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Abstract 

Background: Adenoid hypertrophy among orthodontic patients may be detected in lateral cephalograms. The 
study investigates the aerodynamic characteristics within the upper airway (UA) by means of computational fluid 
dynamics (CFD) simulation. Furthermore, airflow features are compared between subgroups according to the adenoi‑
dal nasopharyngeal (AN) ratios.

Methods: This retrospective study included thirty‑five patients aged 9–15 years having both lateral cephalogram 
and cone beam computed tomography (CBCT) imaging that covered the UA region. The cases were divided into 
two subgroups according to the AN ratios measured on the lateral cephalograms: Group 1 with an AN ratio < 0.6 and 
Group 2 with an AN ratio ≥ 0.6. Based on the CBCT images, segmented UA models were created and the aerodynamic 
characteristics at inspiration and expiration were simulated by the CFD method for the two groups. The studied aero‑
dynamic parameters were pressure drop (ΔP), maximum midsagittal velocity  (Vms), maximum wall shear stress  (Pws), 
and minimum wall static pressure  (Pw).

Results: The maximum  Vms exhibits nearly 30% increases in Group 2 at both inspiration (p = 0.013) and expiration 
(p = 0.045) compared to Group 1. For the other aerodynamic parameters such as ΔP, the maximum  Pws, and minimum 
 Pw, no significant difference is found between the two groups.

Conclusions: The maximum  Vms seems to be the most sensitive aerodynamic parameter for the groups of cases. An 
AN ratio of more than 0.6 measured on a lateral cephalogram may associate with a noticeably increased maximum 
 Vms, which could assist clinicians in estimating the airflow features in the UA.
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Background
Hans Wilhelm Meyer first described the clinical con-
dition of nasal obstruction caused by adenoid hyper-
trophy (AH) in 1868 [1]. Recurrent or chronic upper 

airway (UA) infections, allergic inflammation, and 
immune response may lead to AH, one of the most 
common causes of UA obstruction in children and ado-
lescents [2, 3]. Many studies have suggested that AH 
is related to cardiopulmonary complications, crani-
ofacial growth, and obstructive sleep apnea [4–6]. 
The presence of AH causes a varying degree of naso-
pharyngeal obstruction, mouth breathing, snoring, and 
disturbance in craniofacial growth. A specific “adenoid 
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face” is characteristic among AH patients with a nar-
row and high maxillary arch, abnormal position of the 
tongue, and retrusion of the mandible [7]. Thus, early 
identification of the airflow alteration caused by AH in 
orthodontic patients is essential to avoid further com-
plications. Currently, the nasendoscopy is considered 
the standard for clinically assessing the adenoid size on 
cooperative children [8].

Lateral cephalograms, cone beam computed tomogra-
phy (CBCT), computed tomography (CT), and magnetic 
resonance imaging have been investigated to evaluate the 
size, shape, and location of the adenoid [9–12]. Among 
the radiological modalities, the lateral cephalogram has 
been widely applied in children and adolescents to depict 
and trace skeletal structures and occlusion during the 
orthodontic treatment process. Since the presence of AH 
affects occlusion and craniofacial morphology [7, 13], 
adenoid assessment is an integral part of cephalometric 
analysis for this group of children.

The adenoid size and patency of the surrounding 
nasopharynx could be presented in terms of the abso-
lute dimensions of adenoid thickness and nasopharyn-
geal width [14], percentage of adenoid-nasopharyngeal 
obstruction [10, 15], cross-sectional areas [12], volumes 
[16] of the adenoid and nasopharynx as well as the ade-
noidal nasopharyngeal (AN) ratio [9]. The AN ratio was 
found to correlate significantly with the nasopharyngeal 
volume [17], clinical endoscopic examination [18], and 
symptoms of obstructive sleeping [19]. Feng et  al. [17] 
investigated the AN ratios in relation to the 3D volu-
metric data and recommended using the AN ratio as an 
initial screening method to estimate the nasopharyngeal 
volumes of patients younger than 15  years old. An AN 
ratio of 0.6 is considered a threshold when suspecting 
AH, whereas an AN ratio value of more than 0.7 has been 
well accepted for indicating pathological AH, and ade-
noidectomy may be suggested by clinicians after clinical 
assessment [20, 21]. The current diagnosis of AH is based 
on adenoid morphology; the ultimate effect of adenoid 
size on respiratory function in terms of airflow alteration 
is yet unclear.

Computational fluid dynamics (CFD) simulations may 
be the solution to link the UA morphology and airflow 
characteristics. CFD simulation is a well-established 
method for simulating the flow of gases or fluids and their 
interactions with the surrounding surfaces, as defined 
by boundary conditions. It has been widely used in the 
industry to predict the dynamic characteristics of the tar-
geted flow. However, the application of CFD in dentistry 
was nevertheless sparse and had mainly been applied 
in evaluating the outcome of mandibular advancement 
devices in sleep-disordered breathing [22–24]. CFD has 
been accepted as an accurate and reliable method for 

associating the maxillofacial morphology and the UA’s 
aerodynamic characteristics [22, 25, 26].

