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Abstract

Numerical simulations of brittle fracture using phase-field approaches often employ a discrete approximation framework
hat applies the same order of interpolation for the displacement and phase-field variables. In particular, the use of linear finite
lements to discretize both stress equilibrium and phase-field equations is widespread in the literature. However, the use of P1
agrange shape functions to model the phase-field is not optimal, as the latter contains cusps for fully developed cracks. These
hould in turn occur at locations corresponding to Gauss points of the associated FE model for the mechanics. Such a feature is
hallenging to reproduce accurately with low order elements, and element sizes must consequently be made very small relative
o the phase-field regularization parameter in order to achieve convergence of results with respect to the mesh. In this paper,
e combine a standard linear FE discretization of stress equilibrium with a cell-centered finite volume approximation of the
hase-field evolution equation based on the two-point flux approximation constructed over the same simplex mesh. Compared
o a pure FE formulation utilizing linear elements, the proposed framework results in looser restrictions on mesh refinement
ith respect to the phase-field length scale. This ability to employ coarser meshes relative to the traditional implementation

llows for significant reductions on computational cost, as demonstrated in several numerical examples.
c 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eywords: Fracture; Phase-field models; Finite element; Finite volume

1. Introduction

Brittle fracture is an important failure mechanism against which engineering structures must be properly designed
o ensure their safety. At the same time, the deliberate initiation and propagation of fractures are central to many
ubsurface applications related to energy production and waste disposal. Griffith [1] was the first to formulate
theory of brittle fracture based on thermodynamic arguments, utilizing earlier results by Inglis [2] concerning

tresses around elliptical holes. This theory was later amended to include the effect of plastic zones around crack
ips by Irwin, who also introduced the notion of stress intensity factors [3]. Together, these form the basis of classical
inear elastic fracture mechanics (LEFM). More recently, an extension to LEFM in the form of a variational theory of

∗ Correspondence to: Danish Hydrocarbon Research and Technology Centre, Technical University of Denmark, Denmark.
E-mail addresses: jmiuy@dtu.dk (J.M. Sargado), Eirik.Keilegavlen@uib.no (E. Keilegavlen), Inga.Berre@uib.no (I. Berre),

an.Nordbotten@uib.no (J.M. Nordbotten).
ttps://doi.org/10.1016/j.cma.2020.113474
045-7825/ c⃝ 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.
rg/licenses/by/4.0/).

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2020.113474
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2020.113474&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:jmiuy@dtu.dk
mailto:Eirik.Keilegavlen@uib.no
mailto:Inga.Berre@uib.no
mailto:Jan.Nordbotten@uib.no
https://doi.org/10.1016/j.cma.2020.113474
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


J.M. Sargado, E. Keilegavlen, I. Berre et al. Computer Methods in Applied Mechanics and Engineering 373 (2021) 113474

t
o
m
b
i
c
w
d
d
c
p
N
c
v
d
a
r
a
v
r

o
b
a
u
s
w
s
h
p
h
t
t
a
n
C
T
i
l
b
p

fracture was formulated by Francfort and Marigo [4], with the aim of overcoming the former’s limitations regarding
crack initiation and branching through the adoption of an energy minimization framework.

Establishment of the finite element method in the early 1960s also fueled the development of numerical
echniques for simulating fracture in solid structures, and nowadays the work of Ngo and Scordelis [5] and Rashid [6]
n crack formation in concrete are recognized as pioneering efforts in discrete and continuous approaches to fracture
odeling. In the former, cracks are treated as discrete/sharp entities, and the introduction of new crack segments can

e realized explicitly via inter-element separation algorithms [7,8], ideally in combination with adaptive remeshing
n order to remove mesh bias. As brittle material behavior is characterized by the occurrence of stress singularities at
rack tips, this necessitates considerable mesh refinement in order to accurately resolve local stress fields. A classical
ay of dealing with this problem is to make use of quarter-point elements [9]. Alternatively, an implicit treatment of
iscrete cracks can be made through enrichment of the approximation space by suitable functions that directly model
isplacement discontinuities and stress singularities, as in the extended finite element method [10,11]. With smeared
rack approaches on the other hand, no effort is made to track the fracture surfaces. Instead, material stiffness is
rogressively reduced in order to approximate the overall mechanical response arising from the presence of a crack.
otable developments in this category include the fictitious crack model [12], rotating smeared cracks [13], the

rack band model [14], integral-type damage theory [15], implicit gradient-enhanced damage models [16,17], and
ariational phase-field models [18,19]. The last in particular have been gaining massive popularity in recent years
ue to their clear connection to Griffith’s theory. In these models, cracks are represented as diffuse entities through
n auxiliary scalar variable φ known as the phase-field [20], with the amount of diffusion being controlled by a
egularization parameter ℓ. While the initial intent of [18] was for the regularized energy functional to approximate
body with discrete cracks through the concept of Γ -convergence [21], lately it has come to be understood that

ariational phase-field models are in fact a subset of gradient-enhanced damage models, and that the phase-field
egularization parameter should be related to the intrinsic length scale of the material [22–25].

The main strength of the phase-field method relative to other approaches is the ease with which complex evolution
f fractures can be modeled. In particular, its underlying energy minimization framework automatically handles the
ranching of fractures without the need to introduce external criteria. Furthermore since cracks are modeled by
single field, no additional complexity involving bookkeeping of surface intersections and the like is introduced

pon the initiation and branching/coalescence of cracks. Instead, an additional partial differential equation must be
olved that governs the auxiliary field evolution. This makes the approach promising for multiphysics applications
here the interaction between different physical processes due to fracture formation can be recast in a diffuse

etting, essentially becoming a coupling term that is additionally dependent on the phase-field. Such applications
ave included thermal cracking [24,26], electro-mechanical processes [27,28], fluid-driven fracture in elastic and
oroelastic materials [29–34], and chemo-mechanical degradation of battery electrode particles [35,36]. On the other
and, a prevailing challenge in the use of fracture phase-field models is the computational expense associated with
heir solution, primarily due to the nonlinear coupling of the component PDEs and also the need to properly resolve
he diffuse cracks in the mesh according to the phase-field length scale. While the crack tip stress singularities
ssociated with discrete approaches are eliminated in the phase-field formulation [23], selective mesh refinement is
evertheless required since the phase-field profile for fully developed cracks contains cusps as illustrated in Fig. 1.
onsequently, the discretization must be suitably fine in the vicinity of cracks to resolve rapidly changing gradients.
his can in turn dramatically increase the computational size of the discrete problem, particularly if the crack path

s unknown a priori and a global mesh refinement strategy is used. As an alternative, one can make use of adaptive
ocal refinement strategies in order to achieve the required element sizes in the vicinity of crack paths. This has
een explored in several works, for instance [37–42]. In some of these works, both the element size h and the
hase-field length scale ℓ are simultaneously reduced following the concept of Γ -convergence, with ℓ expressed as

a function of h or vice versa. While such a strategy may be applied in cases where fracture propagation proceeds
from a preexisting crack, it is important to note that for crack nucleation in the absence of stress singularities, the
relevant parameter is the material strength which in turn has a dependence on both the critical energy release rate
Gc and ℓ [25]. In this case, ℓ must be kept at a fixed value while h is refined in order to properly capture the
irregularity of the phase-field profile. An interesting idea introduced in [43] is that of anisotropic mesh adaptation.
This capitalizes on the fact that meshes need to be refined mainly along the direction of steep phase-field gradients,
which can be accomplished by using elements with high aspect ratios.

