sets {A(f, s)}s∈S define a partition of A. For two functions g : A → S,
f : B → S, we define the new function g ⊕ f : (A ∪ B) → S as follows. (g ⊕ f)(e) = f(e) for
e ∈ B, and (g ⊕ f)(e) = g(e) for e ∈ (A \ B). That is, (g ⊕ f) behaves like g and f on the
exclusive domains, but in case of a conflict, the function f takes the priority.

Recall that we work with (G, d, P, GP), and the corresponding weighted treedepth
decomposition (F, φ) of G. Here, φ is a bijection between V (F) and P. For a node ui, we
will use Vi := φ(ui), i.e., we use the same indices in the subscript to identify a node of F and
the corresponding part in P . We denote the set of children of ui by child(ui). Additionally,

tail[ui] =
⋃

uj is an ancestsor of ui

Vj ; tail(ui) = tail[ui] \ Vi

tree[ui] =
⋃

uj is a descendant of ui

Vj ; tree(ui) = tree[ui] \ Vi

broom[ui] = tail[ui] ∪ tree(ui)

Isolation Lemma

▶ Definition 7. Let U be a finite set, and F ⊆ 2U be a family of subsets of U . We say that
a weight function w : U → Z isolates the family F if there exists a unique set S′ ∈ F such
that w(S′) = minS∈F w(S), where w(X) :=

∑
x∈X w(x) for any subset X ⊆ U .

The following isolation lemma due to Mulmuley et al. [14] is at the heart of all Cut&Count
algorithms.

▶ Lemma 8 ([14]). Let F ⊆ 2U be a non-empty family of subsets of a finite ground set U .
Let N ∈ N, and suppose w(u) is chosen uniformly and independently at random from [N]
for every u ∈ U . Then, Pr(w isolates F) ≥ 1 − |U |/N .

General Idea

Fix a problem involving connectivity constraints. Let U be the ground set that is related to
the graph G, such that S ⊆ 2U , where S denotes the set of solutions to the problem. At a
high level, a Cut&Count based algorithm contains the following two parts.

The Cut part: We obtain a set R by relaxing the connectivity requirements on the
solutions, such that S ⊆ R ⊆ 2U . The set Q will contain pairs (X, C), where X ∈ R is a
candidate solution, and C is a consistent cut of X. Note that since X ∈ R, X may be
possibly disconnected.

FSTTCS 2021

21:10 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

The Count part: We compute |Q| mod 2 using an algorithm. The consistent cuts
are defined carefully, in order that the non-connected solutions from R \ S cancel while
counting modulo 2, since they are consistent with an even number of cuts.

Note that if |S| is even, then the procedure counting |Q| mod 2 will return 0, which will be
inconclusive. Therefore, we initially sample a random weight function w : U → [N] for some
large integer N ≥ 2|U |, and count |Qw| mod 2 (where Qw is the subset of Q such that the
corresponding X has weight exactly w), for all values of w ∈ [2|U |2]. Using Lemma 8, it can
be argued that with at least probability 1/2, if S ≠ ∅, then for some weight w ∈ [2|U |2], the
procedure counting |Qw| mod 2 outputs 1. Finally, we guess an arbitrary vertex v1 ∈ V (G)
in the solution, and force it to be on the left side of the consistent cuts. That is, we count
the number of consistent cuts in which v1 is forced to belong to the left side. This breaks
the left-right symmetry. We first have the following two results from [10, 3].

▶ Lemma 9 ([10, 3]). Let X ⊆ V (G) such that v1 ∈ X. The number of consistently cut
subgraphs (X, (XL, XR)) such that v1 ∈ XL is equal to 2cc(G[X])−1.

▶ Corollary 10 ([10, 3]). Let S ⊆ 2U , and Q ⊆ 2U×(V ×V), such that for every w : U → [2|U |],
and a target weight w ∈ [2|U |2], the following two properties hold.
1. | {(X, C) ∈ Q : w(X) = w} | = | {X ∈ S : w(X) = w} |, and
2. There is an algorithm CountC(w, w, (G, d, P, GP), (F, φ)), where (F, φ) is a weighted

treedepth decomposition of (G, d, P, GP), such that: CountC(w, w, (G, d, P, GP), (F, φ)) ≡
|{(X, C ∈ Q : w(X) = w)}|.