The study aims to investigate the aerodynamic charac-
teristics within UA among orthodontic patients by CFD 
simulation. Furthermore, airflow features are compared 
between subgroups classified according to the AN ratios.

Methods
Sample size estimation
Maximum midsagittal velocity of the airflow in the UA is 
considered to be the primary outcome variable based on 
a previous study by Feng et al. [27]. A sample size of 30 
will be needed to ensure an 80% power to reject the null 
hypothesis at a significance level of 5%, assuming differ-
ences in maximum midsagittal velocity and its standard 
deviation is 0.7 m/s and 0.5 m/s between the cases with 
an AN ratio < 0.6 and ≥ 0.6, and the ratio between the two 
groups is 2:1.

Samples collection
This cross-sectional study is a subset of a longitudinal 
prospective study performed at Dalian Stomatologi-
cal Hospital between 2015 and 2017, in which 2D and 
3D images were compared for tracing anatomic land-
marks before and after orthodontic treatment. The study 
was approved by the regional ethics review boards in 
Dalian, China (DLKQLL201604) and Bergen, Norway 
(2018/1547 REK Vest). Informed consent was obtained 
from all patients or their legal guardians. The baseline 
images from 2015 were retrospectively collected and 
employed in the current study. The inclusion criteria were 
individuals aged 9 to 15 years who had had both a lateral 
cephalogram and CBCT scan examined within one week. 
For CBCT images, the field of view was required to cover 
the UA regions, including the nasal cavity, nasopharynx, 
and oropharynx. The exclusion criteria were severe max-
illofacial abnormalities and previous surgery on skeletal 
and soft tissue related to respiration. In the present study, 
ninety-two cases were initially included. X.F previewed 
all the CBCT scans and lateral cephalograms. Fifty-seven 
cases were excluded, of which 53 did not cover the UA, 
3 scans had motion artefact and 1 showed suboptimal 
patient positioning. Eventually, thirty-five cases were 
recruited. All the cases were divided into two groups: 
Group 1 with AN ratios < 0.6 (n = 25) and Group 2 with 
AN ratios ≥ 0.6 (n = 10).

Lateral cephalogram
The AN ratios were measured and calculated on the 
lateral cephalograms captured by a digital pan/ceph 
system (ORTHOPHOS XG 5; Sirona Dental Systems, 
Bensheim, Germany) at 73 kVp and 15 mA with expo-
sure times of 9.4  s and a contrast resolution of 16-bit 
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depth. A is defined as a perpendicular distance between 
the point of maximal convexity of the adenoid to the 
anterior margin of the basiocciput. N is the distance 
between the posterosuperior edge of the hard palate 
and the anteroinferior edge of the spheno-occipital 
synchondrosis [9] (Fig. 1).

CBCT scans
All CBCT scans were obtained by 3D eXam (KaVo, Bib-
erach an der Riss, Germany). The following parameters 
were used: a field of view (FOV) of 16 × 13  cm, tube 
voltage of 120 kV, tube current of 5 mA, scanning time 
of 14.7 s, voxel size of 0.2 mm, and contrast resolution 
of 14-bit depth.

CFD simulation
The CBCT images were imported in the digital imaging 
and communications in medicine (DICOM) format to 
MIMICS software (MIMICS, Materialise, Belgium) for 
later analysis. 3D renderings of the CBCT scans were ori-
ented with axial planes parallel to the Frankfurt horizon-
tal plane; the midsagittal planes intersected the nasion 
and anterior nasal spine, and the coronal plane was 
adjusted to the level of the porions. For each case, a mask 
was reconstructed, making sure the integrity of UA was 
displayed correctly. CFD simulation was then conducted 
on the 3D model within the mask region. The superior 
boundary of the studied UA was defined as a vertical 
plane in the nasal cavity, passing through the most pos-
terior point of the middle turbinate, whereas the inferior 
boundary was a horizontal plane, in the pharynx, in line 
with the most anterior-inferior point of cervical vertebra 
4. Each end of the boundary was extended by 20 mm to 
avoid flow reversing during the simulating process. The 
inlet and outlet of UA were set on the extended planes. 
A surface model was then created according to the 
extended 3D model for mesh generation. We chose tetra-
hedral and prismatic cells to construct the main body and 
boundary layer of the UA mesh (ANSYS, Inc., Canons-
burg, Pennsylvania). The SST κ-ω model was used to cal-
culate the aerodynamic characteristics of UA by applying 
ANSYS Fluent (ANSYS, Inc., Canonsburg, Pennsylvania). 
The wall of the UA was defined as no-slip, stationary, 
and rigid. The temperature and density of air were set as 
fixed. At inspiration, the inlet was set with the pressure 
0 Pa and the outlet at a flow rate of -200 mL/s [28]. The 
corresponding values were  -200  mL/s and 0  Pa at inlet 
and outlet at expiration.