Another important consideration in the phase-field approach is the non-convexity of the regularized functional
used to approximate the Griffith energy. Imposing stationarity of this functional yields two nonlinear coupled
2
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Fig. 1. Phase-field modeling of fractures. (a) Discrete cracks Γ are assumed to be surfaces of dimension n − 1 embedded inside an n-
imensional body; these are represented as diffuse entities via an auxiliary scalar field φ ∈ [0, 1]. (b) Phase-field profile for a 1-dimensional
ody with a fully developed crack at x = 0. The classical 2nd order phase-field model results in φ having a cusp at the crack location,
hich can be rounded by using a higher order model as proposed for instance in [44].

DEs representing stress equilibrium and incremental energy balance, and it is well known that straightforward
pplication of the Newton–Raphson method to solve the resulting discrete system leads to divergence of iterations
hen cracks are growing. Use of the alternate minimization (AM) algorithm to solve the aforementioned system
as first proposed in [18], and this remains the method of choice in many subsequent works due to its robustness.
owever the AM algorithm achieves only linear convergence, and a large amount of iterations is often needed in
rder to achieve convergence during crack growth. A one-pass staggered scheme was introduced in [45], which
liminates the issue of having to perform iterations at the cost of requiring sufficiently small time steps in order to
chieve acceptable accuracy. It was later demonstrated in [46] that this scheme is inadequate for use in conjunction
ith arc-length approaches, even when time steps are kept extremely small. A special line search algorithm was
eveloped in [47] for use with a fully monolithic approach, with the aim of recovering convergence by finding for
ach iteration the solution that yields the global minimum of the energy along a given search direction. In particular,
t was shown that the energy functional may vary in a very complex manner along a given direction, and that a very
ccurate reconstruction of this variation is required in order to find the true minimum needed to restore convergence
f the monolithic scheme. On the other hand, the idea of constructing a convex approximation of the regularized
nergy is explored in [40]. This is accomplished by performing a linear extrapolation of the phase-field using values
rom previous time steps for use in the stress equilibrium equation. The algorithm can be interpreted as an extension
f the one-pass staggered scheme, with the latter using phase-field values from the previous time step directly in
ieu of an extrapolation. Augmentation of the standard AM scheme by over-relaxation was also investigated in [48],
here it was combined with a backtracking line search-assisted Newton scheme to reduce the number of overall

terations needed for convergence.
With regard to the discrete function spaces used to numerically approximate the coupled system of PDEs, the

tandard practice thus far has been to employ the same order of basis functions for the linear momentum and phase-
eld equations. In addition, while earlier studies utilizing FEM such as [20,49] favored setting the characteristic
ize of elements to half the magnitude of ℓ in conjunction with P1 basis functions, this ratio has been found
o be suboptimal in later studies [50,51]. Higher order models have also been introduced which result in looser
equirements on the mesh resolutions with respect to ℓ due to blunting of the cusp, however such models require

1-continuous solutions for the phase-field and hence are more suited for use with specialized schemes that preserve
igher order continuity, such as isogeometric basis functions [44] and local maximum entropy approximants [52].
n interesting direction recently explored in [53] combines discrete approaches (in the form of extended finite

lements) with the phase-field method, in which the latter is restricted to local domains surrounding crack tips in
rder to limit the overall size of the discrete problem.

In this contribution, we propose a combined discretization scheme (in the sense of both unequal-order approx-
mation and different formulations) to solve the coupled system of equations associated with phase-field modeling
f brittle fracture. The idea is based on the assumption that the need to properly resolve the phase-field along
3
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cracks leads to mesh size restrictions that are more stringent than what is needed for the accurate resolution of the
regularized stresses. Within a finite element context, this naturally leads to the prospect of using higher order basis
functions for the auxiliary field. Alternatively, one can make use of an approximation scheme that can better handle
the lack of regularity associated with phase-field solutions for fully developed cracks. In particular for this paper,
we look at the prospect of adopting control volume formulation approaches such as finite volumes. Compared with
methods based on a weak formulation such as FEM, the use of finite volumes in solid mechanics applications has
not been as extensively explored, and to our knowledge the earliest application thus far of the latter in phase-field
fracture can be found in [54], where an FV discretization is utilized for all of the governing equations. In this work,
we propose instead to combine a finite element approximation of the linear momentum equation using P1 shape
functions with a cell-centered finite volume scheme for the phase-field subsystem based on the classical two-point
flux approximation (TPFA). The phase-field is assumed to be piecewise constant over elements, hence our scheme is
effectively a P1-P0 formulation. However, the main advantage of a finite volume scheme in this case is that it allows
for discontinuous gradients within a local cell while preserving the continuity of normal derivative terms across cell
faces. This in turn is ideal for modeling the cusps that occur in the phase-field profile. Furthermore, local calculations
pertaining to a cell do not involve matrix operations and hence are much cheaper to carry out than those associated
with a variational formulation such as finite elements. A limitation of the TPFA is that it ignores the tangential
components of gradients across cell faces. Hence in porous media flow applications for which the technique was
originally developed, the cell faces should be aligned with the principal directions of the permeability tensor in order
to produce correct results [55]. On the other hand in the PDE governing fracture evolution, the relevant material
parameter acting on the phase-field gradient is the critical energy release rate, Gc. For a wide class of materials, Gc

is specified as a scalar quantity that can alternatively be interpreted as an isotropic tensor, and our experience in
this case has been that application of TPFA to unstructured simplex meshes yields acceptable results despite cell
faces being generally non-orthogonal.