Then, Algorithm 1 returns false if S = ∅, and returns true with probability at least 1
2

otherwise.

Proof. Plugging in F = S and N = 2|U | in Lemma 8, we know that if S ≠ ∅, then with
probability at least 1/2, there exists a weight w ∈ [2|U |2] such that | {X ∈ S : w(X) = w} | =
1. Then, Algorithm 1 returns true with probability at least 1/2.

On the other hand, if S = ∅, then by the first property, and the definition of CountC, for
any choice of w and w, the procedure CountC returns false. Therefore, Algorithm 1 returns
false. ◀

Algorithm 1 Cut&Count(U, (G, d, P, GP), (F, φ), CountC).

Input: A set U , (G, d, P, GP), associated weighted treedepth decomposition (F, φ), a
procedure CountC that takes w : U → [N], w ∈ N

1: Choose w(u) independently and uniformly at random from [2|U |] for each u ∈ U

2: for w = 1, 2, . . . , 2|U |2 do
3: if CountC((G, d, P, GP), (F, φ), w, w) ≡ 1 return true
4: end for
5: return false

3.2 Steiner Tree
▶ Definition 11 (Steiner Tree).
Input: An undirected graph G = (V, E), a set of terminals K ⊆ V (G), and an integer k.
Question: Is there a subset X ⊆ V (G), with |X| ≤ k, such that G[X] is connected, and
K ⊆ X?

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:11

Fix (G, d, P, GP) via Lemma 1. Recall that P is a κ-partition of G, such that the
corresponding graph GP has maximum degree ∆ = O(1). We first have the following lemma.

▶ Lemma 12 ([4]). Suppose X is a minimal solution for Steiner Tree (i.e., no proper
subset of X is also a solution) for a given (G, d, P, GP), and a set of terminals K. Then
|X ∩ (Vi \ K)| ≤ κ2(∆ + 1) for any Vi ∈ P.

Let k′ = |K| + κ2(∆ + 1) · |P|. Note that using Lemma 12, we may assume that k ≤ k′ –
if k ≥ k′, then (G, k) is a “yes-instance” iff (G, k′) is a “yes-instance”. For any X ⊆ V (G),
we say that X is P-restricted if for any Vi ∈ P, |X ∩ (Vi \ K)| ≤ κ2(∆ + 1). Note that this
definition of a P-restricted set (and later, that of a P-restricted function) is specific to the
Steiner Tree problem. For different problems, we need to define this notion differently,
albeit the main idea is to use a problem-specific version of Lemma 12.

We will run the following algorithm for all values of k ≤ k′. Let t1 ∈ K be an arbitrary
terminal that we will fix to be on the left side of consistent cuts, as discussed previously.
Now we give the formal definitions of the sets R, S, Q that were abstractly defined in the
setup. We also define weight-restricted versions Rw, Sw, Qw of these sets, where w ∈ N.

R = {X ⊆ V (G) : X is P-restricted, K ⊆ X, |X| = k} ; Rw = {X ∈ R : w(X) = w}
S = {X ∈ R : G[X] is connected} ; Sw = {X ∈ S : w(X) = w}
Q = {(X, (XL, XR)) ∈ C(V) : X ∈ R and t1 ∈ XL} ; Qw = {(X, (XL, XR)) ∈ Q : w(X) = w}

▶ Lemma 13. Let w : V (G) → [N] be a weight function. Then, for every w ∈ N, |Sw| ≡ |Qw|.

Proof. From Lemma 9, |Qw| =
∑

X∈Rw
2cc(G[X])−1.

Thus, |Qw| ≡ | {X ∈ Rw : cc(G[X]) = 1} | = |Sw|. Recall that ≡ is equality modulo 2. ◀

The goal of the rest of this subsection is to explain how the procedure CountC works.
First, we drop the cardinality constraints and define the following candidates and candidate

cut-pairs for induced subgraphs G[V ′], where V ′ ⊆ V (G).