The aerodynamic parameters applied and computed 
are listed in Table 1. The pressure drop (ΔP) refers to the 
pressure difference between a vertical plane through the 
most posterior point of the middle turbinate and a hori-
zontal plane through the tip of the epiglottis.

Two experienced operators performed CFD simula-
tions, one on all cases and one on ten randomly selected 
cases. The first operator repeated the measurements one 
month later on the ten selected cases.

Fig. 1 Calculating the adenoidal nasopharyngeal (AN) ratio on a 
lateral cephalogram. A, Perpendicular distance between maximum 
convexity of the adenoid shadow and the anterior margin of the 
basiocciput. N, Distance between the posterosuperior edge of the 
hard palate and the anteroinferior edge of the spheno‑occipital 
synchondrosis

Table 1 Description of the aerodynamic parameters evaluated applying the CFD simulation

Name Unit Definition

Maximum  Vms m/s The maximum velocity on the midsagittal plane

ΔP Pa The pressure drop of airflow between the defined two planes

Maximum  Pws Pa The maximum lateral pressure of airflow acting on the UA wall

Minimum  Pw Pa The minimum vertical pressure of airflow acting on the UA wall
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Data analyses
Data were processed using IBM-SPSS, version 25.0 (IBM, 
New York, NY, USA). Significance was set at p-values less 
than 0.05. The assumption of normal distribution for all 
variables was tested. An independent-samples T-test or 

Mann–Whitney U test was applied to compare the aero-
dynamic parameters between subgroups and between 
genders. The Intraclass Correlation Coefficient (ICC) was 
applied to test intra- and inter-observer reliability on the 
selected ten cases using a random number generator.

Fig. 2 Comparison between the two groups in terms of four aerodynamic parameters at inspiration (a) and expiration (b)
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Results
The mean age of cases was 12.03 ± 1.42 (13 females, 22 
males). AN ratios ranged between 0.33 and 0.80 with 
a mean and standard deviation of 0.54 ± 0.15. We did 
not find any statistically significant difference between 
females and males in terms of AN ratio and aerodynamic 
characteristics. Figure  2 demonstrates the four aerody-
namic variables at both inspiration and expiration for the 
two subgroups. The corresponding descriptive data of 
aerodynamic parameters for the two groups are listed in 
Table 2. The maximum  Vms in Group 2 exhibits a statisti-
cally significant increase of nearly 30% (p < 0.05) at both 
inspiration and expiration in contrast to Group 1. None 
of the other aerodynamic parameters, including ΔP, max-
imum wall shear stress  (Pws), and minimum wall static 
pressure  (Pw) were significantly different between the two 
groups at both inspiration and expiration.Fig. 3 illustrates 
the airflow features of two typical cases with an AN ratio 
of 0.40 and 0.73, respectively.

Regarding the measurement precision, intra- and inter-
observer agreement ranged between 0.872 and 0.997 for 
various aerodynamic parameters.

Discussion
The present study bridges UA morphology presented as 
AN ratio and UA function in terms of aerodynamic char-
acteristics by applying CFD simulation. Among all the 
tested aerodynamic parameters, maximum  Vms might be 
the most sensitive aerodynamic parameter that had dem-
onstrated a significant difference between the two groups 
[29]. CFD simulation may, therefore, be an additional 
diagnostic tool to reveal the aerodynamic characteristics 
within the UA, making the airflow passing through the 
UA visible. The relationship between UA’s morphology 

and aerodynamics can be explained by the Bernoulli 
effect [30], which states that when a fluid flowing through 
a narrowing region of a tube, an increase in the speed of 
the fluid coincides with a decrease in pressure. Based on 
our results, the aerodynamic characteristics of the maxi-
mum  Vms significantly increased at both inspiration and 
expiration in cases with an AN ratio of more than 0.6. 
This finding may imply that clinicians could initially esti-
mate airflow alteration in UA by measuring the AN ratio 
in a lateral cephalogram. However, caution is needed in 
extrapolating our results due to the relatively low number 
of patients, particularly in Group 2. The statistical effi-
ciency would have been higher if there had been an equal 
number of patients in the two groups.