2. Mathematical formulation

Let us consider a solid body occupying a domain Ω and containing a collection of internal cracks denoted by
. Following [4], we assume that its total potential energy may be expressed as a sum of bulk and surface terms.
hat is,

Ψ =

∫
Ω\Γ

ψ0 (ε) dΩ +

∫
Γ

Gc dΓ , (1)

herein ψ0 (ε) =
1
2λ (tr ε)2 + µε : ε is the Helmholtz free energy for the bulk material, and Gc is the critical

energy release rate from Griffith’s theory of brittle fracture [1]. As the second term represents the energy dissipation
associated with crack formation, it is further subject to the irreversibility constraint

Γ (t + ∆t) ⊇ Γ (t) (2)

for ∆t > 0, meaning that cracks may only grow over time but not heal. Determining the proper evolution of Γ
under arbitrary loading conditions is nontrivial, and following [19] we instead utilize a regularized version of the
above potential, expressed as

Ψℓ =

∫
Ω

ψ (ε, φ) dΩ +

∫
Ω

Gcγℓ (φ,∇φ) dΩ . (3)

In the above expression, the cracks have been recast as diffuse entities, with γℓ (φ,∇φ) representing the crack surface
density per unit volume, or analogously the crack length per unit area for 2-dimensional problems. In particular we
adopt a form derived in [49] and given by

γℓ (φ,∇φ) =
1
2ℓ
φ2

+
ℓ

2
∇φ · ∇φ. (4)

The scalar variable φ ∈ [0, 1] is known as the crack phase-field, and characterizes respectively for φ = 0 and
φ = 1 the fully pristine and fully broken states of a material. On the other hand, ℓ is a regularization parameter
(the phase-field length scale) that controls the amount of diffusion in the crack representation.
4
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There are several ways to regularize the bulk term in (1). In the present study, we make use of two different
egularizations: the isotropic model

ψ (ε, φ) = g (φ)ψ0 (ε) (5)

riginally employed in [18], and an anisotropic model for approximating unilateral contact developed by Amor
t al. [56], given by

ψ (ε, φ) = g (φ)
[κ

2

(
tr+ ε

)2
+ µεdev : εdev

]
+
κ

2

(
tr− ε

)2

= g (φ)ψ+

0 (ε)+ ψ−

0 (ε) ,
(6)

in which εdev denotes the deviatoric component of ε (see Appendix), and tr± ε is defined as

tr+ ε = max (0, tr ε)

tr− ε = min (0, tr ε) .
(7)

Both models above involve an energy degradation function g (φ), whose role is to annihilate material stiffness at
locations where the material is broken according to the phase-field. For simplicity, we adopt the quadratic expression

g (φ) = (1 − φ)2 (8)

that is most often used in the literature. Nevertheless we note that the above form is not the most optimal for use
with (4), and in particular for accurate modeling of failure loads as well as overall linear response prior to fracture
we refer the reader to our previous work on parametric degradation functions [51].

To obtain the governing equations for the brittle fracture problem, we first define a functional that includes both
the potential energy and external work terms, i.e.

Π = Ψℓ −

∫
Ω

b · u dΩ −

∫
∂ΩN

t · u d∂Ω (9)

in which b denotes the body force, and t the surface traction acting on the Neumann boundary ∂Ω N . Imposing
stationarity of the above functional, we have

δΠ = 0 =
∂Π

∂u
δu +

∂Π

∂φ
δφ (10)

hich yields two coupled PDEs corresponding to the different terms on the right hand side above. The first term
s none other than the weak form of the stress equilibrium equation:∫

Ω

σ (ε, φ) : δε dΩ =

∫
Ω

b · δu dΩ +

∫
∂ΩN

t · δu d∂Ω , (11)

herein σ (ε, φ) = ∂ψ (ε, φ) /∂ε. On the other hand, expanding the second term in (10) yields the weak form of
he phase-field evolution equation, given by∫

Ω

Gc

(
1
ℓ
φ δφ + ℓ∇φ · ∇δφ

)
dΩ +

∫
Ω

g′ (φ)ψ+

0 (ε) dΩ = 0. (12)

s in [18], we impose homogeneous natural conditions on the entire external boundary, i.e.

∇φ · n = 0 on ∂Ω , (13)

here n is the outward unit normal vector to ∂Ω . Performing integration by parts and imposing arbitrariness of δu
nd δφ, we obtain the strong form of coupled system given by the following boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ (ε, φ)+ b = 0 in Ω (14a)
u = ū on ∂Ω D (14b)
σ (ε, φ) · n = t on ∂Ω N (14c)

Gcℓ∇
2φ −

Gc

ℓ
φ = g′ (φ)ψ+

0 (ε, φ) in Ω (14d)
∇φ · n = 0 on ∂Ω . (14e)
5
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Fig. 2. Discrete formulation of the phase-field brittle fracture problem, combining P1 finite elements for the linear momentum equation and
cell-centered finite volumes for the phase-field evolution equation. (a) Computational stencil for ΩK , and (b) distances from respective cell
centers to the face midpoint that are used to calculate the transmissibility coefficient M1

K between ΩK and Ω1
K .

It then remains to enforce the irreversibility of crack growth. Here we adopt the approach of Miehe et al. [45] and
replace ψ+

0 with a history field defined as

H (x, t) =

{
maxs∈[0,t] ψ

+

0 (ε (x, s)) , φ > φc

ψ+

0 (ε (x, t)) otherwise. (15)

in which φc is some chosen irreversibility threshold.

3. Computational framework

3.1. Discrete approximation

To perform a numerical solution of the coupled system, we combine a finite element formulation of the linear
momentum equation using P1 basis functions with a cell-centered finite volume discretization of the phase-field
equation based on the two-point flux approximation. Fig. 2(a) shows the resulting computational stencil for an
interior triangular cell ΩK , which involves displacement degrees of freedom at the cell vertices and phase-field
DOFs located at cell centers of ΩK and its immediate surrounding cells, denoted by Ω i

K . To construct the local
matrices pertaining to a given cell, we begin by expressing the displacement and strain fields in Voigt form as
vector quantities, i.e. u =

{
ux , u y

}T and ε =
{
εxx , εyy, εzz, γxy

}T. These are then interpolated over a given element
as

u =

3∑
I=1

NI uI δu =

3∑
I=1

NI δuI

ε =

3∑
I=1

BI uI δε =

3∑
I=1

BI δuI ,

(16)

in which the matrices NI and BI are given by

NI =

[
NI 0
0 NI

]
BI =

⎡⎢⎢⎣
NI,x 0

0 NI,y

0 0
NI,y NI,x

⎤⎥⎥⎦ (17)

corresponding to plane strain conditions. NI and uI are respectively the standard Lagrange (P1) shape function and

displacement vector associated with node I , and NI,x and NI,y are the derivatives of NI with respect to x and y. Let