R̂(V ′) = {X ⊆ V ′ : X is P-restricted, and K ∩ V ′ ⊆ X}

Q̂(V ′) = {(X, (XL, XR)) ∈ C(V ′) : X ∈ R(V ′) and t1 ∈ V ′=⇒ t1 ∈ XL}

Recall that each node ui ∈ V (F) is bijectively mapped to a Vi ∈ P. The algorithm will
assign a value to every vertex v ∈ Vi from the set states := {1L, 1R, 0}, with the condition
that if v ∈ K ∩ Vi, then it cannot be assigned 0. The interpretation of the states 1L and 1R

for a vertex v ∈ Vi is that v is part of a candidate Steiner Tree solution, and is part of the
left and the right side of the consistent cut, respectively. On the other hand, the vertices
that are not part of a candidate Steiner Tree solution have the state 0. Next, we define an
important notion of P-restricted functions, which will be crucial for pruning the number of
recursive calls.

▶ Definition 14. Let f : X → states be a function, where X ⊆ V (G). We say that f is
P-restricted, if the following properties hold:

f−1({1L, 1R}) is P-restricted, and
(X ∩ K) ⊆ f−1({1L, 1R}), and if t1 ∈ X, then f(t1) = 1L.

The algorithm will be recursive, and it will compute a multivariate polynomial in the
variables ZW and ZX , where the coefficient of the term Zw

W Zi
X is equal to the cardinality of

Q̂i
w(V ′) :=

{
(X, C) ∈ Q̂(V ′) : w(X) = w, |X| = i

}
, modulo 2. That is, the formal variables

FSTTCS 2021

21:12 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

will keep track of the weight and the size of the solutions. The polynomial is computed
by using a recursive algorithm that uses the weighted treedepth decomposition to guide
recursion. The algorithm starts at the root r and proceeds towards the leaves.

Consider a node ui ∈ V (F), and a P-restricted function f : tail[ui] → states, we define
the set of partial solutions at ui, but excluding any subset of Vi, that respect f by

C(ui)(f) :=
{

(X, (XL, XR)) ∈ Q̂(tree(ui)) :X ′ = X ∪ f−1({1L, 1R}),

C ′ = (XL ∪ f−1(1L), XR ∪ f−1(1R)),

(X ′, C ′) ∈ Q̂(broom[ui])
}

(1)

That is, the partial solutions in C(ui)(f) are given by consistently cut subgraphs of
G[tree(ui)], that are extended to the candidate-cut-pairs for G[broom[ui]] by f , i.e., consist-
ently cut subgraphs of G[broom[ui]] that contain all terminals in broom[ui].

Similarly, for a node ui ∈ V (F), and a P-restricted function g : tail(ui) → states, we
define the set of partial solutions at ui, but possibly including a subset of Vi, that respect g

by C[ui](g), whose definition is identical to (1) (after replacing f by g everywhere), except
that the candidate consistently cut subgraph (X, (XL, XR)) is from the set Q̂[ui].

With these definitions, the coefficients of the terms Zw
W Zk

X , for 0 ≤ w ≤ 2n2 in the
polynomial P[r](∅) at the root node r ∈ V (F) will give the desired quantities.

Recursively Computing Polynomials. Let ui ∈ V (F), and let f : tail[u] → states be a
P-restricted function. If ui is a leaf in F , then

P(ui)(f) =
[
(f−1(1L), f−1(1R)) is a consistent cut of G[f−1({1L, 1R})]

]
·

[
K ∩ tail[ui] ⊆ f−1({1L, 1R})

]
· [t1 ∈ tail[ui]=⇒f(t1) = 1L] (2)

If ui ∈ V (F) is not a leaf, then P(ui)(f) =
∏

uj∈child(ui)

P[uj](f) (3)

To define the computation of P[ui](g) for a P-restricted function g : tail(ui) → states, we
need the following notation. Let F(Vi) be a set of P-restricted functions (see Definition
14) from Vi → states with the following additional property: for all h ∈ F(Vi), if u, v ∈
h−1({1L, 1R}) with uv ∈ E(G), then h(u) = h(v). We refer to this additional property as
the function being cut-respecting.