Besides patients having enlarged adenoid, other con-
ditions such as enlarged tonsils, patients undergo man-
dibular setback surgery, and obstructive sleep apnea 
syndrome (OSAS) patients may also cause UA aerody-
namic insufficiency. OSAS patients had been mostly 
studied in previous CFD studies showing significantly 
different aerodynamic characteristics in UA compared 
to the healthy subjects. Chen et  al. [31] reported that 
patients with OSAS had a higher airflow resistance at 
expiration than the control subjects. Wakayama et  al. 
reported that the OSAS patients having nasal obstruction 
showed a higher maximum velocity and pressure drop at 
inspiration than the controls [32].

As compared to medical CT, CBCT is more cost-effec-
tive and has demonstrated a lower radiation dose [33]. 
Nevertheless, we must keep in mind that CBCT scans 
have higher radiation doses than conventional 2D images 
[34]. In the current study, we utilised the readily available 
imaging material and applied CFD simulation to investi-
gate the airflow characteristics of these specific groups of 

Table 2 Comparison of the aerodynamic parameters between the two groups defined by the AN ratio 0.6

Group 1 consisted of the cases with AN ratio less than the 0.6 whereas Group 2 consisted of the cases with AN ratio equal or more than 0.6
a Independent samples T test (one-tailed)
b Mann–Whitney U test (one-tailed)

Group 1 (n = 25) Group 2 (n = 10) Group 1 versus Group 2
Mean SD Mean SD p value

Inspiration

ΔP  − 4.38 2.15  − 4.65 2.18 0.373a

Maximum  Vms 2.36 0.46 3.04 0.80 0.013a

Maximum  Pws 2.50 5.14 0.93 0.54 0.190b

Minimum  Pw  − 11.18 5.09  − 13.14 6.97 0.115b

Expiration

ΔP 3.59 2.87 3.60 2.15 0.494a

Maximum  Vms 2.22 0.94 2.92 1.20 0.045b

Maximum  Pws 1.64 1.82 1.13 0.84 0.440b

Minimum  Pw  − 11.67 4.97  − 13.67 5.87 0.157a
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cases. It keeps in line with the statement by the American 
Association of Orthodontists that “the airway and sur-
rounding structures, specifically the adenoids in children, 
should be evaluated if radiographic records are taken for 
orthodontic purposes” [35]. Lateral cephalograms are the 

most commonly performed radiographic examination, 
which is usually readily available among patients who 
undergo orthodontic treatment. From the perspective of 
morphological changes, the AN ratio on a lateral cepha-
logram may be applied as a useful screening method for 

Fig. 3 Illustration of the airflow feature in two typical cases with an AN ratio of 0.40 (a) and 0.73 (b), during inspiration (the up images) and 
expiration (the down images), respectively. In the case of an AN ratio of 0.40, the ΔP, Maximum  Vms, Maximum  Pws and Minimum  Pw is − 7.17, 1.95, 
0.39, and − 10.75 at inspiration and 7.50, 1.62, 1.44, and − 14.97 at expiration. However, in the case of an AN ratio of 0.73, the corresponding values 
are − 3.48, 3.62, 1.41, and − 17.06 at inspiration and 5.29, 1.94, 0.59, and − 12.88 at expiration
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estimating the nasopharyngeal volume [17]. The present 
study reinforces the impact of the AN ratio by its associa-
tion with airflow features. As the AH may lead to max-
illofacial dysmorphisms, multidisciplinary collaboration 
between orthodontists and otolaryngologists is the key 
to successful treatment for each individual [36], 37. Based 
on our result, when the AN ratio is more than 0.6, a 
noticeable increase in airflow velocity (30%) is observed. 
Consequently, we may speculate alterations in breathing 
habits to overcome the nasal obstruction for this group of 
cases, such as mouth breathing.

Owing to the retrospective study design, a limited 
number of cases fulfilled the inclusion criteria of having 
both lateral cephalogram and CBCT among the ortho-
dontic patients. Further prospective research on aero-
dynamics characteristics involving more cases having 
enlarged adenoids is warranted. The application of CFD 
in dentistry is still in the exploration stage of scientific 
research. One reason is the requirement of 3D imaging to 
generate a 3D model of UA, which entails automatically 
higher patient dose as compared to conventional lateral 
cephalograms. In addition, performing CFD on a large 
number of cases is challenging since it is highly depend-
ent on the skillfulness of the operator, and the simulation 
procedure is complicated and time-consuming. CBCT-
based aerodynamics simulation is partially performed 
manually, which may lead to inconsistent reliability for 
inexperienced operators. Future studies should investi-
gate UA examination using low dose CBCT and the asso-
ciation between UA morphology, respiratory function, 
and clinical symptoms to better manage children with 
AH.

Conclusion
The maximum  Vms seems to be the most sensitive aero-
dynamic parameter for the groups of cases. An AN ratio 
of more than 0.6 measured on a lateral cephalogram may 
associate with a noticeably increased maximum  Vms, 
which could assist clinicians in estimating the airflow fea-
tures in the UA.
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