6
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us consider a local element ΩK having area AK . The damaged-reduced stress σ (ε, φ) is assumed to be constant
ver ΩK , hence the local residual for the discretized linear momentum equation associated with node I can be
ntegrated using one Gauss point located at the center of ΩK . This yields

ru
I = AK BT

I σ (ε, φ)− AK NT
I b −

∫
(
∂ΩN

u
)

K

NT
I t dS. (18)

eanwhile, we construct the discrete approximation of the residual pertaining to the phase-field equation by first
ntegrating (14d) over ΩK and applying integration by parts to obtain the corresponding control volume formulation:

0 =

∫
ΩK

(
g′ (φ)H +

Gc

ℓ
φ − Gcℓ∇

2φ

)
dΩ

=

∫
ΩK

[
g′ (φ)H +

Gc

ℓ
φ − ∇ · (Gcℓ∇φ)

]
dΩ

=

∫
ΩK

[
g′ (φ)H +

Gc

ℓ
φK

]
dΩ −

∫
∂ΩK

Gcℓ∇φ · n d∂ΩK (19)

ssuming φ to be piecewise constant over Ωk , the residual for the phase-field equation can be written as

rφK = AK

[
g′ (φK )HK +

Gc K

ℓK
φK

]
+

3∑
i=1

M i
K

(
φK − φi

K

)
(20)

wherein AK is the cell area, φK the value of phase-field inside ΩK , and Gc K and ℓK are respectively the values
of the critical energy release rate and phase-field regularization parameter within ΩK . Meanwhile φi

K denotes the
phase-field value at the adjacent cell sharing edge i with cell K , and M i

K is the transmissibility coefficient associated
with the edge ∂Ω i

K , defined as

M i
K =

L i

d i
K

Gc K ℓK
+

d ′i
k

Gc
i
K ℓ

i
K

(21)

n which L i is the length of edge i , and d i
K and d ′i

K are the respective distances from the centers of ΩK and Ω i
K

o the midpoint of ∂Ω i
K as illustrated in Fig. 2(b). We note that (20) is valid only when ΩK is an interior cell. For

ells situated at the boundary, one must account for prescribed boundary conditions acting on cell edges.

.2. Nonlinear solution

The system unknowns {uI } and {φK } are obtained by enforcing the condition{
ru

I = 0 (a)
rφK = 0 (b)

(22)

or each node I and cell K of the discretized domain. Due to the forms of σ (ε, φ) and g (φ), the global system is
onlinear and must be solved iteratively. Linearization of the local system yields[

Ku Kuφ

Kφu Kφ

] {
u̇
φ̇

}
=

{
ru

rφ

}
(23)

n terms of the corrections u̇ and φ̇, wherein

Ku
I J = AK BT

I C (ε, φ)BJ (24)

Kuφ
I = AK BT

I
∂σ (ε, φ)

∂φ
(25)

Kφu
J = Kuφ

I
T

(26)

Kφ
=

[
AK

(
g′′ (φk)HK +

Gc K

ℓK

)
+

∑3
i=1 M i

K , −M1
K , −M2

K , −M3
K

]
(27)
7
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Fig. 3. Local coefficient matrix profile for the proposed FE–FV scheme.

Note that while the resulting global set of equations involves a symmetric coefficient matrix, the local system given
by (23) is not square as illustrated in Fig. 3. In order to deal with the non-convexity of (9) with respect to the
pair of arguments (u, φ), we make use of the alternate minimization algorithm introduced in [18] that is known to
be robust for these types of problems. In each iteration of the AM algorithm, we first solve for the displacement
unknowns with the phase-field fixed. Said displacements are then updated, after which the proper values of the
history field are computed and the phase-field subsystem solved (with displacements fixed) and updated. This is
carried out repeatedly until the corrections to u and φ as well as the residuals for each subsystem are within specified
tolerances.

3.3. Initialization of phase-field for initial cracks

Many problems of interest feature preexisting cracks in the domain. These can be either built in to the initial
geometry, or modeled via the phase-field which must then be initialized to account for the preexisting cracks.
The latter can be accomplished in different ways. Some works such as [38,41] have advocated for initialization
of the history field with the use of ad hoc procedures. These essentially involve performing global searches and
nearest-distance calculations, and furthermore do not elaborate on how to treat locations in the immediate vicinity
of multiple intersecting cracks.

A simpler alternative is to impose φ = 1 as a Dirichlet constraint at the location of initial cracks throughout the
ntire duration of the simulation. For the FE–FV scheme employed in the present work, the phase-field unknowns
ie at the cell centers so that the aforementioned constraint can be trivially applied if the domain is discretized such
hat initial cracks pass through element centers. On the other hand in a finite element scheme where phase-field
nknowns are located at nodes, one can instead construct the mesh such that initial cracks align with element edges.
owever this runs into the problem of crack thickening when the domain is subjected to loading, a phenomenon

hat we demonstrate later in the numerical examples. A better procedure would be to adopt the same strategy as
or the FV scheme (i.e. construct the mesh such that initial cracks pass through element centers), and then impose
= 1 on all nodes of elements that contain crack segments.

.4. Implementation aspects

Both the proposed FE–FV formulation in the current work as well as the traditional discrete formulation utilizing
qual-order P1 FE basis functions are implemented within the software framework BROOMStyx [57], a general
ultiphysics simulator that allows for the combination of different discretization schemes with minimal overhead.
urthermore, the implementations for both formulations are optimized by storing quantities such as gradient matrices

hat do not vary with time at each evaluation point. Note that the incurred memory footprint of this is larger for the
E formulation in the phase-field subsystem, since it requires storage of both a 2-by-3 gradient matrix and a 3-by-3
ass matrix. In contrast, the FV scheme only needs to store transmissibility coefficients which amount to a single

calar value per local cell edge. The code is designed to run in parallel on shared memory architectures by means of
8
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Fig. 4. Spurious growth of initialized phase-field for rectangular specimen under tensile loading, showing (a) the development of residual
load as the imposed displacement is increased. The remaining figures show the phase-field profile at (b) ux = 0, (c) ux = 0.058, (d)

x = 0.017, and (e) ux = 0.05.

penMP directives, and dense matrix operations are carried out using BLAS and LAPACK routines provided by the
ntel Math Kernel Library (MKL). Likewise, shared memory-parallel solution of sparse linear systems is performed
sing the direct solver PARDISO that is included in MKL. We do not perform adaptive remeshing during the
ourse of our simulations, hence the initial sparsity profiles of global coefficient matrix do not change. As in [51],
e exploit this property to speed up the solution of linear systems, specifically by performing symbolic factorization
nly at the beginning iteration of a substep, and thereafter proceeding directly to the numerical factorization phase
f the solver in subsequent iterations. Additionally since both formulations result in symmetric global coefficient
atrices, only the upper triangular portion of said matrices are actually assembled and manipulated by the linear

olver which cuts down further the time for each iteration.