Note that g and any h ∈ F(Vi) have disjoint domains, and both are P-restricted.
Therefore, g ⊕ h is also P-restricted for any h ∈ F(Vi). We have the following recurrence:

P[ui](g) =
∑

h∈F(Vi)

P(ui)(g ⊕ h) · Z
w(Vi(h,1))
W Z

|Vi(h,1)|
X (4)

Where, we use the shorthand Vi(h, 1) for the set Vi(h, 1L) ∪ Vi(h, 1R).
At a high level, the correctness of the equations (2)-(4) essentially follows from the same

arguments as in [10]. However, the details are rather technical because a recursive call made
at a vertex ui ∈ V (F) corresponds to a function from F(Vi) that simultaneously assigns
states to all the vertices in Vi. We defer the formal proof of correctness to the appendix.

Given recurrences (2-4), it is straightforward to compute polynomials P(ui)(f) and P[ui](g)
using a recursive algorithm. Finally, we return the coefficient of the term Zw

W Zk
X in the

polynomial P[ui](∅) thus computed. The actual description of the algorithm can be found in
the appendix.

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:13

▶ Lemma 15. For any Vi ∈ P, |F(Vi)| ≤ (1 + |Vi|)O(1) = 2O(ω(Vi)). Furthermore, the set
F(Vi) can be computed in poly(|F(Vi)|, n) time.

Proof. Let Ki = Vi ∩ K. Because of the first property from the definition of P-restricted
functions, there are at most (1 + |Vi|)κ2(1+∆) choices for selecting a subset Ui ⊆ Vi \ K of
size at most κ2(1 + ∆), to be mapped to {1L, 1R}. Let us fix such a choice Ui. Note that
every terminal in Ki := K ∩ Vi must be assigned to {1L, 1R}.

Due to the cut-respecting property, if there are two vertices u, v ∈ Ui ∪ Ki that belong to
the same clique, then they must belong to the same side of the consistent cut. Since each Vi

is a union of at most κ cliques, there are at most 2κ choices for assigning vertices in Ui ∪ Ki

to either side of a consistent cut. Therefore, since κ, ∆ = O(1), and ω(Vi) = log(1 + |Vi|), we
have the following:

|F(Vi)| ≤ (1 + |Vi|)κ2(1+∆) · 2κ = 2O(ω(Vi)).

Here we would like to highlight the distinction between the weights ω : P → R+ from the
weighted treedepth decomposition, the weights w : V (G) → N from the Isolation Lemma,
and the target weight w for w.

It is relatively straightforward to convert this proof into an algorithm for computing
F(Vi). First, we can use a standard algorithm (e.g., [13]) to generate subsets Ui of size at
most κ2(1 + ∆). It is known that this can be done in |Vi|O(κ2(1+∆)) time.

Now, fix a particular choice of Ui, and consider the set Ui ∪ Ki as defined above. Now
we compute an inclusion-wise maximal independent set Si of Ui ∪ Ki, e.g., by a greedy
algorithm. Since Vi is a union of at most κ cliques, |Si| ≤ κ. Now we consider at most 2κ

choices for assigning {1L, 1R} to each vertex in Si. For any vertex v ∈ (Vi ∪ Ki) \ Si, there is
a vertex v′ ∈ Si such that vv′ is an edge. Therefore, we set f(v) = f(v′). Note that if v has
more than one neighbor in Si, and if a particular choice assigns them different values, then
this corresponds to a function that is not cut-respecting. In this case, we may move to the
next assignment to Si. Finally, since Si is a maximal independent set, each cut-respecting
function for the fixed choice of Vi will be considered in this manner. Finally, iterating over
all choices of Vi, we can compute the set F(Vi) as claimed. ◀

▶ Theorem 16. There exists a 2O(n1−1/d) time, polynomial space, randomized algorithm to
solve Steiner Tree in the intersection graphs of similarly sized fat objects in Rd.