. Numerical examples

In this section, we compare performance of the proposed FE–FV formulation against linear finite element
pproximation of both the linear momentum and phase-field equations. All 2-dimensional problems are solved
ssuming plane strain behavior, and the corresponding simulations are run in parallel on a desktop machine equipped
ith a single Intel i7-8700K (6-core) processor at 3.70 GHz base frequency. Each simulation run uses all 12 hyper-

hreads during execution of parallel regions such as the assembly of global coefficient matrices and right hand
ides, and also during solution of sparse linear systems. Finally, all 2D meshes were generated using the software
msh [58].

.1. Stretching of specimen fully cut by a crack

To demonstrate how the use of cell-centered finite volumes to discretize the phase-field equation improves over
inear finite elements, we begin with a basic example involving a rectangular specimen occupying the domain

= [−10, 10] × [0, 5] (dimensions in mm) and fully cut by a crack at {0} × [0, 5]. The material parameters are
et to E = 210 GPa, ν = 0.3 and Gc = 2.7 N/mm. For simplicity, we set ℓ = 1 mm. The specimen is discretized
sing a symmetric configuration of uniform structured simplex elements having characteristic length h = ℓ/2. Here
e utilize linear FE approximations of both the mechanics and phase-field equations, and in particular the crack is
odeled by imposing the Dirichlet condition φ = 1 along the specimen centerline. Furthermore, we have constructed

he mesh to use an even number of elements along the specimen length so that the crack location coincides with
row of element edges. In this way, the characteristic kink of the phase-field profile is handled naturally by the

iecewise-continuous nature of the FE shape functions.
After initializing the phase-field, we impose a horizontal displacement ux = 0.05 mm that is applied in 500

niform increments on the boundary {10}× [0, 5], with additional constraints ux = 0 on {−10}× [0, 5] and u y = 0
n −10, 10 ×{0}. In a continuous setting, no internal load should be induced by this stretching since the specimen
[ ]

9
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is already fully cracked. However for the discrete problem, one can observe a residual internal load that grows with
increasing displacement towards a peak value before dropping again to zero as shown in Fig. 4(a). This can be
explained by the fact that since φ = 1 is imposed over a row of element edges, the values of φ at relevant element

auss points are actually less than 1. This leads to some residual stiffness as then g (φ) > 0 at these points. In
ddition, the residual bulk energy associated with the induced loads also induces further growth of the phase-field.
nitially this is seen to occur symmetrically about the line where φ = 1. However at some point bifurcation-type
ehavior is observed to occur such that φ = 1 is achieved over a single row of elements (as opposed to two adjacent
ows, which are energetically unfavorable). This is illustrated in Figs. 4(b)–4(e), where the final configuration can
e understood as the actual ‘stable’ profile of the phase-field under tensile loading.

Based on the above results, we can simplify our initial comparison of FE and FV schemes by considering the
-D problem of an infinitely long uniform cylindrical bar that is completely cut by a crack at x = 0. The bar

is unstressed, and we are concerned only with solving for the phase-field profile. Hence the relevant governing
equation is given by

ℓφ′′ (x)−
1
ℓ
φ (x) = 0 ∀x ∈ (−∞,∞) , (28)

subject to the boundary condition φ′ (±∞) = 0 together with the internal condition φ (0) = 1. As with the previous
problem, we set ℓ = 1. The analytical solution is then given by

φ (x) = exp (− |x |) . (29)

For convenience, we perform numerical solution over the truncated domain −10 < x < 10 with the understanding
that φ′ (±10) is sufficiently close to zero so as to justify comparison with the above analytical solution. In a general
discrete setting where the mechanics and phase-field equations are fully coupled, evolution of φ is driven by the
source term g′ (φ)ψ+ (ε) so that the phase-field should achieve its maximum values at the discrete locations where
the source term is applied. In a finite element approximation of the mechanics, stresses and strains are naturally
defined at element Gauss points, which are then the natural choice of locations for application of the phase-field
source term. In the case of P1 FE, said Gauss points coincide with element midpoints. In order to achieve the same
effect in the decoupled phase-field equation, the domain is discretized such that the coordinate x = 0 is located at
the center of an element. In the FV simulation, the effect of a source term acting on this central element is mimicked
by setting the value of its associated DOF to unity. On the other hand for the FE setup, the constraint φ = 1 is
applied at the nodes of the same element. Fig. 5 shows the results of both methods for a domain partitioned into
21 uniformly sized cells of size h = 0.952. We can observe that although the phase-field is assumed to be constant
within each cell for the FV solution, the value of φ at the center of each cell is much closer to the analytical solution
compared to that obtained using finite elements. This can be attributed to the fact that approximation of the gradient
terms at element endpoints by means of two-point fluxes effectively treats φ as discontinuous inside each cell, thus
accommodating the presence of a cusp at x = 0.

We also study the effect of mesh refinement on the accuracy of both methods by means of the L2-norm of the
error, defined as

∥φ − φh∥L2 =

√∫
Ω

(φ − φh)
2 dΩ (30)

Results are plotted in Fig. 6, where h ∈
{ 20

11 ,
20
21 ,

20
41 ,

20
81 ,

20
161 ,

20
321 ,

20
641

}
. We can see that while the error converges

at the same rate in the L2-norm for both methods, the accuracy obtained with finite volumes is better, being about
he same as that for a finite element solution using a mesh with element sizes reduced by two. Cell-centered finite
olumes are thus a cost-effective alternative to P1 FE for the phase-field sub-problem, and in particular the factor
wo is found to hold also for higher dimensions as demonstrated in the succeeding examples.

.2. Tension test of notched specimen

The tensile (mode-I) fracturing of a notched square specimen is a benchmark problem originally introduced
y Miehe et al. [49] for demonstrating the capability of the phase-field approach to model brutal cracking. The
pecimen geometry and boundary conditions along with details of the a priori mesh refinement are shown in Fig. 7,
10
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Fig. 5. Numerical solutions for the phase-field corresponding to a fully developed crack at x = 0 obtained using cell-centered FVM (TPFA)
versus FEM (P1). Dashed lines show how φ is interpolated locally within each element.

Fig. 6. Convergence of FE and FV solutions of the phase-field profile with respect to mesh refinement for the 1-dimensional problem.

Fig. 7. Tension test of notched square specimen: (a) geometry and boundary conditions, (b) mesh refinement detail for ℓ/h = 2.
11
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Table 1
Details of individual simulations for the notched tension test.