Proof. From Lemma 15, it follows that at every ui ∈ F , the procedure CountC spends
2O(ω(ui)) · nO(1) time, and makes 2O(ω(ui)) recursive calls to its children, corresponding
to each function in F(Vi). Furthermore, since the weights defined by w : V (G) → [2n]
are polynomially bounded, at every node in F the algorithm uses space polynomial in n.
We finally observe that the Cut&Count algorithm is a randomized procedure that makes
polynomially many calls to CountC. The correctness of CountC follows from the correctness
of recurrence relations, and the bounds on probability follow from Corollary 10. ◀

3.3 Other Problems
We design algorithms for Connected Vertex Cover, Feedback Vertex Set, and
(Connected) Odd Cycle Transversal using Cut&Count technique. At a high level, the
ideas that are similar to that for Steiner Tree from the previous section. However, there
are a few crucial differences that are specific to the problem at hand. Here, we give a very
brief sketch of how these differences are handled. A more formal description and analysis
can be found in the full version.

FSTTCS 2021

21:14 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

Connected Vertex Cover. Recall that the goal is to find a vertex cover C of the smallest
size for the given geometric intersection graph G that induces a connected subgraph of
G. Since C is a vertex cover, it may leave out at most one vertex from any clique. Thus,
|Vi \C| ≤ κ. This is the crucial observation (analogous to 12) that helps us prune the number
of recursive calls, via bounding the number of P-restricted functions as in Lemma 15. The
details of the Cut&Count computation are very similar to that for Steiner Tree, with
appropriate modifications. Indeed, there is a reduction from Connected Vertex Cover
to Steiner Tree that increases the treedepth of the graph by at most 1, as observed in
[3, 10]. This readily implies a 2O(td) · nO(1) for Connected Vertex Cover. However, in
the resulting instance of Steiner Tree, the resulting graph may not necessarily belong to
the class of geometric intersection graphs, and thus may not have weighted treedepth of at
most O(n1−1/d). Nevertheless, we are able to adapt the approach of [10] and get a 2O(n1−1/d)

time randomized algorithm that uses polynomial space.

Feedback Vertex Set. Again, we observe that any feedback vertex set S may leave out at
most two vertices from any clique of G, thus, |Vi \ C| ≤ 2κ – otherwise G \ S will not be
acyclic. Although the high level idea is similar to Steiner Tree and Connected Vertex
Cover, the technical details need to be adapted to the peculiarities of the FVS problem.

(Connected) Odd Cycle Transversal. Let us first focus on the connected version. As for
FVS, any Connected Odd Cycle transversal C may leave out at most two vertices from a
clique – otherwise there will be a triangle in the G \ C. This implies that |Vi \ C| ≤ 2κ

for any Vi ∈ P as earlier. This observation, combined with the ideas from [10] gives the
desired subexponential time algorithm with polynomial space. Finally, we observe that an
instance of OCT can be reduced to Connected OCT by adding a new universal vertex that is
adjacent to all the original vertices. Note that the new graph may not necessarily belong to
the class of geometric intersection graphs. Nevertheless, we can use the previous algorithm
for Connected OCT as follows. The first observation is that the universal vertex can be
assumed to be the root of the weighted treedepth decomposition, and there are at most 4
recursive calls made by the algorithm from the root. The rest of the algorithm works with
the original graph, which is indeed a geometric intersection graph. Thus, the algorithm for
Connected OCT also solves OCT, up to a constant factor increase in the running time.

4 Cycle Cover

▶ Definition 17 (Cycle Cover).
Input: An undirected graph G = (V, E), and an integer k.
Question: Do there exist at most k vertex-disjoint cycles that span V (G)?

Note that the case of k = 1 corresponds to determining whether G has a Hamiltonian cycle,
that is, to the Hamiltonian Cycle problem.

We briefly sketch our approach for Cycle Cover. In this section, we assume that we
are also given the geometric representation of the similarly-sized fat objects involved in the
input graph G. With the geometric representation, we can use a stronger result from [4] that
computes (G, d, P, GP) with an additional property that P is a clique cover of G, i.e., P is a
partition of V (G) into cliques. Furthermore, the maximum degree ∆ of GP is a constant.