ℓ/h # Nodes # Cells # Unknowns, u # Unknowns, φ Global matrix density, %

FE FV u φ, FE φ, FV

1 3,542 6,889 6,972 – 6,889 0.1060 – 0.0361
2 6,567 12,906 13,022 6,567 12,906 0.0571 0.0604 0.0193
4 11,906 23,552 23,700 11,906 23,552 0.0315 0.0334 0.0106
6 17,031 33,784 33,950 17,031 33,784 0.0220 0.0234 0.0074
8 22,047 43,800 43,982 22,047 43,800 0.0170 0.0181 0.0057
10 27,832 55,360 55,552 27,832 55,360 0.0135 0.0143 0.0045
12 33,196 66,078 66,280 33,196 66,078 0.0113 0.0120 0.0038
16 43,297 86,266 86,482 43,297 – 0.0087 0.0092 –
20 53,776 107,212 107,440 53,776 – 0.0070 0.0074 –

where the dimensions are given in mm. Material parameters are set to the following: E = 210, 000 MPa, ν = 0.3,
c = 2.7 N/mm and ℓ = 0.0075 mm. The loading consists of a uniform vertical displacement U = 0.00575 mm

mposed at the upper boundary of the specimen and initially applied in increments of ∆u y = 1.0 × 10−4 mm until
y = 0.00525, and then in smaller increments of ∆u y = 1.0×10−5 mm up to a final displacement of u y = U . As the

esulting stresses are predominantly tensile, we use the isotropic model given in (5) for the bulk response. Two sets
f simulations are conducted, one pertaining to standard FE–FE interpolation and another for the proposed FE–FV
cheme. In each set, the setup described above is solved repeatedly over several mesh realizations corresponding
ifferent ratios between the phase-field length scale ℓ and the characteristic size h of element edges at the refined
egion where the crack is expected to propagate. Note that for a given value of ℓ/h, the same generated mesh is
sed in conjunction with both formulations.

Table 1 lists the resulting number of unknowns as well as the density of the global coefficient matrices for the
imulation runs conducted. As both schemes use P1 finite elements to discretize the linear momentum equation, for
given mesh they share the same number of displacement unknowns. The FE–FV formulation has around twice the
umber of unknowns for the phase-field subsystem as the traditional scheme, however use of TPFA means that each
ow of the global coefficient matrix has at most four nonzero components. This is substantially less connectivity
han the corresponding finite element scheme as reflected in the last two columns of Table 1, where the global

atrix density has been calculated as

Global matrix density, % =
# nonzeros

(# unknowns)2
× 100. (31)

s a consequence, the cost of assembling and solving the resulting linear equations is more or less the same for
oth FE–FE and FE–FV in 2D, as shown in Fig. 8(a). Moreover, use of FE–FV results in shorter simulation times
or the current problem owing to the smaller number of iterations performed for a given ratio of ℓ/h, as can be
een from Figs. 8(b)–8(c).

The final phase-field profiles corresponding to ℓ/h = 2 are shown in Fig. 9 along with the load–displacement
urves for the two discretization schemes. For the range of ℓ/h ratios tested in the current example, we found
he resulting load displacement curves to be virtually identical for the two methods, the only observable difference
eing the actual instances of failure. The latter are summarized in Fig. 10(a), where it can be seen that the critical
oad for the proposed FE–FV scheme has effectively converged with respect to mesh refinement at ℓ/h ≈ 10. In
ddition, the results show that the failure load predicted using a mesh refinement of ℓ/h = n in conjunction with
he proposed scheme is roughly equivalent to one obtained by utilizing mesh with ℓ/h = 2n for FE–FE, which
orroborates the findings from Section 4.1. We can thus infer that a critical load that is converged with respect to
he mesh can be obtained with a mesh resolution of ℓ/h = 20 in the crack path vicinity when using linear finite
lements to discretize the phase-field. Incidentally, a mesh resolution of ℓ/h = 20 was also used [53] to discretize
he area around crack tips for a localized application of the phase-field model. On the other hand, it is well known
hat setting ℓ/h < 2 results in a mesh that is too coarse for the FE–FE scheme, leading to a severe overestimation
f failure loads. Remarkably, FE–FV yields a lower critical load for a relatively coarse discretization with ℓ/h = 1
han FE–FE on a mesh with ℓ/h = 2.
12
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Fig. 8. Comparison of execution times for the notched tension test: (a) typical run times for a single iteration of the alternate minimization
algorithm, (b) total simulation times inclusive of writing output, and (c) variation in total number of AM iterations with the choice of ℓ/h.

Fig. 9. Results for notched tension test with ℓ/h = 2. Final crack path obtained using (a) standard FE–FE, and (b) the FE–FV scheme. (c)
Load displacement curves for the two schemes.

An important point of comparison is the computational cost for obtaining a solution that is independent of the
mesh for a given value of ℓ. This can be determined by plotting failure loads against the total execution time, as
shown in Fig. 10(b). Assuming that the FE–FE formulation also converges to the same critical load (Pcr = 714.26

) with mesh refinement, we can observe that the computational cost of attaining mesh-insensitive results for a
iven ℓ is reduced by almost 70% when using the proposed scheme over FE–FE. If a uniform discretization is
o be used (for instance when the crack trajectory is unknown at the beginning of the simulation), then the cost
ifference between the two formulations will be even greater than what is currently observed. Note that we make
o conclusions regarding actual accuracy of the critical loads with respect to the true solution, since this requires
hat the proper value of ℓ be used, or that the model must be modified to account for usage of a smaller or larger
[25,51].

13
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Fig. 10. Failure loads for the notched tension test, plotted against (a) different degrees of mesh refinement represented by ℓ/h, and (b)
computational cost in terms of overall simulation time, where numbers beside data points indicate the ratio ℓ/h.

Fig. 11. Shear test of notched square specimen: (a) geometry and boundary conditions, and (b) mesh refinement detail for ℓ/h = 2.

4.3. Shear loading of notched specimen

The same notched specimen from the previous problem is now subjected to shear loading by prescribing a
constant horizontal displacement at its top boundary as depicted in Fig. 11. As in the previous example, meshes
are refined a priori in the region where the crack is expected to propagate. The present benchmark problem derives
from [45,49], however we note that there exists some variation across different studies on exactly what boundary
conditions to apply. Our treatment here is similar to [59] in which the left and right sides of the specimen are
kept traction free. Material parameters as well as the phase-field regularization parameter are the same as in the
previous example, however for the current problem we make use of the anisotropic bulk degradation model of Amor
et al. [56] in order to prevent the formation of cracks under compression. The imposed horizontal displacement at
the top boundary is applied in increments of ∆ux = 1 × 10−4 mm until a cumulative value of ux = 0.0092 mm,
and thereafter the increments are decreased to ∆ux = 1 × 10−5 mm until the final displacement of U = 0.013

mm is reached. We make use of three different discretizations of the domain, representing varying levels of mesh

14
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Table 2
Details of individual simulations for the notched shear test.