In the second step, we compute a graph H in polynomial time, such that G has a cycle
cover of size k iff H has a cycle cover of size k. For this, we use ideas similar to [1, 11]
to argue that the cycles can be rereouted to ensure that the size of the set of “boundary

F. V. Fomin, P. A. Golovach, T. Inamdar, and S. Saurabh 21:15

vertices”, (i.e., vertices from which a cycle enters or leaves the clique) from each clique Vi ∈ P ,
is upper bounded by O(∆). Then, since the degree of each Vi is at most ∆, it can be shown
that all but O(∆3) = O(1) vertices of Vi can be discarded without changing the answer for
Cycle Cover.

In our algorithm, we first construct the weighted treedepth decomposition of G, of
weighted depth at most O(n1−1/d). Then, we discard all but O(∆3) vertices from the graph
H. By also deleting the corresponding vertices from the treedepth decomposition of G,
it can be observed that the resulting structure can be modified to obtain an unweighted
treedepth decomposition of H, of depth O(n1−1/d). Then, we can appeal to a 2O(td) · nO(1)

time, polynomial space randomized algorithm by [15] for Cycle Cover that is based on
Cut&Count. Thus, we get the following result. We give the formal details in the full version.

▶ Theorem 18. There exists a 2O(n1−1/d) time, polynomial space, randomized algorithm,
to solve Cycle Cover in the intersection graphs of similarly sized fat objects in Rd. In
particular, this implies analogous results for Hamiltonian Cycle and Hamiltonian Path
in the intersection graphs of similarly sized fat objects in Rd.

5 Conclusion and Open Questions

In this paper, following de Berg et al. [4], we consider various graph problems in the
intersection graphs of similarly sized fat objects. Our running times for Independent Set,
r-Dominating Set, Steiner Tree, Connected Vertex Cover, Feedback Vertex
Cover, (Connected) Odd Cycle Transversal, Hamiltonian Cycle are of the form
2O(n1−1/d) – matching that in [4] – but we improve the space requirement to be polynomial.
Due to some technical reasons, we are not able to achieve a similar result for Connected
Dominating Set which is also considered by [4]. We leave this as an open problem.

Kisfaludi-Bak [12] used some of the ideas from [4] in the context of (noisy) unit ball
graphs in d-dimensional hyperbolic space. In particular, he gave subexponential and quasi-
polynomial time (and space) algorithms for problems such as Independent Set, Steiner
Tree, Hamiltonian Cycle using a notion similar to the weighted treedepth. Using our
techniques, it should be possible to improve the space requirement of these algorithms to
polynomial, while keeping the running time same (up to possibly a multiplicative O(log n)
factor in the exponent in some cases). Very recently, [5] designed clique-based separators
for various geometric intersection graphs that are of sublinear weight. Again, it should be
possible to obtain subexponential time, polynomial space for these graph classes. We leave
the details of these extensions for a future version.

Finally, our algorithms for the connectivity problems such as Steiner Tree, Connected
Vertex Cover, (Connected) Odd Cycle Transversal, and that for Cycle Cover
use an adapted version of the Cut&Count technique ([15, 10, 3]). Cut&Count technique
crucially uses the Isolation Lemma (cf. Lemma 8), and hence these algorithms are inherently
randomized. We note that recently there has been some progress toward derandomizing
Cut&Count [16] for problems such as Hamiltonian Cycle on graphs of bounded treedepth.
This may also have some consequences for our algorithms.

References
1 Steven Chaplick, Fedor V. Fomin, Petr A. Golovach, Dusan Knop, and Peter Zeman. Ker-

nelization of graph hamiltonicity: Proper h-graphs. In Algorithms and Data Structures -
16th International Symposium, WADS 2019, Proceedings, volume 11646 of Lecture Notes in
Computer Science, pages 296–310. Springer, 2019. doi:10.1007/978-3-030-24766-9_22.