Run # Method ℓ/h # Unknowns Run time

u φ Total (h : min : s)

1 FE–FE 1 11,078 5,638 16,716 00 : 19 : 48
2 FE–FE 2 28,314 14,295 42,609 01 : 11 : 17
3 FE–FE 4 83,676 42,042 125,718 05 : 12 : 57

4 FE–FV 1 11,078 11,028 22,106 00 : 17 : 12
5 FE–FV 2 28,314 28,261 56,575 01 : 01 : 54
6 FE–FV 4 83,676 83,632 167,308 05 : 25 : 34

Fig. 12. Results for the notched shear test: (a) Load–displacement curves, and (b) error norms with respect to reference solution.

refinement ℓ/h in the region of crack propagation. A total of six simulation runs are conducted, with corresponding
details reported in Table 2. Overall, we can observe that FE–FE and FE–FV yield comparable run times when
applied to the same mesh.

Load–displacement curves obtained from the different simulations are plotted in Fig. 12(a) and exhibit the same
qualitative behavior as reported in [59], with the difference in predicted peak loads attributable to the fact that we
use a slightly larger value of ℓ in our simulations. Meanwhile, Fig. 12(b) shows the convergence behavior of FE–FE
nd FE–FV with regard to the load–displacement curve. Since an analytical solution is not available for the current
roblem, we have instead substituted a reference numerical solution obtained by using FE–FE in conjunction with
esh refined such that ℓ/h = 20 in the region of fracture growth. The measure of error for the load–displacement

curves can then be calculated as

∥P − PRef∥L2 =

(∫ U

0
[P (u)− PRef (u)]2 du

)1/2

, (32)

here u and P denote respectively the prescribed displacement and the total horizontal reaction force at the top
oundary of the specimen. In terms of convergence with respect to mesh refinement, we note the similarity in
elative behavior between the two methods for the current problem to the results shown in Fig. 6. In particular the
ost-peak behavior modeled by means of FE–FE in conjunction with a mesh characterized by ℓ/h = 4 and FE–FV
ith ℓ/h = 2 are nearly identical. The same observation can be made by comparing the simulated crack paths

hown in Fig. 13. Here it is interesting to note the difference in crack trajectories obtained with the two methods
15
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Fig. 13. Notched shear test: resulting crack paths for ux = 0.013, obtained using FE–FE and FE–FV for different ratios of ℓ/h.

or ℓ/h = 1. Despite the relative coarseness of the mesh with respect to ℓ, FE–FV is able to predict a curved crack
ath similar to simulations utilizing finer meshes. On the other hand, FE–FE produces a somewhat thicker crack
ith a considerably straighter trajectory, which appears upon closer scrutiny to be indicative of mesh dependence.1

iven that the main value of such simulations lies in their predictive capability, the proper comparison to be made
ith regard to computational cost should then be between runs 2 and 4, and similarly between runs 3 and 5 in
able 2. From the reported run times, we can see that adoption of the FE–FV scheme in place of the traditional
E–FE formulation results in a reduction of around 75% in computational cost for the former case, and around
0% for the latter.

The evolution of bulk, surface and total energies with respect to the applied displacement are displayed in Fig. 14,
here for clarity we show the results of runs 2 and 4 in one plot, along with runs 3 and 5 in a separate plot. Crack
ropagation in this particular example is stable for the entire magnitude of the prescribed displacement, which is
pplied in positive increments resulting in monotonically increasing total energy. We note that calculation of surface
nergy quantities is not straightforward with the proposed formulation, as the evaluation of integrals involving
φ ·∇φ is nontrivial for a cell-centered FV scheme. In the current work, this has been accomplished by performing
reconstruction of ∇φ within each element as a post-processing step by utilizing the lowest order Raviart–Thomas

RT0) basis functions together with the normal components of the phase-field gradient at element edges obtained
sing TPFA. Nevertheless, such reconstruction is not required for solving the discrete system of equations and hence
oes not influence the simulation results with regard to the calculated displacements and damage.

1 In the simplex meshes generated with the frontal algorithm from [58], elements in the refined region are close to equilateral triangles
whose arrangement is akin to a hexagonal structured grid. We observed that the crack path predicted by FE–FE for ℓ/h = 1 is in fact
orthogonal to a primary orientation of the said grid structure.
16
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Fig. 14. Evolution of energy quantities for the notched shear test.

Fig. 15. Model setup for the problem of a notched plate with a hole, showing (a) geometry and boundary conditions, and (b) discretization
f problem domain using simplex elements for ℓ/h = 2. The simulated domain consists of the actual brittle specimen in which fracture
ccurs, and the upper and lower dowels (colored gray) that contain the points of load application. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

.4. Stretching of notched plate with a hole

For the final example, we simulate crack propagation and subsequent nucleation in a notched specimen with an
ff-center hole based on the model setup given in [59]. The specimen geometry and boundary conditions along
ith a representative discretization are shown in Fig. 15. The prescribed displacements are applied as Dirichlet

onditions at the center of the dowel portions of the specimen, which are modeled as linear elastic (non-damaging)
ith Young’s modulus E = 210 GPa and Poisson ratio ν = 0.3. The rest of the domain is treated as a linear

lastic brittle material, for which the corresponding parameters are E = 5.983 GPa, ν = 0.22, G = 2.28 N/mm
c
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Table 3
Details of individual simulations for the notched plate with a hole.

Run # Method ℓ/h # Unknowns Run time Pcr (N)

u φ Total (h : min : s)

1 FE–FE 1 7,542 3,579 11,121 0 : 04 : 37 495.62
2 FE–FE 2 15,400 7,488 22,888 0 : 09 : 34 475.97
3 FE–FE 4 35,106 17,301 52,407 0 : 21 : 03 464.25
4 FE–FE 8 88,008 43,672 131,680 0 : 55 : 21 460.22

5 FE–FV 1 7,542 6,929 14,471 0 : 05 : 08 478.40
6 FE–FV 2 15,400 14,671 30,071 0 : 09 : 23 464.21
7 FE–FV 4 35,106 34,171 69,277 0 : 22 : 30 461.09
8 FE–FV 8 88,008 86,687 174,695 1 : 01 : 45 458.96

Fig. 16. Load–displacement curves for the notched plate with a hole. The full set of curves obtained in the simulations are shown in (a); for
larity, the portion of load–displacement response corresponding to the brutal–stable–brutal propagation of the initial crack until it intersects
he hole is shown in (b).

nd ℓ = 1.0 mm. The notch is modeled by initializing the phase-field profile using Dirichlet-type constraints
s discussed in Section 3.3. The prescribed upward displacement at the upper dowel is applied in increments of
.0025 mm until a final displacement of ū = 1.5 mm is reached.

Details of the discretization along with run times and obtained critical loads for the initial crack propagation are
isted in Table 3. It can be observed for instance that runs 3 and 6 yield essentially the same value of the critical
oad, but with the computational cost of the latter being roughly 45% of the former. Similarly, runs 4 and 7 predict
ritical loads in near vicinity of the other, where the cost of running the FE–FV simulation is around 41% of its
E–FE counterpart.

Fig. 16 shows the resulting load–displacement curves obtained with both FE–FE and FE–FV formulations for
ifferent ℓ/h ratios, in which plotted load values correspond to the resultant force induced at the center of the
pper dowel where upward displacement is imposed. For all simulations performed, fracture is observed to take
lace as follows: first the notch extends horizontally in a brutal manner, and then propagates in stable fashion along
curved path towards the hole before undergoing another brutal phase at which the crack finally intersects the hole
oundary. Thereafter the specimen behavior can be characterized as essentially linear elastic, up to a point where
second horizontal crack nucleates from the hole. Initial crack growth accompanying said nucleation is brutal,

ith subsequent propagation occurring in a stable manner. These different stages are shown in Fig. 17 for the two
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Fig. 17. Crack propagation in notched plate with a hole: (a) initial phase-field profile, (b) immediately after first brutal crack growth, (c) at
end of stable propagation phase, (d) immediately after nucleation of second crack from hole boundary, (e) at end of simulation.

formulations studied in this work. Note that we have included results corresponding to ℓ/h = 1 mainly for purposes
of comparison; it is well known that for linear finite elements one should choose h to be smaller than ℓ.

Evolution of energy quantities over the course of simulation are given in Fig. 18. We can observe that both FE–
FE and FE–FV yield total energy curves that are not monotonically increasing. This contradicts what is expected
in this case since the imposed displacement ū is strictly increasing from 0 over time and the resulting reaction
forces are always positive as evident from Fig. 16. On the other hand, the effective applied external work as a
function of the imposed displacement can be obtained easily by integration of the load–displacement curve and
addition of the surface energy associated with preexisting cracks modeled via the phase-field. Fig. 19 shows the
evolution of the external work together with the total energy using data from the FE–FE results for ℓ/h = 8. We
can see that the two curves initially coincide, however deviations are introduced for each instance of brutal cracking.
These correspond to energy loss, and their occurrence in conjunction with brutal cracking can be interpreted as a
transformation of the missing component into kinetic energy (at which point the quasi-static assumptions of the
adopted phase-field model no longer apply). However if the brutal crack propagation does not completely cut the
specimen into unconnected parts and the latter remains sufficiently constrained, then it should be possible to reach a
static configuration that satisfies energy conservation and wherein the aforementioned kinetic component has been
converted back to potential energy. In such a case, the implication is that the solution obtained during a brutal
cracking step using standard quasi-static assumptions underestimates the length of crack advance since the source

term in the phase-field equation is missing this converted kinetic component.
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F
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Fig. 18. Evolution of energy quantities for the notched plate with a hole subjected to tensile loading, showing results obtained using (a)
E–FE, and (b) FE–FV. The blue, magenta and black curves correspond respectively to bulk, surface and total (surface + bulk) energies.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. Simulation results for FE–FE, ℓ/h = 8: resultant load, external applied work and total energy.

5. Concluding remarks

In this paper we have introduced an unequal-order discretization scheme for brittle fracture phase-field models
that combines P1 finite element and cell-centered (P0) finite volume approaches. This was motivated by the
inference that mesh size restrictions with respect to the phase-field length scale may be much more stringent
than the requirements to obtain sufficiently accurate solution of the stresses, due to the fact that introduction of
damage at the crack tips eliminates stress singularities. Application of the proposed formulation to several popular
benchmark problems in the literature have shown that the computational cost of obtaining mesh-insensitive results
20
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a

are significantly reduced in comparison with an equal-order (P1) finite element discretization of the mechanics
and phase-field equations. This is rather counter-intuitive looking at the degrees of polynomial approximation, but
may be explained by the fact that the manner in which flux/gradients are calculated across cell faces in the FV
framework allows for the implicit occurrence of a cusp inside the control volume and can thus capture the lack of
regularity in the phase-field profile more efficiently. As most implementations of fracture phase-field models in the
literature utilize equal-order formulations, we consider this work as a proof of concept regarding the potential of
using unequal-order and combined discretization approaches to overcome particular challenges associated with the
2nd order phase-field formulation.
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Appendix. Implementation of strain decomposition for anisotropic bulk degradation

In the code utilized for the current work, the isotropic and anisotropic formulations given in (5) and (6) are
implemented as different constitutive models in conjunction with a single numerical framework that corresponds to
the discretized field equations. These in turn utilize predefined modulus tensors for linear elasticity corresponding
to plane strain, written in Voigt form as

Ce
=

⎡⎢⎢⎣
λ+ 2µ λ λ 0
λ λ+ 2µ λ 0
λ λ λ+ 2µ 0
0 0 0 µ

⎤⎥⎥⎦ , (A.1)

where λ and µ are the Lamé coefficients. As shown above, the matrix dimensions of Ce are 4 × 4 since for
applications involving plasticity, the z-component of plastic strain may be nonzero even if εzz = 0. On the other
hand in the bulk degradation model of Amor et al. [56], the strain tensor is split into volumetric/spherical and
deviatoric components, with the former used as a reference quantity for modeling mode I fracture and unilateral
contact, and the latter for cracking in mode II. Thus in plane strain problems, one can argue that the deviatoric
component of strain in the z-direction should not play a role in mode I/II fracture evolution as it instead implies
cracking in mode III. Consequently, we perform the strain decomposition considering only two dimensions. Writing
the strain in Voigt form as ε =

{
εxx , εyy, 0, γxy

}T, we calculate volumetric and deviatoric components as

εvol = Pε

εdev = (I − P) ε
(A.2)

where

P =
1
2

⎡⎢⎢⎣
1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦ and I =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ . (A.3)

The above formula yields εvol,zz = εdev,zz = 0, hence εvol is no longer a spherical tensor. Denoting by H (•) the
Heaviside step function, the tangent modulus accounting for damage is given by

C (ε, φ) = g (φ)Ce
{[H (tr ε)− 1]P + I} + H (− tr ε)CeP (A.4)

which will not be symmetric due to the form of P. Nevertheless, the product BTC (ε, φ)B yields a symmetric matrix
s the third row of B is composed entirely of zeros.
21
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