FSTTCS 2021

https://doi.org/10.1007/978-3-030-24766-9_22

21:16 ETH Tight Algorithms for Geometric Intersection Graphs: Now in Polynomial Space

2 Marek Cygan, Fedor V Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms, volume 5. Springer,
2015.

3 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Joham MM van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in
single exponential time. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 150–159. IEEE, 2011.

4 Mark de Berg, Hans L. Bodlaender, Sándor Kisfaludi-Bak, Dániel Marx, and Tom C. van der
Zanden. A framework for exponential-time-hypothesis-tight algorithms and lower bounds
in geometric intersection graphs. SIAM J. Comput., 49(6):1291–1331, 2020. doi:10.1137/
20M1320870.

5 Mark de Berg, Sándor Kisfaludi-Bak, Morteza Monemizadeh, and Leonidas Theocharous.
Clique-based separators for geometric intersection graphs. CoRR, abs/2109.09874, 2021.
arXiv:2109.09874.

6 Erik D. Demaine, Fedor V. Fomin, Mohammadtaghi Hajiaghayi, and Dimitrios M. Thilikos.
Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free
graphs. Journal of the ACM, 52(6):866–893, 2005.

7 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

8 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Finding, hitting and packing cycles in subexponential time on unit disk graphs. Discret.
Comput. Geom., 62(4):879–911, 2019. doi:10.1007/s00454-018-00054-x.

9 Martin Fürer and Huiwen Yu. Space saving by dynamic algebraization based on tree-depth.
Theory Comput. Syst., 61(2):283–304, 2017. doi:10.1007/s00224-017-9751-3.

10 Falko Hegerfeld and Stefan Kratsch. Solving connectivity problems parameterized by treedepth
in single-exponential time and polynomial space. In 37th International Symposium on Theor-
etical Aspects of Computer Science (STACS), volume 154 of LIPIcs, pages 29:1–29:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.STACS.2020.29.

11 Hiro Ito and Masakazu Kadoshita. Tractability and intractability of problems on unit disk
graphs parameterized by domain area. In Proceedings of the 9th International Symposium on
Operations Research and Its Applications (ISORA), volume 2010. Citeseer, 2010.

12 Sándor Kisfaludi-Bak. Hyperbolic intersection graphs and (quasi)-polynomial time. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1621–1638. SIAM, 2020.

13 Donald Ervin Knuth. The art of computer programming: Generating all combinations and
partitions. Addison-Wesley, 2005.

14 Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix
inversion. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 345–354, 1987.

15 Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. Hamilto-
nian cycle parameterized by treedepth in single exponential time and polynomial space.
In 46th International Workshop on Graph-Theoretic Concepts in Computer Science (WG),
volume 12301 of Lecture Notes in Computer Science, pages 27–39. Springer, 2020. doi:
10.1007/978-3-030-60440-0_3.

16 Jesper Nederlof, Michal Pilipczuk, Céline M. F. Swennenhuis, and Karol Wegrzycki. Isolation
schemes for problems on decomposable graphs. CoRR, abs/2105.01465, 2021. arXiv:2105.
01465.

17 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

18 Bruce A Reed. Algorithmic aspects of tree width. In Recent advances in algorithms and
combinatorics, pages 85–107. Springer, 2003.

https://doi.org/10.1137/20M1320870
https://doi.org/10.1137/20M1320870
http://arxiv.org/abs/2109.09874
https://doi.org/10.1007/s00454-018-00054-x
https://doi.org/10.1007/s00224-017-9751-3
https://doi.org/10.4230/LIPIcs.STACS.2020.29
https://doi.org/10.1007/978-3-030-60440-0_3
https://doi.org/10.1007/978-3-030-60440-0_3
http://arxiv.org/abs/2105.01465
http://arxiv.org/abs/2105.01465
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4

	1 Introduction
	2 Geometric Graphs and Weighted Treedepth
	3 Cut&Count Algorithms
	3.1 Setup
	3.2 Steiner Tree
	3.3 Other Problems

	4 Cycle Cover
	5 Conclusion and Open Questions

